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ABSTRACT OF THE DISSERTATION 

 

Quantifying Viral Replication with  

Genetic Barcoding and Fitness Profiling 

by 

Tianhao Zhang 

Doctor of Philosophy in Molecular Biology 

University of California, Los Angeles, 2023 

Professor Jerome A. Zack, Chair 

 
Virus replication is a stochastic process at a delicate equilibrium between many intrinsic 

and extrinsic factors. On the one hand, a single copy of viral genomic material can 

produce thousands of copies of progenies. The descendants consist of a simplistic 

molecular machinery that can rapidly spread to new environments and infect new hosts. 

On the other hand, viral replication and assembly is an error prone process that produces 

a large fraction of defective particles. The high error rate of virus replication and the huge 

fluctuation of the population size make it difficult to track and study the life history of 

viruses.  

In this thesis, I will introduce two powerful platforms that can accurately trace the viral life 

history and their applications. The genetic barcode labels each individual viral clone with 

a unique piece of genetic information. Coupling with the next generation sequencing, the 

evolutionary history of every viral lineage can be reconstructed. Secondly, the fitness 

profiling platform combines high throughput mutagenesis with high throughput 
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sequencing to quantify the frequency change of mutants after various screening 

conditions. It efficiently measures the mutational effects on various viral systems.  

I will first apply the fitness profiling platform to measure the mutational effect of drug 

resistant mutations on HIV-1 replication. We found the pervasive positive genetic 

interactions between the drug resistant mutations, indicating a potential mechanism that 

HIV-1 maintains drug resistance. It uses multiple mutations to compensate for the fitness 

cost of drug resistance. 

Next, I modified the fitness profiling platform to quantify the mutational effect on the 

SARS-CoV-2 nucleocapsid protein. We measured the stability of ~8000 mutant proteins 

and found a continuous increasing trend of protein stability after the virus first transmitted 

to the human species.  

Thirdly, I introduced the construction of the HIV-1 barcode library and its application in 

single cell multi-omics. We developed a new sequencing method that can simultaneously 

sequence the integration site of HIV-1 and the alternative splicing forms of the viral 

mRNA. The barcoded HIV-1 library helps illustrate how viral integration affects virus 

transcription and splicing. 

Then I applied the barcoded HIV-1 library in humanized mice and used it to trace the 

clonal expansion of latently infected T cells. We designed a sequencing pipeline that can 

quantify the re-seeding events of each viral barcode and the clonal expansion events of 

each infected T cell clone. Combined with viral RNA barcode amplicon sequencing, we 

found the genomic features leading to less viral transcription and more T cell clonal 

expansion.  
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Lastly, I presented the technical improvement that enabled accurate sequencing of the 

genetic barcodes and viral mutants. We benchmarked error-free sequencing methods for 

the next generation sequencing. I also introduced a mathematical framework for 

estimating the mutational effect from high throughput fitness profiling data. 
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Chapter 1  

 

Introduction 
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1. Development of the viral genetic barcodes  

In the perspective of reductionism, the advancement of biological research was 

accompanied by the improvement of tracing single elements in a complex system. 

Discovery of GFP enabled real time tracking of single cells in complex tissues1. DNA 

sequencing methods identified mutations that emerged and fixed in evolutionary history, 

reconstructed the tree of life2. Molecular cloning and genome editing explained the 

importance of genetic elements by specifically disturbing their functions and observing 

phenotypes of the mutants3.  

Genetic barcodes refer to a series of technologies that can use a unique piece of genetic 

material to track the life history of a certain individual. For example, Schepers et al. used 

lentivirus to deliver a set of semi-random nucleotide barcodes into the T cell genomes to 

trace their lineage in mice4. Gerrits et al. inserted a random nucleotide sequence into 

hematopoietic stem cells’ genomes to study their development5. These pioneer works 

inspired many applications of random nucleotide genetic barcodes in various systems 6-

10. Other genetic information can also be used as a barcode to track cell lineages. The 

VDJ region mutates during lymphocyte development and can be used to study its 

lineage11. Spontaneous mutations can be used to infer phylogenetic trees of bacteria, 

virus and cancer cell evolution 12-14. The integration sites of retroviruses and transposons 

are consistent during development and can trace the cell lineages 15-18. The inducible 

CRISPR mutagenesis can generate insertion and deletion barcodes in situ22,23. Recent 

years witnessed the development of using transcriptomic signatures to infer 

developmental history 19-21. A plethora of methods tracked the life history of cells in an 

organism or an individual in a population. 
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Viral genetic barcode is a specific application of the genetic barcode method, but it also 

has many unique properties due to the special properties of the virus life history. Firstly, 

viruses have a large population size compared to the relatively small population of stem 

cells and lymphocytes. An acutely infected patient of Influenza A virus or SARS-CoV-2 

can have 10 million to 100 billion virions in vivo 24,25. Even a latently infected HIV-1 patient 

can have millions of dormant proviruses in different organs 26,27. A genetic barcode with 

low information density will not be able to track the dynamics of such large populations. 

Secondly, the mutation rate of viruses is several magnitudes higher than that of 

prokaryotic or eukaryotic organisms. RNA viruses and retroviruses, in particular, create 

~1 substitution mutation on its genome every time they replicate 28-30. Viruses with 

multiple copies of genetic material easily recombine within the host cells 35-37. On the one 

hand, these activities create an abundance of genetic information that can be used to 

reconstruct the phylogenetic history. On the other hand, they disturb the original genetic 

barcodes, posing challenges to accurate long-time tracking of a viral lineage. Moreover, 

unlike haploid or diploid organisms, viral particles are completely dismantled after 

infecting host cells, while thousands of progenies are produced from a single copy of the 

parental genetic material 31,32. The mathematical language to describe the development 

of cellular lineage needs to be reconsidered for most viruses 33,34.  

In recent years, we and other groups have developed robust and convenient methodology 

of viral genetic barcodes. Early methods like TRIP (Thousands of Reporters Integrated in 

Parallel) or B-HIVE (Barcoded HIV ensembles) inserted random genetic barcodes into 

the retroviral genomes, and established cellular clones to study the transcription activity 

of proviral DNA on different genomic positions 38,39. The workflows and the library scales 
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are similar to cellular barcodes and only characterized a single step of the viral life cycle, 

but they established the concept of viral genetic barcodes and provided some analysis 

tools for it. Later, different groups constructed replication competent barcoded virus 

libraries on HIV-1, SIV, and Influenza A virus 40-43. At the same time, the advancement of 

high throughput sequencing and related algorithms enabled rapid sequencing, mapping, 

clustering and counting of barcode data 44-48. Because of the high complexity and high 

mutation rate of the viral genetic barcodes, specific tools and pipelines to reduce 

sequencing errors and provide accurate barcode calling were invented 49-51. At the same 

time, mathematical frameworks for barcode designs were developed 52-54. Modern 

barcode libraries have been optimized to tolerate mutations and sequencing errors, while 

not interfering with the biological functions of the virus. All these inventions and 

improvements brought us to a point where we could apply the viral genetic barcodes to 

solve many biological problems. 

2. Applications of the viral genetic barcodes 

2.1. Quantify the latent reservoir 

The biggest barrier to HIV-1 cure is the persistent latent reservoir. The virus integrates 

into the host genome and can stay dormant for decades before rebound. The latent cells 

are transcriptionally and translationally identical to uninfected cells without external 

stimulation. The future therapeutic methods for HIV-1 cure rely on accurately monitoring 

the size of the latent reservoir 55. Various techniques investigate the size of the latent 

reservoir. Quantitative viral outgrowth assay (QVOA) is the most used reference for the 

replication competent reservoir 56,57. It measures the number of viruses reactivated after 

in vitro T cell activation. But it often underestimates the latent reservoir size because no 
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drug can activate all infected T cells. Near full-length proviral amplification and intact 

proviral DNA assay (IPDA) infers the virus replication capacity by its sequence 58,59. But 

these methods tend to overestimate the replication competent provirus because many 

mutations have unknown functions and may lead to a defective virus. The latent reservoir 

size can also be estimated by sequencing the spontaneous mutations on the viral genome 

and constructing the phylogenetic tree 60-62. But it is affected heavily by sampling errors 

and cannot accurately calculate the reservoir size.  

We have developed a genetically barcoded HIV-1 library that can actively replicate in the 

humanized mice model and undergo latency 43,66. By sequencing the barcoded virion 

RNA, we accurately quantified the number of latent viral clones that can be reactivated 

after certain treatment. The library can be used as a benchmark to evaluate many 

experimental therapies targeting the latency reservoir, e.g. the latency reversal agents or 

latency promoting agents 67,68.  

2.2. Describe the characteristics of the latent reservoir 

The size of HIV-1 latent reservoir within viral suppressed patients is mainly maintained by 

T cell clonal expansion 69,70. Describing the development history of the latent reservoir 

and characterizing the phenotypic features of clonally expanded host T cells help us 

better target infected cells and design therapies. Because the cells harboring a proviral 

clone share the same proviral integration site, sequencing the sites and infer the 

abundance of each site help characterize the population structure of the latent reservoir 

63-65. However, integration site sequencing alone cannot distinguish replication competent 

provirus with the defective proviruses, thus overestimates the latent reservoir size. Many 

multi-omics methods were developed to characterize the clonal expansion and virus 
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reactivation in the latent reservoir. Simultaneous TCR, Integration site and Provirus 

sequencing (STIP-seq) used flow cytometry to isolate reactivated provirus and 

sequenced the integration site with virus mutations 71. It identified the virus production 

from proviruses integrated near cancer related genes. But it relies on ex vivo reactivation 

of the proviruses and cannot characterize the cellular status in vivo. HIV-1 SortSeq using 

viral RNA probes isolated latently infected cells and profiled their transcriptional features 

72. It is also restricted by ex vivo reactivation. Expanded CRISPR-compatible cellular 

indexing of transcriptomes and epitopes sequencing (ECCITE-seq) reveals the 

transcriptomic features of latently infected cells and trace the clonal dynamics using the 

lymphocyte VDJ sequence 73,74. But it needs to be further optimized for HIV-1 to capture 

low abundance viral RNA or proviral DNA. Parallel HIV-1 RNA, integration site, and 

proviral sequencing (PRIP-seq) used microwell and multiple displacement genome 

amplification to sequence integration sites and cellular transcription features 

simultaneously 75. But the relatively low throughput restricts its application in many 

scenarios. Focused interrogation of cells by nucleic acid detection and sequencing (FIND-

seq) used hydrogel microfluidics and nucleic acid cytometry to measure latently infected 

cells with their transcriptome at unperturbed status 77,78. They identified that clonally 

expanded latent cells usually have a feature of suppressed virus transcription. Phenotypic 

and proviral sequencing (PheP-seq) achieved a similar conclusion by integrating the 

multi-omics data from the same patients 76. 

In this thesis, we will present a more convenient and high-throughput method using viral 

genetic barcodes in a humanized mice model to study the features of clonally expanded 

latent cells.  
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2.3. Quantify population bottlenecks  

The disease severity and prognosis of many viruses is affected by the initial amount of 

infection 79-81. For latently infected viruses, the amount of viral load set point when disease 

progresses to latency will determine the length of the latency period 82. It is important to 

estimate the population size of virus life history, especially at these bottleneck stages 83. 

Many phylogenetic methods have been proposed to infer the population history and 

estimate the bottleneck size. But genetic barcodes provide a straightforward 

quantification of virus population bottlenecks during transmission, tissue dissemination, 

latency establishment and other processes 40,42,66. For a uniformly distributed barcode 

library, the number of barcodes observed after the bottleneck event indicates the number 

of individuals that survived through the bottleneck. Moreover, many experimental 

therapies, such as broad neutralizing antibodies or vaccines that elicit tissue resident T 

cells, can reduce the infection bottleneck size and protect at the site of infection 86-88. 

Barcoded viruses can benchmark the efficiency of these therapies. 

2.4. Label mutations 

Viral genetic barcodes can also be used outside of complex organisms, just serving as a 

powerful tool to label single virions. Many studies have used genetic barcodes to label 

different mutants, facilitating the sequencing analysis 89,90. On many occasions, the 

mutation itself can serve as a genetic barcode, and can directly be associated with 

phenotypes 91,92. But an intentionally designed long genetic barcode can help in the 

situations where mutants are too long to be sequenced or the screening process may 

disturb the original mutations.  
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3. High throughput fitness profiling  

Understanding the clonal history can be complicated in the context of the ever-changing 

nature of the virus genetic materials. In the real world, new viral clones continuously 

emerge from the existing clones 28-30. For most populations, the mutation rate and the 

adaptation process has achieved an equilibrium where most viruses can never reach the 

genotype that fits the environment perfectly 93. In some scenarios, the number of 

spontaneous deleterious mutations outweighs the natural selection process, leading to a 

population crush 94. Virus population genetics only makes sense in the light of 

understanding the functions of the mutations.  

The functions of the viral mutations can be generalized to the ability to adapt to various 

environments. The ability of adaptation is a fundamental concept in evolutionary biology, 

termed fitness 33. A genotype has higher fitness means it can adapt to the environment 

better. All genotypes and their fitness form a hyperspace called the fitness landscape. 

Like a real landscape, genotypes march on evolutionary paths by accumulating 

mutations, and travel across valleys or hills of lower or higher fitness 95.  

The fitness profiling is a method that can efficiently characterize the whole fitness 

landscape 96,97. It pools a library of viral mutants and lets them compete in certain 

conditions. The frequency change after the competition was quantified by the next 

generation sequencing. And the fitness of all mutations is inferred from the frequency 

change.  

Fitness profiling data can be used to explain the evolutionary history of virus populations, 

or to identify new functions of known proteins 90,98-102. Here I will introduce two of its 

applications involved in our work. 
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4. Applications of the high throughput fitness profiling 

4.1. Quantify genetic interactions among mutations 

Evolutionary pathways are not simply accumulating mutations. They are restricted by the 

topography of the fitness landscape 104. Positive genetic interactions rescue the 

deleterious mutations, help viruses to gain new mutations 105. While negative genetic 

interactions create barriers to acquiring new mutations 106. Previous works have observed 

these constraints at the molecular level by constructing individual mutants 101,103, or 

inferring from phylogenetic data110. Recently, people used deep mutational scanning to 

profile the local genetic interactions in GFP, tRNA and other proteins 107-109. Our group 

constructed combinatory mutant libraries on HIV-1 protease and characterized the high 

order interactions among drug resistant mutations 91. We found the intensity of positive 

genetic interactions increased with the number of drug resistant mutations accumulated. 

This indicates HIV-1 protease has a rugged fitness landscape on drug resistant 

mutations, stabilizing the genotypes even in the absence of protease inhibitors. Other 

groups also used the high throughput fitness profiling platform to characterize positive or 

negative interactions on other parts of the HIV-1 genome or on other viruses 110-113. 

4.2. Surveil evolutionary history 

In human history, new viruses emerged frequently and left significant impacts on society 

116. Understanding the evolutionary history of the viruses help us prevent future cross-

species spillover and predict possible new strains that are evolving in human or animal 

populations. Phylogeny trees and molecular clocks are well-established methods to infer 

the viral evolutionary history 114,115. They are getting more accurate with the plethora of 

sequencing data available during the global SARS-CoV-2 pandemic 117,118. However, 
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these methods cannot explain the function of emerging mutations, thus falling short in 

predicting the trend of evolution. 

High throughput fitness profiling can annotate a large amount of epidemiological 

sequencing data, explaining the function of new mutations 90. We constructed a SARS-

CoV-2 nucleocapsid mutant library that covers all possible single amino acid 

substitutions. We quantified the stability of all mutants and annotated the public viral 

sequencing database. Our findings showed SARS-CoV-2 is gradually increasing its 

stability during the early transmission period in the human species. Other groups also 

used the similar method to explain the evolutionary history of SARS-CoV-2 119,120. 
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1. Abstract 

Drug-resistant mutations often have deleterious impacts on replication fitness, posing a 

fitness cost that can only be overcome by compensatory mutations. However, the role of 

fitness cost in the evolution of drug resistance has often been overlooked in clinical 

studies or in vitro selection experiments, as these observations only capture the outcome 

of drug selection. In this study, we systematically profile the fitness landscape of 

resistance-associated sites in HIV-1 protease using deep mutational scanning. We 

construct a mutant library covering combinations of mutations at 11 sites in HIV-1 

protease, all of which are associated with resistance to protease inhibitors in clinic. Using 

deep sequencing, we quantify the fitness of thousands of HIV-1 protease mutants after 

multiple cycles of replication in human T cells. Although the majority of resistance-

associated mutations have deleterious effects on viral replication, we find that epistasis 

among resistance-associated mutations is predominantly positive. Furthermore, our 

fitness data are consistent with genetic interactions inferred directly from HIV sequence 

data of patients. Fitness valleys formed by strong positive epistasis reduce the likelihood 

of reversal of drug resistance mutations. Overall, our results support the view that strong 

compensatory effects are involved in the emergence of clinically observed resistance 

mutations and provide insights to understanding fitness barriers in the evolution and 

reversion of drug resistance. 

2. Author Summary 

Antiretroviral drugs have achieved great success in controlling the HIV pandemic. 

However, the therapy fails sometimes owing to the low drug adherence and/or the 
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emergence of resistance associated mutations on viral genome. The persistence of drug 

resistance poses challenges in using antiretroviral drugs for long term control or pre-

exposure prophylaxis. To understand the mechanisms of resistance evolution and 

persistence, we profiled the replication fitness of over 1000 HIV-1 mutants with 

combinations of resistance associated mutations on its protease gene. We found that 

although resistance associated mutations greatly reduce replication fitness, they interact 

positively to alleviate the mutational load. These genetic interactions, termed epistasis, 

increase the ruggedness along the evolution paths, restricting resistance associated 

mutations from reversal. Our data support the clinical observations that drug resistance 

mutations tend to persist even when antiretroviral drug is discontinued. 

3. Introduction 

Antibiotics and antiviral drugs have achieved great success in recent history1. However, 

therapeutic failure may occur due to low adherence and the emergence of drug 

resistance2,3. The increasing amount of drug resistant pathogens is a global threat to 

public health4-11. The genetic barrier to drug resistance, defined as the number of 

mutations needed to acquire resistance, is a major determining factor of treatment 

outcomes12-14. Another important but often overlooked aspect of drug resistance is the 

fitness barrier15-17. Resistance associated mutations (RAMs) in pathogen proteins may 

decrease enzymatic activities, interfere with molecular interactions, or destabilize the 

protein structure18-22. Because of the impaired replication capacity without drug selection, 

drug-resistant mutants cannot normally outcompete wild-type or establish in the 

population23-25. However, drug-resistant mutants can sometimes reach substantial 

frequency in the population. Fluctuating drug concentrations may create time windows 
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when drug-resistant mutants replicate better than wild-type virus26. Moreover, 

compensatory mutations can rescue the impaired replication capacity of mutants and 

stabilize drug resistance27-29. Thus, comprehensive quantification of the fitness landscape 

is needed to predict the evolution of drug resistance30,31. 

Epistasis, i.e., genetic interactions between mutations, is prevalent in molecular 

evolution32-34. Negative epistasis decreases fitness of the double mutant, posing 

constraints on gaining multiple mutations35,36. It plays an important role in shaping the 

local fitness landscape37. Positive epistasis increases replication capacity of the double 

mutant, facilitating pathogens to acquire and maintain drug resistance38-40. Positive 

epistasis may create a fitness valley that prevents drug resistant mutations from 

reversal41. Collectively, positive and negative epistasis determine the topography of the 

fitness landscape42 and the course of drug resistance evolution32. Empirical studies on 

the genetic interactions between RAMs, especially in high-order mutants, are still rare43,44. 

HIV-1 protease inhibitors are important components of combination antiretroviral 

therapy45 that target HIV-1 protease enzymatic activity46,47. Second-generation protease 

inhibitors have extremely high binding affinity to viral protein48. Resistance to them 

typically requires more mutations than resistance to first-generation protease inhibitors 

and other antiretroviral drugs49,50. For example, mutation K103N on reverse transcriptase 

is sufficient to confer HIV-1 nevirapine (NVP) resistance51, while more than 4 de novo 

mutations are needed for protease inhibitor Darunavir (DRV) resistance52. Protease 

inhibitor-resistant viruses with multiple RAMs also have significantly reduced fitness53,54. 

HIV-1 gained RAMs on protease during sub-optimal protease inhibitor therapy55. Most 

resistance mutations directly affect the binding affinity between HIV-1 protease and the 
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inhibitor, but they are likely to be deleterious because they also reduce binding to the 

native substrate of HIV-1 protease. To compensate the deleterious effect, some other 

RAMs stabilize HIV-1 protease, allowing drug-resistant virus to replicate as efficiently as 

its parental wild-type virus27,56. The compensatory effects between pairs of RAMs have 

been studied in several studies and are available on the Stanford HIV drug resistance 

database57-61. Meanwhile, reversals of protease inhibitor resistance-associated mutations 

were rarely seen clinically, even when therapy was interrupted62 or when mutant virus 

infected drug-naïve patients63,64. These observations indicate that epistasis may be 

important for the evolution of protease inhibitor resistance. Recent analyses of sequence 

co-variation in drug-targeted HIV Pol proteins (protease, reverse transcriptase and 

integrase) and co-evolutionary Potts model provide evidence that epistasis plays an 

important role in drug resistance. Despite being disfavored in the wild-type background, 

primary resistance mutations can become entrenched by the complex mutation patterns 

which arise in response to drug therapy65,66. 

Here, we present a quantitative high-throughput genetics approach to study the fitness 

distribution and epistasis of HIV-1 protease inhibitor RAMs67,68. Combining these data 

with clinical data and fitness models, we found that positive epistasis was predominant 

and especially enriched among RAMs, and prevalent along drug resistance evolutionary 

paths. Our results suggest that fitness hills created by epistasis result in barriers that 

entrench RAMs, and thus drug-resistant viruses are unlikely to revert after transmission 

to drug-naïve patients or discontinuation of anti-retroviral drug treatment. 
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4. Results 

4.1. Fitness profiling of RAMs in HIV protease 

To study the interactions among RAMs in HIV protease, we constructed a library of virus 

mutants that covers combinations of amino acid substitutions at 11 resistance-associated 

sites in HIV protease (Fig 1A, Table 1, 2! × 3" = 4608 genotypes). To ensure sufficient 

coverage, we harvested more than 30000 colonies after transforming E. coli. These sites 

have been annotated as major drug resistance sites in Stanford Drug Resistance 

Database69, and all have been shown to be strongly associated with drug resistance. In 

our mutant library, 9 sites have one amino acid substitution and the other 2 sites have 2 

amino acid substitutions (Fig 1A, Table 1). 2736 out of 4608 possible genotypes (59.38%) 

were covered in the plasmid library. 

We quantified the relative fitness of mutants using high-throughput fitness profiling (Fig 

1B, See Material and Methods for details). We performed 3 independent transfection 

experiments to validate the reproducibility of fitness profiling. 20 million 293T cells were 

transfected and 50 million T cells were infected in each experiment. For each biological 

replicate, relative fitness was calculated independently. The Pearson’s correlation 

coefficients of single, double and triple mutations between replicates range from 0.80 to 

0.82 (Fig 1C and S1 Fig). After filtering out mutants with low frequency or low 

reproducibility among replicates of input virus libraries (see Material and Methods for 

details), we were able to estimate the relative fitness of 1219 genotypes. The fitnesses of 

all single mutants, and more than 70% of double and triple mutants, were quantified (S2 

Fig). 
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To validate the quantification of relative fitness, we conducted competition experiments 

with individually constructed protease mutants. We performed two sets of validation 

experiments. For the first set, we packaged the mutant virus and wild-type virus 

independently and mixed them in pairs for head-to-head competition. The frequency of 

the mutant virus and wild-type virus were quantified by deep sequencing and the relative 

fitness was calculated in the same way as we did in library screening. A total of 7 mutants 

were constructed and validated. For the second set of experiments, we mixed all 7 single 

mutants with wild-type virus in competition experiments. The relative fitness was defined 

in the same way. The fitness measured in validation experiments was highly correlated 

with the fitness in library screening (Fig 1D, 𝑅 = 0.84 for each independent validation, 

Pearson’s correlation test). In addition, we compared the selection coefficients of HIV-1 

protease mutants measured in an independent study by Boucher et al71.  and the relative 

fitness values in our experiment (Fig 1E, S2 Table). The experimental results from two 

studies show a good correlation (Pearson’s correlation coefficient is 0.79), supporting the 

reliability of our experimental methods. 

4.2. Positive epistasis rescues the mutational load of RAMs 

We first looked at fitness effect of RAMs. In our definition, a mutant virus of relative fitness 

−1 means that the relative frequency of this mutant drops 10 fold after infection in cell 

culture. All single mutations were deleterious to virus replication (Fig 2A). The relative 

fitness of single mutants ranged from -2.33 (V82F) to -0.19 (L90M). This is consistent with 

previous reports that randomly introduced mutations were mostly deleterious to protease 

enzymatic activity or HIV-1 replication capacity72-74. Random mutagenesis in other viruses 

also revealed a lack of beneficial mutations in well-adapted systems75-77. RAMs in 
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particular were also reported to be deleterious to virus replication. They may destabilize 

viral protein, affect enzymatic activities or impact other protein-protein interactions78. 

We then analyzed epistasis between all pairs of RAMs. Previous studies have shown the 

prevalence of epistasis among pairs of random mutations or spontaneously accumulated 

mutations79. However, studies focused on the epistasis among drug resistance mutations 

are still limited30,39,72,75,80. Based on the fitness effect of single RAMs, we predicted the 

relative fitness of double mutants with the assumption that no epistasis existed among 

any two single mutations (i.e., the predicted relative fitness of a double mutant was the 

sum of those of two single mutants) (Fig 2B). Surprisingly, the observed relative fitness 

of most double mutants was significantly higher than the predicted values (𝑝 = 2.2 × 10#$, 

two-sided Wilcoxon rank sum test), suggesting that positive epistasis is prevalent among 

RAMs (Fig 2B inset). Pairwise epistasis between two RAMs is quantified as 𝜀%,' = 𝑓%,' −

𝑓% − 𝑓', 𝑓% represents the relative fitness of mutants 𝑖. The distribution of epistasis ranged 

from -0.69 (M46I and L90M) to 2.34 (L76V and V82F) and 86.6% of pairwise interactions 

between RAMs are positive. 

We also analyzed the extent of epistasis among high-order mutants. We observed a trend 

that relative fitness decreased as the order of mutants increased (S3 Fig). This is 

consistent with previous reports that mutational load restricted virus replication 

capacity81,82. To better quantify the fitness cost of multiple mutations, we calculated the 

frequency of viable mutants by different thresholds, 𝑓 > −2 or 𝑓 > −4. The frequency of 

viable mutant virus decreased as the number of mutations increased (Fig 2C), consistent 

with previous observations in HIV-1 and other RNA viruses83-86. We then predicted the 

relative fitness of high-order mutants by summing the relative fitness of corresponding 
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single mutants. We observed more viable mutants than would be predicted without 

epistasis (Fig 2C). This indicated pervasive positive epistasis rescued high-order mutants 

from lethal relative fitness, which is consistent with other clinical observations in protease 

inhibitor resistant virus. As a result, positive epistasis partially relieved HIV-1 mutational 

load and allowed viruses to explore more sequence space. 

4.3. Enrichment of positive epistasis among RAMs 

There are two possible explanations for the observed positive epistasis among RAMs of 

HIV protease. The first hypothesis is that all mutations in HIV protease tend to interact 

positively. The second hypothesis is that epistasis among random mutations in HIV 

protease is on average zero, but positive epistasis is enriched among RAMs. We 

introduced the Potts model to test our hypotheses, while simultaneously testing whether 

our finding of prevalent positive epistasis among RAMs carries over to the clinical setting. 

Potts models, originally developed in statistical physics, have been employed previously 

to use the population-level frequencies and correlations between different mutations to 

estimate their fitness effects87-90. In the Potts model, the probability of observing a 

genotype 𝐴 = {𝐴(, 𝐴", … , 𝐴!!} is given by equations in Fig 3A. Here the 𝐴% , 𝑖 ∈ {1,2, … ,99} 

are variables that represent the amino acid at site 𝑖 on each of the 99 sites of protease. 

Two sets of Potts parameters, fields ℎ%(𝐴%) and couplings 𝐽%'@𝐴% , 𝐴'A, give the statistical 

energy 𝐸@𝐴A, which is negatively correlated with fitness. These parameters are estimated 

in order to reproduce the frequencies and correlations between mutations that are 

observed in the data. The fields ℎ%(𝐴%) represent the fitness effect of amino acids 𝐴% at 

sites 𝑖 alone, while the couplings 𝐽%'@𝐴% , 𝐴'A describe epistatic interactions between amino 
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acids 𝐴% at site 𝑖 and 𝐴' at site 𝑗. For both the couplings and the fields, positive parameter 

values correspond to beneficial effects on fitness, while negative values correspond to 

deleterious fitness effects. We applied a maximum entropy method91 to an alignment of 

20911 HIV-1 clade B protease sequences from drug naïve patients, obtained from the 

Los Alamos National Laboratory HIV sequence database (hiv.lanl.gov, accessed 24 

March 2017) to calculate these two sets of Potts parameters. 

Then we calculated 𝐸@𝐴A for all mutants in our protease library. We found that the Potts 

energy for single, double or triple mutants (𝛥𝐸 = 𝐸)*+ − 𝐸,-) is significantly correlated 

with the relative fitness we measured in our screening (𝜌  = −0.46 , 𝑝 = 1.2 × 10#(. , 

Spearman’s correlation test, Fig 3B). The correlation was lower than previous analysis in 

HIV-1 Gag and Env region88,90. This may be due in part to strong phylogenetic bias on 

the inferred Potts parameters, because protease is highly conserved. It is also possible 

that epistatic interactions with cleavage sites on other parts of the HIV-1 genome and 

complicated anti-innate immunity functions of protease obscure the effects of individual 

mutations on replicative fitness in vitro57,59,92. 

The Potts couplings 𝐽%'@𝐴% , 𝐴'A  give the contribution of pairwise epistatic interactions 

between amino acids 𝐴% and 𝐴' at sites 𝑖 and 𝑗, respectively. We compared the couplings 

among RAMs and among all other possible mutations on protease (Fig 3C). Couplings of 

other protease mutations clustered near 0, while those of RAMs are significantly more 

positive than that of other mutations (D = 0.22, 𝑝 = 2.1 × 10#/0 , two-sided K-S test). 

Moreover, 𝐽%'@𝐴% , 𝐴'A among RAMs were also more positive than those between RAMs 

and other residues (D = 0.22, 𝑝 = 5.1 × 10#/0, two-sided K-S test). Although the fields 
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ℎ%(𝐴%) of RAMs are more negative than other mutations, the difference is not significant 

(Fig 3D, D = 0.25, 𝑝 = 0.20, two-sided K-S test). We note that the magnitude and the 

variation of field parameters is much larger than that of coupling parameters (Fig 3C-D). 

The Interquartile Range (IQR, i.e. the middle 50%) of field parameters is 3.55, while the 

IQR of coupling parameters is 0.15. The standard deviation of field parameters is 2.29, 

while the standard deviation of coupling parameters is 0.37. Overall, analysis based on 

the Potts model is consistent with our experimental results that positive epistasis is 

enriched among RAMs, and lends support to our second hypothesis that epistasis among 

random mutations in HIV protease is on average zero. 

4.4. Implications of positive epistasis in evolution 

To study the role of epistasis in evolution, we analyzed the evolutionary pathways 

covering all genotypes with up to 4 amino acid substitutions from the wild-type virus (13 

single mutants, 67 double mutants, 176 triple mutants and 290 quadruple mutants) (Fig 

4A). Mutants are linked if they differ by one amino acid substitution. 

We have found that all 13 RAMs are deleterious on the wild-type background (Fig 2A). 

However, the fitness effect of a single RAM becomes less deleterious on genetic 

backgrounds where other RAMs have been fixed (S4 Fig). Following the generalized 

definition of epistasis proposed by Shah et al.93, we define trajectory-based epistasis 𝜀1,' 

that measures the deviation of the fitness effect if the order of mutations were reversed. 

𝜀1,' = 𝑓1,' − 𝑓1 − 𝑓', where 𝑓1 and 𝑓' represent the relative fitness of background 𝑀 and 

single mutant 𝑗 94. For example, mutation 𝑗  can be deleterious on the wild-type 

background but beneficial on another genetic background that mutation 𝑖 has been fixed. 
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Trajectory-based epistasis is calculated for each amino acid substitution and averaged 

over genetic backgrounds with a certain Hamming distance to the wild-type (Fig 4B). For 

all RAMs profiled in this study, we find that trajectory-based epistasis is overall positive 

and increases steadily with the number of substitutions, i.e., the fitness contribution of a 

specific amino acid substitution becomes more positive if more RAMs have been fixed. 

Our results are consistent with previous analyses of sequence co-variation in HIV-1 

protease65,66, where inferred epistastic interactions among mutations at PI resistance 

associated sites lead to entrenchment of primary drug resistance mutations. In this study, 

we combine the analyses of co-variation (Potts model) with comprehensive experimental 

fitness data of HIV-1 protease mutants (including a large number of higher-order mutants) 

to provide direct evidence of positive epistasis among RAMs of second-generation PIs. 

We tested the hypothesis that positive epistasis prevented resistance associated 

genotypes from reverting to wild-type95,96. Although RAMs incurred significant fitness 

cost, some drug resistant mutants would not revert to wild-type after transmitting to a drug 

naïve patient. We quantified the frequency of accessible evolutionary pathways between 

mutants and wild-type in our experimentally measured fitness landscape of HIV protease 

RAMs. A reversal path is defined to be accessible if and only if the virus fitness increases 

monotonically along the path. For example, quadruple mutant V32I_M46I_I54L_V82F 

has many paths to revert to wild-type (Fig 4A). Among them, reversing V32I, I54L, V82F 

and M46I in order is an accessible path (Fig 4A, red line). On the contrary, reversing I54L, 

V82F, M46I and V32I is not an accessible path because there are 2 steps with decreasing 

fitness (Fig 4A, blue line). We found that among double mutants, 44 have two accessible 

reversal paths to the wild type, 20 have only one accessible reversal path, and 
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interestingly 3 of them have none. These 3 mutants (I50V_T74P, M46I_I54M and 

L76V_V82F) represent local fitness peaks and the reversal to wild-type is blocked by a 

fitness valley. We found that the number of accessible reversal paths decreased with the 

accumulation of RAMs (Fig 4C). This indicates that protease mutants become less likely 

to revert to wild-type as the number of RAMs increases. Our results are consistent with 

clinical observations that protease inhibitor resistance associated mutations seldom 

reverted even when therapies were interrupted or drug-naïve patients were infected. The 

difficulty of reversal also explains the rising frequency of drug resistant HIV-1 viruses in 

acute phase patients. 

5. Discussion 

In this study, we systematically quantified the fitness effect of RAMs of HIV-1 protease. 

While all RAMs reduced the virus replication fitness, pervasive positive epistasis among 

RAMs alleviated the fitness cost substantially. Moreover, we analyzed the HIV sequence 

data from patients by the Potts model. We found the statistical energy inferred from HIV 

sequences in vivo correlated well with the replication fitness measured in vitro. Based on 

our fitness data and the mutational couplings inferred by the Potts model, we showed that 

positive epistasis is enriched among RAMs of HIV-1 protease, in both local fitness 

landscape and evolutionary paths. Finally, we studied the role of epistasis in evolutionary 

pathways. We found that positive epistasis among RAMs entrenches drug resistance and 

blocks the reversal paths to wild-type virus, which has important implications for the 

design of anti-retroviral therapies. Through this project, we also established a high-

throughput platform to quantify the genetic interactions among a group of mutations. 

Another independent study profiled the fitness effect of all single amino acid change on 
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HIV protease. The data showed significant correlation with our study (Figure 1E, 

Pearson’s correlation coefficient (𝑅) is 0.79). 

There are a few limitations of this study. Firstly, we only measured the fitness effect of 

RAMs in the absence of protease inhibitors. We are not able to quantify drug resistance 

of RAMs because protease inhibitors block multiple rounds of virus infection and prevent 

us from accurate examination of mutant frequency under drug selection. Also, we did not 

sequence other genes of HIV-1. HIV-1 mutates rapidly due to low fidelity of reverse 

transcriptase 97,98. There might be compensatory mutations occurring on other proteins 

that rescued the protease RAMs. Secondly, the correlation between our validation 

experiments and high-throughput screening experiments was less than the correlation 

observed in similar experiments in bacteria and yeast 99,100. The correlation between Potts 

energy and experimental fitness is also lower than previous reports on Gag and Env 

regions. Mechanistic difference between logistic growth and viral growth may complicate 

the quantification of viral fitness 101. Direct measurement of viral frequency may not 

linearly correlate to the probability of replication 102. Moreover, we tested a large number 

of higher-order mutants (i.e. multiple mutations from the wild-type virus). Our 

experimental dataset not only contains clinically observed genotypes but also 

combinations of mutations that was not observed in patients, which are highly deleterious 

and may suffer from higher experimental errors. If we exclude higher-order mutants and 

very deleterious genotypes (S5 Fig), the Spearman’s correlation between fitness and 

Potts energy is higher (𝜌 = −0.54, compared to 𝜌 = −0.46 in Figure 3B). Thirdly, we did 

not cover all clinically observed polymorphism, given the bottlenecks in virus library 

screening. We chose to prioritize for RAMs of second-generation protease inhibitors 
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Darunavir (DRV) and Tipranavir (TPV), which are considered to have high genetic 

barriers (i.e. multiple RAMs are involved in the emergence and reversal of drug 

resistance). According to Stanford Drug Resistance Database , the RAMs that we chose 

contribute to the resistance to DRV and TPV (S2 Table). The only exception is L90M, 

which is frequently found in drug resistant viruses. The RAMs and the combinatorial 

genotypes in our library are prevalent in patients and documented in Stanford Drug 

Resistance Databases (Table 1). Future work could be extended to cover more clinically 

observed polymorphism in HIV-1 protease and other drug-targeted proteins. Finally, the 

correlation between Potts energy and experimental fitness is confounded by many 

factors, like different selection pressures in vivo and in vitro, or phylogenetic bias. 

Nonetheless, we observe moderate but statistically significant correlation between the 

coupling parameters in the Potts model and the experimental epistasis (S6 Fig, 

Spearman’s correlation test, 𝑝 = 6.8 × 10#2). We note that the coupling parameters in the 

Potts model and the experimental measure of epistasis (calculated for WT genetic 

background) are conceptually different, representing Fourier coefficients and Taylor 

coefficients of the fitness landscape103. Our findings are consistent with the literature that 

Potts model couplings are strongly associated with contact residues in the three-

dimensional structure of protein families 104,105. We tested a series of different statistical 

models, including the binary (Ising) model inferred via ACE, the Potts model inferred via 

pseudo-likelihood maximization (a popular approach to analyzing sequence data from 

protein families), and the Potts model inferred via ACE, to examine the epistatic effects 

among drug resistance mutations (S7 Fig). We found that the Potts model inferred via 

ACE is the best choice to analyze epistasis in our study. 
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Statistical models suggest a pervasive negative distribution of fitness effect for single 

mutations on HIV-1 31,88,106. Previous models also predicted the entrenchment of 

deleterious RAMs by positive epistasis. This dataset provides a unique chance to 

experimentally test these statistical hypotheses. The predominance of positive epistasis 

is also observed in HIV-1 and in other organisms30,39,107. However, they either relied on 

naturally-occurring resistant clones or indirectly activating gene functions. This report is 

the first dataset to systematically quantify the epistasis among functional residues in HIV-

1 drug resistance evolution, without the bias of drug selection and in vivo evolution. 

Overall, our results are important for understanding drug resistance evolution. We found 

positive epistasis plays a critical role in HIV-1 gaining and maintaining drug resistance. 

Epistasis makes the fitness landscape rugged, preventing RAMs from reversion to wild-

type, even when antiviral therapy is interrupted or virus transmits to a healthy 

individual95,108. 

Positive epistasis involves many kinds of molecular mechanisms. We find that the relative 

fitness of single mutants is not a significant factor of positive epistasis. We compared ℎ% 

in the Potts model for all RAMs and other single mutants. They were not significantly 

different (𝑝 = 0.20, K-S test). Physical distance between residues is a significant factor 

contributing to positive epistasis. The physical distances between these residues were 

significantly less than those between any two random residues on HIV-1 protease (D = 

0.32, 𝑝 = 3.9 × 10#(/ , two-sided K-S test, S8 Fig), suggesting that physical contact 

among RAMs might contribute to the observed positive epistasis. Notably, their average 

distance was more than 10 Å, indicating most of them did not have direct contact. Some 

mutations may have structurally stabilizing effect to other residues. We used FoldX and 
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Rosetta to predict the folding free energy (𝛥𝛥𝐺) as a quantification of protein stability for 

all mutants in our library (S8 Fig) 109,110. We notice that mutation V82F contributed to the 

positive epistasis on many genetic backgrounds (Fig 4B), but it did not contribute much 

to the stabilizing effect. Thus, structurally stabilizing effects cannot fully explain the 

predominance of positive epistasis observed in this study. Future studies on the structure 

and function of HIV-1 protease mutants will help elucidate the molecular mechanisms 

underlying the interactions among RAMs. 

6. Material and Methods 

6.1. Plasmid library construction 

HIV-1 RAMs were picked according to their prevalence in protease inhibitor treated 

patients. We chose 11 residues with 13 mutations to construct a combination of HIV-1 

protease mutant library (Table 1). 

We used a ligation-PCR method to construct the library on NL4-3 backbone, which is an 

infectious subtype B strain. All possible combinations of these 13 mutations are 2! × 3" =

4608 genotypes. The mutagenesis region spanned 243 nucleotides on HIV-1 genome. 

We split the region into 5 oligonucleotides and ligate them in order by T4 ligase (from 

New England BioLabs). The sequence of oligonucleotides are shown in S3 Table. After 

each ligation, we recovered the product by PCR and used restriction enzyme BsaI-HF 

(from New England BioLabs) to generate a sticky end for the next step ligation. 

After making the 243-nucleotide mutagenesis fragment, we PCR amplified the upstream 

and downstream regions near this fragment and used overlap extension PCR to ligate 
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them together. We then cloned it into full length HIV-1 NL4-3 background. We harvested 

more than 30,000 E. coli colonies to ensure sufficient coverage of the library complexity. 

6.2. Virus production 

The plasmid DNA was purified by HiPure Plasmid Midi Prep Kit (from Thermo Fisher 

Scientific). To produce virus, we used 16 μg plasmid DNA and 40 μL lipofectamine 2000 

(from Thermo Fisher Scientific) to transfect 2 × 100  293T cells, in 3 independent 

biological replicates. We changed media 12 hours post transfection. The supernatant was 

harvested 48 hours post transfection, labeled as input virus and frozen at −80 °C. We 

harvested 40mL viruses from each transfection. Virus was quantified by p24 antigen 

ELISA kit (from PerkinElmer). 

6.3. Library screening 

CEM cells were cultured in RMPI 1640 (from Corning) with 10% FBS (from Corning). To 

passage library in T cells, we added 25 mL viruses and 120 μg polybrene to 50 million 

CEM cells. We achieved 10 ng p24 (103 physical viral particles) for every million CEM 

cells during infection. We washed cells and completely changed media 6 hours post 

infection. We supplemented the cells with fresh media 3 days post infection and harvested 

supernatant 6 days post infection. We centrifuged supernatant at 500 × 𝑔 for 3 minutes 

to remove the cells and cell debris. The rest of supernatant was frozen at −80 °C. 

In summary, we carefully controlled the experiment scales to ensure the library complexity 

was maintained in every step. Briefly, we harvested > 3 × 10. E. coli colonies during 

bacteria transformation, which ensured ∼ 6-fold coverage of the expected complexity 

(4608 genotypes). We then transfected 2 × 100 HEK 293T cells with 16 μg plasmid library 
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to package infectious viruses. We used 25 mL viruses (500 ng p24, ∼ 5 × 10!  viral 

particles) to infect 2 × 100 million CEM cells for each biological replicate. 

6.4. Sequencing library preparation 

We used QIAamp viral RNA mini kit (from QIAGEN) to extract virus RNA from 

supernatant. We then used DNase I (from Thermo Fisher Scientific) to remove the 

residual DNA. We used random hexamer and SuperScript III (from Thermo Fisher 

Scientific) to synthesize cDNA. The virus genome copy number was quantified by qPCR. 

The qPCR primers are 5’--3’ and 5’--3’. 

At least 2 × 104 copies of viral genome were used to make sequencing libraries. We PCR 

amplified the mutagenesis regions using the following primers: 5’--3’ and 5’--3’. We then 

used BpmI (from New England BioLabs) to cleave the primers and ligate the sequencing 

adapter to the amplicon. We used PE250 program on Illumina MiSeq platform to 

sequence the amplicon. 

6.5. Calculation of fitness and epistasis 

We used custom python codes to map the sequencing reads to reference NL4-3 genome. 

Mutations were called if both forward and reverse reads have the same mutation and 

phred quality scores are both above 30. All codes are available on 

https://github.com/Tian-hao/protease-inhibitor. All data were deposited in SRA (short 

read archive) database under accession PRJNA546460. For each replicate of the virus 

library from the transfected 293T cells, we reached 4.45 × 104 to 6.05 × 104 sequencing 

depth. We filtered out the genotypes with frequency fewer than 5 × 10#4 in any biological 

https://www.ncbi.nlm.nih.gov/bioproject/546460
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replicate and the genotypes whose frequency differ more than 10 folds between any two 

biological replicates. 

Relative fitness 𝑓),5  of mutant 𝑚 in experiment 𝑟 (biological replicates) was defined as 

Equation 1. 

𝑓),5 = log(/ P
𝐹),5,6*+7*+
𝐹),5,%87*+

/
𝐹,-,5,6*+7*+

𝐹,-,5,%87*+
S 

𝐹),5,%87*+ is the frequency of mutant 𝑚 before screening. 𝐹),5,6*+7*+ is the frequency of 

mutant 𝑚 after passaging. 𝐹,-,5,%87*+ is the frequency of wild-type virus before screening. 

𝐹,-,5,6*+7*+ is the frequency of wild-type virus after passaging. 

The relative fitness 𝑓) was defined as the average of 3 biological replicates (Equation 2). 

However, if relative fitness was missing in one replicate, we only average the other two 

replicates. The relative fitness value of all mutants was shown in S1 Table. 

𝑓) =T𝑓),5

9

+:(

/𝑅 

, where 𝑅 is the number of biological replicates. 

Pairwise epistasis 𝜀%,' between mutant 𝑖 and mutant 𝑗 was defined as: 

𝜀%,' = 𝑓%,' − 𝑓% − 𝑓' 

, where 𝑓%,' refers to the relative fitness of double mutant 𝑖 and 𝑗. 

Trajectory-based epistasis 𝜀1,'  between a multi-mutation genotype 𝑀  and another 

genotype differ by one mutation 𝑗 was defined as: 
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𝜀1,' = 𝑓1,' − 𝑓1 − 𝑓' 

6.6. Potts model 

Data used to infer parameters for the Potts model were downloaded from the Los Alamos 

National Laboratory HIV sequence database, as described in the main text. Sequences 

were processed as previously described 111. Briefly, we first removed insertions relative 

to the HXB2 reference sequence. We also excluded sequences labeled as “problematic” 

in the database, and sequences with gaps or ambiguous amino acids present at >5% of 

residues were removed. Remaining ambiguous amino acids were imputed using simple 

mean imputation. 

Each sequence in the multiple sequence alignment (MSA) is represented as a vector of 

variables 𝐴 = {𝐴(, 𝐴", … , 𝐴;}, where 𝑁 = 99 is the length of the sequence. Each of the 𝐴% 

represents a (set of) amino acid(s) present at residue 𝑖  in the protein sequence. To 

choose the amino acids at each site that would be explicitly represented in the model, we 

first computed the frequency 𝑝%∗(𝐴) of each amino acid 𝐴 at each site 𝑖 in the MSA. To 

compute these frequencies, we weighted the sequences such that the weight of all 

sequences from each unique patient was equal to one, thereby avoiding overcounting in 

cases where many sequences were isolated from a single individual. We then explicitly 

modeled the 𝑞%  most frequently observed amino acids at each site that collectively 

capture at least 90% of the Shannon entropy of the distribution of amino acids at that site 

. All remaining, rarely observed amino acids were grouped together into a single 

aggregate state. For these data, this choice resulted in an average of three explicitly 

modeled states at each site (minimum of 2, maximum of 6). 



 

 
 

41 

The Potts model is a probabilistic model for the ‘compressed’ sequences 𝐴, where the 

probability of observing a sequence 𝐴 is 

𝑃@𝐴A =
1
𝑍
𝑒#=>?⃗A,

𝐸@𝐴A = −Tℎ%(𝐴%)
)

%:(

−T T 𝐽%'@𝐴% , 𝐴'A
)

':%B(

)

%:(

.
 

Here the normalizing factor 

𝑍 =T𝑒#=>?⃗A

?⃗

 

ensures that the probability distribution is normalized. We used ACE  to infer the set of 

Potts fields ℎ%(𝐴%)  and couplings 𝐽%'@𝐴% , 𝐴'A  that result in average frequencies and 

correlations between amino acids in the model [eq:potts-supp] that match the frequencies 

𝑝%∗(𝐴%) and correlations 𝑝%'∗ @𝐴% , 𝐴'A observed in the data. We used a regularization strength 

of 𝛾 = 7 × 10#4 in the inference, which is roughly equal to one divided by the number of 

unique patients from which the sequence data were obtained. We used “consensus 

gauge,” where the fields and couplings for the most frequent residue at each site in the 

protein are set to zero. We confirmed that the parameters inferred by ACE resulted in a 

Potts model that accurately recovered the correlations present in the data. 

6.7. Validation experiments 

We constructed 7 single mutants by site-directed mutagenesis. The primers used this 

experiment are listed in S3 Table. We used overlap-extension PCR to amplify the 

fragment with mutated nucleotides. We ligated the fragment with NL4-3 backbone using 
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ApaI and SbfI. We transformed competent E.coli and picked single colonies. We 

sequenced the protease region of plasmids to make sure there is only desired mutant in 

this region. 7 mutants were L10F, I47V, T74P, L76V, V82F, V82T, L90M. 

We produced mutant viruses in 293T cells, mixed them with wild-type and infected CEM 

cells. The frequencies of mutant virus before and after infection were quantified by deep 

sequencing. We did 2 biological replicates with each validation method. For validation 1, 

we pairwisely mixed the mutant and wild-type virus oor competition. For validation 2, we 

mixed all 7 mutants and wild-type virus. 

6.8. Protein stability prediction 

Mutants’ stability was predicted using either FoldX or Rosetta. For FoldX, we used the 

protease structure (PDB: 3S85) as reference and repaired the structure using the 

RepairPDB function. The free energy of the mutants was computed by using the 

BuildModel function under default parameters. For Rosetta analysis, we used the 

protease crystal structure (PDB: 6DGX) as reference and score function ddg_monomer 

to evaluate the effect of mutations. Each mutant was evaluated 10 times and the average 

score was used as 𝛥𝛥G. 
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Figure 2-1. High-throughput fitness profiling of combinatorial HIV-1 protease 

mutant library. 

(A) The structure of protease dimer (PDB: 4LL3). The side chains of selected resistance 

associated residues are shown. (B) Workflow of the fitness profiling. Protease mutations were 

introduced into NL4-3 background. T cells were infected by the mutant virus library. The frequency 

of mutants before (input library) and after (output library) selection was deep sequenced. (C) The 
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correlation of relative fitness between two biological replicates. Pearson correlation coefficient (𝑅) 

is 0.80. (D) Two independent validation experiments were performed. We constructed 7 protease 

single mutant plasmids and recovered viruses independently. We mixed each mutant virus with 

wild-type virus (validation 1, black dots) and passaged in T cells for 6 days. We also mixed all 7 

mutant viruses together with wild-type (validation 2, red dots) and infected T cells for 6 days. The 

relative fitness of each mutant was quantified by the same means as that in the library. Pearson 

correlation coefficients (𝑅) for validation 1 and validation 2 are both 0.84. Error bar is standard 

deviation (𝑛 = 3 ). (E) The correlation of relative fitness in this study with the experimental 

selection coefficients in 71. Pearson correlation coefficients (𝑅) is 0.79. 
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Figure 2-2. Positive epistasis is enriched among RAMs. 

(A) Relative fitness of single mutants. Error bar is standard deviation (n=3). (B) The predicted 

relative fitness and observed relative fitness of double mutants. The predicted relative fitness was 

the sum of that of the two single mutants. Inset, the distribution of epistasis between double 

mutants. Error bar is standard deviation (n=3). (C)The predicted and observed fraction of viable 

mutants. A mutant was defined as viable if its relative fitness is higher than -4 (dashed line) or      

-2(solid line). 
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Figure 2-3. Positive epistasis rescues the mutational load of RAMs. 

(A) The conceptual graph of Potts model. Potts model uses the probability of mutations occurring 

with other mutations to estimate the statistical energy. h_i is the field parameter while J_ij is the 

coupling parameter. (B) The correlation of Potts energy(ΔE=E_mut-E_WT) and relative fitness of 

mutants with lower than 4 RAMs. Spearman correlation coefficient (ρ) is -0.46. (C)The cumulative 

density function of coupling parameters of RAMs and all other mutations. Coupling parameters 

between RAMs are more positive positive than those between RAMs and others (D=0.22, 

p=2.1×10^(-7), two-sided K-S test) and those between other residues(D=0.22, p=5.1×10^(-7), 

two-sided K-S test). (D) The cumulative density function of field parameters of RAMs and all other 
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mutations. Field parameters of RAMs and other residues are not significantly different (D=0.25, 

p=0.20, two-sided K-S test). 
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Figure 2-4. Ruggedness in fitness landscapes prevents RAMs from reversion to 

wild-type. 

(A) Fitness with possible evolutionary trajectories. Mutants are linked if they only have one residue 

difference. Red line represents an accessible path that a quadruple mutant can take and reverse 

to wild-type. Blue line represents an inaccessible reversal path to wild-type for that mutant. (B) 

Trajectory-based epistasis is calculated for each amino acid substitution and averaged over 

genetic backgrounds with a certain Hamming distance to the wild-type. The fitness effect of a 

single mutation becomes less deleterious on genetic backgrounds where other RAMs have been 
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fixed. (C) The distribution of accessible paths for all genotypes with a certain hamming distance 

to wild type. 
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Supplementary Figure 2-1. The correlation of relative fitness among biological 

replicates. 

All single mutants, double mutants and triple mutants are shown. R stands for Pearson correlation 

coefficient. 
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Supplementary Figure 2-2. Coverage of protease mutant library. 

(A) Fraction of expected protease mutants in each transfection virus library. (B) Number of 

mutants in each transfection virus library. Dashed line represents the number of all possible 

combinations of mutations. 
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Supplementary Figure 2-3. Relative fitness of different order of mutations. 

  



 

 
 

53 

 

Supplementary Figure 2-4. Relative fitness of single RAMs on different genetic 

backgrounds. 
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Supplementary Figure 2-5. Correlation between Potts energy and relative fitness 

for low order mutants. 

Mutants with relative fitness higher than -2.5 and numbers of mutations lower than 4 is shown. 

The Pearson’s correlation coefficient is -0.57. The Spearman’s correlation coefficient is -0.54. 
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Supplementary Figure 2-6. The correlation between Potts’ coupling parameters 

with experimental epistasis. 

The pairwise epistasis between all RAMs in our library was compared with Potts’ coupling 

parameters. The Spearman’s correlation coefficient is -0.33. The p value for the Spearman’s 

correlation coefficient is 6.8×10^(-3). 
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Supplementary Figure 2-7. Correlation between relative fitness and different 

statistical models. 

(A, B & C). The correlation between relative fitness with (A, bin) binary (Ising) model inferred via 

ACE, (B, plm) the Potts model inferred via pseudo-likelihood maximization, or (C, potts) the Potts 

model inferred via ACE. (D) Spearman’s correlation coefficients for different models. Mutants 

were classified according to their HD to wild-type. HD, hamming distance. 
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Supplementary Figure 2-8. Structure insights on resistance associated mutations. 

(A) Distribution of pairwise distance among resistance associated residues and other residues. 

The distance between the C-α of two residues was shown. (B & C) Correlation between mutants’ 

relative fitness and protein stability (ΔΔG). ΔΔG is predicted by FoldX (B) or Rosetta (C). The 

correlation coefficients were calculated for mutants with lower than 5 mutations. ρ stands for 

Spearman’s correlation coefficient. 

  



 

 
 

58 

Table 2-1. List of protease inhibitor resistance associated mutations covered in 

the library. 

       
       
       

Residue 
number 

Consensus Mutation Prevalence in 
clinical dataseta 

Occurrence 
in  

in vitro 
datasetb 

  

       
10 L F 1.54% 10.20%   
32 V I 1.37% 7.53%   
46 M I 4.32% 22.19%   
47 I V 0.88% 4.36%   
50 I V 0.30% 1.85%   
54 I L 0.68% 4.92%   
54 I M 0.48% 3.02%   
74 T P 0.37% 2.15%   
76 L V 0.46% 2.92%   
82 V T 0.64% 4.05%   
82 V F 0.33% 1.54%   
84 I V 3.00% 17.12%   
90 L M 7.71% 31.78%   

 

a From 148840 subtype B protease sequences in Los Alamos Database. 

b From 1951 isolates tested in PhenoSense assay.  
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1. Abstract  

The continuous evolution of SARS-CoV-2 in human population adds great uncertainties 

in COVID-19 control. Even though mutations on N protein are prevalent in emerging viral 

variants, their effects were not well studied. To understand the evolutionary potential of 

the N protein, we quantified the mutational effects of all possible substitutions and found 

a trend of increasing N protein abundance during SARS-CoV-2 evolution in human.  

2. Introduction 

Since the outbreak of COVID19 in late 2019, SARS-CoV-2, the causative viral pathogen, 

continuously expands its population and spread to almost all regions of the world. New 

variants of SARS-CoV-2 were frequently identified, some of which result in advantage in 

transmission and quickly become dominant in collected sequences1-3. Mutations on the 

S protein were the most extensively studied, as interactions of the S protein with cellular 

host receptors greatly influence the viral infectivity4, in addition to S protein being the 

target of antibody-based COVID19 therapeutics as well as the antigen for the majority of 

the approved vaccines. Nevertheless, many mutations appear on other regions of the 

SARS-CoV-2 genome, and the implication of these mutations on virulence and 

transmission are largely unknown5. N protein is one of the most abundant viral proteins 

in SARS-CoV-2. This highly conserved protein has important functions in multiple steps 

of viral life cycles, and contains multiple epitopes that can elicit T cell and antibody 

responses for viral control6-9. Therefore, N protein has been proposed to be the target of 

T cell-based vaccines that can provide additional layers of protection. However, current 
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studies are lacking in comprehensively understanding the constrains or impact of N 

protein evolution.  

3. Results 

3.1 Profile the mutational effect on the N protein 

Given the importance of N protein, it has been proposed that the availability of N protein 

is a rate-limiting step in the life cycle of some coronaviruses 10,11. To test whether this is 

the case for SARS-CoV-2, we overexpressed N protein under an inducible promoter in 

Vero E6 cells before SARS-CoV-2 viral infection, and observed an increase of viral titer 

at 24- and 48-hours post-infection (Figure 1A).  This led us to the hypothesis that the 

evolution of SARS-CoV-2 may be constrained by abundance of the N protein. To profile 

the impact of each codon substitution in N protein abundance, we developed a flow 

cytometry-based high-throughput screening platform (Extended Data Figure 1A).  

Lentivirus-based libraries with all possible single amino acid substitutions on SARS-CoV-

2 N were constructed. The viral protein was expressed in a human lung epithelial cell line 

(A549) and cells were sorted based on the fluorescence conjugated antibody against the 

FLAG-tag, indicative of the abundance of N protein in cells. Four populations with different 

N protein abundance were deep-sequenced separately and the inferred fluorescence 

intensity (mutational effect) of each mutant was calculated according to its frequency in 

different populations. The mutational effect (ME) was defined by the following equation: 

𝑀𝐸 =
C D!×%

"
!

C D!
"
!

, where 𝑓% stands for the frequency of each mutation in the population 𝑖. We 

observed a high reproducibility among 3 independent experiments (Extended Data Figure 

1B), and a clear separation between the synonymous mutations and the nonsense 

mutations (Extended Data Figure 1C). The mutational effects of a total of 7707 
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substitutions were quantified (Extended Data Table1). We found that a broad range of 

mutations are beneficial or neutral in SARS-CoV-2 N protein (Figure 1B). Overall, 1.89% 

(133) missense mutations increased the abundance (2 standard deviation higher than the 

abundance of silent mutations) and 6.68% (469) mutations decreased its abundance (2 

standard deviation lower than the abundance of silent mutations). We also noted different 

regions have different tolerance to mutations (Figure 1C). The N-arm and linker regions 

are more tolerant to mutations, while other patches, such as residues 72-76 and residues 

112-117, are less tolerant to mutations, indicating that these regions could serve as 

potential vaccine targets. 

To further demonstrate the accuracy of our dataset, we randomly picked 5 destabilizing 

and 3 neutral mutations, and individually measured the mutant protein abundance by 

Western blot. Protein abundance detected by Western blot correlated significantly with 

the profiling result (Figure 1E, quantified in Extended Data Figure 2C). Mapping the 

mutational effect onto the available N terminal domain (NTD) and C terminal domain 

(CTD) structures, we observed that the residues on the surface of the N protein were 

more tolerant to mutations (Extended Data Figure 1E, quantified in Extended Data Figure 

1F). Protein thermo-stability was one of the main determining factors of protein 

abundance. Therefore, we calculated the correlation between the first-principle predicted 

protein stability and our experiment data for protein abundance. The destabilizing effect 

of all possible substitutions on the NTD and CTD of the N protein were calculated using 

Rosetta with the corresponding crystallography structures (PDB ID: 7cdz and 7ce0). 

Consistent with previous reports12, mutations with large destabilizing effects were mostly 

deleterious (Figure 1D). These results demonstrated the accuracy of our dataset that 
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generated a comprehensive annotation of the impact of each amino acid substitution on 

N protein abundance. 

3.2. Estimate the impact of N protein mutations on natural occurring variants. 

With a comprehensive mutational effect dataset, we seek to test whether N protein 

abundance constrain viral evolution by analyzing the sequences of naturally occurring 

mutant viruses. We retrieved 237,226 SARS-CoV-2 whole genome sequences from 

GISAID. Mutations in the genome region encoding N protein were accumulating since 

early 2020 (Extended Data Figure 2A). Consistent with our profiling data, the linker region 

showed the highest mutation occurrence (Figure 2A). There are 86 double mutants that 

can be experimentally examined in our dataset. We found the mutational effect of 91% of 

these mutants is close to the sum-up of single mutations (within 33% standard deviation, 

Extended Data Figure 1D). This finding validated the usage of our dataset to infer the 

mutational effect of naturally occurring N variants. We found that the N protein abundance 

of natural occurring variants were significantly correlated with the time of sampling (Figure 

2B), suggesting that a directional evolution on N protein abundance had taken place. 

Moreover, we plotted the correlation coefficient between the N mutation monthly 

occurrence and our abundance dataset (Figure 2C, Extended Data Figure 2B), which 

showed a positive correlation as early as mid-2020, indicating an early onset of the 

directional evolution. To confirm this finding, we selected several prevalent natural N 

variants and assessed their abundance in Vero-E6 cells by Western blot (Figure 2D). We 

found many of them with elevated protein abundance as compared to the initial N protein. 

For example, variant D3L_R203K_G204R_S235F N derived from dominant lineage 

B.1.1.7, showed increased abundance by 2.1-fold in cells. Our data suggest that the N 
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protein abundance per se, even in the absence of infection, is increasing in the real world 

due to naturally occurring mutations and may contribute to SARS-CoV-2 evolution. 

4. Discussion 

In summary, we provided a comprehensive and accurate dataset of SARS-CoV-2 N 

mutant abundance. Our dataset suggests that new N variants have impacts on viral 

replication and evolution. This analysis could also be applied to the deep mutational 

scanning datasets on other viral proteins13. The receptor binding domain of the S protein 

showed an increasing trend of ACE2 binding capacity recently (Extended Data Figure 

2D). These trends indicate different time and direction of the selection pressures on 

SARS-CoV-2. Understanding the direction of evolution can help us better design anti-viral 

drugs and vaccines to interrupt the viral life cycle. Moreover, it has been shown in several 

cases that elevated protein abundance plays important roles in evolution by enabling new 

or improved functions14. Future experiments are needed to directly test different protein 

functions of the new N variants. Lastly, our data suggest the importance of surveillance 

and functional testing of other SARS-CoV-2 proteins, in addition to S, for effective 

pandemic control. 

5. Methods 

5.1. N protein mutant library construction 

SARS-CoV-2 N gene was divided into 6 sub-libraries, each containing 71 target residues. 

An oligonucleotide containing NNK (N stands for any nucleotide, K stands for guanine 

and thymine) was synthesized to introduce all possible single amino acid substitutions to 

a certain residue. For each sub-library, 71 mutated oligonucleotides were synthesized. A 

total of 418 oligonucleotides were synthesized to cover all residues on the N gene. The 
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sequences of all the oligonucleotides can be found in the Extended Data Table 2. The 

mutated oligonucleotides were then ligated with the wild-type oligonucleotides by PCR to 

create a full-length N gene fragment. The N gene fragments were cloned into a lentiviral 

vector with a Tet-on promoter and FLAG-tag on the C-terminal of the open reading frame.  

For each sub-library, more than 30,000 E. coli clones were harvested to ensure the 

sufficient coverage (>10-fold) of each mutant. The colonies were scraped from the plates 

and purified by the Invitrogen HiPure Plasmid purification kit. We used lipofectamine 2000 

to transfect each plasmid library with lentiviral packaging plasmid (PAX2) and envelope 

plasmids (pVSV-G). Two million 293T cells were used for each library to conserve library 

complexity. The lentiviral library was harvested 48 hours after transfection. DNase I 

(40ng/mL) and MgSO4 (1mM) were added to the library to remove residual plasmid DNA 

from the supernatant. Three independent transfections were performed to ensure 

reproducibility. 

For each sub-library, 20 million A549 cells were transduced with 100uL lentiviral library. 

The multiplicity of infection (MOI) is ~0.1. This reduces the possibility of superinfection. 

Puromycin was added to A549 cells and maintained for 7 days. Three independent 

transductions and selection were carried out. The remaining cells were used as the 

mutant N protein-expressing cell libraries in the subsequent experiments. 

5.2. Flow cytometry 

Doxycycline (1ug/mL) was added to the cells 24 hours before staining. The cells were 

fixed by 2% Formaldehyde and penetrated by eBioscience Intracellular Fixation and 

Permeabilization buffer. The cells were stained with PE/Cyanine7 anti-FLAG tag antibody 

(200ng/mL) at room temperature for 30 minutes. The cells were then washed twice and 
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loaded to the sorting machine. A total of 10 million cells were sorted for each sub-library 

and each replicate. Every sample was sorted into 4 populations according to the 

PE/Cyanine7 intensity.  

5.3. Sequencing library preparation 

The total DNA was extracted from each sorted cell population. The corresponding 

mutated regions were enriched by PCR. The products were ligated with NEB sequencing 

adapters and subject to the next-generation sequencing. The sequencing libraries were 

run on the Illumina NovaSeq6000 platform with paired-end 250 bp read settings. A total 

of 800 million reads were sequenced. All raw data can be found on NCBI short read 

archive under the accession ID PRJNA740111. 

5.4. Data analysis 

The amplicons for each sub-library were retrieved by comparing reads with PCR primers. 

If both primers were mapped in a pair of reads, and the difference between primers and 

the mapped regions is smaller than 3 nucleotides, the read pairs were identified as the N 

gene. The forward and the reverse reads were then compared with the initial variant 

individually. If a mutation was observed in both read directions, it will be identified as a 

true mutation. Read pairs were then translated according to the N gene open reading 

frame. The read pair was discarded if it has more than 10 amino acid substitutions. The 

occurrence of each type of mutation was quantified by the count of corresponding read 

pairs. The frequency is normalized to the average frequency of all silent mutations with 

the sub-library. The mutational effect of each single amino acid substitution and double 

mutants were calculated as described in the main text.  
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The protein stability of single mutations on NTD and CTD (ΔΔG) was predicted by 

PyRosetta. The PDB files 7CDZ and 7CE0 were cleaned and trimmed to single-chain 

atoms. Then, all side chains were repacked and minimized using the score function 

ddg_monomer. Then we introduced all possible substitutions within the structures and 

repacked all atoms within 8Å using linmin mover. The new structure was scored again 

and the difference between the new score and the score of the initial variant was used as 

ΔΔG. The procedure was repeated 10 times and the mean results were used in the 

correlation analysis. 

The aligned sequences of naturally occurring variants were downloaded from the GISAID. 

All sequences were translated according to the reference genome WIV04. Sequences 

with truncated N gene or undetermined nucleotides were discarded. Sequences with 

unclear sampling time annotation were also discarded. Mutations were called by 

comparing the sequence with WIV04. The mutational effect on a naturally observed N 

protein variant was predicted as the product of mutational effects of all included single 

mutations. If a substitution is not observed in our profiling data, its mutational effect was 

set to 1. 

All statistics were done by SciPy. Protein structures were colored and visualized by 

Chimera. All custom codes are available upon request. 

5.5. Western blot  

Representative mutations were constructed on the lentiviral vector mentioned above. The 

lentiviruses with different nucleocapsid mutations were packaged and used for infecting 

Vero-E6 cells with MOI = 0.1. After 7 days of puromycin selection, cells were treated with 

Doxycycline (1ug/mL) and subject to protein extraction. Cells were lysed by RIPA buffer 
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for 10 minutes on ice. Cell debris and supernatant were collected and denatured in the 

LDS sample buffer. 10uL cell lysate was loaded on the SDS-PAGE gel and transferred to 

the PVDF membrane. The membrane was stained by the anti-actin antibody and anti-

FLAG tag antibody for 1 hour. The HRP conjugated secondary antibody was also 

incubated for 1 hour. The membrane was visualized using Radiance Q HRP substrate for 

quantitative western.  

5.6. Infection 

Vero-E6 cells expressing N protein were plated in 12-well plates and induced by 

Doxycycline (1ug/mL). 100uL virus was added to each well and the supernatant was 

collected every day after the infection for 2 days. The virus genome was extracted using 

Qiagen Viral RNA mini kit and quantified by RT-qPCR. 
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A) Viral replication in Vero-E6 and Vero-E6-CoV-N cells. The cells were infected 1 day 

after induction of N protein expression. B) Heatmap showing the mutational effect of all 

possible single amino acid substitutions. C) Boxplot showing the median mutational effect 

in each domain. D) In silico validation of the profiling result. All possible single amino acid 

substitutions on the N protein NTD (PDB ID: 7cdz) and CTD (PDB ID: 7ce0) were 

modelled and their impact on protein stability were inferred by Rosetta. E) Western blot 

Figure 3-1. High-throughput profiling of the mutational effect on SARS-CoV-2 N 

protein. 
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validation of the N protein abundance in transduced Vero-E6 cells. NTD, N-terminal 

domain. CTD, C-terminal domain. 
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A) Heatmap showing the frequencies of naturally occurring mutations in the GISAID 

database. Boxplot showing the median and max mutation occurrence in each domain. B) 

Inferred total mutational effect of all naturally occurring variants in the GISAID database. 

ρ is the Spearman’s correlation coefficient. C) Monthly correlation between mutational 

Figure 3-2. Naturally occurring mutant variants have higher N protein abundance. 
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effects and its natural occurrence. D) Individual validation of the mutational effect on N 

protein abundance in transduced Vero-E6 cells.  
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Supplementary Figure 3-1. Quality of the mutational effect profiling. 

A) Diagram showing the workflow of mutational effect profiling. B) Scatter plot showing 

the correlation of mutation frequency in each sorted population. Two biological replicates 

were shown. Rho is the Spearman’s correlation coefficient. C) Histogram showing the 
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distribution of mutational effect for synonymous mutations and nonsense mutations. D) 

The correlation between experimental mutational effect and inferred mutational effect for 

high-order mutants. The inferred mutational effect is the summation of all corresponding 

single mutations’ effects. E) Mutation tolerance (mean log mutational effect of all 

substitutions) of each residue. F) The correlation between the mutation tolerance and the 

relative solvent accessibility.  
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Supplementary Figure 3-2. Characteristics of naturally occurring mutations. 

A) Natural SARS-CoV-2 variants accumulated mutations on the N gene over time. B) 

Scatter plot showing the correlation between experimental mutational effect and natural 

occurrence. C) Correlation between mutational effect in the high-throughput screening 

and the protein abundance quantified by the Western blot. Intensities from 3 independent 

experiments were averaged. D) Inferred ACE2 binding capacity for S protein variants with 

mutant receptor binding domain.  
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Genetic barcoded HIV-1 revealed the correlation between 

integration, transcription and splicing 
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1. Abstract 

The position of the HIV-1 integration site is a critical factor that impacts both the prognosis 

of the disease and the responsiveness of the virus to latency reversal agents. This is due 

to the fact that the local chromatin accessibility to the host transcription machinery varies 

in different genomic positions, affecting virus transcription. To investigate this 

phenomenon, we employed a viral genetic barcode system and a novel single cell 

sequencing method to simultaneously sequence the viral integration site and viral mRNA 

splicing. Our findings demonstrate that the position of the integration site plays a crucial 

role in determining the fate of the provirus by affecting viral mRNA splicing. Additionally, 

our study reveals the impact of different latency reversal agents on viral mRNA splicing 

activity at the single cell level. These results provide new insights into the mechanisms of 

HIV-1 latency and the potential for developing new therapies that target specific 

integration sites to effectively treat HIV-1 infection. 

 
2. Introduction 

2.1. The position of HIV-1 integration site affect the fate of the virus 

HIV-1 latency is characterized by devoid of viral gene transcription and translation. The 

fate of the provirus is not only affected by the cellular status but also by the starting state 

of the proviral transcription and stochastic effect1. In latently infected patients, different 

types of CD4+ T cells have different amounts of proviruses. Latent viruses were mostly 

found in central memory T cells and transitional memory T cells. While naive T cells and 

effector memory T cells contribute less to the latent reservoir2. The activation status of 

the infected cells also affects HIV-1 transcription. For example, TNFα signal will activate 
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virus transcription by recruiting NF-κB heterodimer to the viral promoter3. However, 

chronic HIV-1 infection also leads to chronic immune activation, which induces inhibitory 

pathways of T cell activation and viral transcription, such as PD1 and CTLA44. 

HIV-1 transcription is also affected by its intrinsic regulation program. An actively 

transcribing provirus will maintain its activity even if the host cell enters a resting state5. 

This is achieved by a positive feedback loop regulating by viral encoded transcription 

factor tat. If the basal activity of HIV-1 promoter passes a certain threshold, it will express 

a small amount of tat, which can recruit pTEF-b and destine the virus to an active state6.  

The position of the provirus integrated in the host genome also affects the viral 

transcription7. HIV-1 with higher transcription activity is more frequently found in host 

gene transcription active regions8,9. This may be explained by the high order nucleus 

architectures which distribute transcription apparatus unevenly, or by the dynamic 

positioning of the histones from nearby genes. For example, proviruses near the nuclear 

membrane have higher transcription activities10. Besides, if the flanking regions of the 

virus integration site have an opposite oriented host gene, the viral transcription will also 

be reduced due to transcriptional interference11,12.  

The responsiveness of the HIV-1 transcription to latency reversal agents (LRAs) may also 

have positional effects. LRAs like HDAC inhibitors act on the 3 nucleosomes located at 

the HIV-1 LTR promoter13. PKC agonists also induce histone acetylation at the same 

region14. However, the initial status of the nucleosomes and the availability of histone 

modification enzymes is affected by the high order nucleus architectures. As a result, 

LRAs with different mechanisms will reactivate different groups of proviruses9. 
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The HIV-1 integration sites are not completely random. They are found more frequently 

in transcription active regions15 and splicing frequent regions16. The HIV-1 preintegration 

complex is guided to the integration site by the host factor LEDGF, which is a chromatin 

associated protein enriched at the H3K36 trimethylation sites17. This mechanism ensures 

HIV-1 provirus has access to an abundance of host transcription and splicing machinery. 

Meanwhile, proviruses from different integration sites still have magnitudes of variations 

in transcription activity6. This allows HIV-1 to have massive intrahost diversity in terms of 

replication capacity. Thus some proviruses will enter dormancy, leading to a long, 

persistent, but sometimes reversible latency18. 

2.2. HIV-1 life cycle is tightly regulated by alternative splicing 

The splicing activities of retroviruses are under delicate balance. Unwanted or inaccurate 

splicing leads to unproductive life cycles, as observed in human endogenous 

retroviruses19. Cryptic splicing resulting in non-functional ORF was also observed in HIV-

120. On the other hand, over-splicing leads to insufficient expression of viral structural 

genes21, inhibiting virus replication. While inhibiting viral specific splicing via SF2/ASF 

also inhibited retroviral replication22.  

The balance between different splicing sites’ activity is achieved by cis-acting splicing 

elements. Many exonic splicing silencers (ESSs), exonic splicing enhancers (ESEs) and 

intronic splicing silencers (ISSs) can recruit splicing factors and hnRNP to the splicing 

sites, adjusting the relative splicing activities23. Moreover, viruses can also produce RNA 

binding proteins with nuclear export signals that hijacks the CRM1 or NXF1 pathways. 

This allows unspliced RNA to be exported to cytoplasm before the spliceosome has a 

chance to process it24. 
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Compared to a classic promoter-based gene regulation system, splicing is more 

economical for a virus with a smaller genome and higher mutation rates. The simplest 

splicing site can be achieved by a dinucleotide AG and another dinucleotide GU flanking 

the intron sequence. A cis-acting enhancer or silencer is around 3-8 nucleotides. A total 

of 20 to 30 nucleotides can faithfully produce the RNA isoform. A viral encoded RNA 

export gene is around 300 nucleotides long25. Some retroviruses do not have their own 

RNA export protein. Instead, a cis-acting RNA exporting sequence for unspliced RNA is 

only a few tandem repeats of 15 nucleotides26. In contrast, eukaryotic promoters are 

around 100 to 1000 nucleotides long. A viral encoded transcriptional factor gene can be 

300 to 3000 nucleotides long. Some herpesviruses need more than 15 transcription 

factors to regulate their expression programs27.  

Hijacking host spliceosomes for temporal regulation of viral gene expression is also very 

responsive to the host environment. Taking HIV-1 as an example, the fate of the provirus 

is decided by the amount of multi-spliced RNA isoforms, which is affected by the 

availability of host transcription and splicing factors28. On the other hand, HIV-1 enters 

latency if the host cell is not actively transcribing. The viral RNA splicing sites serve as a 

sensor of the host cells’ activities.  

2.3. The challenges in profiling HIV-1 alternative splicing. 

HIV-1 transcribes from its LTR promoter. There are 4 major splicing donor sites and 7 

major splicing acceptor sites on its mRNA. After transcription, the mRNA was spliced to 

generate different 5’ UTR and express different viral genes. There are 3 major types of 

splicing products, including the multi-spliced RNA (msRNA), which expresses tat, rev and 
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nef; the single spliced RNA (ssRNA), which expresses vif, vpr, vpu and env; the unspliced 

RNA (usRNA), which expresses gag/pol and serves as the viral genomic RNA.  

HIV-1 utilizes the human spliceosome for its own splicing. When the viral transcription 

begins, the amount of host spliceosome outnumbers the viral RNA, so most viral RNA is 

spliced into msRNA and transported to the cytoplasm for translation. The early stage of 

the HIV-1 life cycle is characterized by the expression of genes on the msRNA. The viral 

protein rev is an RNA export protein that specifically binds to the unspliced viral RNA and 

sheds them from the host spliceosome. While tat is a transcription factor that binds to 

viral LTR and significantly promotes viral transcription. With the accumulation of rev and 

tat, more ssRNA and usRNA was exported to cytoplasm for translation. HIV-1 expresses 

more ssRNA and usRNA at the later stage of its life cycle.  

The delicate control of the HIV-1 splicing has been characterized by gel electrophoresis 

and next-generation sequencing 29-31. However, all these researches were performed in 

bulk samples. To fully understand the fate of the provirus, it is critical to profile the HIV-1 

mRNA splicing at the single cell level. Current single cell mRNA sequencing methods 

failed to efficiently capture HIV-1 mRNA sequencing due to following reasons 32. Firstly, 

droplet-based methods add cellular barcodes at 3’ end or 5’ end of the mRNA. But the 

HIV-1 splicing occurs after D1 site and before A7 site. It is more than 1000 bp away from 

the 3’ end. So the high throughput sequencer cannot read the cellular barcode and the 

splicing site simultaneously. Secondly, microwell-based methods add a unique cellular 

barcode in each well and support full length mRNA amplification. But it cannot efficiently 

target HIV-1 infected cells or HIV-1 mRNA, leading to a high cost of scaling up. Lastly, 

3rd generation single molecule sequencing can efficiently sequence full length mRNA. 
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But HIV-1 splicing sites are adjacent and compact. The high error rate of the 3rd 

generation sequencing cannot faithfully capture low frequency splicing events. 

In this paper, we will introduce a method to efficiently sequence HIV-1 splicing at single 

cell level, using viral barcodes. And combining this method with other multi-omics 

methods, we will show how the position of the HIV-1 integration affects virus transcription 

and splicing.  

3. Results 

3.1. Barcode-integration site linkage sequencing revealed the positional effect of 

HIV-1 transcription 

A 21-nucleotide random sequence was inserted into HIV-1 NL4-3 strain to create a 

genetically barcoded viral library (Figure 1A). More than 1 million colonies were harvested 

during library construction. This ensures the probability of two cells being infected with 

the virus of the same barcode is less than 5% if less than 0.1 million cells were infected 

(Figure S1A). We sequenced the barcode library to confirm its diversity. The average 

number of nucleotide differences between any two barcodes was 12, so we can easily 

distinguish barcodes from the next generation sequencing data (Figure S1B). The 

barcode frequency of each virus stays nearly the same after producing the virus, 

indicating that the barcode’s impact on the virus replication is negligible (Figure S1C). 

The frequency of most barcodes was uniformly distributed (Figure S1D). In summary, the 

barcode library can be used to label individual provirus in vitro. 

To measure the integration site and the transcriptional activity of each provirus at the 

same time, we used the barcoded library to infect primary CD4+ T cells and separate 

genomic DNA and RNA using the silica membrane (Figure S2A). A protease inhibitor was 
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added to the viral culture to prevent multiple rounds of infection, so each infected cell will 

have a unique barcode. We quantified the viral transcription by sequencing the barcode 

region and counting the relative abundance of each barcode (Figure 1C, 1D). We 

observed the number of actively transcribing barcode viruses was not changing 

significantly during the first 48 hours post infection. But the average transcriptional activity 

of each virus was increasing by more than 10-fold. Consistent with previous studies, the 

increment of transcription was not uniform on all cells, but only a proportion of cells were 

actively transcribing, while the rest remained a low activity. 

We then developed a sequencing protocol to sequence the proviral integration site and 

the barcode sequence simultaneously (Figure 1B). Briefly, we ligated a L-shape adapter 

on the randomly fragmented cellular genome. A 21-nucleotide unique molecular identifier 

(UMI) was included in the adapter to label each proviral molecule. Multiple steps of semi-

nested PCR enriched the fragments including the integration junction. The PCR product 

was enzymatically digested and self-circularized to bring the barcode and the integration 

site together. Then the short fragments containing UMI, barcode and the integration site 

were amplified for high-throughput sequencing. This allows us to link the integration site 

and viral transcription of each cell. The provirus was divided into three categories 

according to their sequences near the integration junction (Figure S2B). If there is no 

sequence after the integration junction, the provirus is divided into unintegrated. It is an 

intermediate step of virus reverse transcription and integration. The half life of this 

molecule conformation is short. If the sequence maps to the HIV-1 reference genome, 

the provirus is considered to be auto-integrated. This is a kind of integration byproduct 

that the virus did not successfully find the host DNA to integrate and accidentally 
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destroyed its own genome. If the sequence maps to the human reference genome, the 

provirus is considered as integrated.  

In the first 48 hours after infection, the frequency of integrated provirus is gradually 

increasing (Figure 2A). Among those proviruses, the frequency of actively transcribing 

proviruses is only increasing for the integrated form (Figure 2B). This is consistent with 

the previous knowledge that HIV-1 has to be integrated for the following transcription 

steps. The relative transcriptional activity of integrated provirus was also ~100 times 

higher than the unintegrated and the auto-integrated forms (Figure 2C). 

Then we analyzed the positions of the integration sites. Consistent with previous 

publications, HIV-1 integration took place on all chromosomes (Figure 3A), but it favored 

the transcriptionally active region (Figure 3B). Moreover, the integration sites were 

observed more frequently near the active histone markers but less frequently near the 

repressive histone markers (Figure S3A). The proviruses were also more likely to be 

integrated in the short interspersed nuclear elements (SINEs), but less likely to be in other 

endogenous retrovirus LTR regions (Figure S3B). 

We then looked at the transcriptional activity of each provirus. We found the viruses 

integrated in host gene regions had significantly higher transcriptional activity than those 

integrated in the intergenic regions (Figure 3C). However, the transcriptional activity of 

the cell and the activity of the host gene being integrated was negatively correlated 

(Figure 3D). This is probably due to the promoter occlusion resulting from the hyper active 

host gene depleting nearby transcriptional machineries. The distribution of actively 

transcribed provirus and inactive transcribing provirus were also correlated with nearby 

histone modifications (Figure 3E). The actively transcribed proviruses were closer to 
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active histone markers than the inactive proviruses, and vice versa. The transcriptional 

activity of proviruses inside of repeat region SINEs were also higher than the proviruses 

outside SINEs. All these data suggest that local genomic structure and transcriptional 

activity are important for the proviral transcription. 

3.2. Barcode - alternative splicing linkage sequencing profiled the abundance of 

different viral genes 

To quantify the exact composition of viral mRNA in each infected cell, we developed a 

linkage method to sequence the barcode and the splicing junction at the same time 

(Figure 4A). HIV-1 has 3 major classes of splicing products: the unspliced form, the single 

spliced form and the multi-spliced form. All splicing events took place at the 5’ of the gene 

coding region, resulting in different 5’ UTRs (Figure 4B). We designed the reverse 

transcription primers to add a UMI to each mRNA molecule immediately after the barcode 

sequence. Then we amplified the whole HIV-1 transcripts because all of them share the 

same leading sequence at the 5’ end before the first splicing donor site. The PCR product 

was enzymatically digested and circularized to bring the 5’ UTR and the barcode region 

close. Lastly, we used 3 different sets of primers to amplify the barcode and 5’ UTR 

region. The 3 sets of primers were designed for 3 major splicing classes. Our methods 

captured more than 80 different splicing forms, including all the well characterized major 

forms shown in Figure 4B. The sequences of  the 5’ UTR can be used to infer the 

translation product. In Figure 4C, we show the abundance of different viral mRNA in a 

single cell. We recovered 28 different types of mRNA isoforms for all 7 genes just in one 

cell. The unspliced form of viral RNA is the most abundant form in this cell. 
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We then looked at the relationship between viral transcription and splicing activity by 

linking the splicing sequencing result with the RNA amplicon quantification result. We 

calculated the diversity of viral mRNA in each cell (Figure 5A). We found that for each 

cell, the viral mRNA diversity positively correlated with the total transcriptional activity of 

the virus. This indicates more viral transcription will generate more types of viral RNA. 

However, the whole population showed a different trend on a temporal scale (Figure 5B). 

Previously we showed that the viral transcription increased over time because a portion 

of viruses’ activity increased (Figure 1C). But the average mRNA diversity of each virus 

was decreasing over time. This indicates as the fate of the virus is decided, the 

transcriptional program will be more committed to a certain set of viral mRNA, thus the 

diversity is decreasing in a temporal scale.  

We then reconstructed the dynamics of each viral ORF for each cell (Figure 5C). We 

found the frequency of Tat, Vif, Vpr and Vpu/Env per cell were increasing over time while 

Rev/Nef per cell were decreasing. This is consistent with the previous knowledge of the 

3 step transcription program. The early viral genes, like Rev and Nef, are heavily spliced 

and are decreasing over time. The middle genes, like Vif, Vpr and Vpu only need the 

splicing of D1-A4 intron and are expressed as the second group. The late genes are the 

full length viral mRNA that can express structural proteins and also serve as the genomic 

RNA. We also observed the variation of the genomic RNA, Vif, Vpr, and Tat are 

decreasing over time, indicating a process of fate decision. 

We calculated the frequencies of ORFs with the total viral transcriptional activity. We 

found at the early time point, Tat, Vif and Vpr frequency were negatively correlated with 

total viral RNA (Figure 5D). This indicates the function of Tat on viral transcription. Rev is 
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the only viral gene that is positively correlated with the within cell diversity of viral mRNA, 

indicating an important role of RNA export in regulating mRNA diversity (Figure 5E).  

The abundance of viral different genes were correlated (Figure 6A). There were 3 obvious 

groups of viral genes. Genomic RNA, Vif, Vpr and Tat are positively correlated and are 

usually expressed together. They indicate an active transcription program that leads to 

production of virions. Vpu/Env is negatively correlated with the major group, it indicates 

the last set of viral structural genes, regulating the cellular environment for pyroptosis and 

virion budding, inhibiting the synthesis of cellular genes. Nef is negatively correlated with 

all other genes. It should be considered as a dormant state of the virus' fate, where almost 

all viral genes were not expressed. Only a few viral mRNA molecules were heavily sliced 

into Nef mRNA. Rev is not correlated with any of the other genes. It has an important role 

in fate decisions and regulates the diversity of viral mRNA (Figure 6B). 

The viral gene expression could be summarized using principal component analysis 

(PCA) and plotted in 2 dimensional (Figure S4A). The fate decision process could be 

visualized by inferring a pseudotime based on gene expression using SlingShot (Figure 

S4B). The pseudotime correlated well with the real sampling time. 

Lastly, we linked the viral gene expression with the position of its integration site using 

the barcode sequences (Figure 6C). We found proviruses expressed more Tat if they 

were close to active histone marker H4K20me1. Rev is more frequent if the integration 

site is close to the active marker H3K4m1. However, Nef is more frequent if the integration 

site is close to the repressive marker H3K27me3. These data suggest that the position of 

integration sites affect viral transcription by differentially regulating its gene expression. 
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3.3. The effect of latency reversal agents was associated with the position of the 

integration site 

Latency reversal agents (LRAs) are promising therapies to eliminate HIV-1 latent 

reservoir and achieve a complete cure. There are two major categories of LRAs, the 

HDAC inhibitor and the PKC agonist. To evaluate their effect on the position of the 

integration site and the viral RNA splicing, we used SAHA (HDAC inhibitor) and Bryostatin 

(PKC agonist) to treat the barcoded cells infected resting CD4+ T cells and sequence the 

viral integration and splicing 24 hours after the treatment. We used CD3/CD28 beads to 

mimic the TCR activation signal and serve as a positive control of T cell activation. All 

treatments substantially increased the viral transcription (Figure 7A). While TCR 

activation has the highest amount of virus induction, the effect of LRAs are more obvious 

on the unspliced viral RNA. We then looked at the transcriptional activity of each provirus 

by counting the barcode abundance in the viral RNA (Figure 7B). We found none of the 

treatments can activate the transcription of all proviruses. They were only activating a 

proportion of proviruses or increasing the transcriptional activity of already active 

proviruses. SAHA treatment activated more viruses than Bryostatin, while the average 

transcriptional activity of provirus activated by Bryostatin was stronger (Figure S5A, S5B).  

SAHA remodels the histone modifications in the nucleus and may expose the beforehand 

dormant provirus. While Bryostatin induces the T cell activation signal and recruits many 

transcription factors into the nucleus. There are many crosstalks between two pathways, 

they eventually all lead to T cell activation and provirus transcription, but they may have 

preference of different provirus according to the position of their integration sites. We 

found both drugs activated provirus in gene regions and intergenic regions (Figure 7C). 
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But SAHA was more effective for provirus in intergenic regions. We tested if the odds of 

virus activation is associated with nearby histone modifications. Both drugs had a 

preference of proviruses near the active histone markers. But SAHA did not omit the 

provirus near the repressive marker H3K9me3 (Figure 7D). 

We also sequenced the viral gene expression for each provirus. We found that within cell 

diversity of viral mRNA was decreasing after the LRAs treatment (Figure 8A). This 

indicates LRAs initiated the fate decision program and increased the total transcriptional 

activity. We did PCA visualization of all proviruses according to their viral gene 

expression. We found TCR activation resulted in a significant upregulation of viral 

genomic RNA, and the phenotype of Byrostatin treatment was closer to the TCR than 

SAHA was. The viruses treated by SAHA or combination group had higher amounts of 

Vif and Tat, indicating that SAHA treatment was slow in activating the viruses and the 

activated viruses were phenotypically heterogeneous. The data indicates we should fine-

tune the treatment time of different LRAs while designing the combination therapies. 

 
4. Discussion 

In this paper, we developed a new method to simultaneously sequence the HIV-1 

integration, transcription and alternative splicing at the single cell level. The integration 

site of the virus can determine the accessibility of the host transcription machinery, 

thereby affecting the level and pattern of viral gene expression, and ultimately the 

outcome of the infection. Meanwhile, the alternative splicing of the viral mRNA generates 

different forms of viral proteins, which have diverse biological functions and modulate the 

host immune response to the virus. We found the position of the HIV-1 integration site 

may affect the viral transcription by differentially regulating the abundance of different viral 
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genes. This is achieved because the transcription and splicing machinery are not 

uniformly distributed in the host nucleus, and different intensity of splicing can lead to 

different viral gene expression patterns, affecting virus fate decision. Studying the 

relationship between the integration site and alternative splicing can provide a more 

comprehensive understanding of the complex mechanisms of HIV-1 pathogenesis and 

may lead to the development of new treatment strategies that can specifically target and 

manipulate these processes. Testing drugs facilitating or inhibiting virus splicing together 

with LRAs may result in better coverage and efficiency of latency reversal. 

Compared with current single cell multi-omics technologies, our method achieved the 

throughput of ~0.1 million cells with the cost of ~100 dollars. This is 50 fold higher than 

throughout and 50 fold cheaper than most commercial solutions. This allowed us to profile 

dozens of conditions easily. Thus, this method can be widely used for drug development 

and in vitro screenings.  

The method also has shortcomings. It cannot characterize the phenotype of the infected 

cells. Additional cellular barcodes may be needed for this purpose. Future studies can 

combine this method with droplet based single cell labeling or long read sequencing to 

generate a more comprehensive dataset for HIV-1 multi-omics. 

5. Methods 

5.1. Generation of barcoded HIV-1 library 

The design of the barcoded virus is shown in Figure 1A. Two fragments were PCR 

amplified using following primers: 

makeBC_F2(GGCTTGGAAAGGATTTTGCTATAANNCNNCNNCNNCNNCNNCNNCTA

TAAGATGGGTGGCAAGTGGTC) and makeBC_R2(GCTCCATGTTTTTCTAGGTC), 
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makeBC_F1(CAGATCCATTCGATTAGTGAAC) and 

makeBC_R1(TTATAGCAAAATCCTTTCCAAGCC). The PCR generated 2 products of 

343-bp and 176-bp respectively. The products were then purified and eluted in TE buffer. 

The 2 fragments have a 24- bp overlapping region, so they were assembled together 

using the NEB HiFi Assembly kit. The 495-bp assembled fragment was then amplified 

again using primers makeBC_F1 and makeBC_R2. The fragment was digested by 

restriction enzymes BamHI-HF and XhoI, and then purified. The pNL4-3 vector was also 

digested by these 2 enzymes and was purified by agarose gel electrophoresis. One ug of 

the insert fragment and 5ug of the vector was assembled using NEB HiFi Assembly kit. 

The assembled DNA was purified by ethanol precipitation with Pellet Paint NF co-

precipitant. One ug of the purified DNA was transformed into the MegaX E. coli 

electrocompetent cells and plated to 20 15cm agar plates. The plates were cultured at 

37°C overnight. More than 0.5 million colonies were scratched from the surface of the 

plates. One mg plasmid DNA was extracted from the bacteria pellet. The barcode region 

on the plasmid was confirmed by Sanger sequencing. 

20 ug of plasmid DNA was transfected into 20 million 293T cells using the Calcium 

phosphate transfection reagent. The virus library was harvested 48 hours after 

transfection. DNase I (40ng/mL) and MgSO4 (1mM) were added to the library to remove 

residual plasmid DNA from the supernatant. The barcoded virus library was aliquoted and 

frozen at -80°C for future use. 

5.2. Virus library infection 

100 million HIV-1 free PBMC was obtained from anonymous donors. We use CD4 

microbeads to isolate CD4+ cells from PBMC. The cells were then counted on a 
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hemocytometer. The cells were cultured in RPMI-1640 with 10%FBS, 1% PenStrep, 

10mM HEPES, 1mM sodium pyruvate, 0.1mg/mL Normocin, and 10U/mL recombinant h-

IL2 with 5 million cells per mL density. 10uL CD3/CD28 beads were added to the culture 

for every million cells. 72 hours post activation, the CD3/CD28 beads were removed from 

the culture by a magnet and the cells were counted again. Virus worth 100ng p24 was 

mixed with 1 million CD4+ cells in the culture media and spinoculated for 90 minutes at 

3000 rpm. After spinoculation, the cells were washed by fresh media and cultured with 

10U/mL h-IL2 and 100nM Darunavir. The infected cells were harvested every 12 hours 

for subsequent assays.  

5.3. Sequencing library preparation 

Total nucleic acid was purified using Qiagen DNA/RNA purification kit. The RNA was 

reverse transcribed using RT 

primer (CAAGTGCCTAGATCCTCGAGNNNNNNNNNNNNNNNNNNNNNCACTTGCCA

CCCATCTTATA) and purified by Invitrogen PCR clean-up kit. Here 21 consecutive 

random nucleotides serve as a unique molecular identifier (UMI) for each RNA 

molecule. For every infection, 3 types of the sequencing library were constructed. 1) 

Barcode amplicon library. 2) Barcode - integration site linkage library. 3) Barcode - 

splicing site linkage library.  

For the amplicon library, the barcode region was amplified using primers 

CAAGTGCCTAGATCCTCGAG and GGCTTGGAAAGGATTTTGCTATAA. More than 

10 million copies of viral cDNA were used as the template. This ensured sufficient 

coverage of most barcodes. The PCR product was confirmed using gel electrophoresis 

and purified by the PCR clean-up kit. I then used NEBNext Ultra II DNA library prep kit 
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to make pair-end sequencing libraries. Around 50 million reads were sequenced for 

each sample. 

The workflow of barcode integration site linkage sequencing was shown in Figure 1B. I 

used HinP1I (NEB) to digest the infected host genomic DNA. 63% of genomic 

fragments were at the length of 25 bp to 3000 bp, this ensures high circularization rate 

in the following steps. The digested DNA was then purified by PureLink PCR clean-up 

kit (Invitrogen). UltraII End-repair Module (NEB) prepared the DNA for ligation. A 

custom adaptor was annealed in the TE buffer (10mM Tris-HCl, 0.1mM EDTA, pH8.0). 

The sequence of the adapter’s reverse strand is TTGAGGTTTGCAGTTG. It has a 5 

prime modification of a phosphorylation group, which facilitates TA ligation with the 

genome fragments. The 3 prime amino modification blocks the polymerase from adding 

nucleotides at its downstream, maintaining the L-shape conformation of the adapter. 3 

consecutive phosphorothioate bonds at the 3 prime end to stabilize the adapter, 

preventing it from enzymatic degradation. The forward strand of the adapter is 

ACCATCAACCCCGAATTCNNNNNNNNNNNNNNCAACTGCAAACCTCAAT. It 

anneals with the reverse strand and contains a 14-nucleotide UMI. 50pmol adapter was 

ligated to 1μg of fragmented genomic DNA. All ligated products were purified and 

amplified using 4 rounds of semi-nested PCR. All PCRs used the same reverse primer 

sequence: ACCATCAACCCCGAATTC. But the forward primer sequences anneal to 

different parts of the HIV-1 genome to increase the PCR specificity. They are in the 

order of F4 (AGTGAACGGATCCTTAGCACTTAT), F3 

(CTCCTACAGTATTGGAGTCAGG), F2 (AGCCATAGCAGTAGCTGAGG) and F1 

(GTACTCGAATTCGGGCTTGGAAAGGATTTTGCTATAA). All forward primers contain 
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3 consecutive phosphorothioate bonds at the 3 prime end, preventing the exonuclease 

activity of the polymerase, increasing the PCR specificity. Primer F3 and F2 are used 

with the reverse primer containing the 5 primer phosphorylation modification, to enable 

lambda exonuclease digestion after PCR, which can eliminate the product of unspecific 

amplification. The final PCR product was purified and digested by EcoRI-HF (NEB). 

This created two sticky ends on the DNA.  100 ng DNA was purified and subject to self 

ligation in a 100μL reaction. The reaction used 2 units of T4 ligase (Invitrogen) at room 

temperature for 4 hours. The ligation efficiency was confirmed by quantitative PCR 

using primers ivF 

(ACACTCTTTCCCTACACGACGCTCTTCCGATCTTAGTCAGTGTGGAAAATCTCT), 

ivR (GAGTTCAGACGTGTGCTCTTCCGATCTTTTTGACCACTTGCCACCCAT) and 

synthetic standard templates. One thousand to 10 thousand copies of DNA per uL can 

be circularized.  One third of the ligation product was used as the PCR template for the 

inverse PCR, using the same primers as the quantitative PCR. Phosphorothioate bond 

modification was used to increase PCR specificity. One tenth of the product was then 

subject to the final round of PCR, which adds Illumina sequencing adapters to the 

library. The primers are 

AATGATACGGCGACCACCGAGATCTACACNNNNNNNNNNACACTCTTTCCCTACA

CGAC and 

CAAGCAGAAGACGGCATACGAGATNNNNNNNNNNGTGACTGGAGTTCAGACGTGT

GC. N stands for indexing sequence to distinguish different samples. Around 10 million 

reads were sequenced for each library. 
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The workflow of the barcode - alternative splicing linkage sequencing was shown in 

Figure 4A. The near full length viral cDNA was amplified using primers 

CAAGTGCCTAGATCCTCGAG and ATCGATCTCGAGGCACGGCAAGAGGCGAGGG. 

Three consecutive phosphorothioate bonds at the end of the primers increased the PCR 

specificity. The amplified product was purified and digested by XhoI (NEB) for 2 hours. 

1ng digested DNA was self ligated in a 100uL ligation system. The reaction used 2 units 

of T4 ligase (Invitrogen) at room temperature for 4 hours. The ligation product was 

divided into 3 portions and subjected to 3 PCR. They all used the same forward primer 

(ACACTCTTTCCCTACACGACGCTCTTCCGATCTGGCTTGGAAAGGATTTTGCTATA

A) which targets the upstream of the barcode region. But they use different reverse 

primers annealed to the downstream of the major splicing acceptor sites of the mRNA 

isoform families. For unspliced RNA, the reverse primer 

(GAGTTCAGACGTGTGCTCTTCCGATCTCTAGTCAAAATTTTTGGCGTACTCAC) 

anneals to the beginning of intron 1. For single spliced RNA, the reverse primer 

(GAGTTCAGACGTGTGCTCTTCCGATCTTCGTCGCTGTCTCCGCTTCT) anneals to 

the downstream of the A5 site. For multi-spliced RNA, the reverse primer 

(GAGTTCAGACGTGTGCTCTTCCGATCTCCCTCGGGATTGGGAGGTGG) anneals to 

the downstream of the A7 site. The PCR extension step only takes 20 seconds, so 

primers anneal to the downstream of the intended region would not have time for 

amplification and only 5UTR regions can be amplified. The cycle number was 

determined by the Ct number of a test run quantitative PCR, which only used 2uL of the 

ligation product. Finally, a 10-rounds PCR added illumina sequencing adapters and 
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indexes on the end of the library. Around 10 million reads were sequenced for each 

library. 

All libraries were sequenced on the Illumina NovaSeq6000 platform using the PE150 

setting.  

5.4. Sequencing data analysis 

The sequencing data were all analyzed by custom python codes. 
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Figure 4-1. Barcode - integration site linkage sequencing. 

A) Construction of the barcoded HIV-1 library. 

B) Barcode - integration site linkage workflow. 

C) Distribution of single viral transcription activity. 

D) Count of actively transcribing barcodes. 
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Figure 4-2. Transcriptional activity of different proviral conformations. 

A) Abundance of different proviral DNA. 

B) Percentage of active provirus at different time points. 

C) The relative transcription activity of different proviral conformations. 
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Figure 4-3. Positional effect of the HIV-1 integration site. 

A) The distribution of HIV-1 integration sites in this study. 
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B) The transcriptional activity of the host genes that have proviruses integrated in 

them. 

C) The transcriptional activity of proviruses within or outside the gene regions. 

D) The correlation between the provirus transcription activity and the integrated host 

gene transcription activity. 

E) The distance to nearby histone modifications for active or inactive provirus. 
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Figure 4-4. Barcode - alternative splicing linkage sequencing. 

A) Barcode - alternative splicing linkage workflow. 
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B) The main forms of HIV-1 mRNA isoforms. 

C) An example of viral mRNA isoforms within one cell. 
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Figure 4-5. Single cell viral gene expression analysis. 

A) The correlation between viral gene expression and mRNA heterogeneity. 

B) The distribution of mRNA heterogeneity over time. 
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C)  The distribution of viral gene abundance over time and the variation summary. 

D) The correlation between viral gene abundance and total viral transcription. 

E)  The correlation between viral gene abundance and mRNA heterogeneity. 
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Figure 4-6. Correlation between viral gene expression. 

A) The heatmap showing the correlation coefficients between different viral ORFs. 

B) The model of HIV-1 viral gene transcription regulation. 

C) The relationship between virus integration sites and viral gene expression. 

  



 

 
 

121 

 

 

Figure 4-7. Effect of LRAs on different provirus. 

A) The copy number of viral mRNA after LRA treatment. 
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B) The distribution of viral RNA abundance in each cell. 

C) The frequency of active provirus in different genomic regions. 

D) The odds of actively transcribing provirus near certain histone markers. 
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Figure 4-8. LRAs affect viral gene expression. 

A) The single cell mRNA heterogeneity in different treated groups. 

B) The PCA visualization of virus gene expression, colored by treatment. 

C) The PCA visualization of virus gene expression, colored by genes. 
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Supplementary Figure 4-1. The quality of the library. 

A) The probability of two cells sharing the same barcode with different infection size. 

B) The hamming distance between two barcodes. 

C) The barcode frequency in plasmid and in viruses. 

D) The cumulative density function of barcode occurrence. 
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Supplementary Figure 4-2. Workflow diagram of the linkage sequencing. 

A) Experiment design for the barcode integration site linkage sequencing. 

B) Data analysis pipeline. 
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Supplementary Figure 4-3. Distribution of integration site. 

A) Distribution of integration site near histone markers. 

B) Distribution of integration site near repeat regions. 

C) Transcriptional activity of provirus near repeat regions. 
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Supplementary Figure 4-4. The PCA visualization of virus gene expression. 

A) The PCA visualization of virus gene expression, colored by genes. 

B) The pseudotime inference of each cell. 

  



 

 
 

129 

 

Supplementary Figure 4-5. Transcriptional activity of LRAs treated cells. 

A) Frequency of active provirus. 

B) Mean transcriptional activity of the active provirus. 
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Chapter 5  

 

Barcoded HIV-1 reveals the proviral transcription in clonally 

expanded T cells 
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1. Abstract 

Clonal expansion of the infected T cells is the major reason HIV-1 latency reservoir can 

persist for a long time. The clonally expanding T cells have a transcriptomic feature of 

virus suppression and cell replication. A direct and high-throughput quantification of HIV-

1 transcription activity in these cells are needed. Here we introduced a new sequencing 

technique to simultaneously measure virus integration site, virus transcription and host 

cell clonal expansion, enabling us to trace virus and host cell clonal dynamics in vivo. We 

found quantitative negative correlation between virus transcription and host cell 

expansion. The conformation of the provirus and the position of the integration sites both 

significantly affect these activities. 

2. Introduction 

The barrier to HIV-1 cure is the persistence of the latent reservoir. Although modern anti-

retroviral therapy (ART) can control the viral load of HIV-1 patient at an undetectable level 

and greatly improve the prognosis, the drugs do not eliminate the proviruses or the 

infected cells, leaving a stable reservoir of dormant viruses. The virus replication will 

rebound when the therapy is interrupted or drug resistant virus emerges1. The proviruses 

can even reactivate at low level despite of good adherence of ART2, posing more risk on 

expanding the latent reservoir. Reducing the size of the latent reservoir is the central 

regime of the future HIV-1 therapies. The half-life of the latent reservoir in ART-treated 

patients is ∼44 months3. On the one hand, the reservoir size is decreasing due to 

cytotoxic effect of HIV-1 activation and inflammatory pyroptosis of the infected T cells4. 

On the other hand, the antigen specific T cell clonal expansion, homeostatic T cell 

replication, HIV-1 mediated oncogenic effect and sporadic virus replication all lead to the 
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increase of the reservoir size5. Understanding how these biological processes affect the 

dynamics of latent reservoir is the key to design therapies for HIV-1 cure. 

Various techniques investigate the development history of the latent reservoir. 

Quantitative viral outgrowth assay (QVOA) is the most used reference for the replication 

competent reservoir size6. Digital droplet PCR and quantitative PCR targeting different 

parts of the HIV-1 genome are faster alternative methods to it7,8. But these methods lack 

the resolution to distinguish different proviral lineages and are hard to explain the causes 

of proviral clonal expansion. The high mutation rate of HIV-1 reverse transcription 

introduces ∼1 mutation every round of the viral life cycle9. The mutations serve as a 

natural barcode of the proviral genome. With the full-length HIV-1 proviral sequencing, 

the proviral clonal history can be inferred from the abundance of different virus variants10. 

The integration site can also be considered as a unique proviral lineage barcode, because 

the chances of two random integration events occur at the same position on the human 

genome is nearly zero11. The abundance of the certain proviral clone can be inferred from 

the types of truncated DNA fragments during sequencing library preparation12. Recent 

advancement in single cell multi-omics enables provirus’ mutations, integration sites and 

T cell phenotypes to be measured simultaneously13-17, improves the sensitivity and 

accuracy of measuring proviral lineages in the latent reservoir. 

Our group introduces synthetic genetic barcodes on HIV-1 genome to efficiently trace 

viral lineages and measure latent reservoir diversity in animal models18,19. Here, we 

presented a new method that can simultaneously sequence the proviral integration site 

and the viral barcode, and quantify the absolute number of each provirus clone. 

Combining it with our previous sequencing method for barcode abundance in viral RNA, 
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we can reconstruct the detailed population structure of the latent reservoir. The 

abundance of the integration site indicates the clonal expansion of the provirus with the 

host T cell. The proviral barcode records the history of virus establishing infection and re-

seeding the latent reservoir. The RNA viral barcode revealed the replication activity of the 

corresponding proviral lineage. In humanized mice model, we found T cell clonal 

expansion for both active provirus and inactive provirus, but was more frequent in inactive 

viruses. We also found the activity of both T cell clonal expansion and viral transcription 

is affected by the position of the proviral integration. 

3. Results 

3.1. Integration site and barcode linkage sequencing reveals the structure of 

provirus population. 

A 21-nucleotide genetic barcode was inserted downstream of the Env of an R5-tropic 

HIV-1 vector (Figure 1A). Every 3 nucleotide is a cytosine to avoid unwanted start codon. 

A short fragment of Nef Kozak sequence was repeated to keep the barcode from affecting 

Nef translation. The barcoded HIV-1 replicated at the same level of the parental strain in 

primary CD4+ cells, indicating the barcode does not affect the virus replication capacity 

(Figure S1A). ∼100 thousand clones was harvested during library construction, 

minimizing the probability of two proviral clones have identical barcodes in vivo. The 

frequency of barcode was uniform (Figure S1B). There are ∼10 nucleotide difference 

between two randomly selected barcodes, enabling easy identification of the barcodes 

using deep sequencing (Figure S1C). The frequency of the barcode stays identical after 

virus packaging in HEK293T cells and passaging in primary CD4+ T cells (Figure S1D, 
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S1E), indicating the barcode sequences pose no selection advantage to the virus 

replication. 

To understand the clonal dynamics of proviruses in vivo, we used this library in humanized 

mice. we intravenously injected barcoded NFNSX and monitored acute viremia by qRT-

PCR in plasma samples for 4 weeks. The injected virus library has ∼100 thousand unique 

barcodes, while only a few hundred HIV-1 virions can establish infection in one 

humanized mouse. This ensures each virus lineage will be represented by different 

barcode in one mouse. After 4 weeks, we sacrificed 5 mice and extracted viral RNA and 

proviral DNA from plasma, spleen, bone marrow and the implant. The rest mice were 

administered ART comprised of raltegravir (RAL), emtricitabine (FTC), and tenofovir 

disoproxil fumarate (TDF) in the animal feed for 6 weeks. At the end of the suppressed 

period, we sacrificed 7 mice and assayed their virus population. ART was then interrupted 

for the rest 8 mice. After virus rebound in these mice, we harvested their organs (Figure 

1B). 

We developed a novel sequencing technique to profile virus barcode and the integration 

site simultaneously (Figure 1C, Figure S2A, See Methods for details). It uses a unique 

molecular identifier (UMI) to link the barcode sequence and the integration site, while 

quantifying the absolute number of proviral molecules. The quantification correlated with 

standard proviral qPCR within the viral load range of 4 logs (ρ=0.6127, p=2.886×10^(-6), 

Spearman’s correlation test, Figure 1D). The number of proviruses quantified by UMI is 

∼10 fold higher than qPCR because the sequencing library was prepared with multiple 

sensitive nested PCR steps. The detection limit of this method is 2 copies per μg DNA 

(Figure 1E). We sequenced a total of 292,552 proviral molecules in 3 organs of 20 mice. 
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The proviruses were classified into integrated, linear, circular and auto-integrated 

according to the sequence linked to the UMI (Figure S2B, S2C). Integrated, circular and 

auto-integrated provirus decreased 14∼22 fold during latency. While linear provirus 

decreased ∼148 fold during latency (Figure 1F). This indicates linear provirus is a short-

lived form produced during active viral replication, while other proviral forms are more 

persistent and important in the latent reservoir20. 

3.2. Quantifying the events of T cell clonal expansion and virus reseeding. 

We then estimated the frequency of virus replication and T cell clonal expansion as we 

rationalised above. The count of integration site per barcode represents the number of 

re-seeding event of a viral lineage subtracting the number of extinction events of the 

provirus (infected T cell) lineage. The count of integration site per barcode is significantly 

reduced during latency (Figure 2A, p=1.60×10^(-8), ranksums test), suggesting a 

massive extinction of provirus lineages. The count increased during rebound phase 

(Figure 2A, p=9.47×10^(-3), ranksums test), because the viral population expanded and 

resulted in many new re-seeding events. The per mouse average also supported this 

conclusion (Figure 2B). 

The count of UMI per integration site represents the number of infected T cell clonal 

expansion events of a provirus. If the UMI count of an integration site is more than 1, the 

corresponding T cell has undergone at least one clonal expansion events. If the UMI 

count equals to 1, the infected T cells could either be not expanding or not sampled. We 

found the count of T cells with UMI count more than 1 is significantly higher in acute phase 

than that in the latency phase (Figure 2C, p=0.039, ranksums test). This is consistent with 

the observation in human where extensive T cell activation and expansion took place 
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during the acute phase21. We then focused on the T cells that have undergone clonal 

expansion and found the average UMI per integration site were not significantly different 

(Figure 2D, p>0.05, ranksums test). But the count of T cell clones with clonal expansion 

were significantly higher in acute phase than that in the latency (Figure 2E, p=0.011, 

ranksums test). It is more T cell clones that were activated during the acute phase but not 

the intensity of activation was stronger. The analysis including all T cells also supported 

this conclusion (Figure S3). 

We analyzed the virus population in spleen, bone marrow and the implant. The total 

number of virus lineage, infected T cell lineage and different forms of proviruses were not 

significantly different among organs (Figure S4). The overlap frequency of the viral 

barcode among organs indicates the exchange of virus clones among different local 

reservoirs, while the overlap frequency of the integration sites represents the T cell 

migration events among reservoirs (Figure 3A). We observed both events in all three 

sampling time point. But the frequency of viral clone exchange were significantly lower 

during latency (Figure 3B, p=4.91×10^(-3), ranksums test), while the frequency of T cell 

migration were not significantly lower (Figure 3C, p>0.05, ranksums test). This suggested 

during acute and rebound phase, virions in the circulation may be the key component of 

viral population exchange among local reservoirs. 

3.3. Analysis of the non-transcribing proviruses. 

There are 10∼355 barcodes in the DNA samples of one mouse, representing the number 

of viral clones successfully established the infection and was detected. The number of 

clones was not significantly reduced during ART treatment or after rebound, indicating 

ART alone cannot efficiently reduce the proviral reservoir diversity in humanized mice 
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(Figure 4A). We also sequenced the barcodes in the viral RNA of corresponding organs. 

If a barcode was only observed in DNA but not RNA, it suggests all proviruses of that viral 

lineage was not transcribing. If a barcode was observed in both DNA and RNA, it suggests 

at least one provirus of that viral lineage is transcribing. We found the percentage of viral 

lineage being transcribing during rebound than that during the acute phase (Figure 4B, 

p=3.41×10^(-3), ranksums test). ART treatment significantly reduced the number of 

actively transcribing viral lineages, indicating accumulation of defective proviruses during 

latency. The number of integration sites per barcode of the active virus lineage were 

significantly higher that of the inactive viruses (Figure 4C, p=5.90×10^(-10), ranksums 

test), implying actively transcribing viruses lead to more re-seeding events. 

We analyzed the distribution of actively transcribing proviruses. We found the frequency 

of active transcribing barcode are not significantly different among organs. But in the 

spleen, the acute phase has significantly more active proviruses than the rebound phase 

(Figure 4D, p=0.013, ranksums test). This indicates the elimination of active viruses 

during ART is efficient in the spleen. We also tested how different DNA conformation 

affect virus transcription. The number of viral lineage (barcode count) in the form of 

circular DNA is 3.65 fold more than integrated and linear forms (Figure S5A, p=2.66×10^(-

6), ranksums test). The number of DNA molecules in the circular form is also 3.57 fold 

more than the others (Figure S5B, p=9.57×10^(-4), ranksums test). But the number of 

viral lineage observed in RNA has an opposite trend (Figure 4E). We found significantly 

less viral RNA barcodes from circular forms of proviruses (p=2.33×10^(-6), ranksums 

test). This proves circular form is a dead-end of the virus life cycle. 
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3.4. The positional effect of integration site on virus replication and T cell clonal 

expansion 

We tested the correlation between viral transcription and T cell clonal expansion. As 

previously defined, we classified 19514 integrated proviruses in acute and rebound phase 

into expanded host T cells and unexpanded host T cells according to their UMI count. 

27.41% clonal expanded proviruses were not transcribing, while 6.96% unexpanded 

proviruses were not transcribing. This suggests viral transcription is less frequent in 

clonally expanded host T cells (Figure 5A, OR=0.25, p=1.91×10^(-197), Fisher’s exact 

test). The analysis counting T cell clones supports the same conclusion (Figure S6A, 

OR=0.59,p=2.80×10^(-6), Fisher’s exact test). We focus on the T cell clones that have 

clonally expanded. We found the UMI count of each proviruses were also significantly 

higher in the non-transcribing proviruses (Figure 5B, p=6.18×10^(-4), ranksums test), 

indicating the number of expansion events were more frequent in non-transcribing 

proviruses. The analysis on all T cell clones also supports the same conclusion (Figure 

S6B, p=0.019, ranksums test). We then focused on the host cells that have viral RNA 

transcription. We found relative viral RNA abundance was significantly higher in 

unexpanded T cells (Figure 5C, p=1.51×10^(-3), ranksums test). The analysis on all T 

cell clones is affirmative (Figure S6C, p=6.70×10^(-7), ranksums test). These data 

suggest the negative correlation between viral transcription and T cell clonal expansion 

are both qualitative and quantitative. 

Among 15305 unique integrated proviruses clones in this study, 9547 integrated into 

human genes. Compared to a randomly generated control, the provirus in our dataset are 

1.17 fold more likely to be found in the gene region (p=1.86×10^(-59), Fisher’s exact test). 
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And the distance from the integration site to the nearest genes were closer than that of a 

random control (Figure 6A, p=2.23×10^(-247), chi-square test). We also compared the 

distribution of the integration sites to annotated genome regulation elements and some 

histone modifications with well-defined functions (Figure 6B). We found the integration 

sites were enriched in host transcription regulators and active histone markers. Notably 

some suppressive histone markers were also enriched near the integration sites. HIV-1 

integration is guided towards active host gene regions by LEDGF complex but in vivo 

selection in humanized mice favors the non-transcribing provirus, hence the integration 

site near inactive regions were also enriched. 

We then asked if the T cell clonal expansion activity is affected by the genomic features 

near the integration site (Figure 6C). And we noticed clonally expanded host cells are 

more likely to have provirus integrated near active histone markers and the enhancer 

regions. Provirus integrated in gene regions were also more likely to expand. We focus 

on the T cells that have expanded and found proviruses integrated in gene regions have 

more expansion events (Figure 6D, p=0.014, ranksums test). This suggests integration 

near active host genes may interrupt with host gene functions and leads to more 

uncontrolled T cell activation or expansion. We also calculated the correlation between 

the integration sites and viral transcription (Figure 6E). We found actively transcribing 

viruses were not enriched in gene region or regulation elements, but more likely to locate 

near the suppressive histone marker H3K27me3. This contrasts common knowledge in 

vitro and suggests ART in vivo eliminates replication competent viruses near active host 

gene regions and select for viruses integrated near suppressive regions. 
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4. Discussion 

We profiled the clonal expansion, transcription activity and integration sites of 2,726 viral 

lineages, 15,305 proviral clones and 292,552 proviral molecules. Our data shows HIV-1 

transcription is less frequent and weaker in clonally expanded cells. The activity of T cell 

expansion and viral transcription is affected by the conformation of the proviral DNA and 

the position of the integration sites. Comparing to previous studies, this study has 

following progress. It is the first high-throughput and quantitative dataset in humanized 

mice to profile the integration sites at different stages of the disease progression. 

Secondly, it uses integration site sequencing data to distinguish different proviral DNA 

conformations. The analysis pipeline could be easily adapted to many other integration 

site sequencing datasets. Thirdly, it introduced UMI to quantify the clonal expansion of 

provirus, which is more accurate and has a wider range of quantification than the method 

using the length of DNA ends from random fragmentation. Moreover, the synthetic genetic 

barcode on the viral genome allows accurate tracing of viral lineages despite of mutations 

and re-seeding. Lastly, comparing with previous viral mutation and integration site parallel 

sequencing17,22, this method increased the throughput for over one thousand-fold, making 

it possible to be applied in various conditions. This study established a series of 

methodology to generate and analyze a multi-dimensional dataset of HIV-1 integration, 

transcription and host cell clonal expansion. 

We are aware that some of the analysis in this study could achieve higher statistical power 

if we can classify the virus transcription activity more accurately. Because a virus lineage 

can infect multiple host T cells, we are not certain if a provirus is transcribing viral RNA 

even if we observe the corresponding barcode in the RNA samples. The barcode 
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sequence in the viral RNA could be transcribed from any of the provirus clones containing 

the same barcode. We are only certain about the inactive provirus, which has no 

corresponding barcode in RNA samples, because viral RNA sequencing is very sensitive 

and reproducible19. This inaccurate classification of active provirus reduced the 

significance of our statistical tests. The classification on expanded and unexpanded T 

cells has a similar problem. We are only certain that a cell has expanded if the UMI count 

is more than 1. But for the cells with UMI count equal to 1, it could either be a dormant 

cell or we did not sample the other molecules from the same cell lineage. This confusion 

will not change the conclusions of our study, but requires us to sequence a large number 

of viruses to achieve statistical significance. 

Many in vitro studies showed HIV-1 transcription is affected by local genomic features, 

including histone modifications, 3D nucleus structure, host promoter and enhancers23. 

Active local gene transcription and splicing facilitate viral transcription. But clinical data 

showed HIV-1 proviruses located mainly near inactive genomic regions in elite 

controllers24. Our data explained that the in vivo selection reduced the number of 

transcribing proviruses during latency, resulting in the less active provirus clone being 

amplified by T cell clonal expansion. We observed many proviruses integrated within 

cancer related genes or genes affecting T cell activation. HIV-1 integration may inhibit 

local gene expression by interrupting its transcription and splicing. While viral promoter 

may recruit transcription machinery and facilitate downstream gene expression. We 

observed expanded T cell clones with integration site near oncogenic genes, like EZH2 

and MECOM, as well as tumor suppressor genes like CREBBP and SMARCA4. However, 

the exact mechanisms leading to clonal expansion remains to be studied by 
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transcriptomic methods. Future works can combine our technique with single cell multi-

omics to elucidate the fate of the infected T cells. 

5. Methods 

5.1. Barcoded HIV-1 library construction 

The design of the barcoded virus is shown in Figure 1A. Two fragments covering 

upstream and downstream of the barcode region were PCR amplified using following 

primers: makeBC_F2 

(GGAAAGGGCTTTGCTATAAGNNCNNCNNCNNCNNCNNCNNCTATAAGATGGGTG

GCAAGTGGTCAA) and 

makeBC_R2 (TGCAGACCCTGCACTCCATG), makeBC_F1 

(GGAGTGGAAGCCATAATAAGAATT) and makeBC_R1 

(CTTATAGCAAAGCCCTTTCCAAG). The products were then purified and eluted in TE 

buffer. The 2 fragments have 20bp overlapping region, then they were assembled 

together using NEB HiFi Assembly kit. The assembled fragment was amplified again 

using primers makeBC_F1 and makeBC_R2. The fragment was digested by restriction 

enzyme NcoI-HF and EcoRI-HF, and purified using PureLink PCR clean-up kit 

(Invitrogen). The NFNSX vector was also digested by these 2 enzymes and was purified 

by agarose gel electrophoresis. One μg of the insert fragment and 5μg of the vector was 

assembled using NEB HiFi Assembly kit. The assembled DNA was purified by ethanol 

precipitation with Pellet Paint NF co-precipitant (EMD millipore). One μg of the purified 

DNA was transformed into the MegaX E. coli electrocompetent cells (Invitrogen) and 

plated to 20 15cm agar plates. The plates were cultured at 37°C overnight. More than 0.5 

million colonies were scratched from the surface of the plates. One mg plasmid DNA was 
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extracted from the bacteria pellet. The barcode region on the plasmid was confirmed by 

Sanger sequencing. 20 μg of plasmid DNA was transfected into 20 million 293T cells 

using the Calcium phosphate transfection reagent (Takara). The virus library was 

harvested 48 hours after transfection. DNaseI (40ng/mL) and (1 ) were added to the 

library to remove residual plasmid DNA from the supernatant. The barcoded virus library 

was aliquoted and frozen at -80°C for future use. 

5.2. Sequencing library preparation 

The barcode - integration site linkage sequencing library was prepared as the workflow 

shown in Figure S2A. Mouse DNA and RNA was extracted using Allprep DNA/RNA Mini 

kit (Qiagen). One μg DNA was subject to enzymatic fragmentation using HinP1I (NEB). 

The digested DNA was then purified by PureLink PCR clean-up kit (Invitrogen). UltraII 

End-repair Module (NEB) prepared the DNA for ligation. A custom adaptor was annealed 

in the TE buffer. The sequence of the adapter’s reverse strand is 

TTGAGGTTTGCAGTTG. It has a 5-prime modification of a phosphorylation group, which 

facilitates TA ligation with the genome fragments. The 3 prime amino modification blocks 

the polymerase from adding nucleotides at its downstream, maintaining the L-shape 

conformation of the adapter. 3 consecutive phosphorothioate bonds at the 3 prime end 

stabilize the adapter, preventing it from enzymatic degradation. The forward strand of the 

adapter is ACCATCAACCCCGAATTCNNNNNNNNNNNNNNCAACTGCAAACCTCAAT. 

It anneals with the reverse strand and contains a 14-nucleotide UMI. 50pmol adapter was 

ligated to 1μg of fragmented genomic DNA. All ligated product was purified and amplified 

using 4 rounds of semi-nested PCR. All PCRs used the same reverse primer sequence: 

ACCATCAACCCCGAATTC. But the forward primer sequences anneal to different part of 
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HIV-1 genome to increase the PCR specificity. They are in the order of F4 

(GCTACCACCGCTTGAGAGAC), F3 (CTCTTGACTGTAACGAGGATTG), F2 

(GAACTTCTGGGACGCAGGG) and F1 

(GTACTCGAATTCAGGGCTTGGAAAGGGCTTTG). All forward primers contain 3 

consecutive phosphorothioate bonds at the 3-prime end, preventing the exonuclease 

activity of the polymerase, increasing the PCR specificity. Primer F3 and F2 are used with 

the reverse primer containing the 5-primer phosphorylation modification, to enable 

lambda exonuclease digestion after PCR, which can eliminate the product of unspecific 

amplification. The final PCR product was purified and digested by EcoRI-HF (NEB). This 

created two sticky ends on the DNA.  100ng DNA was purified and subject to self-ligation 

in a 100μL reaction. The reaction used 2 units of T4 ligase (Invitrogen) in room 

temperature for 4 hours. The ligation efficiency was confirmed by quantitative PCR using 

primers ivF 

(GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTTTAGTCAGTGTGGAAAATCTCT

), ivR (ACACTCTTTCCCTACACGACGCTCTTCCGATCTTTGACCACTTGCCACCCAT) 

and synthetic standard templates. One third of the ligation product was used as the PCR 

template for the inverse PCR, using the same primers as the quantitative PCR. 

Phosphorothioate bond modification was used to increase PCR specificity. One tenth of 

the product was then subject to the final round of PCR, which adds Illumina sequencing 

adapters to the library. The primers are 

AATGATACGGCGACCACCGAGATCTACACNNNNNNNNNNACACTCTTTCCCTACA

CGAC and 
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CAAGCAGAAGACGGCATACGAGATNNNNNNNNNNGTGACTGGAGTTCAGACGTGT

GC. N stands for indexing sequence to distinguish different samples. 

The RNA was reverse transcribed using RT primer 

AGGATGAGTGTCAGCCAGTGNNNNNNNNNN-

NNNNNCATTCTTTCCCTTACAGTAGACC and purified by PureLink PCR clean-up kit 

(Invitrogen). Here 21 consecutive random nucleotides serve as a UMI for each RNA 

molecule. The barcode region was amplified using primers amp_F1 

(TTGGTGGAATCTCCTACAGTATTGG) and amp_R (AGGATGAGTGTCAGCCAGTG). 

The PCR product was amplified again using primers amp_F2 

(TACAAGAATAAGACAGGGCTTGG) and amp_R. The final product was confirmed 

using gel electrophoresis and purified by the PCR clean-up kit. We then use NEBNext 

Ultra II DNA library prep kit to make pair-end sequencing libraries. All libraries were mixed 

and purified for Illumina NovaSeq6000 PE150 sequencing.  10 million reads were 

retrieved for each sample. 

5.3. Data Analysis 

The data analysis pipeline was summarized in Figure S2B and S2C. For the barcode - 

integration site linkage sequencing, the barcode and UMI was extracted by mapping their 

flanking sequences. The sequence downstream of the HIV-1 LTR and upstream of the L-

shape adapter was extracted as provirus integration site. If the sequence maps to the 

plasmid of NFNSX, it is discarded as contamination. if the sequence is less than 10 

nucleotides, it is considered as linear unintegrated provirus. The rest sequences were 

aligned with human genome hg38 Ensemble release 108 or the NFNSX genome by 

bowtie225, and classified as integrated or auto-integrated. If the sequence maps 
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immediately downstream of the HIV-1 LTR, it is classified as circular. We then identified 

the true UMIs from the sequencing errors by counting the occurrence of the UMIs26. The 

count of the true UMI should follow a normal distribution while the sequencing errors were 

Poisson distributed. We set the threshold of calling true UMI for each sample to the 

separation point of the bi-modal count distribution. Then we assigned the most commonly 

observed barcode and integration site for each UMI. With the help of UMI, we identified 

the barcode and integration site for each provirus molecule. 

The barcode and UMI in RNA samples were also retrieved by mapping their flanking 

sequences. The true UMI was identified by its count distribution. The occurrence of 

barcode in RNA was quantified by counting UMI. An extra clustering step was carried out 

for barcode to reduce sequencing errors27. Custom codes for mapping and counting were 

available upon requests. 
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Figure 5-1. The barcode - integration site sequencing accurately measures the 

latent reservoir in humanized mice. 

A) The design of genetically barcoded NFNSX. A 21-nt barcode was inserted between 

Env and Nef. B) Schematic representation of the mouse experiment. Acute infection of 
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20 mice with barcoded NFNSX for 6 weeks. ART for 6 weeks. Rebound for 2-8 weeks. 

C) Workflow of the barcode - integration site linkage sequencing. Briefly, genomic DNA 

was randomly fragmented and ligated with a UMI labelled L-shape adapter. Then we used 

a series of semi-nested PCR to amplify the integration junction. The amplified product 

was circularized to bring barcode and the integration site together. Lastly, we used PCR 

to amplify the barcode, UMI and integration site region and append the sequencing 

adapter. D) The correlation between proviral DNA qPCR and viral load quantified by UMI. 

Each dot represents an organ. E) The detection limit of the barcode - integration site 

linkage sequencing. We mixed different copies of plasmid of the barcoded virus with 

mouse genomic DNA and run the sequencing protocol. Because the barcode library has 

a complexity of ~100 thousand, the possibility of having two plasmid molecule with 

identical barcode is negligible. The number of barcodes recovered from the sequencing 

data is 15% ∼ 50%. F) The number of different conformations of the provirus in different 

sampling time. Integrated, linear, circular and auto-integrated provirus was classified 

according to the sequence attached to the UMI. 
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Figure 5-2. Estimating the number of virus re-seeding and T cell clonal expansion. 

A) The number of integration sites per barcode. The value represents the number of re-

seeding events per viral clone. Only integrated provirus was counted. B) Geometric mean 

of the number of integration sites per barcode. Each dot represents an organ sample. C) 

Relative frequency of T cells (proviral molecules) that have clonally expanded. Clonally 

expanded T cells was identified if the integration site has more than 1 UMI. D) Geometric 

mean of the number of UMI per integration site. The value represents the number of 

clonally expansion events per T cell clone. E) Relative frequency of T cell clones that 

have clonally expanded. 
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Figure 5-3. Virus exchange and T cell migration among organs. 

A) Heatmaps showing barcode and integration site overlap among organs. One 

representative mouse from each sampling time was selected. The overlap frequency 

between organ A (horizontal label) and organ B (vertical label) is the frequency of 

virus/cell in organ A also observed in organ B. B) The barcode similarity score at different 

time point. The similarity score is defined as the average overlap frequency among any 

two organs. Each dot represents one mouse. C) The integration site similarity score at 

different time point. 
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Figure 5-4. The transcriptional activity of proviruses. 

A) The total number of proviral barcode in each mouse. B) The relative frequency of 

actively transcribing proviruses. Actively transcribing proviruses was defined if the proviral 

barcode is also observed in RNA. C) Geometric mean of the number of integration site 

per barcode for active provirus and inactive provirus. Each dot represents an organ. D) 

The relative frequency of active provirus in different organs. E) The relative frequency of 

active provirus as different provirus conformations. 
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Figure 5-5. The correlation between T cell expansion and proviral transcription. 

A) The contingency table of T cell clonal expansion and provirus transcription. The 

number of cells in each catalogue was listed. B) The number of clonal expansion events 

of actively transcribing provirus and inactive provirus. The analysis focuses on the T cells 

that already have clonal expansion. C) The relative proviral transcription activity of 

clonally expanded T cells and unexpanded T cells. Only actively transcribing provirus was 

included in the analysis. 
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Figure 5-6. The positional effect of integration sites on T cell clonal expansion and 

proviral transcription. 

A) The distance to nearest host gene of the integration sites in this study. A randomly 

generated list with the same number of integration sites were used as a control. B) The 

correlation between the integration sites and nearby genomic features. The coefficient 

plot shows the odds ratio and p value of the Fisher’s exact test, comparing our dataset 

with the randomly generated control. C) The correlation between T cell clonal expansion 

and nearby genomic features of the integration sites. The coefficient plot shows the odds 

ratio and p value of the Fisher’s exact test, comparing expanded and unexpanded T cells. 

D) The number of T cell clonal expansion events of provirus integrated within host gene 

or in the intergenic regions. Only the T cells underwent clonal expansion were included 

in the analysis. E) The correlation between provirus transcription and nearby genomic 

features of the integration sites. The coefficient plot shows the odds ratio and p value of 

the Fisher’s exact test, comparing actively transcribing provirus and inactive provirus. 
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Supplementary Figure 5-1. The quality of the genetically barcoded HIV-1 library. 

A) The replication capacity of the barcoded virus. B) The read depth distribution of the 

barcodes in the plasmid library. C) The distribution of hamming distance between any two 

barcode sequences. D) The correlation between barcode frequency from the plasmid and 

that from the virus stock produced in HEK293T. E) The correlation between barcode 

frequency from the virus stock produced in HEK293T and that from infected primary CD4+ 

cells. 
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Supplementary Figure 5-2. The workflow of barcode - integration site linkage 

sequencing. 

A) The detailed workflow of barcode - integration site sequencing library preparation. B) 

The data analysis pipeline for integration site mapping, UMI calling and linkage 

assignment. C) The criteria of distinguishing different proviral DNA conformations. See 

the Methods section for more details. 
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Supplementary Figure 5-3. The clonal expansion of infected T cells. 

A) The number of UMI per integration site at different time point. It represents the number 

of clonal expansion events for each infected T cell. B) The geometric mean of the number 

of UMI per integration site at different time point. 
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Supplementary Figure 5-4. The virus population in different organs. 

A) The number of integration sites in different organs. B) The number of barcodes in 

different organs. C) The number of proviral DNA molecules as different conformations in 

different organs. 
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Supplementary Figure 5-5. The activity of proviral DNA in different conformations. 

A) The number of barcodes in different conformations. B) The number of proviral DNA 

molecules per barcode as different conformations. Each dots represents an organ. 
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Supplementary Figure 5-6. The correlation between T cell expansion and proviral 

transcription. 

A) The contingency table of T cell clonal expansion and provirus transcription. The 

number of clones in each catalogue was listed. B) The number of clonal expansion events 

of actively transcribing provirus and inactive provirus. The analysis uses all cells, including 

expanded and unexpanded T cells. C) The relative proviral transcription activity of clonally 
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expanded T cells and unexpanded T cells. All provirus was included in the analysis, 

including transcribing and inactive ones. 
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A benchmark study on error-correction by read-pairing and tag-

clustering in amplicon-based deep sequencing 
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1. Abstract 

Background 

The high error rate of next generation sequencing (NGS) restricts some of its applications, 

such as monitoring virus mutations and detecting rare mutations in tumors. There are two 

commonly employed sequencing library preparation strategies to improve sequencing 

accuracy by correcting sequencing errors: read-pairing method and tag-clustering 

method (i.e. primer ID or UID). Here, we constructed a homogeneous library from a single 

clone, and compared the variant calling accuracy of these error-correction methods. 

Result 

We comprehensively described the strengths and pitfalls of these methods. We found 

that both read-pairing and tag-clustering methods significantly decreased sequencing 

error rate. While the read-pairing method was more effective than the tag-clustering 

method at correcting insertion and deletion errors, it was not as effective as the tag-

clustering method at correcting substitution errors. In addition, we observed that when the 

read quality was poor, the tag-clustering method led to huge coverage loss. We also 

tested the effect of applying quality score filtering to the error-correction methods and 

demonstrated that quality score filtering was able to impose a minor, yet statistically 

significant improvement to the error-correction methods tested in this study. 

Conclusion 

Our study provides a benchmark for researchers to select suitable error-correction 

methods based on the goal of the experiment by balancing the trade-off between 

sequencing cost (i.e. sequencing coverage requirement) and detection sensitivity. 
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2. Background 

Next-generation sequencing is being widely used in biomedical research. Several 

sequencing technologies, such as chained ligation (SOLiD), pyrosequencing (454), 

reversible dye (Illumina), fluorescent nucleotides (PacBio), and ion semiconductor (Ion 

Torrent) have been developed and commercialized. While different technologies have 

their own features (e.g. long read-length for PacBio and high output for Illumina), high 

sequencing error rate is a common problem for all existing next generation sequencing 

platforms. The high error rate significantly impedes the application of these technologies 

to detect rare variants in genetically heterogeneous populations. 

To resolve the problems associated with the high error rate, experimental methods have 

been developed for distinguishing real mutations from sequencing errors. One such 

method is to take advantage of the paired-end feature of Illumina sequencing by removing 

the inconsistent forward and reverse read pairs [1–5]. Another common approach is to 

use nucleotide tags [6–12]. Although variations of sequencing library prepration method 

using nucleotide tags have been proposed, the underlying philosophy is the same. Briefly, 

a highly heterogeneous pool of random oligonucleotides (also known as tags or Primer 

IDs) is assigned to the individual nucleic acid molecules to label the original template 

copy. Subsequently, the same tag would be observed in different reads. This can be 

considered as resampling of the same original DNA template. By comparing the 

sequence reads that share the same tag, a corrected consensus sequence can be 

generated, and stochastic sequencing errors can be distinguished from real mutations. 

Recently, another innovative approach, known as circle sequencing [13], has been 

developed. With a similar design to tag-clustering methods, circle sequencing allows each 



 

 
 

175 

DNA template to be read multiple times on a single read. These sequencing error-

correction methods have been successfully applied to detect rare mutations in 

heterogeneous cancer tissues [14], mixed microbe populations [15], and viral 

quasispecies [10]. 

In this study, a highly uniform plasmid template from a single bacteria clone was 

sequenced. We applied the read-pairing correction method, as well as tag-clustering 

correction method to the same template. We systematically compared the error profiles 

and sequencing coverage of different methods to describe the pros and cons of each 

strategy. 

3. Results 

3.1. Experimental design 

To compare the efficiency of different error-correction methods, the sequencing library 

was prepared from a clonal plasmid carrying the protein G antibody interacting domain 

(Fig. 1). An 88 bp region of this domain was amplified through PCR. The sequence is 

shown in Additional file 1: Figure S1. The length of the target region in this study was 

similar to the read-length being used in amplicon-based deep sequencing cancer studies 

[16, 17]. The target region contained 54.5 % GCs. In comparison, the average GC content 

of human genes ranges from 34 % to 66 % [18]. Therefore, the properties of the target 

region in this study resembled that of the sequences of interest in other applications. 

The target region was first amplified by PCR. A tag, comprising eight random nucleotides 

“N”, was included in both forward and reverse primers. Thus, a total of 16 random 

nucleotides were present in the resultant PCR product. The complexity of the tags was ∼ 

4×109 per sample. Around 6×106 tagged molecules were then amplified to generate 
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identical copies of each tagged molecule. The product from this second PCR was 

subjected to deep sequencing on the Illumina HiSeq 2500 platform. In this study, two 

technical replicates from the same clone were included. We were expecting ∼5 copies 

per tagged molecule to be sequenced, with ∼30 million sequencing reads in total. This 

experimental design allowed us to perform two independent error-correction approaches, 

namely read-pairing consensus and tag-clustering consensus. Read-pairing consensus, 

which was based on the sequence identities of the forward and reverse reads, was used 

to filter out read pairs that were unmatched. Tag-clustering consensus was 1) to group 

the reads by the tag sequence, and 2) to filter out groups that carried reads with different 

sequence identities. Based on these two error-correction approaches, we compared the 

results from four types of analyses: Scheme 1: Raw reads; Scheme 2: Read-pairing 

consensus; Scheme 3: Tag-clustering consensus; Scheme 4: Combined consensus 

(read-pairing consensus, followed with tag-clustering consensus). 

3.2. Error rate profiling 

In this study, sequencing errors were categorized into four types namely transition (A↔ 

G and C↔T), transversion (A↔C, A↔T, G↔C, and G↔T), insertion and deletion. 

In the raw sequencing data, all four error types were identified. They distributed with a 

peak at 10 −4 per nt and a long tail to 10 −2 per nt (Fig. 2 a, Scheme 1 forward and reverse). 

The error rate was not normally distributed (Additional file 2: Figure S2, p <2.2×10−16, 

Shapiro-Wilk normality test). The transition rate had a median of 3.3 × 10−4 per nt and a 

mean of 1.5 × 10−3 per nt. The transversion rate had a median of 5.7 × 10−4 per nt and a 

mean of 3.1 × 10−3 per nt, which was ∼2-fold higher than transition rate. The rates of 

insertion and deletion errors were not normally distributed either. The rates of insertions 
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and deletions were 10-fold lower than that of substitutions (i.e. transition and 

transversion), confirming that the insertion and deletion errors in Illumina platform were 

relatively low [19]. The insertion rate had a median of 3.2×10−5 per nt and a mean of 

2.9×10−4 per nt, while the deletion rate had a median of 1.3×10−4 per nt and a mean of 

5.3 ×10−4 per nt. 

All error-correction schemes improved the sequencing results significantly. But different 

schemes showed different advantages for correcting different error types (Fig. 2 a). Read-

pairing consensus (Scheme 2) significantly reduced insertion and deletion rates by ∼100-

fold (p= 9.6 ×10−60, Wilcoxon signed-rank test). In contrast, transition and transversion 

rates were only reduced by no more than 10-fold (p= 2.0 × 10−59, Wilcoxon signed-rank 

test). Tag-clustering consensus (Scheme 3) reduced substitution error rates ∼20 fold (p= 

3.9 × 10−58, Wilcoxon signed-rank test), but the decrease in insertion and deletion rates 

was only significant at the middle region of the sequencing reads (p= 9.6 ×10−60, Wilcoxon 

signed-rank test). 

Read-pairing consensus showed significantly lower insertion and deletion rates than tag-

clustering consensus (p= 8.0 × 10−53, Wilcoxon signed-rank test), while transition and 

transversion rates were lower in tag-clustering consensus than that in read-pairing 

consensus (p= 2.4 × 10−12, Wilcoxon signed-rank test). Combined consensus performed 

the best for both substitution rates (p = 1.5 × 10−38, Wilcoxon signed-rank test) and 

insertion and deletion rates (p = 2.9 × 10−25, Wilcoxon signed-rank test). The medians for 

all four categories of errors in different analysis scheme were shown in Fig. 2 b. In 

conclusion, the tag-clustering correction method was very effective for substitution errors, 
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but not for insertion and deletion errors. In contrast, the read-pairing method was very 

effective for insertion and deletion errors, but not for substitution errors. 

In the unfiltered dataset, the error rate of reverse reads was ∼3 times higher than that of 

forward reads (p = 1.0 × 10−91, Wilcoxon signed-rank test). This is likely due to a lower 

quality of reverse reads, which resulted from oxidation during the sequencing run [20]. 

Notably, there were some high rate errors in the reverse reads, marked as blue arrows in 

Fig. 2 a. At position 57, the transversion error rate was as high as 12.4 %. In the raw 

sequencing reads, this position often displayed as ‘N’, which resulted from poor base-

calling quality during the sequencing run. After tag-clustering correction, this error was 

significantly decreased, but was still at 3.4 %. Although our analysis showed that tag-

clustering consensus performed better than read-pairing consensus in handling 

substitution errors, this advantage was not seen in this particular case, which implied the 

low robustness of tag-clustering method. In conclusion, high quality reads are necessary 

for avoiding erroneous results from tag-clustering scheme and achieving effective 

information utilization. 

Notably, there were some real mutations in the templates that may arise from potential 

sources, including mutation accumulation during bacteria clonal formation, PCR 

procedures, and cross contamination of single mutant samples. Those mutations were 

buried in the unfiltered dataset but were easily identified after error correction, as 

indicated by the red arrows in Fig. 2 a. The frequencies of real mutations did not change 

significantly before and after error-correction. This result showed the necessity of error-

correction methods for detecting low frequency variants. 
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3.3. Reproducibility 

To confirm the reproducibility of our result, we compared two technical replicates from the 

same template. All four categories of errors were highly correlated between the technical 

replicates (Fig. 3 a). The high correlation between the error profiles of the raw data implied 

a sequence-specific error pattern for Illumina sequencing platform [21]. This correlation 

remained high after error-correction, suggesting that the error-correction methods 

retained the sequence-specific error patterns. 

The prevalence of sequence-specific errors was also evident in the correlation between 

the forward reads and reverse reads (Fig. 3 b). Even for the exact same batch of 

templates, error patterns between forward reads and reverse reads differed dramatically, 

as shown by the low correction coefficient. The correlation remained low after tag 

correction, implying its weakness at correcting sequence-specific errors. 

To further examine the error reproducibility, we did a linear regression for the different 

schemes (Additional file 3: Figure S3). We used the results from the combined consensus 

to approximate the true mutation rates. According to the previous conclusion, the rates of 

real mutations remain similar after error-correction, which mapped on the diagonal lines 

of Additional file 3: Figure S3a. But the sequencing errors were reduced significantly using 

combined consensus which mapped on the up-left panel of Additional file 3: Figure S3a. 

Thus, most observed insertions and deletions were due to sequencing errors. However, 

most observed substitutions comprise both sequencing errors and mutations from the 

templates. 
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3.4. Quality score and coverage loss 

Coverage loss was one of the major concerns in using the error-correction methods. We 

counted the read number after each error-correction schemes (Fig. 4 a). The coverage of 

read-pairing correction was 42 % of the raw sequencing data, which was similar to the 

ideal 50 % loss. Forward reads of tag-clustering correction reached a coverage of 12 % 

(20 % in the ideal case), while the reverse reads had only 0.4 %. Combined consensus 

had 6 % coverage of the original data (ideally 10 %). Therefore, our study has shown that 

using correction methods increases the sequencing cost per nucleotide ∼2.4 fold (1/0.42 

≈ 2.4) for read-pairing correction, ∼8.3 fold (1/0.12 ≈ 8.3) for tag-clustering method 

(based on forward reads), and ∼17 fold (1/0.06 ≈ 17) for combined consensus. There 

was a significant trade-off between detection sensitivity and coverage. Researchers 

needs to consider the balance between coverage loss and detection limit when choosing 

a suitable error-correction method. 

4. Discussion 

Over the last decade, next-generation sequencing has become a popular technique in 

biomedical research due to its increasing throughput and decreasing cost. Illumina 

sequencing platform is the most widely used next generation sequencing platform, having 

two shortcomings: high error rate and short read-length. While Illumina has been 

increasing its read-length through the recent development of MiSeq platform, the error 

rate remains at ∼0.1 % to 1 % per nt. This error rate may be negligible in certain 

applications that only require the information of consensus sequence, such as cellular 

genome sequencing and transcriptome profiling. However, such error rate will 

significantly impede those applications that require the detection of rare mutations. 
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Consequently, different experimental approaches have been implemented to overcome 

this drawback [4–8, 10, 11, 13, 24]. In general, these approaches sacrifice read coverage 

for a higher sensitivity. Thus, error-correction indirectly increases the per nucleotide cost 

of sequencing. Therefore, the type of error-correction method should be selected based 

on the desired sensitivity to minimize the sequencing cost. Here, we proposed several 

guidelines for choosing an error-correction method, for Illumina HiSeq platform. 

1. Error-correction methods should be applied if the required detection limit is lower than 

1%. 

2. Read-pairing method is sufficient for detecting variants with frequencies higher than 

0.1%, and is effective for detecting rare insertions and deletions. 

3. Tag-clustering method is necessary for detecting variants with frequencies lower than 

0.1%. However, extra depth and high-quality data is needed for carrying out tag-

clustering method. 

4. Coupling tag-clustering method and read-pairing method is recommended. 

We notice that tag-clustering error-correction methods could not avoid certain types of 

errors. We propose several reasons. Firstly, the sequencing platforms use the first few 

nucleotides to estimate the parameters for phasing correction. The sequence of tags 

could induce systematic errors. The templates with the same tags would have the same 

error in this phasing process [21]. Secondly, the templates with tags were all sequenced 

at the same time. Thus, the buffer quality could result in quality drop at the same position 

of all reads, which could make tags unable to correct the errors. Thirdly, tags were not 

amplified or sampled evenly during library preparation. The DNA polymerase had bias for 
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certain primers. In this study, we achieved a polynomial distribution of tags (Additional file 

4: Figure S4), which reduced the third systematic error. But tag region itself generated 

bias. 

There are some caveats that limit the power of this study. Firstly, random nucleotide tags 

were added to the template by PCR. Thus, errors that emerged during the PCR steps 

cannot be corrected. Such errors should exist here despite a high fidelity DNA polymerase 

was being used to minimize the PCR errors. The true mutations are therefore comprised 

of mutations in the original templates (within clone variation), and PCR induced errors. 

Moreover, there may be cross-contamination from other experiments being performed in 

the lab that involved mutagenesis. Sampling during plasmid extraction, template 

amplification, and dilution will also add to the heterogeneity of the templates. In short, the 

true mutation rate of the sequencing template is not known in this study, which prevents 

us from precisely quantifying the error rate in each error correction scheme. 

While not being addressed in this study, there are numerous computational error-

correction methods being developed [25–28]. Most, if not all, of these computational 

approaches were developed to handle raw sequencing reads. While this study indicates 

that read filtering based on quality score may only slightly improve the sensitivity, it is 

unknown whether the sensitivity for deep sequencing may benefit further from combining 

experimental approach and computational approach. Benchmarking for such integrative 

error-correction strategy is needed to be done in the future. 

Amplicon sequencing is becoming a more popular approach in various research fields 

because of its high sequencing coverage of a target region of interest. Amplicon 

sequencing has been widely used in cancer research for diagnosis and disease 
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monitoring purposes [16, 17, 29, 30]. In addition, amplicon sequencing on 16S rDNA gene 

and other conserved regions is commonly used to characterize the genetic structure of 

microbe communities [31–33]. Nonetheless, depending on the specific goal, different 

studies may investigate different genetic regions of interest from different sources of 

specimens, and employ different sequencing platforms with different read-lengths. In the 

future, the performance of error-correction strategies should also be evaluated with the 

consideration of additional parameters, such as samples with extreme GC contents and 

various degree of genetic diversity, and the usage of other sequencing platforms. 

5. Methods 

5.1. Sequencing library preparation 

The target sequence was a synthetic construct of protein G on the pCR-Blunt vector [34] 

(Additional file 1: Figure S1a). Clonal protein G sequencing template was amplified by 

PCR using primer pair (replicate 1): 5’-CTA CAC GAC GCT CTT CCG ATC TNN NN A 

CAN NNN AGT ACG CTA ACG ACA ACG G-3’ and 5’-TGC TGA ACC GCT CTT CCG 

ATC TNN NNA CAN NNN TCG GAT CCT CCG GAT TCG G-3’, or primer pair (replicate 

2): 5’-CTA CAC GAC GCT CTT CCG ATC TNN NN G TGN NNN AGT ACG CTA ACG 

ACA ACG G-3’ and 5’-TGC TGA ACC GCT CTT CCG ATC TNN NNG TGN NNN TCG 

GAT CCT CCG GAT TCG G-3’. The underlined nucleotides were served as distinguishing 

replicate 1 and 2. The eight randomized nucleotides, 4 Ns from each of the forward and 

reverse primer were served as the tag for error-correction. The entire amplified region 

(including the primer annealing region) on protein G was 5’-AGT ACG CTA ACG ACA 

ACG GTG TCG ACG GTG AAT GGA CCT ACG ACG ACG CTA CCA AAA CCT TCA 

CGG TTA CCG AAT CCG GAG GAT CCG A-3’. The condition of this first PCR was as 
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follow: 2 mins at 95 °C, then 18 three-step cycles of 20 seconds at 95 °C, 15 seconds at 

58 °C, and 20 seconds at 68 °C, and a 1 min final extension at 68 °C. The PCR product 

was purified using PureLink PCR Purification Kit (Life Technologies, Carlsbad, CA). For 

each sample, ∼6 million copies of the purified PCR product were used for the second 

PCR. The second PCR was performed using primer pair: 5’-AAT GAT ACG GCG ACC 

ACC GAG ATC TAC ACT CTT TCC CTA CAC GAC GCT CTT CCG-3’ and 5’-CAA GCA 

GAA GAC GGC ATA CGA GAT CGG TCT CGG CAT TCC TGC TGA ACC GCT CTT 

CCG-3’. The condition of the second PCR was the same as that of the first PCR, except 

22 cycles were performed instead of 18. All PCRs were performed using KOD DNA 

polymerase (EMD Millipore, Billerica, MA) with 1.5 mM MgSO4, 0.2 mM of each dNTP 

(dATP, dCTP, dGTP, and dTTP) and 0.5 μM each of the forward and reverse primers. 

The resultant product was sequenced by Illumina HiSeq 2500 platform. 

5.2. Data analysis 

Illumina HiSeq paired-end reads were demultiplexed using the three bp barcode on both 

forward read and reverse read. The first 12 bp of the read was identified as a tag. For 

downstream analysis of sequencing error, this 12 bp region was trimmed. As a result, 

only 88 bp was processed for calculating error rate. After the dataset being processed by 

the indicated error-correction scheme, pairwise local alignment against the reference 

protein G sequence was performed. The alignment was carried out using pairwise2 

function in the Biopython package [35]. The alignment scoring was as follow: 1 for 

identical, –1 for mismatching, –1 for gap opening, –0.5 for gap extending. All downstream 

analyses were performed by custom python scripts. 
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Error-correction Scheme 1 (no error-correction) 

Errors were called from the raw read. No pairing or quality score filtering was applied on 

the dataset. 

Error-correction Scheme 2 (read-pairing) 

Pairing was performed by comparing the nucleotide sequence of the trimmed foward read 

and trimmed reverse read (88 bp in both cases). Only those read pairs with a reverse 

complementary match were used for downstream analysis. 

Error-correction Scheme 3 (tag-clustering) 

The tags for the forward read and reverse read were combined and used for grouping 

reads as described [8]. Briefly, reads that shared the same tag were grouped together as 

a read group. Read grouping was performed independently for forward read and reverse 

read. Read groups with a size of less than three reads were discarded. A read group was 

considered as a real read if all reads in the read group were identical. Otherwise, the read 

group would be discarded. 

Error-correction Scheme 4 (read-pairing and tag-clustering) 

First, read-pairing was performed as described in Scheme 2. The paired reads were then 

subjected to tag grouping as described in Scheme 3. Of note, under this scheme, read 

grouping was performed on the paired read instead of independently on forward read and 

reverse read. 

5.3. Availability of supporting data 

Raw sequencing data have been submitted to the NIH Short Read Archive (SRA) under 

accession number: BioProject PRJNA293914. Custom scripts for data analyzing and 

plotting were deposited in https://github.com/Tian-hao/errorcorrection. 
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Figure 6-1. Schematic representation of the experimental design. 

To compare the efficiency of different error-correction methods, we generated the 

sequencing library in the following steps. Step 1: Linking tags to the templates. Step 2: 

Amplifying templates with paired end sequencing adapter. Step 3: Sequencing the library 

on Illumina Hiseq platform. After sequencing, we compared the efficiency of different 

error-correction methods. Paired-end consensus was to filter out the pairs of reads that 

were not identical. Tag consensus was to filter out groups of reads that were with same 

tags but not identical. Combined consensus used both methods for filtering. The real low 

frequency variants are indicated as yellow dots. And the sequencing errors are indicated 

as pink dots. 
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Figure 6-2. Error rates in different error-correction methods. 

a Detailed profiling of error rate on every nucleotide. Every dot represents the observed 

error rate on a certain nucleotide. Blue, green, orange and purple represent transition, 

transversion, insertion and deletion, respectively. The dashed lines represent the value 

of local regression. Blue arrows indicate some high rate errors. Red arrows indicate a 

highly possible real mutation. Two technical replicates are plotted on the same subgraph. 

b Barplot of medians of different error-correction schemes. The labels, ec1f, ec1r, ec2, 

ec3f, ec3r, and ec4 represent Scheme 1 forward reads, Scheme 1 reverse reads, Scheme 

2, Scheme 3 forward reads, Scheme 3 reverse read, Scheme 4, respectively. 
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Figure 6-3. Error reproducibility. 

a The error rate correlation between two technical replicates. Every dot represents a 

certain position on the target templates. Values on x-axis and y-axis represent error rate 

at replicate 1 and replicate 2 respectively. b The error rate correlation between forward 

and reverse reads. Every dot represents a certain position on the target templates. Values 

on x-axis and y-axis represent error rate at forward reads and reverse reads respectively. 

r is Pearson’s correlation coefficient. The dashed lines are references of complete 

reproducibility. 
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Figure 6-4. The effect of quality score and coverage. 

a Barplot of coverage in different error-correction schemes, before and after quality score 

filtering. The labels, ec1f, ec1r, ec2, ec3f, ec3r, and ec4 represent Scheme 1 forward 

reads, Scheme 1 reverse reads, Scheme 2, Scheme 3 forward reads, Scheme 3 reverse 

read, Scheme 4, respectively. b The errors rate correlation between original data and 

quality score filtered data. The dashed lines represent complete identical error rates 

before and after quality score filtering. 
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Supplementary Figure 6-1. Sequence properties of protein G. 

(a) The sequence of 88 bp template was shown in DRuMS color schemes. The 

overlapping region of target sequence and forward primer or reverse primer was shown. 

(b) The A-T C-G density plot along the target sequence. Matlab nucleotide sequence 

analysis toolbox was used to plot this figure.  
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Supplementary Figure 6-2. Error rates distribution in the original dataset. 

 (a) The histogram of error rates. The error rates of four types of errors on all nucleotides 

were counted. (b) Normal Q-Q plot of error rate distribution. Sample quantiles showed 

great deviation from normal distribution.   
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Supplementary Figure 6-3. Error rate correlation among different error-correction 

schemes. 

 (a) Linear regression between true mutations and different error-correction methods. The 

model y∼x+a was adapted to do regression. Every dot represents a position on the target 

sequence and the values on x-axis and y-axis represent error rates of combined 

consensus and certain consensus, respectively. Colored lines are regression result. (b) 

Barplot of the intercepts a from the linear regression. Error bar is standard error. The 

colors represents different error-correction schemes, which are labeled in the graph. 
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Supplementary Figure 6-4. Tag distribution in different error-correction schemes. 

Tags are random nucleotides for readout consensus, comprising 8 nucleotides from each 

direction of reads. Every bar represents the number of tags that appeared certain times. 

Scheme 1 means the tag distribution in the original dataset. 

 

  



 

 
 

194 

6. References 

1. Bloom JD. An experimentally determined evolutionary model dramatically improves 

phylogenetic fit. Mol Biol Evol. 2014;31:1956–78. 

2. Thyagarajan B, Bloom JD. The inherent mutational tolerance and antigenic evolvability 

of influenza hemagglutinin. elife. 2014;3:e03300. 

3. Qi H, Olson CA, Wu NC, Ke R, Loverdo C, Chu V, et al. A quantitative high-resolution 

genetic profile rapidly identifies sequence determinants of hepatitis c viral fitness and drug 

sensitivity. PLoS Pathog. 2014;10: e1004064. 

4. Fowler DM, Araya CL, Fleishman SJ, Kellogg EH, Stephany JJ, Baker D, et al. High-

resolution mapping of protein sequence-function relationships. Nat Methods. 

2010;7:741–6. 

5. Pan L, Shah AN, Phelps IG, Doherty D, Johnson EA, Moens CB. Rapid identification 

and recovery of enu-induced mutations with next-generation sequencing and paired-end 

low-error analysis. BMC Genomics. 2015;16:1263. 

6. Kinde I, Wu J, Papadopoulos N, Kinzler KW, Vogelstein B. Detection and quantification 

of rare mutations with massively parallel sequencing. Proc Natl Acad Sci U S A. 

2011;108:9530–5. 

7. Schmitt MW, Kennedy SR, Salk JJ, Fox EJ, Hiatt JB, Loeb LA. Detection of ultra-rare 

mutations by next-generation sequencing. Proc Natl Acad Sci USA. 2012;109:14508–13. 

8. Wu NC, Young AP, Al-Mawsawi LQ, Olson CA, Feng J, Qi H, et al. High-throughput 

profiling of influenza a virus hemagglutinin gene at single-nucleotide resolution. Sci Rep. 

2014;4:4942. 



 

 
 

195 

9. Wu NC, Young AP, Al-Mawsawi LQ, Olson CA, Feng J, Qi H, et al. High- throughput 

identification of loss-of-function mutations for anti-interferon activity in the influenza a 

virus ns segment. J Virol. 2014;88:10157–64. 

10. Jabara CB, Jones CD, Roach J, Anderson JA, Swanstrom R. Accurate sampling and 

deep sequencing of the hiv-1 protease gene using a primer id. Proc Natl Acad Sci U S A. 

2011;108:20166–71. 

11. Gout JF, Thomas WK, Smith Z, Okamoto K, Lynch M. Large-scale detection of in vivo 

transcription errors. Proc Natl Acad Sci USA. 2013;110: 18584–9. 

12. Brodin J, Hedskog C, Heddini A, Benard E, Neher RA, Mild M, et al. Challenges with 

using primer IDs to improve accuracy of next generation sequencing. PloS One. 

2015;10:e0119123. 

13. Lou DI, Hussmann JA, McBee RM, Acevedo A, Andino R, Press WH, et al. High-

throughput DNA sequencing errors are reduced by orders of magnitude using circle 

sequencing. Proc Natl Acad Sci U S A. 2013;110: 19872–7. 

14. Narayan A, Carriero NJ, Gettinger SN, Kluytenaar J, Kozak KR, Yock TI, et al. 

Ultrasensitive measurement of hotspot mutations in tumor dna in blood using error-

suppressed multiplexed deep sequencing. Cancer Res. 2012;72:3492–8. 

15. Schloissnig S, Arumugam M, Sunagawa S, Mitreva M, Tap J, Zhu A, et al. Genomic 

variation landscape of the human gut microbiome. Nature. 2013;493:45–50. 

16. Hadd AG, Houghton J, Choudhary A, Sah S, Chen L, Marko AC, et al. Targeted, high-

depth, next-generation sequencing of cancer genes in formalin-fixed, paraffin-embedded 

and fine-needle aspiration tumor specimens. J Mol Diagn. 2013;15:234–47. 



 

 
 

196 

17. Beadling C, Neff TL, Heinrich MC, Rhodes K, Thornton M, Leamon J, et al. Combining 

highly multiplexed pcr with semiconductor-based sequencing for rapid cancer genotyping. 

J Mol Diagn. 2013;15:171–6. 

18. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. Initial 

sequencing and analysis of the human genome. Nature. 2001;409: 860–921. 

19. Minoche AE, Dohm JC, Himmelbauer H. Evaluation of genomic high-throughput 

sequencing data generated on illumina hiseq and genome analyzer systems. Genome 

Biol. 2011;12:R112. 

20. Costello M, Pugh TJ, Fennell TJ, Stewart C, Lichtenstein L, Meldrim JC, et al. 

Discovery and characterization of artifactual mutations in deep coverage targeted capture 

sequencing data due to oxidative dna damage during sample preparation. Nucleic Acids 

Research. 2013;41:e67. 

21. Nakamura K, Oshima T, Morimoto T, Ikeda S, Yoshikawa H, Shiwa Y, 

et al. Sequence-specific error profile of illumina sequencers. Nucleic Acids Research. 

2013;39:e90. 

22. Rosen MJ, Davison M, Bhaya D, Fisher DS. Microbial diversity. fine-scale diversity 

and extensive recombination in a quasisexual bacterial population occupying a broad 

niche. Science (New York, NY). 2015;348: 1019–23. 

23. Afshinnekoo E, Meydan C, Chowdhury S, Jaroudi D, Boyer C, Bernstein N, et al. 

Geospatial resolution of human and bacterial diversity with city-scale metagenomics. Cell 

systems. 2015;1:72–87. 



 

 
 

197 

24. Zhou S, Jones C, Mieczkowski P, Swanstrom R. Primer ID validates template 

sampling depth and greatly reduces the error rate of Next-Generation sequencing of HIV-

1 genomic RNA populations. J Virol. 2015;89:8540–55. 

25. Mohiyuddin M, Mu JC, Li J, Asadi NB, Gerstein MB, Abyzov A, et al. Metasv: an 

accurate and integrative structural-variant caller for next generation sequencing. 

Bioinformatics. 2015;31:2741–4. 

26. Wei Z, Wang W, Hu P, Lyon GJ, Hakonarson H. Snver: a statistical tool for variant 

calling in analysis of pooled or individual next-generation sequencing data. Nucleic Acids 

Res. 2011;39:e132. 

27. Bokulich NA, Subramanian S, Faith JJ, Gevers D, Gordon JI, Knight R, et al. Quality-

filtering vastly improves diversity estimates from illumina amplicon sequencing. Nat 

Methods. 2013;10:57–9. 

28. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, et al. Ultra-

high-throughput microbial community analysis on the illumina hiseq and miseq platforms. 

ISME J. 2012;6:1621–4. 

29. De Leeneer K, Hellemans J, De Schrijver J, Baetens M, Poppe B, 

Van Criekinge W, et al. Massive parallel amplicon sequencing of the breast cancer genes 

brca1 and brca2: opportunities, challenges, and limitations. Hum Mutat. 2011;32:335–44. 

30. Forshew T, Murtaza M, Parkinson C, Gale D, Tsui DW, Kaper F, et al. Noninvasive 

identification and monitoring of cancer mutations by targeted deep sequencing of plasma 

DNA. Sci Translational Med. 2012;4: 136ra68. 

31. Consortium HMP. Structure, function and diversity of the healthy human microbiome. 

Nature. 2012;486:207–14. 



 

 
 

198 

32. Tonge DP, Pashley CH, Gant TW. Amplicon-based metagenomic analysis of mixed 

fungal samples using proton release amplicon sequencing. PloS One. 2014;9:e93849. 

33. de Boer P, Caspers M, Sanders J, Kemperman R, Wijman J, Lommerse G, et al. 

Amplicon sequencing for the quantification of spoilage microbiota in complex foods 

including bacterial spores. Microbiome. 2015;3:30. 

34. Olson CA, Wu NC, Sun R. A comprehensive biophysical description of pairwise 

epistasis throughout an entire protein domain. Curr Biol. 2014;24:2643–51. 

35. Cock PJ, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, et al. Biopython: freely 

available python tools for computational molecular biology and bioinformatics. 

Bioinformatics (Oxford England). 2009;25: 1422–3.



 

 
 

199 

 

 

 

 

 

 

 

 

Chapter 7  

 

A mechanistic model for virus dynamics in high-throughput viral 

fitness profiling 

 

 

  



 

 
 

200 

1. Abstract 

High-throughput viral fitness profiling is an accurate way to measure the replication 

capacity of a swarm of viral strains. It uses high-throughput sequencing to quantify virus 

frequency after bulk competition. Its data provide insights on genetic interactions 

(epistasis) and fitness landscapes. Here we described a mechanistic model of virus 

dynamics in these experiments. We examined the robustness of screening readout 

(relative fitness) in different time point and different populations. We found competition 

allowed more accurate quantification of virus replication capacity than individual growth 

did. The model also suggests epistasis of relative fitness level could rise without 

interactions on phenotypic level, explains previous observations of predominance of non-

specific epistasis. 

2. Introduction 

High-throughput fitness profiling (HFP), also known as deep mutational scanning (DMS), 

is a powerful tool in generating comprehensive genotypic-phenotypic data. It can discover 

mutants with novel phenotype1-3, characterize the interactions between mutations4, and 

reveal the properties of fitness landscape5. It not only explores mechanisms of protein 

evolution6, but also helps explain virus evolution7,8 and make novel vaccines9,10. 

HFP couples a screening process with deep sequencing to quantify the enrichment of 

species. The relative enrichment can be transformed into the fitness of interest. For virus, 

the screening is naturally the process of virus growth. Virus fitness is correlated with the 

relative enrichment of virus frequency. However, virus growth is in a host-pathogen 

system, where resource is limited. The virus frequency measured at the end of screening 

does not strictly correlate to higher replication capacity. To quantitatively study the 
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relationship of virus replication capacity and its frequency dynamics during screening, we 

introduced a Beretta-Kuang model for bacteria-phage population dynamics to the HFP 

system11. 

Fitness landscape is an abstraction of linking genotypes to reproductive success12. HFP 

provides unprecedented datasets to characterize fitness landscape13. However, HFP only 

measures relative frequencies of variants. The relationship between relative frequencies 

and fitness needs to be examined. The distribution of epistasis determines the shape and 

ruggedness of fitness landscape, which restricts evolutionary pathways and adaptation 

potentials14. Negative and non-specific epistasis are frequently observed in many HFP 

datasets5,6,15,16. It is speculated the threshold effect of mutations destabilizing proteins 

contributes to the predominance of negative epistasis17-19. In this paper, we show that 

both positive epistasis and negative epistasis can rise through viral dynamics, even 

without any genotypic or phenotypic level interactions. 

3. Result 

3.1. Virus replication capacity can be estimated from virus frequency in high-

throughput fitness profiling. 

The model of virus population dynamics was derived from Nowak and May’s classic 

model20 and adapted Beretta and Kuang’s modification on in vitro host cell replication 

rate11. We introduced K strains of viruses into the model and rewrite the model in the form 

of equation 1-3 (Figure 1A). 

d𝑇
d𝑡 = 𝑟 P1 −

(𝑇 + ∑ 𝐼FF )
𝐶 S 𝑇 −T𝑖F

F

𝑉F𝑇 

d𝐼F
d𝑡 = 𝑖F𝑉F𝑇 − 𝑑F𝐼F 
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d𝑉F
d𝑡 = 𝑝F𝐼F − 𝑠F𝑉F − 𝑖F𝑉F𝑇 

𝑇 denotes the density of uninfected cells. 𝐼F denotes the density of cells that are infected 

by the 𝑘 -th strain. 𝑉F  denotes the density of 𝑘 -th strain virus. The parameters are 

explained in Figure 1A. 𝑖F represents the infectivity of virus. 𝑖F𝑉F𝑇 is rate of healthy cells 

being infected by 𝑘-th strain virus. 𝑟 is the replicate rate of healthy cells. g1 − @(𝑇 + ∑F

𝐼F)/𝐶Ah is the density correction factor for cell replication rate. 𝑑F represents the toxicity 

of virus. 𝑑F𝐼F is the rate of cell death which has been infected by 𝑘-th virus. 𝑝F describes 

the productivity of virus. 𝑝F𝐼F is the rate of virus production by cells infected by 𝑘-th strain. 

𝑠F represents virus stability. Virus degradation rate is 𝑠F𝑉F. 

The model has following prerequisites that may be different from actual scenario. Firstly, 

viruses don’t infect the same cell. This is common during early phase of infection when 

virus concentration is low. It is also true for some viruses which can down-regulate its 

receptor after infection, e.g. HIV-121. Secondly, viruses release from infected cell with a 

constant rate. This approximation is reasonable for lytic viruses which has short latent 

phase. Thirdly, cells replicate in a Logistic manner. It resembles most of cell culture 

conditions as long as cell debris and toxic metabolites do not accumulate in culturing 

media. 

We initiated simulation using parameters from previous HIV-1 dynamic models22. We 

randomized virus infectivity 𝑖F, productivity 𝑝F, toxicity 𝑑F and stability 𝑠F around wild-type 

virus using following distribution23 (Figure S1A): 

𝑃(𝑠) = 𝜆𝑒#G|I|(1 + 𝑒";I)#( 
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𝑁 were tuned so that 10.1% to 13.6% of the four parameters are more beneficial than 

those of wild-type. The amount of input virus is normally distributed (Figure S1A). We 

used 1000 virus strains as input. This is the approximate library size of many HFP 

project3,7,9. We simulated 7 days of infection, which is similar time scale of HIV-1 HFP 

experiments. 

The simulation result was shown in Figure 1B. Viral frequencies showed different 

distribution from input parameters (Figure S1B). The percentage of mutants that are more 

abundant than wild-type dropped from 49.1% to 1.1% after 7 days of screening, which 

indicates most strains had lower replication capacity than wild-type virus. To quantitatively 

describe the replication capacity, we use following equation to calculate relative fitness 

(𝑅𝐹F,+) of viral strain 𝑘 at timepoint 𝑡. 

𝑅𝐹F,+ =
𝑓F,+/𝑓F,+#
𝑓F#,+/𝑓F#,+#

 

The 𝑓F,+  represents frequency of viral strain 𝑘 at timepoint 𝑡. 𝑘/ represents strain wild-

type. The distribution of 𝑅𝐹 resembles the distribution of frequencies (Figure S1B). 𝑅𝐹 at 

the final time point (7days post infection) did not completely correlate with model 

parameters 𝑠F (stability), 𝑑F (toxicity), 𝑝F (productivity), or 𝑖F (infectivity) because these 

parameters only depicted part of viral life cycle (Figure S1C). However, 𝑅𝐹 correlated 

strongly with the effective replication number 𝑅0 (Figure 1C). 𝑅0 is defined below: 

𝑅0F =
(𝑝F/𝑑F − 1)𝑖F𝐶

𝑠F
 

We then calculated 𝑅𝐹 at every time point (Figure S2A). The correlation of 𝑅𝐹 with 𝑅0 

increased at the beginning of screening and plateaued at 2 days post infection (Figure 

1C). Notably, 𝑅𝐹’s correlation coefficient increased faster than that of frequencies. The 
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absolute value of correlation coefficients between 𝑅𝐹 and other model parameters also 

plateaued fast (Figure S1D). These indicated 𝑅𝐹  was a more sensitive method to 

characterize virus replication capacity, comparing to virus frequencies. 

Selection coefficient(𝑠) is another commonly used parameter in experimental evolution to 

characterize the capacity of reproduction and competition. 𝑠 is usually defined as the 

derivatives of relative frequencies. 𝑠 in different experimental systems can be compared 

directly because it is independent of population density24. We calculated the dynamics of 

𝑠 in our simulation (Figure S2B). 𝑠F,+ of viral strain 𝑘 at time point 𝑡 is defined as following: 

𝑠F,+ =
dlog𝑓F
d𝑡 −

dlog𝑓F#
d𝑡  

𝑠 and 𝑅𝐹 correlated significantly at early time of screening but then correlation coefficient 

decreased (Figure S2C). This is because the overall intensity of competition decreased 

at the late time of screening when available uninfected cells were few. When the whole 

population is collapsing, virus selection coefficient no longer served as an accurate 

parameter to characterize virus replication capacity. However, 𝑅𝐹 was still robust at late 

time point. Moreover, the distribution of 𝑅𝐹 widened at late time point (Figure S2D), which 

ensured more confident measurement during actual experiments. The distribution of 𝑠 is 

more restricted at the end of screening. To validate this, we constructed a mutagenesis 

HIV-1 library, which contained 1755 Gag mutants. We passaged the virus library in THP1 

cells for 7 days and deep-sequenced the population every two days. We calculated 𝑅𝐹 

and 𝑠 for each mutant at day 3, day5 and day 7 (Figure S2E). 𝑅𝐹 and 𝑠 were correlated 

for many mutants. However, in later time points, some mutants’ 𝑠 returned to 0, while 𝑅𝐹 

are still widely distributed. 
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3.2. The robustness of relative fitness is restricted by population structure and 

experiment setups. 

𝑅𝐹 only correlated with 𝑅0 at some situations. We tuned model parameters and used 

different sets of input to simulate screening experiments. We changed the scale of virus 

infectivity(𝑖F) and productivity(𝑝F). The scale is defined as reciprocal of 𝜆 in equation 4. 

We simulated 2500 combinations of infectivity’s scale and productivity’s scale (Figure 2A). 

𝑅𝐹 correlated with 𝑅0 strongly independent of the scale of infectivity. However, it is more 

vulnerable to the scale of productivity. The limitation of 𝑅𝐹 indicates that viral fitness 

profiling experiment is not suitable for libraries that accumulated too many mutations that 

fitness effect is extreme. 

We compared the traditional way of measuring viral replication capacity with high-

throughput fitness profiling. We used same dataset of viral replication parameters and 

simulated viral growth independently using Nowak and May’s model (Figure 2B). All 

simulations started with exactly same number of infected cells. We calculated the 

correlation of viral load and replication parameters. The correlation coefficients were high 

only when most viral mutants were growing at log phase, which is difficult to capture 

accurately during actual experiments. And different mutants may have different length of 

log phase. The correlation between viral load and replication capacity (𝑅0) dropped at 

later time points. We also simulated binary competition experiments of every viral strain 

with wild-type virus. Virus frequency correlated with 𝑅0 at most stages of virus replication. 

This indicates pairwise competition is an accurate and robust way to measure virus 

replication capacity. 
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To validate this point, we inserted fluorescent proteins into HIV-1 genome. We used 

mVenus and mCherry as two fluoresent marker and constructed capsid mutation N74D 

on them. N74D mutants induced higher interferon response than wild-type virus in 

monocytes and may result in less replication (Unpublished data). By mixing wild-type 

virus and mutants, we are able to trace the frequency of infected cells by different virus 

for 7 days (Figure S3). Two viruses peaked at the same time and N74D mutant was 

weaker than wild-type virus no matter which fluorescent protein it is linked to. 

HFP provides a synchronization effects of virus replication dynamics. Different strains 

with different replication capacities peaked at the same time during infection (Figure 1B). 

This greatly helped accurate measurement of a biologically relevant parameter, relative 

fitness. Traditional measurement with independent viral culture cannot characterize virus 

replication with such resolution and confidence. HFP also has a normalization effect. 

Randomness in the amount of virus input was cancelled out during competition (Figure 

S1C, S1D). This greatly decreased labors required in fitness quantification. 

3.3 Non-specific epistasis can be explained by the viral dynamic model. 

Many theories described the advantages and disadvantages of genetic interactions on 

viral evolution. Beneficial mutations can function synergistically so that the fitness effect 

of double mutations is larger the multiplicativity of fitness effect by two single mutations. 

Deleterious mutations can function antagonizingly to relieve the fitness effect. Both types 

of interactions are defined positive epistasis. On the other hand, if double mutation results 

in lower fitness effect than the multiplicativity of single mutations does, the genetic 

interaction between these mutations are defined negative epistasis. Positive epistasis can 

help virus gain new mutations and accelerate its evolution. While negative epistasis is 
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stabilize the wild-type genotype by removing deleterious mutations. Both positive and 

negative epistasis is observed virus populations. However, the type of epistasis may differ 

in different systems and different ways of measuring viral fitness18,26-28. The multiplicablity 

or addibility of measured viral fitness needs to be proved before any conclusions on 

epistasis is drawn. 

Predominance of negative epistasis can be explained by the threshold effects of protein 

stability. A deleterious mutation may destabilize the protein while not destroying the 

protein while the summation of two deleterious mutation may completely dissemble the 

protein and diminish its function. The concave function of protein stability (physical 

property) to protein function (biological property) explains the prevalence of negative 

epistasis on protein function level. Similarly, the concaveness of 𝑅0 to 𝑅𝐹 function affects 

the type of epistasis on 𝑅𝐹 level. 

We simulated the dynamics of a viral population with uniformly distributed infectivity, and 

calculated 𝑅𝐹  at the end of infection (Figure S4A). 𝑅0  was linearly correlated with 

infectivity (𝑖F) while 𝑅𝐹 was a convex function of infectivity. This also resulted in a convex 

projection from 𝑅0 to 𝑅𝐹. The projection remains nonlinear when we changed productivity 

(𝑝F, Figure S4B), toxicity (𝑡F, Figure S4C) and stability (𝑠F, Figure S4D). The shape is 

convex for infectivity and productivity and concave for toxicity. This indicated positive 

epistasis when the variation of infectivity and productivity predominated and negative 

epistasis when the variation of toxicity predominated. 

To furthur prove this hypothesis, we simulated the population dynamics with all replication 

parameters randomized. We generated two single mutants’ libraries, each with all four 

parameters randomly sampled. The size of single mutants’ library was 30. We then 



 

 
 

208 

combined two libraries and generated double mutants with all possible combinations of 

four parameters. The size of double mutants library was 30 × 30 = 900. The replication 

parameters were simply products of those from single mutants. With different 

randomization trials, we find the function of 𝑅0 to 𝑅𝐹 could either be concave or convex 

(Figure 3A, B). We then calculated expected 𝑅0 and 𝑅𝐹 simply by multiplying 𝑅0 and 𝑅𝐹 

of single mutants. Expected 𝑅0 was linearly correlated with 𝑅0 while expected 𝑅𝐹 was 

not. If doubled mutants had measured 𝑅𝐹 larger than expected 𝑅𝐹, they were defined 

positive epistasis in HFP experiments (Figure 3A) and vice versa (Figure 3B). Both 

conditions could happen when there were no 𝑅0 epistasis. 

We profiled an Influenza library to validate the point. We constructed a library with 59 

single mutants and 736 double mutants and passaged the virus in A549 cell with or 

without interferon. Interferon inhibit influenza replication by decreasing its productivity (𝑝F) 

and toxicity(𝑑F). We calculated the expected 𝑅𝐹 of all double mutants by multiplexing 𝑅𝐹 

of corresponding single mutants. The same library showed predominant negative 

epistasis without interferon treatment but predominant positive epistasis with interferon 

(Figure 3C). 

4.Discussion 

The non-linearity among genotypes and fitness has long been centric to fitness landscape 

theory. Besides the frequently discussed aspects of genotype-phenotype interactions and 

physical-biological property interactions, we argued that the nonlinear relationship 

between phenotype to fitness is also important to shape fitness landscape. This 

relationship could be furthur investigated in diploid populations and haploid populations 



 

 
 

209 

with Logistic population dynamics models. The fitness landscape in protein evolution 

could also be reviewed in modeling 𝐾J-frequency relationship. 

HFP provides unique datasets of mutants’ fitness. However, fitness is a simplification of 

replication capacity. Many other factors will affect the relationship between phenotype 

and evolution outcomes. Extra cares are needed in adapting HFP datasets to evolutionary 

analysis. This paper not only used simulated datasets but also carried out a few HFP 

experiments. However, more profiling methods are needed to accurately and massively 

quantify different aspects of virus replication capacity. 
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Figure 7-1. Characterization of high-throughput fitness profiling viral dynamics 

model. 

A) Diagram of the variables and reactions tracked by the model. Model parameters are 

described in manuscript. B) Temporal dynamics of virus count in a simulation. C) The 

dynamics of correlation between effective replication capacity (R0) and frequency (blue 

line) or relative fitness (orange line). 
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Figure 7-2. The effect of population structure and experiment procedures on the 

robustness of relative fitness. 

A) Scale of replication capacity distribution affects correlation between R0 and relative 

fitness. B) Simulated dynamics of independent virus growth and mixed virus growth. 

C)The dynamics of correlation between model parameters and virus frequencies. 
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Figure 7-3. Construction of epistasis without phenotypic interactions. 

A) The projection from R0 to relative fitness, in a population with linearly composed 

replication parameters. Virus productivity is the parameters with widest distribution. B) 

The projection from R0 to relative fitness, in a population with linearly composed 

replication parameters. Virus toxicity is the parameters with widest distribution. C) 

Epistasis of an Influenza mutagenesis library under different conditions. 
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Supplementary Figure 7-1. Characterization of high-throughput fitness profiling 

viral dynamics model. 

A) Distribution of model parameters. B) Frequency and relative fitness distribution at the 

end time of simulation. Blue line is the value of wild-type. C) Correlation of model input 
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parameters and final relative fitness. R0 is effective replication capacity. D) The dynamics 

of correlation between model parameters and frequency (blue line) or relative fitness 

(orange line). 
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Supplementary Figure 7-2. Correlation analysis of relative fitness and selection 

coefficient. 

A) Relative fitness dynamics in one simulation. Relative fitness was defined as the ratio 

of mutant frequency after and before screening. B) selection coefficient dynamics in the 

same simulation. Selection coefficient is defined as the derivative of relative fitness. C) 
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Correlation dynamics of selection coefficients and relative fitness. D) The correlation of 

selection coefficients and relative fitness at 6 selected time point. E) The correlation of 

selection coefficients and relative fitness in an experimental dataset. 
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Supplementary Figure 7-3. Competition of fluorescent virus. 
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Supplementary Figure 7-4. The relationship between replication capacity 

parameters and relative fitness. 

A) The projection from infectivity to R0 and relative fitness, in a population with uniformly 

distributed infectivity. B) The projection from productivity to R0 and relative fitness, in a 

population with uniformly distributed productivity. C) The projection from toxicity to R0 and 

relative fitness, in a population with uniformly distributed toxicity. D) The projection from 

stability to R0 and relative fitness, in a population with uniformly distributed stability. 
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In this dissertation, I covered my work on virus genetic barcodes and high throughput 

fitness profiling systems. By inserting a genetic barcode into HIV-1, we successfully 

tracked the dynamics of the latent reservoir in humanized mice. It also allowed us to study 

how the position of HIV-1 integration sites can affect the virus transcription and T cell 

clonal expansion. Moreover, we used it to label single cells’ behavior in vitro and achieved 

the first virus alternative splicing sequencing at the single cell resolution. The high 

throughput fitness profiling system enabled us to measure the fitness effect of a large 

number of mutations. The dissertation covered its application in studying the genetic 

interactions between drug resistance associated mutations and in tracking the 

evolutionary trend of viruses in the real world. We also applied this platform in many other 

projects, such as discovering new protein protein interactions, searching for the 

conservative epitopes for vaccine design, explaining the key residue for cross-species 

transmission. Both methods are at their infant period of development. There are 

numerous potential applications for them. 

Future applications for the fitness profiling system 

The pandemic of SARS-CoV-2 alerted people to the importance of rapid production and 

optimization of pharmaceutical interventions. New escape mutations keep emerging from 

current vaccines and test strips. The research and development teams need to iterate 

endlessly after the emergence of new mutants. Fitness profiling platforms can rapidly 

simulate the mutation and selection scenario in the real world and predict the future 

escape mutations. The platform has the potential to be integrated in all major production 

pipelines for test kit, vaccines, antiviral drugs and immunotherapies.  
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One obstacle for the wide application of this method is the lack of a good screening 

system. For SARS-CoV-2, the antibodies and antiviral drugs can be produced without a 

viral reverse genetic system. But the fitness profiling system is more robust with a reverse 

genetic system to produce desired mutations. That is the reason we designed a virus-

free screening system for SARS-CoV-2 N protein. Based on flow cytometry and cell 

display, we set up a pipeline to screen any structural and functional viral proteins in the 

future.  

The fitness profiling system can make more use if combined with cellular libraries. For 

example, the mutant virus library can be screened in a CRISPR KO cell library and the 

growth of each virus in each type of mutant cell can be quantified by ECCITE-seq. By 

multiplexing another library to the virus library, we can do thousands of fitness profiling 

experiments at the same time.  

With the development of genome editing, future libraries can also be constructed directly 

on human genomes and make all possible mutations in situ. Combining a cellular fitness 

profiling system with a viral fitness profiling system will help us to understand host-

pathogen interactions in terms of the arm race evolution between them.  

Future applications of the viral genetic barcodes 

The rapid advancement of long sequencing reads and single-cell sequencing methods 

have significantly facilitated the application of viral genetic barcodes. In vivo, these tools 

allow for the profiling of spontaneous mutations along with barcode sequences, enabling 

a comprehensive understanding of the clonal dynamics of viruses, including the 

emergence, fixation, and extinction of mutations. By studying the evolutionary history of 

each clone, observing convergent and divergent evolution, and testing hypotheses on 
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local competition, researchers can accurately investigate the underlying mechanisms of 

viral evolution. In vitro, these methods enable the sequencing of viral transcription and 

integration, as well as the profiling of single-cell proteomic and transcriptomic features of 

host cells. This provides a complete picture of how the virus's life history affects cellular 

activities, as well as how cells regulate or inhibit viral replication. 

Despite these advances, there are still some obstacles that need to be overcome. 

Currently, long-read sequencing methods such as PacBio or Nanopores are limited in 

terms of accuracy and throughput. Thus, the cost of reconstructing mutations on a full-

length viral genome remains prohibitively high for large virus populations. However, the 

continuous development of third-generation sequencing is expected to bring the cost 

down to an acceptable level in the next few years. Another challenge is the limited ability 

of single-cell sequencing techniques, including microwell and droplet-based methods, to 

enrich viral DNA and sequence the genome. However, the integration of hydrogel-based 

in situ PCR methods holds promise for overcoming this obstacle. I anticipate an explosion 

of similar method development in the next few years as the scientific community continues 

to push the boundaries of this exciting field. 

The viral genetic barcodes system also holds great potential for integration into the 

antiviral therapy development pipeline. By describing how therapies interrupt the virus 

population and create bottlenecks, we have used this system to evaluate latency reversal 

agents and cell therapies. In the future, this technology may be applied to vaccine studies, 

gene editing therapies, and small-molecule antiviral drugs. 




