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Abstract

Tacrolimus trough and dose requirements vary dramatically between individuals of European and 

African American ancestry. These differences are less well described in other populations. We 

conducted an observational, prospective, multi-center study from which 2595 kidney transplant 
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recipients of European, African, Native American, and Asian ancestry were studied for tacrolimus 

trough, doses and genetic determinants of metabolism. We studied the well-known variants and 

conducted a CYP3A4/5 gene wide analysis to identify new variants. Daily doses, and dose-

normalized troughs were significantly different between the four groups (p<0.001). CYP3A5*3 
(rs776746) was associated with higher dose-normalized tacrolimus troughs in all groups but 

occurred at different allele frequencies and had differing effect sizes. The CYP3A5*6 

(rs10264272) and *7 (rs413003343) variants were only present in African Americans. 

CYP3A4*22 (rs35599367) was not found in any of the Asian ancestry samples. We identified 

seven suggestive variants in the CYP3A4/5 genes associated with dose-normalized troughs in 

Native Americans (p=1.1×10−5 to 8.8×10−6) and one suggestive variant in Asian Americans 

(p=5.6×10−6). Tacrolimus daily doses and dose-normalized troughs vary significantly among 

different ancestry groups. We identified potential new variants important in Asians and Native 

Americans. Studies with larger populations should be conducted to assess the importance of the 

identified suggestive variants.

1. Introduction

The incidence of end stage kidney disease is increasing worldwide and kidney 

transplantation is the optimal treatment option due to better outcomes relative to dialysis 1. 

Tacrolimus is a potent immunosuppressant that is used in >90% of transplants to prevent 

acute rejection and maintain graft function 1. Tacrolimus has a narrow therapeutic index and 

troughs are therapeutically monitored to reduce toxicity and improve efficacy 2. Tacrolimus 

has high inter-individual pharmacokinetic variability 3. It is well known that tacrolimus 

troughs and dose requirements vary between recipients of European and African ancestry, 

African Americans have significantly lower tacrolimus trough concentrations in comparison 

with European Americans and require higher tacrolimus doses to achieve similar troughs 

concentrations 4–6. Little is known about tacrolimus trough and dose requirements in other 

populations although some data suggest that Native American transplant recipients require 

lower tacrolimus doses possibly due to decreased oral clearance 7,8, others found that there 

were no difference between tacrolimus doses between European Americans and Native 

Americans 9.

Cytochromes P450 (CYP) 3A4 and 5 are the main drug metabolizing enzymes for 

tacrolimus and the genes encoding for these proteins contain important genetic variants 
10–12. These variants differ by ancestry and for some significantly different minor allele 

frequencies (MAF) 13,14. The CYP3A5 variant, CY3A5*3 (rs776746), is a loss of function 

variant and has been well-studied with tacrolimus pharmacokinetics 15,16. CYP3A5*6 
(rs10264272) and *7 (rs413003343) are reduced or loss of function variants which are 

observed exclusively in individuals of African ancestry 17. CYP3A4*22 (rs35599367) is also 

a reduced function variant which occurs primarily in European ancestry and is associated 

with variation in tacrolimus pharmacokinetics 18–22. We have shown in our work that up to 

50% of variability in tacrolimus pharmacokinetic is explained by CYP3A genetic variants 

and clinical factors 23–25. Identifying the influential variants in each population is important 

in developing accurate precision medicine dose models for tacrolimus therefore we 

previously conducted genome wide association studies (GWAS) of tacrolimus troughs in 
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kidney transplant recipients of European and African ancestry to identify ancestry specific 

genetic variants 24,25. We were able to find only one study in Native Americans7 on the 

pharmacogenomics of tacrolimus.

The evidence for the association between genetic variation and tacrolimus disposition is 

strong and a Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline 

provides recommendations on tacrolimus directed dosing using the CYP3A5*3, *6, and *7 
variants 26. Individuals who carry one or no loss of function alleles are CYP3A5 protein 

expressers and should receive significantly higher tacrolimus doses. The guideline does not 

however address the effect of clinical factors, the CYP3A4*22 variant, and variants that may 

be present in populations other than European Americans and African Americans.

In the current study, we compared tacrolimus daily dose requirements and troughs in 

European American, African American, Native Americans and Asian American transplant 

recipients. Additionally, we evaluated the association of well-known tacrolimus variants 

(CYP3A5*3, *6, *7 and CYP3A4*22) with troughs in the four populations. We also 

conducted a CYP3A4 and CYP3A5 gene wide analysis to identify new variants possibly 

present in transplant recipients of Asian or Native American ancestry.

2. Methods

2.1 Study Design and Patient Selection

We studied transplant recipients enrolled in the Deterioration of Kidney Allograft Function 

(DeKAF) and GEN03 genomic studies. These are multicenter, observational studies, which 

prospectively followed kidney transplant recipients from 2005 to 2016 at seven study sites in 

the United States and Canada. They are registered at www.clinicaltrials.gov (NCT00270712 

and NCT01714440). Participants were enrolled at time of transplant and signed informed 

consents approved by the institutional review boards of the enrolling centers. Transplant 

recipients were selected for this analysis if they were >18 years old, received oral immediate 

release tacrolimus as maintenance immunosuppression, had tacrolimus trough 

concentrations measured as part of clinical care in the first 6 months posttransplant and 

genome wide association (GWA) genomic data available. Ancestry of each individual was 

determined using principal components (PC) of ancestry computed from the GWAS panel 

and through knowledge of self-reported ancestry. When using top 3 ancestry PCs, patients 

were classified as either European, African, Native, or Asian American ancestry 

(Supplemental Figures 1 and 2). In the first group, most self-identified as Caucasian/

European American. In the second, most self-identified as Black/African American. In the 

third, most self-identified as Asian/Asian American. In the fourth cluster, most self-

identified as Native American or as Hispanic/Latino ethnicity. The Native Americans (as per 

self-report) and Hispanic/Latino ethnicity (as per self-report) were indistinguishable by PC 

and were therefore analysed as one group. There was concordance with self-reported 

ancestry and PC defined ancestry, however, when discordance was raised, PC defined 

ancestry was used in that individual to reduce genetic confounding.
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2.2 Tacrolimus Trough Concentrations and Doses

Tacrolimus troughs and corresponding doses in the first 6 months posttransplant were 

obtained as part of routine clinical care and taken from the medical record for analysis. Two 

tacrolimus troughs were obtained per week in the first 8 weeks and two troughs were 

obtained per month in months 3, 4, 5 and 6 for a maximum of 24 troughs per patient. 

Largely, the target trough concentrations were 8 to 12 ng/mL in the first 3 months, then 6 to 

10 ng/mL in 3 to 6 months posttransplant. Dose normalized trough concentrations were 

determined by the ratio of trough concentration (ng/ml) and total daily dose (mg).

2.3 Genotyping

Recipient DNA obtained at time of transplant from peripheral blood lymphocytes. DNA was 

isolated from lymphocytes by centrifugation after red blood cell lysis. Genotyping was 

conducted on an exome-plus Affymetrix Transplant Array chip (Affymetrix, Santa Clara, 

CA) with ~800,000 high quality genomic markers after quality control and >34M markers 

after imputation using the 1000 Genomes phase 3 and Genome of the Netherlands v5 27–31. 

Data quality control was carried out with PLINK software (version 1.90b1a) 32. Genotypes 

were phased using SHAPEIT2 33; and imputed with IMPUTE234. Imputed variants with 

information score more than 0.8 were considered of good quality and used in the analysis. 

Genotypes were subjected to a 95% call rate threshold. Samples with very high 

heterozygosity and suspected contamination were confirmed and removed if high 

heterozygosity could not be resolved. Individual variants were excluded if they were 

monomorphic or had low MAF (<0.5%). Approximately, 49,000 measured and imputed 

variants from the CYP3A4 and CYP3A5 genes were taken from the GWA panel and used in 

this analysis. After removing variants in linkage disequilibrium (LD), the effective number 

of variants was ~10,000. CYP3A4 and CYP3A5 region was defined between positions 

95,000,000 and 105,000,000 on chromosome 7.

2.4 Statistical Analysis

An ANOVA was used to assess the difference in tacrolimus doses and troughs among the 

populations and a p-value <0.05 was considered statistically significant. The association 

between natural log (ln) transformed dose-normalized tacrolimus troughs and known 

variants, CYP3A5*3, *6, *7 and 3A4*22, were tested in each of the 4 populations using 

linear mixed-effects models. A log transformation was used to ensure that the outcome was 

normally distributed. Dose-normalized trough concentrations initially started low and rose 

quickly until day 9 after transplant and then plateaued in the early weeks after transplant as 

we have previously described 35,36. Therefore, a simple spline method was used to model the 

effect of time on all trough concentrations, with the change in slope occurring at day 9. The 

models included a random intercept and slope for days posttransplant and were adjusted for 

age, gender and enrolling center. An interaction analysis was then conducted to compare the 

effect sizes of CYP3A5*3 among different groups in relation to the European American 

group. We also conducted a gene wide association analysis of the CYP3A4 and CYP3A5 

genes in the Native and Asian American populations. The analysis was adjusted for age, 

gender, enrolling centre, and CYP3A5*3, and the level of significance was set at a p-value of 

<5×10-6. The p-value for gene wide association test was adjusted based on a Bonferroni 
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correction using the effective number of single nucleotide polymorphisms (SNPs) (~10,000) 

which took into account SNPs in linkage disequilibrium 37. In our previous studies, the 

known genetic and clinical variables explained ~50% of variation of tacrolimus 

concentrations. Given the 77 recipients in the Native American group and the significance 

level of 5×10−6, we have 78% power to identify a variant that can explain 20% additional 

variation; for the 91 Asians American, we have 82% power to identify a variant explaining 

18% additional variation. Analyses were conducted with R software version 3.5 (www.r-

project.org) and SAS version 9.4 (SAS Institute, Cary, NC, USA).

3. Results

We studied 1966 European American, 461 African American, 77 Native American and 91 

Asian American ancestry transplant recipients (Table 1). Tacrolimus total daily doses, trough 

concentrations and dose-normalized trough concentrations by ancestry are shown in Table 2 

and were significantly different in the four populations (p <0.001). Native Americans and 

European Americans received the lowest median tacrolimus daily dose (5 mg) and the 

African Americans received the highest median daily dose (8 mg) (p <0.0001). Moreover, 

Native Americans had the highest dose-normalized tacrolimus trough concentration (1.73 

ng/ml per total daily dose), and the African Americans had the lowest troughs (0.78 ng/ml 

per total daily dose) (p <0.0001). Tacrolimus troughs over the 6 months were generally 

similar between the populations except for African Americans who had significantly lower 

median trough concentrations (p <0.0001).

Alleles frequencies (AF) of the four well-known variants, CYP3A5*3, *6, *7, and 

CYP3A4*22, are shown in Figure 1. The CYP3A5*3 variant, was present in all four groups, 

and was most common in European ancestry (AF=0.93) followed by Native American 

(AF=0.84) and Asian American (AF=0.72), while the African Americans had the lowest 

frequency (AF=0.30). The CYP3A5 *6 and *7 variants were exclusively present in African 

Americans. The CYP3A4*22 variant allele frequency was ≤ 0.05 and was not observed in 

those of Asian ancestry.

Each of the tested variants was associated with higher dose-normalized trough 

concentrations (Table 3). The CYP3A5*3 variant was associated with higher dose-

normalized tacrolimus troughs in all populations (p = 3×10−9 to 5×10−121). The size of the 

effect varied where the largest effect of the *3 allele was in European Americans. Native 

Americans, Asian Americans, and African Americans had similar effect sizes for 

CYP3A5*3 (Table 3) but were significantly different to the European Americans (p<0.001). 

In European Americans, each additional copy of *3 allele resulted in 1.86 times increase in 

dose-normalized troughs. In the other ancestry groups, the magnitude of increase in dose-

normalized troughs of one *3 allele was similar to each other (1.6 in Native Americans, 1.55 

in Asian American, and 1.54 in African Americans). In African Americans the *6 and *7 

variants also were associated with an increase (each *6 and *7 allele increased dose-

normalized troughs by 1.35 and 1.58 times, respectively) in dose-normalized troughs. 

Additionally, CYP3A4*22 was associated with higher dose-normalized tacrolimus troughs 

but only in the European Americans. The effect size of CYP3A4*22 variant was about one-
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half that of the CYP3A5*3 variant and was associated with 1.34 times increase in dose-

normalized troughs.

In the CYP3A4 and CYP3A5 gene wide analysis in the Native American and Asian 

American recipients, no additional new variants were associated with tacrolimus dose-

normalized trough concentrations (Table 4) after correcting for multiple testing. However, 

we found seven suggestive variants in the Native American group with (minor allele 

frequency) MAF > 0.05 (p=1.1×10−5 to 8.8×10−6). Six of those variants were located near to 

each other and 4 were in complete LD (D’=1). In Asian Americans, one variant, rs6950190 

with a MAF of 0.384, had a suggestive association with tacrolimus dose normalized dose 

troughs (p=5.6×10−6). The suggestive variants were imputed SNPs with a notable 

imputation quality (information score = 0.861–0.986).

4. Discussion

In the present study we evaluated the differences between tacrolimus troughs, doses and 

dose normalized troughs between four populations; European Americans, African 

Americans, Native Americans, and Asian Americans. African Americans received 

significantly higher doses, but achieved lower trough concentrations when compared to the 3 

other populations. Our findings are in accordance with previous studies, including our own, 

which reported that African American patients require higher tacrolimus doses than 

European patients to achieve similar therapeutic trough concentrations 35,38–43. Two studies 

reported that Native Americans required lower tacrolimus doses than European Americans 
7,8, however, in our current analysis of Native Americans tacrolimus doses and troughs were 

not different although they had the highest dose-normalized troughs of all groups. Our 

findings are supported by a small study that also found no difference between doses required 

to maintain therapeutic tacrolimus troughs in Native Americans, Hispanics and Non-

Hispanic whites9. Direct comparisons of our trough and dose data to published work is 

difficult since targeted concentrations are generally higher than contemporary trough targets, 

doses are reported in mg/kg, and few studies report dose-normalized troughs, which would 

allow for direct comparison.

We evaluated the four variants (CYP3A5*3, *6, *7 and CYP3A4*22) known to be strongly 

associated with tacrolimus metabolism and their frequency in the four populations. The 

CYP3A5*3 loss of function variant was present in all four populations but the AFs were 

significantly different (Figure 1). The African Americans had the lowest AF of CYP3A5*3 
(0.30) whereas the European population had the highest AF (0.93). African Americans also 

carried two additional loss of function variants (CYP3A5*6 and *7) which were not 

observed in our other populations. Despite African Americans carrying three common 

CYP3A5 loss of function variants they still cumulatively carried fewer loss of function 

CYP3A variants than the other populations, which accounts for their significantly higher rate 

of tacrolimus metabolism, lower troughs and higher dose requirements compared to other 

groups. The AFs of CYP3A5*3, *6, and *7 in our study are similar to previous reports for 

African ancestry, European, and Asian populations 44,45. Although infrequent, others have 

reported that individuals of Latin American ancestry also carry CYP3A5*6 (AF=0.037) and 

CYP3A5*7 (AF=0.025) as do individuals from the Middle East who carry CYP3A5*6 
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(AF=0.019) 45. In a study of 94 Native Americans in Montana, United States, by Fohner et 

al,46 the AF of CYP3A5*3 was 0.92 which is slightly higher than what we observed (0.84). 

They also found that CYP3A5*6, and *7 were not present 46. In another study of 24 adult 

Native Americans kidney transplant recipients, CYP3A5*3 had an a higher AF (0.94) 7.

CYP3A5*3 is the most studied CYP3A5 variant in association with tacrolimus and has been 

evaluated in Europeans18,21,47–52 African Americans5,24,35,53, Asian 52,54–60, and Native 

Americans7. Most studies have compared dose-normalized troughs in carriers of only the 

CYP3A5*3 allele to those who are not carriers. It is well established that carriers of 

CYP3A5*3 have significantly higher dose-normalized trough concentrations. We also found 

that the CYP3A5*3 variant had a large effect size in all four populations. However, the 

magnitude of the CYP3A5*3 effect varied by ancestry with the largest effect in the 

European American population. The effect size was lower but similar in the other three 

populations compared with European Americans in this study. This effect size may be 

explained by additional, yet unrecognized, variants that are important in the other 

populations; thereby reducing the overall effect of the CYP3A5*3 allele. The different effect 

sizes among the ancestry groups suggests that dosing models for each group will need to be 

developed for each population and that generalizability of an effect size will likely not be 

possible. We previously developed a tacrolimus dosing model for African Americans 61 and 

propose that dosing models such as this will be needed for each ancestry population for 

precise dosing predictions.

Tacrolimus is also metabolized by the CYP3A4 enzyme and is likely the predominant 

enzyme in those of European ancestry since they commonly carry the CYP3A5*3/*3 

genotype and therefore do not express functional CYP3A5 enzyme. The CYP3A4*22 is the 

only variant in the CYP3A4 gene that has been consistently associated with tacrolimus 

metabolism18–20,62–65. CYP3A4*22 has a low MAF and an effect size about one-half 

relative to the CYP3A5*3 variant which is most likely because CYP3A4*22 is not a 

complete loss of function variant with a smaller reduction on tacrolimus clearance 62. We 

observed CYP3A4*22 in our European American, African American and Native American 

ancestry recipients (MAF≤0.05) whereas it was not found in our Asian American group, 

which is consistent with other published data 46,66,67. CYP3A4*22 was only significantly 

associated with tacrolimus in our European ancestry population. The lack of effect in our 

other populations may be due to its low AF and it will require a larger sample size to 

identify the effect. Because of the smaller effect size some propose that CYP3A4*22 may 

not be important clinically 68,69 which may be true when the variant occurs alone or in the 

absence of other variants. We recently described 4 patients who carried both CYP3A5*3/*3 

and CYP3A4*22/*22 genotypes who had significantly reduced tacrolimus metabolism and 

very low dose requirements26. Therefore, when it is combined with other reduced or loss of 

function alleles, the effect can be quite profound. The current tacrolimus CPIC guidelines do 

not include recommendations regarding the CYP3A4*22 variant however, future updates 

should consider adding. The association of tacrolimus with ABCB1 variants is conflicting.
53,70 In one study carriers of CYP3A4*22 the effect of ABCB1 was associated with a small 

but strong effect on tacrolimus in renal transplant patients71.
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We previously conducted GWAS on tacrolimus troughs and found in European Americans 

that the CYP3A5*3 and CYP3A4*22 variants were important determinants of metabolism 

and in African Americans the CYP3A5*3, *6 and *7 were important 24,25. A recent study, 

using an extreme tacrolimus trough phenotype sampling model with targeted next-

generation sequencing, identified potentially new variants associated with tacrolimus 

disposition. Numerous variants in the CYB5R2 gene were associated with extreme 

tacrolimus troughs in African Americans, including the potential loss of function variant 

rs6173305772. We hypothesized that genetic variants beyond CYP3A5*3 may also explain 

additional tacrolimus trough variability in Asian American and Native American transplant 

recipients. Therefore, we conducted an exploratory gene wide association analysis in the 

CYP3A4 and CYP3A5 genes and found no variants that were significantly associated at a 

gene wide significance level; however, several variants were suggestive and worthy of 

further investigation. Seven variants with modest MAF (0.07 to 0.19) were suggestive in the 

Native American group, of which 4 of the variants were in complete LD with each other. 

These variants were in intergenic regions so the mechanism of their effect is unclear. Genetic 

variants in strong LD (r2≥ 0.8) to those suggestive SNPs were identified, however, none of 

them were reported to have any function. Identifying the function of those variants might be 

aided by using gene-tissue expression or cell-line validation techniques that we have 

developed for tacrolimus metabolism73; however, that was beyond the scope of the present 

study. In the Asian Americans, one variant, rs6950190, in the dynein cytoplasmic 1 

intermediate chain 1 gene (DYNC1I1) with a MAF of 0.384 also had a suggestive 

association with tacrolimus dose-normalized troughs. The DYNC1I1 gene, is involved in 

limb development and its association with metabolism is uncertain 74. One limitation to the 

current study is the lack of adherence and dietary information which could affect tacrolimus 

trough concentrations, however, when nonadherence was suspected, the trough 

concentration around that time was excluded. Because of the large number of variants 

studied, the power for discovery is low and these variants must be validated in other 

populations.

5. Conclusion

There are significant differences in tacrolimus daily doses and dose-normalized troughs by 

ancestry. Native American had highest dose normalized tacrolimus trough concentrations 

and African Americans had the lowest dose-normalized troughs due to higher frequency of 

CYP3A5 expressers. Genetic variants that influence tacrolimus metabolism also differ 

across populations. CYP3A5*3 is an important predictor of tacrolimus exposure in the four 

populations studied however its effect size on metabolism varied among the populations. In 

addition to CYP3A5*3, CYP3A5*6 and *7 are important predictors of tacrolimus 

metabolism in African Americans, and CYP3A4*22 is important in those of European 

ancestry. No additional variants at a gene wide significance level were identified for Asian or 

Native American kidney transplant recipients but several were suggestive and should be 

further evaluated. Larger populations of Asian and Native American ancestry recipients are 

needed to assess importance of suggestive variants.
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Figure 1. 
Allele Frequencies of Known Variants among the Four Ancestry Groups
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Table 1.

Recipient Demographics and Characteristics by Ancestry

Native Americans 
(N=77)

Asia Americans 
(N=91)

African Americans 
(N=461)

European Americans 
(N=1966)

Male Gender, n (%) 41 (53.25%) 56 (61.54%) 287 (62.26%) 1232 (62.67%)

Age at transplant (years), mean 
(s.d.) 49.44 (±14.84) 45.23 (±14.29) 47.25 (±11.95) 51.24 (±13.20)

Weight (kg), mean (s.d.) 78.57 (±16.63) 67.37 (±13.38) 85.72 (±18.64) 83.03 (±19.55)

SPK, n (%) 6 (7.79%) 1 (1.10%) 17 (3.69%) 148 (7.53%)

Diabetes before transplant, n 
(%) 38 (49.35%) 22 (24.18%) 163 (35.36%) 704 (35.83%)

Living donor, n (%) 38 (49.35%) 44 (48.35%) 144 (31.24%) 1336 (67.96%)

Antibody induction

 Monoclonal 27 (35.06%) 39 (42.86%) 209 (45.34%) 746 (37.95%)

 Polyclonal 46 (59.74%) 47 (51.65%) 240 (52.06%) 1109 (56.41%)

 Combination 2 (2.60%) 2 (2.20%) 7 (1.52%) 53 (2.70%)

 None 2 (2.60%) 3 (3.30%) 5 (1.08%) 58 (2.95%)

Steroid present at day 14 51 (66.23%) 59 (64.84%) 269 (58.35%) 1266 (64.43%)

SPK: simultaneous pancreas-kidney transplant
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Table 2.

Tacrolimus Doses and Concentrations by Ancestry in the First 6 Months Posttransplant

Native American 
(N=77, obs= 1370)

Asian Ancestry 
(N=91, obs=1747)

European Ancestry 
(N=1966, 

obs=34594)

African American 
(N=461, obs= 8187) P-value

Trough Concentration 
(ng/ml) 8.3 (6.5–10.3) 8.4 (6.7–10.6) 8.4 (6.5–10.3) 6.9 (5–9) <0.0001*

Total Daily Dose (mg) 5.0 (3.0–8.0) 6.0 (3.5–8.0) 5.0 (4.0–8.0) 8.0 (6.0–12.0) <0.0001*

Dose-Normalized Trough 
Concentration (ng/ml per 
total daily dose in mg)

1.73 (1.06–2.67) 1.50 (0.98–2.53) 1.56 (1.02–2.40) 0.78 (0.53–1.2) <0.0001*

N=number of patients; Obs = number of tacrolimus troughs; Numbers are represented as median (interquartile ranges);

*
ANOVA test was used for comparison
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Table 4:

Variants with Suggestive Associations with Dose-Normalized Tacrolimus Troughs in Native Americans and 

Asian Americans
1

Variant Effect size P-value 
(95%CI)

MAF Location of SNP

Native Americans

 rs139190940_TG 0.31 (0.17–
0.44)

8.8×10−6 0.18 inter-genic region on chromosome 7, located downstream of SDHAF3 
(succinate dehydrogenase complex assembly factor 3) and upstream of 
an uncharacterized gene LOC105375416

 rs73238872_G
2 0.27 (0.14–

0.40)
6.6×10−5 0.19

 rs878502_C
2 0.27 (0.14–

0.40)
6.6×10−5 0.19

 rs28369152_C
2 0.27 (0.14–

0.40)
6.6×10−5 0.19

 rs28413832_C
2 0.27 (0.14–

0.40)
6.6×10−5 0.19

 rs2158498_G 0.30 (0.17–
0.44)

1.1×10−5 0.19

 rs151269855_G 0.53 (0.27–
0.79)

8.5×10−5 0.07 downstream of LOCLOC105375416 at position 97,215,572 on 
chromosome 7

Asian Americans

 rs6950190_C 0.38 (0.22–
0.55)

5.6×10−6 0.38 intronic SNP in DYNC1I1 (dynein cytoplasmic 1 intermediate chain 1) 
on chromsome 7 at 95,558,358

CI: confidence intervals; MAF: minor allele frequency; SNP: single nucleotide polymorphism

1
Longitudinal linear mixed effects model included a random intercept and random slopes for days after transplant and adjusted for CYP3A5*3, 

age, gender and transplant center

2
Variants are in linkage disequilibrium with each other, D’ = 1.0, p <0.0001.
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