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ABSTRACT: Protein complexes constitute the primary functional modules of cellular
activity. To respond to perturbations, complexes undergo changes in their abundance,
subunit composition, or state of modification. Understanding the function of biological
systems requires global strategies to capture this contextual state information. Methods
based on cofractionation paired with mass spectrometry have demonstrated the capability
for deep biological insight, but the scope of studies using this approach has been limited by
the large measurement time per biological sample and challenges with data analysis. There
has been little uptake of this strategy into the broader life science community despite its rich
biological information content. We present a rapid integrated experimental and
computational workflow to assess the reorganization of protein complexes across multiple
cellular states. The workflow combines short gradient chromatography and DIA/SWATH
mass spectrometry with a data analysis toolset to quantify changes in a complex organization.
We applied the workflow to study the global protein complex rearrangements of THP-1 cells
undergoing monocyte to macrophage differentiation and subsequent stimulation of macrophage cells with lipopolysaccharide. We
observed substantial proteome reorganization on differentiation and less pronounced changes in macrophage stimulation. We
establish our integrated differential pipeline for rapid and state-specific profiling of protein complex organization.
KEYWORDS: DIA/SWATH, protein complex, protein−protein interactions, quantitative interaction proteomics

■ INTRODUCTION
The field of proteomics has become increasingly informative
from the perspective of biology as the technology has
transitioned from initially generating qualitative lists of
detected proteins toward quantitative assessment of the state
of the proteome over many experimental conditions in
complex experimental designs.1 However, in the cellular
context, functions are frequently not carried out by molecules
in isolation but rather by modules of interacting molecules.2 A
canonical example is noncovalently interacting proteins
assembled into functional complexes. Large-scale protein−
protein interaction (PPI) studies using affinity purification-
mass spectrometry have demonstrated that almost all proteins
participate in complexes,3 and we have observed that in
cofractionation studies, the majority of the total proteome
mass is assembled in stable macromolecular protein com-
plexes.4 The assembly state of numerous protein complexes as
well as their abundance dynamically changes to respond
functionally to specific environmental stimuli. To better
understand the cell’s functional state, we require methods
that can provide quantitative and context-dependent snapshots
of the global organization of protein complexes in a way
analogous to what has been achieved in more standard
proteomics approaches aimed at the quantification of ex-
pressed proteins. Methods such as affinity purification or

proximity labeling combined with mass spectrometry have
provided deep maps of the protein interaction space within
static cellular contexts3,5 or alternatively, descriptions of
changes for limited numbers of protein complexes in perturbed
systems.6−8 However, practical global methods aimed at
monitoring complexes in many conditions have been difficult
to achieve at a scale consistent with large-scale experiments
needed to address complex biological questions.
Methods based on cofractionation of native proteome

extracts coupled to mass-spectrometry4,9−13 (CoFrac-MS, or
protein correlation profiling, PCP) have shown substantial
promise as an unbiased strategy to monitor the composition
and variations of the protein complex landscape. CoFrac-MS
relies on the biochemical fractionation (frequently SEC - size
exclusion chromatography) of native cell protein extracts
combined with identification and quantification of proteins
inferred by bottom-up LC-MS/MS analysis of sequential
fractions. The established data analysis concept14−17 rests on
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the idea that the identity of protein interactions or, further, the
composition of protein complexes can be inferred by
reconstructing and correlating the elution patterns of
individual proteins across the SEC fractionation space.
Where two or more proteins coelute, we take this as evidence
of a protein interaction or complex, evidence that has to be
further supported by using statistical filtering and the inclusion
of orthogonal information, e.g., prior knowledge that the
respective proteins can interact.4 In principle, such methods
have the attractive property that they can capture a quantitative
and contextual snapshot of the proteome-wide organization of
proteins in modules for any given biological sample from
which native protein extracts can be prepared. Comparative
studies employing this analysis concept have demonstrated
deep biological insights, that would have been difficult to
achieve with other methods, such as the conservation of
protein complex/interaction organization across metazoans18

and across mammalian tissues,19 the reorganization of protein
complexes as a function of cell cycle progression16,20

interactome disassembly during apoptosis,21 the architecture
of the TNF−receptor signaling complex,22 the organization of
ribosomes into polysomes,23 and the large-scale character-
ization of RNA bound protein complexes.24 While these and
other studies have demonstrated the potential of the approach,
the number of applied biology studies published that employ
CoFrac-MS as their basis remains relatively modest compared
to more standard proteomics approaches. We suggest that the
explanation for the underutilization of this apparently
informative approach lies in the massive measurement
resources required to complete a statistically well-powered
multicondition comparative experiment. Published studies
have required weeks to months of mass spectrometer
measurement time, and even with such a brute force approach
the number of biological conditions and experimental
replicates analyzed is limited. In the course of preparing our
manuscript, Havugimana and colleagues proposed a method to
scale such analysis using multiplex isobaric labeling.25 A second
barrier is the difficulty in extracting biologically meaningful
information from the complicated high dimensional data
produced by differential CoFrac-MS studies. We and others
have proposed several computational strategies including an
approach based on differential changes in protein SEC features
between conditions (CCprofiler),20 an autocorrelation-based
approach to detect rewiring of individual proteins across
conditions (PrInCE),15 a PPI network centric approach that
accounts for changes at multiple levels (SECAT),16 and a
Bayesian framework to identify alterations in protein
complexes (PCprophet).17 However, a data analysis pipeline
that can simultaneously perform statistical comparisons of
known protein complexes across multiple experimental
conditions while also providing hypothesis free evaluation of
evidence for protein complex remodeling at the individual
protein level has not yet been described. We suggest that an
integrated method combining increased measurement through-
put with an integrated data analysis pipeline would enable the
concept of CoFrac-MS to become broadly and routinely
applicable in life science research.
We recently introduced a number of advances to the

CoFrac-MS approach. SEC-SWATH-MS4,26 employs Data
Independent Acquisition (DIA/SWATH) mass spectrometry
enabling reproducible, robust, and sensitive quantification of
peptides across protein complex fractions and experimental
groups. Our analysis software CCprofiler uses prior protein

connectivity information from protein complex or PPI
databases to generate and execute targeted protein complex
queries to detect complexes while controlling the error-rate
using a target-decoy based statistical model.27 This SEC-
SWATH-MS strategy was used as the starting point for the
developments reported in this study.
We present an integrated experimental and computational

workflow for the global assessment of protein complex
reorganization in perturbed systems. Our approach relies on
DIA/SWATH analysis of SEC fractions using short gradient
chromatography that increases throughput by ∼1 order of
magnitude, achieving a measurement capacity of ∼1 biological
sample per day with similar information content compared
with prior low throughput methods. The increase in
throughput facilitates the comparison of multiple experimental
groups with multiple biological replicates. To deal with this
increase in complexity and to maximize the information
content discernible from the data, we developed statistical
methods to compare the data from several perspectives that we
refer to as (i) assembled mass fraction, where we assess
whether a given protein is shifting between monomeric and
assembled states, (ii) protein-centric, where we detect and
differentially quantify individual protein SEC features between
conditions, and (iii) complex-centric, where we quantify
changes in protein complexes detected by a hypothesis driven
approach. We benchmark our workflow with respect to a
typical lower throughput strategy and then demonstrate its
performance by investigating rearrangements in the protein
complex landscape of THP-1 human monocytic precursor cells
when undergoing a phorbol ester induced differentiation into a
macrophage-like phenotype28 and upon further induction of an
inflammatory response via lipopolysaccharide (LPS) stimula-
tion29 in the differentiated macrophages.

■ MATERIALS AND METHODS

Cell Culture
The human monocytic cell line THP-1 (LGC, ATCC-TIB-
202) was cultured and expanded in RPMI 1640 media (Gibco,
61870-010) supplemented with 10% FCS (BioConcept, 2-
01F00-I) and 1% penicillin/streptomycin (Gibco, 15140-122)
and kept at a confluency between 0.5 × 106 and 1.2 × 106 cells
per mL at 37 °C in a 5% CO2 incubator. 1.5 × 106 THP-1 cells
were differentiated when supplemented with 50 ng/mL PMA
(Sigma, P1585) for 48 h, and, when stated, the differentiation
treatment included a 24 h stimulation with 100 ng/mL LPS
(Sigma, L2630). The suspension cells or differentiated
adherent cells were washed with PBS (Gibco, 10010-023)
and were sedimented in a pellet by centrifugation at 300g kept
at 4 °C. The cell pellets were immediately snap-frozen in liquid
nitrogen.
Sample Preparation for Library Generation
The proteins were extracted from the frozen cell pellets by
lysing the cells with 1% SDC (Sigma, D6750) in HNN Buffe
pH 7.8 (50 mM HEPES, 150 mM NaCl, 50 mM NaF, 200 μM
Na3VO4, 1 mM PMSF, 1× protease inhibitors (Sigma, P8215),
1× benzonase (Sigma, E1014)), and incubated for 5 min at
room temperature. The lysates were centrifugated at 13000g
for 10 min to remove insoluble materials. The extracted
proteins were reduced at 5 mM TCEP for 30 min at 37 °C
while shaking at 500 rpm and subsequently alkylated in 10 mM
iodoacetamide for 30 min at 37 °C. The proteins were
precipitated overnight in 100% acetone at −20 °C and pelleted
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by a 30-min centrifugation step at 4 °C. The protein pellets
were then resuspended in 1% SDC, 8 M urea in 0.1 M
ammonium bicarbonate and sonicated for 10 min. The
proteins were diluted to 0.1 M ammonium bicarbonate and
digested overnight with trypsin (Promega, V5113) at 37 °C
with a protein-to-enzyme ratio of 50:1. The digestions were
stopped with 50% TFA, and the SDC was removed by two
centrifugation steps of 10 min each at 16000g. The peptides
were desalted and cleaned-up using C18 columns (The Nest
Group, #SEM SS18V) and were resuspended in 5%
acetonitrile, 0.1% formic acid with iRT peptides (Biognosys,
Ki-3002).
For the spectral library generation, a fraction of all samples

was pooled together, dried using vacuum centrifugation at 45
°C, and resuspended in Buffer A (20 mM ammonium formate,
0.1% ammonia solution, pH 10). A 200 μg portion of peptides
was injected into an Agilent Infinity 1260 (HP Degasser, Vial
Sampler, Cap Pump) and 1290 (Thermostat, FC-μS) system
and separated on a 25 cm long C18 reverse-phase column
(YMC Triart) with 3 μm particle size and 12 nm of pore size.
The peptides were separated at a flow rate of 12 μL/min by a
linear 56 min gradient from 5% to 35% Buffer B (20 mM
ammonium formate, 0.1% ammonia solution, 90% acetonitrile
in water, pH 10) against Buffer A (20 mM ammonium
formate, 0.1% ammonia solution, pH 10) followed by a linear 4
min gradient from 35% to 90% Buffer B against Buffer A and 6
min at 90% Buffer B. The resulting 36 fractions were pooled
into 12 samples. The buffer of the pooled samples was
evaporated using vacuum centrifugation at 45 °C, and the
resulting 12 samples were resuspended in 2% ACN, 0.1% FA
with iRT peptides (Biognosys).
SEC Protein Complex Extraction and Fractionation

Protein complex fractionation was performed as previously
described.30 THP-1 cells were thawed and lysed in mild
conditions by homogenization with a lysis buffer composed by
0.5% NP-40 detergent and protease and phosphatase inhibitors
(50 mM HEPES pH 7.5, 150 mM NaCl, 0.5% NP-40, 1 mM
PMSF, 400 nM Na3CO4, protease inhibitors cocktail (Sigma-
Aldrich, MI, USA)). Cell debris and membranes were removed
by 15 min of ultracentrifugation (55000g, 4 °C), and the
detergent was removed by a 30 kDa molecular weight cutoff
membrane and exchanged with the SEC buffer (50 mM
HEPES pH 7.5, 150 mM NaCl). The samples were
concentrated for a final protein concentration between 7 and
12 μg/μL. After 5 min of centrifugation at 16900g at 4 °C, the
supernatant was directly injected to a Yarra-SEC-4000 column
(300 × 7.8 mm, pore size 500 Å, particle size 3 μm,
Phenomenex, CA, USA). 0.8 mg of native proteome extract
(estimated by Pierce BCA Protein Assay Kit, Thermo Fisher
Scientific, MA, USA) was injected for each SEC run at 4 °C
with a flow rate of 500 μL/min, for a total chromatographic
time of 30 min. Fraction collection was performed in the
retention time window from 10 to 26 min, at 0.25 min per
fraction, for a total of 64 fractions collected.
The molecular weight calibration curve for SEC fractiona-

tion was obtained by running a protein standard mix (Column
Performance Check Standard, Aqueous SEC 1, AL0-3042,
Phenomenex, CA, USA) before each sample injection
(Supplementary Table 18).
Sample Preparation for Mass Spectrometry Analysis

Sample processing for bottom-up analysis of SEC fractions was
performed on 96-well plate MWCO filters (AcroPep Advance

Filter Plates for Ultrafiltration 1 mL Omega 10K MWCO; Pall
Corporation, USA).31 Prior to usage, the filters were washed
twice with 200 μL of water that was successively removed by
centrifugation at 1800g for 30 min. 64 fractions for each
sample (total fraction volume 125 μL) were loaded and
concentrated on the filters through centrifugation, until
complete removal of the SEC buffer.
Protein denaturation and reduction were obtained incubat-

ing the samples at 37 °C for 30 min with 5 mM of TCEP in 8
M urea/20 mM ammonium bicarbonate (AMBIC) (pH 8.8).
Alkylation of cysteine residues was performed by adding a final
concentration of 50 mM IAA/20 mM AMBIC and incubating
in the dark and at room temperature for 1 h. After the reaction,
the plates were centrifuged to remove the urea buffer and
washed three times with 20 mM AMBIC. Protein digestion
was carried out at 37 °C for 16 h, adding to each well 1 μg of
trypsin (Promega, Switzerland) and 0.3 μg of lysyl
endopeptidase (mass spectrometry grade, FUJIFILM Wako
Pure Chemical Industries, Japan). The resulting peptides were
collected by centrifugation, and the plates were washed once
more with 100 μl of ddH20.
LC-MS Analysis

DIA/SWATH analysis of the peptide fractions was performed
on an Evosep One system (Evosep Biosystems, Denmark)32

coupled to an AB Sciex TripleTOF 6600 instrument (Sciex,
MA, USA) equipped with a NanoSpray III ion source (Sciex).
The samples are loaded in Evotips (Evosep Biosystems,
Denmark), after resuspension in solvent A (0.1% FA water
solution, Fisher Scientific AG, Switzerland) and the addition of
iRTs peptides (Biognosys) in a ratio 1:100 for the retention
time alignment requested for SWATH acquisition. 75% of the
peptide recovered from each SEC fraction was loaded. For the
loading, the C18 stage tips (Evotips) were soaked with 100 μL
of 2-propanol during the activation and the conditioning steps.
The activation step consisted of washing with 20 μL of solvent
B (0.1% FA in ACN, Fisher Scientific AG, Switzerland),
followed by conditioning with 20 μL of solvent A. Prior the
sample loading step, 10 μL of solvent A was added on top of
the tips, ensuring that the tips remain wet during the loading
step. For each steps, the Evotips were centrifuged for 1 min at
a speed of 700 g for the elution of the solvents. The last step
(i.e., washing step) was performed using 100 μL of solvent A,
and the loaded tips were added with 200 μL of solvent A for
preserving the samples during the entire injection of the batch.
The separation of peptides was performed selecting the “60

samples per day” method, consisting of 24 min of total cycle
time, for 21 min of gradient length, and 3 min of overhead time
at a flow rate of 1 μL/min. A partial gradient is applied (0−
35% solvent B) in order to elute the peptides from the Evotip
by two couples of low pressure pumps. The peptides were then
pushed in a C-18 nanoConnect LC column (8 cm column, ID
100 μm packed with 3 μm Reprosil, PepSep, Denmark) using a
high pressure pump and solvent A.32 The ESI coupling was
obtained using a Nano Source Emitter Stainless Steel
Nanobore 1/32 (Thermo Fisher Scientific).
The ESI tuning parameters were the following: spray

voltage, 2800 V; ion source gas flow (GS1), 16; curtain gas
flow (CUR), 35; interface heater temperature (IHT), 100 °C;
declustering potential, 100.
The Evosep system was controlled by Axel Semrau Chronos

software (Axel Semrau GmbH, Germany), while the mass
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spectrometer acquisition software was Analyst TF 1.7.1
(Sciex).
Data-independent acquisition (SWATH/DIA) mass spec-

trometry33 was performed for the quantitative analysis of the
576 SEC fractions (64 fractions per sample) obtained from the
9 SEC experiments. A SWATH scan was performed using an
updated scheme of 64 variably sized precursor coisolation
windows,34 covering similar precursor densities (in terms of
number and intensity) within all SWATH windows. The
SWATH windows cover the precursors ions in the range of
350−1500 m/z and 350−1500 in the MS2 SWATH scans, and
the accumulation time was 100 ms for the MS1 and 20 ms for
each SWATH window, resulting in a cycle time of 1.38 s. For
fragmentation, a rolling collisional energy with a collisional
energy spread of 15 eV was applied.
DDA MS Analysis for the Library Generation

The 12 high pH fractioned peptide samples were separated on
an Eksigent nanoLC Ultra AS2 1D Plus and expert 400
autosampler system (Eksigent, Dublin, CA) coupled to a
TripleTOF 5600 ion source through a NanoSpray III ion
source by using a Data Dependent Acquisition (DDA) scheme.
The 20 cm long nanoLC column was packed in house using a
75 μm inner diameter PicoFrit emitter (New Objective,
Woburn) with Magic C18 AQ 3 μm, 200 Å particles. The
separation was performed at room temperature at a flow rate of
300 nL/min. All of the LC solvents were all of mass
spectrometry grade. The LC solvent A was composed of
98% water, 2% acetonitrile, and 0.1% formic acid, and LC
solvent B was 98% acetonitrile, 2% water, and 0.1% formic
acid. The peptides were eluted over 120 min, with a linear
gradient from 5% to 35% LC solvent B. Collision energy and
ESI parameters were for DIA analysis. One MS1 scan with an
m/z range of 360−1460 and an accumulation time of 250 ms
was followed by 20 MS2 scans with m/z ranges of 50−2000
and accumulation times of 100 ms. The dynamic exclusion
time was set to 20 s.
DDA Data Analysis for the Library Generation

DDA-MS data acquired from peptide fractionation of the full
THP-1 cell lysates (see above) were processed for the SWATH
library generation following the protocol previously de-
scribed.35

MS spectra were searched for peptide matches against the
human UniProt/SwissProt reference database (reviewed,
canonical entries, June 2017) using a Comet 2018.01 rev. 0
MS/MS search engine. The search was carried out using
trypsin cleavage, 30 ppm precursor, and 0.05 Da fragment ion
mass tolerance, carbamidomethyl (C) as static and oxidation
(M) as variable modification, and a maximum of 2 enzyme
missed cleavages. The results from the search were statistically
scored using Peptide Prophet (statistical validation of PSMs)
and iProphet (peptide sequence validation) of the Trans-
Proteomic Pipeline (TPP v5.0.0 POLAR VORTEX rev 0),
filtering the results at 1% peptide FDR (0.815939 iprob) as
determined using the tool Mayu.36 A wider peptide-level FDR
cutoff (5% FDR on protein level, compared to requiring 1%
FDR) was chosen in order to increase sensitivity for the
recovery of true positive peptide signals.
The resulting spectra were then gathered for the generation

of the consensus spectra library using SpectraST including the
retention time calibration. The 6 most abundant fragment ion
transitions per precursor from the bn or yn ion series were
selected, with an m/z range of 350−2000 and aa fragment

charge states 1−2. The final library contains query parameters
for 506,717 precursors of 73,007 peptides mapping to 9375
protein groups. Moreover, to the spectra consensus library
reverse decoys (506,581 decoys transitions) were generated for
the FDR scoring provided by the SWATH/DIA data analysis
workflow.
DIA/SWATH Data Analysis

For the THP-1 experiment, the DIA/SWATH data collected
from the analysis of SEC fractions were analyzed through
peptide-centric analysis, querying 506,717 fragment precursors
from the sample-specific peptide library generated (see above)
in the SWATH MS2 spectra, using an OpenSWATH v2.137,38

PyProphet and TRIC39 workflow. Initially, one global classifier
was trained on a subsampled set of SEC fractions across the
experiment using pyProphet-cli.40 Peptides from all fractions
were then quantified and scored using the pretrained scoring
function using pyProphet and TRIC. The HeLa benchmark
data set was analyzed with Spectronaut v14 using a previously
published HeLa CCL2 spectral library.41

CCProfiler

The first differential analysis module in CCprofiler is tailored
toward detecting proteins that differ in their global assembly
state, meaning that the relative distribution between
monomeric and assembled protein mass is different across
the conditions. Since this module depends on the assignment
of the fractionation dimension into a monomeric and
assembled range based on the monomeric molecular weight
of each protein, the analysis is currently only available for SEC
data sets and requires both a molecular weight calibration of
the fractions and a monomeric molecular weight annotation of
the measured proteins. The cutoff between the monomeric and
assembled SEC range is set at the fraction corresponding to
two times the expected monomeric molecular weight of a
protein. Based on this initial division of the SEC dimension,
the assembled mass fraction (AMF) of each protein can be
estimated by the fraction of the detected MS signal in the
assembled mass range relative to the total globally detected
signal:

=AMF
intensity assembled

intensity global

A change in AMF is subsequently estimated by the
difference in the mean AMF across conditions:

=diffAMF mean(AMFA) mean(AMFB)

Here, AMFA and AMFB denote the AMF values of two
conditions A and B. Since AMF values are not normally
distributed and bound by zero and one, a conventional t test
for significance estimation is not applicable. Instead,
CCprofiler applies a beta-regression model and p-value
estimation by a likelihood-ratio test to derive significance
estimates (for details, see below). Multiple testing correction is
performed by Benjamini-Hochberg adjustment of the derived
p-values.42 Proteins with significant adjusted p-values and large
AMF differences are indicated to have a different proportion of
individual proteins associated with higher order assemblies
across the conditions. Notably, this information is derived
independent from any feature (i.e., peak group) detection and
does not require knowledge of the protein’s exact interaction
partners.
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Differential Analysis of Distinct Protein Assembly
States and Detection of Protein Rewiring. To further gain
insights into distinct protein assembly states, we have
previously introduced the protein-centric analysis concept for
CoFrac-MS data within a single condition.30 Here, we extend
the protein-centric analysis concept to enable differential
assessment of distinct protein assembly states. To achieve
consistent protein feature (i.e., peptide coelution peak group)
detection across conditions and replicates, peptide-level traces
are first integrated by summing the intensities across all
samples in the provided tracesList. The integrated traces are
subsequently used for protein-centric feature finding, applying
random peptide assignments as a decoy model for p- and q-
value estimation.30 Each protein can thereby be assigned to
potentially multiple distinct assembly states, as indicated by the
detection of multiple unique protein features. Following this
initial protein feature detection, a differential analysis is
performed to compare the signal intensity within each protein
feature across conditions.
Differential analysis is performed in 5 steps: (i) Peptide-level

intensities are computed for each protein feature and sample.
Missing values in single fractions, replicates, or conditions are
imputed by uniformly sampling values between zero and the
minimum detected signal of a peptide. The peptide intensity of
one feature is then calculated by summing the intensities of all
fractions across the corresponding protein feature range. (ii)
The mean intensity across all replicates within a condition
(specified by the design matrix) is calculated. (iii) The log2-
fold-change between conditions is calculated based on the
mean feature intensities. (iv) If replicates are available, p-values
are estimated by comparing the summed intensities across
conditions by a nonpaired t test. If no replicates are available,
p-values are estimated by comparing each fraction within a
feature by a paired t test across the conditions. (v) To
subsequently derive protein-level information, the peptide-level
tests are aggregated as follows: (1) protein log2-fold-changes
are derived from the median log-2-fold change across all
detected peptides of the protein, and (2) protein p-values are
estimated by determining the fold-change adjusted median p-
value and applying a beta distribution as described by Teo et
al.43 and Suomi et al.44 (for details see the methods section).
(vi) Multiple testing correction is performed by Benjamini-
Hochberg adjustment of the protein-level p-values.30

In addition to the feature-specific differential analysis, global
differential assessment is performed by comparing integrated
intensities across the entire fractionation dimension, instead of
restricting the analysis to a feature-specific range. The same
strategies as for feature-specific estimation of log2-fold-changes
and p-values are performed. To assess whether the signal
within a protein feature is changing because of a global change
in the protein’s expression or due to a rearrangement of the
proteins relative distribution across different assembly states,
an additional analysis step is available in CCprofiler. Here, the
relative feature-specific mass fraction (FMF) is estimated by
the fraction of the detected MS signal in the feature-specific
mass range relative to the total detected signal:

=FMF
intensity feature
intensity global

A change in FMF is subsequently estimated by the difference
in the mean FMF across conditions:

=diffFMF mean(FMFA) mean(FMFB)

Here, FMFA and FMFB denote the FMF values of two
conditions A and B. Similar to the concept introduced for
comparing AMF values, CCprofiler applies a beta-regression
model and p-value estimation by a likelihood ratio test to
derive significance estimates for the change in FMF across
conditions (for details, see the methods section). Since the
initial assessment of FMF values is performed on peptide-level
data, protein-level information is derived by aggregation across
all detected peptides as follows: (1) FMF differences are
derived from the median diffFMF across all detected peptides
of the protein, and (2) p-values are estimated by determining
the difference adjusted median p-value and applying a beta
distribution as described by Teo et al.43 and Suomi et al.44 (for
details see see the methods section). Multiple testing
correction is performed by a Benjamini-Hochberg adjustment
of the p-values.42 A significant change in the FMF across
conditions indicates that the protein’s relative contribution to
different distinct assembly states has changed across the
conditions, thus providing insights into protein rewiring, which
is not observable by global proteome analyses. In contrast to
complex-centric analyses, described in the following section,
protein-centric differential analysis enables the assessment of
changes in distinct protein assembly states independent of the
actual knowledge of the protein’s exact interaction partners.
Protein Complex Detection and Differential Analysis.

The final analysis module in CCprofiler is focused on complex-
centric detection and differential assessment of protein
complexes. We have previously introduced the basic concept
of complex-centric analysis for CoFrac-MS data of a single
condition.30 In summary, prior protein connectivity informa-
tion is used to query CoFrac-MS data directly for evidence of
predefined complexes. By using random protein assignments as
a decoy model for error rate estimation, complex-centric
analysis enables the detection of hundreds of protein
complexes at high sensitivity and under controlled FDR.
Here, we expand the complex-centric analysis strategy to allow
a quantitative comparison between complexes detected across
different cellular conditions. Analogous to the protein-centric
workflow described in the previous section, protein-level traces
are first integrated by summing the intensities across all
samples in the provided tracesList to ensure consistent signal
detection across conditions and replicates. The integrated
traces are subsequently used for complex-centric feature
detection. Only the most complete complex feature (i.e.,
protein coelution peak group) for each complex query is
considered for scoring and FDR estimation. After filtering for
q-values (e.g., 0.05), the complex features are appended by
secondary features with high correlation values (peak
correlation 0.7). These secondary features can for example
entail potential subcomplexes or complex variants.30

Following this initial protein complex feature detection, a
differential analysis step can be performed to compare the
signal intensity within each complex feature across different
conditions. The analysis concept is analogous to the differential
analysis strategy implemented on the level of protein features
(see the previous section). The initial differential testing is
performed on the peptide level, while results are subsequently
aggregated on the protein level. For complex-centric analysis,
the protein-level results are additionally aggregated to the
complex level, again following the same strategy as compared
to aggregation from the peptide to protein level. Finally,
multiple testing correction is performed by a Benjamini-
Hochberg adjustment of the p-values.42
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p-Value Estimation for AMF and FMF Differences. p-
Value estimation for AMF and FMF differences was performed
by first transforming the AMF and FMF (y) to values between
zero and one, while excluding the extremes (0 and 1):45,46

=
* +

y
y n

n
( ( 1) 0.5)

Here, n denotes the sample size, which was six for the
presented data set. The resulting y′ values were used for fitting
a beta-regression model with the betareg R package with
default parameters.45,46 The lrtest function of the lmtest R
package was subsequently used for p-value estimation by a
likelihood-ratio test with default parameters. Multiple testing
correction was performed by the p.adjust function of the stats
base package, using the “fdr” method corresponding to
correction by Benjamini-Hochberg.42

p-Value Estimation for Aggregating Peptide-Level
Tests to the Protein and Complex Level. Peptide-level p-
values were aggregated to the protein-level by applying the
strategy presented by Teo at al.43 and Suomi et al.44 First the
median of peptide-level p-values is used as a score for each
protein taking the direction of change into account. The
protein-level significance of the detection is subsequently
calculated using a beta distribution.44 The same strategy is
applied to aggregate protein-level p-values to the complex level.
Multiple testing correction is performed by the p.adjust
function of the stats base package, using the “fdr” method
corresponding to correction by Benjamini-Hochberg.42

CCprofiler Analysis Workflow and Parameters

All R-scripts for the CCprofiler analysis are openly available on
github. The following section provides a summary of the most
important processing steps and the selected parameters for the
presented analysis.
Due to the very low molecular weight of later SEC factions,

the data were limited to fractions 1 to 49 for CCprofiler

analysis. Missing peptide intensity values (for which both the
previous and the following fraction contained measured
intensity values) were imputed by a spline fit across the SEC
dimension. After missing value imputation, peptide intensity
values were normalized across conditions and replicates by
applying a cyclic loess normalization,16,47,48 a method initially
implemented for microarray analysis using pairwise loess curve
fitting cycling through all possible pairs several times. Low-
confidence peptides were subsequently removed, keeping only
peptides with (1) at least three consecutive detections across
any replicate, (2) at least one high correlating sibling peptide
(maximum correlation ≥ 0.5), and (3) a good average sibling
peptide correlation (≥0.2). Protein quantification was
performed by summing the top two most intense peptides
consistently across all replicates.
To determine proteins with a significant change in their

assembly state across conditions, a mean difference in AMF of
≥30% and a Benjamini-Hochberg adjusted p-value ≤ 0.05 were
required.
Protein-centric analysis was performed with following

parameters: corr_cutoff = 0.9, window_size = 7, rt_height =
1, smoothing_length = 7, perturb_cutoff = ”5%”, and
collapse_method = ”apex_only”. Only protein features passing
the 5% FDR threshold were further considered. For the
differential analysis, a minimum log2 fold-change of one and a
Benjamini-Hochberg corrected p-value of 0.05 were required
for significance in all pairwise analyses. To determine protein
features with a significant change in their relative abundance in
comparison to the total protein intensity across conditions, a
mean difference in FMF of ≥30% and a Benjamini-Hochberg
adjusted p-value ≤ 0.05 were required.
For complex-centric analysis, we first defined a set of target

protein complex queries. This was achieved by combining
queries derived from CORUM49 and StringDB.50 We derived
protein complex queries from StringDB version 10 (9606.pro-
tein.links.v10.txt). Protein identifiers were mapped to Uniprot

Figure 1. Workflow for rapid profiling of protein complex reorganization. The main steps in the sample processing workflow are exemplified with
three biological conditions (undifferentiated, differentiated, stimulated) analyzed in triplicate. Native extracts were separated by SEC collecting 64
fractions per sample. The fractions were processed to peptides using a 96 well plate filter aided sample preparation (FASP) protocol and analyzed
by 21-min gradients in DIA/SWATH mode at a rate of 60 MS samples (∼1 biological sample) measured per day.
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accessions via BioMart. The interactions were filtered for a
minimal combined_score of 980. We applied the ClusterONE
algorithm51 for PPI network partitioning with following
parameters: d = 0.95. Weights were set to the combined_score
divided by 1000. CORUM derived protein complex queries
were taken directly from within the CCprofiler package.30 The
complex queries were combined, and decoys were generated
randomly by requiring a minimum edge distance of 3.
Complex-centric analysis was performed with the following
parameters: corr_cutoff = 0.9, window_size = 7, rt_height = 1,
smoothing_length = 7, perturb_cutoff = ”5%” and collapse_-
method = ”apex_network”. Only complex features with a
molecular weight higher than two times the largest monomeric
molecular weight of any of its participating subunits were
considered. For each protein complex query, the complex
feature with the highest number of participating subunits was
selected for the FDR estimation, filtering for a maximum FDR
of 5%. Secondary features were appended to the final results
based on the basis of a minimum peak correlation threshold of
0.7. To reduce redundancy across the detected complex
features between different queries, features were collapsed with
the following parameters: rt_height = 0 and distance_cutoff =
1.25. For the differential analysis, a minimum log2 fold-change
of one and a Benjamini-Hochberg corrected p-value of 0.05
were required for significance in all pairwise analyses.

■ RESULTS

Integrated Experimental and Computational Workflow

To increase the throughput of the SEC-SWATH-MS workflow,
we optimized multiple steps of the experimental procedure
(Figure 1a). These included (i) parallelized sample preparation
after SEC fractionation, including proteolytic digestion using
96-well FASP (filter-aided sample preparation) plates to ensure
robustness and comparability, while significantly reducing
sample handling steps and time;52 (ii) direct sample loading
onto solid phase extraction tips, omitting an offline reversed
phase-based cleanup step; (iii) a data acquisition strategy
comprising a 21 min LC gradient (24 min injection to
injection time) using direct loading from solid phase extraction
tips and embedded gradients to reduce overhead. This advance
enabled the acquisition of data for 1 biological sample
comprising ∼60 SEC fractions per day while minimizing loss
in sensitivity;32 (iv) a DIA/SWATH acquisition strategy
specifically optimized to maintain proteome coverage and
quantitative robustness for short gradient analysis (Supple-
mentary Figures 1 and 2).
In this study, we benchmarked the rapid method and used it

to compare THP-1 human monocytic precursor cells when
undergoing a PMA-induced differentiation into a macrophage-
like phenotype28 and subsequently a further lipopolysaccharide
(LPS) stimulation of the macrophage cells to elicit an

Figure 2. Data analysis workflow. The extended CCprofiler4,20 workflow is depicted. Steps 1, 2, and 3 outline the required input data for data
import that is followed by normalization, quality control procedures, and data preprocessing. Step 4 consists of quantitative comparisons between
experimental groups at 3 different levels. The first differential analysis module in panel 4.I assesses differential global assembly state analysis,
reporting the relative assembled fraction compared to the monomeric state for each protein. The protein-centric analysis in Figure 1b panel 4.II
reports quantitative comparisons of all detected peptide coelution groups called protein features. Panel 4.III depicts the CCprofiler module that
supports differential complex centric analysis, where pairwise quantitative comparisons of the detected protein coelution groups, called complex
features, between all the biological conditions are reported.
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inflammatory response29 (Figure 1). The native protein
extracts of 3 biological replicates from all 3 biological
conditions were fractionated by SEC and analyzed by DIA/
SWATH mass spectrometry using short gradients as described.
This amounted to 9 SEC runs of 64 fractions each, leading to a
total of 576 MS runs, which were acquired within 9.5 days.
Given that our optimized experimental workflow substan-

tially increased throughput, thus facilitating the measurement
of biological replicates from different experimental conditions
with comparable information content, we reasoned that new

algorithmic and statistical approaches were needed to fully
exploit the available data and maximize biological insight. The
computational advances in the workflow are implemented in a
new version of our software CCprofiler30 to systematically and
automatically investigate changes in proteome assembly across
multiple conditions or cellular states (Figure 2). CCprofiler
includes several preprocessing functions to align SEC profiles,
to compute missing values, and to normalize intensities
between replicates and conditions (see Materials and
Methods). The extended CCprofiler version further enables

Figure 3. Benchmarking and performance assessment of rapid method. (a) Benchmarking experiment using HeLa cells comparing a typical SEC-
SWATH workflow using the long gradient (90 min gradient; 126 min injection to injection time) compared to our optimized workflow using short
gradient analyses showing the number of peptides, proteins, or protein complexes detected at various stages of the analysis. The numbers of
peptides, inferred proteins, or inferred complexes detected (shared or uniquely in each method) using either the long or short method are shown.
“Spectronaut” refers to detections at the stated thresholds after Spectronaut analysis and “SECFiltered” refers to more stringent filtering utilizing
the consecutive fraction and at least 2 correlated sibling peptides. “Collapsed” refers to protein complexes after removing redundancy due to
multiple complexes hypotheses detecting the same/similar complex features. See Methods for further description of categories depicted. (b)
Dynamic range assessment in short versus long gradient visualized as distribution of protein SEC features in the short or long gradient analysis
HeLa Benchmark. (c) CV distribution within THP-1 perturbation experimental groups compared to the whole experiment. (d) Spearman
correlation matrix with hierarchical clustering calculated based on SEC protein feature peak areas for undifferentiated (U), differentiated
macrophages (D), and LPS stimulated (S).
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the qualitative and quantitative detection of three comple-
mentary aspects of (differential) proteome organization, each
one implemented in a specific CCProfiler module.
The first module is directed at detecting proteins that differ

in their global assembly state, meaning that the relative
distribution between monomeric and assembled states is
different across the conditions (Figure 2 panel 4.I). For this
analysis, we first exploit the log−linear relationship between
the SEC elution fractions and their apparent molecular weight
(Supplementary Figure 3), enabling the assignment of a
monomeric and assembled SEC elution range specific for each
protein detected. The fraction of observed protein mass in the
assembled SEC elution range is represented by the assembled
mass fraction (AMF) (see Materials and Methods). The
differential module assesses whether a protein undergoes a
significant change in AMF across the different conditions,
meaning that it changes from assembled states to the
monomeric state or vice versa. Importantly, AMF analysis
does not require the extraction of specific elution peaks, but
instead takes all fractions in the monomeric and assembled
range into account, respectively. This makes the AMF analysis
module also applicable to CoFrac-MS experiments of limited
chromatographic resolution.
The second, protein-centric analysis module evaluates the

number of distinct assembly states in which each protein is
observed. We define a distinct assembly state as a resolved
peptide coelution peak group of a protein along the SEC
chromatographic dimension, referred to as a “protein feature”.
Recently, we extended the protein-centric analysis to
quantitatively compare protein features across different
conditions.20 In contrast to a standard differential protein
expression analysis, abundance fold-changes and p-values are
computed for each distinct protein feature, thereby capturing
not only changes in overall protein expression but also
abundance changes of specific assembly states. In addition to
the feature-specific differential analysis, global differential
assessment is performed by comparing integrated intensities
across the entire fractionation dimension instead of restricting
the analysis to a feature-specific range. This global analysis can
essentially be considered equivalent to a standard (i.e., non-
CoFrac-MS) proteomics analysis as we are essentially summing
over the signal for each protein across the SEC dimension
effectively collapsing this dimension. The same strategies as for
feature-specific estimation of log2-fold-changes and p-values
are performed. Additionally, we provide the opportunity to
compare the relative distribution of protein mass across the
various detected assembly states (Figure 2 panel 4.II),
represented by a relative feature-specific mass fraction
(FMF). Here, a change in FMF across conditions indicates
that the protein changes its relative distribution across different
assembly states, i.e., a change in the state of protein complexes
that cannot be explained by a change in protein abundances
only. The protein-centric differential analysis yields a fine-
grained view of individual assembly states of each protein but
also enables more global assessments of the overall degree of
higher order assembly observed under each biological
condition (similar to standard proteomics analysis) as well as
the contrast between these modes.
Finally, in the third analysis module, CCprofiler quantita-

tively compares the abundances and compositions of protein
complexes across different biological conditions in an
automated and error-controlled manner (Figure 2 panel
4.III). Unlike the first two strategies which are hypothesis

free, the complex-centric analysis module first relies on prior
protein connectivity information to query the data in a targeted
fashion and to extract protein complexes based on their
coelution profiles under a controlled FDR (see Materials and
Methods). CCprofiler then carries out a differential analysis
step by comparing the signal intensity for each protein complex
feature across all pairwise biological conditions. This analysis
enables the consistent detection and quantitative comparison
of hundreds of protein complexes across different biological
conditions.
Performance and Quality Assessment

To determine whether our optimized workflow had com-
parable information content to established CoFrac-MS
strategies, we benchmarked against a typical SEC-SWATH
method using a 90 min gradient (126 min injection to
injection time). In this comparison, we analyzed equivalent
SEC fractions from a HeLa CCL2 native protein extract with
either method. The DIA/SWATH data were analyzed using
Spectronaut and a previously published HeLa CCL2 spectral
library.41 We applied CCprofiler filtering and feature finding
functions and evaluated the number of peptides, proteins, and
protein complexes detected by both methods (Figure 3a, and
Supplementary Tables 1−6) at various stages of the data
analysis. Using the method described for collapsing potentially
redundant complexes, we notice that the apparent overlap of
complexes between long and short analysis methods appears
low compared to the noncollapsed complexes; however, this is
due to differences in exact subunit detection for these
complexes and gives a somewhat misleading impression (see
Supplementary Tables 3 and 6). Overall, we recovered 70%,
77%, and 95% of the information at the peptide, protein, and
protein complex levels, respectively, when comparing the short
gradient to the long gradient method with ∼half order
reduction in protein SEC feature apparent dynamic range
(Figure 3b).
Having demonstrated that our rapid method still provides

comparative proteome and interactome coverage, we next
turned to the THP-1 perturbation experiment. We analyzed
the 576 LC-MS/MS runs from the three experimental
conditions in SEC triplicates using the OpenSWATH
computational pipeline and a THP-1 specific spectral library
generated by DDA analysis of 12 basic reversed phase fractions
of a pool of the biological samples. It contained 84,453 peptide
precursors, mapping to 9,375 proteins. The output, initially
filtered with relaxed FDR thresholds before import to
CCprofiler, contained on average 46,146 proteoytpic peptides
per SEC run (range 43,785−47,297) from which we inferred
5,736 unique proteins on average (range 5,686−5,762) across
the data set at a 10% run-specific peak-group FDR, 5% global
peptide FDR, and 5% global protein FDR before further FDR
refinement in CCprofiler (described below). The distribution
of detected peptides and proteins as a function of SEC fraction
is shown in Supplementary Figure 4. As only the first 50
fractions analyzed were informative, we discarded the
remaining fractions for the following analysis, and these
could be excluded from measurement in future iterations. We
first assessed the consistency and comparability of the 9
fractionation runs by performing pairwise alignments at the
peptide-level and calculated the global correlation among all
matching peptides (Supplementary Figure 5). The results
demonstrate that the SEC runs were reproducible and did not
require further alignment. To enable a quantitative comparison
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of the respective SEC runs at the three analysis levels, we then
normalized the intensities using a cyclic loess method
(Supplementary Figure 6). To increase the confidence for

downstream analyses, we filtered out peptides which were not
identified in two consecutive SEC fractions, we only kept
proteins supported by more than one proteotypic peptide, and

Figure 4. Protein complex reorganization in differentiated/stimulated THP-1 cells. (a) Scatterplot summarizing the summarizing the AMF analysis
in the pairwise comparisons of interest. Points on the diagonal indicate no change between conditions and points outside the thresholds indicate an
effect size > 25% with the BH p-value indicated by the pink/blue color scale. SHC1 is highlighted with a significantly altered AMF in differentiated
versus undifferentiated cells (red) but not in stimulated versus differentiated cells (blue). (b) Absolute mass fraction (AMF) analysis showing
protein SEC profiles for SHC1 in the 3 experimental conditions, demonstrating an AMF shift from the monomeric state toward an assembled state,
going from undifferentiated monocytes to differentiated macrophages. MMW and 2× MMW indicate the expected monomeric molecular weight
and twice the expected monomeric molecular weight. Biological replicates are collapsed to median ± SD. (c) Volcano plot summarizing the
protein-centric analysis where each data point represents one protein SEC feature. Highlighted points are WASHC5 protein SEC features that do
(red) or do not (blue) pass significance thresholds. (d) Protein-centric analysis showing Peptide SEC traces for WASHC5 in the 3 experimental
conditions demonstrating a reduction in abundance of the lower molecular weight SEC feature and an increase in the higher molecular weight SEC
feature going from the undifferentiated condition toward the differentiated condition. Gray background indicates SEC feature boundaries, and
black lines indicate feature apex. Biological replicates are collapsed to mean ± SD. The feature detection is performed on a summed instance of all
samples (not on individual samples) meaning that small shifts in SEC traces can make the peak apex for a given run slightly different the peak apex
for the average run. The second black line does indicate that a second feature is detected by the feature detection. This feature detection is tuned to
slightly overdetect features in order to achieve the appropriate sensitivity. (e) Volcano plot summarizing the complex-centric analysis where each
data point represents one detected protein complex. Highlighted points are the IFIT complex that changes significantly in the stimulated vs
differentiated comparison (red) but not in the differentiated vs undifferentiated comparison (blue). (f) Complex-centric analysis showing protein
SEC profiles for the 3 components of the IFIT complex where the complex is observed in the stimulated condition but not in the undifferentiated
or differentiated conditions. Gray background indicates SEC feature boundaries, and black lines indicate feature apex.
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we required that the remaining proteins are supported by at
least two highly correlating sibling peptides (Materials and
Methods and Supplementary Figure 7). After these con-
servative filtering steps, the mean number of detected proteins
per SEC run was 4,013 (range 3,996−4,025). We next applied
chromatographic feature finding to the concatenated data set
of all 9 SEC runs and detected 5,196 protein SEC elution
features from 3,335 proteins at a 5% FDR threshold, among
which 911 (27%) were detected as monomers only, while
2,424 (73%) had at least one elution feature in the assembled
molecular weight range (>2× monomer molecular weight). Of
the 3,335 proteins, 1389 had multiple detected features at
different molecular weights, thus suggesting their contributions
to more than one complex (Supplementary Figure 8).
To assess the global biological information content of the

THP-1 data set, we computed the coefficient of variation (CV)
for peak areas of protein SEC features over the biological
replicates within experimental groups and compared these to
the CV over all samples across groups. Figure 3c shows the
distribution of the CV for these categories where the median
within experimental group CV is 0.18−0.23, whereas the
median CV for all samples across the three different
experimental conditions is 0.32, indicating that we have
captured substantial biological variation. To further examine
the global pattern of biological variability within and across
experimental groups, we calculated the Spearman correlation
using protein SEC feature peak areas and performed
hierarchical clustering (Figure 3d). This analysis showed that
the undifferentiated monocytic cell state clusters distinctly
from both the differentiated and stimulated states, which are
not distinguished in this global analysis, indicating that the
magnitude of proteome reorganization induced by differ-
entiation is substantially higher than that of LPS stimulation of
the differentiated state.
Protein Complex Reorganization in Differentiated and
Stimulated THP-1 Cells

To compare between experimental groups, we applied the 3
quantitative modules of CCprofiler beginning with the
Assembled Mass Fraction (AMF) analysis. Over the 9 samples
analyzed, 60−64% of the global proteome mass was estimated
to be in an assembled state (Supplementary Figure 10 and
Supporting Information Tables 7−8). A global view of the
change in the AMF with respect to the experimental
comparisons is shown in Figure 4a. Of the 3,903 proteins in
the AMF analysis, 61 proteins had significant changes in their
assembly state (absolute mean AMF difference larger than
0.25, BH p-value less than 0.05) comparing the differentiated
to undifferentiated conditions (51 proteins increased AMF and
10 proteins decreased AMF on differentiation), and only 1
protein showed a significant change (decreased AMF) when
comparing the stimulated to differentiated conditions. For
example, Figure 4b shows the average protein abundance over
the SEC dimension for SHC1, an adaptor protein with broad
functional roles in signaling, for each of the 3 experimental
conditions. In the undifferentiated state, almost all of the
SHC1 signal is observed at the expected monomeric molecular
weight (MMW) of ∼63 kDa with only 3.7% observed at larger
than 2 times the expected MMW. On differentiation, we
observe a clear and statistically significant shift (BH p-value =
0.003) with 32.4% of the signal for this protein observed in the
assembled state. Stimulation of the differentiated cells with
LPS did not produce a further significant shift in the assembly

state of SHC1 with 38.4% in the assembled state (BH p-value
= 0.522). SHC1 has been directly implicated as a signaling
adaptor in monocyte to macrophage differentiation in previous
studies.53,54

We next applied the Protein-Centric Analysis module of
CCprofiler to the THP-1 data set. Overall, we observed
feature-specific quantitative differences (absolute log2FC larger
than 1, BH p-value less than 0.05) between SEC features for
540 proteins in the differentiated vs undifferentiated
comparison and in 30 proteins for the stimulated vs
differentiated comparison (Figure 4c and Supplementary
Tables 9−11). In the protein-centric global comparison,
where the signal from all SEC fractions for a given protein is
summed and compared across conditions, we observed
significant changes for 428 proteins in the differentiated vs
undifferentiated comparison and 39 proteins for the stimulated
vs differentiated comparison. We then performed the feature-
specific mass fraction (FMF) comparison in which we can infer
whether a protein changes its relative distribution across
different assembly states. We detected 114 proteins in the
differentiated vs undifferentiated comparison that underwent
changes in their assembly state that were not attributable to
changes in overall protein quantity, and, in contrast, we could
detect no proteins in this category for the stimulated vs
differentiated comparison. Figure 4d shows SEC profiles for
peptides mapping to WASHC5, a component of the WASH
complex associated with endosome regulation. We observe 2
distinct protein SEC features, both substantially in excess of
the expected MMW, indicating the likely participation of
WASHC5 in two distinct complexes. A significant reduction of
peak area of the lower molecular weight feature in the
undifferentiated vs differentiated conditions is observed in
combination with an apparent (although not significant)
increase in the higher molecular weight feature. In Figure 4c
the summary for all protein features is shown in volcano plots
for the comparisons of interest with the protein features for
WASHC5 highlighted. While the specific role of the WASH
complex in differentiation is not broadly understood, mouse
cells lacking the WASH complex were shown to be deficient in
hemopoietic differentiation including at the transition from
monocyte to macrophage lineages,55 and therefore reorganiza-
tion of this complex is plausibly functionally relevant in this
monocyte to macrophage transition.
Finally, we applied the complex-centric module of

CCprofiler to compare the set of detected protein complexes
under the various conditions. To generate a comprehensive
input hypothesis-set for the complex-centric analysis, we
merged the CORUM database49 with the String database50

partitioned to create discrete protein complex hypotheses
using the ClusterONE algorithm,51 originally created to detect
potentially overlapping protein complexes from PPI data sets
(Supplementary Table 12). This resulted in 3,127 complex
hypotheses, from which 644 were detected; 104 were fully
detected, 375 were detected with at least 50% of the subunits
present, and 165 were identified with less than 50% of the
subunits present, all with a 5% FDR at the complex-detection
level (Supplementary Figure 11). We further collapsed these
644 confidently detected protein complex queries to 321 likely
unique protein complexes based on subunit composition and
position in the SEC dimension.26 Overall, we observed
significant quantitative changes in 17 protein complexes,
composed of 73 protein subunits, in the differentiated vs
undifferentiated comparison. This is in contrast to the

Journal of Proteome Research pubs.acs.org/jpr Article

https://doi.org/10.1021/acs.jproteome.3c00125
J. Proteome Res. 2023, 22, 1520−1536

1530

https://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.3c00125/suppl_file/pr3c00125_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.3c00125/suppl_file/pr3c00125_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.3c00125/suppl_file/pr3c00125_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.3c00125/suppl_file/pr3c00125_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.3c00125/suppl_file/pr3c00125_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.3c00125/suppl_file/pr3c00125_si_002.xlsx
https://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.3c00125/suppl_file/pr3c00125_si_002.xlsx
https://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.3c00125/suppl_file/pr3c00125_si_002.xlsx
https://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.3c00125/suppl_file/pr3c00125_si_002.xlsx
https://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.3c00125/suppl_file/pr3c00125_si_001.pdf
pubs.acs.org/jpr?ref=pdf
https://doi.org/10.1021/acs.jproteome.3c00125?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


stimulated vs differentiated comparison in which only a single
protein complex was called as significantly different (Figure 4e
and Supplementary Tables 13−17). Figure 4f shows the
protein level SEC traces for the 3 annotated subunits of the
IFIT complex. The IFIT complex, composed of the Interferon-
induced protein with tetratricopeptide repeats 1−3, is a well
described factor in interferon-induced response with particular
functional relevance in antiviral function, although more recent
data implicate the IFIT complex in regulatory function in
inflammatory reponses.56 For example, LPS stimulation in
macrophages has been shown to increase IFIT expression
levels in order to enhance the secretion of proinflammatory
cytokines including TNF alpha and IL-6.57 We observe a clear
signal for the IFIT complex at the expected molecular weight
under the LPS stimulated conditions and compared with only
baseline amounts under the differentiated and undifferentiated
conditions. As such, the increased expression of the IFIT
proteins and their assembly into a complex are consistent with
the LPS stimulation employed in our experiment. Interestingly,
IFIT1 and IFIT3 (but not IFIT2) also appear in an as yet
unannotated higher molecular weight assembly.
Figure 5a summarizes the number and overlap of proteins

that we call as significantly changing in each of the CCprofiler
analysis modes described for both experimental comparisons
(Supplementary Table 18). As expected, there is some
redundancy between these modes of analysis but also much
complementarity as each strategy is tuned to detect different
aspects of protein complex reorganization. This view of the
data underscores the magnitude difference in the response
from the perspective of proteome organization to the chosen
biological perturbations. Here we expect to capture changes
related both to increases in the abundance of protein
complexes driven primarily by changes in the abundance of

their protein subunits (likely exclusive to “protein-centric
(global)”, “protein-centric (feature-specific)”, and “complex-
centric” categories) as well as changes in protein assembly
composition (exclusive to “protein-centric (FMF)” and
“assembled mass fraction”, or combinations of those
mechanisms that appear in multiple categories). This graph
also underscores the observation that substantially more
changes occur in cells that transition from the suspension
monocyte state to the adherent macrophage state than in the
comparison of macrophage cells that are stimulated to
upregulate immune defenses by LPS stimulation. To obtain a
global functional picture of the response to these perturbations
from the perspective of proteome organization, we performed a
functional enrichment analysis based on the consolidated list of
proteins significantly altered in each element of the CCprofiler
analysis. Figure 5b shows the results for both comparisons
where we find enriched terms that are consistent with
differentiated vs undifferentiated comparison (i.e., extracellular
matrix organization, cell adhesion, signal transduction, etc.)
and the stimulated vs differentiated comparison (i.e., type I
interferon signaling pathway, innate immune response, etc.).
We examined the distribution of protein SEC feature peak

areas and determined that while the peak areas of protein
features that are detected at >2× the expected monomer
molecular weight follow the same peak area distribution as all
detected protein SEC features, the set of protein SEC features
that match protein complexes detected in the complex-centric
analysis are shifted toward higher peak areas, indicating we are
somewhat less likely to successfully call complexes for lower
abundance features (Supplementary Figure 12). This observa-
tion underscores the utility of assessing the data in a protein
complex hypothesis free manner, as in the AMF and protein-

Figure 5. Comparison/overlap of CCprofiler analysis modules and functional enrichment analysis (a) upset plot showing the overlap in proteins
deemed to have significant changes in each of the quantitative comparisons in either the differentiated vs undifferentiated comparison (blue), the
stimulated vs differentiated comparison (pink), or shared in both (gray), (b) functional enrichment analysis for both comparisons of interest based
on combined set of proteins significant from all methods.
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centric analysis modes, in addition to the complex centric
analysis.
In order to render the data easily accessible and viewed in

depth, and enable manual query of community-based testing of
novel putative interacting proteins supported by the presence
of coelution profiles, we have made the data accessible to the
community via a web portal41 (https://collins-lab.shinyapps.
io/secexplorer_thp1/). This online tool provides the oppor-
tunity to manually query the SEC profiles of our 3 biological
THP-1 conditions by providing an interactive viewing. It
enables the manual query for locally coeluting proteins to
potentially identify de novo interactions and to visualize the
results from the 3 differential CCprofiler modules.

■ DISCUSSION
Methods using cofractionation as a basis have promised
characterization of the state of protein complexes and their
reorganization upon cellular perturbation in a global and
quantitative fashion. However, with the current state of the
workflows, this remains a somewhat distant goal with respect
to routine application, especially for complex experimental
designs. While a number of studies employing this approach
have demonstrated substantial biological insight, the general
strategy has failed to break into mainstream use. At the outset
of this study, we identified two major factors holding back
progress, namely, (i) the resources required per biological
sample for typical implementations of this strategy are not
practically compatible with complex study designs including
multiple experimental conditions with biological replication
and (ii) a lack of integrated software solutions that could
perform differential statistical analysis at all levels of interest
(assembled mass fraction, protein-centric, and complex-
centric). In this study, we address both barriers by developing
an integrated experimental and computational pipeline for
rapid quantitative profiling of protein complex states.
We present an optimized method that facilitates the

interrogation of many biological samples in perturbation
experiments with biological replicates within a feasible time
frame and a robust data analysis pipeline. By using robust short
gradient liquid chromatographic separation and DIA/SWATH
data acquisition, we could reduce the MS acquisition time of 9
SEC runs of 64 fractions each, totaling 576 samples down to
9.6 days. This is in comparison to an estimated 50.4 days for
the same project based on the 90 min gradient and 126 min
injection to injection time that we used in the long gradient
comparison for this study, although we note many studies
using this strategy perform 2−4 h gradients for CoFrac-MS
analyses.13 In real terms, the actual increase in throughput is
substantially higher because the short gradient chromatog-
raphy using solid phase extraction tips for loading and
embedded gradients for separation reduces substantially the
need for maintenance procedures such as instrument cleaning
and column changes that typically interrupt data acquisition
blocks using classical long gradient methods. As such, this
represents an order of magnitude reduction in the time
required to acquire data for this type of experiment and does
not require the complexity and experimental design constraints
associated with multiplex labeling (e.g., normalization
channels, batch effects, and missing value across labeling
blocks58). While the gains in throughput are critical to the
further development of this strategy, we expect commensurate
benefits to data quality as the inevitable effect of drift in
instrument performance over time34 will be substantially

mitigated by the reduced measurement time and reduced
need for instrument maintenance during data acquisition.32 In
a benchmarking experiment using HeLa cells, we demonstrate
that the information content from our rapid method is
comparable to that of a standard long gradient approach, and
we demonstrate in our THP-1 perturbation experiment that
the across-group variation in our quantitative data exceeds the
within-group variation, indicating we capture biological
information. Further, since our data were acquired a number
of improvements in MS data acquisition schemes aimed at
maximizing the numbers of peptides/proteins quantified in
short gradient data have been introduced, and we expect our
strategy to directly benefit from these, increasing sensitivity
and protein complex coverage and reducing analysis time.59−61

Our study, while demonstrating the potential of increased
throughput of analysis, remains limited in terms of the number
of biological replicates and the biological conditions evaluated.
The number of replicates needed for well-powered analyses in
more heterogeneous biological systems (e.g., clinical samples)
remains an open question and will need to be investigated
empirically.
We made several algorithmic improvements, embedded in

several novel modules of our CCprofiler4,20 software pipeline,
that maximized the information extracted from the more
complex experimental designs that are facilitated by our higher
throughput method. These include the capability to assess
between group differences from 3 perspectives that each have
their own advantages/disadvantages. Complex-centric analysis
provides the richest information on the reorganization of
protein complexes as a function of the perturbation but is likely
missing many interesting changes because it relies on the prior
information in the form of testable protein complex hypotheses
that may be incomplete. We note that several tools have been
introduced recently that leverage machine learning to define
protein complex hypotheses from CoFrac-MS data,14,15,17 and
these could be used as input for the CCprofiler complex-
centric analysis. The protein-centric strategy is free of any such
assumptions and simply asks whether a given protein feature in
the SEC dimension changes between experimental groups. Our
results show that this comparison can sensitively detect
changes that are a proxy for changes in protein complex
reorganization or abundance in a fine-grained manner. The
assembled mass fraction strategy similarly does not require
background protein complex information and further does not
require feature finding in the SEC dimension, meaning that it
may detect changes in proteins/complexes which smear across
many SEC fractions that would be missed by the other
methods. While a recent meta-analysis13 suggests that the
optimal number of fractions for Cofrac-MS is similar to that
used in our study, it seems plausible that strategies aimed at
looking for shifts of given proteins along the complex
separation dimension could work with substantially fewer
fractions. Such an approach has recently been proposed where
only 5 SEC fractions are used in the context of discovering
chemical probes that impact protein complex assembly
states.62

The biological perturbations that we chose induce different
cellular states that likely rely on quite different molecular
mechanisms, and this difference is reflected in our results. We
observed evidence for a significantly higher number of changes
in protein organization or abundance when comparing the
monocyte state to the differentiated macrophage state than
when comparing the unstimulated versus stimulated macro-
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phage cells. This is also apparent from the unsupervised
clustering, which clearly shows the undifferentiated state as
clearly distinguished from the differentiated and LPS
stimulated states. Differentiation from a suspension mono-
cyte-like phenotype to an adherent macrophage-like state is a
gross and irreversible phenotypic change that likely requires
the remodeling of many protein complexes that are visible to
our method. When integrating changes observed at the three
levels of CCprofiler analysis, we see substantial alterations in
proteome organization relating broadly to signaling, cell
adhesion, and extracellular matrix related functions, whereas
the induction of an inflammatory response may be better
characterized as a change in signaling/activation in given
pathways that rely more on PTMs (post translational
modifications) or transient changes in protein complex
assembly state that are more difficult to detect. This
observation underscores the idea that data generated from
this approach would benefit from combination with other data
types (e.g., proteoforms or PTMs) where their interdepend-
ence could be assessed.63,64 Nevertheless, while a smaller
number of changes were observed in macrophage LPS
stimulation as compared with differentiation from monocyte
to macrophage, functional categories related to innate immune
response were clearly overrepresented in the results integrated
from our three level CCprofiler analysis.
With the introduction of our rapid integrated method, we

anticipate that global profiling of protein complex reorganiza-
tion in perturbation experiments with complex experimental
designs will be enabled as a primary tool in systems biology
research and beyond.
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8092

Claudia Martelli − Department of Biology, Institute of
Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
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Zürich, Zürich, Switzerland 8052

Fabian Frommelt − Department of Biology, Institute of
Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
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