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1Department of Psychology, NYU, New York, 2Department of Psychology, University of Edinburgh, Edinburgh, Scotland,
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Abstract

In this paper, we describe three experiments involving simple
physical judgments and predictions, and argue their results are
generally inconsistent with three core commitments of proba-
bilistic mental simulation theory (PMST). The first experiment
shows that people routinely fail to track the spatio-temporal
identity of objects. The second experiment shows that people
often incorrectly reverse the order of consequential physical
events when making physical predictions. Finally, we demon-
strate a physical version of the conjunction fallacy where par-
ticipants rate the probability of two joint events as more likely
to occur than a constituent event of that set. These results high-
light the limitations or boundary conditions of simulation the-
ory.
Keywords: intuitive physics; mental simulation; inference;
conjunction fallacy

Introduction
Successful interaction with our environment often requires

reasoning about the physical world (e.g., predicting if a stack
of books on a desk is unstable), but the mental processes that
support this ability remain poorly understood. Simulation is
a technique used for physical reasoning in many applications
ranging from modeling molecular interactions to designing
realistic video game physics engines. In a simulation, a pro-
gram starts with an initial state, and then applies the relevant
dynamic laws of physics to compute what will happen over
a series of (typically short) time steps; in effect, computing a
“movie” of how the scenario progresses.

Some researchers have recently argued that humans use
cognitive strategies analogous to computer simulation when
intuitively reasoning and making predictions about the phys-
ical world (Battaglia, Hamrick, & Tenenbaum, 2013; Ham-
rick, Battaglia, Griffiths, & Tenenbaum, 2016; Hamrick,
Smith, Griffiths, & Vul, 2015; Smith, Dechter, Tenenbaum,
& Vul, 2013; Smith & Vul, 2017; Ullman, Spelke, Battaglia,
& Tenenbaum, 2017). In order to account for the more im-
precise and qualitative nature of human physical reasoning,
they propose that multiple simulations are run from a range
of different initial configurations. For instance, consider a
person asked to predict whether a tower of wooden blocks
will fall over. A probabilistic mental simulation begins by as-
suming that each observer has an imperfect perception of the
positions of the blocks (i.e., their precise locations in physical
space) owing to perceptual limitations and occlusion. Based
on this uncertain percept, the simulator samples a number of
slightly different towers, each altered according to random
(perceptual) noise. According to the theory, a reasoner might
start with, for instance, ten initial towers and run a (possi-
bly noisy) physics simulation forward until some termination

point with the resulting outcomes driving their stability judg-
ment. For example, if 8 of the 10 simulated towers fall over
then a reasoner might estimate a 0.8 probability that the struc-
ture is unstable (Battaglia et al., 2013). We refer to this ap-
proach as “probabilistic mental simulation theory” (PMST).

PMST has been found to approximate human judgments
in a diverse set of tasks, including judging how a 3-D tower
of blocks will collapse (Battaglia et al., 2013), predicting the
destination of a virtual ball on a 2-D bumper table (Smith et
al., 2013), and predicting the proportion of a poured liquid
that will end up on either side of a divider (Bates, Yildirim,
Tenenbaum, & Battaglia, 2015), among others. However, this
theory has been contested (cf., Davis & Marcus, 2015, 2016).
Criticisms of this theory include the incompatibility of an ac-
curate physical simulation engine with decades of psycho-
logical work documenting human errors in simplified phys-
ical reasoning tasks (Hegarty, 2004; Kubricht, Holyoak, &
Lu, 2017; McCloskey, Caramazza, & Green, 1980; Proffitt,
Kaiser, & Whelan, 1990; Siegler, 1976). In addition, in many
situations, simulation would be computationally inefficient or
impossible. For instance, if a closed can half full of sand is
shaken, simulation would require calculating all the collisions
of all the grains of sand (e.g., Kubricht et al., 2016) but if the
goal is just to predict whether the sand remains in the can, that
can be done through the application of a simple rule (Smith
et al., 2013)

The goal of the present paper is to provide a strong empiri-
cal test of PMST. We begin by describing three core tenets of
PMST that transcend specific applications of the theory and
make important testable claims about human physical rea-
soning. We then describe three novel experiments that test
these principles by setting up pre-registered (here) edge-cases
where we might expect the predictions made by PMST to fail.

Three key principles of probabilistic mental
simulation theory (PMST)

An agent using a probabilistic simulation of the physical
world to solve physical reasoning problems should adhere to
the following three principles. While we accept that PMST
may include limitations and shortcuts (Ullman et al., 2017),
the principles outlined here are necessary for simulation to be
a viable strategy.
Object Persistence A reasoner using PMST is required to
maintain interacting objects within all simulations/samples.
Objects occupy particular locations within space and time and
a mental simulation must encode these relative spatiotem-
poral positions and update them according to the rules of
physics. This is a core aspect of the theory, because drop-
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Figure 1: (a) A “Minus One” block tower question, as it appeared to participants. The answer in the upper left is correct; the other three
answers are each missing one block. (b ) A “marble run”-type temporal consistency question. (c) An example probabilistic coherence scene.
Dotted arrows indicate approximate motion over the 2/3 second clip.

ping an object from a simulation or deleting it (as is possible
in a video game engine) would radically alter possible out-
comes and subsequent predictions. For example, imagine a
person thinking about a table. If their mental simulation acci-
dentally deleted its representation one of the table legs (even
temporarily), the result would be a major disruption to the
simulation; e.g., the otherwise static table might begin to fall.
Keeping track of the location of objects in space and time and
accounting properly for their movements is fundamental to
what it means to “simulate” a physical scene. Any plausible
physics engine must keep track of all the interacting objects
involved in order to maintain coherent predictions about the
future. Physics engines do make mistakes and approxima-
tions, but deleting or radically altering objects is not the kind
of mistake they make.

There are, of course, some cases where objects may be ig-
nored. In video game physics engines, for example, objects at
rest are often put to “sleep” to save on computation, and it has
been suggested that mental simulation might make use of this
trick as well (Ullman et al., 2017). When a physics engine
puts an object to sleep, however, this simply means that the
engine assumes that the object is stationary, and it does not
mean that the physics engine forgets that the object exists.

This leads to the key prediction tested in our first exper-
iment: in interacting multi-object scenes, every object from
the initial percept will be represented in each simulation’s fi-
nal state, because every object is necessarily represented and
tracked throughout each simulation.
Temporal Consistency Building upon the first principle, an
iterative simulation must advance all interacting objects si-
multaneously. This step-by-step, synchronous nature of the
simulation ensures that the order of events is preserved. Pre-

serving the order of events is important for generating accu-
rate simulations and using them to make decisions. When two
processes might interact, it is necessary for their simulations
to be properly synchronized in order to predict whether and
how they interact. Consider a case where a bottle is rolling
towards the front door of a house, which is slowly closing.
To predict if the bottle ends up inside or outside the house,
the simulator has to represent whether the door will swing
shut before the bottle gets there. Time cannot for instance run
faster for the bottle than for the door if reasoning is to be co-
herent. A synchronous approach does this, and ensures that
there is no way for one event to get ahead of, or fall behind
another, because they share a common timeline.

We refer to this property of mental simulation as temporal
consistency. A person using PMST to reason about a physical
scene should preserve the temporal order of events.
Probabilistic Coherence According to PMST, after running
multiple (noisy) simulations, the final scene configurations
from each simulation are used to make predictions and infer-
ences about the physical world. A variety of ways of aggre-
gating across these simulations have been proposed. For ex-
ample, in Battaglia et al. (2013), the output of the model was
the average proportion of towers that fell across the set of the
simulations. In this example, PMST uses the Monte Carlo
principle to estimate probabilities. An event that is almost
certain to occur will occur in all the simulations while a more
uncertain event (or one more sensitive to perceptual noise)
will occur less frequently. Although approximate, comput-
ing probabilities from samples or simulations still conforms
to the axioms of probability theory. Indeed, this is a key
virtue of the approach, and helps to relate the theory to ex-
isting Bayesian theories of human inference.
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One classic signature of coherent probabilistic reasoning is
that the probability of a conjunction of multiple events must
always be less than the probability of any component (i.e.,
P(A∧B) ≤ P(A)). However, people in many cases will esti-
mate conjunctions to be more likely than one of their compo-
nents (known as the “conjunction fallacy”, Tversky & Kah-
neman, 1983). While they have been found in a number of
domains including social reasoning, conjunction fallacy er-
rors have not (to our knowledge) been observed in reasoning
about physical outcomes, and all of the methods PMST pro-
poses for estimating probability from the results of simulation
predict that conjunction fallacies should not regularly occur.
If likelihood is calculated by tallying the relative outcomes of
different random simulations, the conjunction rule will not be
systematically violated, because it is impossible for a sample
to have more outcomes that include a conjunction than out-
comes that include one of the constituent elements.

Study 1: Object Persistence
The first experiment tested the principle of Object Persis-

tence. In particular, we tested if people are able to keep track
of the number, size, and color/identity of a relatively small
number of objects when predicting the future state of a sim-
ple scene. If people fail consistently at this task, it calls into
question a key assumption of PMST; that simulations pre-
serve objects over time. The assumption that we make in de-
signing this test is that if an object is represented and tracked
in each simulation, then it should be available for other judge-
ments such as being identified/recognized. If people are lim-
ited in this regard, it calls into question if people use PMST
or, alternatively, refines this theory by pointing out the cog-
nitive inaccessibility of object-level details from the mental
representation of the scene.

The experiment builds upon the block tower designs first
used by Battaglia et al. (2013). Rather than asking partic-
ipants to make predictions about the collapse of a standing
tower, we showed participants one standing tower (the tar-
get) and then a set of four collapsed towers and asked them
to judge which collapsed option was the result of the target
tower falling according to gravity (with one of the four op-
tions being the ground truth of running the standard tower
through a physics engine). Given the target tower, a simula-
tion based reasoner could simply simulate the standing tower
forward to generate one or a set of collapsed tower states.
The actual result of the tower collapsing should be similar to
several results generated by the simulation.

Method
Participants We ran groups of 9 at a time until the num-
ber of participants who meet the criteria reached or exceeded
the planned number of participants, which was 1001. We re-

1In an earlier preregistration (here), we allowed for a small num-
ber of exclusions. However, when we began collecting data for this
study we realized that the exclusion rate was much higher than ex-
pected. As a result, we stopped data collection and developed a
new protocol with a fixed n per experiment after exclusions. See
Kennedy, Clifford, Burleigh, Waggoner, and Jewell (2018) for dis-

cruited 201 participants (71 female, mean age = 33.9, SD =
9.8) on Amazon Mechanical Turk (AMT). Participants could
earn a bonus of $3 depending on the accuracy of their predic-
tions. Of these, 101 participants were eligible for our analy-
sis. We analyzed the first 100 (39 female, mean age = 34.0,
SD = 10.0). This collection plan and all criteria were outlined
in our preregistration (here).
Stimuli The stimuli were still images of standing but unsta-
ble block towers (targets). Each target tower consisted of 10
blocks, similar to what has been used in previous research
(e.g. Battaglia et al., 2013; Hamrick et al., 2016). The blocks
came in three colors (red, blue, and green) and in three di-
mensions (the “cube” in 1x1x1, the “brick” in 1x1x2, and the
“plank” in 1x0.5x2; units are relative).

For each target tower, there were four still images of possi-
ble resting states, i.e., what the tower might look like once it
had collapsed under gravity. One of the resting states was
always the real result of the target tower collapsing in the
physics engine we used to create the stimuli.2 The other three
were incorrect and impossible in one of the following ways.
In “Change Type” questions, one of the blocks was replaced
with a block of different dimensions. In “Change Color”
questions, one block was switched to a different color. In
“Swap Color” questions, two-color towers swapped the col-
ors of all blocks; e.g. all red blocks would become blue and
all blue would become red. In “Plus One” questions, an ad-
ditional block was included. In “Minus One” questions, one
block was missing (e.g. Figure 1a). In “Minus Two” ques-
tions, two blocks were missing. In “Minus Three” questions,
three blocks were missing.

The impossible endstates were created by changing the
original tower (e.g. deleting, adding, or changing the
properites of one or more blocks), adding some noise (so that
all the incorrect answers were not identical), and then allow-
ing the simulation to run to rest. Materials were created until
there were three impossible endings that had no blocks that
fell outside the viewing area nor were entirely obscured by
other blocks.
Procedure Participants read a detailed description of the
task. This included several example videos generated from
the PhysX materials, and example images like those that ap-
peared in the main body of the task. Participants were asked
to watch each video a few times so that they would know how
the blocks act when they fall.

The main body of the study consisted of 14 4AFC trials
randomly intermixed with 10 easy trials. The easy trials were
designed so that the correct answer would be obvious to a
participant who was paying attention. Trial order was ran-
domized. When choosing between the four fallen towers the
original tower of blocks was still visible on the screen (see

cussion of why the exclusion rate may have been unusually high
during the summer of 2018, when the majority of these data were
collected. In addition, due to space limitations we can report only
the key planned analyses in this conference paper.

2The PhysX physics engine, through the Unity interface (Unity,
n.d.).
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Figure 1a).

Results
In accordance with our preregistered analysis plan, we

pooled the number of correct answers participants gave on
the 14 critical items, and used both a two-tailed one-sample
t-test and the one-sample “Bayesian Estimation Supersedes
the t-Test” or BEST (Kruschke, 2013) to estimate credible
intervals for overall performance. The average number of
correct answers was 6.33 (SD = 2.37). We calculated a 99%
confidence interval of [5.75, 7.00], and the one-sample BEST
gave a 99% credible interval of [5.72, 6.98]. Performance at
this simple physical reasoning task is thus exceedingly poor;
this contrasts sharply with the high performance at predicting
whether towers are unstable found by Battaglia et al. (2013)

These errors varied by trial type. The mean number correct
(out of 2) were 0.38 for Change Type items, 0.79 for Change
Color items, 0.59 for Swap Color items, 0.65 for Plus One
items, 1.18 for Minus One items, 1.36 for Minus Two items,
and 1.38 for Minus Three items. We calculated confidence
intervals corrected for multiple comparisons (Bonferroni with
.05/7 = 0.00714) for all items. Intervals for Swap Color and
for Plus One were consistent with a null of 0.50. For these
item types, participants perform as poorly as if they were
given no information at all. The 99.29% interval for the items
with the highest accuracy, Minus Three, was [1.19, 1.59], the
upper limit being just less than 80% accuracy. Notably, 39
of the 100 participants gave the correct answer to fewer than
half of the items. Only 3 participants made no errors at all.

We included a free-response question after all trials, ask-
ing participants: “Roughly speaking, how did you try to solve
the problems? Please tell us a little about your approach be-
low.” Three coders who had not been involved in the design
of the study or the collection of data coded the free responses
into the following categories: 0) No response, Nonsensical
response, or “Other” strategy, 1) Simulation, Visualization,
or Imagination, 2) Heuristics or Rules, 3) Both Simulation &
Heuristics. To conduct subgroup analyses, we used a best 2
out of 3 approach to resolve disagreements among the coders,
and had the three coders manually resolve disagreement for
the small number of self-reports where all three coders coded
the response differently. The ratings had a Cronbach’s alpha
of 0.85, indicating acceptable agreement (Kline, 2013).

When participants were asked to describe the way they
completed the relevant tasks, 19 gave answers that suggested
a simulation or visualization approach, 50 said they used spe-
cific rules or heuristics, 20 said that they used both simulation
and heuristics, and the remaining 11 gave an uninterpretable
answer. Results did not differ between participants who re-
ported using different strategies.

Discussion
Reasoning about sets of 10 simple objects should be well

within the abilities of a person using PMST (Battaglia et al.,
2013; Hamrick et al., 2016). Despite this, performance was
remarkably poor.

This behavioral result seems very unlikely if participants

were tracking every block, which in causally-bound systems
is a requirement of PMST. While it is possible that simula-
tors might not always keep track of things like color, tracking
shape is necessary to predict object interactions, and track-
ing every object is fundamentally necessary for the task. Be-
cause of this requirement, every object will end up in the end
states of every simulation. It would seem trivial then to de-
tect a mismatch between the end state of a mental simulation
and a provided image of such a final scene. Alternatively, if
one retained the spirit of the PMST approach, this result sig-
nificantly constrains the availability of particular information
within a mental simulation. Introducing this new constraint
seems hard to reconcile with the ability of people to judge
if the tower will fall via simulation because it would imply
someone could answer the falling question (“will this block
tower fall over?”) but not a question about an individual block
within a tower (e.g., “will the long red block remain standing
when the tower falls over?”).

Study 2: Temporal Consistency
PMST conducts simulations in an iterative fashion. At ev-

ery time-step, the system applies elementary physical rules to
each object in the simulation. This is done recursively; once
every object has been updated at time t, the system moves on
to time t+1, updates all objects again, and so on (Battaglia et
al., 2013). This ensures that events will generally occur in the
correct order, as long as the approximate trajectory is clear. In
this study, we assessed if people have difficulty predicting the
order in which events occur, for physical events with reliable
trajectories.

The materials for this study consisted of video clips of
events in a simple 3-D world. Participants viewed the first
two seconds of several short clips of physical scenes in which
two independent physical processes unfolded. For example,
the physical processes might be two balls, each rolling down
its own series of ramps (see Figure 1b), or they might be two
lines of dominoes falling over. Each physical process fol-
lowed a predictable trajectory, and we informed participants
of this fact.

In each scene we identified one object in each process (usu-
ally “the red ball” and “the blue ball”), and participants were
asked to predict which of the two objects would hit the ground
first. Participants did not see the outcomes of the video clips,
so they had to engage in prospective reasoning in order to
make this judgment. The key dependent variable was the pro-
portion of scenes for which participants thought the wrong
event would occur first.

Method
Participants As above, our stopping rule was designed to
collect a fixed number of participants after exclusions. We
collected 78 participants (29 female, mean age = 35.1, SD =
9.8) in groups of 9 at a time on Amazon Mechanical Turk.
Participants could earn a bonus of $3 depending on the ac-
curacy of their predictions. Of these participants, 63 met our
exclusion criteria, and we analyzed only the first 60 partici-
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pants (22 female, mean age = 36.4, SD = 10.2), as stated in
our preregistration.
Stimuli The main stimuli were video clips (example clip)
showing the first two seconds of a scene (full version of same
scene). Each scene included two key objects, one red and
one blue, each involved in its own causal chain, which would
eventually lead to each object colliding with the ground.

Each scene was designed to make the outcome that would
occur second seem, at the end of the 2-second clip, more
likely to occur first. The object that would actually strike
the ground second was moving faster, had gone further, had
fewer “obstacles” in its way, etc., or some combination of
these factors. We iterated the design of the scenes based on
these heuristics until we believed that pausing at the two-
second mark would lead to incorrect judgment of the con-
clusion. PMST predicts that no such items should exist, as
long as the trajectories are clear.

In the full scenes, the first object always struck the ground
at least 2/3 of a second before the second one did, sometimes
much earlier. The full scenes took about 10s to complete.
Procedure Participants read a detailed description of the task
which included several example videos of the physics engine
we used, and example clips similar to those that appeared in
the main body of the survey. Participants were assured that
the simulations were designed to be as much like real physics
as was possible, that both critical objects would always even-
tually reach the ground, that there were no hidden objects or
forces that would interfere, and that everything relevant to the
scene was readily visible in the video clips.

In the main body of the study, participants viewed several
video clips of the first two seconds of a physical scene where
two independent chains of events unfold. In each case there
were two items of interest, one red and the other blue, and
participants judged which of the two would reach the ground
(indicated by a grass texture) first.

The study presented four questions each of three types
(“Marble Run”, “Parthenon”, and “Domino”), for a total of
twelve critical questions. There were also four filler scenes,
which were designed to be trivially easy.

Results
We used both a two-tailed one-sample t-test and one-

sample BEST to determine if, on average, accuracy was dif-
ferent from chance. Participants answered a mean of 4.77
questions correctly (SD = 2.55), which was less than chance
(6), according to both a t-test, t(59) = -3.75, p < .001, 95%
confidence interval [4.11, 5.42] and a one-sample BEST, 95%
Credible Interval: [4.11, 5.45].

In answering the 12 critical questions, 56.7% of the partici-
pants gave the incorrect answer to more than half of the ques-
tions. Every participant made at least two errors. The highest
level of performance was ten of twelve correct, achieved by
only two participants. Further, 3.3% of the participants gave
the wrong answer on all twelve trials.

The same three coders coded free response reports of strat-
egy according to the system described above. The ratings had

a Cronbach’s alpha of 0.74, indicating acceptable agreement
(Kline, 2013). When participants were asked to describe the
way they completed the relevant tasks, 8 gave answers that
suggested a simulation or visualization approach, 35 said they
used specific rules or heuristics, 8 said that they used both
simulation and heuristics, and the remaining 9 gave no answer
or an uninterpretable answer. Results did not differ between
participants who reported using different strategies.

Discussion
In this study, participants saw two processes with pre-

dictable trajectories, and were asked to estimate which pro-
cess would complete first. Overall, participants reversed the
order of the events in their predictions, predicting that the
event that truly occurred second would occur first, and did
so more often than chance. Admittedly, the scenarios used
in this study were deliberately designed to be adversarial. If
we were to imagine the (hypothetical) space of all possible
scenes, it is likely that few cases would prompt the reversals
in judgment we observed. However, PMST suggests that no
items showing such reversals should exist, barring major un-
certainties in trajectory, etc. That there exist any items where
this kind of reversal is consistently found is evidence that
PMST is not the approach being used to make these judg-
ments.

Study 3: Probabilistic Coherence
When making predictions about a physical scene, a key

claim of PMST is that judgments reflect probabilistic infer-
ence, estimated via repeated stochastic runs of the simulation
(Battaglia et al., 2013). As such, people’s physical judgments
should approximately obey the laws of probability theory.

Conjunction fallacy errors are cases where people rate a
joint probability (A & B both occur) as more likely than the
marginal probability of one component (e.g. A occurring at
all). This is logically contradictory because there is no way
for the joint probability to be larger than either of its compo-
nents. At most, it will be equal to the smaller component.

In the cognitive domain, this is often known as the “Linda
Problem”, because of a well-known example in which partic-
ipants judged a hypothetical individual named Linda as more
likely to be both a bank teller and a feminist than to be a bank
teller in general (Tversky & Kahneman, 1983). To test this
commitment of PMST, in this study we assessed if people fall
prey to conjunction fallacy-style judgment errors for physical
reasoning problems.

Methods
Participants We collected data from 90 participants (28 fe-
male, mean age = 33.6, SD = 9.8) on Amazon Mechanical
Turk (AMT). Following the criteria outlined in our preregis-
tration, we analyzed only the first 60 participants (18 female,
mean age = 34.2, SD = 9.7) of 62 eligible.
Stimuli The main stimuli were video clips, 2/3 of a second
long, in which two round objects (a pink “sphere” and a gray
“cannonball”) interacted in a 2-dimensional world (example
video here). This world included gravity and some stationary
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objects. There was always “ground” on the bottom edge of
the scene, with a green section representing grass on top, and
usually one or more boxes resting on the grass. There was
always a hole in the ground, wide enough for either object to
potentially fall into.

Over the course of each clip, the gray cannonball would
travel in a parabola across the screen, while the pink sphere
would fall under the influence of gravity (see Figure 1c). The
cannonball always traveled toward the sphere, in a way that
suggested that the two might collide. Each video ended af-
ter approximately 700 ms, well before the cannonball could
intersect the pink sphere’s path, leaving ambiguity about the
outcome of the scene.
Procedure Participants read a detailed description of the
task. This included several example simulation videos from
the physics engine we used (PhysX) and example clips like
those that appeared in the main body of the task. The exam-
ple videos included many forms of inter-object interactions,
including collisions, and participants were allowed to watch
these videos as many times as they wanted.

In the main body of the study, participants saw several sim-
ple physical scenes. For each scene, participants estimated
the likelihood of a particular prompted outcome (e.g., “How
likely is it that the pink sphere will end up on the grass?”), as
a percentage ranging from 0% to 100% in 1% increments.

Eight of the scenes were considered “critical”, and the an-
swers to these provided our primary dependent measure. Un-
known to participants, each critical scene appeared twice, for
a total of 16 critical trials.

For each scene that appeared twice, in one appearance par-
ticipants were asked the question, “How likely is it that the
pink sphere will end up on the grass?” and in the other, “How
likely is it that the cannonball will hit the pink sphere, and
then the pink ball will end up on the grass?” Scenes did not
repeat until after several filler scenes were presented.

Results
We averaged the difference scores (conjunction probability

- sole probability) for each participant for each of the eight
critical scenes. Positive values on these difference scores in-
dicate that participants rated a conjunction as more likely than
the constituent sole probability, which is a form of the con-
junction fallacy. The average rating difference score was 7.29
(SD = 13.07), which was reliably greater than zero, according
to both a t-test, t(59) = 4.32, p < .001, 95% confidence inter-
val [3.92, 10.67], and a one-sample BEST (Kruschke, 2013),
95% Credible Interval: [4.06, 10.79]. This suggests that, on
average, participants were inclined to commit the conjunction
fallacy in a physics domain.

In rating conjunction and sole probabilities on critical tri-
als, 72% percent of the participants show a bias toward the
conjunction event. In addition, 62% percent of subjects com-
mitted the conjunction fallacy for more than half of the pairs.

The same three coders coded free response reports of strat-
egy according to the system described above. The ratings had
a Cronbach’s alpha of 0.75, indicating acceptable agreement

(Kline, 2013). When participants were asked to describe the
way they completed the relevant tasks, 23 gave answers that
suggested a simulation or visualization approach, 17 said they
used specific rules or heuristics, 12 said that they used both
simulation and heuristics, and the remaining 8 gave no an-
swer or an uninterpretable answer. Somewhat surprisingly,
we found that participants actually made more extreme con-
junction fallacy errors when they reported using a simulation
approach, F(3, 56) = 3.90, p = 0.013.

Discussion
Participants making judgments about outcomes in physi-

cal processes routinely predicted that conjunctions were more
likely than one of their constituent events. PMST states that
judgments about the outcomes of physical processes are made
by aggregating over the result of multiple noisy runs of a sim-
ulation, and so conjunction fallacy errors contradicts this as-
pect of the theory.

General Discussion
Simulation has been argued to be an important and effec-

tive way in which people reason about the physical world. In
this paper we ask about the limits on the use of simulation as
a strategy. Across three studies, we found empirical contra-
dictions to the natural predictions made by PMST.

First, when trying to identify the resting state for an un-
stable tower of 10 blocks, participants have great difficulty
distinguishing between the true set of blocks and sets that
differ because of changes of color, changes of dimensions,
additions, or deletions. PMST suggests that this should not
happen without significant additional assumptions about the
content and accessibility of particular features of simulated
representations.

Second, when judging the order of events in a scene with
highly predictable trajectories, participants consistently make
incorrect predictions about the order of events. Although the
examples were designed to be adversarial, PMST does not
admit the existence of such examples because judgments are
made using an iterative simulation where every object is ad-
vanced synchronously in each unit of time.

Third, participants consistently commit the conjunction
fallacy (Tversky & Kahneman, 1983) when reasoning about
simple physical scenes, a result that contradicts the claims of
PMST about how estimated judgments of physical scenes are
made by aggregating across probabilistic samples.

The design of our experiments tried to mimic many of the
empirical studies which have supported PMST in complexity
and content. Thus we believe they represent an interesting
test bed for the generalization of the theory.

As the field tries to grapple with these complex questions,
we argue that any complete account of human physical rea-
soning must contend with both the cases where people appear
to do well and the situations where they apparently are lim-
ited or deceived. As a result, experiments exposing the limits
of simulation can be as informative as those that show the
successes.
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