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Abstract
The overlap of neural circuits involved in episodic memory, relational learning, trace conditioning, and
interval timing suggests the importance of hippocampal-dependent processes. Identifying the functional
and neural mechanisms whereby the hippocampus plays a role in timing and decision-making, however,
has been elusive. In this article we describe recent neurobiological findings, including the discovery of
hippocampal ‘time cells’, dependency of duration discriminations in the minutes range on hippocampal
function, and the correlation of hippocampal theta rhythm with specific features of temporal processing.
These results provide novel insights into the ways in which the hippocampus might interact with the stria-
tum in order to support both retrospective and prospective timing. Suggestions are also provided for future
research on the role of the hippocampus in memory for elapsed time.
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1. Introduction

Previous research suggests that the hippocampus plays a secondary role in inter-
val timing, with the effects of hippocampal or fimbria-fornix lesions being mainly
observed in altered accuracy (e.g., proportional underrepresentation of target du-
rations on the order of 20%), increased precision (e.g., sharper peak functions in
the range of 10–40 s), and resetting of the timing process (e.g., internal clock) fol-
lowing the insertion of a gap or retention interval into the to-be-timed signal (Meck
et al., 1984, 2013; Tam et al., 2013; Yin & Meck, 2013). A series of recent findings in
rats, however, have dramatically expanded our understanding of the involvement
of the hippocampus in duration discrimination, memory for elapsed time, and the
representation of temporal sequences. In particular, the discovery of ‘time cells’ in
the hippocampus that provide a framework for time stamping and binding sequen-
tial events in memory (MacDonald et al., 2011, 2013), as well as the observation that
the hippocampus is crucial for resolving difficult duration discriminations in the
multiple-minutes range (Jacobs et al., 2013), suggest that a reevaluation of the role
of the hippocampus in temporal processing may now be appropriate. These issues
are discussed in terms of the distinction between retrospective and prospective
timing which leads to the proposal that the hippocampus may be involved in bridg-
ing the temporal gaps that inevitably occur in retrospective timing as well as in
prospective timing on the order of minutes to hours. Finally, distinctive patterns of
neural oscillations in the cortex, striatum, and hippocampus during temporal pro-
cessing are described in order to argue for differential roles of cortico-striatal and
hippocampal circuits in temporal integration (Gu & Meck, 2012; Hattori & Sakata,
2013). Individual-trials analysis of neural oscillations and spiking activity suggests
that cortico-striatal circuits serve a timekeeping function while the hippocampus
plays a complementary role by providing a temporal representation for the flow
of events in memory (Allman et al., 2014; Lustig et al., 2005; MacDonald, in press;
Meck, 2002a, b; Merchant et al., 2013a; Wimmer & Shohamy, 2011).

2. Hippocampal ‘Time Cells’ Bridge the Gap in Memory for Discontiguous
Events

The hippocampus is essential to remembering the flow of events in distinct expe-
riences and, in so doing, bridges the temporal gaps between discontiguous events.
Recent electrophysiological recordings provide evidence of ‘time cells’ that appear
to encode successive moments during an empty temporal gap between the key
events composing a sequence in a behavioral task, while also encoding the subject’s
location and ongoing behaviors (Eichenbaum, 2013; MacDonald et al., 2011, 2013).
Furthermore, just as most hippocampal place cells ‘remap’ when a salient spatial
cue is altered, most ‘time cells’ form qualitatively different representations and can
be shown to ‘retime’ when the main temporal parameter is altered. Hippocampal
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neurons also differentially encode the key events and disambiguate different event
sequences to compose unique, temporally organized representations of specific
experiences. These findings suggest that hippocampal neural ensembles segment
and temporally organize memories in much the same way that they represent lo-
cations of important events in spatially defined environments.

Despite these observations, however, there have been serious challenges to iden-
tifying the role(s) that the hippocampus plays in timing and time perception given
that hippocampal (or fimbria-fornix) lesions do not seem to produce dramatic
impairments in duration discrimination using traditional psychophysical proce-
dures in humans or lower animals such as rats and mice (e.g., Meck, 1988, 2006a;
Meck et al., 1984, 2013; Melgire et al., 2005; Tam et al., 2013; Vidalaki et al., 1999;
Yin & Meck, 2013). One possibility is that we have been looking at timing in the
wrong way. Psychologists, for example, have distinguished between prospective
and retrospective timing to highlight the difference between our sense of dura-
tion in an ongoing experience and our remembered duration of a past experience.
Humans and other animals employ prospective timing in the seconds-to-minutes
range in order to learn the durations of events and can organize their behavior
based upon this knowledge when they know that duration information will be im-
portant ahead of time. In contrast, when temporal judgments are made after the
fact, thus precluding the subject from consciously attending to the durations of
events, duration information must be deduced or extracted from other memory
representations. Interestingly, a recent meta-review of 117 timing studies by Block
et al. (2010) shows an interaction between the way in which temporal judgments
are made (i.e., prospectively or retrospectively) and cognitive load (e.g., attentional
and memory demands) on participant’s judgments of interval duration. For retro-
spective time judgments, estimates under a high cognitive load are longer than un-
der a low cognitive load. For prospective judgments, the reverse pattern holds, with
an increased cognitive load leading to shorter estimates. Whether or not differ-
ent processes and/or neural circuits are involved in prospective and retrospective
timing remains to be determined, but it is certainly intriguing to consider the pos-
sibility that the hippocampus is differentially involved in these timing processes as
proposed by MacDonald (2013).

The neural circuits engaged by interval timing, as we currently understand
them (Buhusi & Meck, 2005; Merchant et al., 2013a), overlap considerably with re-
gions typically implicated in the learning and expression of procedural memories
(Squire, 1992). In this way, interval timing is inextricably linked to the processes
whereby we optimally organize specific behaviors and other cognitive resources
in time (e.g., attending in temporal context — see Buhusi & Meck, 2009; Henry
& Herrmann, 2014; Meck, 2005), and this process can operate independently of
the hippocampus. Conversely, in retrospective timing paradigms, duration judg-
ments involve remembering the temporal context of events that composed a past
experience, and as such our attention is on the past. The hippocampus and sur-
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rounding areas in the medial temporal lobe would be expected to be important
for this latter process, but not necessarily the former. Consequently, the challenge
is to understand how remembered duration is encoded in the hippocampus and
medial temporal lobe, and how this representation differs from and contributes
to prospective timing mediated by other neural circuits in service of cognition
and emotion (Coull et al., 2013; Droit-Volet & Meck, 2007; Droit-Volet et al., 2013;
Howard & Eichenbaum, 2013; Maguire & Mullally, 2013; Meck & Benson, 2002;
Meck & MacDonald, 2007; Nadel & Peterson, 2013).

3. The Hippocampus and Memory for Elapsed Time

Episodic memory involves remembering specific events along with the spatial,
temporal and/or situational context in which they occurred, a capacity that ap-
pears to have enjoyed a long and prosperous evolutionary history (Allen & Fortin,
2013). Most of our daily experiences have overlapping elements, including specific
items and locations, but each experience occurs at a unique time. Thus, remem-
bering how long ago specific events occurred, a form of temporal context memory,
is important for distinguishing individual episodes. The discovery of timing signals
in hippocampal neurons, including evidence of ‘time cells’ (Gill et al., 2011; Kraus
et al., 2013; MacDonald et al., 2011, 2013; Pastalkova et al., 2008 — see also Naya &
Suzuki, 2011) and of gradual changes in ensemble activity over the course of many
minutes (Mankin et al., 2012; Manns et al., 2007), suggests that the hippocampus
contributes to this capacity. Until recently, however, behavioral evidence support-
ing the role of the hippocampus in temporal context memory of this sort had been
lacking. This is likely the result of previous studies using event durations typically in
the range of 2–40 s when assessing hippocampal dependence (see Table 1 in Meck
et al., 2013), a timescale known to require cortico-striatal circuits (e.g., Allman et al.,
in press; Jones & Jahanshahi, 2014; Lewis & Meck, 2012; Meck et al., 2008; Merchant
et al., 2013a, b). A recent break-through occurred following the development of a
non-spatial paradigm designed to test the hypothesis that the hippocampus is im-
portant for keeping track of elapsed time over several minutes (Jacobs et al., 2013).

Jacobs et al. (2013) trained rats on three conditions, each involving the presenta-
tion of three sample durations: (1) 1–3–12 min, (2) 1–8–12 min, or (3) 1–1.5–12 min.
On each trial, rats were presented with a single row of three plastic cups, each filled
with distinctly-scented sand (Odors A–C). In order to obtain a food reward, rats
were required to determine how much time had elapsed since the previous trial,
and to select the odor associated with that interval: Odor A (e.g., sage) signaled a
1-min interval, Odor B (e.g., cinnamon) signaled the intermediate interval (3, 8, or
1.5 min), Odor C (e.g., orange peel) signaled a 12-min interval. Following the ani-
mal’s choice, all experimental materials were removed from the test arena and the
next to-be-timed interval began. To assess performance on each interval compar-
ison separately, a plastic disk covered the sand in one of the two incorrect cups
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(selected randomly); the covered odor could be smelled, but the rat could not dig
in that cup on that trial. This resulted in three types of interval comparisons per
condition (e.g., 1-min vs. 3-min, 1-min vs. 12-min, and 3-min vs. 12-min). This design
allows a characterization of the rats’ temporal resolution at these longer timescales,
and the flexibility to control for potential confounding factors (e.g., frequency and
location of stimuli, rewards, and interval comparisons).

Jacobs et al. (2013) found that rats have a robust ability to remember durations at
this timescale and that the hippocampus was essential for discriminating smaller,
but not larger, temporal differences (measured in log units), consistent with a role
in temporal pattern separation. Importantly, this effect was observed at longer (e.g.,
8–12 min) but not at shorter (e.g., 60–90 s) timescales, suggesting an interplay
between temporal resolution and timescale in determining hippocampal depen-
dence. These results offer compelling evidence that the hippocampus plays an
important role in remembering how long ago events occurred. As a consequence,
one of our goals should be the development of hybrid procedures that might prove
useful in the study of a broader range of event durations than typically employed
in laboratory studies with rodents (Buhusi et al., 2013; Cordes & Meck, 2013; Maggi
et al., 2014).

The approach of Jacobs et al. (2013) may be used in future studies to test poten-
tial double dissociations between brain structures and time ranges (e.g., Fouquet
et al., 2013; Jacobs et al., 2013, Fig. 4; MacDonald et al., 2012; Meck, 2006a, b; Yin
& Meck, in press). For example, while maintaining the same ratio of durations
(e.g., 1:1.5), but by changing their range (e.g., 1-min vs. 1.5-min, and 8-min vs. 12-
min comparisons), a dissociation between the hippocampus and striatum might
be observed such that inactivating the hippocampus would facilitate temporal dis-
crimination at the shorter time range, but impair discrimination at the longer time
range. In contrast, temporarily inactivating the striatum would impair temporal
discrimination for the shorter time range, but facilitate discrimination at the longer
range. At the moment, Jacobs et al. (2013) have presented compelling evidence for
the role of the hippocampus in this exchange, and have set the stage for the inves-
tigation of the striatal component of this potential double dissociation.

4. Neural Oscillations in the Cortex, Striatum, and Hippocampus During
Temporal Processing

Neural oscillations are an important feature of temporal processing and support
communication among multiple brain areas. Increases in oscillatory activity and
the specific phase relations of action potentials (neural spikes) to ongoing theta
oscillations have been shown to sub-serve attention, working memory, and other
cognitive processes (e.g., DeCoteau et al., 2007a, b; Fell & Axmacher, 2011; Gu
et al., 2013; Tort et al., 2008). Cortico-striatal circuits in particular, are central to
temporal processing and the coordination of timing and motor control (Meck et
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al., 2008). The role of the hippocampus in temporal processing, however, is less
clear and may depend upon task demands (Yin & Troger, 2011). In order to ex-
plore the relations among different patterns of neural oscillation in frontal-striatal-
hippocampal circuits, local field potentials (LFPs) have been recorded simulta-
neously from the frontal cortex, dorsal striatum, and dorsal hippocampus (CA1
region) of rats performing temporal judgment and temporal reproduction tasks
(e.g., Gu & Meck, 2012; Hattori & Sakata, 2013; Sakimoto et al., 2013). The oscillatory
features recorded from these circuits allow for the determination of the underlying
‘temporal code’ as well as the relation among different brain areas during temporal
processing (e.g., Sakata, 2006; Sakata & Onoda, 2003).

Gu and Meck (2012) reported increased power for low frequency (<15 Hz) os-
cillations in the cortex and striatum during the timing of signal durations in the
range of 2 to 30 s. In contrast, the hippocampus showed increases in power at
frequencies > 20 Hz, suggesting a broadening of the band size for low-frequency
oscillations in this structure. An increase in gamma power (>100 Hz) was also ob-
served with response preparation in the hippocampus and striatum. Spectrograms
showed increased low-frequency oscillations in relation to temporal processing in
both the frontal cortex and striatum. When trials were categorized into early vs.
late responses, theta (4–8 Hz) frequency bands in the cortex and striatum showed
leftward power shifts for early responses compared to those for late responses, sug-
gesting the cortical-striatal circuits either produced or tracked the timekeeping
process. Moreover, spiking activity in the striatum appeared to be entrained to stri-
atal theta rhythm. This latter result is consistent with the findings of MacDonald et
al. (2013) showing that ‘time cells’ are synchronized to ongoing hippocampal theta
oscillations. These data suggest that hippocampal theta may be contributing to the
organization of ‘time cell’ sequences, in part, by providing a timekeeping/clocking
signal that is synchronized with the striatum (Gu et al., 2013). Evidence of corti-
cal or striatal neuron spikes entrained to hippocampal theta oscillations and the
coherence of theta oscillations among the cortex, hippocampus, and striatum im-
plicates the importance of theta rhythms for communication across multiple brain
areas (e.g., Berke et al., 2009; DeCoteau et al., 2007a, b; Dzirasa et al., 2010; Tort et
al., 2008).

Hattori and Sakata (2013) recorded lever presses and LFPs of rats performing
in a 30-s peak-interval (PI) procedure. The distribution of mean lever presses as a
function of the signal duration since trial onset displayed a Gaussian-like function
that peaked, as expected, at about 30 s (peak time). The LFP power spectra showed
that striatal theta rhythm (4–8 Hz) was well correlated with timing performance
during the trial and could be used to predict peak times on a trial-by-trial basis, sug-
gesting that this frequency range is important for temporal processing (e.g., Onoda
& Sakata, 2006; Sakimoto et al., 2013). Taken together with the findings of Gu and
Meck (2012), the conclusion is that the power of low frequency (<15 Hz) neural os-
cillations is well correlated with temporal processing in the supra-seconds range.
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Cortical, striatal, and hippocampal LFPs show differential patterns of neural oscil-
lation, however. The fluctuation of theta power (4–8 Hz) in cortico-striatal circuits
prior to the response used to classify signal durations showed leftward shifts in tri-
als with early timing responses compared to trials with late responses, implicating
its relation to the rate of temporal integration (i.e., clock speed). In contrast, neither
hippocampal or cerebellar oscillations showed these correlations with trial-by-trial
variation in performance (Onoda et al., 2003), although there were within-trial cor-
relations suggesting a more general monitoring of the passage of time and/or the
time of occurrence of specific of events within a trial (e.g., signal onsets and offsets).
These findings point to the importance of neural oscillations in temporal process-
ing and cognition (Cheng et al., 2008; DeCoteau et al., 2007a, b; Gu et al., 2013)
and lend support to the striatal-beat frequency model of interval timing (Allman
& Meck, 2012; Coull et al., 2011; MacDonald & Meck, 2003, 2004; Matell & Meck,
2000, 2004).

5. Summary

The findings reviewed here indicate that the hippocampus, typically not consid-
ered to be involved in the measurement of event durations, makes use of ‘time
cells’ to create timeframes for memory of elapsed time which may be applied to ret-
rospective timing. Moreover, as durations enter the minutes-to-hours range there
appears to be greater reliance on the hippocampus, especially when making diffi-
cult discriminations. These findings suggest a continuous interaction between the
striatum and hippocampus, underlying the interplay between prospective and ret-
rospective timing as well as time-based decision making, intertemporal choice, and
episodic memory (Heilbronner & Meck, 2013; Jacobs et al., 2013; MacDonald, 2013;
Meck et al., 2012; Raskin et al., 2011; Shi et al., 2013).
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