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Abstract 
( There(is(a(growing(interest(in(engineering(proteins(whose(function(can(be(

controlled(with(the(spatial(and(temporal(precision(of(light.(Here,(I(present(a(novel(

example(of(a(functional(lightItriggered(switch(in(the(calciumIdependent(cellIcell(

adhesion(protein(EIcadherin,(created(using(a(mechanismIbased(design(strategy.(I(

report(an(18Ifold(change(in(apparent(calcium(binding(affinity(upon(illumination.(

This(work(includes(a(detailed(description(of(the(design(methodology(used,(as(well(as(

a(detailed(examination(of(functional(switching(via(linked(changes(in(Ca2+(binding(

and(cadherin(dimerization.(This(design(opens(avenues(towards(controllable(tools(

that(could(be(applied(to(many(longIstanding(questions(about(cadherin’s(biological(

function(in(cell–cell(adhesion(and(downstream(signaling.(It(also(presents(a(potential(

generalizable(strategy(for(creating(additional(photoswitchable(proteins.(

( (
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(

Chapter 1:  Introduction 

( There(has(been(considerable(interest(in(lightIbased(control(of(biological(

systems,1(and(successful(applications(include(lightImodulation(of(neuronal(ion(

channels2,(lightIswitchable(signaling(proteins3I5(and(lightIcontrolled(protein(

targeting6.(LightIbased(methods(offer(titratable,(precise(spatial,(and(temporal(

regulation(that(has(been(demonstrated(in#vitro7,(in(cell(culture6,8,(and(in(whole(

animals.9(Most(examples(of(lightIbased(control(fall(into(one(of(two(categories:((a)(

those(that(are(genetically(encoded(using(a(recombinantlyIproduced(protein(

borrowed(from(nature,6(and((b)(those(created(via#targeted(insertion(of(amino(acids(

into(a(protein(sequence(and(subsequent(reaction(with(them(of(an(exogenously(

introduced(photoisomerizable(small(molecule,(typically(azobenzene(based.10(

Azobenzene(and(related(molecules(undergo(a(reversible(cis–trans#isomerization(

when(exposed(to(specific(wavelengths(of(light,(and(this(change(in(molecular(shape(

can(be(coupled(to(changes(in(protein(function.(While(in((a)(the(functional(design(is(

already(provided(naturally,(one(is(both(limited(by(the(function((e.g.,(modulation(of(

protein–protein(binding,(tuning(fluorescence(intensity)(already(encoded(by(the(

natural(gene,(and(by(the(requirement(to(fuse(the(natural(protein(with(the(protein(to(

be(modulated.(In(contrast,(the(designs(in((b)(allow(many(types(of(functional(

modulation,(such(as(changes(in(agonist(binding,(protein–protein(binding,(and(

protein(folding,(limited(only(by(the(cleverness(of(the(designer,(though(they(must(be(

designed(and(engineered(for(each(new(target.(In(this(work,(I(used(an(azobenezeneI

based((type(b)(model(to(design(and(engineer(a(new(photoswitchable(protein:(the(
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cellIcell(adhesion(protein(EIcadherin.(I(used(a(new(strategy(where(isomerization(

produces(changes(in(protein–ion(affinity,(in(this(case(calcium,(which(then(couple(to(

changes(protein(dimerization((Figures(1(&(2).(

(

Figure 1 – A cartoon showing the basis of the design. As designed, the photoswitch reduces 
calcium binding affinity, which, in turn, reduces cadherin homodimer affinity. 

(

Figure 2 – Cartoon showing a comparison of endogenous cadherin (left) and the light modulatable 
cadherin (right). The designed photoswitchable cadherin uses the calcium-dependence of 
endogenous cadherin to accomplish its effect. 

( Cadherins(are(a(key(family(of(calciumIdependent(cellIcell(adhesion(proteins,(

and(are(divided(into(several(subtypes,(including(the(most(commonly(studied(

subtype,(the(classical(cadherins.(Classical(cadherins,(which(include(E-,(NI,(PI,(RI,(and(

CIcadherin11,(are(composed(of(an(intracellular(domain,(a(single(transmembrane(
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helix,(and(five,(repeated,(immunoglobulinIlike(extracellular(domains(labeled(EC1((NI

terminal,(membrane(distal)(to(EC5((CIterminal,(membrane(proximal),(along(with(

three(calcium(binding(sites(present(in(the(loops(at(each(extracellular(domain(

boundary((Figure(2,left).12,13(Calcium(binding(is(required(for(cadherin(function,(as(

depletion(of(calcium(disrupts(cadherinImediated(cell(adhesion;14(the(presence(of(

calcium(is(suggested(to(rigidify(the(cadherin(structure,(allowing(it(to(multimerize.15(

Depletion(of(cadherin(significantly(slows(cellIcell(adhesion16(and(EIcadherin(

knockout(mice(do(not(develop(past(the(32Icell(state17.(Additionally,(in(a(classic(

experiment,(cadherinIfree,(nonIadherent(cells(transfected(with(cadherin(acquire(

morphological(similarities(to(naturally(adherent(cells,(indicating(the(critical(role(

cadherin(plays(in(controlling(and(enabling(cellIcell(adhesion.18(

( Cadherins(form(multimers(in(cellular(junctions(and(play(critical(roles(in(

tissue(morphogenesis(during(development,(and(tumor(invasiveness(in(cancer.(Open(

questions(about(cadherin(function(include:((i)(whether(cadherin(directly(

participates(in(outsideIin(transmembrane(signaling;((ii)(whether(spatially(localized(

changes(in(cadherin(adhesiveness(induce(spatially(constrained(or(globally(

transduced(signals;(and((iii)(whether,(in(remodeling(of(cellIcell(adhesion(occurring(

in(embryogenesis(or(wound(healing,(changes(in(cadherin(adhesiveness(act(early(as(a(

primary(signal(transducer(or(late(as(a(response(to(other,(earlier,(signals.(My(

objective(in(developing(a(lightIcontrolled(cadherin(is(to(enable(the(study(of(these(

questions.(A(key(advantage(of(my(approach(over(existing(methods(to(modulate(cell(

adhesion,(such(as(calcium(depletion((Figure(2,left),(is(the(high(spatial(and(temporal(

resolution(achievable(with(light.(This(approach,(if(integrated(with(cultured(cells(
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would(thus(enable(one(to(derive(information(on(cell(adhesion(and(its(spatiotemporal(

integration(with(signaling(and(developmental(processes(currently(unobtainable.(In(

addition(to(advancing(fundamental(understanding(of(these(processes,(light(control(

would(provide(a(mechanism(to(precisely(control(adhesion(in(engineering(

applications.((

( My(approach(to(creating(a(lightIswitchable(cadherin(aimed(to(modulate(its(

calciumIbinding(affinity.(Because(calcium(binding(is(essential(for(cadherin(

multimerization,(I(reasoned(that(reversibly(changing(calcium(binding(affinity(would(

be(an(effective(way(to(also(modulate(cadherin(adhesive(function((Figures(1(&(2).(I(

engineered(cysteine(residues(into(the(protein(to(serve(as(conjugation(sites(for(an(

azobenzeneIbased(photoisomerizable(chromophore,(BSBCA((Figure(3).(BSBCA(has(

been(used(in(previous(applications,7,19I21(demonstrating(reversible(switching(

between(the(cis(and(trans(states(when(exposed(to(370(nm((near(UV)(and(550(nm(

(green)(light,(respectively.7,19(My(strategy(involved(conjugating(both(ends(of(the(

chromophore(to(the(calciumIbinding(loops(between(cadherin(domains(EC1(&(EC2,(

as(these(calcium(sites(have(previously(been(shown(to(be(most(critical(for(function.13(

(

Figure 3 – The photoisomerizable molecule BSBCA. 

( In(addition,(because(the(calcium(binding(sites(are(located(in(loop(regions,(and(

bind(calcium(with(relatively(weak(affinities(near(20(µM22,(I(reasoned(it(would(be(

comparatively(easier(to(induce(conformational(changes(affecting(calcium(binding(
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there(than(in(more(rigid(secondary(structural(elements(or(wellIpacked(core(regions(

of(the(protein.(

( Because(BSBCA(spontaneously(crosslinks(cysteine(residues,23(the(design(

challenge(can(be(generalized(as(the(problem(of(finding(the(best(pair(of(residues(to(

mutate(to(cysteine.(In(practice,(however,(an(enormous(number(of(pairs(are(possible,(

the(overwhelming(majority(of(which(are(likely(to(be(nonIfunctional.(I(took(a(

sequential(and(computational(approach(to(identifying(likely(functional(pairs(that(

resulted(in(a(relatively(small(library(of(only(11(constructs(to(test,(one(of(which(I(

showed(to(be(functional.(This(compares(favorably(to(a(highIthroughput(screen(of(a(

large(library(of(double(mutants,(both(in(cost(and(in(time(expended.(

( This(work(presents(the(development(of(a(photoswitchable(cadherin(from(the(

beginning(of(the(design(process(through(the(in#vitro(characterization(of(the(

functional(photoswitchable(molecule.(This(in#vitro#characterization(focused(on(the(

first(two(extracellular(domains(of(EIcadherin((EC12)(because(they(contain(the(

homodimeric(binding(interfaces24(and(they(are(the(specificity(determining(

domains,25(making(them(most(principally(responsible(for(cadherin’s(function.(

Additionally,(the(shortened(EC12(construct(can(be(readily(produced(in(high(yields(in(

E.coli.(EC12(contains(a(single(native(cysteine(residue,(which(I(mutated(to(alanine(

(C9A)(in(order(to(avoid(undesired(chromophore(conjugation(to(that(residue;(this(

mutation(has(been(previously(shown(not(to(affect(cadherin(function.26((

( The(chapters(of(this(work(are(in(loose(chronological(order(of(experiments.(

Chapter(2(presents(initial(control(experiments(done(early(in(the(project,(showing(

that(treating(cells(with(azobenzeneIbased(molecules(is(feasible.(Chapters(3(and(4(
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cover(the(computational(process(used(to(create(the(library(and(the(basic(

measurements(used(to(identify(mutant(129/138(as(the(most(promising(candidate.(

Chapter(5(covers(the(optimization(of(the(biochemistry(involved(in(purifying(

conjugated(129/138,(necessary(to(produce(the(quantities(of(protein(used(in(the(

assays(to(characterize(the(mutant(in(detail.(Chapters(6(through(8(present(the(assays(

used(to(characterize(129/138.(Although(this(work(could(have(been(presented(in(

fewer,(longer(chapters,(I(have(chosen(to(break(it(up(into(smaller(pieces(so(that(the(

interested(reader(can(more(quickly(find(the(topic(of(interest,(particularly(Chapters(3(

and(4,(which(may(be(of(use(to(others(seeking(to(make(lightImodulatable(proteins.
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Chapter 2: Preliminary Control Experiments 

Introduction 

( At(this(point(in(the(project,(the(intended(use(of(the(photoswitchable(cadherin(

was(to(look(at(cell(genomic(expression(profiles(preI(and(postI(illumination,(in(order(

to(investigate(the(signaling(cascade(triggered(by(cadherin(adhesion(or(disruption.((I(

had(not(yet(been(made(aware(of(the(coated(coverslip(assays((see(Chapters(1(&(9),(

and(so(assumed(that(I(would(have(to(introduce(the(engineered(cadherin(directly(into(

cells.(As(such,(I(believed(I(would(have(to(use(the(fullIlength(cadherin(molecule(and(

not(just(the(EC12(subsection,(and(that(I’d(have(to(use(a(different(modified(

azobenzene,(bisIMTSIsulfIazo((Figure(4),(which(contains(a(different(reactive(end(

that(is(much(more(reactive(than(BSBCA,(but(that(hydrolyzes(in(water.(It(also(forms(a(

disulfide(bond(with(the(protein,(instead(of(the(much(more(stable(CIS(bond(formed(

with(BSBCA,(necessitating(extra(care(in(handling(to(avoid(reducing(the(

chromophoreIprotein(bond(in(the(presence(of,(e.g.,(DTT(or(TCEP.((

(

Figure 4 – The structure of bis-MTS-sulf-azo 

( Prior(to(designing(the(lightImodulatable(cadherin(molecule,(I(wanted(to(do(

two(control(experiments(to(ensure(that(it(would(be(functional(when(used(with(cells.(

First,(I(wanted(to(ensure(that(the(small(molecule(would(not(disturb(the(two(

disfulfide(bonds(in(cadherin’s(EC5(domain(and(react(with(them.(These(disulfides(
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have(been(shown(to(be(important(for(cadherin(function,(so(I(needed(to(avoid(

disturbing(them.(Second,(I(wanted(to(know(that(the(small(molecule(would(react(

specifically(with(cadherin(and(not(other(proteins(in(the(cell,(to(avoid(triggering(

genomic(changes(unrelated(to(cadherin.(To(answer(the(first(question,(I(used(a(series(

of(protein(gels,(as(well(as(Ellman’s(test27;(to(answer(the(second,(I(treated(cells(with(

varying(concentrations(of(the(small(molecule(and(looked(at(mRNA(expression(levels(

at(two(different(times(postItreatment.(The(results(showed(that(the(small(molecule(

did(not(interfere(with(either,(providing(support(for(moving(forward(with(the(design(

strategy.(

Methods 

EC5 Purification 

( The(EC5(domain(was(PCR(subcloned(from(a(plasmid(containing(the(fullI

length(mouse(EICadherin(sequence(using(5’(oligonucleotide(

CACCATGAATGACAACGCTCCCATCCCAGAACCTCGAAA(and(3’(oligonucleotide(

AACTTGCAATCCTGCTGCCACGATTCCCGCCT.(The(resulting(PCR(product(was(

inserted(into(vector(pENTR/DITOPO((Life(Technologies(K2400I20)(using(the(

manufacturer’s(provided(protocol,(after(which(the(insert(sequence(was(verified(via(

DNA(sequencing.(Next,(the(insert(was(cloned(into(vector(pDESTI17((Life(

Technologies(#11803I012)(using(Gateway(technology((Life(Technologies(#11791I

019).(pDESTI17(contains(a(CIterminal(6xHis(tag,(necessitating(the(use(of(an(insert(

without(a(stop(codon.(

( The(EC5Icontaining(pDESTI17(vector(was(transformed(into(BL21((DE3)(cells(

and(grown(in(LB(culture(medium((BD(#244610)(containing(100(μg/mL(carbenicillin.(
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Cultures(were(grown(until(OD(=(0.6,(at(which(protein(expression(was(induced(with(

500(μM(IPTG((Research(Products(International(#156000).(Cultures(were(grown(for(

3I4(hours(postIinduction,(then(spun(at(6000xg#for(15(minutes(to(pellet(cells,(and(

pellets(were(stored(at(I80°(C(until(purification.(

( EC5Icontaining(lysates(were(lysed,(cleared,(and(purified(using(a(protocol(

described(previously28,(resulting(in(~10(mg(of(protein(per(liter(of(culture(volume.(

After(purification,(protein(purity(and(monomeric(state(were(verified(using(a(HiLoad(

16/600(Superdex(75(column((GE(#28I9893I33)(attached(to(an(FPLC.(Protein(

concentrations(were(measured(using(A280(as(measured(with(a(Cary(50(Bio(UV/Vis(

spectrophotometer((Varian),(with(ε280(=(13200(as(predicted(by(the(ExPASY(online(

protein(parameter(tool.29(

EC5 Disulfide Reactivity 

( To(verify(disulfide(formation(using(Ellman’s(test27,(200(μL,(163(μM(EC5(in(

TBS((25(mM(Tris,(pH(7.5,(150(mM(NaCl)(was(added(to(800(μL(of(1x(Ellman’s(reagent(

buffer((20(mM(NaxHyPO4,(pH(7.5,(150(mM(NaCl,(150(μM(DTNB).(In(addition,(200(μL(

of(TBS(buffer(containing(no(protein(was(added(to(800(μL(of(1x(Ellman’s(reagent(

buffer(to(act(as(control.(After(waiting(5(minutes,(the(absorbance(at(412(nm(was(

measured(for(each(sample,(also(using(a(Cary(50(Bio(spectrophotometer.(To(verify(

DNTB(freshness,(40(μL(of(1(mM(dithiothreitol((DTT)(was(added(to(800(μL(of(1x(

Ellman’s(reagent(buffer.(((

( To(verify(that(the(protein(remained(monomeric(after(chromophore(addition,(

bisIMTSIsulfIazo(was(added(to(a(final(concentration(of(50(μM(to(200(μL,(163(μM(EC5(

in(TBS((25(mM(Tris,(pH(7.5,(150(mM(NaCl)(and(the(solution(was(left(to(react(for(one(
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hour.(After(reacting,(protein(was(loaded(into(a(HiLoad(16/60(Superdex(75(column(

attached(to(an(FPLC.(

Cell Exposure Experiments & cDNA Construction 

( L(cells30((ATCC((#CCLI1)(growing(at(37°(C(in(DIMEM31(High(Glucose((UCSF(

Cell(Culture(Facility(#CCFAA005)(containing(10%(v/v(fetal(bovine(serum((JR(

Scientific(#43603I100)(were(exposed(to(bisIMTSIsulfIazo(at(concentrations(of(100(

nM,(1(μM(and(10(μM.(Cells(were(harvested(20(minutes(and(2(hours(after(exposure.(

Plates(of(cells(unexposed(to(chromophore(were(used(as(background(controls.(Cells(

were(harvested(using(a(1%(solution(containing(5(mM(EDTA((UCSF(Cell(Culture(

Facility(#CCFGP003).(Total(RNA(was(purified(from(cells(using(an(RNeasy(Mini(kit(

(Qiagen(#74104)(using(the(manufacturer’s(instructions.(Messenger(RNAs(were(

purified(from(total(RNA(using(an(Oligotex(Mini(kit((Qiagen(#70022)(according(to(the(

manufacturer’s(instructions.(After(purification,(mRNAs(were(converted(into(a(

labeled(cDNA(library(using(a(SuperScript(Plus(Direct(cDNA(Labeling(System(kit((Life(

Technologies(#L1015I06)(following(the(manufacturer’s(instructions.(

Microarrays 

( Experiments(used(Mouse(Exonic(Evidence(Based(Oligonucleotide((MEEBO)(

arrays32(provided(as(a(gift(from(the(Keith(Yamamoto(lab.(Microarrays(were(postI

processed(using(protocols(available(from(the(Joe(DeRisi(lab33.(Microarrays(were(

hybridized(using(MAUI(mixer/hybridizer(chambers((BioMicro(Systems)(following(a(

protocol(provided(by(the(Keith(Yamamoto(lab34.(A(single(microarray(was(used(for(

each(concentration/time(pair((6(arrays(total).(After(hybridization,(microarrays(were(

scanned(using(a(GenePix(4000(Scanner((Molecular(Devices).(
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( After(scanning,(data(were(normalized(such(that(the(mean(ratio(of(medians(

between(channels(of(all(spots(was(1.0.(Afterward,(spots(with(raw(signals(<(300(were(

removed,(and(remaining(genes(were(clustered(using(average(linkage(hierarchical(

clustering(for(genes(present(on(75%(or(more(of(the(arrays(and(channels(with(

!"# !"#$%& > 1.2.(After(control(and(viral(spots,(as(well(as(any(spots(that(showed(

an(expression(pattern(uncorrelated(with(concentration((i.e.(likely(statistical(noise)(

were(removed(from(the(analysis,(approximately(300(genes(that(showed(significant(

expression(changes(were(left(to(analyze(in(detail.(

Results 

EC5 Disulfide Analysis 

( The(Ellman’s(tests(showed(that(virtually(no(free(cysteines(were(available(in(

purified(EC5.(The(increase(in(A412(of(samples(containing(protein(versus#buffer(

was(.0016(AU,(close(to(the(noise(threshold(of(the(instrument(and(statistically(

insignificant.(This(indicates(that(purified(protein(came(with(disulfides(preformed.(

Insight(provided(to(us(by(Dirk(Trauner35(indicated(that(bisIMTSIsulfIazo(was(unable(

to(undergo(exchange(with(protein(disulfide(bonds,(and(thus(the(chromophore(would(

be(unlikely(to(interfere(with(the(disulfides(present(in(EC5.(

( Protein(exposed(to(chromophore(aggregated(after(exposure,(as(measured(by(

FPLC((Figure(5),(though(a(significant(portion(stayed(monomeric.(To(determine(

whether(the(chromophore(was(crosslinking(proteins(into(higher(order(species(or(

whether(the(protein(was(forming(nonIcovalent(aggregates,(I(ran(chromophoreI

exposed(EC5(in(a(nonIreducing(SDSIPAGE(gel.(This(gel,(due(to(the(presence(of(SDS,(

should(break(apart(any(nonIcovalent(protein(aggregates,(but(not(reduce(the(
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chromophoreIprotein(or(proteinIprotein(disulfide(bonds.(All(protein(appeared(

monomeric(in(the(gel,(further(confirming(that(the(chromophore(is(not(crosslinking(

proteins(together((data(not(shown).(

(

Figure 5 – Size exclusion chromatography of EC5 pre- and post- treatment with bis-MTS-sulf-azo. 
Also shown are calibration standards for comparison. EC5 peaks have been scaled such that the 
maximum peak height is 100. Size standards were scaled to a maximum height of 50 for visual 
convenience. 

( On(multiple(occasions,(I(observed(that(the(chromophore(appears(to(

aggregate(EC5(monomers.(I(am(unsure(whether(the(conditions(in(which(I(did(the(

reaction(were(incompatible(with(the(protein,(or(whether(the(chromophore(itself(was(

inducing(aggregation.(As(chromophore(was(added(directly(from(a(highlyI

concentrated(stock,(the(protein(buffer(only(changed(slightly.(This(observation,(

combined(with(the(observation(that(BSBCA(induces(EC12(aggregation(when(exposed(

to(certain(agarose(matrices,(indicates(that(the(chromophore(is(likely(directly(

inducing(aggregation.(However,(given(that(the(protein(concentrations(used(here(
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were(many(orders(of(magnitude(higher(than(those(likely(to(be(present(on(the(cell(

surface,(it(may(not(be(an(issue(in(in#vivo(experiments.(

( Between(the(lack(of(available(disulfides(to(react,(as(well(as(the(lack(of(protein(

crosslinking,(I(was(satisfied(that(the(chromophore(was(unlikely(to(affect(the(EC5(

disulfides.(However,(in(retrospect,(these(conclusions(come(with(multiple(caveats.(

First,(while(it(is(extremely(unlikely(given(the(known(chemistry,(it(is(possible,(strictly(

speaking,(that(BSBCA(could(react(with(fully(formed(disulfide(bonds(where(bisIMTSI

sulfIazo(cannot.(BSBCA(would(be(a(poor(choice(to(use(to(label(cells(given(its(very(

slow(reactivity,(but(if(it(were(to(be(used,(it(would(require(new(testing.(Second,(a(lack(

of(multimerization(or(disulfide(availability(doesn’t(exclude(the(possibility(that(the(

chromophore(is(intramolecularly(crosslinking(a(single(monomer,(as(was(the(intent(

and(was(accomplished(with(BSBCA.(One(additional(test(that(should(have(been(run(

was(exposure(of(EC5(to(chromophore,(followed(by(the(removal(of(excess(

chromophore(via#desalting,(then(measurements(of(A370.(Because(the(protein(has(

very(little(absorbance(at(370(nm(but(the(chromophore(absorbs(extensively(at(this(

wavelength,(measurements(of(370(nm(absorbance(after(exposure(would(indicate(

whether(any(chromophore(remains(attached(to(the(protein.(If(an(increase(in(A370(

was(observed,(I(could(have(removed(the(chromophore(via(DTT,(desalted(the(protein(

a(second(time,(then(remeasured(the(absorbance.(If(chromophore(were(specifically(

attached,(I’d(expect(it(to(be(removed(following(DTT(exposure,(resulting(in(a(decrease(

in(absorbance.(These(experiments(did(not(come(to(mind(at(the(time,(owing(to(my(

relative(inexperience(in(the(lab.(I(did(not(go(back(and(investigate(EC5(disulfides(in(

more(detail,(because(the(focus(of(the(project(turned(to(EC12(and(in#vitro#studies,(but(
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were(I(to(attempt(to(label(cells,(I(would(reexamine(these(results(and(perhaps(do(

further(experiments(to(be(more(sure.(

Microarray Experiments 

( The(vast(majority(of(genes(on(the(arrays(showed(virtually(no(difference(in(

expression(after(exposure(compared(to(those(unexposed((Figure(6).(In(the(cluster(of(

approximately(300(genes(that(remained(after(the(filtering,(none(showed(an(obvious(

correlation(to(any(cell(process.(Instead,(they(appeared(to(be(random(collections(of(

genes(from(random(processes,(very(few(of(which(would(be(expected(if(the(

chromophore(were(activating(cell(signaling(or(toxicity(pathways.(The(limited(

number(of(genes(and(the(lack(of(correlation(between(them(strongly(suggest(that(the(

effect(on(cells(of(mere(exposure(to(the(chromophore(is(minimal.(This(conclusion(is(

backed(by(the(widespread(use(of(this(chromophore(in(living(systems,(ranging(from(

cells8(to(whole(organisms9,(without(any(reported(adverse(effects.(((

(

Figure 6 – Image of a microarray used to determine the effect of bis-MTS-sulf-azo on cells. This 
microarray represents 2 hours after treatment with 1 μM chromophore. The extensive number of 
yellow spots indicates very little changes between untreated and treated cells. 
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Chapter 3: Double Mutant Site Selection & Library 
Creation 

Introduction 

( Because(BSBCA(spontaneously(crosslinks(cysteine(residues,23(the(design(

challenge(presented(in(this(work(can(be(generalized(as(the(problem(of(finding(the(

best(pair(of(residues(to(mutate(to(cysteine.(In(practice,(however,(an(enormous(

number(of(pairs(are(possible,(the(overwhelming(majority(of(which(are(likely(to(be(

nonIfunctional.(I(took(a(sequential(and(computational(approach(to(identifying(likely(

functional(pairs((Figure(7).(

(

Figure 7 – EC12 structure showing the region targeted for photoswitchability. Labels indicate 
factors considered during the design process. EC1, gold; EC2, blue; calcium ions, cyan spheres. 

Methods & Results 

( My(design(process(involved(first(finding(residues(likely(to(be(mutatable(using(

the(computational(design(program(Rosetta.36(I(used(a(previously(described(

method37,38(to(predict(the(change(in(fold(stability(of(mutating,(one(by(one,(every(

residue(in(four(representative(EIcadherin(structures((PDB(identifiers(1FF5,(1EDH,(

2O72(and(1Q1P)(to(alanine,(the(simplest(mutation.(Residues(that(had(a(mean(

predicted(change(in(fold(stability(>(1(kcal/mol(upon(alanine(mutation(were(removed(
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from(consideration.(I(also(removed(all(residues(that(directly(bound(calcium(from(

consideration,(reasoning(that(mutating(them(would(likely(cause(a(significant(change(

in(cadherin’s(calcium(affinity.(Next,(I(calculated(all(pairIwise(CβICβ(distances(

between(the(residues(remaining(using(the(1FF5(structure,(and(kept(those(pairs(that(

fell(in(the(range(17I20(Å((appropriate(for(the(BSBCA(trans(isomer).(These(first(two(

steps(reduced(the(potential(double(mutants(from(>20000(pairs(to(1513.((

( Following(these(initial(steps,(I(further(restricted(the(number(of(pairs(via(a(

series(of(additional(structural(criteria((Figure(7).(First,(I(restricted(the(remaining(

pairs(to(those(that(had(at(least(one(endpoint(within(20(Å(of(a(calcium(ion(as(

measured(by(the(molecular(graphics(program(PyMol39,(reasoning(that(pairs(with(

both(ends(distant(from(the(calcium(binding(sites(would(be(unlikely(to(have(an(effect(

on(calcium(binding.(This(further(reduced(the(number(of(pairs(to(1120.(Next,(to(only(

use(residues(that(were(accessible(for(chromophore(conjugation,(I(restricted(pairs(to(

those(where(both(endpoints(were(in(residues(that(had(>30(Å2(of(solvent(accessible(

surface(area((SASA)(when(the(protein(was(in(the(monomeric(state,(again(measured(

using(PyMol.(This(reduced(the(set(of(pairs(to(272.(Finally,(I(plotted(the(remaining(

pairs(on(the(1FF5(PDB(structure(and(eliminated(those(where(the(addition(of(the(

chromophore(would(sterically(interfere(or(clash(with(the(native(protein(structure,(as(

estimated(by(using(the(surface(representation(of(the(protein(structure(and(

eliminating(those(pairs(whose(path(of(shortest(distance(penetrated(the(surface.(This(

step(eliminated(a(large(part(of(the(remaining(set,(leaving(28(pairs(of(conjugation(

sites.(As(a(final(step,(I(manually(examined(the(28(pairs(and(chose(a(set(of(10,(seeking(

to(build(a(diverse(set(of(conjugation(sites(to(maximize(the(chances(of(finding(a(
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functional(photoswitch.(One(mutant(pair(in(the(library,(5/137,(did(not(satisfy(the(

structural(criteria;(it(was(chosen(manually(in(an(attempt(to(construct(a(photoswitch(

coupled(to(βIstrand(one,(based(on(the(previously(observed(functional(importance(of(

the(strand(to(cadherin(dimerization.24,40(A(flow(chart(summarizing(the(approach(is(

presented(in(Figure(8.(

(



 18 

  
Figure 8 – Flow chart showing the computational methodology used to create the mutant library. 
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Chapter 4: Preliminary Characterization of Library 
Mutants 

Introduction 

( After(cloning(the(11(double(mutants((see(Appendix(A),(I(sought(to(do(a(

preliminary(characterization(of(each(of(them,(in(order(to(verify(that(they(were(stable(

after(purification,(that(they(conjugated(the(small(molecule,(and(that(they(switched(as(

expected.(Instead(of(directly(measuring(stability,(I(instead(monitored(it(by(observing(

the(extent(of(protein(aggregation(during(the(course(of(other(measurements(and(

assays.((In(comparison,(conjugability(and(switchability(were(measured(directly.(

Conjugability(was(estimated(by(looking(at(the(relative(heights(of(conjugated(versus#

unconjugated(peaks(in(mass(spectrometry(and(computing(the(relative(fraction(that(

was(conjugated,(assuming(equal(ionizability.(Switchability(was(measured(by(

comparing(the(extinction(coefficients(of(the(thermally(relaxed(trans#protein(state(to(

the(cis/trans(mixture(after(illumination(and(comparing(the(ratio(to(that(of(a(known(

pure(trans#and(pure(cis(mixture.(After(completing(the(analysis(on(all(11(mutants,(it(

became(clear(that(some(were(too(unstable(to(be(practical,(while(others(conjugated(

or(switched(poorly.(The(data(allowed(me(to(choose(my(top(candidates(for(further(

study,(based(on(predictions(of(how(functional(they(were(likely(to(be.((

Methods 

Conjugability Measurements##

( Post(conjugation((see(Chapter(5),(conjugation(reactions(were(diluted(to(a(

final(protein(concentration(of(1(μM(in(pure(water,(and(then(analyzed(via(mass(
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spectrometry(using(an(LCT(Premier((Waters).(I(observed(the(peak(ratio(between(the(

unconjugated(and(conjugated((+453(Da)(peaks,(and,(assuming(equal(ionizability(for(

each(species,(made(an(estimate(of(the(fraction(conjugated.(Highly(conjugatable(

mutants(showed(only(trace(remaining(unconjugated(proteins,(whereas(poorly(

conjugatable(mutants(showed(as(little(as(10%(estimated(conjugation.#

Switchability Measurements##

( For(each(cadherin(double(mutant,(I(determined(whether(the(BSBCA(

conjugated(to(the(protein(was(photoisomerizable(by(illuminating(transIrelaxed(

conjugated(protein(with(UV(light.(Trans(BSBCA(contains(a(characteristic(absorbance(

peak(near(370(nm,(and,(upon(illumination(at(that(wavelength,(the(peak(amplitude(

decreases(as(the(small(molecule(isomerizes(into(the(cis#state.10(Data(provided(to(me(

by(Dr.(Andrew(Woolley,41(containing(extinction(coefficients(for(conjugated(proteins(

separated(by(HPLC,(containing(isolated(trans(or(cis(isomers,(allowed(us(to(estimate(

the(fraction(of(protein(that(switched(to(cis.(By(assuming(the(observed(370(nm(

absorbance(of(any(mixture(of(cis#and(trans(can(be(described(by(the(simple(sum(of(the(

independent(absorbances(of(the(underlying(cis(and(trans(states,(switching(

percentages(can(be(calculated(by(#

!"#$ = ε!"#!",!"#$% − !!"#!",!"#
ε!"#!",!"#$% − R ∗ ε!"#!",!"#$%

(

Equation 1 – Computation of protein fraction switching to cis after illumination 

where(R(is(the(cis/trans#extinction(coefficient(ratio(computed(from(the(provided(

data((.0541),(ε!"#!",!"#$%(is(the(measured(extinction(coefficient(at(370(nm(for(the(

thermodynamically(equilibrated,(100%(trans(state,(and(!!"#!",!"#(is(the(measured(

extinction(coefficient(at(370(nm(for(the(photostable,(UV(illuminated(state(containing(
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a(mixture(of(cis#and(trans.(Using(this(methodology,(I(computed(a(switchability(for(the(

free(chromophore(of(86%(cis,#close(to(published(estimates(of(maximum(

switchability,10(verifying(the(accuracy(and(utility(of(the(calculations.(

Isomerization Reversibility Measurements 

( Conjugated(129/138(at(12(μM(in(TBS((25(mM(Tris(pH(7.5,(150(mM(NaCl)(was(

illuminated(using(the(same(UV(LED(for(2(minutes(and(370(nm(absorbance(was(

measured.(After(measurement,(protein(was(illuminated(with(a(1(W(LED((Sparkfun,(

emission(maximum(455(nm,(with(residual(intensity(in(the(500I550nm(range)(for(2(

minutes,(370(nm(absorbance(was(measured,(and(the(process(was(repeated(for(10(

cycles.(

Half Life Measurements 

( Conjugated(proteins(in(TBS((25(mM(Tris(pH(7.5,(150mM(NaCl)(at(12(μM(were(

illuminated(with(a(1(W(UV(LED((emission(maximum(365(nm)(for(4(minutes(and(the(

absorbance(at(370(nm(was(monitored(immediately(after(illumination(and(then(every(

20(minutes(thereafter(for(a(total(of(180(minutes((Figure(11).(Between(

measurements,(protein(was(kept(in(the(dark.(The(absorbances(were(blank(

subtracted(and(then(each(absorbance(was(subtracted(from(1.0(and(the(combined(

numbers(were(fit(to(a(single(exponential(decay(function(of(the(form(

!(!) = ! ∗ !!!" + !(

Equation 2 – Generalized form of a single exponential decay 

where(t(is(the(time(since(illumination(and(y(t)(is(the(absorbance(at(time(t.(Curves(

were(fit(using(the(curve(fitting(toolbox(in(MATLAB((The(MathWorks).(R2(values(were(

typically(>.995.(HalfIlives,(!,(were(computed(as(! = ln!(2)
!.(
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Results 

Conjugatability 

( The(11(mutants(showed(a(large(degree(of(variation(in(their(stabilities.(The(

most(stable(showed(little(to(no(aggregation(after(conjugation,(and(remained(stable(

for(several(weeks(afterward,(while(the(least(stable(precipitated(visibly(during(

conjugation(and,(in(the(worst(case,(conjugability(could(not(even(be(measured(due(to(

the(lack(of(monomeric(protein(to(inject(into(the(instrument.((Note:(the(purification(

and(conjugation(protocol(was(not(fully(optimized([Chapter(5](until(after(my(work(

had(focused(exclusively(on(the(mutant(129/138.(Therefore,(the(stabilities(and(

conjugatabilities(of(the(other(proteins(could(be(underestimated(due(to(nonIoptimal(

handling).(An(example(of(a(stable(and(highly(conjugatable(protein,(129/138,(is(

shown(in(Figure(9.(In(this(example,(unconjugated(protein((red)(was(run(separately(

from(the(conjugated(protein((green)(to(provide(a(mass(standard.(Virtually(no(signal(

at(the(unconjugated(mass(is(present(in(the(conjugated(signal,(indicating(that(this(

mutant(is(highly(conjugatable.(In(comparison,(mutant(6/90(conjugates(only(

moderately(well,(with(approximately(60%(of(protein(remaining(unconjugated(after(

3(days((Figure(10).(The(conjugatabilities(of(all(mutants(are(summarized(in(Table(1.(
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( (

Figure 9 – An example of one of the highly conjugatable mutants, 129/138. Shown are two spectra 
overlaid to show both unconjugated and conjugated peaks. 

(

Figure 10 – An example of one of the less conjugatable mutants, 6/90. Shown is a single spectrum 
of a sample containing both conjugated and significant remaining unconjugated protein.  

Switchability((

( The(mutants(also(showed(highly(variable(switchabilities,(ranging(from(just(

under(50%(to(100%.(An(example(of(how(the(basic(switchability(of(one(mutant,(

129/138,(was(measured(in(shown(in(Figure(11,(where(illumination(with(UV(light(

significantly(changes(the(absorbance(at(370(nm.((The(switchabilities(of(all(11(

mutants(are(summarized(in(Table(1.(
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( (

Figure 11 – Illumination and subsequence relaxation of 129/138 used to measure switchability and 
half-life. 

( For(129/138,(a(mutant(that(was(characterized(in(further(detail,(I(measured(

two(additional(properties:(the(extent(to(which(photoisomerization(was(reversible(

and(repeatable,(and(the(extent(to(which(it(was(titratable(via(short(illumination(times.(

The(reverse(isomerization((panIvisual(illumination,(including(500I550(nm(bands)(

behaved(as(expected,(leading(to(a(reappearance(of(the(absorbance(band(of(the(trans(

state.(I(illuminated(129/138(for(10(complete(UVIgreen(illumination(cycles(without(

any(apparent(loss(of(absorbance(or(switchability.(The(switchability(was(titratable(

via(shorter(illumination(times,(also(as(expected((Figure(13).(
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( (

Figure 12 – The absorbance of cis and trans 129/138 after repeated illumination cycles. 

 
Figure 13 – The absorbance of cis and trans 129/138 after illumination cycles of variable length. 

Half-Life Determination 

( The(mutants(that(underwent(further(examination(by(SPR((Chapter(6),(were(

additionally(tested(to(measure(their(half(lives,(in(order(to(determine(how(frequently(
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reillumination(would(be(necessary(to(maintain(cis#state(proteins.((HalfIlives(varied(

from(36I72(minutes((Table(1),(with(the(halfIlife(of(129/138(significantly(longer(

than(the(others.(Without(more(detail,(it(is(not(possible(to(determine(the(reason(for(

the(differences(in(half(life,(but(it(is(notable(that(the(mutant(with(the(longest(half(life(

was(the(mutant(with(the(greatest(functionality.(A(long(halfIlife(suggests(the(

activation(energy(barrier(to(thermal(relaxation(is(relatively(high.(In(addition,(

129/138(also(has(relatively(high(switchability;(this(could(be(caused(by(the(cis#state(

having(a(relatively(low(energy(in(the(ensemble(of(states,(perhaps(mimicking(one(in(

the(native(state(ensemble(and(causing(it(to(be(relatively(favorable(as(the(

chromophore(returns(to(the(ground(state(after(photon(excitation.(

(

 
Mutant Stability Conjugability Switchability Half Life (min) 

129/138 High High 80% 72 
70/14 High Poor 51% 36 

70/107 High High 100% 56 
5/137 Poor High 68% 44 
6/90† Poor Moderate 51% ND 

111/135† Moderate High 62% ND 
16/57† Poor High 45% ND 

70/105† Poor ND ND ND 

70/133† Poor Poor ND ND 

95/139† Moderate Very Poor ND ND 

70/138† Moderate Poor ND ND 
Table 1 – Summary of preliminary characterization data on all 11 mutants tested. ND: not 
determined. †These mutants were tested with an earlier version of the EC12 construct that contains 
a non-native Met residue at the N-terminus.
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Chapter 5:  Optimization of Conjugation & Cleavage 

 
Introduction 

( Initially,(I(focused(my(efforts(on(doing(initial(tests(of(all(members(of(the(

library(so(that(I(could(quickly(identify(which(mutants(were(most(likely(to(be(

switchable(and(functional.(After(that(initial(screen(identified(129/138(as(the(best(

candidate(and(I(turned(to(SPR(to(characterize(the(mutant(in(more(detail,(I(began(to(

be(limited(by(my(ability(to(produce(protein.(Because(of(the(weak(interactions(

between(cadherin(monomers,(substantial(amounts(of(protein(are(needed(for(SPR(

(10s(of(mg).(Although(I(was(able(to(express(that(much(protein,(the(multiple(steps(

involved(in(the(purification(caused(extensive(loss,(such(that(my(final(yields(were(less(

than(10%(of(my(initial(starting(mass.(Through(a(careful,(stepIbyIstep(optimization(of(

the(entire(purification(protocol,(I(was(able(to(eventually(recover(>90%(of(my(

starting(protein,(substantially(improving(my(yields(and(limiting(the(number(of(

purification(preps(I(needed(to(do.(The(complete,(optimized,(protocol(for(protein(

production(is(in(Appendix(A.(What(follows(in(this(chapter(is(the(series(of(

optimizations(that(I(did(and(how(that(improved(the(purification.(

Methods & Results 

Motivation for Construct Design 

( The(initial(constructs(I(used(for(the(preliminary(assays(were(different(from(

the(constructs(I(used(for(the(detailed(characterization(of(129/138.(The(first(

experiments,(including(those(on(the(WT,(used(an(EC12(construct(that(contained(an(

alanine(removing(the(single(native(cysteine((C9A),(shown(previously(not(to(affect(
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cadherin’s(function26,(a(nonInatural(ATG(start(codon,(and(a(CIterminal(6xHis(tag(

using(a(cloning(process(previously(described.12(This(construct(also(contained(a(

double(arginine(insert(between(the(protein(sequence(and(the(introduced(6xHis(tag,(

allowing(removal(of(the(tag(using(trypsin(via#a(protocol(from(the(same(work.12(The(

protein(resulting(from(these(constructs(tended(to(be(relatively(stable,(and(because(

trypsin(was(highly(efficient,(reactions(could(be(performed(quickly,(which(allowed(

the(protein(to(remain(stable(during(the(cleavage(reaction.(

( In(addition(to(the(altered(protein(sequence,(I(initially(used(a(more(complex(

conjugation(protocol(that(used(additional(purification(steps(to(separate(the(

remaining(unconjugated(protein(from(the(fraction(that(conjugated((see(Appendix(C).(

These(additional(steps(were(required(for(two(reasons.(First,(although(129/138(

conjugated(well,(other(proteins(did(not;(this(necessitated(the(removal(of(the(

substantial(fraction(that(did(not(conjugate(in(order(to(analyze(the(properties(of(the(

fraction(that(did.(Second,(because(the(conjugation(buffer(conditions(had(not(yet(been(

optimized,(even(highly(conjugatable(proteins(such(as(129/138(still(required(

additional(purification(steps.((

( However,(after(I(realized(that(the(presence(of(the(nonInative(methionine(at(

the(NIterminus(of(the(protein(was(likely(to(interfere(with(protein(function,(I(

switched(to(a(different(construct.(Natural(EIcadherin(contains(a(proIpeptide(cleaved(

during(protein(maturation,(leaving(an(NIterminal(aspartate(residue(instead(of(a(

methionine.(This(aspartate(forms(an(important(intramolecular(salt(bridge,(resulting(

in(recombinantly(produced(proteins(containing(an(NIterminal(methionine(having(

altered(function.42(In(order(to(remove(this(methionine,(I(moved(the(6xHis(tag(to(the(
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NIterminus(of(the(protein(and(added(a(TEV(protease(cleavage(site(immediately(after(

it,(allowing(its(removal(without(any(nonInative(residues(left(in(the(protein(sequence.(

The(C9A(mutation(was(left(in(place.(I(also(replaced(the(double(arginine(cleavage(

motif(with(a(stop(codon,(to(remove(the(previously(present(CIterminal(tag,(avoiding(a(

need(for(doubleIcleavage.(While(other(proteases(have(been(shown(to(work(on(

EC12’s(NIterminus,(including(factor(Xa22,(the(majority(of(these(proteases(are(

incompatible(with(the(presence(of(reducing(agents.(As(I(needed(to(cleave(the(

proteins(prior(to(conjugation(for(reasons(explained(below,(the(use(of(reducing(

agents(was(a(necessity(in(order(to(prevent(cysteine(oxidation(and(subsequent(nonI

reactivity(with(the(chromophore.(I(attempted(to(use(factor(Xa(in(the(presence(of(

TCEP,(but(was(unsuccessful((data(not(shown).(

( The(TEV(cleavage(site(NIterminal(extension(substantially(reduced(protein(

stability,(both(directly,(and(because(cleavage(required(protein(to(be(exposed(to(

elevated(temperatures(for(several(days.(As(a(result,(yields(dropped(sharply,(and(

protein(purification(began(to(take(the(vast(majority(of(my(time.(I,(therefore,(sought(

to(reIoptimize(the(cleavage,(and(conjugation(protocol.(Because(the(yields(of(protein(

directly(from(lysates(were(high,(I(did(not(further(optimize(that(section(of(the(

protocol.(

Optimization of Cleavage/Conjugation Order 

( In(principle,(conjugation(could(come(before(or(after(cleavage(of(the(NI

terminus,(because(the(TEV(and(chromophore(do(not(interact(or(interfere(with(each(

other.(Initially,(I(tried(both(options.(However,(when(I(attempted(to(cleave(protein(

after(conjugating,(I(discovered(something(unexpected:(conjugated(proteins(
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aggregated(and(precipitated(in(the(presence(of(the(NiINTA(beads(used(to(remove(

uncleaved(protein(and(contaminants,(causing(a(dramatic(loss(in(yield.(Initially,(I(

suspected(that(a(different(resin(or(buffer(condition(might(alleviate(that(problem.(

BSBCA(has(moderate(hydrophobicity,(and(I(suspected(that(perhaps(this(

hydrophobicity(was(inducing(aggregation(in(the(presence(of(salt.(However,(I(tried(

several(different(brands(of(NiINTA(and(similar(6xHis(affinity(resins,(combined(with(

many(different(buffers,(but(had(similar(results(with(all(of(them((Table(2).(The(best(

buffer/resin(combination(resulted(in(a(loss(of(approximately(35%(of(the(protein,(

while(the(worst(resulted(in(a(loss(of(nearly(70%.(Because(I(wished(to(be(able(to(use(

NiINTA(resin(to(remove(residual(uncut(protein(and(TEV(protease(in(one(step,(I(

decided(to(cleave(proteins(prior(to(conjugation,(so(that(conjugated(proteins(would(

not(require(exposure(to(the(offending(resin.((

Buffer Resin % Monomeric  Buffer Resin % Monomeric 
5 GE 64.3  1 GE 50 
4 GE 61.3  1 Ni60 30.8 
6 GE 61.2  1 None 34.2 
7 Qiagen 58.5  1 Qiagen 40.8 
9 Qiagen 57.6  1 Talon 39.2 
7 None 53.8  2 Ni60 31.3 
5 Qiagen 51.1  2 None 35.9 
4 Qiagen 50  2 Qiagen 47.7 
1 GE 50  3 Ni60 31.1 
6 Qiagen 49.4  3 None 38.5 
6 None 48.3  3 Qiagan 42.9 
2 Qiagen 47.7  4 GE 61.3 
7 Talon 47.2  4 None 40.8 
5 None 46.6  4 Qiagen 50 
9 None 44.8  5 GE 64.3 
3 Qiagen 42.9  5 None 46.6 
8 Qiagen 40.9  5 Qiagen 51.1 
4 None 40.8  6 GE 61.2 
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1 Qiagen 40.8  6 None 48.3 
1 Talon 39.2  6 Qiagen 49.4 
3 None 38.5  7 None 53.8 
2 None 35.9  7 Qiagen 58.5 
8 Talon 35.7  7 Talon 47.2 
1 None 34.2  8 None 32.4 
9 Ni60 33.3  8 Qiagen 40.9 
8 None 32.4  8 Talon 35.7 
2 Ni60 31.3  9 Ni60 33.3 
3 Ni60 31.1  9 None 44.8 
1 Ni60 30.8  9 Qiagen 57.6 

Table 2 – The percent of protein that remains monomeric following repurification in various buffers. 
(left) Results ordered by monomeric percentage. (right) Results ordered by buffer and resin type. 

Buffer # Buffer Composition 
1 25mM Tris pH 8.0, 400 mM NaCl, 10 mM Imidazole 
2 25mM Tris pH 7.5, 400 mM NaCl, 10 mM Imidazole 
3 25mM Tris pH 8.5, 400 mM NaCl, 10 mM Imidazole 
4 25mM Tris pH 8.0, 400 mM NaCl, 20 mM Imidazole 
5 25mM Tris pH 8.0, 400 mM NaCl, 30 mM Imidazole 
6 25mM Tris pH 8.0, 400 mM NaCl, 50 mM Imidazole 
7 25mM Tris pH 8.0, 200 mM NaCl, 10 mM Imidazole 
8 25mM Tris pH 8.0, 800 mM NaCl, 10 mM Imidazole 
9 25mM Tris pH 8.0, 400 mM NaCl, 10 mM Imidazole, 0.1% Tween-20 

Table 3 – Buffers used in experiments presented in Table 2. Component in bold indicates the 
change from buffer #1. 

Optimization of Conjugation Conditions 

( After(determining(the(relative(order(of(conjugation(versus#cleavage,(I(sought(

to(optimize(my(conjugation(buffer.(Prior(to(any(optimization,(I(had(been(using(PBS,(

pH(8.5(with(Dulbecco’s(salts((DIPBS)(and(added(TCEP((25(mM(NaxHyPO4,(150mM(

NaCl,(3(mM(KCl,(500(μM(MgCl2,(500(μM(CaCl2,(3(mM(TCEP).(The(pH(values(and(TCEP(

concentrations(were(chosen(due(to(the(higher(reaction(rate(of(BSBCA(at(elevated(pH,(

and(the(need(to(keep(cysteines(reduced(for(reactivity.23(DIPBS(was(chosen(due(to(the(

salinity(matching(that(of(the(extracellular(space(where(cadherin(is(endogenously(

found.(However,(after(recognizing(the(relatively(weak(buffer(capacity(of(phosphate(



 32 

at(pH(8.5,(I(switched(to(25(mM(Tris(pH(8.5(instead.(In(addition,(prior(to(any(

optimization,(conjugation(reactions(were(run(at(33°(C,(picked(because(it(provided(a(

rate(enhancement(over(room(temperature(but(remained(several(degrees(below(the(

unfolding(temperature(for(one(of(the(mutants,(70/14(as(measured(by(CD((Figure(14,(

Note:(although(other(mutants(could(have(had(lower(unfolding(temperatures(

resulting(in(protein(instability(at(33°(C,(this(was(not(tested).(Finally,(three(days(was(

picked(as(the(reaction(time(due(to(it(being(a(balance(between(chromophore(

reactivity(and(protein(stability.(

(

Figure 14 – CD melt of 70/14 used to determine initial conjugation reaction temperature. A 
temperature of 33 degrees was chosen, below the apparent unfolding temperature of approximately 
40 degrees. 

( When(considering(factors(to(optimize,(I(chose(to(optimize(pH,(salt(

concentration,(calcium/EDTA(concentration,(temperature,(and(reaction(time.(A(

summary(of(all(of(the(conditions(tested,(as(well(as(their(optimal(values,(is(

summarized(in(Table(4.(After(examining(all(the(data,(I(chose(as(a(conjugation(buffer(
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TBS(pH(8.5(containing(25(mM(Tris,(400(mM(NaCl,(3mM(KCl,(500(μM(MgCl2,(1(mM(

EDTA,(and(3(mM(TCEP,(and(I(ran(reactions(for(3(days(at(25°(C.(

( The(newly(optimized(buffer(significantly(increased(the(rate(of(the(reaction,(

resulting(in(nearly(100%(conjugation,(while(simultaneously(increasing(protein(

stability((Figure(16).(I(speculate(that(adding(EDTA(chelated(any(residual(calcium,(

which(prevented(any(transient(dimers(from(forming(and(slowing(the(reaction.(In(

addition,(the(increased(salt(concentration(likely(stabilized(the(protein,(and,(given(the(

hydrophobicity(of(the(BSBCA,(likely(favored(the(reaction.(Lowering(the(temperature(

to(25°(C(additionally(stabilized(the(protein(without(an(obvious(decrease(in(reaction(

rate,(though(the(loss(of(rate(was(likely(more(than(made(up(via#buffer(optimizations.(

Condition Values Tested Optimal Value 
pH 7.5, 8.5 8.5 

[NaCl] 150, 300, 400 mM 400 
[Ca2+/EDTA] 500 μM Ca2+, 0, 1 mM EDTA 1 mM EDTA 
Temperature 33, 30, 25 °C 25° C 

Reaction Duration 1, 2, 3 days 3 days 
Table 4 – Conjugation buffer conditions tested. 

Optimization of Cleavage Conditions 

( TEV(protease(is(active(over(a(wide(variety(of(temperatures((4I30(°C)(and(pH(

values((6I8.5),43(which(allowed(me(flexibility(in(the(cleavage(conditions.(Because(

BSBCA(is(most(reactive(at(higher(pH(values((>8.0),(I(had(been(using(a(buffer(at(pH(

8.5(for(conjugation(and(knew(that(the(protein(was(stable(at(that(pH.(Additionally,(

some(early(experiments(were(run(at(a(test(pH(of(6.5,(which(caused(EC12(instability(

(data(not(shown).(These(two(factors(led(me(to(focus(on(the(pH(range(7.0I8.5(for(

cleavage.(
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( The(first(buffer(I(used(contained(1X(TEV(buffer(as(provided(by(Invitrogen’s(

protocol.43(TEV(protease,(although(active(from(0I500(mM(NaCl,(is(most(active(at(

lower(salt(concentrations,(and(thus(the(provided(buffer(contains(no(salt.(However,(

when(I(attempted(to(mix(EC12(with(protease(in(this(buffer,(I(saw(an(immediate(and(

dramatic(precipitation.(This(motivated(me(to(seek(other(buffer(conditions(where(the(

proteins(might(remain(more(stable.(

( Next,(I(attempted(to(cleave(in(TBS(pH(7.5(with(400mM(NaCl((25(mM(Tris(pH(

7.5,(400(mM(NaCl,(1mM(EDTA,(1mM(DTT),(using(a(cutting(temperature(of(16(

degrees(for(60(hours(based(on(a(previously(established(protocol(for(cutting(cadherin(

with(factor(Xa(protease.22,44(While(this(buffer(prevented(precipitation,(it(resulted(

only(50%(cleavage,(with(the(remainder(left(uncut,(as(estimated(via#protein(

concentration(before(and(after(removal(of(uncut(protein(and(TEV(via(NiINTA((data(

not(shown).(

( Given(the(increase(in(conjugation(efficiency(I(saw(with(the(optimized(

conjugation(buffer,(I(tested(whether(this(buffer(may(also(be(suitable(for(TEV(

protease(cleavage.(This(buffer(both(kept(the(protein(monomeric(as(measured(by(size(

exclusion((Figure(15)(and(allowed(for(nearly(complete(cleavage(as(measured(by(

mass(spectrometry(and(estimations(of(total(protein(before(and(after(repurification(

(Figure(16).(Based(on(these(results,(all(subsequent(cleavage(reactions(were(done(in(

this(buffer.(This(buffer(also(allowed(me(to(reduce(the(protease:cadherin(mass(ratio(

in(the(reaction(from(1:4(to(1:8(without(a(loss(of(cleavage(completeness(or(significant(

appearance(of(protein(aggregation((Figure(15).(I(did(not(test(ratios(lower(than(1:8.((
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(

Figure 15 – Size exclusion chromatography of 129/138 in optimized cleavage buffer. Protein 
remains monomeric in this buffer at both TEV protease concentrations. Absorbances for 129/138 
were normalized to the maximum peak height, for visual convenience. Also shown are size 
standards for comparison, normalized to a maximum peak height of 0.5.  

( After(optimizing(the(cleavage(buffer,(all(that(remained(was(to(optimize(the(

repurification(of(the(protein(after(cleavage,(to(remove(residual(uncut(protein(and(

TEV(protease.(I(again(used(the(optimized(conjugation(buffer,(which(gave(high(yields(

and(low(aggregation,(and(I(continued(to(use(it(without(further(optimization.(
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(

Figure 16 – Mass spectra in the original and optimized conditions. Shown are results from an earlier protocol which included 
protein biotinylation (see Appendix C) (A) Conj vs. bio 129/138 in the original buffer. Conj. does not go to completion. (B) Bio. 
vs. TEV protease cleaved in the original buffer. Cleaved spectra are post repurification, removing residual uncut protein. (C) 
Conj. vs. bio. in the optimized buffer. Conj. goes to completion, resulting in no peak for the biotinylated species. Inset shows 
conjugated protein alone, for visual clarity. (D) Bio. vs. TEV in the optimized buffer. Cleaved spectra are post repurification. 
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(

Conclusion 

( After(fully(optimizing(the(conjugation,(cleavage,(and(repurification(conditions,(

overall(protein(yields(improved(from(10%(of(total(protein(to(90%(of(total(protein(

for(unconjugated(protein(and(60%(for(conjugates.(Shown(below(are(example(size(

exclusion(chromatography(traces(prior(to(and(after(protocol(optimization,(showing(

a(dramatic(gain(in(monomeric(fraction((Figure(17).(Monomeric(protein(fractions(

collected(remained(monomeric(when(reIrun(in(HPLCIbased(size(exclusion(

chromatography,(and(showed(dimerization(when(exposed(to(calcium((Appendix(D).(

 
Figure 17 – Size exclusion chromatography of conjugated 129/138 before and after optimization.  
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Chapter 6: SPR Measurements of Calcium & 
Protein-Protein Binding 

Introduction 

( The(work(presented(in(this(chapter(was(done(in(collaboration(with(Kris(

Kuchenbecker.(Kris(was(responsible(for(conditioning(and(functionalizing(the(surface(

of(the(chips(we(used,(as(well(as(operating(the(machine(and(assessing(data(quality.(He(

also(provided(extensive(advice(in(analyzing(the(data.(I(am(very(grateful(for(his(help.(

( After(completing(the(measurements(in(Chapter(4,(and(knowing(that(several(

of(the(mutants(appeared(to(be(switchable,(I(sought(an(experimental(method(that(

would(more(directly(demonstrate(changes(in(calcium(binding(as(well(as(show(

whether(these(change(in(calcium(binding(also(cause(the(expected(changes(in(protein(

binding(activity.(I(used(surface(plasmon(resonance((SPR)(to(measure(protein(

homodimerization(as(a(function(of(calcium(concentration.(In(this(assay,(similar(to(

that(of(Harrison(and(colleagues24,(biotinylated(WT(C9A(cadherin(was(immobilized(to(

the(SPR(chip(and(WT(C9A,(trans#or(cis#mutants(were(flowed(over(it.(These(

experiments(were(first(done(on(129/138,(and(showed(promise,(resulting(in(a(more(

detailed(characterization.((I(also(briefly(examined(3(other(mutants,(though(none(

showed(any(change(in(calcium(binding(affinity.(The(characterization(of(129/138(

confirmed(that(I(could(change(proteinIprotein(affinities(by(modulating(calcium(

binding,(confirming(the(photoswitch(operated(as(designed.((

Methods 

Data Acquisition((
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( MatrixIfree,(flat,(carboxymethylated(gold(surfaces((GE(Healthcare(Sensor(

Chip(C1)(were(used(in(all(SPR(experiments.(Individual(flow(cells(were(prepared(with(

the(following(protocol:((1)(50(μl(injection(of(1IEthylI3I((3I

dimethylaminopropyl)carbodiimide(/(NIhydroxysuccinimide((0.5M:0.2M);((2)(30(μL(

injection(of(0.25(mg(mlI1(ImmunoPure(Streptavidin((Pierce(#21122)(in(sodium(

acetate(buffer((pH(5.0)(to(a(total(amount(of(~500(response(units((RU)(for(all(four(

flow(cells;((3)(60(μl(injection(of(1(M(ethanolamine.(Cadherin(was(captured(on(the(

active(flow(cells(by(manual(injection(of(25(nM(protein(to(immobilization(levels(

between(250I450(RU.((No(blocking(procedures(were(performed(on(the(reference(

flow(cell.((Prior(to(each(SPR(experiment,(protein(samples(were(dialyzed(against(25(

mM(Tris,(150(mM(NaCl,(and(500(µM(TCEP.(Following(dialysis,(TweenI20(detergent(

(SigmaIAldrich(#P9416)(was(added(to(the(protein(solution(and(the(dialysis(buffer(to(

achieve(a(final(concentration(of(0.05%((v/v).(The(dialysis(buffer(was(then(used(as(

the(assay(buffer(for(the(SPR(measurements.((

( Dose(response(titrations(were(prepared(by(serial(dilutions(of(the(highest(

concentration(into(assay(buffer.(Each(sample(response(was(subtracted(by(a(

reference(response((containing(no(calcium(for(calcium(titrations,(and(no(protein(for(

protein(titrations).(The(responses(of(flow(cells(2(and(3(were(scaled(to(match(flow(

cell(4(via(a(least(squares(minimization(resulting(in(a(single(scalar(multiplier(for(each(

flow(cell.((

( For(the(detailed(characterization(of(the(WT(and(129/138,(additional(steps(

were(taken(to(maximize(data(quality:((1)(While(measuring(cis#129/138,(a(maximum(

of(three(data(points(per(illumination(cycle(were(used,(to(maximize(cis(fraction(and(
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minimize(thermal(relaxation.(To(minimize(systematic(error(due(to(some(fraction(of(

the(protein(reverting(to(trans(during(the(experiment,(concentrations(were(injected(

in(a(random(order.((2)(Every(sample(injection(was(followed(by(a(control(injection(of(

20(μM(WT(C9A(cadherin(containing(1mM(CaCl2(to(monitor(degradation(of(chip(

response(over(time.(Gathered(signals(were(then(corrected(in(magnitude(using(the(

magnitude(of(the(control(injection.(

Solution Homodimer Mitigation((

( Direct(measurements(of(both(calcium(affinity(and(homodimeric(protein(

affinity(in(SPR(are(difficult(due(to(solution(homodimers(competing(with(those(on(the(

surface.(I(presumed(that(surface(homodimers(would(not(further(interact(with(the(

surface(to(form(multimers,(as(cadherin(has(been(shown(not(to(form(higherIorder(

species(at(the(concentrations(used(here.(I(further(assumed(that(the(time(a(particular(

molecule(spent(in(the(flow(cell(was(too(short(to(allow(for(solution(dimer(dissociation(

and(surface(dimer(reassociation.(Thus,(the(surface(dimers(reduced(the(effective(

protein(concentration(injected.(To(minimize(solution(homodimerization,(I(used(a(

protein(concentration((40(μM)(below(the(Kd(for(homodimerization(of(WT(EC12(

cadherin.24((

Data Fitting  

( For(calcium(titrations,(each(series(was(fit(using(the(curve(fitting(toolbox(in(

MATLAB(to(an(equation(of(the(form:(

! = !!!! !!! + !!! + !(

Equation 3 – General Hill equation 
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where(c#is(the(EC50(for(calciumIdependent(protein(binding,(Nh(is(the(Hill(coefficient,(

x#is(the(calcium(concentration,(and(y#is(the(response(measured.(Due(to(chipItoIchip(

variation,(fits(were(normalized(such(that(the(maximum(response(at(infinite(

concentration((x(=(∞)(predicted(by(the(fit(lines(was(equal(to(one.(During(calcium(

titrations,(I(observed(an(EC50(Idependent,(nonIspecific(interaction(at(higher(calcium(

concentrations,(with(a(stronger((lower)(EC50(leading(to(a(larger(magnitude(effect((i.e.(

WT(C9A(had(the(strongest(effect,(cis#129/138(had(no(apparent(effect(at(

concentrations(tested).(Points(dominated(by(this(effect(were(not(used(in(the(fits,(but(

are(shown(as(faded(markers(in(Figure(19.(((

Protein Titrations 

( I(injected(WT(C9A,(trans#and(cis(proteins(at(a(fixed(background(concentration(

of(1mM(calcium(and(protein(concentrations(ranging(from(0I300(μM(using(the(same(

data(acquisition(methodology(as(I(used(for(the(calcium(titrations.(At(concentrations(

of(protein(higher(than(300(μM,(I(observed(significant(nonIspecific(effects(that(

prevented(measurement.(In(these(experiments,(the(chip(is(covered(with(WT(C9A(

cadherins(for(all(injections.(As(a(result,(for(nonIWT(injections,(solution(homodimers(

and(surface(heterodimers(are(in(competition,(which(may(have(significant(differences(

in(affinities.(Due(to(this(competition,(quantitative(determination(of(binding(affinities(

is(difficult,(and(fits(were(not(determined(as(a(result.(

Bootstrap Analysis((

( For(the(calcium(titrations(for(129/138,(I(used(a(bootstrapping(technique(in(

order(to(obtain(additional(verification(that(the(fit(values(were(robust.(Data(points(for(

each(flow(cell(and(concentration(were(grouped,(and(then(data(points(were(drawn(at(
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random,(with(replacement,(in(a(number(equal(to(the(number(of(actual(data(points.(

These(randomly(drawn(data(points(were(then(refit(to(Equation(3(and(EC50(and(Nh(

values(were(stored.(This(process(was(repeated(500(times(for(each(protein(state.(The(

fits(were(then(sorted(by(minimum(sum(of(squared(error((SSE),(and(the(average(and(

±2(SD(values(were(computed(for(the(top(100(fits(for(each(protein((100(out(of(500(fits(

were(used(to(avoid(outlier(random(trials(from(affecting(fit(values).((

Reversibility Analysis 

( In(the(reversibility(experiments,(40(μM(conjugated(129/138(was(

alternatingly(illuminated(with(UV((emission(maximum(365(nm)(and(blue(LEDs(

(emission(maximum(455(nm,(with(residual(intensity(at(500I550(nm),(1mM(Ca2+(was(

added,(and(responses(measured.(The(resulting(responses(were(subject(to(the(same(

reference(and(control(subtraction,(as(well(as(flow(cell(scaling(used(in(the(calcium(

titrations.(

Dissociation Analysis##

# For(129/138(and(WT,(I(fit(each(protein(variant’s(SPR(dissociation(traces(to(a(

single(exponential(of(the(form:(

!"#$%&#" ! = !! ∗ !!!∗! + !!(

Equation 4 – Determination of cadherin off rates observed in SPR. 

where(response(t)#is(the(response(as(a(function(of(time,(t,(and(k(is(the(off(rate.(For(

each(protein,(a#and(b(were(allowed(to(vary(per(response,(while(all(responses(were(

simultaneously(fit(to(a(single(shared(off(rate,(k,(that(minimized(the(sum(of(squared(

errors((SSE)(of(the(responses.(Calcium(concentrations(less(than(10(μM(were(
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removed(from(the(fits,(as(their(responses(were(not(significantly(above(the(noise(

threshold(of(the(instrument.(((

Results 

Preliminary Calcium Binding of 70/14, 70/107 & 5/137 

( In(order(to(determine(whether(any(other(mutants(beyond(129/138(may(have(

been(functional,(I(investigated(whether(illumination(of(70/14,(70/107(and(5/137(

changed(their(apparent(calcium(binding(affinities(in(SPR.(The(mutant(5/137(showed(

no(specific(binding(to(the(WT(cadherin(on(the(SPR(chip(and(data(was(not(analyzed(

any(further((data(not(shown).(The(other(two(mutants(70/14,(and(70/107,(each(

showed(some(binding,(though(neither(showed(significant(changes(in(calcium(

binding(after(illumination((Figure(18).((The(first,(70/14,(showed(binding(in(trans#

though(the(flow(cells(did(not(show(similar(line(shapes(with(flow(cell(4(diverging(

significantly(from(flow(cells(2(and(3,(so(no(overall(fit(was(determined.(In(cis,(70/14#

showed(binding(that(saturated,(but(showed(a(significant(amount(of(noise,(and(thus(

also(was(not(fit.(These(results(could(have(been(due(to(partial(protein(instability(or(

aggregation;(the(mutant(was(not(investigated(further.(In(comparison,(70/107(

showed(binding(with(good(fit(quality,(but(no(difference(between(preI(and(postI

illumination.(Trans#70/107(had(EC50(=(246.28(±(16.71(μM(and(Nh(=(1.44(±(0.11,(

while(cis#showed(EC50(=(216.36(±(83.15(μM(and(Nh(=(1.10(±(0.47.(Although(all(three(

of(these(mutants(were(tested(prior(to(the(full(optimization(of(the(SPR(assay,(they(

were(not(tested(in(more(detail(when(I(had(results(indicating(the(functionality(of(

129/138.(Mutant(5/137(often(showed(instability(and(aggregation,(which(was(

unlikely(to(change(with(SPR(optimization.(The(data(were(of(high(enough(quality(to(
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conclude(that(70/107,(although(conjugatable,(was(not(functionally(switchable.(

Finally,(70/14(appeared(to(be(more(stable(than(5/137,(but(still(showed(evidence(of(

aggregation.(Notably,(prior(work(has(showed(that(mutations(at(position(14(in(EC12(

ablate(binding(in(SPR(assays24,(which(may(have(been(the(source(of(the(problem.(

(

Figure 18 – Data from mutants 70/107 and 70/14 pre- and post-illumination in SPR. Mutant 5/137 
did not show any measurable binding (data not shown).  

Detailed Calcium Binding of 129/138  

( In(comparison(to(the(other(mutants,(129/138(showed(significant(functional(

switching(upon(illumination.(I(investigated(the(129/138(mutant,(along(with(WT(C9A(

as(control((Figure(19,(with(raw(traces(in(Figure(20).(I(observed(a(calcium(binding(

EC50(for(C9A(cadherin,(as(measured(by(a(Hill(fit(to(a(single(species,(of(72.0(μM,(with(

Re
sp

on
se

 (R
U

)

1 10 100 1000−4

−2

0

2

4

6

8

10  

FC2

FC3

FC4
Average RU
Fit to Hill Line

A 70/107 cis B 70/107 trans

−1

0

1

2

3

4

5

6

7  

1 10 100 1000

−1

0

1

2

3

4

5

6

7

 

 

1 10 100 1000
Calcium Concentration (μM)

FC2

FC3

FC4

FC2

FC3

FC4
Average RU
Fit to Hill Line

C 70/14 cis

−1

−0.5

0

0.5

1

1.5

2  

Re
sp

on
se

 (R
U

)

1 10 100 1000

Calcium Concentration (μM)

D 70/14 trans

FC2

FC3

FC4



 45 

mean(fit(values(and(±2(SD(error,(as(measured(by(a(bootstrapping(analysis(of(the(data,(

of(71.2(±(14(μM.(I(also(measured(a(Hill(coefficient((Nh)(of(2.24((2.45(±(1.7).(

Unconjugated(129/138(had(an(EC50(=(104(±(27(μM(and(Nh(=(1.37(±(0.47.(

( In(comparison,(trans(129/138(had(an(EC50(of(156(μM((170(±(33(μM),(with(Nh(

=(1.38((1.28(±(0.28).((Cis(129/138(showed(substantially(weakened(binding,(with(

EC50(=(619(μM((611(±(180(μM)(and(Nh(=(0.76((0.77(±(0.15),(demonstrating(a(nearly(

4Ifold(change(in(apparently(calcium(affinity(after(illumination(under(these(

conditions.((

(

Figure 19 – Fits to Hill equations of the responses measured in SPR. Dimmer points were 
dominated by non-specific binding and were not used in the fits, but are shown for completeness. 
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(

Figure 20 – Raw traces for data shown in Figure 19. 
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( These(EC50(values(are(different(from(those(measured(in(the(mass(

spectrometry(and(halfIlife(analysis(described(below((Chapters(7(&(8);(these(

differences(are(due(to(cadherin(binding(multiple(calcium(ions(to(function.(Because(of(

the(need(to(bind(multiple(calcium(ions,(any(measured(EC50(for(calcium(binding(must(

be,(at(a(minimum,(a(multiple(of(the(protein(concentration(used((with(the(multiplicity(

required(depending(on(the(extent(of(cooperativity).(In(these(assay,(I(used(a(protein(

concentration(of(40(μM.(As(such,(the(EC50(for(WT(C9A(being(approximately(twoIfold(

higher(than(the(protein(concentration(indicates(that(it(binds(with(extensive(

cooperativity,(as(otherwise(at(72(μM(calcium(most(proteins(would(have(only(2(

calcium(ions(bound.(Similarly,(the(fourIfold(higher(EC50(for(trans#129/138(compared(

to(the(protein(concentration(indicates(it(is(substantially(less(cooperative,(a(finding(

confirmed(in(the(data.(However,(the(approximately(15Ifold(higher(EC50(for(cis#

129/138(indicates(that(calcium(binding(is(weak(enough(that(the(protein(

concentration(used(does(not(substantially(change(the(measured(EC50,(and(the(

number(measured(is(accurate.((

( For(cis#129/138,(the(calcium(binding(EC50(is(lower((binding(is(stronger)(than(

that(measured(in(the(absorbance(assays(of(Chapter(8.(This(discrepancy(is(likely(due(

to(the(lack(of(complete(photoisomerization(upon(illumination,(as(well(as(partial(

thermal(relaxation(to(trans(prior(to(measurement.(The(assay(in(Chapter(8(is(

measured(more(quickly(after(illumination,(and(only(monitors(changes(in(cis#state.((((

( An(alternative(explanation(for(the(observed(decrease(in(the(SPR(signal(upon(

isomerization(to(the(cis(state(could(be(an(increase(in(cis(homodimerization(in(

solution,(effectively(reducing(the(concentration(of(cadherin(monomers(available(to(



 48 

bind(to(the(WT(cadherin(immobilized(on(the(chip.(To(exclude(that(possibility,(I(

analyzed(conjugated(129/138(homodimerization(via(size(exclusion(chromatography(

(Appendix(D).(The(observed(decrease(in(the(dimer/monomer(ratio(after(UV(

illumination(in(this(assay(additionally(confirms(the(expected(weaker(cis#

homodimerization(upon(illumination.((

Treatment of Strand-Swapped Dimers((

( Questions(remain(about(the(structure(of(the(functional(cadherin(multimers,(

including(evidence(that(cadherin(forms(strandIswapped(dimers.24,45I47(In(the(SPR(

assay,(I(was(unable(to(directly(determine(the(structure(of(the(interacting(species(

formed(in(the(experiments.(However,(I(fit(each(set(of(SPR(traces(for(a(given(cadherin(

variant(to(a(single(off(rate(returning(to(baseline(levels,(even(at(higher(calcium(

concentrations((Figure(21).(For(WT,(the(fitIdetermined(off(rate(was(kwt#=(0.091(secI1,(

for(trans#XIEC12,(ktrans#=(0.075(secI1,(and(for(cis#XIEC12,(kcis(=(0.072(secI1.(Because(

multiple(different(dimer(structures(would(likely(have(different(offIrates,(especially(if(

one(were(strandIswapped,(this(ability(to(fit(to(a(single(rate(is(consistent(with(a(single(

dimer(type(formed(for(each(assayed(cadherin(variant.(
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(

Figure 21 – Fits to single off rates to SPR dissociation of WT as well as trans and cis 129/138.(top) 
Fits for WT, trans 129/138 and cis 129/138. (bottom) Residuals to fits, shown for [Ca2+] = 62.5 μM 
(upper) and 1000 μM (lower). Reponses are from flow cell 2. 

Bootstrapping Analysis 

( I(performed(a(bootstrapping(analysis(of(the(fit(values(in(the(calcium(titrations(

in(order(to(verify(they(were(robust((Figures(22(&(23).(Computed(values(were(all(

near(the(values(reported(for(the(single(best(fit(using(the(gathered(data,(which(

indicates(the(data(values(describe(the(system(well(and(the(fit(values(are(robust.(The(

largest(variance(in(the(values(came(from(the(Hill(coefficient(of(the(WT(and(the(EC50(

of(cis#129/138.((
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(

Figure 22 – Bootstrapping analysis of 129/138 calcium titrations. All 500 trials shown. 

(

Figure 23 – Bootstrapping as in Figure 22, with only the top 100 points by minimum sum of 
squared error (SSE) shown. For each protein, these values were used to compute the mean and ±2 
SD values. 
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Protein Titrations of 129/138 

( In(order(to(more(directly(measure(changes(in(proteinIprotein(binding(affinity,(

I(injected(WT(C9A,(trans#and(cis(proteins(at(a(fixed(background(concentration(of(

1mM(calcium(and(protein(concentrations(ranging(from(0I300uM((Figure(24).(As(

mentioned(in(the(methods(section,(quantitative(determination(of(thermodynamic(

parameters(was(not(possible(due(to(complicating(factors,(though(qualitative(

comparisons(can(still(be(made.(The(trans(EC12(construct(binds(more(weakly(than(

WT,(indicating(a(combination(of(the(cysteine(mutations(and(addition(of(BSBCA(

weakened(either(calcium(or(proteinIprotein(binding.((Nevertheless,(at(all(injected(

concentrations,(cis(state(shows(a(weaker(response(than(trans,#indicating(that(it(has(

an(apparent(weaker(proteinIprotein(binding(affinity,(confirming(that(isomerization(

affects(proteinIprotein(binding(affinity.(This(measured(difference(in(proteinIprotein(

binding(after(illumination(was(reversible(as(measured(over(multiple(illumination(

cycles(with(40(μM(protein(and(1mM(Ca2+((Figure(25).(
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(

Figure 24 – Protein titrations of 129/138 at concentrations of 0-300 μM protein in a background of 
1 mM Ca2+. Due to complicating factors, fits were not determined. 

(

 

Figure 25 – Reversibility of changes in SPR response. 

Re
sp

on
se

 U
ni

ts
 (R

U
)

Protein concentration (μM)
0 50 100 150 200 250 300

0
5

10
15
20

25
30
35
40
45
50
55

 

 

 

cis 129/138
trans 129/138

unconjugated 129/138

WT C9A

0 1 2 3 4 5 6
5

7

9

11

13

15

Illumination Seq. Num.

Sc
al

ed
 R

es
p.

 (R
U

)

cis 129/138
trans 129/148
unillum. trans

UV Illumination
green Illumination



 53 

Chapter 7: MS Measurement of Calcium Binding 
Affinity 

Introduction 

( After(seeing(a(difference(in(calcium(binding(affinity(after(illumination(in(SPR(

(Chapter(6)(but(being(unsatisfied(with(the(indirectness(of(the(SPR(measurements,(I(

sought(a(more(direct(measurement(of(WT(and(128/138(calcium(binding(affinity.(To(

do(so,(I(relied(on(a(previously(described(mass(spectrometryIbased(assay22(to(

directly(measure(calcium(binding(affinity(of(WT(C9A(as(well(as(trans#and(cis#

129/138.(If(isomerization(alters(calcium(binding,(the(cis(129/138(should(have(

weaker(affinity(than(trans.(In(addition,(because(EC12(binds(3(calcium(ions,(any(of(

which(could(be(interfered(with(during(isomerization,(a(decrease(in(apparent(

cooperativity(as(measured(by(the(Hill(coefficient48((Nh)(would(be(expected.(I(

observed(WT(calcium(binding(Kds(in(line(with(previous(results,(as(well(as(trans#

calcium(binding(affinity(near(WT.(In(contrast,(cis#bound(so(weakly(that(calcium(

binding(Kds(could(not(be(quantitated,(as(binding(was(outside(the(dynamic(range(of(

the(instrument.(Perplexingly,(unconjugated(129/138(also(showed(limited(specific(

binding(of(calcium,(even(though(in(the(SPR(assays(it(appears(to(dimerize(equally(

well(as(WT(at(the(same(calcium(concentrations.(Reasons(for(that(discrepancy(are(

discussed,(along(with(the(results,(below.((

Methods 

( Protein(samples(were(prepared(as(previously(described22,(with(the(

modification(that(samples(were(diluted(to(2(pmol/μL((2(μM).(Samples(were(injected(
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at(5(μL/min(into(a(QTRAP4000(instrument((Agilent).(Cis#129/138(was(illuminated(

with(a(1(W(UV(LED((Advancemart,(emission(maximum(365(nm)(for(4(minutes(

immediately(prior(to(injection.(The(quantity(of(bound(calcium(ions(was(obtained(by(

determining(Ca2+(binding(occupancies,(and(assuming(that(calciumIfree(and(calciumI

bound(molecules(have(the(same(ionizability.49(By(comparing(peak(areas,(fractions(of(

molecules(binding(0(to(9(calcium(ions(were(computed(for(each(calcium(

concentration.(For(determination(of(Kd,(molecules(binding(more(than(three(calcium(

ions(were(assumed(to(bind(three(ions(specifically,(and(these(fractions(were(added(to(

the(3Iion(fraction.(The(average(number(of(calcium(ions(bound(was(computed,(and(

the(resulting(numbers(were(fit(to(a(Hill(equation(of(the(same(form(as(Equation(3,(

where(here(x(is(the(calcium(concentration,(y(is(the(number(of(calcium(ions(bound,(

and(c(is(the(calcium(binding(Kd.(In(order(to(subtract(nonIspecific(binding(from(cis,(

the(following(equation(was(used(for(each(calcium(concentration,(i,(and(occupancy(

number,(c:((

!!,! = !!,! − !!,! ∗ !!,!
!

!!!
+ !!!!,! ∗ !!,!

!"# !!!,!

!!!
(

Equation 5 – Calculation of the true number of specific calcium ions bound 

where(!!,! (is(the(true(fraction(of(the(molecules(binding(c#specific(calcium(ions(at(

concentration(i,(!!,! (is(the(apparent(fraction(binding(c#calciums(at(concentration(i,(

and(!!,! (is(the(fraction(of(the(molecules(that(bind(a(nonIspecific(calciums(at(

concentration(i.(The(first(summation(in(the(equation(subtracts(from(the(apparent(

fraction(contributions(due(to(nonIspecific(binding,(whereas(the(second(term(adds(

from(the(other(calcium(occupancy(states(their(nonIspecific(fractions(that(actually(
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bind(c(calciums.(Note(that(the(maximum(of(the(second(sum(is(not(c(because,(

discounting(the(3(specific(sites,(there(are(only(6(nonIspecific(occupancies(

measurable,(with(a(maximum(of(9(total(calciums(bound.(For(c#=#8,(the(only(addition(

from(other(occupancies(can(be(from(the(9(occupancy(state,(which(if(it(actually(bound(

8(specifically,(would(bind(one(nonIspecifically,(resulting,(for(8(calciums,(a(sum(over(

a#from(1(to(9I8,(or(1,(the(only(possibility.(For(c#=#2,(there(can(be(no(addition(from(the(

9(occupancy(state,(as(that(would(presume(2(specific(and(7(nonIspecific(calciums.(

Because(the(9(occupancy(state(is(explicitly(presumed(to(bind(3(specific(and(6(nonI

specific(calciums,(there(is(no(measureable(frequency(of(7(nonIspecific(calciums(to(

use(to(make(the(correction((i.e.,(there(is(no(!!,!).(Thus,(for(c#=#2,(the(sum(is(from(1(to(

6,(the(maximum(number(of(measureable(nonIspecific(calciums.((

( The(nonIspecific(binding(fractions,(!!,! ,(came(from(the(trans(129/138(calcium(

series(using(the(assumption(that(all(three(calcium(binding(sites(were(occupied(prior(

to(nonIspecific(sites,(thus(any(fraction(that(appeared(to(bind(four(calciums(actually(

bound(three(specific(and(one(nonIspecific(calcium,(etc.(This(is(not(an(entirely(

accurate(assumption;(however,(any(errors(underestimate#nonIspecific(binding,(

making(any(observed(differences(between(cis#and(trans#smaller(than(actuality.(

Results 

( WT(C9A(cadherin(specifically(bound(three(calcium(ions(with(a(dissociation(

constant(Kd(=(28.5(±(1.9(μM((errors(are(the(boundaries(of(a(95%(confidence(interval)(

and(extensive(cooperativity(with(Nh(=(2.85(±(0.47,(close(to(previously(reported(

numbers22(of(Kd(=(20(±(0.7(μM(and(Nh(=(2.6(±(0.2((Figure(26,(with(example(of(

primary(data(used(in(plots(in(Figure(27).(Trans#129/138#showed(2Ifold(weaker(
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affinity(and(less(cooperativity,(with(Kd(=(55.2(±(5.8(μM(and(N(h=(1.80(±(0.35,(but(also(

bound(three(calcium(ions.((

 
Figure 26 – Calcium binding affinity of WT C9A cadherin, as well as the different 129/138 states, as 
measured by mass spectrometry. Grey dotted boxes show cis 129/138 prior to non-specific binding 
subtraction. 

 
Figure 27 – Example mass spectra showing calcium binding to trans 129/138. [Ca2+] = 96 μM. 
Unlabeled intermediate peaks are +1 Na. 
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( In(contrast,(calcium(binding(to(cis(129/138(was(dominated(by(nonIspecific(

binding(and(a(lack(of(cooperativity((Figure(28).(Cis#showed(a(significant(fraction(of(

single(and(double(bound(calcium(states,(which,(combined(with(the(observation(of(

nonIspecific(binding(in(the(higher(occupancy(states,(indicates(that(much(of(the(

observed(double(and(triple(bound(occupancies(are(the(result(of(nonIspecific(binding(

versus#cooperative(binding(at(the(specific(binding(sites.(By(using(quadruple(and(

higher(calciumIbound(states(in(the(trans(129/138(sample(as(a(reference(for(nonI

specific(binding,(I(subtracted(the(estimated(contribution(of(nonIspecific(calcium(

binding(from(the(measured(average(calcium(occupancy(for(cis#129/138#(see(

Methods).(The(resulting(line(shows(significantly(reduced(binding(compared(to(trans.(

(A(quantitative(fit(was(not(possible(because(saturating(the(specific(sites(required(

calcium(concentrations(outside(the(dynamic(range(of(measurement.)(

(

Figure 28 – Example mass spectra showing calcium binding to cis 129/138. [Ca2+] = 168 μM. 
Unlabeled intermediate peaks are +1 Na. 
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( Curiously,(the(unconjugated(mutant(also(showed(significantly(weakened(

binding(when(compared(to(WT(or(trans,(with(Kd(=(145(±(18(μM(and(Nh(=(1.07(±(0.13.(

This(would(seem(to(directly(contradict(the(SPR(results((Chapter(6),(where(the(

unconjugated(mutant(shows(stronger(protein(binding(than(trans#at(the(same(

calcium(concentration,(apparently(binding(calcium(more(strongly.(One(possible(

explanation(is(that(the(addition(of(the(exogenous(cysteine(residues(destabilizes(the(

calciumIbound(loop(conformation.(The(addition(of(the(small(molecule(could(stabilize(

the(loops,(recovering(the(lost(affinity.(This(would(explain(the(relative(affinities(as(

measured(in(the(mass(spectrometer,(but(still(does(not(explain(the(differences(in(SPR(

versus(MS.
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Chapter 8: Changes in Half-life vs. Calcium 
Concentration 

Introduction 

( After(seeing(a(change(in(calcium(binding(affinity(after(illumination(in(SPR(

(Chapter(6),(and(MS((Chapter(7),(but(being(unable(to(directly(measure(the(calcium(

binding(affinity(of(cis#due(to(the(indirectness(of(the(assay((SPR)(or(lack(of(dynamic(

range((MS),(I(sought(an(assay(that(would(allow(me(to(accurately(quantify(calcium(

binding(to(cis#129/138.(I(turned(to(measuring(the(change(in(cis#state(halfIlife(after(

the(addition(of(calcium,(relying(on(the(coupling(between(calcium(binding(and(halfI

life.(These(data(gathered(are(for(only(the(fraction(of(the(population(that(is(cis,(

allowing(me(to(overcome(the(inevitable(mixed(populations(that(occur(postI

illumination(and(directly(measure(cis(properties.(This(assay(showed(cis#calcium(

binding(to(be(EC50(=(996(±(135(μM,(a(number(I(feel(is(the(most(accurate(

measurement(of(calcium(binding(affinity(for(this(state.(

Methods 

( For(the(calcium(dependence(of(halfIlife,(proteins(were(illuminated,(and(then(

CaCl2(was(added(to(final(concentrations(from(3.9(μM(to(32(mM,(using(a(14Ipoint(1:1(

serial(dilution(series,(plus(a(zero(calcium(point.(Data(points(were(collected(five(at(a(

time(on(a(Cary(50(Bio(UV/Vis(spectrometer((Varian)(every(20(minutes(for(a(total(of(

180(minutes,(and(the(entire(series(was(run(in(triplicate.(Absorbance(values(for(each(

calcium(concentration(over(time(were(plotted(and(the(halfIlife(was(calculated(using(

an(equation(of(the(same(form(as(Equation(2.(The(mean(halfIlives(for(each(calcium(
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concentration(were(plotted(and(fit(to(a(Hill(curve(of(the(form(in(Equation(3,(using(

the(curve(fitting(toolbox(in(MATLAB,(where(!!(is(the(hill(coefficient(and(c#is(the(EC50(

for(calciumIdependent(halfIlife(reduction.(Absorbance(curves(were(also(fit(to(double(

exponentials(to(determine(halfIlives,(without(a(significant(increase(in(curve(quality(

(data(not(shown).(

Results 

( The(cis(state(of(BSBCA(is(thermodynamically(unstable(and(it(relaxes(back(to(

the(stable(trans(state(in(the(dark(with(a(halfIlife(of(approximately(20(minutes(at(

room(temperature,23(although(conjugation(to(proteins(can(alter(chromophore(halfI

lives.7,50(One(can(compute(these(halfIlives(by(observing(the(increase(in(absorbance(

at(370(nm(caused(by(the(cis#chromophore(returning(to(trans.(

( One(general(caveat(inherent(to(azobenzeneIbased(strategies(is(that(switching(

to(the(cis(state(is(generally(incomplete,(i.e.(the(cis(state(always(contains(a(minor(trans(

population,10,23(making(measurements(of(cis#properties(difficult.(However,(the(

entirety(of(any(change(observed(in(halfIlife(measurements(is(due(only(to(the(cis#

subpopulation,(allowing(measurement(of(pure(cis#properties(unaffected(by(the(small(

fraction(that(remains(trans.(If(chromophore(isomerization(significantly(affects(

calcium(binding(in(my(conjugated(constructs,(with(stronger(binding(of(calcium(to(

trans(129/138,(by(thermodynamic(coupling(I(expected(to(see(that(the(free(energy(of(

the(cis#state(ensemble(increased(as(it(bound(calcium.(This,(in(turn,(would(lower(the(

free(energy(difference(between(the(cis#ensemble(and(the(transition(state(between(

trans#and(cis,(increasing(the(rate(of(thermal(relaxation(to(trans#and(thus(decreasing(

the(halfIlife(of(cis.(Because(calcium(binding(is(required(to(bring(about(the(reduction(
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in(half(life,(the(change(in(half(life(can(be(used(a(proxy(for(calcium(binding,(with(the(

midpoint(of(the(halfIlife(change(in(duration(being(approximately(equal(to(the(Kd(for(

calcium(binding(of(the(isolated(cis#state.(While(the(transition(state(free(energy(could(

also(be(changing(as(calcium(is(introduced,(I(assumed(this(was(unlikely,(as(I(assumed(

the(major(determiner(of(transition(state(free(energy(was(the(required(

destabilization(of(the(azo(bond(in(BSBCA,(which(would(likely(be(unaffected(by(the(

presence(of(calcium.(

( As(expected,(I(observed(a(halfIlife(decrease(from(approximately(72(minutes(

to(28(minutes,(with(an(EC50(of(996(±(135(μM(calcium((Figures(29(&(30).(This(

represents(a(nearly(18Ifold(change(in(apparent(calcium(binding(affinity(from(the(55(

μM(for(trans(129/138((mass(spectrometry(analysis,(Chapter(7).(I(also(observed(a(

cooperative(transition(in(halfIlife(duration,(with(a(measured(Hill(coefficient48((Nh)(of(

2.4(±(0.74.(This(apparent(cooperativity(indicates(that(the(reIbinding(of(calcium(to(

the(cis#state(is(cooperative,(and(thus(that(illumination(likely(interferes(with(multiple(

calcium(binding(sites.((
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(

Figure 29 – The calcium concentration dependence of cis 129/138 half-life. EC50 = 996 ± 135 μM. 
Error bars are ±1 SD of 3 separate experiments. 

 
Figure 30 – A demonstration of the fit, to a single exponential, of the relaxation of conjugated 
protein after illumination. For this illumination, [Ca2+] = 500 μM, and the fit gave a half-life of 63.4 min. 
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Chapter 9: Conclusions & Discussion 

( In(sum,(the(work(presented(here(demonstrates(the(successful(design(of(a(

reversibly(photoswitchable(cadherin(variant.(When(illuminated(with(light,(its(

calcium(binding(affinity(changes(from(56(μM(to(996(μM,(a(nearly(18Ifold(change,(and(

this(change(in(affinity(is(coupled(to(a(change(in(protein–protein(binding.(This(

successful(design(was(identified(after(cloning(a(library(of(only(11(mutants,(all(of(

which(were(identified(using(a(computational,(rational(design(approach.(

( The(next(phase(of(this(project(is(to(apply(this(designed(cadherin(to(

experiments(with(cells.(When(applied(in(cell(culture(experiments,(it(could(help(

answer(many(of(questions(about(cadherin’s(function(presented(in(the(introduction.(

One(way(to(introduce(this(engineered(molecule(into(a(cellular(context(is(via(

cadherinIcoated(substrata.(Coated(substrata(have(been(used(to(study(cellIcell(

adhesion51,52(and(stem(cell(pluripotency53,54.(Creation(of(coated(surfaces(allows(

spatial(control(of(cadherin(patterning(and(fine(control(over(cadherin(concentration,(

which(could(help(maximize(switchability(of(cadherinImediated(adhesion.51(Although(

more(difficult,(the(sites(of(mutation(could(also(be(engineered(directly(into(the(fullI

length(cellular(cadherin(and(used(to(study(cadherinIcadherin(signaling(in(a(more(

natural(context.(

( One(natural(question(about(this(work(is(whether(it(is(generalizable(to(other(

targets.(Although(interest(in(photoswitchable(proteins(has(increased(in(recent(years,(

relatively(few(examples(exist(in(the(literature,(perhaps(because(finding(good(

cysteine(attachment(points(remains(difficult.(Compared(to(highIthroughput(and(
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other(library(techniques,(I(was(able(to(create(a(successful(conjugate(using(a(rational(

design(strategy(and(a(small(library(of(constructs.(In(principle,(many(of(the(steps(used(

in(the(design(process(presented(in(Chapter(3,(such(as(geometric(compatibility,(could(

be(applied(to(any(target,(which(is(likely(to(significantly(reduce(the(size(of(any(

experimental(library.(Additionally,(the(strategy(presented(here(of(targeting(loop(

regions(of(proteins(is(likely(to(be(successful(elsewhere,(though(one(must(take(care(to(

avoid(targeting(loops(so(flexible(they(may(accommodate(the(isomerization(without(

changing(function,(as(appears(to(be(the(case(for(the(cadherin(mutant(70/107.(While(

disturbing(helices(and(sheets(would(seem(to(more(likely(result(in(a(dramatic(change(

in(protein(function,(they(are(also(likely(to(require(more(energy(from(the(

isomerization,(reducing(the(chances(of(isomerization(at(all.((

( One(constraint(on(this(current(design,(and(all(azobenzeneIbased(designs,(is(

the(present(inability(of(this(chromophore(to(switch(completely(to(cis.(Several(new(

chromophores(have(become(available50,55I57(that(possess(either(more(complete(

isomerization(or(longer(halfIlives(that(could(allow(for(isolation(and(use(of(the(pure(

cis(state.(Breakthroughs(in(this(area(are(likely(to(result(in(large(increases(in(the(

utility(of(these(small(photoisomerizable(molecules.(Because(of(the(extreme(spatial(

and(temporal(precision(offered(by(light,(interest(and(use(of(them(is(likely(to(continue(

to(help(solve(the(most(recalcitrant(questions(remaining(in(biology.(

( (
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Appendix A: Optimized Protocol for Cloning, 
Purification and Conjugation of mutants, WT C9A 

and WT-Avi C9A 
Cloning 

( Natural(EIcadherin(contains(a(proIpeptide(cleaved(during(protein(maturation,(

leaving(an(NIterminal(aspartate(residue(instead(of(a(methionine.(This(aspartate(

forms(an(important(intramolecular(salt(bridge,(resulting(in(recombinantly(produced(

proteins(containing(an(NIterminal(methionine(having(altered(function.42(To(remove(

both(the(exogenous(6xIHis(tag(and(methionine,(I(introduced(a(TEV(protease(

cleavage(site.(TEV(protease(is(compatible(with(the(reducing(buffer(conditions(

(containing(3(mM(TCEP)(required(to(maintain(free(cysteines(in(the(engineered(

constructs(prior(to(conjugation,(whereas(other(common(proteases(are(not.(((

( MetIEC12I6xHis(was(cloned(into(pETI22b(+)((EMD(Millipore(# 69744I3)(as(

described(previously.12(6xHisITEVIEC12(contained(a(6xHis(tag(and(TEV(cleavage(

site((ENLFYQ)(added(NIterminally,(as(well(as(an(inserted(CIterminal(stop(codon(

between(EC12(and(the(CIterminal(6xHis(tag(using(the(5’(oligonucleotide(

(GACCCCATATGCACCACCACCACCACCACGAAAACCTGTACTTCCAGGGGACTGGGTC)(

(blueI6xHis,(orangeITEV(cleavage(site)(and(the(3’(oligo(

(TGGTGCTCGAGTCAAGGAGCGTTGTCA).(For(6xHisITEVIEC12Iavitag,(the(same(5’(

oligo(was(used,(and(the(3’(oligo(was(replaced(with(one(containing(both(an(AviTag58(

and(stop(codon(

(TGGTGCTCGAGTCATTCGTGCCATTCGATTTTCTGAGCCTCGAAGATGTCGTTCAGACC(

GCCACCAGGAGCGTTG).((greenIavitag)#The(resulting(PCR(products(were(then(reI
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inserted(into(pETI22b(+)(using(the(same(procedure(as(before.(Cysteine(9(was(

mutated(to(alanine(using(site(directed(mutagenesis(and(the(oligos((5’)(

GTCATCCCTCCCATCAGCGCCCCCGAAAATGAAAAGGGC(and((3’)(

GCCCTTTTCATTTTCGGGGGCGCTGATGGGAGGGATGAC.(

( To(insert(the(designed(cysteines,(site(directed(mutagenesis(was(used,(

inserting(a(single(mutation(at(a(time.(Forward(and(reverse(oligonucleotides(were(

reverse(complements(of(each(other(and(39(bases(long.(In(all(cases,(the(mutated(

codon(was(mutated(to(a(TGC,(and(this(codon(was(in(the(center(of(the(oligonucleotide,(

with(18(bases(paired(to(the(WT(clone(flanking(the(mutation.((

Protein Expression  

( 6xHisITEVIEC12(and(MetIEC12I6xHis(were(expressed(in(E.#coli(BL21(DE3)(

cells(as(described(previously,12(with(the(substitution(of(100(μg/mL(carbenicillin(

replacing(ampicillin.(The(6xHisITEVIEC12Iavitag(construct(was(coItransformed(into(

BL21(DE3)(cells(with(a(plasmid(containing(biotin(ligase((Gift(from(R.(Fletterick).(

Protein(was(expressed(under(the(same(conditions(as(6xITEVIEC12(with(the(addition(

of(34(μg/mL(chloramphenicol(and(50(μM(biotin((Thermo(#29129)(to(LB(culture(

medium.((BD(#244610)(

Lysis  

( Cells(were(resuspended(at(20(mL/L(of(culture(in(lysis(buffer((50(mM(TrisIHCl(

pH(8.0,(2.5(mM(MgCl2,(0.1%(Triton(XI100).(After(resuspension,(protease(inhibitor(

tablets((Roche(#11836170001)(were(added(according(to(manufacturer’s(instruction.(

After(addition(of(1U/mL(of(DNAse(I((NEB(#M0303)(and(0.1(mg/mL(lysozyme((Sigma(

#L6876),(resuspended(cells(were(stirred(for(1(hour(at(room(temperature.(Cells(were(
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subsequently(lysed(using(sonication,(then(lysates(were(cleared(by(centrifugation(at(

21,000xg#for(30(minutes(at(4(°C.((Note:#In#my#hands,#EC12#is#prone#to#aggregation#if#

NaCl#is#present#in#the#lysis#buffer#prior#to#clearing#of#lysates.)((

Ni-NTA Purification 

# After(lysis,(NaCl(and(imidazole(were(added(to(final(concentrations(of(300(mM(

and(10(mM,(respectively,(followed(by(50%(NiNTA(agarose(slurry((Qiagen(#30230)(

at(a(volume(of(5(mL/L(of(culture.(Lysates(were(then(nutated(at(4(°C(for(1I2(hours,(

and(beads(were(pelleted(by(spinning(at(3000xg(for(10(minutes.(Beads(were(

resuspended(in(wash(buffer((50(mM(NaH2PO4INaOH(pH(8.0,(300(mM(NaCl,(10(mM(

imidazole),(separated(via(a(gravityIflow(chromatography(column((BioRad(#732I

1010),(then(further(washed(via#2(column(volumes((CV)(of(wash(buffer.(Protein(was(

eluted(from(the(beads(using(1.25(CV(elution(buffer((50(mM(NaH2PO4INaOH(pH(8.0,(

300(mM(NaCl,(250(mM(imidazole).(Eluted(protein(was(injected(into(a(HiLoad(

16/600(Superdex(75(column((GE(#28I9893I33)(attached(to(an(FPLC(system(and(

prequilibrated(in(TEV(cut(buffer((25(mM(TrisIHCl(pH(8.5,(400(mM(NaCl,(1(mM(EDTA,(

3(mM(KCl,(3(mM(TCEP).(Monomer(fractions(were(pooled.(Typical(yields(of(monomer(

ranged(from(10I20(mg(protein(per(liter(of(cell(culture.(((

Cleavage  

# Purified(proteins(were(concentrated(to(a(final(concentration(of(120(μM(in(

TEV(cut(buffer(using(spin(concentrators((Millipore(#UFC901024)((Note:#In#my#hands,#

EC12#adsorbs#to#alternative#protein#concentrators),(after(which(6xHisITEV(

(Invitrogen(#12575I015)(was(added(in(a(mass(ratio(of(1:8(TEV:EC12.(Protease(

reactions(were(left(at(16(°C(for(60(hours.((
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Repurification  

( After(cleavage,(protease,(tags,(residual(contaminating(proteins,(and(residual(

uncleaved(protein(were(removed(using(a(second(round(of(NiNTA(purification.(The(

protease(reactions(were(desalted(using(a(HiPrep(26/10(desalting(column((GE(#17I

5087I01)(into(repurification(buffer((25(mM(TrisIHCl(pH(8.0,(400(mM(NaCl,(30(mM(

imidazole,(500(μM(TCEP).(After(desalting,(NiINTA(agarose(preIwashed(in(

repurification(buffer(was(added(at(a(ratio(of(1mL(of(packed(resin(per(15(mg(EC12(

and(mixtures(were(nutated(for(1I2(hours(at(4(°C.(After(nutating,(supernatants(

containing(cleaved(protein(were(separated(from(beads(using(a(gravityIflow(

chromatography(column.(Beads(were(washed(using(1CV(repurification(buffer,(and(

wash(fractions(were(pooled(with(supernatants.(Proteins(were(then(desalted(into(

TEV(cut(buffer(for(medium(term(storage.(Protein(purity(was(verified(by(SDSIPAGE(

and(was(estimated(to(be(>(90%,(while(cleavage(completeness(was(verified(via(mass(

spectrometry.((Figure(31A)(Biotinylation(efficiency(was(also(verified(via(mass(

spectrometry.((Figure(31B)(Typical(yields(postIrepurification(were(66I75%(

compared(to(precleavage,(with(the(major(loss(being(incomplete(cleavage.(

Biotinylation(was(typically(>95%(of(overall(protein.((

3,3’-bis(sulfonato)-4,4’- bis(chloroacetamido)azobenzene (BSBCA) Handling  

( Dry(BSBCA((purchased(from(LinkeraIosadovsk@chem.utoronto.ca)(was(kept(

at(4(°C.(16X(stock(solutions(were(created(by(dissolving(dry(BSBCA(into(water(at(a(

concentration(of(8(mM.(Stock(solutions(were(kept(at(I20(°C(in(the(dark.((

Protein Conjugation  

( Repurified(and(cleaved(mutant(protein(was(concentrated(to(a(final(

concentration(of(160(μM(in(TEV(cut(buffer,(followed(by(addition(of(BSBCA(from(
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stock(solutions(to(a(final(concentration(of(500(μM.(Conjugation(reactions(were(kept(

in(the(dark(at(25(°C(for(72(hours.(After(conjugation,(excess(chromophore(was(

removed(via(desalting(using(a(HiPrep(26/10(desalting(column((GE(#17I5087I01)(

into(TEV(cut(buffer.(Conjugation(efficiency(was(verified(using(mass(spectrometry,(

looking(for(the(characteristic(increase(of(453(Da23,(and(efficiencies(were(typically(

>99%(for(the(mutant(K129C/D138C((Figure(31).((Note:#Free#chromophore#has#a#

tendency#to#adsorb#to#the#resin,#especially#in#the#presence#of#salt.#It#may#be#removed#by#

flushing#the#column#with#several#volumes#of#pure#water.)(
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Figure 31 – Mass spectra showing steps during protein production. A and C are overlays of two 
spectra. (A) Demonstration of mass change after cleavage. Black, uncut WT C9A protein; blue, WT 
C9A protein cleaved with TEV protease. Expected monoisotopic mass change was Δ1747 Da, 
compared to Δ1739 Da observed. (The difference could be due to imperfect protonation state 
prediction, such as for the 6xHis tag.) (B) Verification of Biotinylation. The majority of the protein is 
biotinylated. Expected and observed mass changes were both Δ226 Da. (C) Demonstration of mass 
change during conjugation, for mutant 129/138: red, unconjugated mutant protein; green, 
conjugated mutant protein. Expected and observed mass changes were both Δ453 Da. 

Final Purification and Storage  
( (Note:(for(poorly(conjugated(proteins,(residual(unconjugated(protein(can(be(

removed(using(the(protocol(in(Appendix(C(before(final(purification)(
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( Prior(to(analysis,(proteins(were(injected(into(a(HiLoad(16/600(Superdex(75(

column(equilibrated(in(storage(buffer((25(mM(TrisIHCl(pH(7.5,(150(mM(NaCl,(500(

μM(TCEP)(to(remove(any(aggregates(that(may(have(developed(during(cleavage,(

repurification(or(conjugation.(Typical(monomer(yields(were(90%(for(unconjugated(

and(60%(for(conjugated(protein.(Proteins(were(stable(in(storage(buffer(for(several(

weeks(at(4(°C.(For(longer(term(storage,(proteins(were(flash(frozen(in(storage(buffer(

containing(10%(v/v(glycerol(using(liquid(nitrogen,(then(stored(at(I80(°C.((Note:#

Conjugates#had#a#high#nonKspecific#affinity#for#agarose#and#other#common#support#

matrices.#Attempts#to#conjugate#protein#prior#to#cleavage#and#repurification#led#to#

protein#aggregation.#Attempts#to#separate#TEV#from#conjugated#EC12#using#other#

column#methods#such#as#proteaseKaffinity#columns#were#similarly#unsuccessful.#

Conjugated#protein#remains#monomeric#in#the#Superdex#75#and#HiPrep#Desalting#

columns#used#here.)
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Appendix B: Protein Concentration Determination 

( Unconjugated(protein(concentrations(were(determined(using(measurements(

of(absorbance(at(280(nm(using(extinction(coefficients(predicted(by(the(ExPASY(

online(protein(parameter(tool29,(which(were(ε280=21430 M−1(cm−1(for(EC12,(and(

ε280=26430 M−1(cm−1(for(EC12Iavitag.(For(conjugated(proteins,(the(extinction(

coefficient(at(280(nm(was(computed(as(the(sum(of(the(predicted(protein(and(

measured(free(BSBCA((ε280=10100 M−1(cm−1)(extinction(coefficients.(BSBCA’s(

extinction(coefficient(was(computed(by(measuring(BSBCA’s(absorbance(at(370(nm(

and(280(nm(and(using((

!!"# =
!!"#
!!"#

∗ !!"#(

Equation 6 – Determination of BSBCA 280 nm extinction coefficient 

where(ε370=(29000(M−1(cm−1((see(Zhang(et(al.59).(BSBCA’s(molar(extinction(

coefficients(can(vary(when(conjugated(to(protein.(However,(similar(band(intensities(

were(observed(when(conjugated(and(unconjugated(proteins(of(identical(computed(

protein(concentration(were(loaded(into(an(SDSIPAGE(gel(and(then(stained(with(

coomassie((data(not(shown).(
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Appendix C: Separation of Unconjugated Protein 
from Conjugates using Biotinylation/Streptavidin 

Purification 
Introduction 

( The(inspiration(for(the(development(of(this(method(came(from(discussions(

with(Dr.(Matthew(Banghart.(I(am(grateful(for(his(considered(thoughts(and(assistance.(

( Prior(to(optimizing(the(conjugation(conditions(for(129/138((Chapter(5),(and(

while(conjugating(and(characterizing(the(other(10(mutants((Chapter(4),(I(used(an(

additional(set(of(purification(steps(to(remove(residual(unconjugated(protein.(This(

protocol(involves(labeling(any(residual(free(cysteines(with(biotinIPEGImaleimide,(

followed(by(streptavidin(capture(of(the(biotinylated(protein.(After(optimization,(it(

was(not(necessary(for(129/138(due(to(the(nearIcompleteness(of(the(conjugation(

reaction;(as(I(never(tested(the(other(mutants(using(the(optimized(protocol,(it(may(

not(have(been(necessary(for(them(either.(However,(I(include(this(protocol(both(for(

completeness(and(because(it(may(be(useful(in(the(creation(of(other(conjugated(

photoswitchable(proteins(where(no(conditions(where(the(reaction(completes(can(be(

found.(One(caveat(of(this(method(is(that(the(conjugates(have(a(tendency(to(aggregate(

in(the(presence(of(the(agarose(beads(used(to(introduce(the(streptavidin;(this(effect(

could(be(avoided(if(a(suitable(replacement(could(be(found,(though(this(was(not(

tested.(

Method 

( The(following(steps(should(be(inserted(into(the(optimized(purification(

protocol(after(conjugation,(but(prior(to(final(purification(and(storage.((
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( After(conjugation,(excess(chromophore(was(removed(via(desalting(using(a(

HiPrep(26/10(desalting(column((GE(#17I5087I01)(into(TEV(cut(buffer,(modified(to(

pH(6.9.(Proteins(were(concentrated(to(a(concentration(of(200(µM(using(spin(

concentrators((Millipore(#UFC901024),(and,(afterward,(EZILink(MaleimideIPEG2I

Biotin((Thermo(#21901)(was(added(to(a(final(concentration(of(2(mM.(Protein(

solutions(were(placed(at(4(°C(in(the(dark(overnight.(

( The(following(morning,(excess(biotin(was(removed(via(desalting(into(TEV(cut(

buffer,(pH(7.5.(Protein(solutions(were(again(concentrated(to(200(µM,(followed(by(

addition(of(preIwashed(and(equilibrated(High(Capacity(Steptavidin(Agarose(Resin(

(Thermo(#20359)(at(a(ratio(of(1(mL(of(packed(resin(per(3(mL(of(protein(solution.(

(Note:(the(stated(binding(capacity(of(the(resin(in(10(mg(of(biotinylated(protein(per(

mL(of(resin.(Adjust(the(ratio(of(resin(to(one(appropriate(for(the(expected(mass(of(

biotinylated(protein(based(on(conjugatability(of(the(particular(protein(used).(

ProteinIresin(mixtures(were(nutated(at(4(°C(in(the(dark(overnight.(The(following(

morning,(resin(and(unconjugated(proteins(were(separated(from(conjugates(via(a(

gravityIflow(chromatography(column((BioRad(#732I1010).((

( The(completeness(of(the(biotinylation(and(streptavidin(capture(reactions(can(

be(monitored(via(mass(spectrometry,(via#the(appearance(and(disappearance(of(a(

+1050(Da(peak,(respectively((Figure(32–(Note:(masses(for(129/138(are(different(

from(other(figures(because(these(data(show(an(earlier(version(of(the(construct(

without(the(TEV(cleavage(site(and(with(the(addition(of(a(CIterminal(6xHis(tag).((

(
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(

Figure 32 – Mass spectrometry analysis of biotinylation and streptavidin capture of conjugated 
protein. (A) Protein after conjugation, showing both conjugated and residual unconjugated protein. 
(B) Conjugated protein after biotinylation. The unconjugated protein has been biotinylated with 2 
biotin-PEG2-maleimides, (+1050 Da, 2x +525 Da). (C) The biotinylated sample after streptavidin 
purification. The biotinylated fraction has disappeared, leaving pure conjugated protein. Masses for 
129/138 are different from other figures as this protein is an older version of the construct without a 
TEV cleavage site and containing a C-terminal 6xHis tag. 
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Appendix D: Size Exclusion Chromatography of cis 
and trans 129/138 

( I(used(size(exclusion(chromatography(to(show(a(decrease(in(129/138(

homodimerization(after(illumination.(Protein(was(diluted(to(a(final(concentration(of(

250(μM(in(TBS((25mM(Tris(pH(7.5,(150mM(NaCl)(at(room(temperature.(For(trans#

129/138,(calcium(was(added(to(a(final(concentration(of(2.5(mM(and(left(to(

equilibrate(for(5(minutes(at(room(temperature,(then(25(μL(of(protein(was(injected(

into(a(Superdex(75(PC(3.3/30(column((GE(# 17I0771I01)(equilibrated(in(TBS(and(

attached(to(a(1200(Series(HPLC((Agilent)(at(a(flow(rate(of(100(μL/min.(Cis#129/138(

was(illuminated(with(a(1W(UV(LED((emission(maximum(365(nm)(for(6(minutes(

prior(to(the(addition(of(calcium,(after(which(it(was(treated(the(same(as(trans.(Protein(

was(detected(by(monitoring(absorbance(at(280(nm.(I(observed(the(expected(

decrease(in(the(fraction(of(protein(forming(dimers(after(illumination,(indicating(that(

the(cis#129/138(homodimerization(is(weaker(than(that(of(trans#129/138.(

Representative(traces(are(shown(in(Figure(33.((

(
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(

Figure 33 – Size exclusion chromatography of cis and trans 129/138.
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