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Abstract
Predicting how much mixing occurs when a given amount of energy is injected into a
Boussinesq fluid is a longstanding problem in stratified turbulence. Here we address this
problem with the point of view of equilibrium statistical mechanics. Assuming random
evolution through turbulent stirring, the theory predicts that the unforced, inviscid, adi-
abatic dynamics is attracted irreversibly towards a state characterised by wild small scale
velocity fluctuations carrying kinetic energy, and by a smooth buoyancy profile superim-
posed with wild small scale buoyancy fluctuations. It is then possible to compute how
much of the injected energy has been irreversibly lost into small scale kinetic energy, the
remaining part being used to irreversibly raise the potential energy of the system. This
yields to quantitative predictions for a global, cumulative mixing efficiency in freely evolv-
ing configurations. We argue that this approach may be useful to the understanding of
mixing in stratified turbulence in the limit of large Reynolds and Péclet numbers.

1 Introduction

The large-scale stratification and dynamics of the oceans depend crucially on localised
turbulent mixing events (Wunsch and Ferrari, 2004). These mixing processes occur on
temporal and spatial scales much smaller than the current resolutions of general circulation
models and must therefore be parameterised (Large et al., 1994). It is essential for that
purpose to know how much mixing occurs when stratification is stirred by a turbulent
flow (Hopfinger, 1987; Peltier and Caulfield, 2003; Ivey et al., 2008). More precisely,
which fraction of the injected energy is lost through a direct turbulent kinetic energy
cascade, which fraction contributes to modifying the background stratification, and what
is the resulting vertical buoyancy profile? Building upon previous work by Tabak and Tal
(2004), we propose here to use equilibrium statistical mechanics as a guideline to answer
those questions (Venaille et al., 2016)

The traditional approach to estimate the efficiency of mixing in stratified turbulence
involves direct analyses of the diffusive destruction of small scale buoyancy variance,
which in turn requires a separation of the influence of stirring from that of irreversible
mixing through application of the Lorenz concept of available potential energy that can
be converted into kinetic energy and a base-state potential energy which can not (Winters
et al., 1995). The diffusive destruction of small scale buoyancy variance may be repre-
sented by the time derivativeM of base-state potential energy plus a small correction due
to the action of molecular diffusion on the initial stratification, a correction that become
negligible in the limit of high Reynolds number. The time dependent efficiency of turbu-
lent mixing may then be computed from direct numerical or laboratory experiments as
ηinst =M/(M+ ε) where ε is the viscous dissipation of kinetic energy in the flow; see e.g.
(Peltier and Caulfield, 2003). This definition of mixing efficiency is global in space since
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the computation of the base-state potential energy requires a rearrangement of the fluid
particle at the domain scale. Using a number of additional assumptions, it may be related
to a local mixing efficiency that is often used in oceanography to model an effective diffu-
sivity for diapycnal mixing Osborn (1980); Hopfinger (1987). In decaying experiments, it
is also convenient to define a cumulative mixing efficiency η =

∫ +∞
0

dtM/
∫ +∞
0

dt (M+ ε),
which measures how much of the total injected energy has been used to irreversibly raise
the potential energy of the flow in the experiment.

Equilibrium statistical mechanics counts the available states of an isolated physical
system with given constraints based on conservation laws. Under random evolution, the
system is expected to reach the macroscopic state which corresponds to the maximum
number of microscopic configurations. In this paper, the macroscopic quantity to be de-
termined by the theory is the partition between kinetic and potential energy, as well as
the corresponding mean (coarse-grained) vertical buoyancy profile. The microscopic con-
figurations will be any buoyancy field and non-divergent velocity field, and the constraints
will be provided by dynamical invariants of the flow model. The equilibrium statistical
mechanics theory applies to the freely evolving inviscid adiabatic dynamics. Considering
such an approach to describe actual stratified turbulence amounts to assuming that the
Reynolds number Re and the Péclet number Pe are sufficiently large, and that the typical
time scale to reach the equilibrium state is smaller than the typical time scale associated
with molecular viscosity and diffusivity.

In order to compute the equilibrium state associated with a given initial configuration,
one only needs to know the dynamical invariants, which are the total energy and the global
distribution of buoyancy levels. The theory predicts that some part of the initial energy
is irreversibly lost into small scales kinetic energy, which can be computed explicitly.
This makes possible predictions for a cumulative mixing efficiency in the framework of an
inviscid, adiabatic flow model.

The equilibrium statistical mechanics theory is presented in the second section. Ap-
plication to the computation of mixing efficiency is presented in a third section, which
includes a discussion on irreversibility for an inviscid, adiabatic fluid. We provide predic-
tions for the variation of mixing efficiency with the bulk Richardson number, and show
that such variations depend strongly on the initial buoyancy profile. A discussion and a
summary of the main results is given in a fourth section.

2 Equilibrium statistical mechanics of non-rotating Boussinesq fluids

We consider an inviscid Boussinesq fluid that takes place in a three-dimensional domain
Vx of volume V . Spatial coordinates are denoted x = (x, y, z), with ez the vertical unit
vector pointing in the upward direction. At each time t the system is described by the
buoyancy field b(x, t) and by the velocity field u(x, t) = (u, v, w), which is non-divergent.
The unforced, inviscid, adiabatic dynamics is given by

∂tu + u · ∇u = − 1

%0
∇P + bez , ∇ · u = 0, (1)

∂tb+ u · ∇b = 0 . (2)

The first step before computing equilibrium states of this dynamical system is to define
what is a microscopic configuration of the system, which requires to identify the relevant
phase space that satisfy a Liouville theorem. This means that the flow in phase-space is
non-divergent. Consequently, if all microscopic states are equiprobable at a given time,
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they remain equiprobable through the flow evolution. It is shown in Venaille et al. (2016)
that the quadruplet of fields b,u satisfies such a Liouville theorem.

The second step is to identify relevant dynamical invariants, which are here total energy
and the global distribution of buoyancy levels. The ensemble of microscopic configura-
tions characterised by the same dynamical invariants define the microcanonical ensemble.
This is the relevant ensemble to be considered in the framework of an unforced, inviscid,
adiabatic Boussinesq system.

The third step is to identify relevant macrostates, which describe ensembles of mi-
crostates. We introduce for that purpose the probability ρ(x, σ,v) of finding the buoyancy
level σ and the velocity level v in the vicinity of point x. The probability density field ρ
is normalised at each point :

∀x ∈ Vx, Nx[ρ] =

∫
Vv

dv

∫
Vσ

dσ ρ(x, σ,v) = 1 , (3)

where the integral bounds are

Vv = [−∞, +∞]3 , Vσ = [−∞, +∞] . (4)

Each microscopic state (b(x),u(x)) is described at a macroscopic level by the pdf ρ(x, σ,v),
which can be interpreted as the local volume proportion of fluid particles carrying the
buoyancy level σ and velocity level v. Several useful macroscopic fields can be deduced
from ρ, such as the macroscopic buoyancy field

b(x) =

∫
Vσ

dσ

∫
Vv

dv ρσ , (5)

and the local eddy kinetic energy field

1

2
u2(x) =

∫
Vσ

dσ

∫
Vv

dv
1

2
ρv2 . (6)

The interest of considering the probability field ρ for a macroscopic description of the
system is that global constraints provided by dynamical invariants can be expressed in
term of this quantity:

E [ρ] =

∫
Vx

dx

∫
Vv

dv

∫
Vσ

dσ ρ

(
v2

2
− σz

)
, (7)

Gσ[ρ] =

∫
Vx

dx

∫
Vv

dv ρ . (8)

The last step is to count how many microscopic configurations are associated with a
given macrostate, and to show that there is a concentration of an overwhelming number
of microscopic states close to the most probable macrostate in a given microcanonical
ensemble (i.e. for a given set of constraints). It is shown in Venaille et al. (2016) that
this most probable state maximises the entropy

S = −
∫
Vx

dx

∫
Vv

dv

∫
Vσ

dσ ρ ln ρ , (9)

while satisfying the constraints of the problem given by Eq. (3), (7) and (8). This
generalises previous results by Tabak and Tal (2004), who derived a similar expression,
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but without taking into account the degrees of freedom associated with the velocity field,
which was interpreted directly as a thermostat.

The variational problem of the equilibrium theory can be solved analytically in limiting
cases, and solved numerically in the general case (Venaille et al., 2016). The equilibrium
states are characterised by several important properties:

• The distributions of b and u are independent.

• The variance of velocity fluctuations and the variance of buoyancy fluctuations are
proportional, and their ratio varies linearly with the local mean buoyancy gradient.

• The predicted velocity distribution is Gaussian, isotropic and homogeneous in space.
It is therefore fully characterised by its variance, namely the local eddy kinetic energy

ec ≡
1

2
u2 (10)

• The predicted buoyancy distribution ρb(z, σ) depends only on the height coordinate
z. The equilibrium theory predicts therefore that the local fluctuations of buoyancy
are invariant on the horizontal.

3 Application: computation of mixing efficiency in decaying flows

Assuming that the equilibrium state is known (which can always be done numerically),
it is possible to compute a cumulative mixing efficiency within this framework. In order to
introduce a relevant definition of mixing efficiency in the context of an inviscid, adiabatic
flow system, we need to consider two essential results stemming from the equilibrium
theory. First, the most probable macrostate is an attractor for the dynamics, according
to statistical mechanics predictions: convergence of microscopic configurations towards
the equilibrium state is irreversible. We stress that this irreversibility is entirely due to
the inertial dynamics, not to molecular processes. Second, the most probable macrostate
has a peculiar structure: its buoyancy field is characterised by a smooth buoyancy profile
b(z) superimposed with wild small scale buoyancy and velocity fluctuations. More pre-
cisely, the theory predicts that when performing a local coarse-graining of the microscopic
buoyancy and velocity fields at a scale l, the small scale fluctuations are confined at scales
smaller than the coarse-graining scale l, no matter how small the coarse-graining length
scale l is, provided that the system is sufficiently close to equilibrium (Venaille et al.,
2016).

Because all the kinetic energy of the equilibrium state is carried by small scale ve-
locity fluctuations, one can say that the kinetic energy is literally lost irreversibly into
small scales. Indeed, once the equilibrium is reached, the energy of those small scales
fluctuations can not be used to overturn the coarse-grained buoyancy field. Similarly, the
small scale buoyancy fluctuations can not be used to modify the mean buoyancy profile b
once the equilibrium state is reached. In that respect, there is irreversible mixing of the
buoyancy field at a coarse-grained level.

To conclude, when the system evolves from its initial configuration to the equilibrium
state, the injected energy is partly lost into small scale kinetic energy carried by velocity
fluctuations and partly used to mix the buoyancy field at a coarse-grained level. The
coarse-grained buoyancy profile and the small scale fluctuations are decoupled when the
equilibrium state is reached. This decoupling is very much similar to the effect of viscosity,
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which transfers energy from the fluid motion degrees of freedom to internal heat degrees
of freedom.

Let us assume that a given amount of energy denoted Einj is injected into a fluid
initially at rest, characterised by a sorted (or background, or base) buoyancy profile bs(z).
The energy may either be injected on the form of kinetic energy through mechanical
stirring or on the form of potential energy as for instance in Rayleigh-Taylor configu-
rations. Turbulent stirring implies rearrangements of fluid parcels, which changes the
initial sorted buoyancy field bs into another buoyancy field b. Such rearrangements are
necessarily associated with an increase of potential energy

Ep = −
∫
Vx

dx (b− bs) z. (11)

At equilibrium, this quantity can be expressed in term of the macroscopic buoyancy profile
b which depends only on z:

Ep =
V

2H

∫ +H

−H
dz
(
b− bs

)
z . (12)

The theory also predicts that the local kinetic energy ec is uniform in space once the
equilibrium is reached. The total kinetic energy is Ec = V ec, and the conservation of
energy leads to :

Ep + Ec = Einj. (13)

We define the mixing efficiency as

η ≡ Ep
Einj

, (14)

which is bounded between 0 and 1. This quantity is equivalent to the cumulative mixing
efficiency introduced in Peltier and Caulfield (2003), and can also be interpreted as a
integrated flux Richardson number (Linden, 1979). We show in Fig. 1 how the mixing
efficiency η varies with the global Richardson number

Ri =
H∆b

ec
, (15)

or two different initial sorted buoyancy profiles bs, where ∆b = bs(H)− bs(−H).
Case (a) in Fig. 1 is the two-level configuration corresponding to a sorted profile with

two homogeneous layers, for which an analytical solution exits; case (b) is the case of a
initial linear sorted buoyancy profile. The kinetic energy ec appearing in the Richardson
number is not a control parameter, but one can check a posteriori that the total kinetic
energy Ec = V ec is always of the same order of magnitude as the injected energy Einj,
where V is the total volume of fluid.

We see in Fig. 1 that whatever the sorted buoyancy profile, the equilibrium buoyancy
profile b can be considered as almost completely homogenised in the low Richardson
number limit (Ri � 1). In that case, most of the injected energy is lost in small-scale
velocity fluctuations with Ec = V ec ' Einj, and the mixing efficiency is

η ' Ri Ξ[bs] with Ξ[bs] ≡
1

∆bH2

∫ +H

−H
bszdz . (16)
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Figure 1: Variation of the mixing efficiency η = Ep/Einj with the Richardson number Ri = H∆b/ec
a) for an initial buoyancy profile with two homogeneous layers; b) for an initial linear sorted buoyancy
profile. The eddy kinetic energy ec is homogeneous in space, with Einj = Ep + V ec, where V it the
volume of fluid. The three insets show the equilibrium buoyancy field b for three different values of Ri.

Thus, the mixing efficiency varies as the inverse of the Richardson number in the limit
Ri� 1, with a prefactor that depends on the intitial buoyancy profile.

We see in Fig. 1 that the large Richardson behaviour of the mixing efficiency depends
drastically on the initial sorted buoyancy profile bs: the mixing efficiency decreases to zero
with increasing Richardson numbers in the two-level case of Fig. 1-a, while it increases to
an asymptotic value close to 0.25 in the linearly stratified case of Fig. 1-b. One can also
show analytically this asymptotic value of η = 0.25 is indeed expected in a low energy
limit, as a consequence of energy equipartition, provided that the stratification of the
sorted profile is always strictly positive (∂zbs > 0 for −H ≤ z ≤ H), see Venaille et al.
(2016).

4 Discussion and conclusions

We have shown that several predictions for the cumulative mixing efficiency can be
obtained within the framework of the equilibrium statistical mechanics theory:

1. The cumulative mixing efficiency varies as η ∼ 1/Ri in the limit of small Richardson
numbers, whatever the initial buoyancy profile, which is consistent with scaling
arguments given by Maffioli et al. (2016) in a forced-dissipative case.

2. The cumulative mixing efficiency tends to η = 0.25 in the limit of infinite Richardson
numbers, provided that the initial buoyancy profile is sufficiently smooth. This value
is a consequence of energy equipartition, and it supports previous purely kinematic
arguments by McEwan (1983b,a).
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3. The shape of the curve η(Ri) depends strongly on the initial buoyancy profile, and
can be non-monotonic. In the particular case of a fluid with two homogeneous
layers of different buoyancy, the theory predicts a bell-shape for the cumulative
mixing efficiency as a function of the bulk Richardson number with a maximum
η = 0.15, just as observed experimentally in Linden (1980).

4. When the initial buoyancy profile is linear, the curve η(Ri) is monotonic. This is
consistent with previous studies on mixing in decaying experiments. In addition,
the shape of the curve predicted by the equilibrium theory is consistent with em-
pirical parameterisations for the variations of the flux Richardson number with the
gradient Richardson number, see e.g. Mellor and Yamada (1982); Karimpour and
Venayagamoorthy (2014); Venayagamoorthy and Koseff (2016).

To the best of our knowledge, there is so far no other theoretical results that provide
such predictions in a unified framework. There remain, however, several caveats for the
application of the statistical mechanics theory:

1. The ergodic hypothesis underlying the theory is a very strong assumption that
may often be broken. Indeed, there are many experimental and numerical evidence
showing that the efficiency of mixing often depends strongly on the energy injection
mechanism, while the theory predicts that the result does not depend on how the
energy is injected.

2. The theory applies to fluids in the limit of infinite Reynolds and Péclet number, while
existing laboratory and numerical experiments are usually carried in intermediate
regimes where mixing efficiency can be affected by finite values of molecular viscosity
and diffusion, see e.g. Lozovatsky and Fernando (2013); Bouffard and Boegman
(2013); Salehipour and Peltier (2015) and references therein.

3. Finally, the equilibrium theory does not predict how the system converges towards
equilibrium, or what would be the energy fluxes in a forced-dissipative case. In
those cases, equilibrium theory only provide a hint for the tendency of the system
to be more or less efficient in mixing the buoyancy field, and other theoretical tools
will be needed to model those important out-of-equilibrium features.

Despite those limitations, we believe that the statistical mechanics approach is a useful
tool for the understanding of mixing in stratified turbulence, and we hope that the present
work will motivate further studies in those directions.

AV and LG have been funded by ANR 13-JS09-0004-01 (STRATIMIX) during part
of this work.
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