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Physical Activity and Metabolic Physiology in Postmenopausal Women: An 
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by 
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Professor Margaret J. Schoeninger, Chair 
 
 
 

 Humans diverge from our close relatives (chimpanzees/bonobos) in high 

survivorship to menopause and decades of postmenopausal longevity.  Evolutionary 

perspectives see the human postmenopausal lifespan as a species-typical life history 

trait that has evolved by selection for maintenance of physiological systems at 

increasingly older ages.  Maintenance of body composition and low rates of metabolic 

and cardiovascular disease should thus characterize the early postmenopausal 

period, which they do in hunter-gatherers despite little access to Western medicine.  
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In contrast, women in industrialized society tend to increase body fat and have high 

rates of metabolic syndrome during the early postmenopausal period; as such, the 

prevailing medical view is that menopause itself increases disease risk.  Physical 

activity relates to metabolic health, and may help explain this disparity: older hunter-

gatherers tend to be highly active, while women in industrialized society tend to be 

increasingly sedentary with age. 

 Within the framework of evolutionary medicine, the present study investigates 

the effects of physical activity on body composition and resting energy expenditure 

(REE) in postmenopausal women from San Diego.  Low REE, low fat-free mass and 

high body fat are risk factors for metabolic syndrome; exercise may increase fat-free 

mass and REE, and lower body fat.  Long-term, habitually-active women were 

compared to sedentary women who completed a 16-week training program.  In this 

sample, active women tended to have less body fat, but did not have higher fat-free 

mass or REE.  Despite strength and aerobic fitness gains, the training program failed 

to increase fat-free mass and REE. 

 Comparison of this study’s subjects to published results from highly-trained 

athletes and data on hunter-gatherers suggests that even the active women in the 

present sample were rather sedentary, consistent with the idea of an intensity 

threshold for the effects of exercise on metabolism.  Additionally, the training 

program’s lack of effect is consistent with some past studies, supporting the idea that 

the metabolic response to exercise is muted with age and sedentary behavior.  Thus, 

both the intensity and timing of exercise may be important to reducing metabolic 

disease risk, possibilities that can be evaluated by continuing to study 

postmenopausal health from the perspective of evolutionary medicine. 
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CHAPTER 1: INTRODUCTION 

Menopause marks the permanent cessation of ovulation and the complete 

elimination of fecundity, arising from the confluence of two key life history 

characteristics.  The first is semelgametogenesis, common to most female birds and 

mammals, where oocyte production occurs on a limited basis only early in life and 

results in a finite number of eggs (Finch, 1990; Peccei, 2001b; Ellison, 2010; males, 

meanwhile, are iterogametogenic, maintaining the capacity for germ cell division late 

into adult life: Bribiescas, 2006).  Limited oocyte supplies alone, however, do not 

necessarily result in menopause: the second necessary factor is a lifespan of 

sufficient length to outlast the reserve of eggs. 

In humans, oocyte production occurs during gestation, the number of egg cells 

peaking during the fifth month and declining thereafter to a population of 

approximately one million at birth.  Ovulation and apoptosis cooperate to deplete this 

store, accelerating with age (Faddy et al., 1992; Hansen et al., 2008) and eventually 

reaching a threshold of ~1000 surviving ova.  These few remaining oocytes produce 

very little estradiol-17β, which plays an important role in stimulating uterine wall 

preparation in anticipation of implantation of the mature follicle (Clancy, 2009).  

Among other hormonal changes, this reduction in estradiol is thought to disrupt the 

endocrine pathways responsible for ovulation and thus fecundity, leading to an 

average age at menopause between ~45-55 years across human populations 

(O’Connor et al., 1998; Thomas et al., 2001; Greenspan and Gardner, 2004; Johnson 

et al., 2004; Walker and Herndon, 2008).  Meanwhile, the human maximum lifespan 

of ~110 years (Finch, 1990; Ostojić et al., 2009) offers women the chance to live far 

beyond the age of menopause (Hawkes et al., 2009). 
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The existence of menopause in humans presents theoretical problems for 

evolutionary biology and practical problems for medical science.  Biologists have long 

sought to explain the seeming evolutionary contradiction of aging (e.g. Weismann 

1889; Medawar, 1952), defined not as the simple accrual of time spent living, but 

specifically as the senescence of physiological systems with age (Gavrilov and 

Gavrilova, 2006).  Why should selection allow for functional deterioration and the 

regular occurrence of intrinsic causes of mortality, rather than favoring self-

maintenance in perpetuity so long as organisms can avoid extrinsic mortality factors?  

Reproductive decline, in particular, requires explanation from the standpoint of natural 

selection (Williams, 1957), since reducing fecundative capacity to zero effectively 

curtails reproductive success and is of little apparent selective value.  Why a large 

proportion of humans experience the total loss of reproductive function well before 

the failure of somatic (i.e. non-reproductive) systems remains an open question in the 

evolutionary study of aging. 

 In addition to evolutionary issues, and perhaps more immediately relevant to 

most women, menopause and the postmenopausal lifespan also present significant 

biomedical challenges.  While preservation of somatic physiological integrity often 

extends beyond the termination of procreative function, hormonal shifts associated 

with the change in reproductive status may have wide-ranging, deleterious effects on 

health (Oh et al., 2002; Carr, 2003; Gaspard, 2009).  In the United States and other 

industrialized and industrializing societies, where an increasing proportion of 

individuals survive well past the age of menopause (Arias, 2010) and populations are 

skewed toward an older overall average age (Kinsella and Phillips, 2005), enhanced 

disease risk during the postmenopausal period presents a major public health 
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dilemma (Mehrotra et al., 2003).  On an individual level, quality of life issues and the 

ability to lead a comfortable life in older age are also socially important (Laditka and 

Laditka, 2002; Rappange et al., 2010).  Critical to dealing with these issues is the 

development of effective preventive strategies, rather than relying on diagnosis and 

treatment of already acquired diseases, since the former can reduce the costs of 

medical care, and just as importantly can avert pain and suffering (Goetzel, 2009; 

Rappange et al., 2010). 

What follows is an attempt to merge the evolutionary and biomedical 

perspectives on menopause, and to use a comparative and evolutionary framework 

to inform the study of the postmenopausal lifespan and its medical implications.  The 

range of potentially relevant questions in this field is broad, but the subsequent 

discussion focuses on an investigation of the specific relationship of exercise and 

metabolic function in postmenopausal women.  Menopause-associated changes in 

metabolism, body composition, and the musculoskeletal response to exercise, are 

thought to underlie risk for the development of metabolic and cardiovascular disease.  

Extrapolating from evolutionary hypotheses for the origin of the postmenopausal 

lifespan, this study compares the effects of long-term and short-term exercise on the 

maintenance of resting energy expenditure (REE) and body composition in 

postmenopausal women.  The study tests the hypothesis that high levels of exercise 

promote the maintenance of basic metabolic function, even in the face of hormonal 

changes associated with menopause. 

Though this study addresses only a very small corner of the vast universe of 

issues in the study of human menopause, its underlying framework, evolutionary 

medicine, is broadly applicable to studies in gerontology and reproductive biology.  
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Evolutionary medicine follows from the principle that modern human health and 

disease are products of the evolutionary forces that have shaped modern human 

biology and variation.  Hypotheses for the evolution of human physiology and life 

history offer testable predictions that, upon investigation, can provide a better 

understanding of the health implications of interactions between genes, environment 

and behavior, and may lead to better preventive solutions for disease (Eaton et al., 

2002).  Although the application of evolutionary principles to medical problems is not 

novel (e.g. Williams and Nesse, 1991; Nesse and Williams 1994), the relatively short 

formal history of this approach means that little such work deals with menopause (e.g. 

Sievert, 2006; Trevathan, 2007; Trevathan et al., 2008). 

The present study thus represents an expansion of the manner in which 

postmenopausal physiology, health, and disease are understood, and pertains to the 

following overarching question: have decreased mortality and increased sedentism in 

industrialized society combined to produce a situation where a large proportion of 

women live past menopause, but frequently at great health risk due to deviation from 

our evolutionary trajectory in the form of too little exercise?  Given that many aspects 

of human physiology and life history evolved under a foraging subsistence regime, 

where obtaining food required high levels of physical activity, the present research 

examines the role of regular exercise in shaping the maintenance of metabolic 

physiological function during the postmenopausal life history period.  The narrow 

research project that forms the main focus of this discussion is detailed below.  

Before that, however, the project’s theoretical framework requires the placement of 

human menopause in its comparative biological and evolutionary contexts. 
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CHAPTER 2: COMPARATIVE AND EVOLUTIONARY CONTEXT OF THE HUMAN 

POSTMENOPAUSAL LIFESPAN 

 Any semelgametogenic female can theoretically experience menopause and 

the loss of fecundity if she lives long enough to outlast her supply of oocytes.  It 

should come as no surprise, then, that humans are not unique among mammals in 

the fact of menopause: documented cases of post-reproductive survival exist in a 

wide array of captive and wild mammalian species (Cohen, 2004).  With the exception 

of perhaps a handful of matrilineal toothed whale species (Kasuya and Marsh, 1984; 

Marsh and Kasuya, 1984; Marsh and Kasuya, 1986; Olesiuk et al., 1990; Bloch et al., 

1993; Martin and Rothery, 1993; McAuliffe and Whitehead, 2005; Foote, 2008), 

however, the majority of mammals, including nonhuman primates, exhibit very low 

rates of female survival to reproductive cessation, with extremely limited post-

reproductive longevity (Caro et al., 1995; Packer et al., 1998; Pavelka and Fedigan, 

1999; Bronikowski et al., 2002; Bellino and Wise, 2003; Cohen, 2004; Fedigan and 

Pavelka, 2006).  Humans, therefore, stand alone among mammals in the sizable 

proportion of females that reach menopause, and the considerable length of time by 

which they live past it. 

The uniqueness of the human pattern is especially evident in comparison to 

the panins (common chimpanzees, Pan troglodytes, and bonobos, P. paniscus), the 

taxon with which we share our most recent common ancestor (Goodman et al., 1998).  

Examination of the physiological basis for menopause in humans and panins 

suggests that we share a common, possibly ancestral timing of reproductive decline 

and menopause.  On the other hand, comparative data indicate that humans, or at 

the very least extant human populations, exhibit what is likely a derived pattern of 
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postmenopausal survivorship and longevity.  As such, human life past menopause 

may be an evolved, species-typical life history stage, achieved via extension of 

somatic maintenance beyond the termination of reproductive function.  As there is a 

vast literature on the biology of aging (e.g. Medvedev, 1990; Gavrilov and Gavrilova, 

2006), what follows is a condensed summary of the relevant evidence and 

hypotheses, providing a general evolutionary framework for the biomedical study of 

postmenopausal physiology. 

 

The Timing of Menopause in Humans and Panins 

In humans, the age at menopause is often defined as 12-months past the last 

menses, and is most frequently assessed through recall questionnaires.  Although the 

recall method has some potential for inaccuracy (see Sievert, 2005), it has 

nonetheless allowed researchers to conduct large-scale studies of the age at 

menopause in widely dispersed contemporary populations.  The data from these 

different societies are remarkably consistent, with population-average ages at 

menopause falling largely within the narrow age range of 47-53 years (see Figure 2.1, 

and see Table A.1 for data and sources).  The amount of variation within populations, 

however, greatly exceeds the between-population range, with individual ages at 

menopause occurring anywhere between 40-60 years old (Treloar, 1981; te Velde 

and Pearson, 2002).  Understanding the mechanisms underlying this variability is 

important for interpreting patterns of postmenopausal survival and longevity among 

humans, as well as for comparison with panins (see below), but the causes of 

variation in menopausal age remain largely unknown.  
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Figure 2.1: Distribution of population-average ages at menopause 

 

 

The genetic basis for menopause, for example, is incompletely understood 

(Voorhuis et al., 2010), despite extensive research on the genetics of aging more 

generally (e.g. Finch, 1990; Finch and Kirkwood, 2000).  Heritability estimates for age 

at menopause range from ~30-85% (Torgerson et al., 1997a,b; Snieder et al., 1998; 

Peccei, 1999; de Bruin et al., 2001; van Asselt et al., 2004; Murabito et al., 2005), 

demonstrating that genes play some role in the onset of reproductive cessation, but 

providing little clarity on the relative contributions of genes vs. environmental effects, 

or the manner in which gene/environment interactions affect the timing of menopause 

(Vitzthum, 2003; Voorhuis et al., 2010).  Linkage analysis, candidate gene 

association, and genome-wide association studies have only recently begun to 

identify a few of the many genes probably influencing the age at menopause 

(Voorhuis et al., 2010). 

Notes: Number of populations (total N=53) with average (mean and median) ages at 
natural menopause within each age range.  See Table A.1 for data and sources. 
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The importance of behavioral, environmental, and developmental factors are 

only somewhat better-known than the effects of genes.  Cigarette smoking, for 

example, associates with an earlier age at menopause (see Zenzes, 2000; Mishra et 

al., 2010).  Conversely, a later onset of menopause tends to occur in women who 

experience fewer lifetime menstrual cycles, either through higher fertility or longer or 

more irregular cycling patterns (Soberon et al, 1966; Kaufert et al., 1987; Stanford et 

al., 1987; Whelan et al., 1990; Dahlgren et al., 1992; Torgerson et al., 1994; Cramer 

et al., 1995; van Noord et al., 1997).  Less well-understood are socioeconomic and 

nutritional effects.  Although several studies report correlations between age at 

menopause and socioeconomic indicators in adulthood (e.g. education, income) and 

during development (e.g. birth weight, post-natal growth rates), the aggregate results 

fail to point to consistent relationships, likely due to an abundance of uncontrolled 

confounders (Flint, 1974; Beall, 1983; Walker et al., 1984; Kaufert et al., 1987; 

Weinberg et al., 1989; Okofonua et al., 1990; Torgerson et al., 1994; Garrido-Latorre 

et al., 1996; Cresswell et al., 1997; Gonzalez et al., 1997; van Noord et al., 1997; 

Chim et al., 2002; Hardy and Kuh, 2002, 2005; Reynolds and Obermeyer, 2003; Ku 

et al., 2004; Mohammad et al., 2004; Castelo-Branco et al., 2005; Kriplani and 

Banerjee, 2005; Mishra et al., 2007; Tom et al., 2010; Sloboda et al., 2011). 

Achieving a better understanding of the variables involved in determining the 

timing of menopause clearly requires much additional research, but gaining such an 

understanding is critical to resolving a disjunction between the medical and 

evolutionary views of variation in the age at menopause.  While medicine tends to 

pathologize deviation from norms in the age at menopause (Meyer, 2001), the 

evolutionary perspective instead views such variation as potentially adaptive (e.g. 



9 

 

Gluckman and Beedle, 2007; Ellison, 2010).  If variation in the age at menopause 

correlates consistently with variation in environmental conditions or other life history 

traits, it may mean that the timing of menopause depends to some extent upon 

individual life experiences.  This fits with the “predictive adaptive response” concept 

(e.g. Gluckman et al., 2005; Gluckman and Beedle, 2007), which suggests that 

intraspecific variation in life history traits reflects an evolved flexibility that tailors 

individual phenotypic expression in response to environmental cues.  Expression of 

life history traits is thus geared towards population-specific maximization of individual 

lifetime fertility in the face of a varying, yet predictable environment.  Since this 

concept has proven effective in explaining variation in other human reproductive 

characteristics (e.g. Vitzthum, 2008, 2009), it is likely also applicable to menopause.  

In this vein, Ellison (2010:16) suggests that:  

 

…although the biology of reproductive aging may be common to all 
human populations, the reality of reproductive aging may differ 
between individuals and populations depending on the ecological 
conditions under which they live. Phenotypic heterogeneity in gonadal 
function is associated with ecological conditions for adaptive reasons, 
and because environments differ, so will patterns of reproductive 
aging. 
 

 

If the age at menopause indeed varies predictably with other internal and 

external factors, this may suggest that the timing of menopause is not only important 

as the end of reproduction, but also in determining when the post-reproductive period 

begins.  This would fit with the idea that the human postmenopausal life history period 

has evolved due to its positive effects on lifetime selective fitness, as various 

hypotheses propose, and predicts that postmenopausal physiological maintenance 
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has been subject to the effects of selection.  Pursuing this line of thought has the 

potential to illuminate factors underlying postmenopausal physiological function and 

disease. 

 To understand variation in human reproductive aging from an evolutionary 

perspective, it is also crucial to investigate the reproductive biology of our closest 

living phylogenetic relatives, the panins.  In chimpanzees and bonobos, evidence for 

age-related reproductive decline, and by proxy menopause, comes from observations 

of hormone cycling patterns, sexual swellings and menstruation, examinations of 

ovarian histology and follicle counts, as well as age-specific fertility patterns.  Given 

that the combined samples of panin studies include widely dispersed populations 

living under very different conditions (e.g. captive vs. wild), there is considerable 

variation in the results.  Generally, though, the data confirm that panins share with 

humans an age at menopause between 40-60 years old (Walker and Herndon, 2008), 

with limited potential for postmenopausal survival (Videan et al., 2006; Atsalis and 

Videan 2009a,b; Herndon and Lacreuse, 2009). 

The bulk of information comes from research on captive common 

chimpanzees, with a small sample of captive bonobos also having been studied 

(Gould et al., 1981; Jurke et al., 2000): both species exhibit similar reductions in 

fecundity and fertility with age.  The regularity and frequency of menstrual cycles and 

the duration of maximal tumescence of sexual swellings all decline gradually with age 

from peaks during the third decade of life (Graham, 1979; Gould et al., 1981; Jurke et 

al., 2000; Videan et al., 2006; Lacreuse et al., 2008).  During the mid-30s to age 50, 

reproductive hormone profiles in both panin species begin to resemble those of peri-

menopausal humans (Gould et al., 1981; Jurke et al., 2000; Videan et al., 2006), and 
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ovarian histopathology in aged panins is consistent with the human ovary after 

menopause (Gould et al., 1981; Videan et al., 2008).  Although different chimpanzee 

populations vary in terms of cycling characteristics and their age-related changes 

(similar to humans: see den Tonkelaar et al., 1998; Vitzthum, 2009), across 

populations both menstrual cycling and swellings cease by the late-40s to mid-50s 

(Videan et al., 2006; Lacreuse et al., 2008).  

Although the age-related deline in cycling among panins appears more 

gradual and drawn out than the average human pattern (te Velde and Pearson, 

2002), the rate of ovarian follicle depletion from birth to age 45 is nearly identical in 

humans and chimpanzees (Jones et al., 2007).  Assuming both species share the 

same “dose-response” threshold of oocytes required for the stimulation of ovulation, 

this finding suggests a common menopausal age.  Jones et al. (2007) also found a 

constant acceleration of follicle loss in both species, which along with other studies 

(Leidy et al., 1998; Hansen et al., 2008) contradicts the proposal that the more rapid 

decline in cycling frequency and regularity in humans is the result of a foreshortening 

of reproduction relative to the ancestral condition (e.g. Faddy et al., 1992; Cant and 

Johnstone, 2008).  Instead, the weight of the evidence supports the position that, 

generally, the human and panin age at menopause probably represents a shared, 

ancestral trait. 

Consistent with a common end to ovulation, panin fertility likewise drops off at 

roughly the same age as in humans.  Despite individual potential for childbearing into 

the late 40s (Puschmann and Federer (2008), captive chimpanzees on average 

experience a substantial decrease in fertility past age 35 (Graham, 1979) with a 

corresponding increase in the proportion of pregnancies that terminate in stillbirth or 
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spontaneous abortion (Roof et al., 2005; Atsalis and Videan, 2009b).  In wild 

chimpanzees, fertility drops precipitously after age 40-44, though a small fraction of 

females continue to reproduce into the 50-55-year age range (Emery Thompson et 

al., 2007).  Akin to cycling and swelling frequencies, there appear to be population-

level differences in fertility termination (Boesch and Boesch-Achermann, 2000; 

Emery-Thompson et al., 2007), and it is possible that these differences coincide with 

variation in ecological factors.  As in humans, however, these relationships remain 

largely undetermined (Atsalis and Videan, 2009a,b; Herndon and Lacreuse, 2009). 

 

Postmenopausal Survival and Longevity 

In theory, the common age at menopause offers humans and panins similar 

opportunities for postmenopausal survival, provided similar age-specific mortality 

profiles.  In reality, women survive to menopause at much higher rates and live 

beyond it for much longer on average than do panins.  The conditions of 

postmenopausal survival and longevity in humans suggest that this pattern is not a 

byproduct of recent technological developments, but has instead evolved via an 

extension of somatic maintenance.  In this view, a long, healthy postmenopausal 

lifespan is a species-typical life history trait in humans, and forms an integral part of 

the overall physiological adaptive suite of menopause. 

Although previous researchers (Washburn, 1981; Weiss, 1981; Wood, 1994) 

have proposed that the postmenopausal lifespan is largely an epiphenomenon of 

recent secular changes, a great deal of evidence suggests otherwise.  During the first 

half of the 20th century, for example, some populations experienced small secular 

changes in the age of menopause of ~1.5-2.5 years (Rödström et al., 2003; Nichols 
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et al., 2006; Danubio and Sanna, 2008; but see Pavelka and Fedigan, 1991), but in 

the direction of a later menopause.  Without a concurrent decrease in adult age-

specific mortality rates, this would tend to reduce survivorship to menopause and 

shorten the postmenopausal lifespan, and thus cannot explain the human pattern of 

postmenopausal survival and longevity. 

Industrialized society has certainly seen decreased age-specific mortality and 

increased survivorship in the recent past, undoubtedly raising the proportion of 

females living to menopause.  Life expectancy (Figure 2.2) and survivorship (Figure 

2.3) data for United States females from 1850-2000 show a dramatic increase in 

average life expectancy at birth and in survivorship from birth to age 45 (a proxy for 

menopausal age), driven mainly by reduced infant mortality (Gray, 1976).  Meanwhile, 

adult mortality decreased more modestly over the same period, as reflected in 

conditional survival from age 15 to age 45 (the proportion of women surviving to 

sexual maturity that also reach menopause) and in life expectancy at age 45.  

Particularly noteworthy is that in 1850, prior to major improvements in sanitation and 

medical practice (Cutler and Miller, 2005), ~70% of 15 year olds could expect to live 

to menopause plus an average of another ~25 years.  Thus, any secular trend in 

postmenopausal survival during the 20th century appears to be simply an expansion 

of what was already a quite common life history experience, even under the 

conditions of life in 1850. 
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Figure 2.2: Life expectancy in the United States, 1850-2000 

 

 

While the 19th century United States offers an example of postmenopausal 

survivorship prior to the secular changes of the 20th century, a better test comes from 

data on extant hunter-gatherer groups.  Despite immense diversity (Kelly, 1995), 

hunter-gatherer societies share general characteristics that make them good models 

for mortality and survivorship in non-industrial, non-agricultural people.  Hunter-

gatherers obtain the bulk of their food from seasonally fluctuating wild plant and 

animal supplies, practice natural fertility, and lack reliable access to developments 

that have increased life expectancy in industrialized societies (Wood, 1994; Panter-

Brick, 2001; Blurton Jones et al., 2002; Gurven and Kaplan, 2007).  Unsurprisingly, a 

compilation of demographic data on five hunter-gatherer groups (Gurven and Kaplan, 

Notes: L.E. = Life expectancy, or average years of life remaining at the age in question.  
Life table data for 1850-1890: Haines (1994); for 1900-2000: Bell and Miller (2005). 
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2007; sexes combined, N=2728) shows a pattern of survivorship and life expectancy 

quite different from the contemporary United States (see Table 2.1 and Figure 2.4).  

Strikingly, however, the hunter-gatherers resemble the pre-industrial United States in 

that roughly two-thirds of individuals that reach age 15 also live to age 45, and 

survive thereafter for an average of another two decades. 

 

 

Figure 2.3: Survivorship in the United States, 1850-2000 

 
Notes: Survivorship from birth to age 15 years (solid gray line) and birth to age 45 years 
(dashed gray line); conditional survivorship from 15-45 years (black line: rate at which 
individuals who survived to age 15 also survived to age 45).  Life table data for 1850-
1890: Haines (1994); for 1900-2000: Bell and Miller (2005). 
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Figure 2.4: Survivorship in the United States, hunter-gatherers and panins 

 

 

 

Also included in Table 2.1 and Figure 2.4 are data on chimpanzee mortality 

and survivorship (compiled in Gurven and Kaplan, 2007; sexes combined), 

demonstrating the considerable gap between humans and even captive chimpanzees 

in the rate and length of postmenopausal survival.  Reductions in extrinsic mortality 

risk provide captive chimpanzees with survival benefits over their wild counterparts, 

particularly to age 15, but captive chimpanzees do not survive to menopausal age at 

anywhere near the rates of people in hunter-gatherer societies or the pre-industrial 

United States.  In the wild, on average only 5% of female chimpanzees survive from 

birth to age 45-50 (Hill et al., 2001; Emery Thompson et al., 2007).  Even among 

Notes: Survivorship from birth to age 15 years (black bars: l15) and birth to age 45 years 
(dark gray bars: l45); conditional survivorship from 15-45 years (light gray bars: (l45)/(l15)); 
and PM/LS ratio=average postmenopausal lifespan (PM) as a percentage of average 
total lifespan (LS) upon reaching 45 years old, calculated as e45/(e45+45).  See Table 2.1 
notes for sources. 
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those living to sexual maturity, less than 10% survive to age 45, and those that do 

reach 45 have at that point completed on average 90% of their total lifespan (Gurven 

and Kaplan, 2007).  There is considerable variation between sites (Hill et al., 2001; 

Emery Thompson et al., 2007), however, and anecdotal evidence suggests the 

survival of two wild females for at least 10 years past menopause at Ngogo, in 

Uganda (Monica Wakefield, personal communication, April 4, 2011), demonstrating 

the capacity for substantial post-reproductive life in individual wild chimpanzees.  

Nevertheless, the paired rates of fertility decline and adult mortality in wild and 

captive chimps suggest that on average, menopause occurs in a very small 

proportion of all females born, and then only very late in life (Lacreuse et al., 2008; 

Herndon and Lacreuse, 2009). 

 

Postmenopausal Longevity and the Extension of Somatic Maintenance 

 Taken together, the data on age-specific patterns of ovulation, fertility, and 

mortality suggest that while humans and panins share a common timing of 

menopause, the regular appearance of a long postmenopausal lifespan is unique to 

humans.  In terms of physiological systems, the lifespan of the reproductive 

apparatus is common to both humans and panins, while somatic systems appear to 

be maintained for much longer in the former than in the latter.  In other words, when it 

comes to somatic physiological maintenance, panins age faster than humans.  The 

fact that even captive chimpanzees rarely achieve postmenopausal status and then 

survive only briefly underscores this point, suggesting that despite minimal extrinsic 

mortality risk in captivity, adult chimpanzees succumb to intrinsic causes of death at 

higher age-specific rates than do humans (Hill et al., 2001).  While adult mortality 
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increases at roughly the same exponential rate in both chimpanzees and hunter-

gatherers, the onset of this rise in intrinsic mortality begins ≥10 years earlier in 

chimpanzees (Gurven and Kaplan, 2007). 

The fact that humans and panins differ for somatic longevity is quite clear, but 

the physiological mechanisms responsible for maintaining that difference, as well as 

why we diverged in the first place, are less well-known.  There is only limited direct 

evidence, for example, that chimpanzees experience a higher incidence of specific 

pathologies at younger ages than humans generally do (Finch and Stanford, 2004; 

Finch, 2010).  Wild chimpanzees show signs of somatic aging beginning in their mid-

30s, but these outward signs of deterioration are not always correlated with 

incapacitation (see Tarou et al., 2002; Finch and Stanford, 2004). 

Some physiological correlates of lifespan and somatic maintenance provide 

potential inroads for comparing the processes of somatic aging in humans and 

panins, but as yet the relevant data are quite preliminary.  One potential area of 

differentiation is in limiting the oxidative damage done to tissues by the free radical 

byproducts of oxidative phosphorylation, one of the major causes of aging (Harman, 

1956; Matsuo et al., 1993; Sohal and Orr, 1995; Sohal and Weindruch, 1996).  Such 

damage may be prevented by lower production of free radicals via decreased 

metabolic rate (e.g. Loft et al., 1995; but see Ku and Sohal, 1993; Barja et al., 1994), 

or by the activity of anti-oxidant free radical scavengers (Sohal et al., 1990, 1993, 

1994, 1995; Ku et al., 1993).  Humans do have lower mass-specific basal metabolic 

rate than chimpanzees, even after accounting for allometry (Froehle and 

Schoeninger, 2006), but direct comparisons of free radical production do not exist.  

Primates in general have high levels of the anti-oxidant uric acid (relative to other 
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mammals), but humans and apes share a mutation that elevates uric acid levels 

above even the primate norm (Ames, 1981; Wu et al., 1992; Friedman et al., 1995; 

Oda et al., 2002).  This fits with apes having the longest lifespans among primates 

even after controlling for body and brain size (Harvey and Clutton-Brock, 1985; Judge 

and Carey, 2000).  Humans and great apes also share genes for superoxide 

dismutase anti-oxidants (Fukuhara et al., 2002), the activity of which correlates 

positively with lifespan across primates, with humans exhibiting the highest relative 

values (Tolmasoff et al., 1980). 

Telomeres protect coding regions of chromosomes during mitotic replication, 

and shorten with repeated mitotic events until they are of insufficient length to 

effectively protect DNA (Demerath et al., 2004; Eisenberg, 2011).  Thus, telomere 

length, and the activity of telomerase reverse transcriptase which lengthens 

telomeres, may provide information about the lifespan of cell lines and species-

specific rates of aging (Nakamura et al., 1997; Demerath et al., 2004; Campisi, 2001, 

2005).  Telomere length appears to be largely conserved in the human/great ape 

clade (Henderson, 1995; Steinert et al., 2002; Davis and Kipling, 2005).  Though an 

earlier study suggested that humans had especially short telomeres compared to 

other apes (Kakuo et al., 1999), the validity of that particular comparison has been 

questioned (Gagneux and Varki, 2001).  A caveat of such studies is that telomere 

length and lifespan are not necessarily correlated across species, as demonstrated 

by the relatively long telomeres of short-lived rodents in comparison to much longer 

life but shorter telomeres in humans (Campisi, 2001).  Data on telomerase activity in 

ape somatic cells are non-existent (Davis and Kipling, 2005), but humans and 
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Japanese macaques (Macaca fuscata) exhibit similar tissue-specific patterns of 

telomerase activity (Gardner et al., 2007). 

 Finally, the accumulation of errors in DNA translation, transcription and 

macromolecular synthesis, and reduced energy allocation to maintenance with age 

also lead to physiological senescence (the “error catastrophe”, or “disposable soma” 

theories: Orgel, 1963, 1970; Harrison and Holliday, 1967; Lewis and Holliday, 1970; 

Holliday and Tarrant, 1972; Kirkwood 1977, 1980; Kirkwood and Holliday, 1979; 

Martinez, 1996).  In primates very little research addresses these issues, though the 

results are consistent with theoretical expectations.  A single study (Cortopassi and 

Wang, 1996) found that humans have a higher rate of DNA repair than does the 

shorter-lived gorilla (Gorilla gorilla ssp.).  Overall, the data point to the presence of 

physiological mechanisms for lifespan extension in humans, but not necessarily to the 

exclusion of apes.  Clearly, much work remains to be done in order to establish the 

proximate mechanisms by which the human lifespan exceeds that of our closest 

primate relatives.   

Various hypotheses also seek to explain the ultimate, evolutionary processes 

by which human postmenopausal longevity has arisen, in particular because a long 

post-reproductive life history period contradicts traditional theory on the relationship 

between natural selection, aging and lifespan (e.g. Medawar, 1952; Williams, 1957; 

Hamilton, 1966; Kirkwood, 1977, 1980; Kirkwood and Holliday, 1979; Charlesworth, 

1994).  According to evolutionary aging theory, selection favors somatic maintenance 

only as long as required to ensure the “…necessary immortality of the germline…” 

(Kirkwood and Shanley, 2010:24), the precise timing of which depends upon 

environment-specific extrinsic mortality risk and species-specific fertility rates.  At 
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ages when most members of a birth cohort have succumbed to extrinsic causes of 

mortality, those still living retain very little reproductive potential relative to the total 

fertility of the entire birth cohort; selective pressure for continued somatic 

maintenance diminishes beyond that point, and the rate of intrinsic mortality 

correspondingly rises rapidly.  From this perspective, postmenopausal women retain 

no reproductive value, and the rate of human postmenopausal survival and longevity 

is thus quite paradoxical (Hamilton, 1966).  

The human exception to these theoretical expectations may stem from 

another trait that, among primates, humans express uniquely: namely, food sharing 

(e.g. Hamilton, 1966:36. refers to “…altruistic contributions due to post-

reproductives…”).  Humans represent an extreme example of the general primate 

pattern of slow development and high offspring investment, meaning that the 

“necessarily immortal” human germline is passed on to energy-needy young that 

remain nutritionally-dependent for far longer than other primates.  Humans also 

reproduce more quickly than other primates, so that they have multiple dependent 

young simultaneously.  As such, raising human children so they can pass on the 

germline requires an immense quantity of daily calories (Gurven and Walker, 2006). 

To support this energy-intensive reproductive pattern, humans share food more often, 

in larger quantities, and across a broader range of dyadic relationships than any other 

primate (Hrdy, 2009).  In terms of the evolution of longevity, this means that by 

sharing food in support of younger relatives’ reproduction, older adults could boost 

inclusive fitness and thereby enhance their age-specific reproductive value (Kaplan et 

al., 2000; Carey and Judge, 2001).  This creates a feedback loop between selection 

for extended somatic maintenance and decreased adult morality at increasingly older 
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ages (Carey and Judge, 2001).  Recent models show that human mortality patterns in 

non-industrialized societies are consistent with lifespan extension due to the inclusive 

fitness effects of intergenerational food sharing (Lee, 2003, 2008). 

Providing for offspring plays a prominent role in hypotheses for the evolution 

of human longevity through effects on selective fitness.  Male-centered evolutionary 

hypotheses for human longevity (Kaplan et al., 2000; Marlowe, 2000; Tuljapurkar et 

al., 2007) rely on the idea that procuring and sharing high-quality food items are the 

primary route via which older men attract younger women.  This allows men to take 

advantage of their iterogametogenesis and to continue reproducing (and thus retain 

reproductive value) after female members of their own birth cohort reach menopause, 

thereby selecting for male lifespan extension. 

Specific to females, the “Mother Hypothesis” (Williams, 1957; Hamilton, 1966; 

Peccei 1995a,b, 2001a,b; 2005) and “Grandmother Hypothesis” (e.g. Hawkes et al., 

1989; 1997; 1998; O’Connell et al., 1999; Hawkes 2003; Blurton Jones et al., 2005) 

both propose that the postmenopausal lifespan evolved because it allowed women to 

boost lifetime reproductive success.  In the former, postmenopausal mothers benefit 

directly by eschewing risky new pregnancies that could jeopardize the survival of 

existing dependent offspring.  In the latter, postmenopausal women indirectly 

increase fitness by sharing food to promote grandchild production and survival.  

Various studies show data from extant populations or from mathematical models to 

be consistent with these hypotheses’ predictions (Mayer 1981, 1982; Turke, 1988; 

Sear et al., 2000, 2002; Shanley and Kirkwood, 2001; Voland and Beise, 2002; 

Sousa, 2003; Lahdenperä et al., 2004; Shanley et al., 2007; Fox et al., 2010; but see 
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Hill and Hurtado, 1991; Jamison et al., 2002; Madrigal et al., 2005; Lahdenperä et al., 

2010; Kachel et al., 2011).   

While many of the specific tenets of the male- and female-centered 

hypotheses differ, they all share one crucial argument.  In all cases, active foraging 

and food sharing in support of offspring production and viability are proposed to have 

imbued humans with the potential for reproductive value at much older ages than 

expected from theory, or from comparative data on panins.  By extension, these 

hypotheses predict that selection has favored human phenotypes that retain the 

capacity for somatic maintenance at those older ages.  As such, the human 

postmenopausal period is interpreted as an evolved, species-typical life history stage, 

as integral to the human life course as adolescence or childhood, and characterized 

by low rates of intrinsic senescence in physiological systems, at least into the seventh 

decade of life (Gurven and Kaplan, 2007). 

This life-history interpretation informs the study of menopause and the 

postmenopausal lifespan from the perspective of evolutionary medicine.  Following 

the reasoning behind the evolutionary hypotheses, we can draw inferences about 

human physiology that are relevant to understanding extant health issues.  For 

example, we might expect that the evolutionary extension of somatic maintenance 

should foster low rates of chronic and degenerative diseases, and overall good health 

during the postmenopausal life history period, at least through the sixth and into the 

seventh decades of life.  In addition, given the role of foraging in gaining later-life 

fitness benefits, we might predict a role for exercise in postmenopausal somatic 

maintenance.  As discussed below, however, these expectations are not always met 

and the discrepancies merit further study. 
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CHAPTER 3: MENOPAUSE AND MAINTENANCE OF METABOLIC PHYSIOLOGY 

 Contrary to evolutionary expectations of low mortality and high somatic 

integrity in the early postmenopausal period, mid-life for women in industrialized 

society represents a period of increasing disease risk.  This is particularly true with 

regard to the “metabolic syndrome”, the combination of obesity and insulin resistance 

that increases risk for cardiovascular disease and type 2 diabetes, although other 

aspects of postmenopausal health are no doubt important and perhaps also related to 

metabolic function (e.g. osteoporosis: Stini, 1995; Choi and Pai, 2003; cognitive 

function: Herndon, 2010).  Declining metabolic health in women across the 

postmenopausal period relates to reductions in resting energy expenditure (REE), 

changes in body composition including increased fat mass and reduced skeletal 

muscle, decreased physical activity, and lower levels of the reproductive hormone 

estradiol-17ß (Astrup, 1999; Bosy-Westphal et al., 2003; Carr, 2003; Hunter et al., 

2004; Qiao et al., 2008; Lovejoy and Sainsbury, 2009; Enns and Tiidus, 2010).  The 

association between postmenopausal life and disease is so extensive that the 

medical community often views menopause itself as a condition of hormone 

deficiency requiring treatment, rather than a natural transition between life history 

periods (Meyer, 2001).   

Given disease risk figures in the United States (from the years 2005-2008), it 

is not hard to see why this view prevails: among women aged 45-64, 40% are obese, 

41% are hypertensive, and 14% are diabetic; in women aged 20-44 these rates are, 

respectively, 33%, 8% and 4% (data source: National Health and Nutrition 

Examination Survey, obtained from National Center for Health Statistics, Health Data 

Interactive, http://www.cdc.gov/nchs/hdi.htm, accessed on February 10, 2011).  Of 
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new type 2 diabetes diagnoses in adults over age 20, 55% occur during the 45-64 

year age range, with an additional 20% coming after age 65 (Centers for Disease 

Control and Prevention, 2011).  Rather than supporting the evolutionary view, these 

numbers instead lend credence to the idea that the postmenopausal lifespan is a 

byproduct of recent reductions in adult mortality via secular means: as an “unnatural” 

extension of life, the postmenopausal period represents a state of “…uncontrolled 

degenerative loss of homeostasis…” (Austad, 1997:166). 

 In contrast to the above view, however, hunter-gatherers without access to 

medical care appear not to experience the high rate of decline in early 

postmenopausal somatic maintenance seen in industrialized populations.  

Degenerative diseases in foraging populations (as far as they can be diagnosed) are 

extremely rare, accounting for less than 3% of deaths before age 60 (in the Ache and 

!Kung: Howell, 1979; Hill and Hurtado, 1996; Gurven and Kaplan, 2007).  Although 

degenerative diseases become more common as the causes of death after age 60 

(rising to ~20% and ~40% in the aforementioned groups, respectively), obesity, 

hypertension, heart attack and stroke are extremely rare (Eaton et al., 1988; Gurven 

and Kaplan, 2007).  Anthropometric work among the Hadza hunter-gatherers 

demonstrates that average body fat percentage remains constant at about 19% in 

women from age 18-75 (Sherry and Marlowe, 2007), in stark contrast to the increase 

in body fat with age in postmenopausal women from industrialized societies 

(Heymsfield et al., 1994).  Finally, anecdotal and empirical evidence points to the 

maintenance of physical vigor in old age in foragers (Hawkes et al., 1989; Blurton 

Jones et al., 2002; Walker and Hill, 2003), including the observation that older Hadza 

women tend to work longer and perform difficult foraging tasks more frequently than 



27 

 

women of reproductive age (Hawkes et al., 1989, 1997).  These data show that the 

metabolic syndrome is rare among hunter-gatherers, likely related to an absence of 

age-related body composition change and continued physical activity.  Maintenance 

of somatic physiological systems well past menopause appears to be the hunter-

gatherer norm, with an absence of the related high mortality rates that would be 

present in industrialized society without advanced medical treatment. 

In evaluating the potential cause(s) of postmenopausal health differences 

between women living in industrialized vs. hunter-gatherer societies, it is important to 

understand the divergent conditions under which they live from a biocultural and 

evolutionary perspective.  One of the most important physiological changes with 

menopause is the reduction in levels of the steroid hormone estradiol-17β, which is 

associated with a variety of health risk factors in postmenopausal women (e.g. 

Torréns et al., 2009; Enns and Tiidus, 2010).  This “hyposteroidal” physiological 

environment is thought to cause disease by undermining the proper functioning of 

various somatic physiological systems, including those related to metabolic health 

(thus the prescription of estrogen replacement therapy).  This hypothesis, however, is 

contrary to expectations if the postmenopausal lifespan indeed represents an evolved 

life history period.  According to Austad (1997:166): “…if menopause is an adaptive 

physiological state molded by evolution…then natural selection would presumably 

have tailored postreproductive physiology to the hyposteroidal state…” [emphasis in 

the original].  In other words, if selection promoted the extension of somatic 

maintenance past menopause, then one would expect postmenopausal physiology to 

retain functional capacity despite reduced estradiol-17β levels. 
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Rather than see this necessarily as a contradiction, it is possible that factors 

other than just a reduction in steroid hormone levels affect the ability of metabolic 

systems to maintain their operations after menopause.  Given that physiological 

systems act not in isolation, but interact and affect one another, it seems reasonable 

that the physiological effects of behavior and experiences during pre-menopausal life 

could extend into the postmenopausal period.  In the same way that it is reasonable 

to suspect that selection would have molded our species’ postmenopausal physiology 

to operate under hypersteroidal conditions, it is also reasonable to predict that the 

environment (both internal and external) under which individual metabolic 

physiological systems develop and operate across the lifespan might then predispose 

those systems to function better or worse in the hyposteroidal postmenopausal 

environment.  If this is the case, we might then expect the prevailing conditions of 

hunter-gatherer life (which, in the general sense, have constituted the dominant 

environment under which human physiology has evolved) to be critically important to 

preparing metabolic physiological systems for operation in the low-estradiol milieu 

after menopause.  From this perspective, cultural variation in subsistence and 

reproduction may be particularly important: if postmenopausal physiology initially 

evolved in foraging populations, then major deviations from that range of conditions 

across the lifespan may have important consequences for the proper maintenance of 

physiological systems after menopause.  

The experience of women in industrialized countries differs in a variety of 

ways from women’s lives in modern hunter-gatherer societies, and many of these 

same differences likely distinguish industrialized life from conditions during the 

evolution of the postmenopausal life history period.  For one, Hawkes (2010) has 
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suggested that decreased infant and childhood mortality may remove a filter (e.g. 

Forbes, 1997) and promote higher adult disease risk, if phenotypes prone to pre-adult 

mortality without public health improvements may also be prone to chronic disease 

(Hawkes, 2010).  Second, reproductive history also diverges between women in 

contraceptive-using, low-fertility industrialized populations, vs. women practicing 

natural fertility.  In the latter, higher birthrates, longer nursing and more frequent 

lactational amenorrhea (Wood, 1994) mean fewer lifetime ovulatory cycles and lower 

exposure to estrogens, possibly related to decreased risk for reproductive cancers 

(Henderson et al., 1985; Eaton et al., 1994; Bernstein, 2002; Yang and Jacobsen, 

2008).  The same factors, given their relationship to estradiol-17β levels, could also 

relate to metabolic function in the low-estrogen, postmenopausal physiological 

environment (Xue and Michels, 2007).  Third, diets in industrialized societies, too, 

differ greatly from the seasonally variable wild plants and animals that constitute 

hunter-gatherer diets, and disparities in fat content and composition, fiber, and simple 

carbohydrates are likely related to higher risk for atherosclerosis, obesity, and insulin 

resistance in industrialized populations (Eaton and Konner, 1985; Eaton et al., 1997; 

Cordain et al., 2000, 2002; Konner and Eaton, 2010).  

The present study focuses on a fourth factor, the substantial difference in 

physical activity between hunter-gatherer women, who engage in regular, vigorous 

physical activity to obtain food, and the more sedentary women of industrialized 

societies (Hayes et al., 2005).  Previous work in evolutionary medicine has addressed 

the topic of low exercise levels in a general sense (Cordain et al., 1997; Eaton and 

Eaton, 2003; Chakravarthy and Booth, 2004), but it is important to also consider the 

particular relationship between exercise and menopause.  Menopausal hormonal 
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shifts, for example, put women at additional risk (vs. men) for the changes in body 

composition and metabolic physiology that signal risk for developing metabolic and 

cardiovascular diseases (Major et al., 2005; Torréns et al., 2009).  It is established 

that exercise has considerable potential to prevent or possibly reverse these trends, 

but the manner in which physical activity manifests improvements in metabolic health 

and the importance of the timing of exercise relative to menopause are less well-

understood.  While the current medical paradigm surrounding menopause focuses on 

exercise as a treatment for age- and hormone-related diseases after they have 

already developed, prevention strategies remain remarkably understudied (Teede et 

al., 2010).  The evolutionary approach to exercise and its effects on postmenopausal 

physiology has especially high potential for generating preventive methods against 

the development of metabolic syndrome.   

There are several reasons to investigate preventive aspects of physical 

activity, most notably the determination that exercise interventions to treat metabolic 

and musculoskeletal deterioration after menopause are not universally effective 

(Asikainen et al., 2004).  In fact, it appears that several aspects of skeletal muscle’s 

metabolic response to exercise may be lost in older people who have become more 

sedentary with age, but not in people who have maintained higher levels of exercise 

as they grow older (parameters such as vascularization: Harris, 2005; and the growth 

hormone/insulin-like growth factor-I axis: Grounds, 2002).  These observations form 

part of the rationale for the previous suggestion (above) that the physiological 

conditions of pre-menopausal life may shape the manner in which metabolic 

physiology responds to the hyposteroidal postmenopausal environment.  There may 

be a critical period prior to, or coinciding with, the menopausal hormonal shift, during 
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which metabolic and musculoskeletal deterioration can be prevented, and after which 

such capacity may be lost or decreased (Appt and Ethun, 2010).  Thus, the 

evolutionary perspective can play an important role in expanding the manner in which 

postmenopausal exercise and disease are understood and approached clinically. 

 To evaluate the effects of physical activity on postmenopausal metabolic 

physiological function, the present study examines the relationship between age, 

exercise and resting energy expenditure (REE; also known as basal metabolic rate, 

or BMR) in postmenopausal women.  Measurement of REE proceeds under 

standardized laboratory conditions: subjects must be awake but restful, 10-12 hours 

post-absorptive (i.e. fasting) and under thermoneutral conditions (Boothby and 

Sandiford 1929; Benedict 1938; Ulijaszek 1992; McNab 1997; Hulbert and Else, 

2004).  As such, REE represents the energy cost of fundamental physiological 

processes and tissue turnover, accounting for ~70% of daily energy expenditure 

(depending on physical activity level), and is an indicator of basic metabolic function.  

Older people tend to have lower REE, partly as a function of changes in body 

composition (Keys et al., 1973; Fukagawa et al., 1990; Poehlman et al., 1991; 

Poehlman, 1992; Heymsfield et al., 1995; Pannenmans and Westerterp, 1995; 

Roberts, 1995; Visser et al., 1995; Klausen et al., 1997; Piers et al., 1998; Henry, 

2000; Hunter et al., 2001; Puggaard et al., 2002; Bosy-Westphal et al., 2003; 

Rothenberg et al., 2003; Krems et al., 2005; Alfonzo-González et al., 2006; Roberts 

and Rosenberg, 2006).  Additionally in women, menopausal reductions in estrogen 

levels exacerbate the effects of age on REE (Carr, 2003; Lovejoy and Sainsbury, 

2009).  Low REE correlates with risk for weight gain and obesity, which in turn 

increase risk for type-2 diabetes and cardiovascular disease (Must et al. 1999).  
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 Counter to the effects of age, physical activity may affect metabolic rate such 

that more active people tend to have higher REE.  While results are mixed (e.g. 

Westerterp, 1998), the positive correlation between exercise and REE in younger 

adults is relatively well-established, explained largely by higher fat-free mass in the 

form of skeletal muscle with increased exercise (Poehlman, 1989; Stiegler and 

Cunliffe, 2006; Catenacci and Wyatt, 2007).  Reductions in fat-free mass and skeletal 

muscle mass over time may account for the age-related decrease in REE (Bosy-

Westphal et al., 2003) and are tied closely to increasingly sedentary behavior and 

estrogen reductions (Astrup, 1999; Hunter et al., 2004; Enns and Tiidus, 2010). 

Reduced physical activity with age may thus link low REE and low hormone 

levels to increased postmenopausal weight gain and risk for obesity-related diseases, 

but the effects of exercise on REE in healthy postmenopausal women are surprisingly 

understudied (Starling, 2001).  This is especially important since the relationship 

between exercise, body composition and REE may differ between people older and 

younger than the age of ~50 years (Speakman and Westerterp, 2010) and in relation 

to menopause (Dionne et al., 2004).  Given the low levels of activity in industrialized 

populations (Hayes et al., 2005; but see Westerterp and Speakman, 2008), it is not 

surprising that most studies of the effects of exercise on REE in postmenopausal 

women have consisted of exercise interventions in formerly sedentary individuals. 

Intervention studies have employed disparate methods and study designs, 

and thus have produced variable results.  Two studies found that six months of 

endurance or combined endurance and resistance exercise resulted in fat loss and 

increased aerobic fitness (Santa-Clara et al., 2006) or strength (Thompson et al., 

1997).  These training regimes failed to change fat-free mass, however, and both 
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studies actually found significant decreases in REE over time with exercise (Santa-

Clara et al., 2006), or with exercise and diet (Thompson et al., 1997).  Another six-

month investigation (Dionne et al., 2004) compared the effects of resistance training 

in pre- and postmenopausal women, showing that the younger women adapted to 

exercise by increasing muscular strength, fat-free mass and REE.  Postmenopausal 

women, meanwhile, lost fat with training and made gains in strength and fat-free 

mass similar to the younger women, but did not experience a change in REE.  Fat-

free mass did not differ between younger and older women at baseline, but REE did 

(1379 vs. 1263 kcal/d, respectively), more so after training (1451 vs. 1247 kcal/d). 

Shorter training interventions have had more mixed results.  Ryan et al. 

(1995), in a 16-week study, compared resistance training alone to resistance training 

paired with a weight-loss diet in postmenopausal women.  Within groups, neither fat-

free mass nor REE increased significantly with training, here again despite gains in 

muscular strength.  When the groups were pooled, however, modest increases in fat-

free mass of ~1 kg and in REE of about 50 kcal/d, or 104% of baseline REE, became 

significant.  In contrast, a 15-week resistance training program with high- and low-

intensity exercise variants and a non-exercise control group found no changes in 

REE or body composition with training, aside from a 1 kg decrease in fat mass among 

the low-intensity sample (Taaffe et al., 1995).  Three-quarters of that study’s subjects 

continued in the training program for a full year, but despite the length of their 

participation, failed to change body composition or REE significantly.  As with other 

studies, the subjects gained muscular strength, and interestingly, the high-intensity 

training group showed a significant regional increase in upper limb fat-free mass.  

This did not, however, affect whole body fat-free mass or REE (Taaffe et al. (1995).  
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 Finally, two training interventions studied postmenopausal women alongside 

older men and reported results only for the pooled samples—thus it is unknown 

whether the results reflect men’s and women’s responses to exercise equally.  One of 

these studies consisted of a 26-week resistance training program, resulting in 

significant increases in fat-free mass and reductions in fat mass and body fat 

percentage, and a significant increase in REE from 1287 to 1374 kcal/d (Hunter et al., 

2000).  The second combined male/female study consisted of a 14-week bicycle 

training program, finding increases in fat-free mass and aerobic fitness, reduced fat 

mass and body fat percentage, but no change in REE (Morio et al., 1998).   

 Only one study has investigated the relationship of sustained, habitually high 

levels of activity to the maintenance of REE in postmenopausal women.  Van Pelt et 

al. (1997) compared REE in pre- and postmenopausal runners and swimmers that 

were highly trained (competition times 127 ± 2% of age-specific world records) and 

made a simultaneous comparison between sedentary pre- and postmenopausal 

women.  They found that after adjusting for differences in fat-free mass, 

postmenopausal sedentary women had significantly lower REE than premenopausal 

sedentary women (1248 vs. 1368 kcal/d, respectively), but that the premenopausal 

and postmenopausal athletes did not differ (1368 vs. 1416 kcal/d).  Though Van Pelt 

et al. (1997) did not make a statistical comparison, the postmenopausal athletes’ REE 

was 120 kcal/d, or 10% higher than in their sedentary, age-matched counterparts. 

 The results of Van Pelt et al. (1997) are compelling and call for attempts at 

replication, though none currently exist.  Thus, the need for additional data merits 

further study of the effects of regular exercise on postmenopausal REE.  In addition, 

the sample of Van Pelt et al. (1997) is relative narrowly constrained in terms of activity 
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level, since all of the active subjects were highly trained athletes.  It may be useful to 

determine whether more moderate levels of exercise have the same effects on REE, 

both in terms of the practicality of clinical exercise prescription and for comparison to 

the activity levels of hunter-gatherer women, which vary under different ecological 

conditions (Panter-Brick, 2002).  Finally, it is important to compare the influence of 

long-term habitual activity directly to the effects of short-term training interventions, in 

order to evaluate their relative potential benefits for metabolic health, and the 

importance of the timing of exercise in the interest of lowering disease risk.  While the 

magnitude of the habitual-activity effect on REE (10% higher) from Van Pelt et al. 

(1997) falls within the range of effects of training in some of the intervention studies 

(7-10% higher), this comparison needs to be made formally within a single study. 

 The present study examines the relationship between age, body composition, 

aerobic fitness, physical activity level, and REE in a sample of postmenopausal 

women recruited from the San Diego, CA area.  The main study design compares 

women with long-term habits of regular exercise to women who were sedentary upon 

recruitment and then completed a 16-week program of aerobic and resistance 

training.  The data at baseline are also analyzed cross-sectionally across all physical 

activity levels ranging from sedentary to highly-active.  Although the study proceeds 

from an evolutionary perspective on the role of exercise in shaping postmenopausal 

metabolic physiology, the three main hypotheses tested here are of interest for the 

clinical prescription of exercise for prevention and treatment of metabolic and 

cardiovascular disease.  These hypotheses are as follows: 

 



36 

 

1. Exercise ameliorates the age-related decline in REE.  In other words, age-

specific REE will be higher in more active women. 

 

2. The association between body composition and exercise, in particular a 

positive correlation of fat-free mass with physical activity level, explains 

much of the apparent effect of exercise on age-specific REE. 

 

3. The short-term training intervention will have an effect on REE of a 

magnitude similar to that of longer-term, habitual activity.  This is a 

working hypothesis derived from the informal comparison of previous 

studies’ results as described above. 

 

For comparative purposes, this study also includes a pilot investigation of 

foraging activity data for three postmenopausal women from the Hadza hunter-

gatherer society.  The Hadza live in a highly seasonal, savanna-woodland 

environment near Lake Eyasi in northern Tanzania, and women mainly forage for 

baobab fruit and berries, dig for tubers, and collect eggs, small birds, and other foods 

(Crittenden, 2009).  There are very few available data on the physical activity level of 

women who forage for a living, and those that do exist (i.e. for the Ache and !Kung; 

Leonard and Robertson, 1992) are pooled data for adult women of all ages.  The 

strenuous nature of postmenopausal women’s work among the Hadza is mentioned 

anecdotally elsewhere (e.g. Hawkes et al., 1989), but without formal activity budgets.  

The data presented here, though limited, are thus the first empirical estimates of 

physical activity level specifically in postmenopausal hunter-gatherer women. 
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CHAPTER 4: METHODS 

Subjects 

Women were recruited through the San Diego Senior Olympics and the La 

Jolla YMCA, as well as by posting fliers on UCSD campus and by word of mouth 

through subjects already in the study.  Potential subjects completed a screening 

interview and a health and physical activity questionnaire.  Inclusion in the study 

required women to be naturally postmenopausal (i.e. non-surgically), defined at 

screening as one year since last menstruation, and confirmed by assays of serum 

follicle stimulating hormone (FSH) and estradiol-17β.  Women were excluded if they 

had FSH<30 mIU/ml or estradiol-17β >25 pg/ml (Strauss and Barbieri, 2004).  Other 

exclusion criteria included: smoker, abuser of alcohol/other drugs; hypo- or 

hyperthyroid (serum TSH <0.3 or >5.5 U/ml, respectively; Spaulding and Utiger, 

1981; Pittas and Lee, 2003); underweight or obese (BMI<18.5 or >30 kg/m2, 

respectively); weight instability within the past six months (±>5% of body weight); 

hormone replacement therapy within the past six months (may raise REE: Aubertin-

Leheudre et al., 2008); history of metabolic, respiratory or cardiovascular disease, or 

high blood pressure; or contraindication for maximal aerobic testing as determined by 

the Physical Activity Readiness Questionnaire (Chisholm et al., 1975; Shephard, 

1988; Thomas et al., 1992; Cardinal et al., 1996).  Of 50 women that underwent the 

full screening, 41 met the criteria for inclusion. 

 

Measurement Schedule and General Study Design 

 After the screening interview, subjects scheduled clinical and laboratory visits 

for continued testing over 16 weeks, with appointments scheduled for baseline, or 
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“week 0”, and then at 5, 10 and 16 weeks past baseline.  The time from screening to 

baseline measurement was three to four weeks.  Baseline procedures (detailed 

methods for all study measurements are below) included a blood draw for hormone 

assays and aerobic fitness testing, as well as metabolic and body composition 

assessments which occurred again at 5, 10 and 16 weeks.  A second aerobic fitness 

test was performed during week 16. 

 Baseline data for the entire, pooled sample were analyzed cross-sectionally, 

while measurements from all four testing periods were analyzed longitudinally.  Four 

subjects were dropped from the study for cardiovascular or musculoskeletal reasons 

prior to participating in the longitudinal portion of the study.  The remaining 37 

subjects included in the longitudinal study were split into two groups on the basis of 

exercise habits.  Women who exercised ≥5 hours per week, and had been doing so 

for ≥10 years, were placed into the “Active” group (N=19) and maintained their regular 

exercise routines throughout the 16-week duration of the study.  Sedentary subjects 

exercising ≤2 hours per week at baseline, and who had never engaged in a program 

of regular exercise, were placed into the “Training” group (N=18).  After baseline 

measurements, the Training group subjects completed a 16-week exercise training 

program at the La Jolla YMCA (see details below).  All subjects followed the same 

testing schedule as outlined above and underwent the same measurement regime 

described below. 

 

Physical Activity Assessment 

During the screening interview each subject’s normal level of exercise was 

verbally assessed, asking for information on hours per week and general type(s) of 
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exercise.  There was considerable variation in exercise habits across the sample.  To 

formally assess this variation, subjects were asked to keep activity diaries throughout 

the study period.  Each subject maintained her diary for approximately four weeks 

prior to testing, and those records were used to derive baseline average daily 

physical activity level for each individual.  Subjects recorded all activities in which they 

engaged each day that were at least as strenuous as a casual walk, along with 

details about each activity including duration (in minutes), distance covered, and any 

additional information on perceived exercise intensity. 

Standardized energy intensity coefficients were assigned to each recorded 

activity (as metabolic equivalent of task, or MET, intensities, from the Compendium of 

Physical Activities: Ainsworth et al., 2000), using the descriptions accompanying the 

coefficients to match them as closely as possible to the recorded activities.  For each 

activity, the minutes spent in that activity were multiplied by the corresponding MET 

coefficient to arrive at a time x intensity value—all such values for each day were then 

summed.  The remaining time each day not spent in activity (total minutes per day 

minus minutes spent exercising) was multiplied by a MET value of 1.0 and added to 

the activity sum.  The grand total was then divided by 1440 (total minutes in one day) 

to arrive at daily physical activity level, and all daily values across the four weeks 

were averaged for each subject. 

 

Resting Energy Expenditure and Body Composition 

 Resting energy expenditure (REE) and body composition measurements 

occurred at the UCSD General Clinical Research Center (GCRC) in the morning 

between 0700 and 0930.  Subjects spent the previous night at home, refraining from 
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physical activity and fasting for 12 hours prior to testing.  They were responsible for 

their own transportation to the facility.  Upon arrival, subject height and weight were 

measured on a stadiometer (Ayrton S100, Prior Lake, MN) and digital scale (Scale-

Tronix 5005, White Plains, NY), respectively.  This was followed by assessment of 

REE, which involved measurement of   O2 and   CO2 using a ventilated-hood, open-

circuit respirometry system (VMax Encore VS-29, CareFusion, San Diego, CA).  

Subjects lay supine on a hospital bed in a thermoneutral, temperature-controlled 

room (Kashiwazaki et al., 1990), and one-minute average gas volumes were 

recorded over a period of 25 minutes.  To ensure that REE data came from fully 

relaxed subjects, only the final 10 minutes of gas volumes were used, and were 

converted to kcal following Weir (1949). 

 After REE assessment, subjects were provided with breakfast, and then 

underwent total body bioelectrical impedance analysis with tetrapolar lead 

arrangement (Quantum II, RJL Systems, Clinton Twp., MI).  Resistance and 

reactance values were entered along with height, weight and age into a proprietary 

software package (Cyprus 2.7, Body Composition Analysis, RJL Systems) to estimate 

body fat percentage, fat mass, body cell mass, extracellular mass, total body water, 

intracellular water, and extracellular water.  Anthropometric measurements were also 

taken, including hip and waist circumferences, and ten skinfold thicknesses using 

Lange calipers (Beta Technology, Santa Cruz, CA): pectoral, midaxillary, triceps, 

biceps, subscapular, abdominal, suprailiac, thigh, suprapatellar, and medial calf.  One 

individual (Hau T. Ngo) conducted 83% of the skinfold measurements over the course 

of the entire study, minimizing the problem of inter-observer error (Lohman et al., 

1988).  Thickness values were used to calculate body fat percentage using two 
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different sets of equations (four sites: Durnin and Womersley, 1974; seven sites: 

Jackson et al., 1980). 

 Body composition was also assessed by whole body dual-energy x-ray 

absorptiometry on a Hologic Discovery W scanner (Bedford, MA), but only at the 

baseline and 16-weeks appointments.  Variables estimated from dual-energy x-ray 

absorptiometry included total tissue area and mass, bone mineral content, bone 

mineral density, fat and lean mass components, and fat percentage.  The software 

provided total body values for each variable, as well as regional values for each arm 

and leg, left and right ribs, thoracic and lumbar vertebrae, pelvis, and head.   

 

Maximal Aerobic Capacity 

 Maximal aerobic capacity (  O2MAX) testing occurred at the Human Exercise 

Physiology Laboratory in the UCSD Division of Physiology.  Subjects were instructed 

to refrain from vigorous physical activity and consumption of caffeine for the duration 

of the day prior to testing.  Tests were performed on an electronically-braked cycle 

ergometer (Quinton Instruments Co., Groningen, Netherlands), and subjects breathed 

through a two-way breathing valve with a “snorkel-type” mouthpiece while wearing a 

nose-clip (Hans-Rudolph, Kansas City, MO, USA).  Respiratory gas exchange (15-

second average) was measured using open-circuit respirometry (TrueMax, 

ParvoMedics, Salt Lake City, UT, USA).  Cardiac rhythm and arterial oxygen 

saturation were monitored, respectively, via Lead II EKG and pulse oximetry using a 

forehead sensor (RS-10, Nellcor N-395 Oxismart XLTM, Mallinckrodt, St. Louis, MO, 

USA; see Yamaya et al., 2002).  A project physician supervised and monitored each 

test for signs of cardiovascular distress. 
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 The testing protocol was slightly modified from standard rates of workload 

increase (e.g. ACSM, 2006) in younger adults, because older adults tend to lose 

aerobic capacity with age (Sidney and Shephard, 1977; Jackson et al., 1996; Tanaka 

et al., 1997; Hollenberg et al., 1998; Patterson et al., 1999; Eskurza et al., 2002).  

Using a recent review of exercise testing in older adults (Huggett et al., 2005) as a 

template, the following protocol was followed: subjects warmed up for 5 minutes at a 

resistance of 25 watts (W); at the 5-minute mark, and at one-minute intervals 

thereafter, resistance was increased by 15 W.  This pattern of increase continued 

until the subject reached volitional fatigue, at which point the test ended.  The gas 

analyzer was calibrated for air composition and flow volume before each test, and 

room temperature, humidity and atmospheric pressure were noted so that gas 

volumes could be converted to STPD.  The analyzer recorded 15-second average 

FEO2, FECO2, and   E (L/min), which were used to calculate   O2.  The mean of the 

four highest consecutive 15-second averages served as the value of   O2MAX, and was 

expressed per kg body mass.  Heart rate and blood oxygen saturation (SpO2) were 

recorded at each workload change.   

 

Exercise Intervention Protocol 

The training protocol design combined elements of previous exercise 

interventions in older women and men (Bingham et al., 1989; Pratley et al., 1994; 

Taaffe et al., 1995; Morio et al., 1998; Dionne et al., 2004; but especially Ryan et al., 

1995; Hunter et al., 2000) and included both endurance and resistance components.  

During the 16-week intervention, Training group subjects attended the La Jolla YMCA 

on three non-consecutive days per week, for an approximately 1.5 hour session each 
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day.  Sessions were segmented into warm-up, weight training, and cool-down periods.  

The warm-up began with a short (~5 min) stretching session, followed by 15 min 

aerobic exercise on an elliptical machine.  Weight training consisted of 3 sets of 10-

12 repetitions for each of ten exercises, performed on machines: abdominal crunch, 

arm curl, arm extension, chest press, lat pull-down, leg curl, leg extension, leg press, 

seated row, and trunk extension.  The weight lifting exercises targeted major muscle 

groups with the overall goal of increasing muscle mass (e.g. Teixera et al., 2003), 

since skeletal muscle mass is thought to be a major factor underlying elevated REE 

(Zurlo et al., 1990; Bosy-Westphal et al., 2003; Krems et al., 2005).  The cool-down 

consisted of 10 min exercise on the elliptical machine and a short stretching session. 

 Subjects scheduled seven one-on-one appointments with YMCA personal 

trainers, the first two occurring on the first two days of the intervention, followed by 

one appointment during each of the next two weeks, and then one every other week 

though week 11.  At the first appointment subjects completed a submaximal strength 

test for each weight lifting exercise, which predicted one rep maximum (1RM).  

Depending on subject tolerance of discomfort, individual training programs were set 

up to begin at either 65% or 75% of 1RM.  If subjects reported values ≥15 (hard) on 

the Borg Scale Rating of Perceived Exertion (RPE), initial workloads were set to 65% 

of 1RM; otherwise, workloads began at 75% of 1RM.  During the second appointment 

trainers taught subjects the entire protocol, guiding subjects through proper stretching 

and lifting techniques to minimize risk of injury, and instructing them to work to failure 

to maximize strength benefits.  Subsequent meetings focused on gauging subject 

progress and compliance, answering questions, and increasing weight lifting 

workloads if subjects had begun to reach maximum reps (12) without muscular failure.  
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Trainers were also available outside of these individual sessions to answer questions 

and help subjects if needed. 

 In addition to the weekly or bi-weekly “check-ins” with the trainers, subject 

compliance was monitored using an electronic key system with the elliptical and 

weight lifting machines (Wellness System Key, TechnoGym USA, Seattle, WA).  

Subjects inserted the key (which contained individual identification information) 

whenever they began work on a particular machine, recording date, time, duration 

and average resistance of elliptical exercise, and number of reps and amount lifted 

for each weight lifting set.  Due to malfunctions and user error, however, sufficient 

data to assess rate of compliance exists for only 13 of 18 Training subjects.  The 13 

subjects with sufficient data exhibited 93% adherence to the protocol. 

 

Statistical Analysis 

 Data were analyzed with SPSS version 16.0 for Windows.  Variables included 

age (years), REE (kcal/d), physical activity level (times REE: xREE),   O2MAX (ml 

O2/kg/min), height (cm), weight (kg), waist and hip circumferences (cm), and body 

composition variables: body fat percentage, fat mass (kg) and fat-free mass (kg).  

Each variable at baseline was tested for normal distribution (Shapiro-Wilk test) and 

for outliers.  These analyses were performed for both the pooled sample and within 

each of the Active and Training longitudinal study groups.  Subsequent tests were run 

with and without outliers included to determine their effect on the outcomes.  Where 

no differences in outcome occurred, the results are reported (below) with outliers 

included; where differences did occur, the reported results reflect the data as 

analyzed without the outliers.  Missing values were not an issue for this study: only 
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0.4% of all data were missing.  The longitudinal analysis used mixed-effects models 

(Diggle, 1989; Ridout, 1991) that can be fit with partially missing data (e.g. subjects 

with a few records missing), and that are valid under the missing at random 

assumption. 

Cross-sectional analysis: Bivariate and partial correlation techniques were 

used to evaluate relationships between the study variables at baseline.  These 

correlations were further investigated with multiple linear least squares regression 

analysis, including stepwise and hierarchical methods.  Longitudinal analysis: 

Correlations within each group at baseline were examined in the same manner as in 

the cross-sectional analysis.  Group means at baseline were compared by 

independent samples t-tests.  Longitudinal data were analyzed using a linear 

repeated measures design (mixed effects model: Diggle et al., 1996) for the main 

effects of group, time, and the group x time interaction.  Confounders as determined 

by the correlation and regression results were also controlled for in testing for group 

differences and for change in REE over time. 

Power calculations for the longitudinal analysis were conducted pre-study 

using parameter estimates compiled from previous work (Pratley et al., 1994; Van 

Pelt et al., 1997, 2001; Adriaens et al., 2003; Gibbons et al., 2004).  With 20 subjects 

per group, this study would have the statistical power (β=0.10, =0.05) to detect a 

mean difference of ~125 kcal/d within the Training group over time, and a ~135 kcal/d 

difference between Active and Training groups at any one measurement time.  Our 

actual recruitment almost reached the goal of 20 subjects per group: as noted above, 

the Active group N=19, and the Training group N=18. 
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Pilot Study of Postmenopausal Hadza Women’s Physical Activity Level 

 Physical activity level was estimated for three older Hadza women, aged 51, 

63 and 68, all of whom had ceased reproducing and nursing, and were thus thought 

to be postmenopausal (Alyssa Crittenden, personal communication).  Foraging 

activity was recorded (by Alyssa N. Crittenden, Frank W. Marlowe, and colleagues) 

using focal-person follows for a total of 16 days between the three women (6 days 

each for the 51 and 68 year old women, 4 days for the 63 year old woman).  Each 

focal follow began in the morning at camp and continued throughout the day until the 

individual being followed returned to camp.  The researcher recorded the individual 

subject’s activity at 5-minute intervals during the entire period of the follow.  These 5-

minute records were used to generate daily activity budgets for the three women, 

where each record was treated as representing 5 minutes of the recorded behavior. 

 The same methods for calculating physical activity level in the exercise study’s 

subjects, outlined above, were used for the Hadza women.  Time spent in individual 

categories of activity was summed for each day.  Activities among the Hadza were 

assigned MET intensity values matched as closely as possible to activities listed in 

the compendium of Ainsworth et al. (2000): the common Hadza practice of digging for 

underground tubers, for example, was represented as “digging, spading, filling garden, 

composting…” (code 08050: Ainsworth et al., 2000), with a corresponding MET value 

of 5.0.  The matches were, of course, somewhat imprecise, and so care was taken to 

use conservative estimates of energy expenditure, erring on the side of 

underestimation.  Walking speeds were derived from GPS data in order to assign 

appropriate MET values for transport. 
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CHAPTER 5: RESULTS 

Sample Characteristics 

 Baseline data for the pooled sample, as well as the Active and Training sub-

samples, are displayed as box plots in Figure 5.1 (also see the Appendix, Table A.2).  

The sample exhibited considerable variation in exercise habits, as evidenced by the 

distribution of PAL values in the pooled sample and within the Active and Training 

groups.  At baseline, t            o p        n     n ly           2MAX (p<0.01) and 

physical activity level (p<0.01), and lower body fat percentage as measured by dual-

energy x-ray absorptiometry (p=0.03) than did the Training group (independent 

samples t-tests).  The Active group also had ~7% higher REE (1278 kcal/d) at 

baseline than the Training group (1191 kcal/d), but this difference did not reach 

statistical significance (p=0.09). 

 

Cross-Sectional Analysis of Baseline Data: Pooled Sample 

 The major associations of interest were all of the possible relationships 

between REE, age, body composition, and physical activity, as well as the 

relationship between REE and physical activity level after controlling for age and body 

composition.  To minimize the number of variables in the cross-sectional correlation 

and regression analyses, fat-free mass, fat mass and body fat percentage were 

limited to only the measurements obtained using dual-energy x-ray absorptiometry.  

In the pooled sample, all body size/composition variables, aside from body fat 

percentage, were significantly and positively correlated with each other and with REE 

(see Table A.3 for all correlation coefficients and p-values).  To reduce the number of 

inter-correlated body composition variables included in the models, stepwise 
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regression analysis was used to determine which factor(s) best explained variation in 

REE: fat-free mass was the best predictor of REE (r2=0.540; p<0.01) and no other 

variables had significant effects on REE in the presence of fat-free mass.  Moving 

forward in regression analysis of the pooled sample fat-free mass was the sole 

representative body composition variable used. 

The following correlation results reflect P    on’   o   l   on (r) where both 

variables were normally distributed, or Spearman’   o   l   on (rs) where at least one 

variable was distributed non-normally.  Age was significantly, negatively correlated 

with REE (r=-0.427; p<0.01), but not with fat-free mass (r=-0.264; p=0.10).  Neither 

exercise variable,    2MAX and physical activity level, was significantly correlated with 

REE (respectively: rs=0.076, p=0.67; rs=0.240, p=0.15), age (rs=0.003, p=0.99; 

rs=0.251, p=0.12), or fat-free mass (rs=0.073, p=0.67; rs=0.144, p=0.38), but both 

were significantly, negatively correlated with fat mass (rs=-0.567, p<0.01; rs=-0.359, 

p<0.05) and body fat percentage (rs=-0.774, p<0.01; rs =-0.546, p<0.01).     2MAX and 

PAL were significantly, positively correlated with each other (rs =0.636; p<0.01). 

Multiple least squares linear regression analysis found that both fat-free mass 

and age significantly predicted REE (respectively: r2=0.540, p<0.01; r2=0.182, p<0.01; 

see Figures 5.2 and 5.3).  Together, fat-free mass and age accounted for roughly 

60% of the variation in REE (r2=0.598, p<0.01).  Hierarchical regression analysis was 

used to determine if exercise had a significant effect on REE after controlling for fat-

free mass and age (Step 1),     n            2MAX (Step 2a) or physical activity level 

(Step 2b) and testing for significant increases in the overall r2 value (see Figure 5.4).  

Neither exercise variable significantly changed the regression coefficient, though the 

effect of physical activity level approached significance (p=0.07). 
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Age (years) REE (kcal/d)

Weight (kg) Height (cm)

Waist Circumference (cm) Hip Circumference (cm)

 
 

Figure 5.1: Baseline Pooled (P), Active (A) and Training (T) data 
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FFMDXA (kg) FFMBIA (kg)

FMDXA (kg) FMBIA (kg)

Fat%DXA Fat%BIA

 
 
 

Figure 5.1 (continued): Baseline Pooled (P), Active (A) and Training (T) data 
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FFM4-SKINFOLDS (kg) FFM7-SKINFOLDS (kg)

FM4-SKINFOLDS (kg) FM7-SKINFOLDS (kg)

Fat%4-SKINFOLDS Fat%7-SKINFOLDS

 
 
 

Figure 5.1 (continued): Baseline Pooled (P), Active (A) and Training (T) data 
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Figure 5.1 (continued): Baseline Pooled (P), Active (A) and Training (T) data 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Notes: Box plots display median (dark bar within box), inter-quartile range (box), maximum 
and minimum non-outlier values (whisker ends) and outliers (circles, defined as those 
individuals falling further than 1.5 times the inter-quartile range from the 1

st
 or 3

rd
 quartile).  

Abbreviations are as follows: BIA=bioelectrical impedance analysis; DXA=dual-energy x-
ray absorptiometry; Fat%=body fat percentage; FFM=fat-free mass; FM=fat mass; 
PAL=physical activity level; REE=resting energy exp n           2MAX=maximal aerobic 
capacity.  
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Figure 5.2: REE vs. FFM in the Pooled sample at baseline 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

Notes: Least squares linear regression (solid line; r
2
=0.540; p<0.01) and 95% confidence 

interval of the regression (dashed lines).  FFM=fat-free mass; REE=resting energy 
expenditure. 
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Figure 5.3: REE vs. age in the Pooled sample at baseline 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Notes: Least squares linear regression (solid line; r
2
=0.182; p<0.01) and 95% confidence 

interval of the regression (dashed lines).  REE=resting energy expenditure. 
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Figure 5.4: Hierarchical regression results in the Pooled sample at baseline 
 

 
 
 
 
 
 
Longitudinal Analysis of Training Intervention: Active and Training Samples 

 Within the Active and Training groups, body size/composition variables were 

significantly and positively correlated with each other, as well as with REE (see 

Appendix, Tables A.4 and A.5), in a manner largely similar to the Pooled sample 

above.  Analysis of covariance (ANCOVA) found no significant differences between 

the Active and Training groups for any of the baseline correlations between variables.  

The only variables for which the groups differed at baseline (Table A.2) were physical 

activity level (p<0.01),    2MAX (p<0.01), and body fat percentage (p<0.05) from dual-

energy x-ray absorptiometry.  The REE difference approached significance (p=0.09). 

Notes: Step 1 independent variables were fat-free mass and age (r
2
=0.598; p           p 

                  2MAX (maximal aerobic capacity) or PAL (physical activity level) and 
tested for significant change to the F-statistic and r

2
 values. Neither Step 2 addition 

significantly increased the r
2
 value (   2MAX p=0.83; PAL p=0.07). 
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The repeated measures linear mixed models analysis found no significant 

effects of group membership, test time, or the group x time interaction on weight, 

height, hip circumference, fat-free mass (all four measures: dual-energy x-ray 

absorptiometry, bioelectrical impedance, four skinfolds, and seven skinfolds), or fat 

mass and body fat percentage derived from bioelectrical impedance (see the 

Appendix, Table A.6 for Active and Training group data at each test and statistical 

results).  The same was true of REE, although in this case the group effect 

approached significance (p=0.07).  In both groups, waist circumference and fat mass 

(from dual-energy x-ray absorptiometry) were significantly lower at 16 weeks than at 

baseline (p<0.05 for both); the groups did not differ significantly from one another for 

these variables, or for the manner in which they changed over time. 

Fat mass from four and seven skinfolds and body fat percentage from seven 

skinfolds all changed significantly over time (time effect: for all p≤0.01).  There was no 

group effect for these variables, but there were group x time effects (p<0.01 for both 

fat mass; p=0.02 for body fat percentage): the Active group had lower fat after 16 

weeks, while the Training group changed very little.  Body fat percentage from four 

skinfolds was lower in the Active group (p=0.04) and decreased over time in the 

Active group but not in the Training group (time effect: p=0.05; group x time 

interaction: p=0.01).  Body fat percentage from dual-energy x-ray absorptiometry was 

also lower in the Active group (p=<0.05) but did not change over time (though the 

time effect approached significance: p=0.08).  Finally,    2MAX differed between the 

two groups (p<0.01) and was slightly higher in both groups at 16 weeks compared to 

baseline (p=0.02).  See Figures 5.5 through 5.8 for plots of group-specific means of 

selected variables over time (others are in the Appendix). 
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Figure 5.5: REE within groups at each testing period 

 

 

 

Figure 5.6: FFMDXA within groups at each testing period 

 

 

Notes: Circles/squares represent means, error bars denote SEM.  Repeated measures 
fixed effects: group p=0.07; time p=0.27; group x time p=0.40.  REE=resting energy 
expenditure. 

Notes: Circles/squares represent means, error bars denote SEM.  Repeated measures 
fixed effects: group p=0.13; time p=0.71; group x time p=0.63.  FFMDXA=fat-free mass as 

measured by dual-energy x-ray absorptiometry. 
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Figure 5.7: FMDXA within groups at each testing period 

 

 

 

Figure 5.8: Fat%DXA within groups at each testing period 

 

 

Notes: Circles/squares represent means, error bars denote SEM.  Repeated measures 
fixed effects: group p=0.25; time p=0.02; group x time p=0.40.  FMDXA=fat mass as 
measured by dual-energy x-ray absorptiometry. 

Notes: Circles/squares represent means, error bars denote SEM.  Repeated measures 
fixed effects: group p=0.02; time p=0.08; group x time p=0.42.  Fat%DXA=percent body fat 
as measured by dual-energy x-ray absorptiometry. 
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Follow-up Analysis: Trends in REE with age, fat-free mass and exercise 

 Overall, the results of both the cross-sectional and longitudinal studies 

showed no significant effect of either long-term or short-term physical activity on REE.  

The analyses did, however, produce very suggestive p-values for the relationship 

between exercise and REE, in particular for the r2 change with the addition of physical 

activity level in the hierarchical regression analysis (p=0.07), the baseline comparison 

of mean REE between the Active and Training groups (p=0.09), and the group effect 

in the mixed models analysis (p=0.07).  These values all approach significance, 

indicating the possibility that the sample sizes were too small and that the study was 

therefore underpowered and prone to type II error (i.e. the failure to reject a null 

hypothesis—here that exercise has no effect on REE—when that hypothesis is in fact 

not true).  While the sample size is likely an issue, an alternative (though not mutually 

exclusive) possibility is that there is   “      ol        ” o   x      , w            y 

only above a certain level exerts any influence on REE.  It is quite possible that the 

exercise habits of many subjects would fall below such a threshold, should it exist, 

and so this warranted further investigation. 

Figure 5.9 is a plot of REE vs. age for the Active and Training groups: 

because there was no change over time, the REE values used in the following 

discussion and figures are individual averages of all four measurements.  The 

negative relationship between REE and age was significant in the Training group 

(r2=0.435; p<0.01) but not within the Active group (r2=0.124; p=0.14), though analysis 

of covariance found no significant difference between the groups for the REE/age 

relationship (group x age interaction: p=0.51).  What is particularly interesting about 

this plot, however, is the group of five Active women (circled) whose REE values fall 
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well above the rest of the subjects within their age range.  Not only do they appear to 

exert a strong effect on the REE/age relationship in the Active sample, they may also 

provide evidence for an intensity threshold for the effects of exercise on metabolic 

physiology.  Given that the Active sample was quite variable for physical activity level, 

if these five women happen to be on the most active end of that distribution, it may 

say something about the prospects of finding an exercise effect on REE in future 

studies of larger samples. 

 

 

Figure 5.9: Individual average REE vs. age in the Active and Training groups I 

 

 

Notes: REE (resting energy expenditure; average of four measurements) vs. age in the Active 
and Training groups.  Regression lines: Active (solid line: r

2
=0.124; p=0.14); Training (dashed 

line: r
2
=0.435; p<0.01). Circled subjects have high REE for age, and are all members of the 

Active group. 
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 To      w               bj    ’      REE values related to exercise, a 

regression equation predicting REE from age (r2=0.195; p<0.01) was derived from all 

subjects.  T            bj    ’ REE-for-age residuals were then plotted against fat-

free mass and physical activity level to assess body size and exercise effects.  The 

REE residuals were significantly and positively related to fat-free mass (r2=0.742; 

p<0.01; see Figure 5.10), but not to physical activity level (r2=0.096; p=0.19; Figure 

5.11).  Physical activity level was not significantly correlated with fat-free mass 

(r2=0.095; p=0.20; Figure 5.12).  Even controlling for fat-free mass, physical activity 

and residual REE were not significantly correlated (r=0.092; p=0.72). 

 

 

Figure 5.10: REE-for-age residuals vs. FFM in Active subjects 

 
Notes: REE (resting energy expenditure)-for-age residuals vs. FFM (fat-free mass) in the 
Active group: r

2
=0.742; p<0.01.  Circled subjects: see Figure 5.9 notes. 
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Figure 5.11: REE-for-age residuals vs. physical activity level in Active subjects 

 

 

Taken together, these findings show that body size, as represented by fat-free 

mass,  xpl  n                    bj    ’      REE-for-age residuals.  There is no 

corresponding effect of physical activity on REE, even indirectly via a relationship with 

fat-free mass.  Thus, these five women exhibit high REE simply because they also 

happen to be large people: they have the five highest fat-free mass values in the 

entire pooled dataset, and three of them were the three tallest women in the study.  

When the data are plotted again with these five subjects removed, the REE vs. age 

regression relationship within the Active group reaches significance (Figure 5.13), 

and again, the two groups do not differ for the REE-age relationship (p=0.70). 

Notes: REE (resting energy expenditure)-for-age residuals vs. PAL (physical activity level) in 
the Active group: r

2
=0.096; p=0.19.  Circled subjects: see Figure 5.9 notes. 
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Figure 5.12: FFM vs. physical activity level in Active subjects 

 

 

 

 

 

 

 

 

 

 

 

Notes: FFM (fat-free mass) vs. PAL (physical activity level) in the Active group: r
2
=0.095; 

p=0.20. 
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Figure 5.13: Individual average REE vs. age in the Active and Training groups II 

 

 
 
 

Physical Activity Level in Postmenopausal Hadza Women 

 The pilot study found the three postmenopausal Hadza women to be quite 

active, with physical activity values for foraging days ranging from 1.22 to 2.16 xREE, 

and clustering largely between 1.5-1.8 xREE around a mean of 1.65 (see Figure 

5.14).  Individual mean values were 1.68, 1.62 and 1.64 xREE for the women aged 

51, 63 and 68 years, respectively.  These physical activity values are quite similar to 

estimates for adult women of all ages in the Ache and !Kung hunter-gatherer groups 

Notes: REE (resting energy expenditure; average of four measurements) vs. age in the Active 
and Training groups, with the five heaviest Active subjects removed (circled in Figure 5.9).  
Regression lines: Active (solid: r

2
=0.615; p<0.01); Training (dashed: r

2
=0.435; p<0.01). 
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(from Leonard and Robertson, 1992), but are considerably higher than estimates for 

the Training and even the Active subjects (see Figure 5.15).  Although the physical 

       y l   l   l     o       x           y’    bj         l k ly  l      n       m    , 

the values for the Hadza women may also be low since the factorial method used 

here tends to underestimate daily energy expenditure, especially in highly active 

individuals (Leonard et al., 1997).  Thus, the gap between women in hunter-gather 

and industrialized societies may be slightly greater even than shown here. 

 

 

 

Figure 5.14: Distribution of daily physical activity level in three postmenopausal 

Hadza women 

 

 

Notes: Physical activity level (PAL) as a multiple of resting energy expenditure (xREE) 
estimated for three postmenopausal Hadza women, representing 16 total days of foraging.  
PAL was estimated using activity budgets derived from unpublished focal-person follow data 
collected by Frank W. Marlowe, Alyssa N. Crittenden and colleagues. 
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Figure 5.15: Physical activity in Training, Active and hunter-gatherer women 

 

 

Average physical activity level (PAL) as a multiple of REE (xREE)  n          y’  T   n n   n  
Active samples, compared to hunter-gatherer women.  Hunter-gatherer data were derived 
from activity budgets.  Ache and !Kung values are for adult women of all ages, from Leonard 
and Robertson (1992).  Hadza PAL represents the mean of 16 foraging days among 3 
postmenopausal women (ages 51, 63, and 68 years) from focal follow records of foraging 
activity (unpublished data: Frank W. Marlowe, Alyssa N. Crittenden and colleagues).  
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CHAPTER 6: DISCUSSION AND CONCLUSIONS 

 Contrary to expectations, there appears to have been no effect of the study‟s 

training regime on body composition or metabolic physiology in this sample.  

Moreover, despite an inverse correlation between exercise and body fat, physical 

activity seems to have had no effect on REE even in the Active sample.  Returning to 

the study‟s stated hypotheses, the first predicted that exercise would ameliorate the 

age-related decline in REE: this is rejected.  In our sample, REE was significantly, 

negatively correlated with age, even after controlling for body composition, and there 

was no significant effect of exercise on those relationships.  The absence of an 

exercise effect renders the second hypothesis moot: although there are significant 

correlations between REE and all body composition variables, in particular fat-free 

mass, these do not bear any relationship to level of exercise as approximated by 

physical activity level and V  O2MAX.  Finally, the results support the third hypothesis 

that age-specific REE would associate similarly with both short- and long-term 

exercise, but only in the sense that neither exercise regime affected REE. 

It is interesting that no changes in body composition or REE occurred despite 

clear training effects.  For example, in the 13 Training subjects with sufficient data, 

the average amount of weight lifted per exercise session (total of all repetitions for ten 

exercises) increased significantly from 10,784 kg during the first 5 weeks to 12,402 kg 

during weeks 5-10, and 13,382 during weeks 10-16 (see Figure 6.6; one-way 

repeated-measures ANOVA, overall p<0.01; Tukey HSD post hoc test: weeks 5-10 

and 10-16 both greater than weeks 0-5, p<0.05 and p<0.01, respectively; weeks  -   

and   -   not significantly different     n addition to this strength effect, subjects also 

had significantly increased aerobic fitness at    weeks vs  baseline  paired samples t-
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tests , as evidenced by higher    2MAX (1.35 ± 0.07 l O2/min vs. 1.27 ± 0.07 l O2/min; 

p<     , and higher    2 (1.22 ± 0.06 l O2/min vs. 1.10 ± 0.06 l O2/min; p<0.01) and 

workload (in watts: 101.6 ± 5.4 W vs. 82.2 ± 6.1 W; p<0.01) at the ventilatory 

threshold (which marks the workload at which an individual can maintain prolonged, 

aerobic endurance exercise: Wasserman et al., 2004     entilatory threshold    2 as a 

percentage of    2max also increased (91 ± 0.09% vs. 87 ± 1.4%), but the change did 

not reach significance (p=0.07). 

 

 

Figure 6.1: Average total weight lifted per bout in the Training group 

 

 

 

Notes: Average total weight lifted per exercise bout (total for all repetitions of ten exercises) 
during weeks 0-5, weeks 5-10, and weeks 10-16.  One-way repeated-measures ANOVA: 
p<0.01; post hoc Tukey HSD: weeks 5-10 significantly greater than weeks 0-5 (p<0.05); 
weeks 10-16 significantly greater than weeks 0-5 (p<0.01); weeks 5-10 and weeks 10-16 not 
significantly different. 
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The absence of an effect of exercise on REE in this study‟s sample, despite 

clear aerobic and muscular training effects, mirrors results of previous interventions 

that lasted 14-15 weeks (Taaffe et al., 1995; Morio et al., 1998), 6 months (Thompson 

et al., 1997; Dionne et al., 2004; Santa-Clara et al., 2006), or even a full year (Taaffe 

et al., 1995).  It is unclear why the present study failed to reproduce the results of 

Ryan et al. (1995) and Hunter et al. (2000), where subjects significantly increased 

muscular strength, fat-free mass and REE with either 16 weeks or 6 months of 

resistance training, respectively.  This is particularly odd given that the training 

intervention to a large extent followed their methods.  There are limitations to the 

previous studies‟ treatment of their samples, however, that may undermine the 

generalizability of their results.  Ryan et al. (1995) studied two small sub-groups of 

subjects that separately exhibited no significant change in REE, but when pooled 

together did—the fact that these groups completed different interventions raises 

questions about the validity of the pooled results.  Additionally, the changes in fat-free 

mass and REE that Ryan et al. (1995) report are marginal, falling within one standard 

error of the mean for each variable.  Hunter et al. (2000) examined a mixed-sex 

sample, and did not report separate data for the men and women in their study.  

Although they stated that the results did not differ between the sexes, they rightly 

noted that their samples (8 women, 7 men) were likely too small to detect sex 

differences anyway.  It remains possible that if Hunter et al. (2000) had analyzed only 

the women in their sample, they would have found different results. 

In comparison to previous intervention studies, neither the length of the 

present study‟s training program, nor its design appear to explain the absence of 

changes in fat-free mass or REE with increased exercise.  Sample size for the 
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present study could be a problem, but the present sub-samples were larger than in 

any of these previous studies, for which within-groups samples ranged from N=7 to 

N=15.  Thus, the present study was better-powered to detect differences than any of 

these previous interventions, and yet still found none   While this study‟s Training 

group N of 18 subjects is still a small sample, given that the magnitude of change in 

mean REE from baseline to 16 weeks was 1 kcal/d (1191 to 1192 kcal/d), it is quite 

reasonable to conclude that the intervention truly did not affect REE. 

What is especially interesting is that the Active group did not differ from the 

Training group for REE, and that both groups fell on the low end of the range of fat-

free-mass-specific REE values for sedentary subjects in previous intervention studies 

(this study, both groups: 29 kcal/kg/d; previous studies: 29-33 kcal/kg/d).  When 

compared to the active women in the study of Van Pelt et al. (1997), this suggests 

that not only was the present study‟s exercise intervention insufficiently intense, but 

the definition of “active” as a criterion for inclusion in the Active group may have been 

too lax.  Again, Van Pelt et al., (1997) included only highly trained, elite 

postmenopausal athletes in their sample, while in the present study, women who 

walked 5 hours per week and had been doing so for at least 10 years were defined as 

“active”   For comparison, Figure   2 adds the physical activity level of athletes from 

Van Pelt et al. (1997; physical activity level was not measured, and so was estimated 

from    2MAX using the relationship in the present study‟s Active subjects  to the plot 

of the present study‟s subjects and hunter-gatherers.  Clearly, the amount of exercise 

in which the highly trained athletes habitually engage is more in keeping with physical 

activity levels among hunter-gatherer women. 
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Figure 6.2: Postmenopausal athletes (Van Pelt et al., 1997) compared to this 

study’s subjects and hunter-gatherer women 

 

 

 

 

As  an Pelt et al    997:32 2  state, their “…results do not address the 

question of the minimum level of habitual exercise that is associated with a 

diminished age-related decline in [REE] ”   an Pelt et al ,  997:32 2   Here, more 

moderate exercise has been shown to have no effect on REE, consistent with the 

idea that there may be some kind of threshold below which exercise does not provide 

benefits to postmenopausal women in terms of REE.  The same threshold effect may 

Average physical activity level  PAL  as a multiple of REE in this study‟s Training and Active 
samples, compared to postmenopausal athletes from  an Pelt et al    997; circle with error 
bars, as calculated from    2MAX; circle is for the weighted mean of runners and swimmers, 
error bars represent means for runners on the upper end, and swimmers on the lower end) 
and to hunter-gatherer women.  See Figure 5.15 notes for hunter-gatherer data sources.  
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also relate to the ability to maintain body composition and metabolic health into older 

age.  Runners from Van Pelt et al. (1997) had only slightly higher mean body fat 

percentage (23.3%, from hydrodensitometry) than the three postmenopausal Hadza 

women in the present study (19.6%, from bioelectrical impedance), or even compared 

to younger Hadza women who in general have a very low body fat percentage of 

~19% which they maintain throughout adulthood, across the menopausal transition, 

and into the eighth decade of life (Sherry and Marlowe, 2007).  Meanwhile, the 

present study‟s Active sample had mean body fat of 32.8 ± 1.8% (range of 20-43%; 

bioelectrical impedance).  Although factors like diet may also be important, moderate 

exercise in the Active sample coincides with higher body fat and lower REE. 

In addition to a threshold effect for intensity of exercise after menopause, 

there may be a similar, menopause-related time threshold after which the effects of 

exercise on metabolic health are diminished.  Hunter-gatherers maintain high levels 

of activity across adult life and throughout the menopausal transition, and thus the 

continuing function of metabolic systems into the postmenopausal period may be 

primed to respond best to conditions of sustained physical exertion across the adult 

years.  Instead, physical activity tends to decline with age in industrialized populations 

(Crespo et al., 1996), and this increasingly sedentary lifestyle with age may impair the 

musculoskeletal response to exercise and perhaps, by proxy, the metabolic effects of 

exercise.  This is especially relevant to the Training subjects in the present study who 

transitioned into postmenopausal life in a very sedentary state, but may also apply to 

Active subjects on the lower end of their group-specific physical activity scale. 

A growing body of evidence is beginning to make connections between the 

direct physiological effects of exercise on muscle and bone and broader systemic 
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changes in metabolic regulation and disease.  The topic of age-related changes in 

these factors is a major focus of such work, and there is support for an age-related 

threshold beyond which the exercise response weakens.  For example, the growth 

hormone/insulin-like growth factor-I (GH/IGF-I) axis forms part of a hormonal pathway 

that, among other functions, prevents muscular atrophy and promotes the muscular 

response to exercise (hypertrophy and angiogenesis), which may increase metabolic 

activity and oxygen consumption in muscle (Lynch et al., 2001; Rommel et al., 2001; 

Hunter et al., 2004; Moran et al., 2007).  Low levels of serum IGF-I are also linked to 

risk for diseases such as ischemic stroke and heart disease, and to obesity, insulin 

resistance, and impaired glucose tolerance (Rasmussen et al., 1995; Juul et al., 

2002; Sandhu et al., 2002; Johnsen et al., 2005).  Results of various studies suggest 

that GH/IGF-I activation with resistance exercise differs between pre- and 

postmenopausal women, such that training significantly increases serum IGF-I 

concentrations in women aged 18-23 years (Koziris et al., 1999; Marx et al., 2001), 

but not in sedentary women aged 39-64 (Sillanpää et al., 2010). 

This suggests that reduced GH/IGF-I muscle response may develop as early 

as the peri-menopausal period and the onset of changes in reproductive hormones.  

In postmenopausal women, although resistance exercise often increases muscle fiber 

size in sedentary postmenopausal women it is not necessarily accompanied by 

increased basal serum IGF-I (Häkkinen et al., 2001).  A similar pattern of reduced 

exercise response with sedentary aging may exist for vascularization and 

angiogenesis in muscle, though current data are limited (Harris, 2005).  If accurate, 

however, this suggests that in addition to impaired GH/IGH-I functionality, disuse of 

muscles with age might result in lost capacity for expanding capillary networks along 
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with muscle fiber growth, which may restrict oxygen delivery to muscle and thus affect 

muscle metabolic rates. 

Finally, exercise and metabolic health also appear to be connected to 

telomere length, which, again, can be considered as a molecular “clock” of 

physiological aging (Demerath et al., 2004).  Various studies have found links 

between leukocyte telomere length and risk factors for metabolic and cardiovascular 

disease, including a positive association between telomere length and blood IGF-I 

(Barbieri et al., 2009; Kaplan et al., 2009).  Two studies point to the importance of 

physical activity and body composition on the relationship between aging and 

telomere length.  Cherkas et al. (2008) showed that more active people tend to have 

longer telomeres after controlling for confounders including age; this study also 

included a comparison of twins with different activity habits, in which they found the 

more active twins to have significantly longer telomeres than their counterparts.  

Thus, exercise appears to associate with “younger” looking telomeres, which also 

correlate with better metabolic and cardiovascular health. 

Gardner et al. (2005) conducted a longitudinal follow up study, studying the 

same individuals first in their late 20/early 30s, and then again in their late 30s/early 

40s.  The rate of telomere shortening was greater in subjects who also had higher 

body mass index (BMI) and greater evidence of impaired glucose regulation.  

Interestingly, three subjects actually had longer telomeres at the follow up test, and 

two of them also had lower BMI and reduced insulin resistance.  While Gardner et al. 

(2005) do not report directly on exercise, the change in BMI in their subjects is 

suggestive: for the most part it points in the direction of reduced exercise, but in those 
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two cases possibly indicates an increase in exercise.  Implicitly emphasizing the 

importance of exercise, they state: 

 

“ t has been proposed that  excluding pregnancy , „not gaining weight 
after early adulthood‟ may serve as an epidemiological paradigm of 
caloric restriction in humans [Lee et al., 2003].  Accordingly, gain in 
body mass (primarily due to adiposity) may hasten biological aging. 
Because body fat reflects not only caloric consumption but also energy 
expenditure, the ‘not-gaining-weight’ model is not strictly caloric 
restriction ” (emphasis added) 

 

In other words, exercise is important, and so may be its timing after early 

adulthood.  In the aforementioned study of Dionne et al. (2004), premenopausal 

women not only increased fat-free mass and REE with exercise, but also improved 

glucose metabolism; the postmenopausal sample did not.  Again, these findings are 

consistent with the idea that sedentary aging impairs the metabolic response to 

exercise.  This is relevant to determining the utility of exercise interventions in 

sedentary postmenopausal women if they may have already passed a “use it or lose 

it” threshold, and thus may be less able to improve metabolic function through 

exercise.   f real, such a threshold could explain this study‟s Training group‟s strength 

and aerobic adaptations to exercise without associated increases in muscle or REE.    

 

Limitations 

 Before concluding, it is important to point out some limitations of the current 

study in its attempt to elucidate the relationship between exercise, metabolic 

physiology, aging, and the evolution of the human postmenopausal lifespan.  For one, 

the cross-sectional nature of the study with regard to age limits its interpretability with 
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regard to any age-related declines.  While the data do show that older women in the 

sample tended to also have lower REE, this does not mean that each individual 

woman had lower REE than they did at earlier ages and prior to menopause.  It is 

entirely possible that the habitually active women in this sample have maintained 

REE at a level similar to their younger years, while the sedentary women of the 

Training sample could have had significantly higher REE when they were younger.  It 

is impossible to evaluate that possibility in this sample, but should definitely be 

addressed in future longitudinal work. 

A related limitation is the absence of a control group that remained sedentary 

throughout the 16-week study.  The protocol originally called for the inclusion of such 

a group, but logistical considerations required that arm of the study to be dropped.  

The possibility remains that such a control group could have exhibited decreased 

REE over the course of the study, so that the lack of change in the Training group 

would instead have been characterized as an absence of decline.  Given that the 

study lasted only 4 months, however, and that cross-sectional estimates of age-

related decline in REE are generally on the order of ~2-5% per decade, the visibility 

of REE decline in a control group would have likely been quite minimal. 

 Also important is the fact that despite lower REE associating with increased 

age in this sample, and the absence of a metabolic response to exercise, these 

women were all healthy, non-obese, and free from metabolic and cardiovascular 

health problems.  This detracts from the argument that exercise is necessary to 

maintaining normal metabolic and cardiovascular function in postmenopausal women.  

That is not to say, however, that none of these women is at risk for developing such 

problems in the future.  As noted above, body fat percentage, which is a risk factor for 
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metabolic and cardiovascular disease, was quite high even in the Active group, 

meaning that many of these women may be at risk for developing the metabolic 

syndrome (Zhu et al., 2003).  Still, in terms of disease risk and somatic maintenance, 

these women appear to be functioning quite well regardless of their exercise levels, 

which points to the possible influence of other, non-activity factors. 

 Those other possible factors, in particular demographic and lifestyle variables 

that differentiate industrialized populations from hunter-gatherer societies, also 

present limitations for the present study.  Diet, for example, was not controlled, either 

in terms of dietary history or in terms of what subjects consumed during their 

participation in the study.  Thus the effects of diet on this study‟s results are unknown   

In addition, no attempt was made to control for reproductive history or for 

developmental conditions that might relate to susceptibility to metabolic disease (e.g. 

Barker, 1997).  While it might be possible to add reproductive and developmental 

data for these subjects retrospectively, subsequent analysis would require further 

breaking down the samples according to parity, birth weight, or other factors.  This 

would only exacerbate the potential issues with statistical power.  Instead, future 

research that incorporates data on development and reproductive history, as well as 

attempts to control or at least assess diet, can perhaps better isolate and evaluate the 

effects of exercise on postmenopausal metabolic function. 

 

Conclusions 

 This study addressed the broad question: do high levels of exercise promote 

the maintenance of basic metabolic function, even in the face of the hormonal 

changes associated with menopause?  Limited to the small sample presented here, 
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the answer appears to be no, for both habitual, moderate exercise and for the 

exercise intervention in sedentary postmenopausal women.  On the other hand, when 

compared to the physical activity level and body composition of highly trained 

postmenopausal athletes (e.g. Van Pelt et al., 1997) and hunter-gatherers, this 

study‟s subjects were not particularly active, and had body fat percentage consistent 

with risk for developing metabolic and cardiovascular disease.  These findings are 

consistent with the existence of a threshold effect for the intensity of exercise.  

Moreover, considering that exercise tends to elicit changes in body composition and 

metabolic health in younger women, the absence of an effect of exercise imposed 

after menopause indicates that the timing of establishing exercise habits relative to 

menopause is also important.  Thus, the question should be modified in part to ask: 

how much exercise promotes the maintenance of postmenopausal metabolic 

function?  Moreover, it is critical to gain a better understanding of the pattern of age-

related decline in the physiological response to exercise, and how that decline affects 

the potential of exercise to improve metabolic health after menopause. 

 These revised questions can be addressed by future research that evaluates 

more precisely how, when and why the musculoskeletal and metabolic responses to 

exercise decline with age.  If additional factors such as diet, early developmental 

experiences, and reproductive history might also influence postmenopausal metabolic 

physiology, then their interaction with the effects with exercise should be investigated 

too.  As highly active individuals who rarely experience the metabolic and 

constitutional changes associated with menopause in industrialized societies, hunter-

gatherer women may provide the best data with which to test and formulate new 

hypotheses about exercise and healthy aging.  Limited as it is, the currently available 
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postmenopausal hunter-gatherer dataset shows promising results, and should 

expand as a focus of future research. 

Evolutionary hypotheses and comparative data provide an understanding of 

how our species‟ physiology has been shaped over time, and how genes interact with 

environment and behavior to determine phenotypic expression.  Studying variation in 

phenotypic expression from an evolutionary perspective, especially when phenotypes 

appear abnormal or maladaptive, compels researchers to evaluate not only the 

underlying proximate, physiological causes of disease, but to also seek the larger, 

evolutionary conditions that have shaped physiological systems.  In the case of 

postmenopausal metabolic physiology, low levels of estradiol-17β may correlate with 

changes in body composition and REE, but a broader interpretation might suggest 

that the hyposteroidal environment is only a disease risk factor when the absence of 

vigorous physical activity has disjoined an individual‟s physiology from the conditions 

under which it evolved.  Continued application of the principles of evolutionary 

medicine to the study of the postmenopausal life history period can guide researchers 

toward better paths for disease prevention, and ideally improve the conditions of 

postmenopausal life for a great many women. 
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APPENDIX 

 

The following abbreviations for variables are used in the tables and figures below: 

 

BIA:  bioelectrical impedance analysis 

DXA:  dual-energy x-ray absorptiometry 

Fat%:  body fat percentage 

FFM:  fat-free mass 

FM:  fat mass 

Hip circ.: hip circumference 

PAL:  physical activity level 

REE:  resting energy expenditure 

   2MAX: maximal aerobic capacity 

Waist circ.: waist circumference 
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Table A.1: Age at natural menopause in different populations* 

Population N Mean ± SD Median Reference

Argentina: urban 2,100 --- 48.9 Blümel et al. (2006)

Australia 650 50.4 Walsh (1978)

Bangladesh: rural 2,324 --- 43.6 Karim et al. (1985)

Bolivia: rural 125 42.3 ± 6.2 --- Castelo-Branco et al. (2005)

Bolivia: urban 1,750 --- 47.9 Blümel et al. (2006)

Botswana: rural (!Kung) 33 --- 49.1 Hunt and Newcomer (1984)

Brazil: urban 350 --- 51.2 Blümel et al. (2006)

Chile: urban 1,750 --- 49.6 Blümel et al. (2006)

China: urban 1,011 48.9 ± 3.1 --- Ku et al. (2004)

Colombia: urban 700 --- 51.4 Blümel et al. (2006)

Costa Rica: urban 350 --- 50.3 Blümel et al. (2006)

Cuba: urban 350 --- 50.2 Blümel et al. (2006)

Ecuador: urban 1,400 --- 48.6 Blümel et al. (2006)

Finland: urban/rural 1,505 51.7 51.0 Luoto et al. (1994)

Germany 2,097 --- 51.1 Fuchs and Paskarbeit (1976)

Ghana: urban 123 48.1 ± 3.6 48.0 Kwawukume et al. (1993)

India: urban/rural 201 46.7 ± 4.2 48.0 Kriplani and Banerjee (2005)

India: rural 65 47.5 ± 3.7 --- Kapoor and Kapoor (1986)

Indonesia: urban 346 --- 50.5 Samil and Wishnuwardhani (1994)

Iran: urban/rural 8,194 50.4 ± 4.3 49.6 Mohammad et al. (2004)

Iran: urban 948 48.3 ± 5.3 49.0 Ayatollahi et al. (2003)

Japan: rural 1,513 49.6 ± 3.3 --- Kono et al. (1990)

Japan: urban 4,964 49.8 ± 3.2 --- Kono et al. (1990)

Lebanon: urban 298 --- 49.3 Reynolds and Obermeyer (2001)

Malaysia: urban 400 --- 50.7 Ismael (1994)

Mexico: urban 472 46.5 ± 5.0 47.0 Garrido-Latorre et al. (1996)

Morrocco: urban 299 --- 48.4 Reynolds and Obermeyer (2003)

Nepal: rural 52 45.9 ± 5.7 46.8 Beall (1983)

Netherlands 8,064 --- 51.4 sources in McKinlay et al. (1985)

New Zealand 485 --- 50.7 Burch and Gunz (1967)

Nigeria: urban 676 49.4 ± 5.0 --- Adekunle et al. (2000)

Nigeria: urban/rural 563 48.4 ± 5.0 48.0 Okofonua et al. (1990)

Panama: urban 350 --- 51.2 Blümel et al. (2006)

*Age at menopause in years via recall interview, defined as one year since last menses.
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Table A.1 (continued): Age at natural menopause in different populations* 

Population N Mean ± SD Median Reference

PNG: rural ? --- 47.3 Scragg (1973)

Paraguay: urban 1,050 --- 47.5 Blümel et al. (2006)

Peru: urban 640 --- 47.10 Gonzalez et al. (1997)

Philippines: urban 500 --- 48.0 Ramoso-Jalbuena (1994)

Russia: urban 1,939 49.0 ± 5.0 --- Balan (1995)

Saudi Arabia: urban 391 48.9 ± 5.7 50.0 Greer et al. (2003)

Singapore: urban 495 49.1 ± 3.9 --- Chim et al. (2002)

Slovakia: urban/rural 6,877 51.2 ± 4.4 --- Magurský et al. (1975)

South Africa: rural 1,850 49.5 ± 4.7 --- Walker et al. (1984)

South Africa: urban 1,255 48.9 ± 4.2 --- Walker et al. (1984)

South Korea: urban 961 49.3 ± 3.5 --- Ku et al. (2004)

Sweden: urban ? --- 50.9 Hagstad (1988)

Switzerland: urban 381 49.8 ± 4.2 50.0 Morabia et al. (1996)

Taiwan: urban/rural 386 49.5 ± 2.3 --- Chow et al. (1997)

Thailand: urban 100 50.3 ± 3.8 --- Tungphaisal et al. (1991)

Turkey: urban 1,516 47.8 ± 4.0 51.0 Carda et al. (1998)

UAE: urban/rural 742 47.3 ± 3.3 48.0 Rizk et al. (1998)

UK 962 --- 50.6 sources in McKinlay et al. (1985)

USA: urban 15,785 --- 51.3 Kato et al. (1998)

Yap: rural 436 --- 48.6 Hunt and Newcomer (1984)

*Age at menopause in years via recall interview, defined as one year since last menses.
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Table A.2: This study’s sample characteristics at baseline 

Pooled (N=41) Active (N=19) Training (N=18)

Age (years) 60.4 ± 1.1 (48-79) 61.8 ± 1.5 (49-72) 59.5 ± 1.8 (48-79)

REE (kcal/d)**** 1250 ± 26 (951-1531) 1278 ± 35 (998-1526) 1191 ± 36 (951-1513)

Weight (kg) 64.4 ± 1.7 (43.8-84.9) 64.7 ± 2.5 (43.8-84.1) 63.9 ± 2.4 (46.3-84.9)

Height (cm) 165 ± 1.3 (151-185) 164 ± 2.1 (152-185) 165 ± 1.8 (151-177)

Waist circ. (cm) 81.3 ± 1.4 (64.3-103.0) 81.6 ± 2.1 (64.3-103.0) 80.4 ± 1.9 (67.2-98.1)

Hip circ. (cm) 99.2 ± 1.3 (86.6-114.7) 98.7 ± 2.0 (87.4-114.7) 100.0 ± 2.0 (86.6-113.0)

FFMDXA (kg) 42.8 ± 0.9 (31.1-59.1) 44.1 ± 1.5 (33.6-59.1) 41.1 ± 1.2 (31.1-51.7)

FFMBIA (kg) 42.3 ± 0.8 (32.0-55.3) 43.0 ± 1.2 (35.5-55.3) 41.3 ± 1.2 (32.0-53.7)

FFM4-SKINFOLDS (kg) 39.7 ± 0.9 (27.3-51.7) 40.3 ± 1.3 (32.5-51.7) 38.6 ± 1.3 (27.3-50.8)

FFM7-SKINFOLDS (kg) 46.9 ± 1.1 (33.2-61.3) 47.1 ± 1.6 (38.2-60.8) 45.9 ± 1.5 (33.2-61.3)

FMDXA (kg) 21.7 ± 1.0 (10.0-35.1) 20.6 ± 1.5 (10.0-31.9) 22.8 ± 1.4 (14.8-33.2)

FMBIA (kg) 22.1 ± 1.2 (7.1-36.4) 21.7 ± 1.8 (7.1-36.4) 22.6 ± 1.7 (13.4-36.0)

FM4-SKINFOLDS (kg) 24.7 ± 0.9 (9.4-36.1) 24.5 ± 1.5 (9.4-36.1) 25.2 ± 1.3 (14.8-34.1)

FM7-SKINFOLDS (kg) 17.5 ± 0.8 (5.5-29.6) 17.6 ± 1.4 (5.5-29.6) 17.9 ± 1.1 (8.8-24.5)

Fat%DXA** 33.1 ± 0.9 (23-42) 31.2 ± 1.4 (23-41) 35.2 ± 1.1 (29-42)

Fat%BIA 33.6 ± 1.1 (16-46) 32.6 ± 1.8 (16-44) 34.7 ± 1.5 (22-46)

Fat%4-SKINFOLDS 38.0 ± 0.8 (22-46) 37.3 ± 1.3 (22-46) 39.2 ± 0.9 (29-43)

Fat%7-SKINFOLDS 26.8 ± 0.8 (13-37) 26.7 ± 1.4 (13-37) 27.8 ± 0.9 (17-32)

  O2MAX                           

(ml O2/kg/min)***
23.3 ± 1.0 (12.9-35.8) 27.3 ± 1.4 (17.8-35.8) 19.6 ± 1.0 (12.9-26.5)

PAL (xREE)*** 1.16 ± 0.02 (1.01-1.49) 1.25 ± 0.02 (1.08-1.49) 1.05 ± 0.01 (1.01-1.24)

*Reported as mean ± SEM (range)

**Active and Training groups differ significantly, independent samples t-test (p <0.05).

***Active and Training groups differ significantly, independent samples t-test (p <0.01).

****Difference between Active and Training groups approaches significance (p =0.09).
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Table A.6: Repeated measures linear mixed models results* 

Group Baseline Week 5 Week 10 Week 16

REE (kcal/d)***,d Active 1278 ± 35 1283 ± 37 1283 ± 33 1277 ± 34

Training 1191 ± 36 1251 ± 38 1205 ± 31 1192 ± 36

Weight (kg)d Active 64.7 ± 2.5 64.2 ± 2.6 64.0 ± 2.6 64.1 ± 2.6

Training 63.9 ± 2.4 63.9 ± 2.1 64.0 ± 2.3 63.7 ± 2.3

Height (cm)d Active 164.0 ± 2.1 163.8 ± 2.0 163.9 ± 2.0 163.8 ± 2.0

Training 164.6 ± 1.8 164.5 ± 1.8 164.7 ± 1.8 164.8 ± 1.8

Waist circ. (cm)b Active 81.6 ± 2.1 83.3 ± 2.6 80.9 ± 2.2 80.6 ± 2.1

Training 80.4 ± 1.9 79.9 ± 2.0 78.9 ± 2.0 79.0 ± 1.8

Hip circ. (cm)d Active 98.7 ± 2.0 97.3 ± 2.1 97.3 ± 2.1 98.4 ± 1.8

Training 100.0 ± 2.0 100.0 ± 1.9 100.3 ± 1.9 99.8 ± 1.9

FFMDXA (kg)d Active 44.1 ± 1.5 --- --- 44.1 ± 1.6

Training 41.1 ± 1.2 --- --- 41.2 ± 1.2

FFMBIA (kg)d Active 43.0 ± 1.2 42.4 ± 1.2 42.6 ± 1.2 42.7 ± 1.2

Training 41.3 ± 1.2 41.7 ± 1.1 41.8 ± 1.1 42.0 ± 1.2

FFM4-SKINFOLDS (kg)d Active 40.2 ± 1.3 40.7 ± 1.4 40.9 ± 1.4 40.9 ± 1.4

Training 38.6 ± 1.3 38.5 ± 1.2 38.6 ± 1.2 38.5 ± 1.2

FFM7-SKINFOLDS (kg)d Active 47.1 ± 1.6 47.9 ± 1.7 47.9 ± 1.7 48.3 ± 1.7

Training 45.9 ± 1.5 45.9 ± 1.4 46.1 ± 1.5 45.9 ± 1.4

FMDXA (kg)b Active 20.6 ± 1.5 --- --- 20.0 ± 1.5

Training 22.8 ± 1.4 --- --- 22.5 ± 1.3

FMBIA (kg)d Active 21.7 ± 1.8 21.8 ± 1.8 21.4 ± 1.7 21.4 ± 1.8

Training 22.6 ± 1.7 22.1 ± 1.5 22.1 ± 1.5 21.7 ± 1.3

FM4-SKINFOLDS (kg)b,c Active 24.5 ± 1.5 23.5 ± 1.5 23.1 ± 1.4 23.2 ± 1.5

Training 25.2 ± 1.3 25.3 ± 1.3 25.4 ± 1.3 25.2 ± 1.2

FM7-SKINFOLDS (kg)b,c Active 17.6 ± 1.4 16.3 ± 1.3 16.1 ± 1.2 15.8 ± 1.1

Training 17.9 ± 1.1 18.0 ± 1.1 17.9 ± 1.1 17.8 ± 1.0

* Reported as mean ± SEM.

** Groups significantly different at baseline, p<0.05.

*** Groups approaching significant difference at baseline, p<0.10.

a. Group main effect significant, overall F -test p<0.05.

b. Time main effect significant, overall F-test p<0.05.

c. Group x time interaction significant, overall F-test p<0.05.

d. No significant effects of group, time, or group x time, overall F-test.  
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Table A.6 (continued): Repeated measures linear mixed models results* 

Group Baseline Week 5 Week 10 Week 16

Fat%DXA**,a Active 31.2 ± 1.4 --- --- 30.6 ± 1.3

Training 35.2 ± 1.1 --- --- 34.9 ± 1.0

Fat%BIA
d Active 32.6 ± 1.8 33.1 ± 1.7 32.5 ± 1.6 32.6 ± 1.6

Training 34.7 ± 1.5 34.1 ± 1.2 34.0 ± 1.2 33.7 ± 1.0

Fat%4-SKINFOLDS
a,b,c Active 37.3 ± 1.3 36.1 ± 1.4 35.6 ± 1.2 35.7 ± 1.2

Training 39.2 ± 0.9 39.4 ± 0.8 39.4 ± 0.8 39.3 ± 0.8

Fat%7-SKINFOLDS
b,c Active 26.7 ± 1.4 24.9 ± 1.3 24.7 ± 1.2 24.2 ± 1.0

Training 27.8 ± 0.9 27.8 ± 1.0 27.6 ± 1.0 27.7 ± 0.9

Active 27.3 ± 1.4 --- --- 27.9 ± 1.5

Training 19.6 ± 1.0 --- --- 21.3 ± 1.0

  O2MAX                     

(ml O2/kg/min)**,a,b

* Reported as mean ± SEM.

** Groups significantly different at baseline, p<0.05.

*** Groups approaching significant difference at baseline, p<0.10.

c. Group x time interaction significant, overall F-test p<0.05.

a. Group main effect significant, overall F -test p<0.05.

b. Time main effect significant, overall F-test p<0.05.

d. No significant effects of group, time, or group x time, overall F-test.  
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Figure A.1: Fat%4-SKINFOLDS within groups at each testing period 

 

 

 

Figure A.2: Fat%7-SKINFOLDS within groups at each testing period 

 

 

Notes: Circles/squares represent means, error bars denote SEM.  Repeated measures 
fixed effects: group p=0.04; time p=0.05; group x time p=0.01. 

Notes: Circles/squares represent means, error bars denote SEM.  Repeated measures 
fixed effects: group p=0.10; time p=0.01; group x time p=0.02. 
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Figure A.3: Fat%BIA within groups at each testing period 

 

 

 

Figure A.4: Fat%DXA within groups at each testing period 

 

 

Notes: Circles/squares represent means, error bars denote SEM.  Repeated measures 
fixed effects: group p=0.49; time p=0.51; group x time p=0.49. 

Notes: Circles/squares represent means, error bars denote SEM.  Repeated measures 
fixed effects: group p=0.02; time p=0.08; group x time p=0.42. 
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Figure A.5: FFM4-SKINFOLDS within groups at each testing period 

 

 

 

Figure A.6: FFM7-SKINFOLDS within groups at each testing period 

 

 

Notes: Circles/squares represent means, error bars denote SEM.  Repeated measures 
fixed effects: group p=0.41; time p=0.12; group x time p=0.08. 

Notes: Circles/squares represent means, error bars denote SEM.  Repeated measures 
fixed effects: group p=0.26; time p=0.51; group x time p=0.27. 



92 

 

 

Figure A.7: FFMBIA within groups at each testing period 

 

 

 

Figure A.8: FFMDXA within groups at each testing period 

 

 

Notes: Circles/squares represent means, error bars denote SEM.  Repeated measures 
fixed effects: group p=0.56; time p=0.77; group x time p=0.16. 

Notes: Circles/squares represent means, error bars denote SEM.  Repeated measures 
fixed effects: group p=0.13; time p=0.71; group x time p=0.63. 
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Figure A.9: FM4-SKINFOLDS within groups at each testing period 

 

 

 

Figure A.10: FM7-SKINFOLDS within groups at each testing period 

 

 

Notes: Circles/squares represent means, error bars denote SEM.  Repeated measures 
fixed effects: group p=0.38; time p<0.01; group x time p<0.01. 

Notes: Circles/squares represent means, error bars denote SEM.  Repeated measures 
fixed effects: group p=0.39; time p=0.01; group x time p<0.01. 
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Figure A.11: FMBIA within groups at each testing period 

 

 

 

Figure A.12: FMDXA within groups at each testing period 

 

 

Notes: Circles/squares represent means, error bars denote SEM.  Repeated measures 
fixed effects: group p=0.82; time p=0.22; group x time p=0.70. 

Notes: Circles/squares represent means, error bars denote SEM.  Repeated measures 
fixed effects: group p=0.25; time p=0.02; group x time p=0.40. 



95 

 

 

Figure A.13: Height within groups at each testing period 

 

 

 

Figure A.14: Hip circumference within groups at each testing period 

 

 

Notes: Circles/squares represent means, error bars denote SEM.  Repeated measures 
fixed effects: group p=0.45; time p=0.58; group x time p=0.34. 

Notes: Circles/squares represent means, error bars denote SEM.  Repeated measures 
fixed effects: group p=0.77; time p=0.29; group x time p=0.17. 
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Figure A.15: REE within groups at each testing period 

 

 

 

Figure A.16:    2MAX within groups at each testing period 

 

 

Notes: Circles/squares represent means, error bars denote SEM.  Repeated measures 
fixed effects: group p<0.01; time p=0.02; group x time p=0.46. 

Notes: Circles/squares represent means, error bars denote SEM.  Repeated measures 
fixed effects: group p=0.11; time p=0.27; group x time p=0.40. 
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Figure A.17: Waist circumference within groups at each testing period 

 

 

 

Figure A.18: Weight within groups at each testing period 

 

Notes: Circles/squares represent means, error bars denote SEM.  Repeated measures 
fixed effects: group p=0.47; time p=0.03; group x time p=0.41. 

Notes: Circles/squares represent means, error bars denote SEM.  Repeated measures 
fixed effects: group p=0.90; time p=0.10; group x time p=0.10. 
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