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A protein risk score for all‑cause 
and respiratory‑specific mortality 
in non‑Hispanic white and African 
American individuals who smoke
Matthew Moll 1,2,3,12*, Katherine A. Pratte 4, Catherine L. Debban 5, Congjian Liu 2, 
Steven A. Belinsky 6,7, Maria Picchi 6, Iain Konigsberg 8, Courtney Tern 1, Heena Rijhwani 1, 
Brian D. Hobbs 9, Edwin K. Silverman 1,12, Yohannes Tesfaigzi 2,12, Stephen S. Rich 5, 
Ani Manichaikul 5, Jerome I. Rotter 10, Russel P. Bowler 11,13 & Michael H. Cho 1,2,12,13

Protein biomarkers are associated with mortality in cardiovascular disease, but their effect on 
predicting respiratory and all‑cause mortality is not clear. We tested whether a protein risk score 
(protRS) can improve prediction of all‑cause mortality over clinical risk factors in smokers. We utilized 
smoking‑enriched (COPDGene, LSC, SPIROMICS) and general population‑based (MESA) cohorts 
with SomaScan proteomic and mortality data. We split COPDGene into training and testing sets 
(50:50) and developed a protRS based on respiratory mortality effect size and parsimony. We tested 
multivariable associations of the protRS with all‑cause, respiratory, and cardiovascular mortality, 
and performed meta‑analysis, area‑under‑the‑curve (AUC), and network analyses. We included 2232 
participants. In COPDGene, a penalized regression‑based protRS was most highly associated with 
respiratory mortality (OR 9.2) and parsimonious (15 proteins). This protRS was associated with all‑
cause mortality (random effects HR 1.79 [95% CI 1.31–2.43]). Adding the protRS to clinical covariates 
improved all‑cause mortality prediction in COPDGene (AUC 0.87 vs 0.82) and SPIROMICS (0.74 vs 0.6), 
but not in LSC and MESA. Protein–protein interaction network analyses implicate cytokine signaling, 
innate immune responses, and extracellular matrix turnover. A blood‑based protein risk score predicts 
all‑cause and respiratory mortality, identifies potential drivers of mortality, and demonstrates 
heterogeneity in effects amongst cohorts.

Chronic obstructive pulmonary disease (COPD), characterized by persistent airflow limitation, is a leading 
cause of mortality  worldwide1. This disease is heterogeneous with respect to respiratory symptoms, emphysema, 
airway pathology, exacerbations, and  mortality2–4. Identifying COPD individuals at high risk of mortality can 
help clinicians tailor therapies, monitor for progression, and aid in timely lung transplant  referral5–7.

Multiple mortality prediction models in COPD have been developed. The body-mass index, obstruction, 
dyspnea, exercise capacity (BODE) index predicts 4-year mortality in COPD  patients8. Other scores have per-
formed similarly to the BODE  index9,10 and adding CT imaging variables added statistically significant yet 
small increments in predictive performance when added to the BODE  index11. These clinical prediction models 
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have limitations: models are cumbersome and critical variables are often difficult to obtain in a primary care 
setting. For example, spirometry and 6-min walk distances, arguably the most important clinical predictors of 
 mortality11,12, are challenging to obtain during a short outpatient visit. Further, the existing models focus on 
those with COPD, yet emerging data have described that individuals with normal spirometry and preserved 
ratio with impaired spirometry (PRISm) can progress to having moderate-to-severe airflow obstruction and are 
at risk for symptoms, emphysema, exacerbations, and  death13,14.

Proteomics are appealing for mortality prediction. Protein-based biomarkers have the potential to identify 
rational drug targets and drug repurposing candidates. In addition, proteomics have demonstrated success in 
predicting all-cause mortality above traditional risk  factors15,16. However, these studies have not focused spe-
cifically on persons who smoked and those selected for COPD. Whether a protein-based risk score can predict 
all-cause and respiratory mortality in a cohort of smokers is unknown. We hypothesized that a protein risk score 
(protRS) could improve prediction of all-cause and respiratory mortality over traditional clinical risk factors in 
multiple cohorts enriched for persons who smoke.

Methods
Study populations
All study participants and/or the legal guardian(s) of dead participants provided written informed consent and 
institutional review board (IRB) approval was obtained at each institution. This research complies with the 
Declaration of Helsinki. All experimental protocols and the current analysis were approved by the Brigham 
and Women’s IRB protocol (#2007P000554) or local IRB, as appropriate. In the current study, we included only 
individuals with SomaScan and mortality data, the details for which are in the supplementary appendix.

Smoking cohorts
COPDGene
The Genetic Epidemiology of COPD (COPDGene)  study17 recruited 10,198 non-Hispanic white (NHW) and 
African American (AA) individuals with ≥ 10 pack-years of smoking, aged 45–80 years. Baseline demographic, 
spirometry, computed tomography (CT) imaging data, and whole blood samples were collected. We included 
individuals with proteomic and mortality data at the time of study enrollment.

SPIROMICS
The SubPopulations and Intermediate Outcome Measures in COPD Study (SPIROMICS)18 recruited NHW and 
AA individuals aged 40 to 80 years with smoking history ≥ 20 pack-years. Recruitment included non-smokers 
(< 1 pack-year) with  FEV1/FVC > 0.7 and FVC > LLN (Stratum 1), or history of smoking > 20 pack-years and 
divided into strata based on spirometry: Stratum 2: without COPD  (FEV1/FVC > 0.7 and FVC > LLN); Stratum 
3: mild-to-moderate COPD  (FEV1/FVC < 0.7 and FEV1 > 50% predicted); and Stratum 4: severe COPD  (FEV1/
FVC < 0.7 and  FEV1 < 50% predicted.

Lovelace smokers’ cohort
The Lovelace Smokers’ Cohort (LSC)19,20 recruited participants from the Albuquerque, New Mexico metro-
politan area aged 40–75 years with 10 or more pack-years of smoking who were able to understand English. 
Anthropometric, spirometry, and proteomic data were collected at the baseline visit. Participants were followed 
for a median of 6 years.

General population cohorts
MESA
The Multi-Ethnic Study of Atherosclerosis (MESA)21 is a prospective U.S.-based study of community-dwelling 
adults originally designed to examine subclinical cardiovascular disease. MESA participants were free of clinical 
cardiovascular disease at baseline.

Statistical analyses
Overview of study design
A schematic of our study design is shown in Fig. 1. As COPDGene was our largest study, we split COPDGene 
samples into training and testing samples. Using the training sample, we developed multiple proteomic models 
to predict mortality, and tested performance in the COPDGene testing sample. Based on testing in COPDGene, 
we selected a single model for external replication in LSC, MESA, and SPIROMICS.

Development of a protein risk score
We randomly split the COPDGene dataset into training and testing samples (50:50). Using the training sample, 
we constructed four models: (1) least absolute shrinkage selector operator (LASSO), (2) adaptive LASSO (ada-
LASSO), (3) Random Forest, (4) Random survival forest (RSF). We used the glmnet R package to calculate 
LASSO and ada-LASSO scores, performing tenfold cross validation to optimize the c-index. For random forest-
based algorithms, we determined the combination of trees and nodes that yielded the lowest mean squared error 
(MSE) in the training sample for predicting mortality using the randomForest R package (500 trees and 6 nodes). 
We used the random survival forest (RSF) R package to construct RSF models to predict time-to-death using 1000 
trees and 5 nodes. All scores were rank normalized prior to statistical analysis. We tested the association of each 
proteomic risk model with time-to-death (see Outcomes, models, and specifications) in the COPDGene testing 
set, and selected the protein risk score (protRS) based on the largest observed effect size and model parsimony.
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As we used COPDGene, MESA, and SPIROMICS SomaScan 1.3 K and LSC SomaScan 5 K data, we per-
formed a sensitivity analysis to determine whether a protRS derived in the 1.3 K data was transferable to the 5 K 
data. Using COPDGene samples with 1.3 K proteomic data at baseline and 5 K data at the 5-year follow up visit, 
we calculated the protRS at both time points and tested the correlation of the 5 K score with the original 1.3 K 
SomaScan score using the Pearson correlation coefficient. We further tested the multivariable association of the 
5 K score with time-to-death as described below.

Outcomes, models, and specifications
The primary outcome was time-to-death (i.e. all-cause mortality), which was available in all cohorts.  Cox22 regres-
sion models were constructed to evaluate the association between the protRS and time-to-death. We tested the 
proportional hazards assumption using Schoenfeld residual plots and tests. We tested for model miscalibration 
using a modified D’Agostino Nam  test23. We referenced the transparent reporting of a multivariable prediction 
model for individual prognosis or diagnosis (TRIPOD) reporting  standards24 to ensure transparent reporting 
of our prediction model. In multivariable regression analyses, we adjusted for potential confounders based on 
clinician input and BODE variables, including age, sex, pack-years of smoking, current smoking status, 6-min 
walk distance, body-mass index (BMI), forced expiratory volume in 1 s  (FEV1), and modified medical council 
research (MMRC) dyspnea score, as available. See Table S1 for a listing of which covariates were available in 
each cohort. We performed stratified analyses based on smoking status and COPD case–control status (cases: 
GOLD 2–4, controls: normal spirometry).

We assessed predictive performance using area-under-the-receiver-operating-characteristic-curve (AUC) 
metrics, implemented in the pROC R  package22. We tested the performance of the full multivariable models 
(age, sex, pack-years of smoking, current smoking status, 6-min walk distance, BMI,  FEV1, MMRC) as well as a 
reduced clinical model (age, sex, race, pack-years of smoking) that is more reflective of information commonly 
available to primary care physicians. We examined single protein associations with time-to-death in univariable 
models and further stratified by smoking status. We also tested single protein associations with time-to-death in 
multivariable models, as described above. We examined the effect sizes of the protRS and single protein associa-
tions across cohorts using inverse variance fixed and random effects meta-analysis and forest plot visualizations 
using the meta R  package23.

Respiratory- and cardiovascular-specific mortality outcomes are available in COPDGene (see Supplement for 
details on cause-of-death adjudication). We examined the performance of the protRS in the COPDGene testing 
set using multivariable Cox model regression models, as described above. To examine the relationship between 
the protRS and a previously described cardiovascular mortality score by Ganz et al.16, we calculated Pearson cor-
relation coefficients between each protRS protein and Ganz score protein. We also performed linear regression 
between the Ganz score and the protRS and used the residuals as a risk score to examined the association of this 
protein risk score (Ganz residuals) with all-cause, respiratory-specific, and cardiovascular-specific mortality in 
the COPDGene testing set.

COPDGene 
(n=1,093)

Lovelace 
(n=217) MESA (n=683) SPIROMICS 

(n=239)

COPDGene 
Training set 

(n=543)

COPDGene 
Testing set 

(n=550)

50%        50%

Develop 
penalized 
regression 

and random 
forest ProtRS 

models

Test 
association 
of ProtRS 

models with 
mortality

Calculate 
best 

ProtRS in 
external 
cohorts

%       50%

Test 
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with and 
predictive 

performance for 
all-cause 
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Fig. 1.  Schematic of study design. COPDGene, Genetic Epidemiology of COPD study. MESA, Multi-Ethnic 
Study of Atherosclerosis. SPIROMICS, SubPopulations and InteRmediate Outcomes Measures in COPD Study. 
ProtRS, Protein risk score.
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Biological characterization
To understand the biological effects of the protRS proteins, we used the protRS proteins as inputs into STRING 
(www. string- db. org) to construct a protein–protein interaction (PPI) network (5 interactors first shell, 5 interac-
tors second shell), and performed MCL clustering (inflation factor 3) to identify modules associated with specific 
biological pathways. We also performed  Reactome25 pathway enrichment on this PPI network. We performed 
 Enrichr26–28 drug repurposing analyses to identify molecules that could reverse gene sets enriched in the protRS 
referencing the Multi-marker Analysis of GenoMic Annotation (MAGMA) Drug and Disease  database29.

All analyses were performed in R v4.0.3. Normality was assessed by visual inspection of histograms. Uni-
variable comparisons were performed with Student t-tests and categorical comparisons by analysis of variance 
(ANOVA). P-values less than 0.05 were considered nominally significant and values below a Bonferroni-corrected 
alpha were considered significant.

Results
Characteristics of study population
We included 2232 participants from three cohorts of smokers (COPDGene, LSC, SPIROMICS) and one general 
population cohort (MESA). Table 1 shows study participant characteristics. As expected, COPDGene, LSC, and 
SPIROMICS had lower mean baseline spirometry, and greater smoking exposure compared to the MESA general 
population cohort. LSC had the greatest proportion of females. COPDGene had the lowest proportion of African 
Americans. The COPDGene training and testing samples had similar characteristics.

Development of protein risk score
In Table S2, we show the associations of four proteomic models with time-to-death in the COPDGene testing 
sample. Of the tested models, the protein risk score (protRS) LASSO demonstrated the greatest hazard ratio (adj. 
HR 2.7 [95% CI 1.9–3.7], p = 3.0E−09) and was the most parsimonious model (i.e., included the smallest number 
of proteins). Based on cross-validation, the optimal number of proteins for this model was 15 with a lambda of 
0.0463 (Figure S1). The weights and protein names are shown in Table S3 and a representative histogram of the 
rank-normalized protRS is shown in Figure S2.

To determine whether the protRS derived from SomaScan 1.3 K data was transferable to the 5 K platform, 
we calculated the protRS in a subset of COPDGene participants with 1.3 K proteomic data at baseline and 5 K 
proteomic data at the 5-year follow up visit (n = 660). We observed a high correlation between the scores (r = 0.7, 
Figure S3), even though BMPER was missing in the SomaScan 5 K dataset. The SomaScan 5 K protRS was associ-
ated with time-to-death in multivariable regression analysis (p = 0.0009). Based on these results, we carried the 
LASSO model trained on SomaScan 1.3 K data forward as the protRS for replication.

A protein risk score predicts mortality
The univariable association of the protRS with mortality in each cohort is shown in Figure S4. In meta-analysis 
of multivariable models, the protRS was associated with all-cause-mortality (random-effects HR 1.79 [95% 

Table 1.  Characteristics of study participants. COPDGene, Genetic epidemiology of COPD study. MESA, 
Multi-Ethnic Study of Atherosclerosis. SPIROMICS, SubPopulations and InteRmediate Outcome Measures 
In COPD study. LSC, Lovelace Smokers’ Cohort. FEV1, forced expiratory volume in 1 s. FVC, forced vital 
capacity.

n

COPDGene Training set COPDGene Testing set LSC MESA SPIROMICS

543 550 217 683 239

Age in years (mean (SD)) 62.17 (9.21) 61.65 (9.34) 55.63 (8.65) 68.82 (9.38) 61.18 (8.80)

Sex (No. % female) 285 (52.5) 278 (50.5) 171 (78.8) 351 (51.4) 108 (45.2)

Race

 African American 59 (10.9) 56 (10.2) 1(0.46) 133 (19.5) 55 (23.0)

 non-Hispanic white 484 (89.1) 494 (89.8) 144(66.36) 275 (40.3) 171 (71.5)

 East Asian 0 0 0(0) 53 (7.8) 0

 Hispanic/LatinX 0 0 64(29.49) 222 (32.5) 0

 Other NA NA 8(3.69) NA 13 (5.4)

Body-mass index (Kg/m^2) (mean 
(SD)) 28.73 (5.92) 28.67 (6.20) 27.34 (5.50) 29.01 (5.49) 28.08 (5.07)

Current smoking status (No. %) 208 (38.3) 200 (36.4) 132 (60.8) 57 (8.3) 96 (40.2)

Ever smoking status (No. %) NA NA NA 397 (58.1) NA

Pack-years of smoking (mean 
(SD)) 43.49 (23.19) 46.19 (25.62) 41.23 (19.69) 10.40 (18.41) 46.79 (26.5)

FEV1% predicted (mean (SD)) 77.56 (26.00) 77.33 (26.01) 88.10 (19.03) 95.32 (18.99) 82.82 (24.47)

FEV1/FVC ratio (mean (SD)) 0.65 (0.17) 0.66 (0.17) 0.83 (0.17) 0.74 (0.09) 0.65 (0.15)

Dead (No. %) 70 (12.9) 73 (13.3) 47 (21.7) 93 (13.6) 48 (20.1)

Days followed (median [IQR]) 2850.00 [2419.50, 3114.00] 2868.00 [2492.25, 3150.00] 6574.5[5478.8, 6939.8] 3184.00 [3020.50, 3319.00] 2906.00 [2270.50, 3353.50]

http://www.string-db.org
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CI 1.31–2.43]; Fig. 2 and Table 2). We observed significant cohort heterogeneity  (I2 = 71.5%). In modified 
D’Agostino-Nam tests, only the LSC model was significantly mis-calibrated (p < 0.05). In stratified analyses, the 
observed associations are of similar effect sizes across strata except for current and former smokers in LSC and 
COPD cases in SPIROMICS (Table 2). In AUC analyses, adding the protRS to a simple clinical model (age, sex, 
race, and pack-years of smoking) improved all-cause mortality prediction in the COPDGene testing sample 
and SPIROMICS, with a trend toward improved predictive performance in LSC and MESA (Table S4, Fig. 3). 
Combining the protRS with the full clinical model, which included BODE variables, significantly improved 
performance the COPDGene testing sample but not in other cohorts.

Having demonstrated the association of the protRS with mortality in multiple cohorts, we sought to under-
stand how individual proteins within the risk score are associated with mortality. The adjusted hazard ratios for 
individual risk score proteins in each cohort and meta-analyses are shown in Table S5. Corresponding forest plots 
are shown in Figure S5. The proteins with the least effects size heterogeneity (i.e., lowest  I2) across cohorts were 
SOD1, GHR, CXCL13, CSF1, and GDF15. We observed that only 5 of the 15 proteins demonstrated consistent 
directions of effect across cohorts (TFF3, GDF15, CXCL13, CXCL8, GHR).

A subset of COPDGene testing sample individuals had cause-specific mortality data, and the protRS demon-
strated a greater association with respiratory compared to cardiovascular mortality (Table S6). To better under-
stand the protRS association with respiratory mortality, we compared our score with the Ganz cardiovascular 
(CV) mortality score (hereafter, the “Ganz score”)16. Two proteins were in common between our protRS and 
the Ganz score, which had opposite directions of effects (C7: 0.73 in protRS, -2.12 in Ganz score; SERPINF2: 
-1.2 in protRS, 2.64 in Ganz score). A correlation matrix of Pearson correlation coefficients for the protRS and 
Ganz score proteins is shown in Figure S6; four proteins had average correlation coefficients ≥ 0.1 (SERPINF2, 
C7, GDF15, TNNT2). We observed that the protRS and the Ganz score were highly correlated, and that this 
relationship was attenuated after regressing out the Ganz score (Figure S7). Using the protRS (Ganz residuals), 
we observed that this score had a smaller effect on all-cause and cardiovascular-specific mortality and a larger 
effect on respiratory-specific mortality (Table S7).

Fig. 2.  Forest plot demonstrating the association of the protein risk score (ProtRS) with all-cause mortality in 
testing cohorts. See Table 1 for abbreviations.

Table 2.  Adjusted hazard ratios for the protRS in the overall cohorts and stratified analyses in the COPDGene 
testing set, LSC, MESA, and SPIROMICS. Multivariable models were adjusted for age, sex, self-reported race, 
current smoking status, pack years of smoking (when available),  FEV1% predicted, BMI, MMRC dyspnea 
score, and 6-min walk distance. GOLD = Global Initiative for Chronic Obstructive Lung Diseases. HR, 
hazard ratio. See Table 1 legend for other abbreviations. *, below Bonferroni threshold of 0.05/4 cohorts/5 
strata = 0.0025. All included COPDGene and SPIROMICS participants are ever smokers.

Stratum

COPDGene testing set (n = 550) LSC (n-217) MESA (n = 683) SPIROMICS (n = 239)

HR (95% CI) p HR (95% CI) p HR (95% CI) p HR (95% CI) p

Current smokers 2.3 (1.3–4.1) 0.0057 1.3 (0.74–2.3) 0.35 3.4 (0.8–15) 0.098 2 (1–3.7) 0.041

Former smokers 2.8 (1.8–4.1) 8.8E−07* 0.94 (0.58–1.6) 0.82 1.7 (1.3–2.3) 0.00011* 1.6 (0.83–3.3) 0.16

Ever smokers 2.6 (1.9–3.5) 1.60E−10* 1.1 (0.66–1.9) 0.68 2 (1.4–2.7) 8.20E-05* 1.6 (1.1–2.4) 0.026

Never smokers NA NA 1.3 (0.7–2.5) 0.39 1.7 (1.1–2.7) 0.013 NA NA

COPD cases (GOLD 2–4) 2.7 (1.8–4.1) 1.70E−06* NA NA 1.7 (0.79–3.6) 0.17 1.2 (0.65–2.2) 0.57

Controls (GOLD 0) 2.7 (1.3–5.6) 0.0099 NA NA 1.8 (1.2–2.5) 0.0023* 4.6 (1.8–12) 0.0016*

Overall 2.6 (1.9–3.5) 1.60E–10* 1.2 (0.81–1.8) 0.36 1.9 (1.4–2.5) 2.5E–06* 1.6 (1.1–2.4) 0.026
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Biological characterization of proteins
As LASSO optimizes feature selection for the purposes of prediction, the selected features are not necessarily 
causally related to the outcome. Therefore, we mapped protRS proteins to the protein–protein interactome 
to construct a PPI network (Figure S8) and performed Reactome pathway enrichment (Table S8) and MCL 
clustering (Table S9) analyses to gain insights into the biological processes captured by the protRS. Enrichment 
analyses suggest that alterations in complement activation, innate immunity, cytokine signaling (e.g., IL-10), Wnt 
signaling, and RUNX1 activation are important determinants of mortality in smokers. Network-based clustering 
analysis identified four clusters that suggest a combination of cytokine signaling, cardiovascular mortality factors, 
and innate immune dysfunction may play a role in mortality in smokers (see Figure S8 legend and Table S9 for 
cluster details). In drug repurposing analyses, we found that the protRS was enriched for gene sets reversed by 
pamidronate, glucocorticoid receptor antagonists, PDGFR inhibitors, VEGF inhibitors, macrolide antibiotics, 
and proton-pump inhibitors, amongst others (Table S10).

Discussion
In this study of over 2000 participants from smoking and general population cohorts, we demonstrated that a 
15-protein risk score (protRS) was associated with time-to-death (all-cause mortality) and in certain populations 
of smokers can improve prediction compared to a set of commonly available clinical predictors. These proteins 
appear to be related to both cardiovascular and respiratory mortality, with a greater effect on respiratory mor-
tality. We identified chemo- and cyto-kine signaling, TNF signaling, responses to infections and activation of 
innate immunity, extracellular matrix turnover, and growth hormone signaling as possible drivers of mortality in 
smokers. Drug repurposing analyses suggest that several existing agents (e.g., pamidronate, macrolide antibiotics, 
proton-pump inhibitors) could be beneficial to the subset of individuals with an elevated protRS.

While the protRS demonstrated strong associations with all-cause mortality, the improvement in prediction 
over age, sex, smoking, and other factors was variable. There was no significant improvement in LSC or MESA, 

Fig. 3.  Receiver-operating-characteristic-curve (ROC) and area-under-the-ROC-curve (AUC) analysis in each 
cohort. ProtRS, protein risk score. Clinical model includes the reduced clinical model with age, sex, race, and 
smoking variables (pack-years or ever smoking status, depending on cohort).
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and it only improved predictive capacity, as measured by AUC, over  BODE8 variables in COPDGene and over 
a reduced set of clinical risk factors in COPDGene and SPIROMICS. Amongst the testing cohorts, COPDGene 
and SPIROMICS are the most similar, and as the protRS was derived in COPDGene, it appears to be most appli-
cable to older smokers that are primarily non-Hispanic white and African American. By contrast, MESA is a 
general population cohort and LSC recruited more LatinX and female (79%) participants than other cohorts. An 
important caveat is that the clinical variables were not predicted values but were the actual variables from each 
cohort, which means the clinical variable estimates are likely overfitted. Indeed, the performance characteristics 
of these clinical variables within individual cohorts are much higher than reported in the  literature8,11, alluding 
to the issue of overfitting—and given that these are subsets of individuals with proteomic data—there could be 
selection bias for which we are not able to account. As is, the clinical utility of the protRS is likely limited to 
individuals who would meet inclusion criteria for COPDGene or SPIROMICS. While we advocate for measure-
ment of the most important predictors of mortality (6-min walk  distance11,12 and  FEV1

8), we acknowledge the 
challenges of obtaining these measures in a primary care setting. The role of blood-based biomarkers, such as 
the one presented here, could also aid in early referral to pulmonary specialists.

Proteomics have been successful in identifying predictors of all-cause and cardiovascular-specific mortality. 
However, the protRS demonstrated greater association with respiratory-specific mortality compared to other 
tested models. We systematically compared the protRS to a previously published cardiovascular mortality  score16 
(i.e., Ganz score) and found that, after regressing out the Ganz score, the protRS had a larger effect on respiratory-
specific compared to all-cause or cardiovascular-specific mortality. The most highly correlated proteins were 
SERPINF2, C7, GDF15, and TNNT2. SERPINF2 and C7 are in the Ganz score, albeit with opposite directions of 
effects; the opposite effect directions may represent smoking effects or noise in the proteomic dataset. TNNT2 
is the gene that encodes Troponin-T, which is found only in heart muscle and is used clinically as a marker of 
cardiac ischemia. GDF15 has been identified in multiple proteomic analyses related to mortality and we observed 
that it interacts with TNNT2 in our network analysis. These four protRS proteins are likely driving much of the 
observed associations with cardiovascular mortality.

Amongst the remaining proteins, five (GHR, CXCL13, TFF3, CXCL8, TNFSF1) were significantly associated 
with mortality in meta-analysis, which suggests that these proteins are likely related to respiratory mortality in 
smokers. While LASSO provides automated feature selection and minimizes collinearity, the selected features are 
not necessarily  causal30—rather, the selected proteins (i.e., features) might interact with causal proteins. For these 
reasons, we mapped protRS proteins to the human interactome and constructed a protein–protein interaction 
(PPI) network. We identified four large clusters of proteins. Of interest, one cluster was a chemokine/cytokine 
cluster that linked to TNFSF15 and another cluster suggested that SERPINF2 provides a link to complement 
activation. Tumor necrosis factors (TNFs) are involved in regulation of growth, airway hyperresponsiveness, 
inflammation, and  immunomodulation31,32. TNF-α levels are elevated in COPD patients compared to  controls33 
and TNF signaling has been implicated in several pulmonary diseases, including  COPD31. TNF antagonists have 
demonstrated promise in observational  studies34 and demonstrated similar efficacy as prednisone for reducing 
COPD exacerbations in a clinical trial yet was less effective in the subgroup with  eosinophilia35. We identified 
pentoxyfylline as a drug repurposing candidate, but the clinical utility is limited by adverse effects and drug-drug 
interactions. Perhaps downstream TNF pathway targets or other agents warrant further investigation. While 
we used a parsimonious set of risk score proteins for drug repurposing analyses, a more comprehensive set of 
proteomic drivers of respiratory-specific mortality could provide a more ideal set of proteins on which to base 
such analyses. Future studies using alternate feature selection methods could quantify the set of proteins that 
explain the majority of respiratory-specific mortality and enhance identification of drug repurposing agents. 
Complement activation has been observed to rise with COPD exacerbations (one of the major drivers of COPD 
mortality) and to be positively correlated to CRP  levels36. Taken together, the protRS may identify individuals at 
high risk of mortality for which TNF, chemokine, and complement pathways may be potential targets.

Strengths of this study include that we demonstrate our findings in multiple cohorts, both smoking and 
general population, and across both SomaScan 1.3 K and 5 K platforms. While we advocate for measurement of 
spirometry and 6-min walk distance in COPD patients, the protRS may provide a practical blood-based alterna-
tive for predicting mortality in heavy smokers in the primary care setting. Further, we examined protRS proteins 
in the context of the human protein–protein interactome and identified likely molecular drivers of respiratory 
mortality which might be targeted by existing compounds.

One limitation is that the protRS appears most applicable to heavy smokers recruited from a predominantly 
non-Hispanic white and African American United States population. We were not able to test the performance 
of the protRS in real-world cohorts, and ultimately, a prospective trial would be needed to truly validate any 
biomarker of COPD mortality. Given the limited sample sizes across cohorts, the number of deaths was relatively 
small, though we still demonstrate power to detect an association between the protRS and mortality. Obser-
vational studies of mortality can be susceptible to immortal time bias, but we did not measure mortality prior 
to the start of the study or proteomic measurements, so there was not a pre-exposure time period in which an 
event could occur—that is, the time at which we started measuring survival is the same as the time we collected 
blood samples. For clinical application, additional research would be needed to understand when to measure the 
protRS, who is considered at ‘high risk’, and what potential therapies should be tested in a ‘high risk’ subgroup.

In conclusion, a blood-based protein risk score predicted mortality in heavy smokers and was complementary 
to commonly used clinical risk factors. This risk score includes proteins that implicate signaling pathways related 
to both respiratory and cardiovascular mortality.

Data availability
NHLBI TOPMed Whole Genome Sequencing (phs001607) and proteomic data (phs001416.v3.p1) are available 
through the database of Genotype and Phenotypes (dbGaP).
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