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STABLE MANIFOLDS AND
HYPERBOLIC SETS

' MORRIS W, HIRSCH AND CHARLES C. PUGH

- Q. Introductlon Let U be an open set in a smooth mamfold M and fU-M
a C!' map. A fixed point x of fis hyperbolic if the derivative T,f: M, — M, is an
isomorphism and its spectrum is separated by the unit circle. If T= T, f this
means that M, has a unique splitting E, x E, under T'such that T|E, isexpanding
and T|E, is contracting. That is, for suitable equivalent norms on E, and E,,

max{|TE ], | TIEN} < 1.

" The class:ml stable manifold theory says that this convenient behavior of T, f
is reflected in the behavior of f in a neighborhood Vof x: there is a submanifold
W of M tangent to E, at x such that

W'nV={yeV[lim(f[vyy =x},

Lo -]
there is also a submanifold W* tangent to E, such that
Wenv= {ye V|lim (f]V)"*y = x}.

See for example Kclley [l Appendix], [15] and [14], which contains further

references.

~ We call W* and W* local stable and unstable manifolds of S at x, respectively. It
turns out that they enjoy the same differentiability as £, and if f is C* they depend

continuously on fin the C* topologies.

For technical reasons we allow M to be an infinite dnnens:onal mamfold
modelled on a Banach space,

The notion of hyperbolic fixed point can be generalized to that of a hyperbolic
set A c U. This means that f(A) = A, and T, M (the tangent bundle of M over A)
has an invariant splitting E; & .E2 such that 'IflE, is expanding and 7]’|E2 is
contracting. (For this theory M is assumed finite dimensional and A compact,
although generalizations are possible.) In Smale’s theory of Q-stability, and
related topics [12], [13], “generalized stable manifold theorem™ plays a key role:
there is a neighborhood V of A, and submanifolds W¥x), W*(x) tangent to Ez(x)
and E,(x) respectively for each x € A, such that

W) = {pe V{limd(f|Vyy, (7]V)a) = ¢

n-* o

W (x) = {ye V|limd((f|V)~"y, (f]V)~ "x) = O},

R=*

133
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If fis C* so are W*(x) and W¥(x), and they depend continuously on fin the C*

topologies. Moreover W*(x) and W*(x) and their denvatlves along W*(x) and
W¥(x) up to order k depend continuously on x.

" The proof of the generalized stable mamlbld theorem prooeeds in the following

steps:

(A) Let E = E, x E, be a Banach space; T:E — E a hyperbolic linear map
expanding along E, and contracting along E,; E(r) < E the ball of radius r; and
J:E(r)— E a Lipschitz perturbation of T|E(r). The unstable manifold W for f
will be the graph of a map g: E,{r) = E,(r) which satisfies W = f(W) n E(r). We
ate led to consider the followmg transformation I in a suitable functxon space
G of maps g: : :

graph T {g) = E(r) n f (gfaph g).

We call F,(g) the graph transform of g by f. The fixed point g, of l", gives the
unstable manifold of f; the existence of a fixed point is proved by the contracting
map principle if f'is sufficiently close to Tpomtwnse, and the Llpschxtz constant of
f = Tissmall enough. .

(B) Iifis C* (ke Z,) so is g,. This is proved by mductlon on k. The successive
approximations I'}(g) converge C* to g,, but not, apparently, exponentially. The
fibre contraction theorem (1.2) is needed to get this convergence.

(C) Let A = U be a hyperbolic set. Let .# be the Banach manifold of bounded
maps A - M, and i e.# the inclusion of A Let % = {he #|h(A) = U}. Define

Jo:% — M by
Sy =feh éf".

Then f, has a hyperbolic fixed point at i. By(A), £, has a stable manifold #™* < .#.
For each xeA, define W(x) = ev (#™) = {ye M|y = y(x) for some ye#*}. It
turns out that this definition gives a system of stable manifolds for f along A.

In §1 we collect various facts about maps and function spaces, including the
Lipschitz inverse function theorem and the fiber contraction thcorern. In §2 we
carry out steps (A) and (B), and (C)is done in §3.

In §4 technical criteria for hyperbolicity are established. These are applied in
§5 to prove that if ¥ < A is an invariant smooth submanifold then the non-
wandering set of f] V is a hyperbolic set for f{V.

The smoothness of the subbundles E* and E*, considered as ﬁelds of subspaces
of T, M, is studied in §6, which does not depend on the other sections. It is shown
that E? (also EY) is always Holder; if the stable manifolds have codimension 1,
then E* is Lipschitz, and is C* on every invariant 'C? submanifold of A if fis C2. I
the stable manifolds have codimension 1 and fill up an open set and f'is C3, then
they provide a C! foliation of that set. Both the stable and the unstable foliations
are C! if fis a C? volume preservmg Anosov diffeomorphism of a compact 3-
- manifold.

§7 deals with hyperbolic sets of perturbations of f. There is a compact neighbor-
hood V of A containing a unique maximal hyperbolic set A, and A, contains
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every invariant set in ¥ These maximal hyperbohc sets are structurally stable i in

a certain sense.

While preparmg this paper we were fortunate to have had helpful discussions
with participants in the 1968 Conference on Global Analysis in Berkeley. It is a
pleasure to record our gratitude to them, especially to M. Shub, R. F. Williams and
J. Moser. Special thanks are due to S. Smale for being the source of so many of the
ideas devcloped in this paper.

1. L:pschltz maps. A map f: X — Y between metric spaces 1s Lipschitz if there
exists a number k such that d(fx, fy) < kd(x, y) for all x, y € X. The smallest such
k is the Lipschitz constant L(f). I X = Yand L(f) < 1 then fis a contraction. If
fis not Lipschitz then L{f) = o0

1.1, (CONTRACTING MAP THEOREM). Let X be a complete metric space and
f:X — X a contraction. Then f has a unique fixed point x,, equal to lim,_, . /"(x)
Jor all xeX. If (f)=k<1 and g:X -+ X has afxed pomt Yo such that
d(f¥0. 9¥o) < & then d(x,, yo) < £/(1 — k).

Proor. The proof of the first assertlon is quxte standard and is therefore omitted.
The last assertlon is true because

. d(x, yo) = d(fxo, ) | .
< d(fxo. fyo) + d(fye yyo) '
< kd(xq, yo) + &

If X is 2 set and Ya metric space, .#(X, Y) denotes the space of all maps X = Y
with the uniform topology, generated by the collection of sets

(A d)feAX, 1,2 > 0)

N f) = {ge #(X, V)|dfx,gx) < ¢ for all x}.

We write d(f,g) = sup,{d(fx,gx)} < co. If Y is complete and f, e #(X, Y), the
set of maps at a finite distance from f,, namely ;

{ge A(X, V)|d(fo, 9) < 0} = H(X, Y[y

is a complete metric space with metric d(f, g); it is open and closed in #(X, 1.
A bounded subspace of #(X, Y) means a bounded subspace of some #(X, Y; o).
If X is a space, the subset C(X, Y) = #(X, Y) of continuous maps i is closed If X
is metnc and 1 > O, then the subspace .

HAX, Y) = {fEJl(X Y)IL(I)SI}

where

is closed in ./{(X Y).

The contracting map theorem has asa corollary the functnon assigning to cach
contraction of a complete metric space its fixed point is continuous.

A fixed point x4 of f:X — X is called attractive if lim,. , f"(x) = x, for all
x € X, The following extension of the contractmg map principle is useful for
proving maps to be C*, o ,
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1.2. FIBER CONTRACTION THEOREM. Let X be a space and f: X - X a map
having an attractive fixed point pe X. Let Y be a metric space and {g.},.x a family
of maps g,:Y— Y such that the formula F(x,y) = (fx,g,y) defines a continuous
map F:X x Y-+ X x Y. Let q¢ Ybeafxedpomtforgp. Then (p,q)€ X x Yisan
attractive fixed point for F provided

(a) limsup, ., L{g ) <1 for each xe X.

ProOOF. For each (x, y)e X x Ywe must prove lim__, _ F(x, ¥) = (p, 9). Therefore
we could replace X by {p} | J {/"(x)}n = n,} for any ny and an arbitrary x. Hence
we may assume instead, by (a), that

1) : ' L(g,)$l<l forall xe X.

The theorem is proved if we show that z,F"(x, y) — q.
Call d(gn,4.9) == 6, Since f"(x) = p as n— oo and F is continuous at (p, q),
8, — 0. By definition of F, m,F"*!(x,") = gm, ©... o g, and so

d(my " H(x, ), q) < d(m,F*(x, q), gpng)) + d(g..;-x(q), qQ
< Ad(n,F(x, g), ) + 8,
s /I[Ad(nzF" x,q) + 6,..] + 6,
< A"d(n,F(x,q),q) + 2" 713, + ... + 6,

w.hich is Z}n ol""féj. This tends to zero because, for any k, 0 < k < n,
ZJ." ’6, = E A"'"&, + Zl”"’é,

< ().” .+ ﬁ.”'*“)max(é,) + (1 + ... + A" max(s))
f .

jzk

)."“"max(é AL = 2) + max(d)/(1 — 4),
Jzk
which tends to zero as k and n—k— oo.
Hence
d(n, F(x, ¥), q) < d(m, F(x, ), 7, F"(x, q))
. - =1 .

+ d(myF(x,q), q) < Ad(y,q) + Y, A"7¥5, >0 asn— oo
i=0 :

REMARK 1. It is easy to see that il 4 = X is such that f(4) = 4, f{x)—=p
uniformly in A4, and Lg,) < x <1 for all xe A, then the convergence f "(x, y) to
(p,g)is uniformin A x Y.

REMARK 2. Suppose f is a contraction of X and each g, is a contracnon of Y
with I{g,) bounded away from 1. It is not clear whether there exists a metric on
X x Yfor which F is a contraction. The product metric will not suffice as the
maps f(x) = 3x, g,(y) = |x|'* + §(y — [x|*/*) show. This is the phenomenon of
“shear” in the y-direction. It seems likely that no such metric exists in general.

Next we collect certain elementary relations between Lipschitz constants. In
order to minimize notation, we assume the existence of all sums, compositions,
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inverses, etc. that are needed to make sense of the notation. Thus “f + g” implies
that f and g are maps into a Banach space, and f + g is the map x — f{x) + g{x).
Il X, and X, are metric spaces, the metricin X, x X, is d(x, y) = sup{d(x;, ),
d(xli y 2)}
~ L.3. PROPOSITION.
(a) L(f~g) < L(f)Lig). '
(b) L(f + g) < L{f) + L(g). and L(f) — L{g) < L(f - g).
(©) d(fy°90.f2°92) < d(f1. 1) + L(S)dg,,92)
(d) Recall that H#,(Y, Z) is the set of maps h: Y — Z with L(h) < A. Composition
defines a map H#(Y,Z) x C(X, Y) = C(X, Z) having Lipschitz constant < 1 + A.
(¢) For fixed hy € (Y, Z), the map C(X, Y) - C(X, Z) given by g — hy < g has
Lipschitz constant < L{h,).

PROOF. (a), (b) and {€) are obvious; (c) is proved by writing
d(fy°01.02°9:) S d(fy°901; °gx) + d(fz °g1.f2°82)
And (¢) 1mp11es (d).

1.4. PrROPOSITION. Consider maps between topological subspaces of Banach spaces.
(@) If f is injective and L(f — g) < L{f~')"%, then g is infective, and Lg™)
CS[LHYT - L —-g9)]

®) Jg7 ~ b7 < Lig™Y) |k — gl

(c) Let % be a space of invertible maps g such that L{g™") < A Then the Lipschitz
constant of themap g »g~tis < A .

Proor. (a): Follows from the two inequalities,

lox —gl 2 | =l =g —x g -/
[fe =l 2 LA~ Hx = o

énC_l

| (b): Follows from
g™t =B = g ekt = gt ogoh™ < LY h - ol

This proves (c).

The standard modern proof of the Invcrse Functlon Theorem (see [9] deals
with a C* small perturbation of an invertible linear map; a C! inverse is produced.
Abstracting this idea leads to the following result.

1.5. LipscHITZ INVERSE FUNCTION THEOREM. Let E, F be Banach spaces, UcE
and V< F open sets and f:U — V a homeomorphism such that f ~! is Lipschitz.
Let h:U ~ F be such that L(WL(f~*) < 1 and put g = f+ h:U—F.Thengisa
homeomorphism onto an open set, and

LY s LY = Lg -NLY ) =[L7) - Lg - f)] "~

Note that no assumption on the existence of a linear isomorphism E — F (to
which f might be nearly tangent) is made. In fact it is not clear that a lipeomor-
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phism between open subsets of E and F implies the existence of a lmear 1somor-
phism between E and F.

PrOOF. The mjectlv:ty of g and the estimate on L(g~?) follow from 1.4a. Since
g~! is Lipschitz, it is continuous. It remains to prove that if x, € U, then g maps
some neighborhood of x, onto a neighborhood of g(x,). We may assume that
h(xo) = 0 and g(x,) = f(x,); if not, replace h by the map x + h(x} — h(x,). = -

Let juxtaposition denote composition, and put hf ~! = p:¥— F. We shall
prove that I 4+ v:¥— F sends a neighborhood N of f(x,) onto an open set N’;
thenf+ h'=(f+ h)f~Yf = (I + v)f maps f ~'N onto (I + v)N = N'.

We may assume f(x,) = O F, and hence v(0) = 0. Put L{v) =1 < 1. Let V
contain B, = B,(0), the ball in F of radius r and center 0. Put s = r{1 — 1) and let
Z be the complete metric space of maps w:B, = F such that w(O) 0 and
L{iw) < A/(1 — 7). We seek a map w, €% such that I+ w,is a nght inverse for
I + v; thisis equivalent to wy = — (I + wy).

IfweX then (I + w)B, c B, since if |x] < s, we have

I + wix] < |x] + L(w)]x[ <s1+ A1 —-2A)=r |
Therefore the composition —u(I + w) = ®(w) is defined; it is easy to compute
~ that ¥(w) e . The map ®: 2 — & has Lipschitz constant < L(v) < 1, so that
® has a unique fixed point wo € 2. Since (I + o)(I + w)x = x for all x € B,, it
follows that I + v maps the open set (I + v)~! (int B,) onto int B,. This complctes
the proof of 1.5. ,

1.6. S1zE ESTIMATE. Let X, Y be metric spaces and f: X —+Ya buectzve map such -
that L(f~%)™! > A Then fB{x) > B, (fx) forallr > 0 and xc X.

Proor. If d(y, x)} > r, then r < d(y, x} < A1~ 'd(fy, fx), so that d(fy, fx) > dr. This
means f(X — B(x)) = Y — B,(fx). Since f is bijective the result follows. .

ReMARK 1. The Lipschitz LF.T. (1.5) asserts that |L(g'1) Lif~H -0 with
L{g — f), but says nothing about L(g~! —f~!). I f is a diffeomorphism then »
L{g~! — f~")does approach 0 with L(g — f). Consider however the nondifferenti-
able homeomorphism f:R — R given by .

S = x ifx<0,
: =2x ifx=20. ’

Let g(x) = f(x) + & Then L(f — g) = 0, but if ¢ # O then L(f ' = g™ ) = 4.

REMARK 2. The Size Estimate can be extended to local homcomorphxsms in
Banach spaces E, F as follows.

1.7. ProPoSITION. Let U < E be open and f: U — F a local homeomorphism whose
local inverses all have Lipschitz constants < 2~ 1. If B(x) < U, then B,(fx) < f B,(x)
and there is a unique continuous map g:B,(fx) = B/x) such that gf (x) = x and
fog = 1. Moreover L(g) < A~ 1

PROOF Left to the reader. -

2. The invariant manifolds of a hyperbollc fixed point. Let E be a Banach space
and Tan isomorphism of E; that i is,a linear homeomorphism of E onto E. We call



rd

STABLE MANIFOLDS AND HYPERBOLIC SETS 139

T hyperbolic if its spectrum lies off the unit circle. If Tis hyperbolic so is T!
because the spectrum of T‘l is the set of rec1procals of elements of the spectrum
of T

Il Tis hyperbolic there is a umque splitting E, x E; = E invariant under T
such that the spectrum of T; = TJE, lies outside the unit circle, while that of E,
is inside; see [11]. Moreover E, and E, can be renormed so that |T;[ < 1 and
1T < 1; see [8], and also Theorem 3.1 below. We shall always assume that
E, and E, have such norms, and that on E the norm is |(x,, x,)| = max{|x,}, [x,|},
for x, € E; and x, € E,.

The quantity t = max(|| LI ITe ) < tis s quite useful. We shall call it the
skewness of T.

It is convenient to put m(T}) = | 77| ~*. Then [T;x| = m(Ty)x|.

The iterative behavijor of a hyperbolic Tis described by the following result.

2.0. ProPOSITION. Let T-E — E be a hyperbolic linear map and let E=E . X E,
canonically. The points of E,, E, are characterized respectively by |T~"x| -» 0,
|Tx| — 0, or equivalently by these quantities being bounded, as n — co. Furthermore,
if Vis a bounded neighborhood of 0 in E, such that TV > Vthen ({ ), 0T "W) U E,
is a neighborhood of E, for any uniform neighborhood Wof TV — Vin E.

PRrOOF. A uniform neighborhood of a set A in a metric space X is any set con-
taining N (4) = {x € X :d(x, a) < & for some ae A} for some & > 0.

The first statement is trivial. The second statement is proved as follows..

- Since Vis bounded there is, for each x, € E,, x, # 0, a largest value n = n(x,)
such that T"x, € ¥/ Thus, T"*x, € TV— V. Clearly, n < log(radius ¥/|x,})/log
(m(T)) since m(T,)'}x,| must be no greater than radjus V.

Hence, for any (x,, x,)e E with x; # 0, T"(x,, x,) € N{TV— V) for n = n(x,)
and & = | T|"|x,| This proves 2.0. In fact this proves (| J,,oT"W)U E, to be a
neighborhood of E, which is nonuniform only at infinity. Q.E.D.

The object of stable manifold theory is to demonstrate similar behavior for
~ suitable perturbations of T, and for the more general situation where the fixed

point is replaced by a hyperbolic set.

Throughout the rest of §2, T will be a hypcrbohc lsomorphlsm E— E of skew-
nesst,0<7 <1

Let E(r) < E be the closed ball of radius r about 0.

We shall be interested in proving that for f: E(r) - E, close enough to T,

= SYEm), Wz = NS ~"(Er),

) nz20
are submanifolds close to E(r), Ex(r). We shall assume r < oo.
2.1.LEMMA. Let f:E(r) = E satisfy L{f - T) < & < (1 ~ D1 + ). If x, y € E(r)
and |x, — y,| = |x; — y,| then
| |fl(x) -zt - e)lx, y,I

2 (v 4 e)x -
= Ifz(x) fzb’)l
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Ifx(x) fl()’)’ = (Tx(x -+ =T - (f; — 7'1)(}’)|
|T,(x1 - ) - s[x = YI
> 1x 1=yl —elx — ]
=(t” "'5),3‘1 .VJL

since |x —'y] = max(lx, — y,}, |x, — y,|) '—" ey — - yy), Similarly, If;(x) ~ 20|
<txs -yl +ex -y < (x + g)x, — ,|1 Since £ < (1 — 1)/(1 + 1) we have
e<l-—t and_a < 771 — 1 which shows that 7 # ¢ < 1 < 7~ ! — g,/ completing
the proof. i Q.ED.

2.2. PROPOSITION. If fiE(—E and L{(f—T)<e<(l — 1)1+ 1), then
W, = (exof(E(r)) isthe graphof afunction U, ~— E,(r)while W, = Nazof "(E()
is the graph of a function U, — E(r), where U, U, are subsets of E (r), E,(r).

REMARKS. This permits U, or U, to be empty. The notation f ~*(E(r)) means
{x € E(r):f(x), ....f"(x) are defined and in E(r)}. One should regard 2.2 as a unique-

ness theorem. _
ProoF. We deal first with W,. Let x, y € W, with x, = y,. We must show x, = y,.
By assumption f"(x), f"(y) € E(r) for all n > 0. By 2.1,
2r > I(f;?lx - (Ml = lfl(f"' x) — f(f“"'y)l
2(r s)](f"")lx - (" )z}’j >zt - 5)",3‘1 - J’:,-
Asn -+ o0, (z™! — )"~ co0 and 50 x,; = y,. Hence W, is a graph as claimed.

Now supposcx y€ W, and x; = y,. We must show x, = y,. Foreveryn > 0
there exist x', y € E(r) such that f*(x") = x, f"(y') = y. Suppose, for some 0 < j < n,

|(f’x'), f’)")ll - ](f"x)z fly )2|
Then by repeated application of 2.1,

")y = (") = ["x), = ("))

which is the same as 0 > |x, — y,}, so that x, = y,.
On the other hand if

) = ) < KF%): — U))
for all 0 < j < nthen
x; = ya| = [(/"x), — (/"))
= 1A = )

ST, = ()] + el ) - ‘(y)l
=G+ A1), — (f“'*y')zl

S <@+ £)"le

< Zr(t + £)".

Since |x2 - y2| is independent of n and (z + ¢)* — 0, we have x; = y,. Thxs shows

that W, s a graph as claimed, proving 2.2.
Alternately, we could have proved the second part of 2.2 by looking at W, for
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S ~*. Unfortunately, f ~! is not defined on E(r), so it was easier to proceed directly.
We shall come again to this problem in 2.4. :

DEFINITION. A stable manifold W* for f: E(r) — E is the set of x € E{r), such that
| /x| is defined and stays bounded as n — co. Clearly fW* = W?*. An unstable
manifold W* for f: E(r) — E is the set of x € E(r) such that | f ~"x| is defined and
stays bounded as n — . Clearly f ~1W* < W".

For suitable £ it turns out that W* = W,, W* = W,, and W® is contracted
toward the point W* n W?* by f while W* is contracted toward the point W" n W
byf L

Before stating the basic theorem for unstable manifolds, we define the graph
transform. Il E = E; x E,, r > 0, and f:E(r) — E, then we write ' {g) = k pro-
wded h,g:E(r) = E,(r) and :

J(graph(g)) n E(r) = graph(h).

[, is called the graph transform for f If T= T, x T, is hyperbolic respecting
E, x E,thenforanyg:E,(r) - E,(r),I'1(g)isdefinedandequals T, o g o T,“]E (.
Similarly, if I';(g) exists then Iy(g) o f; o (1, g) = f, (1, g) where 1 is the 1dent|ty
map of Ey(r). If fl o(l,g)is 1nvert1ble this means that

l"_r(g) =f°(1,9)° [fl °(1,9)] llEx(")-

DEFINITION. CHX,, Y) is the set of functions f: X — Yof class C* (first k derivatives
exist at all points of X and are continuous) with bounded k norm

|/l = sup max(|f(x)}, [(Df),]. ... (DS )

DEFINITION. For r > 0 fixed, we let A4™*(T) = {fe CHE(r), E):L(f — T) < g and
|f (0)| < ¢}. This could be called a “Lipschitz neighborhood of TIE(r) in C{E(r), E).”

The k-norm makes CXE(r), E) complete and defines the so-called uniform C*
topology. \

2.3. UNsTABLE MANIFOLD THEOREM FOR A POINT. Given 0 <t <1l and r > 0
there exist ¢ > 0, independent of r, and 0 < & < & with the following properties. If
T= T, x T, is a hyperbolic linear operator on E, x E, of skewness 1 and f:E(r)
— E is a Lipschitz map satisfying L(f — T) < ¢, |f(0)] < &, then there is a unique
mapg;: E\(r) » Ey(r) whose graphis W, = (s of™E®). Moreover Lig,) < 1 and

gsisofclass Ctif fis. The assignment f > g, is continuous asamap A §(T) — CHE,(r),
E,(r). The map (f|W})™': Wy, — W, is a contraction of W, into its interior (that is,
into {x € Wy:|x,| < s} for somes < r).

REMARK 1. By 2.2 uniqueness of g, is assured; it is only a matter of producing
a function E,(r) — E,(r) whose graph is contained in its own fimage.

ReMARK 2. Choice of ¢ and & are restricted no more than ¢ < (1 — 7)/(1 + 1),
é < &’rr.
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ProOF OF THEOREM 2.3. We shall first prove 2.3 under the assumptlon f (0)
Afterwards the general case is easily handled.
Choose any :

N O<e<( -7/ +)=@C" =D~ + 1).
We claim this ¢ does the job' three forms of the inequality are used s .
’ a< 1 ~ e <t 4 and(t +e)/(1 —t£)< 1.

Let % = {g E.Il(El(r) E (r)) g =0 and L(g) < 1}. We show tha{ rp¢$-9
is a well-defined contraction. Clearly ¢ is complete. Put _ .

vAg)=fi°(l,gh &Ag) =f2°(1,9)

Thus ¢ {g) is a map E,(r) -» E, and ¢g) is a map E,(r) - E,. Restricting to
E,(r), we have L(y,(g) — T}) < L(f — T) < &. Hence, by the Lipschitz inverse
function theorem (1.5), ¥ (g) is a lipeomorphism, and

L] *)s[m; V- L - T ST - |
and so, since (y,g)0) =
(w,g)(El(r» S B~ ~ ) > Ej)

Hence (¥, 9] l]El(r) is a’ well-defined map into E,(r) with Lipschitz constant
<[r~'-2]"! < 1 Since L(gb,g) < (r+¢) <1and (¢gX0) = 0, it follows that
T g) = ¢,g°[y 91" Y|E\(r) is a well defined map ¥ — 4.

To see that I, is a contraction, take g,, g, €% and estimate

|rf(g1)"'rf(92)| SI(¢]91) W9, (4’1-91) ('I’fgz) Y
+ (¢ g1)° ('/’ 2) (¢fgz) W J‘gl) l
< L(d),g,){ 'I’fgl) — (,92) 7|+ |6,9: — b9

< (z + S)L((ng1) 1)- l'/’_rg1 - ngzl

+ (& + 2lg, - g3l
S(v+ et —g) gy — yzl + (@ +ellg, - g
=t +efc™ —eNe+ ("t = s))lgl - gzl
=((r+ &)/l — Tﬁ))lgl 92' '

(by 14b) . -

chce I'yhasa umque fixed pomt gre9. . _ .
As remarked before, 2.2 now unphes that W, = (YazoS™E(r)) = graph g,.
Consider the following commutative diagram '

W, '__f_',f(w,)

7"-1 ! l “i .
( Y E
| Mo Way) |
where ,(x,, X,) = X,. SinceL(g,) < 1, wehave [x — | = |x; — yyforx = (xy, x,),
¥ = (yy, y1) € W;. This shows that xn; is an isometry from W, onto E,(r). Since
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Sio(1,9) = Y Ag,)~" is a contraction, the same is true for f|W,. Therefore f|W,
has the unique fixed point 0. Any fixed point offin E(r) must belong to the unstable
manifold W}, and so 0 is the only fixed point of f.

Next we investigate the differentiability of g, Assume fe 4 }(T), with ¢ as

above, and f(0) = 0. Define

Af:(E x EXr) = E x E,
(x, y) = (fx, Df.y);

similarly for ge ' = & n CYE,(r), E(r)),
| Ag:Ey(r) x Eqr)— Eqfr) x Ex(r),
(x1 ¥1) P {gxy, (Dg);, ¥1)-
Even though Afis not Lipschitz close to T x 7, we still claim the graph transform
for Af is a well defined fiber contraction of ¥ x ¢, where

o = {(he COE,(r), LE,, Ey)| [h(x,)] < 1 for all x, € E,}
= unit ballin thc Banach space of continuous bounded maps E(r) » L(E,, E,).

Indced,for(g k) e % x X weput .
Ca/dg.h) = (F;Q(xl) (Df)e= (1, h(f;)) [(Df1)g {1, h(C.))]")

where &, = (0,0)"'(x,), &3 = 9(¢,) and-§ = (§,, &,). One can see directly that
I'sr is well defined and contracts fibers; but it is instructive to be more formal.

Composition on the left by T defines a hyperbolic map of skewness z, namely
T,:8(1) > & for & = L(E, E); the canonical invariant splitting & = &, x &, is
obtained by setting &, = L(E, E)). (Recall that £(1) is the unit ballin &)

f|T"-T|<se then composition on the left by T° defines T :8(1) + & and
UTy —Ty)=LT' —-T) < e Hence I'r;, the graph transform for Ty, is a
contracnon of

88 = {HeCOL,(1).8 (1))]11(0) 0and L(H) < 1},’ |
well deﬁned by the formula
FT#(HxSi) = T'z°(1 H(Sl)“[T' QLHES N

For any he# and {, € E,(r) we apply the functor (), to the linear map
h(fl) E, > Ez to get h(¢,;), € ¥&. The deﬁnmon of [y ¢ can be wntten

T/, xy) = (T ;g)(xx), L w,rg),,(h(f Yo

It is now clear that I', ;1% x & — ¢ x 5 contracts both base and fibers uni-
formly. Therefore, by the fiber contractlon theorem (1 2) thcrc isa umque attrac-
tive fixed point (g, ) of T, ;.

Observe that A(T,g) = T, {(Ag); this is a consequence of the naturahty of A,
which is just the tangent functor. Take, then, g, = 0 and consider the convergence
(TaP8gy) ~ (g h) 35 n— co. But (T, MAgo) = ATIf;) 5o that Allgg) con-
verges to (g, hy); thus D(g ) exists and equals h,. e ‘
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Now suppose f is of class C, k > 2, |f|. < M, and 23 holds for k— 1 > 1.
Choose ¢, ¢e<é& <(l ~1)(l+ 1), and choose r, 0 <r <r, so that
Mr <& ~ ¢ r < 1. Then let f' = f|E(r'). We claim that Af’ € A(T x T). We
have L(Af" — T x T) < ¢ since :

A = Tx TXx, ) — (Af — Tx TYx, y)| ’
< max({(f’ — T)x) — (f' — TX J(Df )y — Ty = (Df ). — TW)
< max(elx — x}, |(Df), — (D), )y + [P — Ty — ¥)) ,
< max(elx — x'|, M|x — x| + ¢ely — ¥ :
< & max(lx — x|y - y],

for [x — x| = |y — | implies
Mrix — x| + ey — y| < (MF + €))x — x| < &]x - x],
while [y — | = [x — x| implies |
Mrlx ~ x| + ely — y| < (MF + gy — v

Hence Af' € #,.(T x T)so by the induction hypotheses there is a unique solution
gas oA Tap(gas) = gas and g, is of class C*~1. But clearly, g, /|E,(*) x E,{r)
solves this equation too. Hence g; is of class C* on E,(r).

We know that (f{W)™1: W, — W, is a contraction with L((f|W})™?) <
(t™' — &)~ So choosing N > log(r/r')/log(z ™! — &) we have '

o, (f|W) ME(r) = E(r-(z™! — &)%) < E(r).
Since I' {g,)} = g, we have o '

*) gr = (fﬂ)z o(l, gf:) ° [le° (Lgfr)]—llEl(r)'
Hence g, is of class C* on all E,(r). This formula (*) holds for any fe 4" (T) with
the same N. Hence as f— fin #KT), it is clear that f* — f', C* which implies
Af” — Af’, C*~*, which implies by induction (since Af* e & (T x T)) g, 7 = Gagn
C*~1, which implies g, - g, C* Hence, using the formula (*) for gj we have
gr—9nChasf-fck o '

This completes the proof of 2.3 in case f(0) = 0. N

The case f(0) # 0 is obtained formally; the idea is to translate the origin of E
to the fixed point of f, which we must prove exists. We may assume 2.3 true for all
0 <t <1and r >0 provided the map involved takes O to 0 and lies in A" (T),
e<(l—17/1l +1). . '

Choose 0 < 6 < min(g, £r1). For |f{0)| < & and L(f — T) < ¢, f has a unique
fixed point p, = (py, p,) in E(r). To see this observe that the map -

ﬁ(xpxz) (T '(xx_ — Tyxy = fi(xp X2, 2%, X2))

is a contraction of E(r) and has the same fixed points as f. By the contracting map
theorem (1.1) p, depends continuously on fe H(T), and |p < 3(1 ~ 7 — &)~ %,
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We remark that the inequality & < e?rr implies

=11l ~7—-¢r

0 < »
1+t —¢

for

glr

(=t —tr @ — -t
R U WSl

-1 1—-1. .
1+T—1)(1—T—1+I)T _ ’

- 1+

@t -

(! —s—l)(l—t—e)r
< -1
1+177" —¢

CPutf=r—6(1—-7t—&7' 21— [p,| Define
fER)~E  J0)=f(+p)-psy

Observe that f is well defined, L(f— T) = L(f — T) < & and f(0) = 0. Hence
there existsea unique g = g;:E () ~ E,(f) such that w,(f) = (NazoS"E(P
= graph(g;). Defineg = g i Ey(r )~ Ey(r),

g(x,) = p; + gy e [lﬁ;(g;)] "oy - p:)

To see that g is well defined, observe that YAQE(A) b E((z~* — ¢)f), since
L@ ~!) < (t~* — &)~!, as was shown earlier. Moreover the estimate for & and
the definition of 7 1mp1y Cl=—gfp>2r+61-1—- s) 1. This implies that
[V #§)]~ ! is defined on x, — p, if |x,| < r, and also that g(E,(r)) < E,(r).

Clearly L(g) = L(¢{d) e [V Ad)] ™ Y) = L(g) < 1; and g(p,) = p,.

We claim f (graph g)n E(r) = graph(g). Let x, € E,(r) Iand assume f,(xy, g(x,))
€ E,(r). Then [x, = p,| < #, for by the Lipschitz LF.T. (1.5),

|fx(x1: g(xl)) - Pll = (17 - 3)]-"1 - pll’

which implies

<?

AT TP (e p!
. — i < . r+ S
by our choices of § and 7 Thcrcfore x; — py €E,(M iand the verification that

Jalxy, g 4x4)) = g f,(x,,gx,)) follows formally from thé corresponding property
forfand g: _ _
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g(fi(x1, 9%,)) = p; + §(f(x; — prglxy) — p2)) - -
= p; + §(filx; - P (1 — py))
= p; +fa(x; = Py 3(x; — py)
= f{xy, p; + 8(x; — py))
= fz(xl’ g(xl))-

By 2.2, W] is the graph of g = g. The defining formula for g, and 2.3 for A
prove 2.3 for . ’

REMARK 1. The case k = co follows from 2.3 because ¢ and 8 are independent of k.

REMARK 2. The case r = oo, that is, f is defined on all of E, presents difficulty
in proving the global continuous dependence of the higher order derivatives of g s
on those of £ The trouble is that as |x1| — o0, s0 does the number of iterates of
f ™! needed to bring (x,, g {x,)) inside the small ball E,(r') where g, is known to
be C*. Another proof, with a different induction hypothesis, can be devised.

REMARK 3. Supposefe A} (T)e < (1 — t)/(1 + t)andf(0) = Q. Put &% = {ge ¥
N C*:L(g) < 1}. Then T';: 9} — %% has g, as attractive fixed point. Thus I}g)
—gp C' as n— w, for any ge %;. For k = 1 we proved this already: AI'/{g)
= [3/Ag) » Ag,, C° and hence [G{g) ~+g,, C'. Assume the result holds for.
k — 12> 1. Then for 0 < ¥ < r (as in the differentiability part of 2.3) we know
[ =flEC) has Af e /T H T x The <& < (1 —t)/(1 + 1) and ¢ = g|E,(F) has
Ag' €9, }(E x E) Thus I} ,(Ag) — Ag,, C*~1, by induction. Hence I'}(g) = ¢,
C*. But for N > log(r/r)/log(z ™! — &) we have, as in 2.3, graph I'}* ¥(g) = f¥(graph
7490 N E(r) so that T} Ng) 3 f "(graph(y{,)) N E(r) = graph(g,), C*, -

We needed L{g) < 1 to insure Ag’e 95~ Y(E x E) for some sufficiently small 7',
If I(g) = 1 then L(Ag) may be larger than 1 for all ¥ > 0. But of course the case
of L{g) = 1 could be handled directly. 7

REMARK 4. I f(0) # 0 in the above, I, does not map ¥ into itself. If we enlarge
4 by letting g(0) # 0, with {g(0)| appropriately small, we can prove directly that
I, is a well defined contraction and so has a fixed point, etc. The estimates are
clearer, however, for f(0) = 0 and that is why we deduced the case f(0) # 0formally
from the case f(0) = 0 instead of proving both at once. S

Now we indicate how to deduce the corresponding stable manifold theorem by
inverting f. ' '

24. STABLE MANTFOLD THEOREM FOR A POINT. Let 0 <t <1 and r> 0 be
given. There exist & > 0 and 0 < & < & with the following property. If f:E(r) —~ E

satisfies ;

Uf-T<e  l1@|<s, :

Jor a hyperbolic isomorphism T-E — E of skewness t then Wy = ), of ~™E(r)} is
the graph of a unique function g,,:E,(r) —+ E,(r). Moreover, L(gy) < 1 and g, is
of class C* if f is. The assignment {1+ g, s is continuous as'a map NT) -
CHE,(r), Ey(r)). The map f{W,: W, - W, contracts W, into its interior. '

ProOF. 1t suffices to show two things: 1°.L(f ~* — T~-!) —» 0 and f ~}(0) — 0 as
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L(f— T)—+0and f(0) = 0. 2°, W,(f 1) = W,(f). Since T™! is linear it is justifi-
able to write

St ~ T ‘Tf‘ 'ff‘ T-! °(T f)°f"
so that
L(f~* - 1)S T-! 'L(T f)L(f ‘)
T-HLT- T -~ LT~ f)]‘

by 1.4b. As L(f — T) — 0 this tends to zero.
As forf ~}0) we have

[/ 10)f< lf”’(o) )| + If—'(Pf)I
S L{f” )Ip H+p
<{jr ||— L(f T)] +1)<5(1—T—8) '=0,

asd—-0and L(f— T) 0.

Unfortunately, the second statement is not quite true, because f™! is not
defined on E(r) but on f(E(r)).

Restricting to an E(¥) < fE(r) and arguing in a fashion s:mllar to the f(0) £ 0
part of 2.3 will show, for large enough N, '

Wolf) = f "MW (F|EC) = f~ "W;(f *LE()

The second equality is clear. Since Wi( f 11E(r)) is well described by 2.3 we have
proved 24.

3. Stable manifolds for hyperbollc sets. In this and the succeeding sections we
adopt the following conventions.

M is a finite dimensional C* Riemannian mamfold U < M is an open set;
fiU-MisaC embeddmg keZ,) We dcnote by A = U a compact invariant
set of f; that is, f(A) = :

. Notation. Ifg:V— V' is a C' map between smooth mamfolds we denote the
differential of gby Tg: TV — TV'.If x € V, then V, or T,V denotes the tangent space

to Vat x, and T,9:T,V— T,V is the restriction of 7g. For any subset 4 < V]

Tyg:T,V~ T, V' is the rcstnctmn of Ty to the tangent bundle of Vover A.

Il E is a Banach space and g:V— Ea C' map, then Dy, :V, - E is the derwatwe

of g at xe V. This is by definition the composmon

| B tnp o
where §, denotes the canonical identification of the tangent space to E at ye E
with E. Dg: TV — E is the map whose restriction to V, is Dg,.

If p: X — Yis a bundle, then X, = p~'(y), the ﬁbcr OVer y.. pr X - Yand
p': X’ — Y'arebundlesand F: X ~ X' takesfibersinto fibers, coveringf: ¥ — Y°,
then F,: X, — Xj, is the restriction of F to X,,. We call such an F a bundle map.

If thc vector bundles X and X’ have Banach space structures on fibers, and
F:X - X' is a linear bundle map, then we put |F|| = sup,.|F,[.

We put N (x) = { y|d(y, x) < a} in any metric space.
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DEeFINITION. The invariant set A c U is hyperbolic for the map f: U - M if
T\ M has a splitting (Whitney sum decomposition) T,M = E* @ E°* satisfying:

(1) E* and E* are invariant under T7;

(2) there exist constants ¢ > 0and 0 < v < 1 such that forallne Z,,

- max{[TOE, |77 7B} < e

We say A has skewness T.
If the Riemann metric on M is such that in (2) we can take ¢ = 1, then the metric

is called adapted to A.

3.1. (MATHER, [10]). If A < U is a compact hyperbolic set for M > U 4 M,
then M has a smooth Riemann metric adapted to A.

PROOF. Let |v] denote the norm of v € TM in the metric for which A is hyperbolic.

From (2} we have
) < el ifveE

) = e te"fo] ifveE™
Let ge Z, be such that ct? < 1. Define a new metric ||v]| by

[of? = gl'rf"(v)[z ifoeE
fo]? = i ,H”"'(v)l2 ifve E*,
vaeE’ then [v])* < gc?|vf?; and
ITr)*= Z |7()?
lfvll2 [off + | T %)
< Jol? = [ ~ (Yo
< o)1 = [1 - er]%/qc?).

Thus | T()] < apllv], where o2 = 1 — [1 — ct9]*/gc®. Since c19 < 1 we have
o, < L. Similarly, replacing f by f ~!, we find that '

|1Tr@w)| = a5 *[lof forve E
Now let 0, < o < 1 and approximate [|- || by a C* metric |[|-]|| such that
ITr @i < ellefl] foek,

WTr@ = o~ [|of] ifve £~

The proof (due to Mather) of Theorem 3.1 is complete.
. IfxeUand g > 0 we put

Z(x, B) = Qof T"Ng(f"x).
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Thus y € Z(x, f} if and only if f*(y) is defined, and d(f"y,f"x) < B, foralin > 0.

Let B > a > 0. A submanifold W< U is the stable manifold through xe U of
size (B, @) provided W= E(x, f) n N(x). If § = « we say W has size §.

We shall show that for some f > a > 0 every xe A has a stable manifold of
size (8, a); if the metric is adapted to A, we can take f = a.

In order to describe the sense in which the stable manifolds vary continuously,
we make the following definition. A family {¥} ., of C* submanifolds of M is
continuous if for each x € A there exists a neighborhood A4 of x in A and a (continu-
ous) map ¢:4 — CYD", M) such that ¢, maps D" diffeomorphically onto a neigh-
borhood of x in W, for each x € A.

3.2. StaBLE MANIFOLD THEOREM FOR A HYPERBOLIC SET. Let A < U bea com-
pact hyperbolic set for a C* embedding M > U b M, ke Z .. Then

(@) There exist numbers f > a > 0 such that through each x € A there is a stable
manifold W, of size (B,a). :

by {w, }xE A i8 @ continuous family of C* submanifolds.

(c) There exist numbers K > 0 and A < 1 such that ;f y,z26 W,, then d(f"y,f"z)
< KA"d(y,z) for all n > 0. -

(d) W.n W, is an open subset of W, for all x, ye A. :

(e) W, is tangent to E} at x € A (where T .M = E* @ E* is the invariant splitting).

() If the metric on M is adapted to A, then & = B in (a) and K = 1 in (c).

Proor. By Mather’s theorem (3.1) we may assume the metric in M adapted to
A. The basic idea behind the proof is to consider the Banach manifold .#(A, M)
of bounded maps A — M. Define F:.#(A, U) - #(A, M) by F(h) = fohof 1,
The inclusion i:A ~ M is a hyperbolic fixed point of F. If ¥ < #(A, U) is the
‘stable manifold of F, put %, = ev (#") = the set of points h(x) for all hew.

This definition is conceptually simple, but in order to prove that #”, is actually
a submanifold it is more convenient to work in the exponential coordinate system
of A at i.

Let r > 0 have the following property. For each x € A, the exponential map
exp,:M (r) = M is defined and maps M (r) (= the ball of radius r in the tangent
space M, to M at x) diffeomorphically into U nf~1U. This is possible since A is -
compact.

Let ¥, = {ye T,M|]y| < r}. Define F:V, - T,M by
FlVrn Mx = expfx ofo €XPy-

The following diagram commutes:

V,— F T\M |
(P. exp) | ! (psexp)
Axf~ ‘Uj—}-'f/\ x'U
! !
A— L A

where p: T\M — A is the bundle projection.
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Let S be the Banach space of all bounded, possibly discontinucus sections of
T, M. Let S(r) be the (closed) ball of radius r in § around 0. Then F induces a map
F:S(r)— S by Flo)= Foaof 1. More explicitly, if xeA and oeS(r) then

Fo)x = (exp,)~"f exp,-1,0(f~ %)
It is left to the reader to verify that F is CX. The derivative of F at O e S(r) is the

linear map DF,:S - S, defined by the formula DFy(a) = (Tf)oa < (f ~*A).
It is easy t to see that F is hyperbolic. The splitting of S is S* @ S* where

s = {aeSIa{A) = E"},and $* = {oeSjo(A) = E’

'I'herefore by Theorem 2.3, F has a stable mamfold function G: S5(r) — S“(r). (It
may be necessary to replace r by a smaller number. We assume this done, and
remark that the smallness of r depends only on the constants of hyperbolicity, C
and t, and on the first order ““Taylor expansions” of fat points x e A: if ve M,, put
flexp v) = exp, (T + o(v)). Hence a single r can be chosen for a whole neigh-

borhood of fin C}(U, M).)
We recall from 2.2 and 2.4 that the stable mamfold function G is charactenzed

as follows: Given ¢ € S%(r), G(o) is the unique section z € $*{r) such that F(r, 0) is
defined and lms in S(r) for all n 2 0. ’

LeMMA. There is a unique map H: E*r) — E"(r) covering 1, such that G(cr) Hoo
Jor all o € §7(r). | _ _ .
Pl_lOOF.leon_ y € TyM, define o, € S by
ofx) =0 if x £ p(y),
- =y ifx=p@)
For ye E(r) put H(y) = G(o,)x. Now suppose o(x) = y. Tllcri :

_ |F{Glo)x, y)| <r foralln, .
and also . , - |
[F"(H(G),y)| <r foralln
" From the characterization of G(o) given above, we must have G(g)x = H(y).

LEmMA. H is continuous, and C* on each fiber EX(r).
Proor. Let Z(y) = o, Then H is the composition of the continuous maps:

H:EX )(z, =2 sy x A G sy x A D By

Since X:E* - §° and ev,:S* — E* are linear and G is C* it follows that H is C* on

fibers.
Now let #” be the graph of H, that is,

W = {(Hy,y)e EXr) x E'(r)[ye EXr)}.
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For each xe A put #, = # A M(r). Then #, is a C* submanifold of M (r).
Therefore W, = exp (¥, — 0%")) is a C* submanifold of U. It follows from the
composition formula for H given above that {W¥, },‘,E Alsa continuous family of Cct
submanifolds.

To see that W, is a stable mamfold for x, choose B > 0 so small that Ny(z)
< exp,(M,(z)) for all ze A. If y € Z(x, §), that is, f"(y) is defined and in Ny(f "(x))
for all n > 0, then define a section ¢ of TAM N by

o(z) = exp, l(y) ifz=x
=0 . ifz # x.

Then F*(o) is defined and in S(r) for all n > 0. Therefore ¢ is in the stable manifold
of G. This means that exp; 'y = H(¢)x which in turn means that y e W..

Part (c) of Theorem 3.2 follows from the analogous fact for stable manifolds of
hyperbolic fixed points; (d), (¢) and (f) are Ieft to the reader.?

4. Criteria for hyperbolicity. In this section, which is basically mdependcnt of
the preceding ones, we establish tests for a linear map or an invariant set to be
hyperbolic. These are based on criteria for a linear operator on a Banach space to
be hyperbolic. The universality of these criteria is important: they are valid in
every Banach space, and no special properties of the Banach space are used. The
basic estimate is 4.7; the criteria are found in 4.8-4.10.

NoTATION. If E and F are Banach spaces, I(E, F) is the Banach space of linear
maps E — F; its unit ball is L,(E, F). Inv(E, F) is the open subset of invertible
linear maps.

The following universal estimate is well known.

4.1. LEMMA. Let P e L(E, E) have norm < 1. Then I + P: E — E is invertible and
i+ P < -|Ppt.

Next we state an exercise. in differential calculus on noncommutative Banach
algebras. - :

4.2. LEMMA.,
(a) Let B be a ball in a Banach space VLeth—»L(E F) and g:B — L(F, G)

be differentiable at be B. The map h:B — L(E, G), defined by h(x) = g(x) o f(x) is
also differentiable at b, and Dh, e L(V, I{E, G)) is the map assigning to xe V the
linear map
g(b) e Dﬁs(x) + Dg,(x) o f(B): E ~ G.
(b) Define 1:inv(E, F) —» mv(F E) by (T) = T~". Then 1 is differentiable and gf
Teinv(E, F) then Dip: L(E, F) = L(E, F) is the linear map S » — T™ISTL,

PROOF Left to reader, See [4].

4.3. LEMMA. Let E; and F, be Banach spaces,i =1,2. Let T:E, x E, —‘Fl X Fz
" be def ned by rhe matrix of linear maps

[« 5]
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so that T(x,,x,) = (Ax, + Bx,, Cx; + Dx,). Suppose A:E, — F, is invertible.
Put u = |B||-|A™*]|, and suppose u < 1. Then the graph transform
TriLy(Ey, E)) > L(Fy, Fp),
is well defined by the formula
I't(P) = (C + DPXA + BP)™*.
Moreover the Lipschitz constant L(T'y) satisfies
Lry <(|ca™ + [D|- |47 utt — w2 + D] - [ 47X — )™,

Proor. If PeL(E,,E,) then. [BPA™!| < IB]-14- ‘" = u < 1. Therefore
I+ BPA ! is invertible and

(1) a+BPA™y Y st -t

by Lemma 4.1.
Thus (4 + BP)~! = A~}(I + BPA~")~! exists, so that I'y is well defined. The

derivative (DI'7),: L{Ey, E;) ~ L(F,, F,) of I'y at P takes X € L(E,, E,) into
(2) - ~—(C+ DPYA + BP)"'BX(A + BP)"! + DX(A + BP)™},

by Lemma 4.2. Put (A + BP)™! = A471Q, @ = (I + BPA™Y)"*, Then |Q| <
(1—u! by (1), and from (2) we have

3) (DT)AX) = (CA™! + DPA~Y)QBXA~'Q + DXA™'Q.

Since |P|| <1 and ||Q] < (1 — w)™?, the result follows.
For convenience, put

lca=!] =w, |D]-]47| =2, |B]-|47"] =u
Then Lemma 4.1 implies
@ L) s+ oult —u)™? + ol —w)™,
44. LemMA. If u < 1 and Pe L,(E,, F,) then |[T(P)]| < (w + o)1 — 1)~

PROOF. Ira(p)] = Jca~! + DPA™YI + BPA~Y)!|
< (lc4”}| + |p] |4~ p-lel
<w+ o)l —uw) L
4.5. PROPOSITION With the above notation, let F; = E, (i = 1, 2). Suppose .
(a) ' 2u<l ~v,
and
(b utv+w<l

ThenTy: L,(E,, Ez) - L (E, Ey)isa well defined contraction of Lipschitz constant
< (u+ vl — w)~! < L. Consequently Ty has a umque fixed point in L(E,, E;),
which depends continuously on T.
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PROOF. By Lemma 4.3, Ty is well defined on L,(E,, E,); by (b) and Lemma 4.4,
the image of I'y lies in L,(E,, E;). Combining (a), (b) and 4.4. yields the estimate
of L(I'y). _ - :

Now let W< E; x E, be the graph of the fixed point G e L(E,, E,) of I'y. We
give Wthe Banach nomm it inherits as a closed subspace of E; x E,.

4.6. LEMMA. Assume "A"'"(l —u)! < 1. Then T|W is expanding; in fact
(B2 @ - w477 yeW

PrOOF. Put y = (x,Gx) with x€E,. Then [y] = max(|x],[Gx]) = [x]| since
IG|} < 1. Similarly _

|| = J4x + BGx, Cx + DGx)
= |Ax + BGx| .
= (4 + BG) || "|x]
> ﬂA—’ﬂ"'"U + BGA™) ™|« o

The lemma follows since )
I + BGA™ ) Y <1 —u)~L.
We summarize these facts:

4.]. PROPOSITION. Let

T_=_[é g]:E, x E;—»E; x E,

be as above. Suppose

@ |4 <1

u+rv+w<l

© 2u<l-—yo,
where w=||[CA™Y|, v=|D|-|A~*| and u = |B|-|A~*|. Then the graph
transform

IpiLy(E) x sz) — Ly(E, x E), .

is a well-defined contraction. If W< E, x E, is the graph of the fixed point Gy of
I'7, then T|W is an expansion. Moreover Gy depends continuously on T, and
1G]] = (w + v)/(1 — u).

We now derive a perturbation criterion for hyperbolicity.

4.8. THEOREM. Given 0 < t < 1, there exists ¢ > 0 with the following property.
Let E, and E, be Banach spaces, '

a linear map with A:E, — E, and D:E, — E, invertible. Suppose
max{[|A~*, | D} < = + & and max{| B]. |C[} <.
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Then Tis hyperbolic (for some splitting of E, x E,).

ProOE. By choosing & small enough we may assume T invertible, and apply
Proposmon 4.7 to both Tand T !to get the expanding and contractmg invariant
subspaces for T.

Another universal criterion is the following.

49. PROPOSITION. Let 0 < 7 < 1 and ¢ > 0. There exists 6 > 0 with the follow-
ing property. Let E; and F; be Banach spaces (i = 1,2), and T;:E; ~» F, invertible
linear maps such that _ . .

@ max(}T7 Ly < e < 1.
Let :

H=[§ %]:F,sz-—rE,xE,

be a linear map with P:F, — E, invertible, satisfying

& max{|[P~*]-* 1, jo. JR]. || = 1} <.
Then the map HT:E, x E, = E, x E, is hyperbolic for some splitting E*x Eof
E, x E,. Moreover if G*:E, —» E, and G*:E, — E; are the unstable and stable
mang'fald Sunctions of HT, then _

(© max{J6*}, |6'}} <=

(d) Analogous statements hold for

TH:F, x Fy» F, x Fp.

_[+ B]_[rr;, om
HT= [c D] [RT sr,]'
By Proposition 4.6, HT has an unstable manifold provided

4] <1,
47140 + 4780 + oAt <

PROOF. Let

and
2418 <1 - Ja~|-Iof .
This will be true provided -
() P <,
© ISz + Jeke + IR]-1P~1) <1,
- and - ’
"o 2fgfz <1 ~ |$]=.

If 4 is sufficiently small then (b) implies (5), (6) and (7). Morcover
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16} < tw+ ot —w™? < (&]- "P"H + I!Qllf)(1 IISHT)"-

which is < if 5 is sufficiently small.

Applying this result to H™'T~! shows that if & is sufficiently small then
TH:F, x F; > F, % F2 has a stable manifold, and a stable manifold function of
norm < & Similar reasoning shows that TH has an unstable mamfold and HTa
stable manifold, etc.

ReMARK. Notice that the estimate of [|CA Y|
rather than an estimate of |C||- |4~ = |RT;}-
knowledge of | T;|| whereas the former does not.

. Next we apply Theorem 4.8 to get a criterion for a hyperbolic set.

410. PROPOSITION Let M > V% M be a C! embedding of an open set V Let
X < Vbe invariant under g and g~*. Let E; @ E, be a splitting of T,M. Put

was used (from Proposition 4.7)
| 75 'P~t|. The latter requires a

) B ,

where A B, C, D are bundle maps covermg g If there ex:st 0 <7t < 1 and e>0
satisfying Theorem 4.8, and also .
(a) max{“ {| PP <t+e
_ (b) max{||B, | D]} <&, |
then X is a hyperbolic set.

- PROOF. Let Co(TyM) = C, be the Banach space of bounded continuous sections
of TyM. Let F:C, — C, be induced by g. That is, F(g) = Tyg o 6o g~ %, If we write
Co = ColE;|X) x:CofE,|X), then Proposition 4.8 shows that F is hyperbolic for
some splitting of Cy. An obvious extension of a theorem of J. Mather {12, Appen-
dix] concerning Anosov diffeomorphisms shows that this suffices for X to be a
hyperbolic set. Alternatively, the proof of the existence theorem (3.2) for stable
manifolds could be imitated, (Thls ndea is due to S Smale in fact it suggcsted the
proof of 3.1 given hcrc.)

S Hyperbohcity of submaml‘olds Let A < U be a hyperbolic set for M S UL M,
and V< A a smooth submanifold invariant under fand f~1 No examples are
known for which f}V:¥— Vis not Anosov; on the other hand there is no proof
that f|V must be Anosov (which means that Vis a hyperbohc sct for f |V) We
prove a partial result in this direction. ,

5.1. THEOREM. Let p:E — V be a finite dimensional vector bundle. Let T-E — E
be a linear bundle automorphism covering f:V— V. Let F < E be an invariant
subbundle over V. Let Q < V be the set of nonwandering points. lf Tzs hyperbohc,
then Tan is hyperbolic.” ,

PRrROOF. Let E* & E* be thc hypcrbohc sphttmg of E Let the memc on E bc
adapted to T:there exists 0 < v < 1 such that |Tb| < tjo] if ve E, |Th 2 ¢~ o] if
veE" (See31)
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We shall prove that if xe £, then F, = (F_ n E¥) x (F, n E}); this suffices to
prove T|Fy hyperbolic. We do this by proving

(1) dimE;nF, +dimE;n F, > dimF,.

Let xef), and let W< V be a set over which the bundle pair (E, F) is trivial,
Let ¢:(Ey, Fyy} = (R", R™) be a trivialization. For each ye W, ¢, = ¢|E, maps
E, isomorphically onto R" and F, onto R™

Supposc yeWand z = f¥y)e W Then

T, = ¢;'¢(F"),:(E, F)) > (E,F),

is a linear automorphism. In terms of the splitting E, = E, x E;, T, ,is rcprcécntcd

by a matrix
A B
C DJ.

We want to be in the situation of Proposition 4.9, with Tand H of 49 represented
by (F¥), and ¢; !¢, respectively.

Since x is nonwandering, we can find ye U and ke Z , such that y and z = fX(y)
are as close to x as desired. In particular we can make ¢ ¢, as close to an isometry
as desired, so that (b) of 49 will hold; we can simultaneously take k as large as
necessary for 4.9(a) to hold. It follows that T, ,:E, —~ E, will be hyperbolic. Since
F, < E, is invariant under T, » and E, is finite d:menswnal a simple eigenvalue
argument shows that T, |F, is hypcrbohc Moreover the stable and unstable
manifolds of T; |F, must be the intersection of F, with the stable and unstable
manifolds Bj, B of T; ,"And (c) of 49 shows that as y and z approach x, By and B},
approach E’ and E}. Since dim B} n F, + dim By n F =dimF, (1) follows and
the thcorem is proved

5.2. COROLLARY. Let V = M be a compact invariant C* submanifold of an Anosov
diffeomorphism f:M — M. Then the nonwandering set Q0 of f|V is hyperbolic.

ReMARK L. If F = E is a subspace invariant under T and T ™!, then every
eigenvalue of T'is clearly an eigenvalue of T|F. Therefore T|F is hypcrbolic if T'is
hyperbolic and spectrum (T) consists entirely of clgenvalum as in the finite
dimensional case. :

REMARK 2. The following infinite dimensional example, due to W. Badé, shows
that T|F may fail to be hyperbolic. .
Let C be the complex field. Let | _
A={zeCli<|d <) B={zeC|2<|]<3}.

Let E be the Hilbert space of complex functions which are continuous on 4 UB
and analytic on int(4 U B). Define T:E - E by T(f )z zf (2). Then Tis hyper-
bohc the invariant spllttmg is found by setting - '

= {feE[f(4) = 0}, = {feE[/(B) =
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. Let F = E be the subspace comprising those functions that extend to a function
analytic on {z{4 < | < 3}.

Then TF = F = T~ 1F. However, the constant function 1 belongs to F, but is
not in the image of (T — I)|F: F — F. Hence the complex number 1 is in spectrum

(TIF).

6. Smoothness of splittings. In order to study the smoothness of the splitting
TAM = E* @ E°, or more precisely, the smoothness of the functions assigning to
cach xe A the subspaces E¥ and EZ, we must study the smoothness of certain
sections of vector bundles. There is no “natural” metric on a vector bundle
p:E — X in which to express Hélder conditions, but there is a natural class of
mctncs which we now define.

DERINITION. Let p:E — X be a vector bundle over a metric space X. A metric
d on E is admissible ﬁthcrc is a2 complementary bundle E’ over X, and an isomor-
phism h:E @ E' - X x A to a product vector bundle, where A is a2 Banach space,
such that d is induced from the product metricon X x A.

6.1. THEOREM. Let p: Y~ X be a vector bundle over a metric space X endowed
with an admissible metric. Let D < Y be the unit ball bundle, and F:D — D a map
covering a homeomorphism f: X — X. Suppose 0 < x < 1 and that for each xe X,
the réstriction F :D, — D, has Lipschitz constant < x. Then

(@) There is a unique section g,: X — D, whose image is invariant under F.

(b) Let L(f~!) = A < w; let 0 < a < 1 be such that xA* < 1. Then g, sausfes
a Holder condition of exponent a.

(c) Suppose X is a smooth mamfold, Eisa smooth vector bundle, and F, f are
C.IfxkA < 1thengyis C'.

PROOF. Let % be the unit ball in the Banach space of bounded continuous
sections of ¥ Define ®:9 — % by ®(g) = Fgf 1. Then L(®) < x < 1; hence @
has a unique fixed point g,. This proves (a).

Before proving (b) and (c) we remark that Y may be assumed trivial. For let Z
be a bundle over X such that Y& Z is trivial, and define F’ to be the composition

n F.- i
F:YOZ-Y->Y-YODZ
where = is the projection and i the inclusion. Then F” satisfies the same hypotheses
as F, and the unique invariant section of F is ig,. Henceforth, weassume Y= X x E
where E is a Banach space. We write F(x, y) = (fx,[,¥).

The proof of () is more intuitive than that of (b), so we do it first. Assume X is
a Riemannian manifold; let B < E be the unit ball. Sections are now maps;
go:X — B is the unique map whose graph is invariant under F: X x B+ X x B.

Let o7 be the Banach space of linear bundie maps H:TX — X x E covering °
1y and having finite norm |H| = sup,|H,|, where H,: T.X — E is defined by
setting H(v) = (x, H,v) forve T, X.

For each ge¥ define a Imear map y, (o I as follows Il ve T X put
f- l(x) yeX and (Tf"‘)v =weTX. If H e o define

(‘Y H).v = D(r, ° F), ,,,(w, Hw).
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Here m,:X x E - E is the projection; D(r, o F),,, is the linear map from the
tangent space at X x E at (y,gy) to E that is the derivative of @, o F; and (w, H w}
is a tangent vector to X x E at (y, gy). Obscrve that 1f ge¥is C1 then ‘P,(Dg)

= D(®g).

We claim L(¥,) < ix. By definition if H, K e.;i’ then "H K|| = sup,sxo'

|H, — K,|. Observe that
W H -V, K) v = (DF Yol H, — K )(Tf .
Since |(DF),| < «if L(F,) < x,and ]| S =L ‘1) < A, we have
' |¥,H — ¥,K| < xd|H - K.

Therefore ‘¥, is a contraction if k4 < 1. By the Fiber Contraction Theorem (1.2)
the map ¥: %4 x # —» ¢ x &, defined by (g, H) — (®g, 'PgH), has an attractive
fixed point (go, Ho). If g €  is C*, then \P"(g, Dg) = (@"g, DP*g). Therefore D((I)"g)
converges, and $0 g, is C!. This proves 6.1(c). .

To prove (b) we assume F is defined on all of X x E. To see that there i 1s no ]oss
of gcncrahty, letr:B— E be the rad1al retractlon :

r(x) =X 1f
= x/|x| if |x 2 1.

Then L(r) < 2, and L((Fr)?) = L((F"),r) = 2«", which is <1 if n is large enough.
If kA® < 1, then 2x")(A") = 2(xA)" is also < 1 if n is large enough. Therefore fand
F may be replaced by /" and F"r; g, and « stay the same, and also L{(F"r),)L{f ~")"
< 1. Therefore we assume F:X x E = X x B given covering f with L(F ) <K
< 1;and L(f~!) < 4 with x1* < 1.

In order to imitate the proof of (c), we replace Dg by, Ag X x X — E, defined

by Ag(x,y) = g{x) — g(y). We proceed as follows. Let ¥ and ©:¥ — ¥ be as
before. Let 2 be the Banach space of bounded continuous maps H: X x X—E

such that H(x, x) = 0 for all x and the following norm is finite:
 H] = suplHex, Y, ¥ + suplHn )
xty . (x5

The natural map from # to the Banach space of bounded continuous maps
X x X - E is continuous and takes closed bounded sets onto closed bounded
sets. I He o¥ and xe X define H,: X - Eby H,(y) = H(x,y).
Given g e ¥, define 'Y : " — o by
(¥H), = 0g + Hyo) = 0

Ifge¥ satlsﬁcs an a-Holder condition, define Ag € 4 by Ag(x, y) s g(x) g(y).
“Observe that W, (Ag) = A(Qg). Define¥: % x o - x Jf’ by lI’(g, H) (®g, ¥, H).
We show now that L(¥,) < ki*: : o .

d(x, Y| ¥ ,(H) — ¥, (K)ll = supl(\P,H),y (‘P.K),yl

= sup|F, .,(g + H, .,)y F, .,(g + K,- :,)yl
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<K iggIHI"x(f_ly) - Kf"x(f_ly)l

< |H ~ KJ[d(f =y f "))
< x|H — K|&d(x, yy.

Therefore ||V (H) — ‘P (K| < xi*|H — KJ.

Since ki* < 1 it follows from the Fiber Contraction Theorem (1.2) and the
completeness of 2 that ¥: ¥ x o — % x s has a unique attractive fixed point.
If g€ ¥ is a-Hélder, then (D"g - go, While A(®@"g) converges in 3, as n - co. But
therefore A((D"g) converges in the umform topology, so it must converge to A(g,)-
Therefore g, is a-Holder. Q.E.D.

It is useful to generalize 6.1 to the case where f maps a subspace X ool X homeo-
morphlcally onto X. For simplicity we deal only with the smooth case.

6.2. THEOREM. Let p:E ~ X be a C* vector bundle over @ C* manifold X. Let
X, © X be an open set and f: X, — X a C! diffeomorphism. Let D < E be the unit
ball bundle in an admissible metric and put D, = p~'X,. Suppose F:D, — int D,
is a C* map covering f such that L(F,) < x < 1 for each x€ X . Then
- (a) there exists a unigue section g, of D, that is invariant under F in the sense

that gofX o) = Fgo(X ).

(b) Let L(f~ l)—J1< . If)c).<1theng‘,usCl

~ Proor. The proof is practlcally identical to that of 6. l(c) and is left to the
reader.
 Nowlet Ac Ubca compact hypcrbohc set for M SUS M. Let TAM E
@ E* be the invariant sphttmg, with E* contractmg and E" expandmg. We define
four quantrtx&s |
- a= ITJ“IE"lI's L b=JTfjE}
Ce=|TflE|>1 Tf"E’

If A = U = M then fis called an Anosov diffeomorphism of M. In this case the
stable and unstable manifolds give two topological foliations of M. According to
[3] these are not always ct, although they are “‘absolutely continuous ”

6.3. THEOREM. Let f:M — M be a C? Anosov diffeomorphism. Then _

(@) The stable foliation is a-Holder where 0 < @ < 1 and abc® < 1; the unstable
Joliation is B-Holder where 0 < 8 < 1 and abd® <'1.

(b) If abc < 1 then the stable foliation is C'. In particular, the stabIe foliation is
C* in these two cases: (i) the stable manifolds have codimension one; (ii) dim M = 3
and f preserves the. Riemannian measure in M ; in this case the unstable foliation is
also C'. '

PROOF vae TM a Cl sphttmg F’GBF“ approxunatmg E* ® E*. For. each .
xeM put L = L(F* F"); then E} is the graph of an element 1, eL Deﬁnc
I.:L(l)- L,,(l), y=f"1x,tobe the graph transform induced by :
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C., D,

T.f'= [A: B’EliF;xF;—»F;xF,‘.
Provided the splitting F* @ F* is sufficiently close to E* @ E", the map T, is well
defined by the formula

L) = (Cy + Do) o (A, + Br) ™%

and given & > 0 we may assume |C,| and ||B,| so small that Lry) < L(D,)
L(A;') + ¢ < ab + £ = k. Choose £ 50 that k < 1 and xC* < 1.

Let L(F*, F*) be the vector bundle over M whose fiber over x is L,; let D be its
unit ball bundle. Then I': D — D is a bundle map covering f~*; and I'" is C! if
Sis C% Moreover I{T",) < x < 1. Clearly L(f ~!) < max{a, c} = c. By 6.1(b) the
unique I'-invariant section of D, which is 4, is a-Hélder; this proves 6.3(a). The
proof of 6.3(b) follows similarly from 6.1(c). The proof of 6.3(bii) is left to the
reader.

Let g be the fiber dimension of the bundle E*, et G (X) be the bundle of q-planes
in T, M for any subset X < M. Let 0:A — G,(A) assign Ejto x e A.

6.4. THEOREM. Let A c U be a campact hyperbolic set for the C' embedding
M>sUSM,

(a) Ifabc® < 1,0 < a < 1, then 6: A > G (A) is a-Hilder. =

(b) Let {V;} be a collection of C! submamfolds of A such that | J,V; is invariant
under . If { is C* and abc < 1, then each map 0|V,:V, — G, is C*.

ProoF. Almost identical to that of 6.3 and left to the reader.

Now let {W3},.4 be the stable manifold system for A, and put W* = | ), W3
Then f(W*) ¢ W (assuming the metric on M adapted to A ; or fcould be replaced
by f* for n sufficiently large). Define glob(W®) = | J,. o/ ~"(W?*). Equivalently,
glob(W?) = | )realy € Ullim, . od(f*y,"x) = 0} = | J;eaBlob(W}) where

glob(W3) = ,.szof "(W:)
Each set glob(W?) is a disjoint union of g-dimensional submanifolds of M, and
so is glob(W?). Define @: glo(W*) —+ G, by y) = Tf ~"T. (W) if ye f ~"W3,
x €A, n 2 0. Then 0 is well defined. '
It may happen that W*, and hence glob(W?), is open in M. This is the case for
the 1-dimensional attractors of R. F. Williams [17].

6.5. THEOREM, Assume W* open in M. Let f be C% Then 0:glob(W*) — q(M)
is C! provided abc < 1. In particular this is the case if A is a 1-dimensional attractor.

Proor. It suffices to prove that @ is C! in some neighborhood N of A in W*;
for if x is any point of glob(W*) there exists n > O such thatf*(x)e N,and @ = 6o /™
Let E* = TyM be a subbundle over a _neighborhood N = W* of A extending
E*; we do not assume E* invariant. Let E* « T,M be the subbundle whose fiber
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over y is 8(y). Choose N so that f(N) < N (see 8.4 below). Choose ¢ > 0 so small
that (@ + )b + e)c + &) < 1. We may choose N so small that

T Y& <ate [TAE| <bte |TE|<c+e

(For example given any compact N, such that fNo = Ngand {),»0/"(No) = A
let N = f7(N) for a large value of p.) Now the proof of 6.3(b) may be applied,
replacing 6.1(c) by 6.2. We leave the details to the reader.

REMARK. In his paper [16], Williams assumed as an axiom that if A is 2 one
dimensional attractor then the local projections W?*— A, defined locally by -
mapping W; to x, are Lipschitz. It is easy to see that this is in fact a consequence
of Theorem 6.5 if f is C2. :

7. Perturbations of hyperbolic sets. We continue the standing hypothesis
M > U-b M isa C* embedding and A = U is a compact invariant hyperbolic
set of skewness t < 1. For simplicity we assume the metric on M adapted to A.

7.1. THEOREM. Let ¢ > 0. There exists a neighborhood V < U of A and a reigh-
borhood A" < CHU, M) such that if g€ N then any invariant set of g in V is hyper-
bolic of skewness a with |t — o] < ¢.

If K < Vis compact, then['),.z g"K is the unique maxlmal invariant subset of
K. Hence : :

7.2. COROLLARY. In Theorem 1.1, every compact subset K < V contains a unique
maximal g-hyperbolic subset; this subset contains every g-invariant subset of K. In
particular every compact g-invariant subset of Vis hyperbolic.

ProoF oF THEOREM 7.1. Let W< U be a neighborhood of A over which the
invariant splitting E* @ E* of TM can be extended to a splitting E, & E, of T, M.
Let V< Wbe a neighborhood of A so small that if x e Wthcn T, j" is represented
by a matrix

[é g] HE, @ Ey), ~ (B, @ By

satisfying
max{l4~!], [D]} <t +¢2  max{|B],|C]} <&,

where ¢ is as in Theorem 4.8. Let .4~ be a neighborhood of fin C'(U, M) so small
that if ge A" and x € Vthen Tg is represented by a matrix

e 3

satisfying (a) and (b} of Proposition 4.10, By that Proposmon any g-invariant in |

V is hyperbolic.
The next result shows that maximal hyperbohc sets enjoy a type of structural

s;ablllty
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7.3. THEOREM. - Let A = U be a compact hyperbolic set for the C' embedding
M o U-5 M. Given £ > 0 there is a compact neighborhood B< U of A and a
neighborhood N of f in CY(U, M) with the following properties: if g,e N for
i=1,2, then g; has a unique maximal hyperbolic set A; = V containing every
im:anant set of g; in V; and there is a unique homeomorphism h,:A; — A, such that
hyg hi ' = g,\A;; and d(hy, 1) < & Moreover h, depends contmuouslv on (g,, gz)
EN X N,

* PrROOF. Choose a compact neighborhood Vc UofAanda neighborhood N
- of fin CY(U, M) as in 7.1 and 7.2. Given g, and g, in A", let A, and A, be their
respective compact maximal hyperbolic sets in V. Let ¥(A,, M) be the Banach
manifold of continuous maps h:A, — M. Define ®:4(A,, U)— (A, M) by
D) = gyohogr’. .

Let i;: A, - M be the inclusion of A,. If V'and & are suﬂicwntly small,
depending only on f, then Proposition 4.8 shows that the derivative of @ at i;
will be hyperbolic. Moreover ® has a unique fixed point 2, by Theorem 3.2.
Therefore g,h, = h,g,. Clearly h,(A,) is g,-invariant, and S0 - h,(Al) c A,
Similarly there exists hy: A; — A, such that g, by = hyg,..

Observe that h,h,g, = h,g,h, = g,h,h,. Therefore, . by umqucness, h h

= identity map of A,. Similarly h,h, = identity map of A,; so h, and A, are
homeomorphisms. The continuity ol' h, in (g9,,9,) depends on the universal
. estimates for continuity of fixed pomts of contractlons (see 1.1) and is left to the
reader.

" The next theorem means that the stablc manifolds of a hyperbollc set move
only slightly under perturbations. :

7.4. THEOREM. Referring to Theorem 1.3, let f be C*. Let the stable manifold
system of A be of size p. Then the neighborhoods ¥ <= U of A and A" = CY(U, M)
" can be chosen so that if g,,g,€ N  CHU, M), then the following conditions hold.
Leth:Ay > A beasin1.3;let x € A, and put h(x) = y € A,. A, has a stable manifold
system {W‘},‘E,,\l for g; of size = B — & Moreover if xe A, and h(x) = ye Az, where
h: Ay = A, isasin 7.3, there is a C* diffeomorphism 6,: W' — W3 which is e-close -
to the inclusion Wi — M in CKW, M). Moreover 6, depends contmuously on

(91, 92)

PROOF, We assume familiarity with the proof of 3.2. It suffices to prove the
theorem with g, = f. Put g = g,. Let (A, U) be the Banach manifold of con-
tinuous maps A: A — U. Define @,: 4(A, U) - €(A, M) by ®,(h) = ghf.? 1, Then
®, has the unique hyperbolic fixed point h:A — A, If W, < €(U, M) is the
stable marnifold for @, it can be shown, mutatmg the proof of 3.2, that W,

= {h(x)lhe ¥} is the stable manifold through y = h(x)€ A, for g. Now CD
depends contmuously on g respecting the C* topologies. The stable mamfo]d
functionof ®,isa C*map ¥,: (E) — €(E"), where T,/ = E* @ E*and € denotes
the Banach spaec of bounded continuous sections. Since ¥, depends C* con-
tinuously on g, so does its graph, which is %" . A c dlﬂ'eomorphlsm o:%, - ¥,
is defined by 0,(u, 4 () = (u, ¥ (u)). (Here we 1dent1fy E(A, U) with €(E?®) x ‘f(E")
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by exponential coordinates.) Define 0,: W, = W, , by 8,(v(x)) = &v)x), for xe A
and ve # ., The details are left to the reader.

ReMaRk. {W1},., and {W¥},,, are “continuous families” of C* submanifolds.
The proper way to state Theorem 7.4 is to define the concept of a continuous
Jamily of C* diffeomorphisms {8, : W, ~ W, }..a. We leave this task to the reader.
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