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a b s t r a c t

In a normal human life span, the heart beats about 2–3 billion times. Under diseased con-
ditions, a heart may lose its normal rhythm and degenerate suddenly into much faster and
irregular rhythms, called arrhythmias,whichmay lead to suddendeath. The transition from
anormal rhythm to an arrhythmia is a transition from regular electricalwave conduction to
irregular or turbulent wave conduction in the heart, and thus this medical problem is also a
problem of physics and mathematics. In the last century, clinical, experimental, and theo-
retical studies have shown that dynamical theories play fundamental roles in understand-
ing themechanisms of the genesis of the normal heart rhythmaswell as lethal arrhythmias.
In this article, we summarize in detail the nonlinear and stochastic dynamics occurring in
the heart and their links to normal cardiac functions and arrhythmias, providing a holistic
view through integrating dynamics from themolecular (microscopic) scale, to the organelle
(mesoscopic) scale, to the cellular, tissue, and organ (macroscopic) scales. We discuss what
existing problems and challenges are waiting to be solved and howmulti-scale mathemat-
ical modeling and nonlinear dynamics may be helpful for solving these problems.

© 2014 Elsevier B.V. All rights reserved.
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Abbreviations

1D one-dimensional
2D two-dimensional
3D three-dimensional
APD action potential duration
AVN atrial–ventricular node
Ca2+ calcium ion
CICR calcium-induced calcium release
CV conduction velocity
CRU calcium release unit
DAD delayed afterdepolarization
DI diastolic interval
EAD early afterdepolarization
ECG electrocardiogram
FHN FitzHugh–Nagumo
HH Hodgkin–Huxley
HRV heart rate variability
ICD implantable cardioverter-defibrillator
ICa,L L-type calcium current
IK time-dependent potassium current
INa sodium current
INCX Na+–Ca2+ exchange current
Ito transient outward current
K+ potassium ion
LCC L-type calcium channel
LR1 phase I of Luo–Rudy
Na+ sodium ion
NCX Na+–Ca2+ exchanger
PCL pacing cycle length
PVC premature ventricular contraction
RyR ryanodine receptor
SAN sino-atrial node
SCD sudden cardiac death
SERCA sarcoplasmic/endoplasmic reticulum calcium ATPase
SR sarcoplasmic reticulum
TWA T-wave alternans
VF ventricular fibrillation
VT ventricular tachycardia

‘‘. . . , we should recognize that such roads [between the sciences], while the quickest shortcut to another part of our own
science, are not visible from the viewpoint of one science alone.’’

P.W. Anderson

1. Introduction

The human heart beats every second or so, totaling 2–3 billion heartbeats in a normal life span. The contractions of the
heart are triggered by electrical excitations which originate from a region in the right atrium, called the sino-atrial node
(SAN). The SAN works relentlessly as an oscillator to generate heart rhythms, while its rate of oscillation is adaptive to
changes in energy demand of the body and environmental factors. However, the heart may suddenly lose its ability to pump
blood effectively due to SAN malfunction or to an occurrence of electrical turbulence in the ventricles, leading to sudden
cardiac death (SCD). SCD is a leading cause of death in industrialized countries, accounting for 300,000–400,000 deaths
annually in the United States of America [1,2].

‘‘Sudden cardiac death: a problem in topology’’, the title of a Scientific American article by ArthurWinfree 30 years ago [3],
highlights that SCD is not only a problem of biology and medicine, but also a problem of physics and mathematics. This
is because the heart is not only a biological organ but also an electrical conductor and a mechanical pump. The nonlinear
dynamics of both mechanical and electrical properties of the heart have been an intensively studied research topic for more
than a century, and have greatly improved our understanding of the mechanisms of normal excitation and contraction of
the heart, as well as lethal arrhythmias and cardiac diseases. However, due to the highly interdisciplinary nature of this
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Fig. 1. The normal heart structure and function. a. SAN—sino-atrial node; RA—right atrium; LA—left atrium; AVN—atrial–ventricular node; RV—right
ventricle; LV—left ventricle. b. An image of a ventricular myocyte. c. Action potential morphologies in different regions of the heart. d. Schematic plot
of a normal ECG illustrating the P-wave, the QRS complex, the T-wave, RR interval, and QT interval.

research, it is nontrivial for physicists and mathematicians to understand the complex biology and physiology of the heart,
and, conversely, for biologists and cardiologists to grasp the nonlinear electrical andmechanical dynamics. The short reviews
by Glass [4] and by Karma and Gilmour [5] are excellent introductory articles for physicists and mathematicians, as well as
other more detailed recent reviews [6–8] that cover aspects of nonlinear dynamics in the heart.

In this article, our goal is to provide a comprehensive review of the current understanding of the nonlinear and stochastic
dynamics in the heart, based on clinical observations, experimental studies, and mathematical modeling and theoretical
analyses. The objectives are: (1) to provide a basic level introduction of cardiac excitation and conduction, the corresponding
nonlinear and stochastic dynamics, and the methods used, geared toward graduate students in physics, mathematics, and
engineering and the researchers who are interested in entering into this field; and (2) to provide a detailed, systematic,
and holistic overview for current researchers in this field on what is known about the nonlinear and stochastic dynamics in
the heart, what problems remain unsolved, and how nonlinear dynamics can be used for understanding the mechanisms of
normal heart rhythms, lethal arrhythmias, and how they can be controlled therapeutically.

The article is organized as follows. Sections 2 and 3 are introductory sections on the normal heart rhythm, arrhythmias,
and their multi-scale regulations, the nonlinear dynamics at different scales in the heart and their clinical features. Section 4
introduces the basic biophysics of excitable cells and mathematical modeling of the heart. Section 5 presents nonlinear
dynamics occurring at the molecular and sub-cellular scales. Section 6 summarizes the nonlinear dynamics observed and
modeled in single cells, such as period-doubling bifurcation and chaos induced by periodic pacing. Section 7 summarizes the
electrical wave dynamics in cardiac tissue, and the manifestation of cellular dynamics at tissue and organ scales. Section 8
is a short summary of the dynamics of the pacemaker cells and heart rate variability. Section 9 reviews nonlinear dynamics
applied to control and termination of arrhythmias. Finally, in Section 10,we discuss, in perspective, the remaining challenges
and the role of nonlinear dynamics and complex systems theory in solving these problems.

2. The normal heart rhythm and arrhythmias

2.1. The heart and its normal rhythm

The heart consists of four chambers (Fig. 1a): left atrium, right atrium, left ventricle, and right ventricle. The electrical
impulses are generated repetitively in the SAN, which propagate to both the right atrium and left atrium. The atrium and the
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ventricle are electrically insulated from each other. The electrical impulses propagate from the atria to the ventricles via a
special junction, called atrial–ventricular node (AVN), then to the Purkinje fiber network and the ventricles. The conduction
velocity (CV) of the electrical impulse in atrial and ventricular tissue is about 0.5 m/s. The conduction in Purkinje fibers is
much faster (2–3 m/s) than in the atrium or the ventricles [9]. The fast conduction in Purkinje fiber is important to allow an
impulse to excite thewhole ventricles in a short period of time, resulting in a synchronous contraction for effective pumping.

Cardiac tissue is mainly composed of rod-shaped cells called myocytes (Fig. 1b). Cardiac myocytes are either excitable or
oscillatory. Other types of cells also exist in the heart, such as fibroblasts which are small non-excitable cells. The size of an
adult ventricular myocyte is about 100–200 µm in length, 20–30 µm in width, and 10–20 µm in depth, which are roughly
conserved from species to species [10,11]. The contraction of the heart depends on the synchronous contraction (shortening)
of its myocytes. Myocyte shortening is induced by a rise in intracellular calcium ion (Ca2+) concentration triggered by the
electrical impulse [12].

The behaviors of myocytes differ in different regions of the heart and heart wall (Fig. 1c). The SAN cells and the cells in
the AVN are oscillatory. During oscillations, the voltage varies between −60 and 40 mV. The cells in the AVN have a slower
oscillation frequency than the SAN cells, and are entrained by the SAN oscillations during the normal heart rhythm. The
atrial and ventricular myocytes are excitable cells, but can become oscillatory under diseased or experimental conditions.
The atrial and ventricular myocytes have resting membrane potentials around −80 mV. A short-pulse stimulus above a
threshold strength triggers a rapid reversal of membrane voltage to the positive range which then falls back to the resting
potential after several hundred milliseconds. The event of membrane voltage rise and fall (in both excitable and oscillatory
cells) is called an action potential. During an action potential, intracellular Ca2+ concentration also rises and falls, which
then signals the contraction and relaxation of myocytes. This process is called excitation–contraction coupling. In addition
to distinct difference in dynamical behaviors of cells from different regions of the heart, the action potential characteristics
also vary regionally within the same cardiac chamber, such as the action potential morphology and duration differences
between epicardial, mid-myocardial, and endocardial cells in the ventricles (Fig. 1c).

In clinical settings, the electrical activity of the heart is detectedwith body surface electrodes, called an electrocardiogram
(ECG). An ECG is a weighted measure of the electrical activity in the whole heart. Fig. 1d shows a schematic plot of a normal
ECG which exhibits distinct features of excitation of the heart. The small peak before the sharp spike is called the P-wave
which is caused by the excitation of the atria. The subsequent large sharp spike is called the QRS complex, which measures
the conduction of the electrical signal through the Purkinje fiber network and the ventricles. Since the electrical conduction
in the Purkinje fibers is much faster, the width of the QRS complex is a rough measure of the conduction time from the
endocardium to epicardium of the ventricles. The ECG signal then returns to the baseline after the full ventricular wall
thickness has been depolarized, called the ST segment. As the regions of the ventricular tissue begin to repolarize, the ECG
signal rises again more slowly to a peak and then falls again, called the T-wave. The time interval from the beginning of
the QRS complex to the end of the T-wave is called the QT interval which is used clinically for diagnosis of long QT and
short QT syndromes. The QT interval is a roughmeasure of action potential duration (APD) of themyocytes in the ventricles.
The time interval between two consecutive QRS complexes is called the RR interval, which normally corresponds to the
oscillation period of the SAN. Note that the polarities of the QRS complex and the T-wave, and their magnitudes, depend
on the location of the ECG electrode relative to the heart. Since ECG measures the electrical activity in the heart, different
ECG patterns indicate different electrical states of the heart, which is the first-hand information used in diagnosis of cardiac
arrhythmias and other cardiac diseases.

2.2. Arrhythmias and anti-arrhythmic therapies

Under diseased conditions, heart rhythms can become abnormal, called arrhythmias. During arrhythmias, the heart
beats either too fast (called tachycardia) or too slowly (called bradycardia), and/or irregularly. There are many types
of arrhythmias, some are harmless, while some cause serious health problems. Ventricular arrhythmias, in particular
ventricular fibrillation (VF) are life-threatening. When VF occurs, the heart loses its pumping ability and brain damage may
occur within several minutes due to lack of blood supply. Atrial arrhythmias are less fatal, but atrial fibrillation increases
the risk of stroke, and affects a large portion of the aging population, which is becoming a major healthcare issue [13,14].

Ventricular arrhythmias usually occur suddenly and unexpectedly, in which the electrical activity in the ventricles
becomes fast and frenzied, and the coordinated contraction of the heart is either weakened or lost.When arrhythmias occur,
distinct changes occur in ECG. Fig. 2 shows the ECG from a patient who suffered a life-threatening cardiac arrhythmia [15],
which underwent three distinct transitions. At the first transition, the sinus rhythm suddenly changed to a fast abnormal
rhythm, called ventricular tachycardia (VT). After several beats, the abnormal but relatively regular ECG became faster,
attenuated, and more irregular, which is the transition from VT to VF. Fortunately, several seconds later, VF terminated
spontaneously to resume sinus rhythm, which saved the patient’s life. In many cases, VT either terminates spontaneously or
is sustained without degenerating into VF. VF may spontaneously terminate without leading to SCD as does the one shown
in Fig. 2, but the majority of VF episodes are lethal unless promptly terminated via electrical defibrillation. Defibrillation is
a treatment which delivers a high energy electrical shock to reset the electrical activities in the heart, converting the heart
beat back to normal sinus rhythm.

The current treatment of ventricular arrhythmias and SCD has limited effectiveness. Clinical trials have shown that the
anti-arrhythmic drugs presently available are not effective in preventing ventricular arrhythmias, and may even cause
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Sinus Rhythm VT VF Sinus Rhythm

Fig. 2. Transitions in cardiac arrhythmias. An ECG from a patient [15] showing the transitions from sinus rhythm to VT, from VT to VF, and from VF back to
sinus rhythm.
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Fig. 3. Multi-scale regulation of heart rhythms. A schematic plot of gene and protein network, ion channel, organelle network, cell, and tissue and organ,
and their interactions in the heart. Thick gray arrowsmark the scale change. Solid red arrows indicate the molecular regulations at different scales. Dashed
red arrows indicate feedback regulations.

more deaths than placebo [16,17]. Implantable cardioverter-defibrillators (ICDs) are so far the most effective therapy in
preventing SCD, but they are expensive and limited in availability worldwide. They also can have severe side effects, such
as pain, infection risk and inappropriate shocks [18]. Moreover, due to the limited efficacy of risk stratification and the
unpredictability of the occurrence of arrhythmias, it is a challenge for clinicians to select patients who may benefit from
the ICD therapy. Based on clinical trials [18,19], 80% of the patients do not benefit from their devices within 5 years after
implantation; i.e., only one out of five implanted ICDs actually delivers a life-saving shock.

There are several potential targets for treatment based on arrhythmia dynamics. As shown in Fig. 2, arrhythmias occur
suddenly and are unpredictable. The ideal strategy is to develop therapeutics that can prevent the occurrence of arrhythmias
in high risk patients. An alternative is to prevent the degeneration from VT to VF, since VT is generally less lethal than VF
and can give the patient more time to get to the hospital for treatment. The third choice is to develop therapeutics, either
drugs or electrical devices such as ICDs, to promptly terminate arrhythmias once they occur. Therefore, understanding the
mechanisms of initiation, maintenance, transitions, and termination of arrhythmias is of great importance for developing
effective therapeutics of SCD.

2.3. Multi-scale regulation of the heart

The limited effectiveness of anti-arrhythmic therapies is largely due to the complexity of the heart and our inability
of pinpointing the underlying mechanisms and the right therapeutic targets. The heart, like other organs, is regulated by
factors at different scales of time and space. Time spans from milliseconds to years and length scales from nanometers to
centimeters, ranging from gene, protein, to cellular and tissue structures (Fig. 3). At the molecular scale, genes and proteins
form regulatory and signaling networks to regulate ion channel functions, sub-cellular, cellular, and tissue structures. An ion



Z. Qu et al. / Physics Reports ( ) – 7

channel is a complex protein inserted into a biological membrane, and form a pore allowing ions to pass through. A cardiac
myocyte contains hundreds of thousands of ion channels, which interact to give rise to the action potential for excitation and
intracellular Ca2+ signal for contraction. The ion channels open and close stochastically following thermodynamic rules, and
thus at the molecular level, the dynamics is dominated bymicroscopic random thermal fluctuations. The level immediately
above singlemolecules is the organelle scale, such as the sarcoplasmic reticulum (SR), the internal Ca2+ stores of the cell, and
themitochondria, the energy factories of the cell. The spatial scale of these organelles ranges froma fewhundrednanometers
to several micrometers, containing tens to hundreds of ion channels. The dynamics at this scale ismesoscopic, characterized
by collective behaviors of many random ion channels. For example, a Ca2+ spark [20,21] is a collective behavior arising from
a cluster of ion channels in the membrane of SR, called a Ca2+ release unit (CRU). Although a Ca2+ spark exhibits certain
random features, it represents an emergent property of the CRU which behaves very differently from the random openings
and closings of a single ion channel. A ventricular myocyte contains thousands of CRUs which form a network coupled
by Ca2+ diffusion in both the SR and the cytosol. Ca2+ waves and oscillations occur due to CRU coupling in this network.
At the whole-cell level, complex action potential and Ca2+ dynamics emerge via bifurcations and dynamical instabilities,
such as APD alternans, limit cycle oscillations, chaos, etc. At the tissue and organ scales, different electrical wave dynamics
emerge, which are responsible for normal heart rhythms as well as lethal arrhythmias. At the cellular and tissue scales, the
dynamics is dominated bymacroscopic deterministic behaviors. However, under certain conditions, themicroscopic thermal
fluctuations at the molecular scale may result in macroscopic random fluctuations at the cellular and tissue scales, which
may contribute to the unpredictability of arrhythmias and SCD.

Although the normal heart rhythm and arrhythmias are regulated by genes, proteins, sub-cellular, cellular and tissue
scale properties, these factors are also affected by the rhythms of the heart. For example, the contraction of the heart may
activate mechanosensitive channels; fast heart rates cause Ca2+ accumulation which then affect the excitation and Ca2+
cycling dynamics; and long term arrhythmias or fast heart rates cause remodeling in proteins, organelles, cellular and tissue
scale properties, such as cardiac hypertrophy. In addition, the heart also interacts with other organs, especially the brain. For
example, heart rate and the risk of arrhythmias are affected by circadian rhythms and also by the central nervous system.

3. Nonlinear and stochastic dynamics in the heart

Nonlinear and stochastic dynamics are important research topics in cardiac electrophysiology, which have been widely
studied both theoretically and experimentally, as well as in clinical settings. These dynamics include limit cycle oscillations
for SAN cells, bifurcations in cellular excitations, symmetry breaking to induce reentry and spiral waves, and pattern
formation in excitation propagation in tissue, criticality in Ca2+ cycling, fractal variability in heart rates, etc. In this section,
we briefly summarize some of these dynamics and their clinicalmanifestations.We then review in later sections the detailed
nonlinear dynamics at different scales of the heart.

3.1. Nonlinear dynamics of heart rhythms and heart rate variability

In normal heart rhythm, the electrical impulses regularly originate from the SAN, resulting in a regular ECG pattern
(Fig. 4a). van der Pol first proposed to describe the heart as a relaxation oscillator using amodel he developed for oscillations
observed in electrical vacuum tube circuits [22,23]. The SANhas since then beenmodeled as a limit cycle oscillator of voltage,
andmore recently as coupled voltage and Ca2+ oscillators [24]. The SANmay oscillate too slowly (called bradycardia) or too
fast (called tachycardia), may pause, or fail to exit the SAN region, clinically known as sinus node dysfunction or sick sinus
syndrome. Bifurcation analyses using mathematical models revealed very complex nonlinear dynamics [25–28], some of
them can be used to explain the mechanisms of sinus node dysfunction. The nonlinear dynamical responses of a pacemaker
cell to periodic stimulations have been extensively investigated by Guevara, Glass, Shrier, and colleagues [29–36] and by
others [37–39] in both experimental and theoretical studies.

However, the RR interval in a normal heart is not truly periodic, but shows variation called heart rate variability (HRV).
HRV is a normal behavior of the heart, and in certain diseased hearts, such as heart failure, the variability may be diminished
(the RR interval becomes more periodic) and the patients have higher risk of SCD. It is shown that the HRV in the normal
heart is fractal, and the fractal exponents of the normal heart may differ from those of the diseased hearts [40–42], which
may be a better predictor of SCD risk as shown in clinical studies [43,44]. The dynamical causes of the fractal behaviors are
still unknown [45], and future investigations are needed to understand the underlying mechanisms and their links to SCD.

3.2. Alternans

One of the earliest nonlinear dynamical phenomena observed in the human heart dates to 140 years ago when Traube
first reported pulsus alternans in a patient in 1872 [46]. Pulsus alternans is a state of a heart in which a strong contraction
is followed by a weak contraction, which repeats to form a periodically alternating pattern, i.e. a period-2 behavior. Pulsus
alternans is also referred to as mechanical alternans. A half century later, alternans was identified in the electrical system
as electrical alternans [47–49]. Electrical alternans can occur as either alternating QRS amplitude, or alternating T-wave
amplitude (Fig. 4b) which is called as T-wave alternans (TWA). TWA is a widely observed clinical phenomenon and used
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Normal rhythm (period-1)

TWA (period-2)

PVC (irregular)

PVC (periodic)

a

b

c

d

Fig. 4. Complex ECG dynamics during sinus rhythm. a. Normal sinus rhythm in which the ECG is regular, exhibiting a period-1 behavior. b. TWA in which
the T-wave (arrows) exhibits a large, small, large, small, . . . , pattern, resulting in a period-2 behavior. c. PVCs (arrows) occur every two beats (trigeminy),
resulting in a periodic behavior. d. Irregularly occurring PVCs (arrows).

clinically for risk stratification of cardiac arrhythmias [50,51]. Since T-wave is a measure of the repolarization in the
ventricles, TWA reflects the ECG manifestation of APD alternans. The dynamical mechanism of APD alternans was first
investigated by Nolasco and Dahlen [52] in 1968, who used a rigorous analysis method of mathematics to show that when
the slope of the APD restitution curve (see Section 6.1.1 for definition) is greater than one, a bifurcation from regular beating
(period-1) to alternans (period-2) occurs. Many later experimental and theoretical studies [53–63] have expanded upon and
extended this theory to explain more complex action potential dynamics, such as chaos, using the iterated map approach
and bifurcation theory of nonlinear dynamics.

As a nonlinear dynamical phenomenon in the heart, alternans ranges from the sub-cellular, to cellular, and to tissue
and organ scales. Theoretical, computational, experimental, and clinical studies have been carried out to investigate the
underlyingdynamicalmechanisms, biological causes, andmechanistic links to arrhythmias and SCD. Alternans canbe caused
not only by instabilities driven by voltage (e.g., steep APD restitution curve) but also by instabilities from Ca2+ cycling. APD
alternans and Ca2+ alternans can alternate in-phase, or out-of-phase, which can be explained by an instability caused by
bi-directional coupling of voltage and Ca2+. Ca2+ alternans inside a myocyte can be spatially uniform (in-phase) or out-of-
phase, forming spatial patterns at the sub-cellular scale. At the tissue and organ scales, APD alternans and Ca2+ alternans
can be in-phase or out-of-phase in space, forming spatial patterns in the heart. These patterns have been widely observed
in experiments and investigated in theoretical and computational studies, and are considered to mechanistically link TWA
to arrhythmogenesis [64,65]. Moreover, the experimental and modeling studies have shown that the spatial patterns of
alternans are formed via spatial mode instabilities, such as the Turing instability, as well as spatial inhomogeneities.

There has been great interest in cardiac alternans because of its role as a precursor of arrhythmias and SCD, such that
the occurrence of alternans can be used as a risk stratifier. In addition to its diagnostic potential, preventing alternans has
therapeutic potential to prevent arrhythmias, since alternans might be a direct cause of arrhythmias. One of the prevention
methods is controlling alternans using control methods of nonlinear dynamics, which has been widely investigated both
theoretically and experimentally.

3.3. Regular and irregular premature excitations

In either normal or diseased hearts, extra excitations can occur called premature atrial contractions in the atrium or
premature ventricular contractions (PVCs) in the ventricles. A PVC (arrows in Figs. 4c and d) is a beat that occurs earlier
than the next coming sinus beat, and therefore, the sinus beat is blocked by the PVC. Many different PVC patterns have been
observed clinically. Fig. 4c shows an ECG recording in which one PVC follows every two sinus beats, resulting in a periodic
temporal pattern called trigeminy by cardiologists. There can be one PVC following every sinus beat (bigeminy), or every
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MVT (period)

TdP (quasi-periodic)

a
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c PVT (irregular)

d VF (irregular)

Fig. 5. Complex ECG dynamics during ventricular arrhythmias. a. Monomorphic VT (MVT) in which the ECG signal exhibits a period-1 behavior with a rate
much faster than sinus rhythm. b. Torsade de Pointes (TdP) inwhich the ECG signal ismodulated by another frequency, exhibiting a quasi-periodic behavior.
c. Polymorphic VT (PVT) in which the ECG exhibits a chaotic or irregular behavior. d. VF in which the ECG signal is attenuated and exhibits a chaotic or
irregular behavior.

three beats (quadrigeminy), and so on. PVCs may occur in an irregular manner (Fig. 4d), or in pairs (one sinus beat followed
by two PVCs, called couplets), triplets, and so on. PVCsmay occur in normal healthy hearts, but their frequency of occurrence
increases in diseased hearts. Most of the PVCs are harmless, but some may initiate fatal ventricular arrhythmias, especially
in diseased hearts.

The exact causes of PVCs and their complex patterns in the humanheart are still poorly understood. Three cellular dynam-
ics have been thought to be responsible: automaticity, early afterdepolarizations (EADs), and delayed afterdepolarizations
(DADs). Automaticity means that a cardiacmyocyte can beat by itself, just like a SAN cell. EADs are depolarizations in the re-
polarizing phase of an action potential, while DADs are depolarizations after themyocyte has repolarized from an action po-
tential. EADs and DADs do not occur spontaneously but following a stimulated action potential, and are also called triggered
activities. The nonlinear dynamics and bifurcations that lead to EADs and DADs are reviewed in detail later in this article.

3.4. Ventricular arrhythmias and electrical wave dynamics

During ventricular arrhythmias, the electrical activity originates locally in the ventricles. Since the rate of excitation is
typically much faster than that of the sinus rhythm, the impulses from the SAN are overdriven by the faster electrical signals
from ventricles, altering the QRS complex and ECG morphology (Fig. 5). There are many types of ventricular arrhythmias
which exhibit distinct ECG patterns. When the ECG pattern is regular and periodic (Fig. 5a), it is called monomorphic
ventricular tachycardia (VT). When the ECG pattern becomes non-periodic, it is called polymorphic VT or VF. In a widely
observed type of polymorphic VT, called Torsade de Pointes, the ECG shows a quasi-periodic behavior (Fig. 5b). In other
types of polymorphic VT, the ECG patterns are more irregular (Fig. 5c), which could be dynamical chaos. During VF (Fig. 5d),
the heart rate is even faster and the ECG pattern becomes attenuated, irregular, and most likely chaotic. VF is lethal, during
which the ventricles quiver and are not able to pump owing to the frenziedly chaotic electrical activities.

An ECG recording is a reflection of the electrical wave dynamics in the heart. There are three types of characteristic waves
that can occur in the heart. The first one is called target wave (Fig. 6a), in which the electrical impulses generating from a
focal source propagate in all directions. The normal excitations of the heart are target waves originating from the SAN. Focal
sources can also form locally in atrial or ventricular tissue, which may cause atrial or ventricular arrhythmias in diseased
hearts. For example, a PVC is a focal excitation from the Purkinje fiber or the ventricles.

The second type of wave is an electrical wave circulating repetitively around an obstacle (Fig. 6b) or along a special
pathway. This type ofwave is called reentry, ormore specifically, anatomical reentry. The concept of reentry as amechanism
of arrhythmias was first hypothesized in 1887 by McWilliam [66], and was demonstrated experimentally by Mines in dog
hearts 100 years ago [67,68].Wiener and Rosenbluth [69] in 1946 developed the first cellular automationmodel to show that
reentry could occur around an obstacle in an excitablemedium,which is applicable to reentry in cardiac tissue. In the normal
heart, especially in the atrium, there are many such types of structures and pathways. For example, the tricuspid valve in
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Fig. 6. Electrical wave dynamics in arrhythmias. a. Target waves. The star indicates the focal source. b. Reentry around an obstacle. c. Spiral wave.
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Fig. 7. Spiral waves in cardiac tissue. a. A spiral wave recorded from a cultured rat neonatal ventricular myocyte monolayer imaged by Ca2+ concentration
(courtesy of Miguel Valderrabano). A cultured monolayer is a tissue grown in a dish which is a one-cell thick cardiac tissue suitable for studying cardiac
spiral wave dynamics andmany other basic dynamical properties in a true 2D setting. b. A spiral wave on the epicardium of a rabbit heart shown as a phase
map of voltage [85]. Arrow indicates the rotation direction, and the black color in the center is the phase singularity. The spiral wave in the monolayer is
more circular than the one from the epicardial surface. This is because the monolayer is more homogeneous while the heart is heterogeneous with fiber
orientation causing an elongated spiral core.

the atrium gives rise to such a structure and facilitates atrial arrhythmias. In the ventricles, the most relevant structures are
regions of ischemia and infarction, where myocytes die due to lack of blood supply, and scars form in the ventricles. The
scars are obstacles that can facilitate reentry in ischemic heart diseases.

The third type of wave is spiral wave (Fig. 6c), also called functional reentry. Spiral waves are a generic behavior of
excitable media [70], which can form in a completely homogeneous system. Spiral waves were demonstrated by Suzuki
et al. [71] in 1963 and by Zhabotinsky [72] in the well-known Belousov–Zhabotinsky reaction in 1970, published in English
in 1973. Winfree [70] also demonstrated spiral waves in experiments of the Belousov–Zhabotinsky reaction published in
1972. Winfree [3,73–75] was the first to introduce spiral wave dynamics to the western scientific community, which he
applied to the genesis and termination of cardiac arrhythmias. He also put forth the concept of phase singularity, which is
the rotation center of a spiral wave. Phase singularity analysis is now routinely used in optical mapping experiments as an
identification of spiral waves in the heart [76–78]. Reentry without the presence of an obstacle was first demonstrated in
the heart in 1977 by Allessie et al. [79] in rabbit atrial muscle. Reentry without an obstacle was also demonstrated in other
studies a decade later [80,81]. With the advances in optical mapping, Davidenko et al. [82–84] showed direct evidence of
spiralwaves in the heart in early 1990’s, and now spiralwave as amechanismof arrhythmias iswidely accepted. Fig. 7 shows
a spiral wave recorded from a cultured neonatal rat ventricular myocyte monolayer and one from the epicardial surface of a
rabbit heart [85]. Note that the heart is a three-dimensional (3D) object, spiral waves seen in experiments are scroll waves
as seen in 3D excitable media, and more complex vortex structures can occur in 3D excitable media [86,87].

The basic properties of spiral waves in two-dimensional (2D)media and their 3D counterparts, scroll waves, were widely
investigated in early studies by Winfree, Keener, and many others [86–91]. A spiral wave can be either stable or unstable,
and instabilities that lead to spiral wave meandering and drifting [92–94] and spiral and scroll wave breakup [95–97] have
been shown in FitzHugh–Nagumo (FHN) type models. The same dynamics have also been demonstrated in cardiac tissue
models [98–104], which are linked to different types of cardiac arrhythmias [105–107]. For example, a stable spiral wave
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Fig. 8. Intracellular Ca2+ cycling dynamics in ventricular myocytes. a. Ca2+ cycling in a normal action potential, in which Ca2+ elevates and decays syn-
chronously in the whole cell. b. A spontaneous Ca2+ waves, in which Ca2+ elevates first in one location and then propagates in the cell as a wave. The
origins of the waves are indicated by arrows. Panels a and b are from a cover image of J. Physiol. provided by Bovo et al. [578]. c. A Ca2+ spiral wave
observed in a ventricular myocyte by Lipp and Niggli [216].

gives rise to monomorphic VT (Fig. 5a) when it occurs in the ventricles, and atrial flutter when it occurs in the atrium. A
quasi-periodically meandering spiral wave gives rise to the quasi-periodic ECG morphology of Torsade de Pointes (Fig. 3b).
A chaoticallymeandering spiralwave gives rise to an irregular ECGpattern for polymorphic VT (Fig. 3c). Spiralwave breakup,
in which spiral waves continuously disappear and are reborn in a chaotic manner, is one of the mechanisms of VF.

3.5. Nonlinear dynamics at sub-cellular scales

Besides electrical excitation andwave conduction dynamics at the cellular and tissue scales, dynamics at the sub-cellular
scale has also been widely studied, particularly intracellular Ca2+ cycling dynamics, such as Ca2+ sparks and Ca2+ waves.
During normal excitation in ventricular myocytes, Ca2+ elevates synchronously inside the myocytes during depolarization
(Fig. 8a), which is trigged by Ca2+ entering the cell from the extracellular space. Under stressed or diseased conditions,
spontaneous Ca2+ waves, either target or spiral waves (Figs. 8b and c), can occur, similar to the electrical waves in tissue.
Since Ca2+ is coupled with voltage via Ca2+-dependent ionic currents, these sub-cellular Ca2+ wave dynamics can cause
action potential dynamics, such as EADs and DADs [108]. In SAN cells, spontaneous Ca2+ releases occur in normal heart
rhythms. A key question is howCa2+ sparks organize to formCa2+ waves,which is awidely studied topic in cardiacmyocytes
as well as in other cell types [109,110]. In a recent study, Nivala et al. [111] showed that this transition is similar to a
second-order phase transition in which criticality occurs. Criticality was also shown to occur in the mitochondrial network
in the transition to mitochondrial oscillations in cardiac myocytes [112,113]. Criticality may have important applications in
normal heart rhythms and arrhythmias, which may link the microscopic molecular fluctuations at the sub-cellular scale
to the macroscopic random appearance of excitations at the tissue scale, such as HRV, irregular PVCs, and unexpected
occurrence of arrhythmias. However, future studies are needed to investigate such mechanistic links, which may provide
the mechanism for the sudden occurrence and unpredictability of cardiac arrhythmias. A challenge in computer modeling
is that it is computationally non-trivial to include the stochastic fluctuations of the single ion channels and the sub-cellular
dynamics in tissue and organ scale models, multi-scale modeling approaches need to be developed to mechanistically link
the microscopic molecular fluctuations to the macroscopic random cardiac events.

3.6. Transitions in the heart

As summarized above, the heart can exhibit many complex excitation and conduction dynamics, and the transitions
between these dynamics are responsible for the transitions from normal heart rhythm to arrhythmias and between differ-
ent types of arrhythmias, such as the transitions shown in Fig. 2. The dynamical mechanisms for these transitions can be
categorized as follows:

(1) Bifurcations via dynamical instabilities. Bifurcations due to instabilities are responsible for many behaviors observed in
the heart. For example, TWA can result from instabilities that cause APD alternans or Ca2+ alternans via period-doubling
bifurcations. The transition from monomorphic VT to polymorphic VT can be caused by a Hopf bifurcation that causes
the transition from a stable spiral wave to a meandering spiral wave. PVCs resulting from EADs can be caused by a dual
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Hopf-homoclinic bifurcation. Limit cycle oscillations originating via different bifurcations are responsible for oscillations
of the SAN cells and automaticity in atrial and ventricularmyocytes. Spatial mode instabilities have been shown to cause
pattern formation in cardiac tissue, such as spatially discordant APD alternans, quasi-periodicity in reentry, and spiral
wave breakup. Pattern formation via spatialmode instability can also occur inside a single cell, such as Turing instability-
induced spatially discordant Ca2+ alternans.

(2) Thermodynamic phase transitions and criticality. A myocyte contains thousands of ion channels which open and close
randomly. The conformational motions of the ion channel proteins and ion flow through them follow thermodynamic
laws (indeed the action potential dynamics in the heart is temperature sensitive) and thus thermodynamic phase
transitions can occur. For example, a second-order phase transition and criticality may be responsible for the
organization of random Ca2+ sparks into oscillations underlying the Ca2+ clock for the SAN cells and DADs in atrial and
ventricular cells. Since DADs occur randomly in cells, the formation of a PVC from DADs in tissue can also be governed
by similar dynamics of thermodynamic phase transitions.

(3) Transitions between multiple solutions. Cardiac tissue can have multiple solutions and the transitions between these
solutions underlie transitions of behaviors of the heart. For example, since bothplanarwave and spiralwave are solutions
of an excitablemedium, the transition from sinus rhythm (planar wave conduction) to VT/VF (spiral wave conduction) is
a transition between the basins of attraction of the two different solutions. On the other hand, defibrillation is a reverse
transition, i.e., it converts VT/VF into sinus rhythm by changing from one solution (arrhythmias) to the other (sinus
rhythm) of the heart.

(4) Synchronization. Synchronization of coupled oscillators is important as a dynamical process in the heart. For example,
synchronization in SAN is key for the formation of electrical impulses for normal heart beating. Failure of synchronization
of chaotic cellular action potential dynamics in the ventricles can lead to complex spatiotemporal conduction patterns
for initiation and maintenance of arrhythmias [6].

(5) Wave competition or entrainment. Wave competition or entrainment is a generic dynamics of excitable media which is
widely present in the heart. In an excitable medium with multiple origins of excitation waves (either target or spiral
waves), waves with slower oscillation frequencies will always be taken over by the faster waves, and eventually, the
whole medium will be entrained by the fastest wave frequency [114], as long as the medium is not so heterogeneous
as to cause conduction block protecting the slower wave frequencies [115]. For example, the formation of the leading
pacemaking site in the SAN region or pacemaker sites for Ca2+ waves and oscillations inside a cell is a consequence
of wave entrainment. Under normal conditions, the heart beats are initiated from the SAN region, and the slower
oscillations in the AVNare suppressed by the impulses from the SAN. Butwhen SANbeats too slowly or stops, oscillations
in the AVNwill emerge and the AVN substitutes for the SAN as the pacemaker of the heart. Anti-tachycardia pacing [116],
which is a clinically used therapy for treatment of slow VT, is a method that uses stimulated waves at faster frequencies
than the frequencies of the electrical waves of the arrhythmia to entrain the heart. When the pacing is then terminated,
the slow VT also often terminates.

(6) Dynamical transients. Dynamical transients are also important in the heart. For example, a sudden change in heart rate
can induce transient alternans, which may also be arrhythmogenic. Some arrhythmias, even VF on occasion (e.g. Fig. 2),
can terminate spontaneously. Spontaneous termination may be due to inherently transient dynamics, such as transient
spatiotemporal chaos [117], and arrhythmias also induce systematic responses (e.g. autonomic tone) that directly change
the parameter settings of the heart.

4. Biophysics of excitable cells and mathematical modeling of the heart

In this section,we review someof the basic biophysical properties of excitable cells andmathematicalmodeling of cardiac
dynamics at different scales. The biophysical theories and the mathematical models have been essential for understanding
the nonlinear and stochastic dynamics in the heart. Specifically, we first describe the electrical circuit theory of excitable
cells, the development of the first action potential model by Hodgkin and Huxley, i.e., the Hodgkin–Huxley (HH) model, and
its simplified version, the FHN model. We then introduce the cardiac action potential, excitation–contraction coupling, and
action potential models, and summarize the mathematical and computational approaches used in modeling the dynamics
in the heart at single ion channel, sub-cellular, cellular, tissue and organ scales.

4.1. Electrical circuit theory of excitable cells

4.1.1. The Nernst potential
Cellmembranes are composed of lipid bilayerswhich are permeable to certain ions. If the ion concentrations are different

inside (ci) and outside (co) of a cell, an electrical potential will develop, called the Nernst potential. The Nernst potential can
be derived using the Boltzmann equation as follows. At thermodynamic equilibrium, the probability of finding a positively
charged ion inside the cell is: pi =

1
Z e

−eφi/kT , and outside the cell is po =
1
Z e

−eφo/kT , where k is the Boltzmann constant, T is
temperature, and φi and φo are the potentials inside and outside of the cell, respectively. On the other hand, the probability
of finding an ion is proportional to its concentration, and thus

ci
co

=
pi
po

=
e−eφi/kT

e−eφo/kT
(1)
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Fig. 9. Ionic concentrations and Nernst potentials in the heart. Left panel: ion concentrations inside and outside a cardiac myocyte. Right panel: the Nernst
potentials for different ion species. Vrest is the resting potential of a myocyte.

which leads to

E = φi − φo = −
kT
e

ln
ci
co

= −
RT
F

ln
ci
co

. (2)

Eq. (2) is the Nernst equation and E is called the Nernst potential. For ions of charge z, the Nernst equation becomes:

E = −
RT
zF

ln
ci
co

. (3)

In cardiac myocytes (Fig. 9), the intracellular potassium ion (K+) concentration ([K+
]i) is around 140 mM and the

extracellular K+ concentration ([K+
]o) is around 4 mM, resulting in a Nernst potential of EK ≈ −95 mV at 37 °C. During

an action potential (the membrane voltage varies roughly from −80 to +50 mV), K+ channels open, and the K+ ions
leave the cell due to a higher intracellular K+ concentration, generating an outward current. For the sodium ion (Na+),
[Na+

]i ≈ 10 mM, [Na+
]o ≈ 145 mM, and ENa ≈ 70 mV. When the Na+ channels open, the higher extracellular Na+

concentration causes Na+ to enter into the cell, resulting in an inward current. For the calcium ion (Ca2+), [Ca2+]i ≈ 0.1µM,
[Ca2+]o ≈ 1.5 mM, and ECa ≈ 128 mV. Like the Na+ current, the Ca2+ current is also an inward current due to the high
positive Nernst potential. The ion gradients are maintained in cardiac myocytes by ion pumps, such as Na+–K+ pump and
Na+–Ca2+ exchanger (NCX). TheNa+–K+ pump transports twoK+ ions into the cell in exchange for threeNa+ ions out of the
cell. The NCX pumps one Ca2+ ion out and three Na+ ions in. The ionic gradients are required tomaintain the cell electrically
polarized and thus to make it to be excitable. For ventricular myocytes, the resting potential is around −80 mV. Since the
Na+ and Ca2+ channels are almost completely closed at very negative potentials, the resting potential is mainly determined
by the Nernst potential of the K+ channels, but is alwaysmore positive than EK due to the limited permeability to other ions.

4.1.2. The Hodgkin–Huxley model
A mechanistic understanding of the action potential of excitable cells was not available until Hodgkin and Huxley

developed the first action potential model of squid giant axon based on their experimental measurements, published in
1952 [118]. This work not only provides a fundamental understanding of action potentials in excitable cells, but also is key
to the discovery of ion channels [119], and is the foundation ofmodern computational electrophysiology, for which Hodgkin
and Huxley were awarded the Noble prize in Physiology and Medicine in 1963.

The basic approach in the HHmodel is to consider the excitation and propagation of action potentials using simple elec-
trical circuits, in which the cell membrane is modeled as a capacitor and the ion channels as variable conductors (Fig. 10a).
Denoting the current through the capacitor as IC and the current through the conductors as Iion, and using the Kirchoff’s
current law, one has,

IC + Iion = 0. (4)

Using the relation between charge (Q ), capacitance (Cm), and voltage (V ), i.e., Q = CmV , one obtains

IC =
dQ
dt

= Cm
dV
dt

. (5)

Inserting Eq. (5) into Eq. (4), one has,

Cm
dV
dt

= −Iion. (6)

In the presence of external stimulation, a stimulation current (Isti), which can be a constant, a time-dependent function, or
a single short pulse, is then added to the right side of Eq. (6), which leads to

Cm
dV
dt

= −(Iion + Isti). (7)
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Fig. 10. The HH model. a. Left panel: schematic plot representing the cell membrane as a capacitor and the ion channel as a conductor. Right panel: the
electrical circuit of the HH model of the giant axon. b. K+ channel conductance (gK) in squid giant axon when voltage was depolarized 25 mV from the
resting potential, and then repolarized back to the resting potential after a certain time period. Upper trace is the clamped voltage trace. Circles are data
from experiments, and the solid lines are fit using the model [118]. c. m∞, h∞, n∞, τm, τh , and τn versus V of the HH model. d. An action potential of the
HH model.

Eq. (7) is the fundamental equation in electrophysiology. Hodgkin and Huxley, in a series of elegant experimental studies in
the squid giant axon, identified a Na+ current (INa), a K+ current (IK), and a ‘‘leak’’ current (IL, now known to be chloride-
mediated). The electrical circuit representation of the giant axon is shown in the right panel of Fig. 10a. The ionic currents
are mathematically formulated based on the Ohm’s law, i.e., INa = gNa(V − ENa), IK = gK(V − EK), and IL = gL(V − EL). The
total ionic current is:

Iion = INa + IK + IL = gNa(V − ENa) + gK(V − EK) + gL(V − EL), (8)
in which gNa and gK are variable conductance depending on V , and gL is a small constant.

The next step is to determine gNa and gK. Fig. 10b shows the original voltage camp experimental data of gK in which V
was first depolarized by 25 mV from the resting potential and then repolarized back to the resting potential after a certain
time period. Hodgkin and Huxley found that the decay of the conductance gK after repolarization could be reasonably well
fit by an exponential decay, i.e., e−t/τ , but the rise after depolarization could not be well fit by 1− e−t/τ as in a linear system,
but could be reasonably well fit by (1 − e−t/τ )4. This observation led them to formulate gK as

gK = ḡKn4 (9)
and n is described by

dn
dt

= αn(1 − n) − βnn (10)
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where ḡK is the maximum conductance, αn and βn are the rate constants which are functions of voltage. n is now called a
gating variable. A widely used alternative form of Eq. (10) is

dn
dt

= (n∞ − n)/τn (11)

where n∞ =
αn

αn+βn
is the steady state of n at a constant V and τn =

1
αn+βn

the corresponding time constant. Under a constant
voltage V , the solution of Eq. (11) is

n(t) = n∞(V ) − [n∞(V ) − n0]e−t/τn(V ) (12)

where n0 is the value of n at t = 0. Assuming that at the resting potential, the open probability of the channel is zero,
i.e., n∞(Vrest) = 0, and at a holding potential higher than the resting potential, the open probability of the channel is non-
zero, i.e., n∞(Vhold) ≠ 0. When the voltage is switched from the resting potential to the holding potential, n0 = n∞(Vrest) =

0, Eq. (12) becomes n(t) = n∞(Vhold) − n∞(Vhold)e−t/τn(Vhold), and thus gK = ḡKn4
= ḡK[n∞(Vhold)]

4
[1 − e−t/τn(Vhold)

]
4.

When the voltage is switched from the holding potential to the resting potential, n0 = n∞(Vhold), Eq. (12) becomes
n(t) = n∞(Vhold)e−t/τn(Vrest), and thus gK = [n∞(Vhold)]

4e−4t/τn(Vrest) which decays exponentially. These solutions agree
with Hodgkin and Huxley’s observation of their experimental data.

n∞ can bedetermined fromexperimental data using Eq. (9) asn∞ = (
gK∞

ḡK
)1/4, where gK∞ is the steady-state conductance

at the holding voltage. τn can be determined by inserting Eq. (12) into Eq. (9) and fit the gK with the experimental data. After
obtaining n∞ and τn, one can then obtain αn and βn. By depolarizing the voltage to different values, one obtains the voltage
dependence of αn and βn. Note that n∞ is a sigmoidal function increasingwith V (Fig. 10c), indicating thatmore K+ channels
open at higher voltages.

The behavior of INa is more complicated. Depolarizing from the resting potential to another holding voltage, INa increases
first but then decreases back to its initial value. To account for this behavior, Hodgkin and Huxley formulated gNa as:

gNa = ḡNam3h (13)

where ḡNa is the maximum conductance. m is the activation gating variable and h is the inactivation gating variable, which
are described by

dm
dt

= (m∞ − m)/τm (14)

and

dh
dt

= (h∞ − h)/τh (15)

wherem∞, τm, h∞, and τh are functions of voltage (Fig. 10c), and can be fit from experimental data [118].m∞ is an ascending
sigmoidal function of V which causes the Na+ channel to open, while h∞ is a descending sigmoidal function of V which
causes the Na+ channel to close. Note that τm ≪ τh, which allows the Na+ channel to be sufficiently activated before it is
inactivated.

The resting potential of the squid giant axon is around −70 mV (note that the resting potential in the original HHmodel
was set around zero). If a stimulus elevates the voltage to about −60 mV, the Na+ channels start to open (see them∞ curve
in Fig. 10c), which causes the voltage to depolarize since ENa is around +50 mV. As voltage depolarizes, more Na+ channels
open, forming a positive feedback loop between Na+ channel opening and voltage. This positive feedback finally shuts off
due to inactivation of the channel (h∞ decreases with voltage). On the other hand, as voltage elevates, more K+ channels
open (n∞ increases with voltage), and opening of the K+ channels tends to bring the voltage back to the resting potential
since EK is lower than −70 mV, forming a negative feedback loop between K+ current and voltage. Since the K+ channel
activates much more slowly than the Na+ channel, i.e., τn ≫ τm (Fig. 10c), the voltage quickly increases to above zero as
the Na+ channel activates, and then with a time delay, the K+ channel activates, bringing the voltage back to the resting
potential. The competition and time delay between the two types of ion channels give rise to an action potential. Fig. 10d
shows an action potential of the HH model, which agrees well with experimental recordings from squid giant axons [118].
Note that the presence of positive and negative feedback loops in this system is not only necessary for the genesis of an action
potential, but also offers a rich spectrum of nonlinear dynamics, including excitable, oscillatory, and bistable behaviors.

Although the HH model was developed to describe the excitation and conduction in squid giant axons, its impact
on electrophysiology, mathematical modeling in biology and nonlinear dynamics have been seminal. It represents the
first quantitative description of action potential in nerve cells; has played a pivotal role in developing the concept of ion
channels leading to the discovery of ion channels with the patch clamp technique (awarded a Nobel prize in 1991) and the
molecular structure of the K+ channel (award a Nobel prize in 2003); has opened a whole research field of quantitative
electrophysiology; and has played a fundamental role in the theoretical and computational study of spiral wave and scroll
wave dynamics. TheHHmodel is still widely used in computational studies, not only for neural dynamics, but also for generic
dynamics of excitable media.
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Fig. 11. Dynamical behaviors of the FHN model. Upper panels: Nullclines and fixed points. Lower panels: u versus time from simulations. Open arrows in a
and c indicate the times when a stimulation pulse is applied to elicit an action potential. a. One stable fixed point, the system is excitable. b. One unstable
fixed point, the system is oscillatory. c. Three fixed points, the systems are bistable.

4.1.3. The FitzHugh–Nagumo model
The HH model is strongly nonlinear and complex, and its solution can be only obtained by numerical simulations. Al-

though not an issue for modern computers, it was nontrivial at the time of Hodgkin and Huxley (who used amechanical cal-
culator, Brunsviga, to numerically solve the differential equations to obtain the action potentials of themodel [120]). Richard
FitzHugh
[121,122] developed an analog computer to study impulse propagation, which led him to simplify the HHmodel to a simpler
one by modifying the van der Pol model. This model turned out to be similar to the model used by Nagumo et al. [123] to
study nerve conduction, which became the now famous FHN model.

The van der Pol model is a second-order differential equation [22]:

d2u
dt2

− ε(1 − u2)
du
dt

+ u = 0. (16)

Using a second variable, v = u −
1
3u

3
−

1
ε
du
dt , one can transform Eq. (16) into two first-order differential equations as

du
dt

= ε


u −

1
3
u3

− v


dv
dt

=
u
ε
.

(17)

For ε > 0, the fixed point (u = v = 0) of the van der Pol model is always unstable and a limit cycle oscillator exists. To
model the excitable system, which has one stable fixed point, FitzHugh [121] modified the second equation in Eq. (16) and
obtained the following equations:

du
dt

= ε


u −

1
3
u3

− v


dv
dt

= u − βv + a.
(18)

Eq. (18) is thewidely known FHNmodel. The nullclines of the FHNmodel (Fig. 11) are similar to those of the HHmodel [124],
and thus the FHN model can well capture the general dynamics of the HH model.

The steady states or fixed points of Eq. (18) are determined by the intersections of the two nullclines (Fig. 11). The
stabilities of the fixed points are determined by the eigenvalues of the Jacobian:

J =


εf ′

u −ε
1 −β


. (19)
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Fig. 12. Cardiac action potential. a. A voltage trace showing an action potential of a ventricular myocyte and the corresponding trace of the whole-cell Ca2+
concentration. b. A schematic diagram of the ventricular myocyte action potential model developed by Zeng et al. [126].

The fixed point is stable when both the trace (τ ) of matrix J is smaller than zero, i.e., τ = εf ′
u − β < 0 and the determinant

(∆) is greater than zero, i.e., ∆ = ε(1 − βf ′
u) > 0, which occurs only when f ′

u is small or negative. When there is only
one stable fixed point, the system is excitable (Fig. 11a), and when there are two stable fixed points, the system is bistable
(Fig. 11c). The fixed point may become unstable when f ′

u is positively large which can only occur in the middle segment of
the N-shaped nullcline (Fig. 11b). In this case, a limit cycle occurs, resulting in oscillations.

The FHN model played a key role in studying wave propagation dynamics in excitable media. It exhibits the generic
dynamic features of an excitable cell and thus makes possible the dynamical understanding of excitable media; it allowed
large-scale computer simulation possible at a time when the computer power was still limited; and it has made analytical
treatment possible in many theoretical studies.

4.2. The cardiac action potential and modeling

4.2.1. The cardiac action potential and excitation–contraction coupling
Different from the action potentials in nerves, the duration of a cardiac action potential is much longer, typically lasting

several hundred milliseconds. Fig. 12a shows a typical action potential of a ventricular myocyte, which is traditionally
divided into five phases, i.e., phase 0 to phase 4. Phase 0 is the upstroke of the action potential which is caused by the
activation of voltage-dependent Na+ channels. Phase 1 is the early repolarization phase in which the Na+ channels rapidly
inactivates, and the transient outward K+ channels causes the voltage to decrease, after which they in turn inactivate. Phase
2 is the plateau phase, in which L-type of Ca2+ channels (LCCs) are activated to oppose the K+ currents and maintain the
action potential plateau. Phase 3 is the late repolarization phase in which the voltage quickly returns to the resting potential
as inward rectifier K+ channels reopen. Phase 4 is the resting potential, which is around −80 mV for ventricular myocytes.
During a cardiac actionpotential,manydifferent types (or sub-types) of ion channels are activated [125],whichplay different
roles in action potential morphology and dynamics. Fig. 12b shows a schematic diagram of ionic currents and intracellular
Ca2+ cycling in a ventricular myocyte action potential model developed by Zeng et al. [126].

The function of the heart is to pump blood to the whole body, which is achieved via the rhythmic contraction of
the ventricles in response to elevated intracellular Ca2+. During an action potential, the intracellular Ca2+ concentration
increases and eventually decreases back to the resting state afterwards (Fig. 12a). The increase of Ca2+ concentration is
caused by opening of LCCs permitting Ca2+ entry from the extracellular space, which triggers additional Ca2+ release from
internal Ca2+ stores located in the sarcoplasmic reticulum (SR). The SRCa2+ release is themajor component of Ca2+ elevation
in mammalian cardiac myocytes. The Ca2+ brought in via LCCs is later pumped out by NCX, maintaining the balance of
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Ca2+ in the cells. The elevated Ca2+ increases the binding of Ca2+ to the contractile proteins and results in cell shortening,
which generates the mechanical force for contraction of the heart. In addition to regulating contraction, Ca2+ is also a major
signaling molecule which directly and indirectly regulates a number of ionic currents, and thus affects the properties of the
action potential. Therefore, intracellular Ca2+ follows the change of voltage, but Ca2+ also affects voltage, forming feedback
loops between voltage and Ca2+. In other words, voltage and Ca2+ are bi-directionally coupled.

4.2.2. Action potential models
The action potentials of cardiac myocytes have been mathematically modeled following the same modeling strategy of

the HH model. The governing equation for voltage is Eq. (7) with the total ionic current, Iion, being the summation of many
different types of cardiac ionic currents (see Fig. 12b), i.e.,

Iion = INa + ICa,L + IKs + IKr + IK1 + INCX + INaK + · · · . (20)

In most of the action potential models, the ionic currents and gating variables are formulated following the same method
as in the HH model.

The first cardiac action potential model was developed in 1962 by Denis Noble [127] who modified the HH model
by adding the inward K+ rectifier, IK1, and slowing the time-dependent K+ current (IK) to simulate the action potential
of Purkinje cells. Over the past 50 years, the cardiac action potential models have become much more detailed and
quantitative, representing a variety of cell types (e.g., SAN cell [128], Purkinje fiber [127], atrial myocyte [129], and
ventricular myocyte [130]) from different species (e.g., mouse [131], rat [132], guinea pig [133], rabbit [134], dog [135],
and human [136]). There have been over 100 cardiac action potential models developed [137], most of them are available at
CellML (http://models.cellml.org/cellml). The models can be classified by their generation. The first generation models only
include a limitednumber of ionic currents, includingNa+ current, Ca2+ current, andK+ current. The representative examples
are the Beeler–Reuter model [130] and the phase I of Luo–Rudy (LR1) model [133]. The Na+ and K+ concentrations are fixed
parameters in thesemodels. Ca2+ concentration is simply regulated by Ca2+ current and intracellular Ca2+ cycling dynamics
is not modeled. The models are typically described by less than 10 differential equations. The second generation models
include the regulation of the intracellular Na+ and K+ concentrations as well as intracellular Ca2+ cycling dynamics. The
1994 Luo–Rudymodel [138] can be considered as the prototype of this generation, even though earlier models fromNoble’s
group had taken into account intracellular Ca2+ cycling dynamics [139]. The ionic currents in the second generation models
are much more detailed than those in the first generation models. These models usually contains 10–20 ionic currents, and
are described by 20–40 ordinary differential equations with a large number of parameters and complex equations. Some
models use Markov transitions to simulate single channel opening and closing and may contain hundreds or thousands of
randomly simulated channels [140]. Models also have been developed to include biological signaling [141,142]. The third
generation models [143], which are still in the developmental stage, include spatiotemporal Ca2+ cycling dynamics as well
as sarcolemma ion channel distributions (as described later). In this type of modeling, the myocyte is no longer considered
as a point but a spatially extended entity, which can be used to simulate the spatiotemporal Ca2+ cycling dynamics and
the corresponding excitation–contraction coupling dynamics of the myocytes. An intermediate phase of this generation of
model was developed by Winslow’s group [144], the so-called common pool models, in which the Ca2+ cycling system
includes thousands of CRUs and the RyRs and LCCs are described by Markov transitions and simulated stochastically.

Several precautions should be mentioned regarding action potential models. (1) In most cases, it is not possible to
reproduce or code the model into a computer program from the original publication due to typographical errors in
parameters values, units, and even equations. A request of the source code from the original authors is usually needed. CellML
is a good resource for recovering a correctmodel. (2) Sincemost of themodelswere fit to one set of experimental data and/or
at a certain pacing cycle length (PCL), the robustness and parameter sensitivity have not been well-tested. One needs to be
cautiouswhen extending thesemodels tomake predictions under different conditions other than those originally simulated,
especially for quantitative predictions. For example, a study by Cooper et al. [145] shows that the action potential models
of the same species from different groups exhibit very different behaviors, such as very different APD restitution properties.
(3) The first and second generation models are low-dimensional models developed phenomenologically based on whole-
cell data. These models treat the cell as an entity with one or a few compartments. However, a cell is a spatially-extended
entity with thousands of sub-compartments. How to, or under what conditions, one is justified in representing a spatially-
extended system by a low-dimensional model does not have a clear answer. Themean-field method from statistical physics
is a useful theoretical tool for treating systems composed of a large number of random elements, but can only be used
when a system is away from criticality. For example, in a recent study [111], we show that the transition from Ca2+ sparks
to Ca2+ wave is a second-order phase transition in which criticality occurs. How to represent the Ca2+ transient using
a low-dimensional model when Ca2+ waves are present is an open question [146]. (4) Some of the models may be very
sensitive to initial conditions and parameter changes, and somemay require very small time steps for numerical integration
to avoid numerical errors. (5) From a physiological perspective, a model with more physiological details is better at relating
dynamical features to specific molecular properties. However, due to limited fitting processes in developing these models,
a more detailed model is not necessarily better at illuminating the mechanisms underlying the dynamical features. Simple
lower dimensional models which capture the essential physiological details phenomenologically are often superior for this
purpose, and are computationallymuch less demanding. Therefore, depending on thepurpose of research, onemay choose to

http://models.cellml.org/cellml
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Fig. 13. Myocyte coupling and tissue model. a. Left: a schematic plot of coupled myocytes via gap junctions. Right: a schematic plot of a gap junction.
b. A 1D chain of resistively coupled cardiac cells represented by electrical circuits. c. Fiber orientations on the epicardial surface of a dog heart, reproduced
from [154]; d. Transmural fiber orientation from epicardium to endocardium; the arrows mark the fiber directions.

combinemodels with different levels of complexity to explore dynamical mechanisms and relate the dynamics tomolecular
entities which can be manipulated experimentally.

4.3. Modeling electrical wave conduction in tissue and organ

Cardiac cells are coupled via gap junctions (Fig. 13a) so that the action potential can conduct from one cell to the next.
Gap junctions are a type of ion channels which allow ions to pass from one cell to the other. When one cell’s membrane
potential is higher than its coupled neighbors, ions pass through the gap junctions according to Ohm’s law to elevate the
membrane potentials of the neighboring cells, and vice versa.

In computer modeling, one can couple the neighboring cells via gap junction conductance to form a tissue model. For
example, for a one-dimensional (1D) chain of cells as in Fig. 13b, the governing differential equation for voltage of the ith
cell in the chain is:

Cm(i)
dV (i)
dt

= −I ion(i) + gj[V (i − 1) + V (i + 1) − 2V (i)] (21)

in which Cm is the capacitance of a single cell (around 100 pF for a ventricular myocyte), Iion is the single cell current instead
of the current density, and gj is the gap junction conductance between two cells, which is about 600 nS for well coupled
ventricular myocytes, either side-to-side or end-to-end [147]. Similarly, for a 2D array of coupled cells, the equation for the
(i, j)th cell in the array is:

Cm(i, j)
dV (i, j)

dt
= −I ion(i) + gj[V (i − 1, j) + V (i + 1, j) − 2V (i, j)] + gj[V (i, j − 1) + V (i, j + 1) − 2V (i, j)]. (22)
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However, in normal ventricular tissue, a myocyte has on average 11 neighboringmyocytes; this number is reduced to about
6 in ischemic tissue [148]. Therefore, a regular array in which a cell has 4 neighbors in 2D or 6 neighbors in 3D may not be
an ideal model for cardiac conduction. As shown by Hubbard et al. [149], different arrangements of cells in space can give
rise to different conduction speeds. For an irregularly distributed cell network, the equation becomes

Cm(i)
dV (i)
dt

= −I ion(i) +

N
k=1

gj(k)[V (k) − V (i)] (23)

whereN is the total number of neighbors and gj(k) is the gap junction conductance between the ith cell and its kth neighbor,
which can be the full gap junction conductance or a portion of it, depending on how the two cells are coupled. Eq. (23) can
also be used to simulate cardiac tissue composed of different types of cells, such aswhenmyocytes are coupled to fibroblasts
in diseased heart tissue [150,151].

In most of the computer simulation studies, cardiac tissue are treated as a syncytium (i.e., continuous in space) with
the voltage described by a partial differential equation, a standard reaction–diffusion equation. For example, for a 2D tissue
model, the equation for voltage is

∂V
∂t

= −Iion/Cm + Dx
∂2V
∂x2

+ Dy
∂2V
∂y2

(24)

where Dx is the diffusion constant in the longitudinal direction and Dy is the diffusion constant in the transverse direction.
The diffusion constants are related to the gap junction conductance or resistance as

Dx =
1

Cmρxχ
and Dy =

1
Cmρyχ

(25)

where ρx and ρy are the resistivities in the longitudinal and transverse directions and χ is surface-to-volume ratio of the
myocyte. In cardiac tissue, the membrane capacitance is Cm = 1 µF/cm2, the longitudinal and transverse resistivities were
experimentally [152] measured to be ρx ≈ 0.4 k� cm and ρy ≈ 3.6 k� cm, and the surface-to-volume ratio can be set as
χ ≈ 2500 cm−1 (for a 20× 20× 100 µm3 cell, χ is close to 2000 cm−1). Using these numbers, one obtains the longitudinal
diffusion constant as Dx = 0.001 cm2/s and the transverse as Dy = Dx/9. Due to the difference in diffusion constants,
CV in the x-direction (θx) is different from that in the y-direction (θy), which is called anisotropy. The anisotropic ratio,
θx/θy =


Dx/Dy, varies in different regions of the heart and plays important roles in cardiac arrhythmias [153]. In many

computer simulation studies, an isotropic medium has been used, formulated as

∂V
∂t

= −Iion/Cm + D


∂2V
∂x2

+
∂2V
∂y2


(26)

which is obtained by the transformations x′
= x

√
Dx/D and y′

= y

Dy/D. Note that this type of scaling is only truly valid for

continuous and electrically homogeneous media. Cardiac tissue is electrically heterogeneous (i.e. Iion is a function of space)
and non-continuous (due to finite cell sizes), one needs to be cautious when Eq. (26) is used for simulations, especially when
the cells are weakly and heterogeneously coupled and/or the tissue is electrically heterogeneous [149].

The real heart is a 3D object with a complex structure in which muscle bundles and sheet structures form and rotate
in the ventricles (Fig. 13c and d). Due to fiber direction change in space, the diffusion rate also changes in space, and the
governing equation for voltage is then

∂V
∂t

= −Iion/Cm + ∇ · D⃗∇V (27)

where D⃗ is the diffusion tensor, which can be determined once the local fiber direction is known [103,104,154].
The models described above only consider conduction via gap junction, which are called monodomain models. In real

cardiac tissue, electrical conduction occurs in both the intracellular and extracellular space in cardiac tissue, and the
conductance and anisotropic ratios differ in the two spaces [155]. Due to this difference, under certain conditions, such
as strong electrical stimulations (e.g., defibrillation shocks), the electrical behaviors may not be properly described by a
monodomain model, such as the virtual electrode and dog-bone excitation patterns [156–158]. Under such conditions, a
bidomain model is needed, which is given as [159–161],

χ


Cm

∂V
∂t

+ Iion


= ∇ · (σ⃗i∇V ) + ∇ · (σ⃗i∇φe)

∇ · [(σ⃗i + σ⃗e)∇φe] = −∇ · (σ⃗i∇V )

(28)

where V = φi −φe is the transmembrane voltage as used in the monodomain models, φi and φe are intracellular and extra-
cellular potentials, σ⃗i and σ⃗e are the intracellular and extracellular conductivity tensors, respectively.When the intracellular
and extracellular anisotropic ratios are the same, i.e., σ⃗i = ασ⃗e, the bidomain equations can be reduced to a monodomain
equation since φe is eliminated from Eq. (28). Comparison of monodomain and bidomain models on cardiac conduction
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have shown that the differences are small in the absence of stimulation current [162,163]. Therefore, a bidomain model is
needed when one simulates the effects of strong stimulation, such as defibrillation, but a monodomain model is adequate
for simulating cardiac excitation and conduction when no large external stimulations are present. The monodomain model
is computationally much faster than the bidomain model.

The heart is an organ with complex fiber structure and boundaries, and thus the extension of tissue modeling to organ
modeling is not straightforward even though the governing equations for voltage are still the same as Eqs. (27) or (28).Whole
heart modeling was first carried out by Hunter and colleagues [154,161] who developed a canine ventricle model with the
geometry and fiber structure obtained via histology. This model has been widely used for simulations of the mechanics and
excitations of the anatomical heart [164]. Whole heart models of other species, such as rabbit [165,166] and human [167],
have also been developed (see a recent review by Trayanova [168] for more details).

Due to the high computational requirements, especially organ scale simulations, advanced computational and numerical
methods are needed. One widely used numerical algorithm was first implemented by Rush and Larsen [169] to effectively
deal with the stiff change of the gating variables. For example, the gating variable n is updated in the computer program as

n(t + ∆t) = n∞ − [n∞ − n(t)]e−∆t/τn (29)
where ∆t is the time step of integration. Another widely used numerical algorithm is operator splitting, which allows
adaptive time steps in tissue scale simulations [170,171]. Computational methods using graphic processor units have also
been developed [172], and additional numerical methods of cardiac computation are reviewed by Plank et al. [173].

4.4. Stochastic modeling

Stochastic modeling has been a very important component of electrophysiology, especially after the development of
patch clamp technology that allows recording of random single channel openings and closings. An ion channel is a complex
protein inserted into a biological membrane, and form a pore allowing ions to pass through, which opens and closes
stochastically (Fig. 14a). Ion channels are typically selective, allowing only specific ion(s) to pass through the pore, such
that the ionic current is determined by both voltage gradient and ion concentration gradient across the membrane. The
openings of ion channels are not completely random, since they are biased by voltage and other factors. For example, the
K+ channel has four voltage sensors controlling the open probability of the pore, which can open only when all four are in
a certain configuration regulated by voltage (Fig. 14b).

Stochastic ion channel openings and closings are modeled using Markov transitions. The simplest model is the random
transition between an open state and a closed state (Fig. 14c), with α and β being the transition rates which can be constants
or functions of voltage. However, an ion channel can havemany states. For example, the K+ channel has four voltage sensors
which sense the membrane voltage to regulate the channel. The channel opens when its four voltage sensors are in their
vertical positions (Fig. 14b), but it is closed when anyone of the sensors is in its tilted position. Therefore, there are four
close states (C1 to C4) and one open state (O). C1 is the close state in which one voltage sensor is in the tilted position and
the other three are in their vertical positions, C2 is the state in which two voltage sensors are in their tilted positions, and so
on. Assuming that the sensors move independently of each other, then if α is the transition rate for a sensor changing from
the tilted position to the vertical position and β is the reverse rate, one can then construct a five-state Markov model for
the K+ channel with the corresponding rate constants shown in Fig. 14d. Markovmodels for various ion channels have been
developed for cardiac myocytes as well as other cell types based on patch clamp recordings. Fig. 14e is a Markov model of
Na+ channel developed by Clancy and Rudy [140].

With a Markovmodel, one can carry out simulations to study the stochastic dynamics of a single channel or an ensemble
of channels. Assuming that at time t , the channel is in the O state, and that at t+∆t the probability that the channel changes
from O to C is β∆t , then the probability that the channel remains in the O state is (1 − β∆t). One then randomly selects a
number r between 0 and 1 from a uniform random number generator to decide whether the channel remains in the O state
or transitions to the C state based on the two probabilities. Specifically, if r falls in [0, β∆t], the channel changes its state
to C, and if r falls in (β∆t, 1], the channel remains at O. When the channel is in the C state, then the probability that the
channel changes from C to O is α∆t , and the probability that it remains in the C state is then (1 − α∆t).

To simulate an ensemble of channels using the above method, the computation becomes more burdensome as the
channel number N increases, since at each time step N random numbers need to be generated. Another way to simulate
an ensemble of ion channels is to use a Markov chain that describes the number of channels in different states. For example,
for N channels described by the simple two-state model, one can model the number of channels at the open state by a
Markov chain as shown in Fig. 14f, and use the same random simulation method to simulate the transitions. One can also
write down the Master equation for the scheme in Fig. 14f as

dpn
dt

= (N − n + 1)αpn−1 + (n + 1)βpn+1 − [(N − n)α + nβ]pn. (30)

The steady-state solution of Eq. (30) is a binomial distribution

p∞

n =
N!

n!(N − n)!
pn(1 − p)N−n (31)

where p = α/(α + β) which is the steady state open probability of a single channel.
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Fig. 14. Ion channel and stochastic modeling. a. Left: a schematic plot of an ion channel. Right: an experimental recording of a single channel current. ‘‘O’’
indicates open and ‘‘C’’ indicates closed. b. A schematic plot of a model of K+ channel’s open and closed states, reproduced from Jiang et al. [579]. The
channel is closed when one or more of the 4 voltage sensors are positioned as on the left and the channel is open when all 4 sensors are positioned as on
the right. c. A simple two-state model. d. A five-state model for the K+ channel. e. A Markov model for Na+ channel [140]. f. A Markov chain model for an
ensemble of N channels described by the two-state model.

The accuracy of the simulations in the two methods described above strongly depends on the time step ∆t . An exact
stochastic simulation method was developed by Gillespie for chemical reactions [174], which can be used to simulate
stochastic ion channel openings and closings. For example, for the two-state model in Fig. 14c, the simulation can be done
as follows. Assume at time t , the channel switches from C to O, and the probability (p) that the channel remains in the O
state obeys

dp
dt

= −βp (32)

whose solution is p(t) = e−βt . This process can be exactly simulated by predicting the dwell time of the O state using the
following equation:

τ = −(ln r)/β (33)

where r is a random number uniformly distributed in (0, 1). Then at time t + τ , the channel switches from the O state to
the C state. Once the channel is switched to the C state, then another random number r is generated to determine the dwell
time of the C state using τ = −(ln r)/α, and so on. For an ensemble of ion channels, one can also use this method to perform
stochastic simulations using theMarkov chain in Fig. 14f. Since α and β are usually functions of voltage, which changes with
time during an action potential, the algorithm needs to be modified for variable transition rates [143,175].

Using the Markov model and stochastic simulations, the total ionic current of an ensemble of ion channels is then
formulated as

Ix = ḡxNo(V − Ex) (34)

where ḡx is the single channel conductance, and No is the total number of open channels which fluctuates randomly with
time.

In many action potential models, ion channels have been modeled using Markov models with deterministic simulations
to generate the whole cell current. For example, for the two-state model, if the probability that the ion channel is in the
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open state is Po and the probability that the ion channel is in the closed state is Pc , with Po + Pc = 1, then the differential
equation for Po is

dPo
dt

= α(1 − Po) − βPo (35)

which is the same equation used by Hodgkin and Huxley to describe the gating variables in the HH model. Similarly, one
can write down the Master equations for other states for a multiple-state Markov model and solve the equations jointly to
obtain Po. For an ensemble of N identical ion channels, the total ionic current is then given by

Ix = ḡxNPo(V − Ex). (36)

Since an individualmyocyte contains hundreds of thousands of ion channels, stochastic simulation of the individual channels
in thewhole cell is computationally demanding, let alone tissue and organ scale simulations. Fox [176] developed a Langevin
equation for the gating variables of the HH formulation to allow fast stochastic simulations. For example, for the gating
variable n of the K+ current, the corresponding Langevin equation is

dn
dt

= αn(1 − n) − βnn + ξn(t) (37)

where ξn(t) is a Gaussian noise with ⟨ξn(t)⟩ = 0 and ⟨ξn(t)ξn(t ′)⟩ = Γnδ(t − t ′), and the noise strength Γn is described by

Γn =
αn(1 − n) + βnn

N
(38)

where N is the total number of channels.

4.5. Sub-cellular modeling

The myocyte is a spatial entity with a complex sub-cellular structure. Fig. 15a is a schematic plot illustrating the
ultrastructure in a ventricular myocyte, which is composed of a spatially distributed network of organelles including
the SR, mitochondria, and myofibrils, and a transverse tubular system to facilitate effective communication between the
intracellular and extracellular space. SR is the major Ca2+ store inside the cell which exhibits a complex network structure
surrounding themyofibrils, called network SR. The regulation of Ca2+ cycling in ventricularmyocytes is shown schematically
in Fig. 15b. Ca2+ release from the SR is through RyR channels clustered in a distinct region called junctional SR. Normally, a
RyR cluster is co-localized with a LCC cluster in the T-tubule membrane, forming a CRU or a couplon. A ventricular myocyte
contains thousands of CRUs, estimated between 20,000 and 50,000. Ca2+ entry from the voltage gated LCCs activates the
RyRs, causing them to open and release Ca2+ from the SR. This process is called Ca2+-induced Ca2+ release (CICR), and
constitutes a positive feedback loop. This collective process results in discretized Ca2+ release events called Ca2+ sparks
[20,21]. Ca2+ entry from the LCCs or from the SR is re-uptaken into the SR via a Ca2+ pump called sarcoplasmic/endoplasmic
reticulum Ca2+ ATPase (SERCA) or extruded out of the cell by NCX. In human or large animals, 60%–70% of the total
Ca2+ activating the myofilaments is released from the SR, with only 30%–40% entering through the LCCs. The high Ca2+
concentration caused by Ca2+ entry from the LCCs and release from the SR activates contraction of the myofilaments to
initiate shortening of the cell. In the absence of LCC openings, the Ca2+ released from the SR via random opening of one or
two RyRs may also activate other RyRs to open to result in a Ca2+ spark. Alternatively, Ca2+ diffusion from the neighboring
CRUs may also be enough to trigger a spark, especially if the myocyte is Ca2+-overloaded. CICR is a universal mechanism
for Ca2+ release dynamics in biological cells [177], which is responsible for the complex Ca2+ signaling dynamics in many
other organs as well as the heart [178–181].

Computational models of either a single CRU or a network of CRUs have been developed at different scales of spatial
resolution and network sizes [143,182–186]. The CRU models were developed based on the local regulation scenario
depicted in Fig. 15b. The governing equation for Ca2+ is a reaction–diffusion equation, e.g., for myoplasm:

βm
∂cm
∂t

= Dm∇
2cm + Jm (39)

where cm(x, y, z, t) is the Ca2+ concentration, βm is the Ca2+ buffering constants, which are instantaneous functions of the
Ca2+ concentration in the corresponding spaces, following Wagner et al. [187], Jm is the net Ca2+ flux, and Dm is the Ca2+
diffusion constant. The myocyte model developed by Nivala et al. [143] contains 100 × 20 × 10 CRUs (Fig. 15c). A shown
in Fig. 15d, each CRU contains a junctional SR which is diffusively connected to the network SR, and a dyadic space, which
is diffusively connected to the myoplasmic space. Extracellular Ca2+ enters the dyadic space via a leak conductance or LCCs
that are simulated stochastically. Ca2+ is released from the junctional SR through its associated cluster of RyRs to the dyadic
space with the RyRs simulated stochastically. Each CRU contains 10 LCCs and 100 RyRs. Ca2+ is either extruded from the cell
via the NCX or re-uptaken back up into the SR via the SERCA pump. The CRUs are coupled via Ca2+ diffusion in the SR and
in the myoplasm, i.e., the SR spaces and the myoplasmic spaces of the CRUs are independently coupled in the 3D space as
in Fig. 15c via Ca2+ diffusion, forming a bidomain model.



24 Z. Qu et al. / Physics Reports ( ) –

Fig. 15. Sub-cellular structure and modeling. a. A schematic plot of ultrastructure of a portion in a ventricular myocyte. TT—transverse tubule;
MF—myofibril; Mito—mitochondrion; SR—sarcoplasmic reticulum. b. A schematic plot of intracellular Ca2+ signaling regulation and its coupling to voltage.
c. A coupled CRU network representing a ventricular myocyte. d. A schematic plot of a computational CRU with the corresponding spaces and Ca2+ fluxes.
Myo—myoplasm; DS—dyadic space (as indicated by the patched area in b); jSR—junctional SR; NSR—network SR; JLCC—Ca2+ flux from the LCC cluster;
JRyR—Ca2+ flux from the RyR cluster; Jup—Ca2+ uptake flux; and Jdiffu—Ca2+ diffusion flux.

4.6. Some notes on experimental technologies

The development of voltage clamp, patch clamp, and optical mapping technologies allows accurate measurement of the
electrical and Ca2+ cycling properties, from random dynamics of single ion channels to the spatiotemporal voltage and Ca2+
wave dynamics in the whole heart. Voltage clamp is a technique in which a feedback electrical circuit is used to control the
voltage across the cell membrane so that one can measure the time course of whole-cell ionic currents at a fixed voltage, as
shown by Hodgkin and Huxley [118,188]. This experimental technique allows detailed characterization of different types of
ion currents in excitable cells, which has been instrumental for electrophysiology aswell as quantitative computermodeling
of excitable cells. Patch clamp [189,190] is a special voltage clamp technique that can measure currents through single ion
channels at a fixed voltage,which leads to the direct demonstration of the existence of ion channels andwas awarded aNoble
prize in 1991. This technique allows one to observe themicroscopic behaviors of an ion channel, study themechanisms of ion
channel opening and closing, and link themicroscopic ion channel dynamics to themacroscopic properties of thewhole-cell
ionic current. Optical mappings [191] are techniques using voltage-sensitive or Ca2+-sensitive dyes and digital cameras to
measure spatiotemporal dynamics of voltage and Ca2+ in cells and tissue. An advantage of the optical mapping is that it can
have measurements of high spatial resolutions so that one can study both the temporal and spatial dynamics in the heart,
such as the complex spiral wave dynamics. In addition to their importance for experimental biology, these technologies
havemade the quantitative modeling possible and are necessary to validate theoretical predictions by comparing computer
simulation results with experimental measurements. In the past century, the integration of the experimental technologies
with computational and theoretical methods have played a fundamental role in improving the mechanistic understanding
of the biological mechanisms and the nonlinear dynamics of cardiac excitations and contractions.

5. Dynamics at the molecular and sub-cellular scales

At the molecular and sub-cellular scales, the dynamics are dominated by stochastic fluctuations, but they are not purely
random, even for a single ion channel. There are hundreds of thousands of ion channels distributed in themembrane of a cell,
which are assumed to act independently with respect to each other, but they are globally coupled via membrane voltage,



Z. Qu et al. / Physics Reports ( ) – 25

0

1

-1

-2

-3

-4

-5

-6

-7

Fig. 16. Single channel dynamics. Closed time distribution of an ion channel in a log–log plot showing a power-law distribution with a −3/2 exponent.
Source: Reproduced from McGee et al. [192].

forming a globally coupled system. Inside the cell, ion channels (namely, the SR Ca2+ release channels) form clusters and
are locally coupled via Ca2+ diffusion. The SR Ca2+ release channels are also activated by Ca2+, forming a positive feedback
loop to regulate SR Ca2+ release. A rich spectrum of spatiotemporal dynamics of Ca2+ cycling at the sub-cellular scale has
been demonstrated, which couples with the voltage dynamics to give rise to cellular excitation and contraction dynamics.
Here we review some of the dynamics observed in the single channel and sub-cellular scales.

5.1. Power-law distribution of ion channel closed times

An interesting observation of ion channel behavior in experiments is that the closed time distribution (but not the open
time distribution) exhibits a power-law with a unique −3/2 exponent [192–194]. Fig. 16 shows a closed-time distribution
of a delayed rectifier K+ channel in neural cells [192], showing a power-law distribution across several order of time scales.
Theories have been developed to understand the underlying mechanisms.

If one assumes the channel is governed by a two-statemodel as in Fig. 14c, the dwell-time distribution of the closed state
obeys the following equation:

dpc(τ )

dt
= −αpc(τ ) (40)

which gives rise to

pc(τ ) ∝ e−ατ . (41)

Even one assumes that the channel follows the Markov scheme in Fig. 14d, a power-law closed-time distribution cannot
be obtained. In a study by Millhauser et al. [195], the authors assumed that an ion channel can have many configurations
and energy states, and added many closed states to the model. By solving the Master equation, they were able to obtain a
closed-time distribution with a −3/2-power law, p(τ ) ∝ τ−3/2, under the conditions that the number of closed states is
very large (N → ∞) and the rate constants are roughly equal. The fractal behavior was also studied in simulations by Lowen
et al. [196]. In another study by Goychuk and Hanggi [197], using a Fokker–Planck–Kramer model, the authors could also
derive a −3/2-power law closed-time distribution under the limit of very slow diffusion.

Although theoretical studies of both groups can give rise to the power-law distribution under certain limited conditions,
they are not unique. A much simple mechanism of a unique −3/2-power distribution of the dwell-time has been shown
in general nonlinear dynamical systems, the so-called on–off intermittency [198–200]. On–off intermittency is a noise or
chaos induced bursting behavior in nonlinear systems. The simplest system exhibiting such a behavior is [199]:

dx
dt

= [a + ξ(t)]x − x3 (42)

where ξ(t) is a Gaussian white noise with ⟨ξ(t)⟩ = 0 and ⟨ξ(t)ξ(t ′)⟩ = Dδ(t − t ′). In the absence of noise, when a < 0,
the steady state x = 0 is stable and when a > 0, it is unstable. In the presence of noise and for a close to zero, a bursting
behavior occurs in which the system lingers around x = 0 for a certain period of time and then randomly exits and comes
back to this state, exhibiting an intermittent behavior. The distribution of the dwell time τ around x = 0 (the off state) can
be analytically derived as [199],

p(τ ) ∝ τ−3/2e−(a2/4D)τ (43)
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Fig. 17. Ca2+ sparks and dynamics. a. A normal Ca2+ spark, reproduced fromBridge et al. [580]; b. An ultralong Ca2+ spark, reproduced fromZima et al. [205].
Panels a and b are space–time plots with the vertical axis being space and the horizontal axis being time. Note the difference in time and space scales
between a and b. c and d. Nullclines and fixed points of a Ca2+ spark model, reproduced andmodified from Stern et al. [207]. In both cases, nopen = 0 is also
a nullcline (not plotted in the panels). In c, the nullcline nopen = 0 intersects with nullcline 2 to form the only stable fixed point (at [Ca2+]JSR ∼ 0.7mM and
nopen = 0), and nullclines 1 and 2 have no intersection. The system is monostable and excitable. Green trance is a trajectory of a spark. In d, the nullclines
have three intersections with two being stable (one at [Ca2+]JSR ∼ 0.75 mM and nopen = 0, and the other labeled by the solid circle) and one unstable
(labeled by the open circle). The system is bistable. The red and blue traces are two trajectories under two conditions with the red one trapped by the stable
fixed point and the blue one escaped. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

which shows that a stronger noise (larger D) or a less deep energy well (smaller a) gives rise to a better −3/2-power law
distribution. Whether this mechanism is applicable to the ion channel closed-time distribution needs further investigation
using specific models that describe the ion channel opening and closing.

5.2. Dynamics of Ca2+ sparks

Intracellular Ca2+ signaling plays a ubiquitous role in biological functions, and the general principles and dynamics are
universal even though the details of Ca2+ signaling pathways may vary in different cell types [12,177,201,202]. Ca2+ sparks
are considered as the elementary Ca2+ release events for Ca2+ signaling in heart cells [21], which are collective behaviors of
the Ca2+ release channel clusters. In the heart, Ca2+ not only modulates many biological signaling processes [201], but also
directly mediates contraction [12]. Under normal conditions, Ca2+ rises during the action potential and returns to the base-
line after the action potential, oscillating in tunewith the cardiac cycle (and thus the term Ca2+ cycling is used in cardiology).

A Ca2+ spark is a result of collective opening of RyRs in a CRU. When one or two RyRs open, a small Ca2+ release event
occurs, which is not strong enough to elicit the positive feedback loop (i.e., CICR) to cause more RyR channels to open. This
pure random event is called a Ca2+ quark. When several RyRs happen to randomly open at the same moment or the LCCs
open, the amount of Ca2+ released into the dyadic space (see Fig. 15) is large enough to initiate CICR and thus recruit more
RyRs to open, resulting in a large release event which is called a Ca2+ spark. A spark is not a purely random event, but since
the number of RyRs in a CRU is limited (∼100 RyRs), stochasticity still has a very important influence on Ca2+ sparks. Ca2+
sparks have been widely studied and characterized in cardiac myocytes [21], and the underlying dynamical mechanisms
responsible for their initiation and termination are still under debate [203,204]. The duration of the Ca2+ spark in cardiac
myocytes is about 50 ms (Fig. 17a), but in an experimental study, Zima et al. [205] showed that partially blocking the RyR
open probability induced long sparks lasting up to 1 s (Fig. 17b). The mechanism of long-lasting sparks can be understood
in terms of nonlinear dynamics as shown in modeling studies by Hinch [206] and by Stern et al. [207]. Under the normal
conditions, Ca2+ entry from the LCCs or from random opening of several RyRs activates the CICR process which causes most
of the RyRs to open resulting in a large Ca2+ release. Depletion of the SR and/or inactivation of the RyRs terminate the
release process, bringing the system back into the unique steady state (see Fig. 17c). Under conditions relevant to long-
lasting sparks, however, the system has three steady states, exhibiting bistability (Fig. 17d). As CICR induces a large release
state, the system transits from the lower steady state to the upper steady state. If the system were deterministic, it would
remain at the upper steady state forever. However, due to the limited number of RyRs, random fluctuations will cause the
exit of the system from the upper steady state to the lower steady state, terminating the spark.
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Fig. 18. Spark duration distribution. a and b. Spark duration distributionmeasured from an experiment. c and d. Spark duration distribution from computer
simulations (bar) and theoretical predictions (line).
Source: Panels a and b are reproduced from Zima et al. [205] and c and d from Hinch [206].

Therefore, for the two cases, the mechanisms of spark termination are different. In the former case, spark termination
is by SR depletion or RyR inactivation that shuts off the CICR. A spark is a transient process in a mono-stable system with
random variations due to limited number of RyR channels, and the distribution of spark duration is expected to be a normal
distribution around its average. In the latter case, the CICR remains active to facilitate the second stable steady state, but
stochastic fluctuations cause the system to escape the stable steady state, terminating the spark. This is a typical Kramer
escape problem in a bistable stochastic system and the duration of a spark is roughly the first-passage time crossing the
potential barrier. Based on the Kramer theory [208], the mean first-passage time is ⟨τ ⟩ ∝ exp(∆U/D) where ∆U is the
height of the potential barrier and D is the noise strength. The probability density of the first-passage time τ follows an
exponential distribution, i.e.,

p(τ ) =
1

⟨τ ⟩
exp(−τ/⟨τ ⟩). (44)

A detailed analytical treatment specific to Ca2+ spark durationwas carried out byHinch [206],who obtained a spark duration
distribution similar to Eq. (44).

In the experiments by Zima et al. [205], the spark distribution under the normal condition is close to a normal distribution
(Fig. 18a), but when the RyR open probability is partially blocked to result in long-lasting sparks, the spark distribution tends
to exhibit an exponential tail (Fig. 18b). Computer simulations by Hinch (Figs. 18c and d) [206] and by Stern et al. [207] show
similar spark duration distributions, i.e., for normal sparks, the distribution is close to a normal distribution, but for long-
lasting sparks, the distribution tends to exhibit an exponential tail.

5.3. Criticality in the transition from Ca2+ sparks to waves and oscillations

Ca2+ waves and oscillations are ubiquitous phenomena in biology [209–213]. In cardiac cells, intracellular Ca2+ waves
have been widely observed [214–217], including target waves and spiral waves (Fig. 8). Ca2+ waves and oscillations play
important roles in oscillations of the SAN cells that generate sinus rhythm [24], but are pathological when they occur in the
ventricles [218] by causing DADs and EADs [108,218].



28 Z. Qu et al. / Physics Reports ( ) –

c

a b

Fig. 19. Phase transition and criticality in Ca2+ signaling. a. Snapshots of Ca2+ concentration from a layer of a myocyte model [143]. The simulation was
done by holding voltage at −80 mV and a higher than normal extracellular Ca2+ concentration. q—quark; s—spark; c—cluster; w—wave. b. Cluster size
distributions from a computer simulation for a low and a high extracellular Ca2+ concentration. c. Same as b but from experiments in a mouse ventricular
myocyte [111].

A central question of Ca2+ signaling is how the Ca2+ sparks organize to give rise to Ca2+ waves and oscillations. Experi-
mental studies [109,212–215] have shown a hierarchy of Ca2+ signaling dynamics, including quarks, sparks, spark clusters,
abortive and persistent Ca2+ waves. Using computer simulations of an IP3R cluster array model [219], Falcke first showed
that nucleation from Ca2+ sparks to large spark clusters triggering Ca2+ waves was responsible for intracellular Ca2+ oscil-
lations. Later studies by Falcke and colleagues [220–222] have shown that the whole-cell Ca2+ oscillations are intrinsically
stochastic, which is not an oscillatory behavior of a IP3R cluster but rather an emergent behavior of the IP3R cluster network
of the whole cell. In a recent study, Nivala et al. [111] combined computer simulation and experiments to address the ques-
tion of how local random Ca2+ signaling events self-organize into global Ca2+ signaling events in cardiac myocytes. They
showed that the transition from Ca2+ sparks to oscillations undergoes a critical transition, similar to the second-order phase
transition in statistical physics or self-organized criticality in natural systems [223–225].

The Ca2+ signaling hierarchy has been observed by elevating Ca2+ (or IP3 in many other cell types). When Ca2+ level is
low, the system is dominated by random quarks and sparks, when Ca2+ is high, it is dominated by spark clusters and waves.
In the transition from sparks towaves, all types of the behaviors in this hierarchy can be observed (Fig. 19a) [143], i.e., quarks,
sparks, spark clusters, and waves co-exist. A Ca2+ quark (labeled as ‘‘q’’ in Fig. 19a) is a pure random and small release event
caused by random opening of one or two RyRs. A Ca2+ spark (labeled as ‘‘s’’ in Fig. 19a) is a discretized release event of a CRU
via collective opening of many RyRs. The Ca2+ released in a sparkmay diffuse to cause its neighboring CRUs to fire, or neigh-
boring CRUsmay fire coincidentally together, forming spark clusters (labeled as ‘‘c’’ in Fig. 19a).When a cluster becomes large
enough, itmay initiate a propagating Ca2+ wave (labeled as ‘‘w’’ in Fig. 19a), depending on the status of the surrounding CRUs.

Statistical analyses of the clustering of Ca2+ sparks show that when Ca2+ in the cell is low or the CRU coupling is weak,
the system is dominated by quarks and sparks, and the spark cluster size distribution is exponential (Fig. 19b). As Ca2+ level
increases, the distribution changes toward a power-law. This same clustering behavior is observed in permeabilized mouse
ventricular myocytes (Fig. 19c). The power-law clustering indicates that the system is in a critical state in which events of
different spatial scales co-exist.

Since at low Ca2+ levels, the system is dominated by random quarks and sparks, the whole-cell Ca2+ remains at a low
level with small fluctuations (Figs. 20a and b). Close to the critical state, Ca2+ waves occur occasionally which result in Ca2+
spikes at the whole-cell level and irregular Ca2+ oscillations. As the Ca2+ level becomes even higher, it passes the critical
region, and the whole-cell Ca2+ oscillates more regularly. These Ca2+ oscillation behaviors can be seen in the inter-spike
interval histograms obtained from long simulations of a smaller system size [226]. Close to criticality, the distribution of the
inter-spike interval exhibits a fat-tail while at the high Ca2+, the distribution becomes Gaussian (Fig. 20c).

Criticality in Ca2+ cycling dynamics is also observed using a simplified model (Fig. 21), in which the Ca2+ spark is
represented by an agent model [111]. Specifically, a Ca2+ spark is modeled by a three-state cycle (Fig. 21a): excitable→
excited→recovery→excitable. The transition from the excitable state to excited state is random with a transition rate α.
The CRUs are coupled in a 3D array with nearest-neighbor coupling and coupling strength γ . This model allows one to
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Fig. 20. Transition to whole-cell Ca2+ oscillations. a. Whole-cell Ca2+ concentration versus time for different Ca2+ levels recorded from amouse ventricular
myocyte [111]. b. Whole-cell Ca2+ concentration for different Ca2+ levels from a computer model. c. Histogram of inter-pulse interval (ISI, defined in
panel b) when the system is near the criticality, showing a fat-tail distribution. d. Histogram of inter-pulse interval when the Ca2+ level is high, showing a
Gaussian distribution [226].

separate the effects of spark rate (α) and CRU coupling strength (γ ). When the CRUs are uncoupled (γ = 0), the cluster size
distributions are exponential for small α values. As α increases to a critical value (α = 0.008), the cluster-size distribution
becomes a power-law (Fig. 21b), which agrees with the traditional percolation theory [227,228]. However, the value of α
estimated from experimental data and simulations, as well as previous experiments [214], is much lower than that required
for a power-law distribution in percolation theory.When the CRUs are coupled, a much lower spark rate is required to reach
the critical state. For example, for α = 0.0001 with a non-zero γ , the cluster size distribution changes from an exponential
distribution to a power-law distribution at large γ values (Fig. 21c). The strong coupling between CRUs is important for
Ca2+ waves. Even though a power-law cluster distribution can occur via percolation, due to the high spark probability, the
excitable space for propagation is much less than the one formed via strong CRU coupling (Fig. 21d), and thus the latter case
creates a much better environment for a wave to propagate in space.

However, the CRU network in the real cell is not homogeneous [229], and thus self-organization of spark clusters is
also not uniform in space, such that waves tend to originate from preferred locations. Theoretically, when the distribution
of CRUs is uniform inside a cell, the wave initiation sites should occur randomly and uniformly in space [111]. This type
of wave pattern has been observed in many experiments [213–215,217]. But in other experiments, waves have also been
observed to originate repetitively from the same locations in a cell [230–233], indicating that heterogeneities in the CRU
network is important. Moreover, both behaviors can occur in the same cell at different Ca2+ levels [111]. The question is
how stable pacemaker sites self-organize in a cells as Ca2+ level increases. Nivala et al. [226] have carried out computational
and theoretical study to answer this question. The authors first showed in computer simulations of a heterogeneous CRU
network model that at low Ca2+ levels, Ca2+ waves originate randomly in space and time, but as the Ca2+ level increases to
high values, Ca2+ waves originate from the same location. They also developed a theory of random entrainment to explain
the underlying mechanism. Due to the broad and fat-tail distribution of the inter-spike interval at low Ca2+ levels (Fig. 20c),
a firing site of Ca2+ waves is difficult to be entrained by other firing sites since the difference in firing frequencies is smaller
comparing to the broadness of the inter-spike interval distribution. At high Ca2+ levels, the inter-spike interval distribution is
a narrow Gaussian distribution (Fig. 20d), the difference in the firing frequencies of two different sites allowsmore effective
entrainment. At this case, the fastest firing site effectively entrains the slower ones, acting as a pacemaker region to entrain
the whole cell.

Criticality as a mechanism for the transition from Ca2+ sparks to Ca2+ waves may have several implications for the
heart. For example, once a system is in a critical state, a tiny perturbation can grow into a macroscopic fluctuation due
to the power-law behavior [223,234]. This provides a general theoretical framework for how single channel fluctuations
may lead to macroscopic large random fluctuations at the cellular scale as well as the tissue scale, such as the irregularly
occurring DADs or PVCs. In the SAN cells, local Ca2+ release plays a vital role in pacemaking activity [235]. Local Ca2+ releases
generating Ca2+ waves via criticalitymay provide a sub-cellularmechanism accounting for HRV and for its fractal properties
[236,237].
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Fig. 21. Power-law clustering in an agent-based model. a. Schematics of the three-state model of a CRU. b. Cluster-size distributions for different α when the
CRUs are uncoupled. c. Cluster-size distribution for different γ -values with a small α. d. Time-lapse images of 2D slices of the state spaces for the uncoupled
(top) and coupled (bottom) systems over a time period equal to the spark duration, both at criticality. The color scale gives the initial time of the spark.
Source: Repoduced from Nivala et al. [111].

Besides target waves, spiral Ca2+ waves can also occur in cardiac myocytes, as shown in Fig. 8c. The mechanisms of
intracellular spiral Ca2+ wave formation and dynamics and their roles in excitation–contraction coupling have not been
well studied, and need further investigation in both experiments and computational modeling.

6. Nonlinear dynamics in single myocytes

Both atrial and ventricular myocytes are excitable cells, which are subjected to external driving during sinus rhythm.
Under normal conditions at normal rates of stimulation, these cells exhibit a regular response to the stimuli. At fast rates of
stimulation and/or under diseased conditions, beat-to-beat dynamical changes can occur, which are the cellular dynamics
underlying arrhythmias at the organ level. In the past several decades, many cellular dynamics have been identified and
investigated in experiments and theoretical studies. In this section, we summarize most of these cellular dynamics and the
underlying mechanisms. Specifically, we cover the following dynamics: APD alternans, chaos, hysteresis, and the effects
of short-term cardiac memory; intracellular Ca2+ alternans, its coupling with voltage, and sub-cellular Ca2+ alternans; the
bifurcations leading to EADs and the nonlinear dynamics of EADs under periodic pacing; and finally the mechanisms of the
DADs.

6.1. APD alternans and chaos

TWA is amanifestation of APD alternans in the ECG. There are two origins of instabilities in cardiacmyocytes that can lead
to APD alternans: instabilities arising from the voltage system and instabilities arising from the intracellular Ca2+ cycling
system. In the voltage system, APD restitution curve is a nonlinear function useful for analyzing the dynamics, with its
slope being a control parameter that causes the period-doubling bifurcation resulting in alternans. The steep slope and
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nonlinearity of APD restitution curve can cause other complex APD dynamics, such as chaos. Moreover, memory effects
plays an important role in the nonlinear cellular APD dynamics.

6.1.1. APD restitution
The duration of the cardiac action potential depends on the heart rate, which is called APD restitution. In most cases,

APD is shorter at faster heart rates, but under some conditions and species, APD can lengthen at faster rates. APD restitution
is usually quantitatively measured using an S1S2 pacing protocol (Fig. 22a): the cell is first paced periodically at a slow
pacing rate for many (S1) beats to let the APD equilibrate, and then a premature S2 stimulus is applied to elicit an extra
action potential. The time interval between two action potentials is called the diastolic interval (DI) (graphically defined in
Fig. 22a). By varying the S1S2 interval, both DI and APD are varied, and by plotting APD of the S2 beat against the preceding
DI, one obtains an APD restitution curve (Fig. 22b). The S1S2 APD restitution curve can be denoted by a one-variable function:

a = f (d) (45)

where a is the APD of the S2 beat and d is the DI preceding the S2 stimulation (see Fig. 22a).
The APD restitution curve can be a monotonically increasing function of DI, but it can also be non-monotonic, in which

APD does not always decrease as DI decreases. Fig. 22c shows APD restitution curves measured from a human heart
[238,239], which increase first, then decrease, and increase again as the S1S2 coupling interval increases. This type of
restitution gives rise to dynamics that are different from those of the monotonic relationships. Moreover, APD restitution
curves are different for different S1 PCLs. This is because myocytes settle into different steady states for different S1 pacing
rates, resulting in different S1S2 responses. This effect is called short-term cardiac memory.

6.1.2. APD alternans and chaos induced by steep APD restitution
Assuming that the myocyte is periodically paced, and the APD depends only on its immediately preceding DI, one can

then rewrite Eq. (45) as

an+1 = f (dn) = f (T − an) (46)

where an and an+1 are the APDs of the nth beat and the (n + 1)th beat, respectively, dn is the DI of the nth beat, and T is
the PCL. The relation an + dn = T is used in Eq. (46) (see Fig. 23a for a graphical definition). The steady-state APD and DI
are denoted as as and ds, and they also satisfy as + ds = T . Eq. (46) is simply an iterated map and can be used to study the
nonlinear action potential dynamics under periodic stimulation. This method was first elucidated by Nolasco and Dahlen in
1968 [52]. The steady state becomes unstable when

slope =
df
ddn


d=ds

= −
df
dan


a=as

> 1 (47)

i.e., when the slope of the APD restitution curve at the steady state is greater than one, the steady state is unstable. At slow
pacing, the DI is long and thus the slope of the restitution curve is smaller than one, and the steady state is stable. As the heart
rate becomes faster, the DI becomes shorter, such that the slope of the APD restitution curve at the steady state becomes
greater than one, then the steady state becomes unstable. The growth of a small perturbation to the steady state follows the
equation:

δan+1 =
df
dan

δan = (−slope)n+1δa0. (48)

Therefore, δan+1 is positive and negative on alternative beats, which makes an+1 = as + δan+1 to be longer and shorter
on alternative beats. Since the APD restitution curve is nonlinear, the growth rate of δan+1 is attenuated by the shallow
slope region of the curve, and eventually the system may asymptotically settle into a stable alternating state, resulting in a
period-2 APD pattern, i.e., APD alternans.

Cardiac myocytes (and any excitable cells) have a property called refractoriness, i.e., a cardiac myocyte cannot be excited
by an external stimulus during the duration of an action potential and subsequent recovery period. This unresponsive period
is called the refractory period, which means that when the S1S2 interval is shorter than a certain value, no action potential
can be elicited. In periodic pacing, when the PCL is shorter than the refractory period, not all the stimuli are able to elicit an
action potential, but a portion can. The ones that elicit action potentials are called capture beats, and the ones that do not
are called non-capture beats. For example, when every other stimulus results in an action potential, the pattern is denoted
2:1 capture (or block). In general, if for every n stimuli, m action potentials are elicited, the resulting state is labeled as n:m
capture in the literature. By considering the property of refractoriness, the iterated map is then rewritten as,

an+1 =


f (T − an), if T > an + d0
f (2T − an), if T < an + d0 < 2T
f (3T − an), if 2T < an + d0 < 3T
...

(49)
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Fig. 22. APD restitution. a. The S1S2 protocol: the cell is paced (S1) with a period T to a steady state, and then a single stimulus (S2) with a certain
S1S2 interval is applied. An S1S2 APD restitution curve is obtained by varying the S1S2 interval and plot the APD of the S2 beat against its preceding DI.
b. Monotonic APD restitution curve: APD versus DI measured from a rabbit ventricular myocyte [581]. c. Non-monotonic APD restitution curve: APD versus
S1S2 interval measured from a human heart at two different S1 PCLs.
Source: Panel b is reproduced from Goldhaber et al. [581] and c from Franz et al. [238].

where an +d0 is defined as the refractory period. Note that d0 is theminimumDI at which an action potential can be elicited
and if DI is shorter than d0, stimulation fails.

Eq. (49) is a form of a shift map which can generate chaos when the slope of the function f is greater than one. Differing
from the standard shift map in which f is a linear function, f in Eq. (49) is a nonlinear function, such that other complex
dynamics can occur. Fig. 23b shows a bifurcation diagram by plotting APD against PCL obtained by iterating Eq. (49) with a
steep APD restitution curve. As the PCL decreases, bifurcations from the stable steady state (1:1) to alternans (2:2) and from
2:2 alternans to 2:1 block are observed, and more complex action potential dynamics are seen at even faster pacing rates.
Note that the bifurcation sequence from the iterated map: 1:1 → 2:2 → 2:1 → 4:2 → ID → 4:1 → 8:2 → ID, is very
similar to the one observed in an experiment by Chialvo et al. [58] (Fig. 23c): 1:1 → 2:2 → 2:1 → 4:2 → 3:1 → 6:2 →

4:1 → 8:2 → ID, where ID stands for irregular dynamics. This indicates that the nonlinear dynamics caused by steep APD
restitution may be indeed responsible for the complex dynamics observed in real cardiac myocytes.

When the APD restitution curve is non-monotonic, different bifurcation sequences become possible. Alternans, chaos,
and other complex responses caused by non-monotonic APD restitution curve are also observed in experiments [61], and
the bifurcations can be simulated using iteratedmaps [61,240] as well as action potential models [241,242]. A key difference
in bifurcation diagrams for the two different types of APD restitution curves is that chaos only occurs after 2:1 block for the
monotonic APD restitution curve, but chaos can occur before 2:1 block for the non-monotonic APD restitution curve. This
is because in the former case, chaos is a result of a shift map in which 2:1 block serves as the folding process, while in the
latter case, chaos is a result of a unimodal map [240].

6.1.3. Effects of cardiac memory
During an action potential, voltage and the ionic currents can be directlymeasured, butmany other quantities are hidden

and cannot be directly measured, such as the slow recovery of ion channels from their previous openings or the rebalancing
of the ion concentration after a change in heart rate. Therefore, the action potential depends on the pacing history, a property
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Fig. 23. APD alternans and chaos due to steep APD restitution. a. Relationship between APD, DI, and period T during periodic pacing, i.e., an + dn = T . b. A
bifurcation diagram showing APD versus T (basic cycle length) obtained using Eq. (49) with the APD restitution function: an+1 = f (dn) = 220−180e−dn/60 .
The bifurcation sequence shows: 1:1 → 2:2 → 2:1 → 4:2 → ID→ 4:1 → 8:2 → ID. ‘‘ID’’ stands for irregular dynamics or dynamical chaos. For each PCL,
the first 40 APDs are discarded and the next 100 APDs are plotted. In the alternans (2:2) regime, there are only two APD values though 100 APDs are plotted,
however, in the chaotic regime, the values of the 100 APDs are all different, resulting in scattered plots. Stimulation failure was assumed when DI < 10ms.
c. A bifurcation diagram showing the relationship between the basic cycle length of pacing and beat-to-beat action potential amplitudes in a sheep cardiac
Purkinje fiber, reproduced from Chialvo et al. [58]. The observed bifurcation sequence is: 1:1 → 2:2 → 2:1 → 4:2 → 3:1 → 6:2 → 4:1 → 8:2 → ID.

known as short-term cardiac memory [239]. As shown in Fig. 22c, the S1S2 APD restitution curves are different for different
S1 PCLs, and thus a family of S1S2 restitution curves can be obtained, which is called restitution portrait [243]. Due to this
memory effect, the slope of the S1S2 APD restitution curve is only qualitatively, but not quantitatively, predictive for the
onset of APD alternans [244–246]. In principle, one can construct, from experimental data, an APD restitution functionwhich
depends not only on the immediately preceding DI but also on earlier APDs and DIs as [247],

an+1 = f (dn, an, dn−1, . . .) (50)

and thus use this higher-dimensional iterated map to analyze the nonlinear dynamics.
In a study by Fox et al. [63], a 2D iterated map model was developed to study the effects of memory on APD alternans as

follows:

an+1 = f (dn,Mn+1) = (1 − αMn+1)f0(dn)
Mn+1 = g(Mn, dn, an) = e−dn/τ [1 + (Mn − 1)e−an/τ ]

dn = T − an
(51)

where M is the memory variable and f0(dn) is the S1S2 restitution function. The relation between M , a and d is shown in
Fig. 24a. It can be easily shown via linear stability analysis that the memory in the model suppresses the instability; in other
words, alternans might be expected to occur when the slope of the S1S2 restitution curve is greater than one, but it does not
because of the presence of memory (Fig. 24b). In Eq. (51), α = 0 is the case of no memory, and in the presence of memory
(α > 0), APD is shorter which effectively reduces the slope of APD restitution. This type of memory can also suppress spiral
wave instability [248] for the same reasons.

However, memory can also promote APD instabilities. Figs. 24c and d show a case in which memory promotes APD
alternans in an action potentialmodel in the presence of a transient outwardK+ current (Ito) [249]. In the bifurcation diagram
in Fig. 24c, alternans occurs between PCLs of 490 ms and 930 ms, corresponding to DIs of 345 ms and 640 ms, respectively.
The S1S2 APD restitution curves recorded from the samemodel exhibit a strongmemory (Fig. 24d), i.e., they strongly depend
on the S1 PCL. The two restitution curves shown in Fig. 24d exhibit slope>1 overmuch narrower DI ranges than the DI range
exhibiting alternans in Fig. 24c. This indicates that memory promotes alternans. The strong memory effect is not caused by
a single current [63,248], but results from interactions between multiple ionic currents [249]. More complex APD dynamics
due to this type of memory effect were observed in simulation studies [250,251], and both the alternans and complex APD
dynamics were shown in experiments two decades ago [252].

The alternans shown in Fig. 24c occurs at much slower pacing rates than alternans shown in many other studies, such as
the alternans shown in Fig. 23. APD alternans can also occur at slow pacing rates in the absence of Ito, and is due to steep APD
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Fig. 24. Effects of cardiac memory on APD alternans. a. Schematic plot showing the relation between APD, DI, and the memory variable M. b. The eigenvalue
of the returnmapmodel (solid) and the negative slope of the APD restitution curve (dotted) at the fixed point versus T . Dashed linemarks—1. c. APD versus
PCL (T ) from the model in the presence of Ito . d. APD restitution curves of two different S1 PCLs from the samemodel as in c. Inset are the slopes of the two
restitution curves.
Source: Panels a and b were reproduced from Fox et al. [63], and panels c and d from Qu et al. [249].

restitution andmemory effects [253], similar to the case shown in Figs. 24c and d. Even though APD restitution is important
for APD alternans occurring at both fast and slow pacing rates, the ionic causes are different. For APD alternans induced
by fast pacing, the steep slope of the APD restitution is mainly caused by the recovery of the LCCs [65,254,255]. For APD
alternans during slow pacing, the steep slope is caused by the steady-state ICa,L or INa [253], and the system exhibits large
memory effects.

In the presence of memory or instabilities that do not originate from voltage, the APD restitution slope can no longer
predict the onset of alternans. Using a stochastic pacing protocol and transfer function method [256,257], de Lange and
colleagues can predict the onset of alternans in cardiac cells in the presence of memory or instabilities originating from
intracellular Ca2+ cycling.

6.1.4. Hysteresis
Hysteresis in action potential dynamics during periodic pacing is widely observed in cardiac cells and tissue [258–263].

Specifically, when a cardiac cell is first paced with a ramping-up protocol in which the pacing rate changes from slow to
fast, and then with a ramping-down protocol in which the pacing rate changes from fast to slow, one observes an overlap
region in which two action potential behaviors co-exist for the same PCL. For example, an overlap region almost always
occurs between n:1 capture and n+1:1 capture;Walker et al. [260] showed that the onset of alternans is different using the
different pacing protocols; and coexistence of a steady statewith alternans and other dynamicswas also observed. There are
two possible causes for these hysteresis behaviors: one is a result of cardiac memory and the other is caused by bistability.

In cardiac cell or tissue, the memory effect can last from seconds to minutes. When the system changes from one type
of behavior to another, it can take many beats for the system to adjust to its new steady-state behavior. When one uses the
ramping-up and ramping-down pacing protocol with a limited number of pacing beats for each PCL (which is usually the
case in experiments), a hysteresis loop forms. This is likely a mechanism for the hysteresis observed by Walker et al. [260]
and in other experiments.

Most of the hysteresis observed in periodically-paced cardiac cells are bistable behaviors occurring with the transitions
betweenn:1 capture andn+1:1 capture. This canbe obtainedby solving the iteratedmapequation for steady-state solutions,
and a simple example is as follows. Assuming a linear APD restitution curve described by an+1 = a0 + αdn, and solving
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Fig. 25. Steep fractional SR Ca2+ release and Ca2+ alternans. a. A fractional SR Ca2+ release curve measured from experiments, reproduced from Shannon
et al. [273]. The x-axis is the Ca2+ content in the SR and the y-axis the amount of Ca2+ released from the SR. b. Bifurcation showing Ca2+ released from the
SR versus total Ca2+ in the cell using the iterated model Eq. (53).

Eq. (49) for the steady-state solutions of the 1:1 capture and the 2:1 capture, one obtains the overlap region as

a0 + (1 + α)d0 < T <
a0 + (1 + α)d0

1 − α
(52)

which shows that the overlap region is wider for a steeper APD restitution curve (larger α). Eq. (52) also shows that there
is always an overlap region between the 1:1 capture and the 2:1 capture as long as the slope of the APD restitution curve
is positive, i.e., α > 0. Similarly, one can obtain the overlap region of T for the transitions between any n:1 and n + 1:1
captures. Since the true APD restitution curve is usually nonlinear, the steady-state solution of 1:1 capture may be unstable
in the overlap region, and thus APD alternans occurs, leading to the co-existence of 2:1 capture with APD alternans.

6.2. Intracellular Ca2+ alternans

Since Ca2+ and voltage are bi-directionally coupled, instabilities originating from the voltage system that cause APD
alternans and other complex APD dynamics also cause alternans and complex dynamics in intracellular Ca2+ cycling.
However, the regulation of Ca2+ cycling system is also very complex, and includes positive feedback loops (e.g., CICR)
which can cause instabilities in Ca2+ cycling, such as Ca2+ alternans. Indeed, Ca2+ alternans can be observed experimentally
when APD is fixed (i.e., under the condition of voltage or action potential clamp) [264–266], demonstrating that instabilities
do occur in the Ca2+ sub-system. Moreover, spatially discordant Ca2+ alternans inside a myocyte has also been observed
in many experimental studies [265,267–271]. Dynamical mechanisms of Ca2+ alternans and spatially discordant Ca2+
alternans have been developed, and some of them are supported by experimental evidence.

6.2.1. Steep fractional SR Ca2+ release as a mechanism of Ca2+ alternans
The first mechanism of Ca2+ alternans, proposed by Eisner et al. [272], postulated that Ca2+ alternans is due to a steep

nonlinear dependence of SR Ca2+ release upon the diastolic SR Ca2+ load immediately preceding the release (i.e., a steep
fractional release–load relationship). Fractional SR Ca2+ release is an experimental observation inwhich the fraction of Ca2+
released from the SR during a paced beat depends on howmuch Ca2+ that the SR contains right before the stimulation. This
dependence is typically a steep nonlinear function (Fig. 25a) [273]. An instability can occur leading to alternans due to the
steep slope of this function. Based on the argument of Eisner et al., Shiferaw et al. [274] developed a Ca2+ cycling model to
simulate Ca2+ alternans and showed theoretically that the steep fractional SR Ca2+ release can indeed cause an instability to
result in Ca2+ alternans. Qu et al. [240] developed an iteratedmapmodel that can incorporate the fractional release function
measured from experiment to study the bifurcations. The iterated map model is:

ln+1 = ln − g(ln) + h(cpn+1), (53)

where ln is the Ca2+ content in the SR right before the next beat, i.e., the SR Ca2+ load at beat n; g is the function describing
the fractional release, which depends on the Ca2+ load in the previous beat; and h is the function describing the re-uptake
of Ca2+ back into the SR via the SERCA pump, which is a function of peak Ca2+ at the present beat (denoted as cpn+1). c

p
n+1 is

calculated as the total Ca2+ (b) in the cell less the Ca2+ loaded to the SR (ln), plus the Ca2+ released from the SR [g(ln)], i.e.,

cpn+1 = b − ln + g(ln). (54)

Linearizing Eq. (53) around the steady state gives rise to

δln+1 = (1 − g ′)(1 − h′)δln = λδln. (55)
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The steady state becomes unstable when(1 − g ′)(1 − h′)
 > 1, (56)

where g ′
=

dg
dln


ln=ls

and h′
=

dh
dcpn+1


ln=ls

are the slopes of the fractional release and the uptake functions at the steady state

(ls). Ca2+ alternans occurswhen λ < −1. Using a fractional SR Ca2+ release function fitted from experimental data (Fig. 25a),
a period-doubling bifurcation leading to Ca2+ alternans and chaos can be observed by iterating Eq. (53) (Fig. 25b).

Evidence supporting this mechanism has been shown in experiments [265,266,275] and in simulations using detailed
action potential models [275–278].

6.2.2. A mean-field theory of Ca2+ alternans
The steep fractional Ca2+ release as a mechanism of Ca2+ alternans requires that diastolic SR Ca2+ load before each beat

alternate concomitantly with Ca2+ release. This is challenged by experimental studies in rabbit ventricular myocytes by
Picht et al. [279] and in cat atrial myocytes by Hüser et al. and others [280,281], who showed that under some conditions,
SR refills to the same level before each beat yet cytosolic Ca2+ alternans still occurs, which disagrees with the prediction
of the above mechanism. Note that the theory of steep fractional SR Ca2+ release causing Ca2+ alternans was developed
phenomenologically based on whole-cell measurements, ignoring the microscopic or mesoscopic features of Ca2+ sparks. It
is widely accepted that Ca2+ sparks are the elementary events in Ca2+ cycling. A Ca2+ spark is a collective Ca2+ release event
of a cluster of RyRs in a CRU via CICR, and a ventricular myocytes may contain more than 20,000 CRUs which are coupled
via Ca2+ diffusion in the cytosol and SR. Using the properties of Ca2+ sparks and a mean-field approach, Cui et al. [282]
and Rovetti et al. [283] developed another theory of Ca2+ alternans, which links the microscopic spark properties to the
macroscopic Ca2+ alternans and provides a unified mechanistic interpretation to many experimental observations [284].

There are three critical properties of a CRU or a spark: randomness (of Ca2+ spark activation), refractoriness (of a CRU
after a Ca2+ spark), and recruitment (Ca2+ sparks inducing Ca2+ sparks in adjacent CRUs). At any time, a CRU is in one of the
three states (Fig. 26a): recovered, firing, or refractory. A recovered CRU may fire spontaneously due to high SR Ca2+ load or
be activated directly by the opening of the LCCs. These types of sparks are called primary sparks (Fig. 26b). Ca2+ released
from a primary spark may diffuse to its neighboring CRUs, which may recruit the recovered CRUs to fire [285]. This type
of sparks is called secondary sparks. After firing, a CRU remains refractory for a finite period of time. Due to the random
opening properties of LCCs and RyRs, sparks are probabilistic events. The probability of a primary spark is assumed to be α
and the probability of a primary spark to recruit a neighboring CRU to fire is assumed to be γ . The recovery of the RyRs and
SR refilling in a CRU may give rise to spark amplitude restitution [286,287] and also random refractory periods [288,289].
The probability of a CRU remaining in the refractory state after its previous release is assumed to be β . If there are a total of
N0 CRUs in the system, and at the kth beat, Nk sparks occur, then at the (k+ 1)th beat, there are βNk unrecovered CRUs and
(N0 − βNk) recovered CRUs. The number of primary sparks in this beat is then α(N0 − βNk), and thus (1 − α)(N0 − βNk)
recovered CRUs are available for recruitment. If a fraction f of these CRUs are recruited to fire, then the total number of
sparks at (k + 1)th beat is

Nk+1 = α(N0 − βNk) + (1 − α)(N0 − βNk)f . (57)
As illustrated in Fig. 26b, recruitment can only occur when a neighboring CRU is in its recovered state. Therefore, the fraction
f of recruitment is not simply the recruitment probability γ , but a complex function that is determined by the distribution
of CRUs in different states. In principle, an exact formulation of f cannot be obtained due to the complex spatial coupling
between CRUs and spatial clustering. But under the assumption that the system is well mixed so that the firing probability
of a CRU is uniform in space, a formulism for f can be derived as a function of α, β, γ , and Nk using a mean-field approach
[282,283], which is:

f (α, β, γ ,Nk) = 1 − [1 − αγ (1 − βNk/N0)]
M (58)

where M is the number of nearest neighbors of a CRU, which is 4 in a two-dimensional array and 6 in a three-dimensional
array. Note that in a realmyocyte, a CRUmaybe capable of recruiting not only its nearest neighbors, but also non-neighboring
CRUs if the Ca2+ diffusion in the cytosolic space is fast, such thatM can be larger than 6. Eq. (57) is an iterated map and can
be used to study the beat-to-beat spark dynamics, and thus predict the occurrence of Ca2+ alternans.

Based on Eqs. (57) and (58), no alternans can occur in the following three cases: (1) If there is no recruitment (γ = 0),
then f = 0, such that Eq. (57) becomes a linear equation with the steady state being Ns = αN0/(1 + αβ); (2) If α = 1, all
sparks are primary, and no recruitment can occur (even if γ > 0), such that Eq. (57) also becomes a linear equation with
the steady state of Ns = N0/(1 + β); (3) If the CRUs fully recover from their previous firings (β = 0), then the right side of
Eq. (57) becomes a constant and Ns = N0 − (1−α)N0(1−αγ )M . Therefore, for alternans to occur in Eq. (57), refractoriness,
recruitment, and a certain degree of randomness are required. We also call this theory of Ca2+ alternans as the ‘‘3R’ theory.
Through performing a linear stability analysis or numerical simulation of Eq. (57), one can predict that alternans occurs at
large β(>0.9), large γ , and intermediate α (Fig. 26c).

Several implications arise from predictions of this theory, which can be used to explain experimental observations and
simulation results. Intermediate α means that there must be enough CRUs available for recruitment such that neighboring
CRUs can fire in one beat and remain refractory in the next beat, which also requires strong coupling (large γ ). If α = 1, all
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Fig. 26. The mean-field theory of alternans. a. The transition between three CRU states: recovered, firing, and refractory. b. Schematic plot of a spatial
distribution of CRUs in different states. c. Left: phase diagram showing alternans (ALT) region and no alternans (NO ALT) region in the α–γ parameter
space with β = 0.98 obtained from the iterated map model (Eq. (57)). Upper right: number of sparks versus beat number for a set of parameters in the
alternans region. Lower right: number of sparks versus beat number for a set of parameters in the no alternans region.

recovered CRUs fire as primary sparks, andno recruitment can occur. This explainswhy asynchronous Ca2+ release andmini-
waves were required for alternans to occur in experiments by Diaz et al. [265,266,290]. Moreover, these experiments were
carried out under voltage clamp conditions in which the open probability of the LCCs was reduced to allow asynchronous
Ca2+ release. Largeβ means that themajority of CRUs are refractory after firing during the previous beat,which indicates that
these CRUswill fire on every other beat due to refractoriness, causing alternans at the individual CRU scale. However, if there
is no spark recruitment (no coupling between CRUs), then due to randomness, the individual CRU alternans are randomly
out of phase, resulting in microscopic alternans without whole-cell Ca2+ alternans. Large γ allows for spark recruitment to
synchronize alternating CRUs more or less together in the same phase so that there are more Ca2+ sparks in one beat than
the next beat, resulting in macroscopic alternans. This agrees with simulations in detailed models showing that alternans is
promoted by stronger Ca2+ diffusion [185] or closer CRU spacing [283]. Finally, unlike α, β , and γ , SR Ca2+ content is not an
explicit parameter in the mean-field theory of alternans, which means that SR Ca2+ load alternans is not a requirement for
Ca2+ alternans, in linewith the observation that Ca2+ alternans can occurwithout diastolic SR Ca2+ load alternans [279–281]
and under SR Ca2+ clamp conditions [283,291]. However, SR Ca2+ content indirectly affect α, β , and γ , and thus it still plays
a very important role in Ca2+ alternans [291].

In an experiment carried out by Tian et al. [271], a transition from microscopic Ca2+ alternans to macroscopic Ca2+
alternans was observed (Fig. 27). Specifically, at a slower pacing rate, alternans was observed at individual measurement
sites while the whole-cell Ca2+ is regular from beat to beat. At a faster pacing rate, alternans occurred at both the individual
sites and the whole-cell level. This observation can also be explained by this theory as follows. At the slower pacing
rate, alternans occur at individual coupling sites due to refractoriness (or other mechanisms), but the coupling strength
γ is not large enough for spark recruitment to result in macroscopic alternans. At the faster pacing rate, the overall Ca2+
accumulation at faster rates enhances CRU coupling and thus spark recruitment, causing macroscopic alternans to occur.
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Fig. 27. From microscopic to macroscopic alternans (from disorder to order). a–d. Microscopic alternans without macroscopic alternans at a slower pacing
rate. a. A snapshot of Ca2+ in a ventricular myocyte. b. Ca2+ recorded from one location (marked as ‘‘d’) in the cell. c. Whole-cell Ca2+ . d. Snapshots of Ca2+
from the left and right ends of the cell. e–h. Microscopic alternans leads to macroscopic alternant at a faster pacing rate. The panels are the same as a–d.
Source:Modified from Tian et al. [271].

Therefore, themean-field theory of Ca2+ alternans links themicroscopic (spark) behaviors to themacroscopic (alternans)
behaviors, explaining how order arises from disorder in the formation of Ca2+ alternans in a cardiac myocyte.

The mean-field theory of Ca2+ alternans links microscopic features to the macroscopic dynamics but does not exclude
that a steep fractional SR Ca2+ release relation exists concomitantly with Ca2+ alternans [283]. In fact, simulations showed
that Ca2+ alternans always occurs in the SR Ca2+ load range where steep fractional SR Ca2+ release occurs [283,291,292].
Since Ca2+ alternans still occurs when SR Ca2+ is fixed at a constant, the two have no causal relation. In the mean-field
theory of Ca2+ alternans, SR Ca2+ load affects α, β , and γ indirectly to affect Ca2+ alternans [291]. Themean-field theory can
provide a holistic interpretation tomany experimental observations of Ca2+ alternans, some of themmay even be seemingly
contradictory, and to the roles of each individual Ca2+ cycling regulation factors in the genesis of Ca2+ alternans. This was
discussed in a recent article by Qu et al. [284].

Nevertheless, different mechanisms can be responsible under different conditions, and the two mechanisms of Ca2+
alternans are not necessarily exclusive to each other. Future studies are needed to identify the specific conditions for the
existence of the twomechanisms and investigate their interactions, which is important for identifying potential therapeutic
targets.

6.2.3. Alternans dynamics due to voltage and Ca2+ coupling
Since both the voltage system and the Ca2+ system can exhibit instabilities, their bi-directional coupling can either

modulate the existing instabilities or promote new ones. In experimental studies, two different voltage-Ca2+ alternans
behaviors have been observed. In the one case (Fig. 28a), the large contraction (indicated by large Ca2+) is associated with
the long APD, and vice versa, i.e., APD and Ca2+ alternate in-phase, and this type of alternans is called electromechanically
concordant alternans. In the other case (Fig. 28b), the large contraction is associated with the short APD, and vice versa,
i.e., APD and Ca2+ alternate out-of-phase, and this type of alternans is called electromechanically discordant alternans. These
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Fig. 28. Alternans dynamics due to voltage and Ca2+ coupling. a. Voltage and Ca2+ versus time from a paced rabbit ventricular myocyte showing concordant
APD and Ca2+ alternans in which a long (‘‘L’’) APD associates with a large (‘‘L’’) Ca2+ and a short (‘‘S’’) APD associates with a small (‘‘S’’) Ca2+ (modified from
Chudin et al. [264]). b. Voltage and cell length change of a cat ventricular myocyte showing discordant APD and contraction alternans in which a long APD
associates with a small contraction and a short APD associates with a large contraction (modified from Huser et al. [280]). c. Phase diagram obtained from
the iterated map (Eq. (59)) for Ca2+-to-APD uncoupled (γ = 0), positive Ca2+-to-APD coupling (γ > 0), and negative Ca2+-to-APD coupling (γ < 0). The
stabilities of the Ca2+ system and the voltage system decrease along the arrows.

behaviors have been explained using computer simulations by Shiferaw et al. [293] and coupled iterated maps by Qu et al.
[240]. Here we summarize the iterated map analysis.

Coupling the iterated map for APD (Eq. (46)) with the one for Ca2+ cycling (Eq. (53)), the two-variable iterated map for
the coupled system is [240]

an+1 = f (dn) + γ cpn+1an+1
ln+1 = ln − q(dn)g(ln) + h(cpn+1)

(59)

where γ cpn+1an+1 is the term describing the effect of Ca2+ on APD, and q(dn) is a function describing the effect of restitution
on Ca2+ release. The dynamics of Eq. (59) depends on how Ca2+ and voltage are coupled. According to Eq. (59), when
γ is positive, a larger Ca2+ amplitude causes a longer APD, which is called positive Ca2+-to-APD coupling (equivalent
to concordant electromechanical coupling). When γ is negative, a larger Ca2+ amplitude causes a shorter APD, which is
called negative Ca2+-to-APD coupling (equivalent to discordant electromechanical coupling). Direct experimental evidence
of positive and negative Ca2+-to-APD coupling by altering ICa,L and INCX was demonstrated recently [294].

Fig. 28c shows the boundaries of instability of the steady state of Eq. (59) under three conditions: no coupling (γ = 0),
positive coupling (γ > 0) and negative coupling (γ < 0). When γ = 0, Ca2+ has no effect on APD, and the vertical and
horizontal boundaries (dashed gray lines) are due to instabilities from voltage and Ca2+, respectively. When γ > 0, the
boundary of instability is pulled in from the dashed gray lines in the phase diagram, indicating that the coupling of Ca2+
and APD promotes instability. In other words, both systems can be stable when they are uncoupled, but become unstable
when they are coupled. Alternans via bifurcation from this boundary is electromechanically concordant, i.e., the long APD is
associated with the large Ca2+ amplitude. When γ < 0, the boundary of instability is pushed out from the dashed gray lines
in the phase diagram, indicating that the coupling suppresses instability. However, new dynamical behaviors occur in this
case. When the instability is dominated by the voltage system (boundary II in Fig. 28c), the alternans is electromechanically
concordant, i.e., the large Ca2+ amplitude is associated with the long APD, and vice versa. When the instability is dominated
by the Ca2+ system (boundary I), the alternans is electromechanically discordant, i.e., the large Ca2+ amplitude is associated
with the short APD, and vice versa. When the instabilities are strong in both systems (boundary III), the association between
Ca2+ and APD is modulated by a new frequency, becoming quasi-periodic, i.e., the alternans changes between concordant
and discordant alternans quasi-periodically. Quasi-periodic action potential behaviorwas indeed observed in periodic paced
real myocytes [295,296], and quasi-periodic dynamics due to Ca2+ and voltage coupling might be one of the mechanisms.

Since both voltage and Ca2+ cycling can cause instabilities to result in alternans, it is important to identify the origins
of instabilities to develop strategies for therapeutic targets. In a computer model, one may be able to use linear stability
analyses to dissect the origins or contributions [297], but in real cells, this is nontrivial due to the bi-directional coupling of
voltage and Ca2+. One of the important tasks of computationalmodeling is to identify characteristics of alternans that can be
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Fig. 29. Sub-cellular Ca2+ alternans. Snapshots (33 ms apart) of Ca2+ in a cat atrial myocyte for two consecutive beats as marked. The Ca2+ alternans in
the top and bottom regions of the cell are out-of-phase, forming spatially discordant Ca2+ alternans.
Source: Reproduced from Blatter et al. [299].

used to infer the origins of instabilities. In a study by Sato et al. [298], characteristics was identified in computer simulation
to differentiate the origins of instabilities for alternans.

6.2.4. Mechanisms of sub-cellular discordant Ca2+ alternans
A cardiac myocyte is a spatial entity, and spatiotemporal patterns can form within the cell. Fig. 29 shows spatially

discordant Ca2+ alternans observed in a cat atrial myocyte by Blatter et al. [299], in which Ca2+ alternates out of phase at
the two end of the cells. That is, at one end, the amplitude of the Ca2+ signal exhibit a pattern of large, small, large, . . . , while
the other end exhibits a pattern of small, large, small, . . . . Similar patterns have been observed in ventricular myocytes by
other researchers [265,268,269,271]. Different mechanisms have been proposed to explain the sub-cellular spatiotemporal
pattern formation, which are summarized below.

6.2.4.1. Discordant Ca2+ alternans as pattern formation via Turing instability. In a theoretical study by Shiferaw and Karma
[300], a mechanism of sub-cellular discordant Ca2+ alternans has been proposed, in which a Turing instability [301] is
responsible for the pattern formation. Following their amplitude equation for APD alternans in tissue [302,303], they have
developed a set of equations composed of two amplitude equations: one for APD alternans and the other for Ca2+ alternans.
The equations are

d∆a
dt

= α∆a +
β

l

 l

0
∆c(x, t)dx

∂∆c
∂t

= δ∆c + γ a +
µ

l

 l

0
∆c(x, t)dx − χ∆c + Dc

∂2∆c
∂x2

(60)

where ∆a = an+1 − an is the difference in APD between two consecutive beats, called APD alternans amplitude. Since
the diffusion of voltage in a single cell is almost instantaneous, ∆a does not depend on space. ∆c(x, t) = cn+1 − cn is the
amplitude of Ca2+ alternans which is a function of both time and space. Time t = nτ with τ as the period of pacing; Dc is
proportional to the intracellular Ca2+ diffusion constant; l is the length of the cell; α, β, γ , δ, µ, and χ are parameters.

It can be shown [300] using Eq. (60) that depending on the coupling conditions between Ca2+ and voltage, a Turing
instability can occur in this system. The specific condition for this instability to occur is

βγ < 0 and δ + µ − α > 0. (61)

The signs of β and γ define the coupling conditions between Ca2+ and voltage. β > 0 indicates positive Ca2+-to-APD
coupling, and β < 0 indicates negative Ca2+-to-APD coupling. γ > 0 indicates positive APD-to-Ca2+ coupling, and γ < 0
indicates negative APD-to-Ca2+ coupling. Therefore, based on Eq. (61), a Turing instability can occur when Ca2+-to-APD
coupling is negative while APD-to-Ca2+ coupling is positive, or Ca2+-to-APD coupling is positive while APD-to-Ca2+ is
negative. Shiferaw and Karma [300] have demonstrated in a mathematical model with computer simulations that under
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Fig. 30. Turing instability induced sub-cellular discordant Ca2+ alternans (modified from Karma [7]). a. Computer simulations showing concordant Ca2+
alternans develops when the Ca2+-to-APD coupling is positive (upper) but discordant Ca2+ alternans develops when the Ca2+-to-APD coupling is negative
[300]. b. Optical images from two consecutive beats in a guinea pig ventricular myocyte showing a transition from concordant to discordant Ca2+ alternans
after a feedback control algorithm was turned on to change the APD-to-Ca2+ coupling from positive to negative [270].

conditions of positive Ca2+-to-APD coupling (β > 0), only concordant alternans can be observed while under conditions of
negative Ca2+-to-APD coupling (β < 0) discordant alternans can develop (Fig. 30a).

In most realistic conditions, both Ca2+-to-APD and APD-to-Ca2+ couplings are positive, and thus the Turing instability
may not occur naturally in real cells. In recent studies by Gaeta et al. [270,304], the authors used a feedback control protocol
to change the APD-to-Ca2+ coupling frompositive to negativewhilemaintaining the Ca2+-to-APD coupling positive to cause
a Turing instability inducing discordant Ca2+ alternans. They first showed in simulation that sub-cellular discordant Ca2+
alternans could develop after they changed APD-to-Ca2+ coupling from positive to negative. They then applied the same
feedback control mechanism to a real ventricular myocyte to show that this control algorithm indeed caused the transition
from concordant alternans to discordant alternans (Fig. 30b), demonstrating experimentally that the Turing instability
induced spatially discordant alternans.

6.2.4.2. Other mechanisms of sub-cellular discordant Ca2+ alternans. Although the Turing instability demonstrated by
Shiferaw and Karma [300] and by Gaeta et al. [270,304] is a beautiful application of nonlinear dynamics to cardiac sys-
tems, it is not the only mechanism for sub-cellular discordant Ca2+ alternans. In an experimental study by Diaz et al. [265],
discordant Ca2+ alternans was observed under voltage clamp conditions, in which the Ca2+ and voltage are uncoupled, in-
dicating that other mechanisms are responsible. In a study by Aistrup et al. [269], it was shown that heterogeneity in Ca2+
release properties can result in spatially discordant Ca2+ alternans due to phase mismatch in the neighboring regions. In
a study by Xie and Weiss [268], it was shown that a Ca2+ wave occurring during pacing can reverse the phase in one re-
gion, causing phase mismatch in neighboring regions which results in spatially discordant alternans. Another mechanism
involves a self-organization process in a random systemwith positive feedback (e.g., CICR), such that clusters of elements of
the same dynamics can form in space [305]. In our spatially-extended Ca2+ cyclingmodels [283,291], we observed the same
dynamical clustering phenomenon which results in patches of regions alternating out-of-phase. A similar process was seen
in the study by Tian et al. [271] in which multiple out-of-phase alternating regions exist. This might also be responsible for
the discordant Ca2+ alternans seen by Diaz et al. [265].

6.3. Early afterdepolarizations

6.3.1. Early afterdepolarizations and irregular dynamics
EADs are voltage oscillations occurring at the plateau phase of the action potential [306]. EADs are often associated with

life-threatening arrhythmias such as Torsade de Pointes in the setting of cardiac diseases [307–309], including acquired
and congenital long QT syndromes [310,311] and heart failure [312,313]. EADs were identified more than a half century ago
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Fig. 31. EADs and their irregular dynamics. a. Action potentials recorded from a ventricular myocyte of transgenic long QT rabbit heart before (dashed)
and after (solid) isoproterenol [311]. b. EADs recorded from a dog Purkinje fiber (Courtesy of Robert Gilmour). c. EADs recorded from an isolated rabbit
ventricular myocyte [323].

[307,314,315] and have been the subject ofmany experimental and computational studies. It is known that EADs occurwhen
outward currents are reduced and/or inward currents are increased, causing APD to be longer. However, drugs lengthening
APDby increasing inward currents [316,317] or reducing outward currents [318–320] do not always cause EADs. Conversely,
some drugs cause EADs without significantly prolonging APD. Fig. 31a shows EADs recorded from a single myocyte isolated
from the ventricles of a transgenic long QT rabbit [311], illustrating the voltage oscillations during the plateau phase. These
oscillations eventually cease, allowing the myocyte to repolarize. The amplitude of the oscillation varies with time, and,
in many cases, the last EAD before full repolarization has the largest amplitude. Therefore, the key to understanding the
mechanism of EADs is to understand the transient oscillations.

Another property of EADs is that the number of oscillations in the action potential varies from beat to beat in an irregular
manner, which also causes large APD variations (Figs. 31b and c). One hypothesis is that this irregular behavior is caused by
stochastic ion channel noise [321]. However, this type of irregular behavior does not occur in normal action potentials, only
when EADs are present, raising the question of what is special about the action potential dynamics when EADs are present.

Recent studies [166,253,322–324] have developed a nonlinear dynamical theory for EADs and showed that EADs arise
from a dual Hopf-homoclinic bifurcation, and that chaos is responsible for the irregular appearance of EADs. This theory is
summarized in the following sections.

6.3.2. A bifurcation theory of EADs
A basic bifurcation theory of EADs was developed using a simple action potential model, the LR1 model, by Tran et al.

[322]. The model includes INa, ICa,L, IK, and other time-independent K+ currents. The equation for voltage is

Cm
dV
dt

= −[ḠNam3hj(V − ENa) + ḠCadf (V − ECa) + ḠKxx1(V − EK) + I0(V )] (62)

where m, h, j, d, f , and x are gating variables, and I0(V ) is the summation of all other currents that change with voltage
instantaneously. By altering the parameters (e.g., ḠCa), EADs can occur in this model.

During an action potential of a myocyte, individual ionic currents activate and inactivate over different time scales, rang-
ing from milliseconds to seconds. This type of system, called a fast–slow system, can exhibit complex dynamics [124,325].
EADs have fast dynamics relative to the slowphase of action potential repolarization. The standardmathematical tool for an-
alyzing fast–slow dynamics is to use the slow variable as a bifurcation parameter to study bifurcations in the fast subsystem.
This approach has been widely adopted to study bursting dynamics in neurons and pancreatic β-cells [124,325].

To perform a fast–slow dynamics analysis, one first needs to separate the fast and slow subsystems. In the LR1 model,
all other currents except for IK, can be considered to belong to the fast subsystem. Assuming that all of these currents reach
their steady-state quickly in response to a voltage change, one can define a quasi-steady state current (IQSS) as a function
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Fig. 32. Dynamical mechanisms of EADs. a. Quasi-steady state I–V curves for different x values using Eq. (63). r, s and p are the three quasi-steady states.
b. The stability of the r, s and p-states and the Hopf (HB) and homoclinic (HCB) bifurcations versus x [322]. The green line is the oscillation amplitude. The
blue and red lines are two action potentials from the original model with different activation time constants of x. Arrows along these lines indicate the
directions of time. c. Experimental recording shown frequency reduction during EAD bursting [324]. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

of voltage (i.e., quasi-steady state I–V curve, a frequently used classical technique in electrophysiology [317,326]). This is
calculated for the LR1 model as:

IQSS(V , x) = ḠNam3
∞
h∞j∞(V − ENa) + ḠCa,Ld∞f∞(V − ECa) + I0(V ) + ḠKxx1(V − EK) (63)

in which the variables with the ‘‘∞’’ subscript are the steady state values at the corresponding voltage. x is the slow variable
since the time constant of x is much longer than others. Since the steady state of INa in this model is almost zero at any
voltage, its contribution to IQSS is negligible. Fig. 32a shows IQSS versus V for different x values. When x = 0, there are three
voltages at which IQSS = 0, indicating that three fixed points exist, which we call quasi-steady states. As x increases, the
fixed points at high voltages (the s- and p-states) disappear, leaving only one fixed point (the r-state) which is the resting
potential. Therefore, if x grows slowly, the s- and p-states remain longer. If x grows slowly enough, the system will tend
to approach the p-state. Depending on the stability of the p-state, different action potential behaviors can occur. When
the p-state is stable, the voltage will simply follow the change of the p-state as x grows until the p-state disappears, at
which the voltage repolarizes to the resting potential. This process can result in ultralong action potentials [253], as have
been observed in many experiments [316–318]. When the p-state is an unstable focus, the system will oscillate around the
p-state, resulting in voltage oscillations at the plateau voltage, which are EADs. Note that transient oscillations can occur
when the p-state is a stable focus, which can also result in EADs. If x grows fast or if the p-state does not exist (which occurs
when the steady-state inward current is small or zero), the action potential repolarize normally.

A key question is whether such an instability can occur and, if so, what determines it. To analyze the stability of the
p-state, Tran et al. [322] used a reduced system in which INa was neglected since it is almost zero at the plateau voltage. The
equation for voltage becomes

dV
dt

= −[ḠCadf (V − ECa) + ḠKxx1(V − EK) + I0(V )]/Cm = F(V , d, f ). (64)

The gating variables d and f are described by

dd
dt

= [d∞ − d]/τd (65)
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and

df
dt

= [f∞ − f ]/τf (66)

where d∞ is the steady state activation curve of ICa,L which is a sigmoidal function increasing with V , and f∞ is the steady
state inactivation curve,which is a sigmoidal function decreasingwithV . x in Eq. (64) is treated as a parameter in the stability
analysis. As shown in Fig. 32a, the steady state solutions of Eqs. (64)–(66) depend on x. When x is large, there is only one
solution, which is the resting potential. When x is small, there are three solutions. The stability of these solutions can be
determined from the following Jacobian:

J =

 a b c
sd/τd −1/τd 0

−sf /τf 0 −1/τf


(67)

where a = ∂F/∂V , b = ∂F/∂d, c = ∂F/∂ f , sd = ∂d∞/∂V , and sf = −∂ f∞/∂V . b > 0 and c > 0 for V < ECa, and sd > 0
and sf > 0 for any V .

The condition of a Hopf bifurcation can be worked out analytically by solving the characteristic equation and obtaining
the eigenvalues of J . However, at the Hopf bifurcation point, two of the three eigenvalues are λ1,2 = ±iω. Inserting these
values into the characteristic equation, one obtains the following conditions:

ω2
=

1
τdτf

−
a
τd

−
a
τf

−
sdb
τd

+
sf c
τf

> 0 (68)

and

h =
1
τf


1
τf

− a


1
τd

− a + sf c


+
1
τd


1
τd

− a


1
τf

− a − sdb


= 0. (69)

The p-state is unstable when h < 0. Therefore, for a Hopf bifurcation to occur, h needs to change from positive to negative.
Even though Eq. (69) is complex, important information relevant to the biological properties required for the Hopf bifur-
cation can be extracted. Since all parameters in Eq. (69) are positive except for a, and a < 0 when V > −30 mV, then a
large sd is required for h to be negative. This can occur when the p-state is in the steep range of the activation curve of ICa,L.
A slower inactivation process (larger τf ) or a faster activation process (smaller τd) tends to make h negative, promoting the
Hopf bifurcation.

Fig. 32b shows the stability of the three quasi-steady states versus x, showing that the r-state is always stable and the
s-state is always unstable (saddle point), while aHopf bifurcation occurs for the p-state leading to oscillations. The amplitude
of the oscillation increases as x increases until the orbitmeets the saddle point (the s-state) atwhich a homoclinic bifurcation
occurs. During an action potential with EADs, voltage oscillations manifesting as EADs occur due to the Hopf bifurcation and
terminate via the homoclinic bifurcation (red trace in Fig. 32b). One of the characteristic features of the dual Hopf-homoclinic
bifurcation is that the oscillation amplitude increases while the oscillation frequency decreases. This feature can be clearly
seen in Fig. 32b. This behavior was also demonstrated in an experimental system in a recent study [324], which shows that
the frequency decreases during the oscillations (Fig. 32c).

However, the presence of quasi-steady states and a Hopf bifurcation in the fast subsystem is not sufficient to result in
EADs [306,322]. Whether EADs occur or not during an action potential also depends on the initial time course of the vari-
ables which bring the system into the basin of attraction of oscillations around the p-state. For example, in the two traces
in Fig. 32b, the only difference is that the blue one has a faster x gate, which misses the basin of attraction of the oscilla-
tions, resulting in no EADs, even though the bifurcations in the fast subsystem remain unchanged. On the other hand, adding
a transient outward current (Ito) to accelerate voltage decay during phase 1, which exhibits almost no effect on the Hopf
bifurcation, can bring the system into the basin of attraction of the oscillations, promoting EADs [306,322].

The nonlinear dynamical analyses demonstrate that three conditions need to be satisfied to suffice the occurrence of
EADs: (1) the formation of quasi-steady states in the plateau voltage range, which requires increased steady-state inward
currents or decreased steady-state outward currents; (2) a Hopf-homoclinic bifurcation to cause and then terminate oscilla-
tions,which depends on both a steep activation curve and the p-state forming in the steeply sloped region; (3) a proper initial
time course of the variables to bring the system into the basin of attraction of the oscillations arising from the Hopf bifurca-
tion, which depends on the magnitudes and time constants of the transient components of the ionic currents. Using the dy-
namical theory of EADs, one can provide an integrative overview of the contributions of each ionic currents to the genesis of
EADs and aunified interpretation of experimental observations,whichhas been reviewedbyQuet al. in a recent article [306].

However, the mechanism summarized above may be only one of the mechanisms of EAD formation in cardiac myocytes,
and other mechanisms may also exist [306]. For example, when Ca2+ oscillates in the cell, voltage will also oscillate in
response, manifesting as EADs [108,327]. Moreover, the coupling of voltage and Ca2+ may modulate the Hopf-homoclinic
bifurcation to promote and suppress EADs, or to result in novel instabilities for EADs, which need to be further investigated
using computer simulations and bifurcation analyses.
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6.3.3. Nonlinear EAD dynamics
An important insight from the nonlinear dynamics of EADs is that the irregular beat-to-beat appearance of EADs observed

in experiments is dynamical chaos. This has been shown in computer simulations and supported by experimental data
[166,322]. Figs. 33a and b show voltage recordings and a bifurcation diagram obtained from a computer simulation of an
action potential model, illustrating that irregular action potential dynamics (chaos) occurs at the intermediate range of PCL.
Figs. 33c and d show voltage recordings and a bifurcation diagram obtained from a ventricular rabbit myocyte treated with
drugs, which also shows that the irregular behavior occurs in the intermediate range of PCLs. Although it is difficult to show
that the irregular behavior shown in the experiments is frank chaos due to technical limitations including record length
and noise, one can argue that if random noise is responsible for the irregular behavior, why does it not occur at long PCLs
at which EADs also present? The similarity between the bifurcation diagrams of simulation and experimental data leads
one to conclude that the irregular behavior seen in experiments is also chaos even though noise may contribute to the
irregularity. Indeed, when random ion channel fluctuations were added to the computer model (Fig. 33e), the bifurcation
diagram remains similar [323]. Random noise causes the onset of irregular behavior at a shorter PCL but does not affect
the inverse bifurcation point. It can be shown that the noise-induced irregularity is still chaotic [323], agreeing with the
well-known mechanism of noise-induced chaos in nonlinear dynamical systems [328–331].

The mechanism of chaos in the presence of EADs can be analyzed following the same iterated map approach used in
analyzing APD alternans. In the presence of EADs, the APD restitution curve exhibits a discontinuity. As shown in Fig. 34a,
following the same S1 beat, a 1 ms difference in DI can result in two very different action potentials, where one exhibits
an EAD, while the other does not. The APD restitution curve is shown in Fig. 34b, and is discontinuous and non-monotonic.
By iterating the map using the same map equations as in Eq. (46), one can obtain different dynamical behaviors, including
alternans and chaos (Fig. 34c) [166,323].

6.4. Delayed afterdepolarizations

Whereas EADs are secondary depolarizations during an action potential, DADs are depolarizations that follow
repolarization after a stimulated action potential. DADs are easier to induce in diseased hearts than in normal hearts, and
sometimes occur irregularly (Fig. 35a) [332]. The dominant theory of DADs is that they are caused by spontaneous Ca2+
waves (Fig. 35b) [333], which has been demonstrated in many experiments. During a Ca2+ wave, Ca2+ concentration is
elevated,which increases INCX and other Ca2+-sensitive currents. Since INCX is an inward current, it causes a voltage elevation.
If the voltage elevation does not reach the threshold for INa activation, there is only a small voltage deflection (Fig. 35b). Once
it reaches the threshold of INa activation, an action potential is elicited (Fig. 35a). As discussed in Section 5, the formation
of Ca2+ waves is a self-organizing process, exhibiting large fluctuations. Thus, the occurrence of DADs is irregular, as can be
seen in Fig. 35a. DADs are a known cause of PVCs but how they induce arrhythmias at the tissue level still remains to be
elucidated.

7. Electrical wave dynamics in tissue and organ

An excitable medium can support propagation of an undamped solitary wave or a train of solitary waves. In addition,
spiral and scroll waves are also wave solutions of an excitable medium. Complex spiral wave and scroll dynamics have been
widely investigated in generic excitable media. Cardiac tissue is an excitable medium and most of the wave conduction
properties of generic excitable medium are also applicable to cardiac tissue. However, cardiac tissue also exhibits its own
special dynamical properties because of the complex cellular dynamics and tissue structures. In this section, we summarize:
(1) the basic properties of electrical wave conduction in cardiac tissue, including the effects of gap junction coupling and
curvature; (2) the dynamical mechanisms for the formation of spatially discordant APD alternans and pattern formation
due to failure of synchronization of cellular chaotic dynamics; (3) different mechanisms of reentry induction; (4) dynamical
stability and bifurcations of anatomical reentry and spiral wave reentry; (5) the effects of tissue thickness, fiber rotation, and
excitability on scroll wave stability; (6) reentry dynamics in real cardiac tissue observed in experiments; (7) bistable spiral
wave and conduction; and (8) the mechanisms of formation of focal excitations in tissue. We discuss how cellular action
potential dynamics manifest and how new spatiotemporal dynamics emerge at the tissue and organ scales to promote
arrhythmias.

7.1. Basic properties of wave conduction in cardiac tissue

Waves in excitablemedium can be planar (or rectilinear) or curved (Fig. 36a). For a planarwave, the CV (θ ) is proportional
to the square root of D, i.e.,

θ ∝
√
D (70)

where D is the diffusion constant which is determined by the intracellular resistance and gap junction resistance in cardiac
tissue (see Eq. (25)). This relation holds for continuous and homogeneous medium since the reaction–diffusion equation
∂u
∂t = f (u) + D ∂2u

∂x2
is invariant under the rescaling relation x′

= x/
√
D, and thus θ =

dx
dt =

√
D dx′

dt . However, due to the
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Fig. 33. Chaotic dynamics of EADs. a and b. Action potentials at different PCL and the bifurcation diagram from a computer model. c and d. Action potentials
at different PCL and the bifurcation diagram from a real myocyte under H2O2 stress. Open arrows in a and c indicate EADs in the action potentials. e. Same
as b but in the presence of channel noise.
Source: Panels are reproduced from Sato et al. [166] and [323].

finite size of cardiac myocytes, cardiac tissue is not a continuous excitable medium like a generic reaction–diffusion system,
but rather a discretized medium. The scaling relation may still hold when the myocytes are well coupled (Fig. 36b), but not
when the gap junction resistance is large (diffusion constant is small). The discretized effects on conduction in cardiac tissue
have been investigated inmanymodeling studies [149,334–339]. Note that in a truly continuousmedium, due to the scaling
property, conduction never fails as D decreases. But in a discretized system, reduction of the gap junction conductance (thus
D) can result in conduction failure. Therefore, cell decoupling alone, even if it is only partial, can result in conduction failure
in real cardiac tissue.

CV also depends on excitability, which is strongly dependent on the magnitude of INa and the resting potential. Fig. 36c
plots θ versus themaximum conductance (ḠNa) of INa, showing that θ increases almost linearly with log ḠNa. There aremany
other factors affecting CV in cardiac tissue, such as cell size, anisotropy, heterogeneous cell-to-cell coupling, microscopic
tissue structures, and myocyte–fibroblast coupling.

For a curved wave, the relation between CV and curvature obeys the so-called eikonal relation [88]:

θ = θ0 − Dκ (71)
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Fig. 34. Mechanisms of EAD chaos. a. Action potentials during S1S2 pacing. A 1 ms difference in DI results in two different action potentials, demonstrating
the sensitivity of APD on DI. b. APD versus DI. c. APD versus iteration number showing chaos.

Fig. 35. Ca2+ waves and DADs in cardiac cells. a. Voltage traces showing pacing induced DADs in HF (indicated by arrows), but not in the normal cell.
b. A Ca2+ wave-induced DAD in a ventricular myocyte, shown by voltage (upper), whole-cell Ca2+ concentration (middle), and line scan of Ca2+ (bottom).
Asterisk and the while arrows indicate the origin and propagation of the Ca2+ wave.
Source: Panel a is reproduced from Yeh et al. [332], and panel b from Xie et al. [333].
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Fig. 36. Conduction in cardiac tissue. a. Schematic plot of a rectilinear wave, a convex wave, and concave wave. b. CV versus diffusion constant for a
discretized system (∆x = 125 µm). Dashed line is the continuous limit that θ ∝

√
D which is a straight line in a log–log plot. c. CV versus the maximum

conductance (ḠNa) of the Na+ current. d. A CV restitution curve. θc is the minimum CV and DIc is the corresponding DI.

where θ0 is the planar wave velocity and κ is the wavefront curvature. A convex wave (κ > 0) propagates more slowly
than a planar wave while a concave wave (κ < 0) propagates faster. Later studies showed that this relation needs to be
modified [102,340,341], i.e.,

θ = θ0 − γDκ (72)
in which γ is a parameter dependent on other factors, such as PCL and the diffusion constant.

During awave train, the conduction velocity also depends on the period T of thewave train, which is called the dispersion
relation [90,342], i.e.,

θ = g(2π/ω) = g(T ). (73)
In cardiac tissue, we call this the CV restitution curve, analogous to APD restitution curve [101], which is denoted as

θn+1 = g(dn). (74)
Fig. 36d shows a CV restitution curve calculated from a numerical simulation of an action potential model. The action
potential fails to conduct when the CV is reduced to a critical but finite velocity (θc).

The wave curvature affects not only CV but also APD [102,343]. The relationship between APD and curvature can be
approximated for small curvatures as

a = a0 + βκ. (75)
For large curvatures, this relationship becomes nonlinear [343].

The wavefront curvature and CV restitution are two properties that play important roles in cardiac conduction and
dynamics, such as conduction block [338,344], spiral wave formation [88], the onset of APD alternans [339], formation of
spatially discordant APD alternans [65], and quasi-periodic dynamics [345].

7.2. Dynamical repolarization pattern formation in tissue

7.2.1. Spatially discordant alternans
APD and Ca2+ alternans observed in isolated myocytes also occur in tissue, but new spatiotemporal dynamics can arise

via pattern formation. Under some conditions, all cells in the tissue may alternate in the same phase (in-phase), result-
ing in spatially concordant alternans. Under other conditions, cells in one region may alternate in the opposite phase
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Fig. 37. Spatially concordant and discordant APD alternans. a. Spatially concordant and discordant APD alternans in a guinea pig heart, reproduced from
Pastore et al. [64]. Upper: alternans magnitude (∆a = an+1 − an) distribution in space; Lower: sample action potential recordings for two consecutive
beats from the sites marked on the upper panel. For concordant APD alternans, the color is uniform in space (∆a is positive everywhere in one beat and
negative in the following beat). For discordant APD alternans, the color is no longer uniform in space, but changes from one to the other (∆a changes
from negative to positive as the color changes from blue to red in space; the color map reverse in the following beat). b. Spatially concordant (upper) and
discordant (lower) alternans from computer simulations [65]. Shown are APD distributions in space for two consecutive beats. The tissue was periodically
paced at the left-lower corner. c. Discordant APD alternans from a simulation of a 10 cm 1D cable. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

(or antiphase) to the cells in neighboring regions, resulting in spatially discordant alternans. Fig. 37a shows a transi-
tion from spatially concordant alternans to discordant alternans recorded in a guinea pig heart in experiments by Pa-
store et al. [64]. At a slower pacing rate, APD in the entire tissue alternates in-phase, i.e., the APD in the entire tissue
exhibits the same long–short–long–short . . . pattern, which is spatially concordant. As the pacing rate increases, APD al-
ternates in opposite phases in neighboring regions, forming spatially discordant alternans with one region exhibiting a
long–short–long–short . . . patternwhile the adjacent region exhibiting a short–long–short–long . . . pattern. The border between
the two regions forms a nodal line at which APD does not change from beat to beat. This same transition can be recapitulated
in computer simulations (Fig. 37b). In a large tissue, multiple nodal lines can form, as shown in a simulation in a 1D cable
(Fig. 37c). Discordant alternans was first observed by Konta [346] and later demonstrated in many experimental studies in
intact hearts [64,260,347–354],monolayers of culturedmyocytes [355], and clinical studies [356,357]. TWAhas been closely
associated with cardiac arrhythmias and SCD, and a mechanistic link can be established by the studies [64,65,347] showing
that spatially discordant APD alternans promotes reentry, in which the large spatial APD gradient caused by discordant APD
alternans provides a substrate for reentry initiation.

Several mechanisms of spatially discordant alternans have been postulated. The prevailing one is the engagement of CV
restitution, which was first shown in a study by Cao et al. [347] and then in theoretical and simulation studies by others
[65,302,303,358]. Specifically, when there is no CV restitution engagement, i.e., CV is constant, alternans due to instabilities
from either voltage or Ca2+ is spatially concordant. When CV restitution is engaged, discordant alternans will develop with
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the wavelength depending on the slope of the CV restitution curve. This mechanism predicts that as the PCL shortens,
the nodal lines move toward the pacing site [359,360], which was later shown experimentally [349,350], supporting this
mechanism.

The role of CV restitution in discordant alternans can be understood using a kinematic equation for conduction in a 1D
cable, which was first analyzed by Qu et al. [65]. Assuming that a 1D cable is periodically paced at one end (x = 0) with a
period T0, the time interval between two consecutive beats at a location x, Tn(x), can be calculated as,

Tn(x) = T0 +

 x

0

ds
θn+1(s)

−

 x

0

ds
θn(s)

= an(x) + dn(x). (76)

In other words, Tn(x) equals to T0 plus the difference between the times taken for the two consecutivewaves to reach x. Note
that the two waves conduct in different velocities so that Tn(x) changes in space, otherwise Tn(x) = T0. Tn(x) also equals to
APD plus DI (see definition in Fig. 23a). The conduction velocity θ at location x is computed using the CV restitution function
as

θn+1(x) = g[dn(x)] = g[Tn(x) − an(x)] (77)

where the APD at location x, an(x), is computed from the APD restitution function as

an+1(x) = f [dn(x)] = f [Tn(x) − an(x)]. (78)

Discordant APD alternans can be easily simulated using Eq. (76) with appropriate APD and CV restitution functions
[361–363].

To gain insights into the role of CV restitution in the formation of discordant alternans [65], one rewrites Eq. (76) as

Tn(x) = T0 −

 x

0

θn+1 − θn

θn+1θn
ds = T0 −

 x

0

∆θn(s)
θn+1θn

ds = T0 − ∆Tn(x) = an(x) + dn(x). (79)

If there is no CV restitution, i.e., θn+1(x) = θn(x) = constant, then ∆θn(x) = θn+1(x) − θn(x) = 0, and thus ∆Tn(x) = 0.
Therefore, every cell sees the same PCL T0 and must alternate uniformly in space. But if, for a PCL T0, APD alternans occurs
and CV restitution is engaged, then assuming that the system is in a stable in-phase alternating state and an+1(x) > an(x)
for any x, one can derive using Eq. (79)

T0 − ∆Tn(x) − an(x) > T0 − ∆Tn+1(x) − an+1(x). (80)

Rearranging Eq. (80), one obtains

∆an(x) = an+1(x) − an(x) > 2∆Tn(x) = 2
 x

0

∆θn(s)
θn+1(s)θn(s)

ds > 0. (81)

Uniform concordant alternans, in which ∆an(x) is constant over space, is impossible, since the integral in Eq. (81) increases
with x (∆θn(x) > 0 based on the concordant assumption). Non-uniform concordant alternans can exist when∆θn(x) and/or
x,are small, for which Eq. (81) can be satisfied. However, when either∆θn(x) or x is large, the integration in Eq. (81) becomes
larger and larger as x increases. However, ∆an(x) cannot increase with x indefinitely but must be finite. Therefore, the
assumption that spatially concordant alternans exists in the presence of CV restitution cannot hold, and thus ∆θn(x) must
change its sign along x. This means that ∆an(x) must change sign along x, resulting in discordant alternans.

In the model above, APD and CV restitution are integrated, but the effects of diffusive coupling on APD are ignored. This
effect can be taken into account by adding a coupling term into the equation, as shown in a study by Wang et al. [363].

A more rigorous analysis of the instability leading to discordant APD alternans was performed by Echebarria and Karma
[302,303] who developed an amplitude equation starting with an equation similar to Eq. (76) with diffusive APD coupling.
The amplitude equation they obtained is:

τ
∂∆a
∂t

= σ∆a − g∆a3 + ξ 2 ∂2∆a
∂x2

− w
∂∆a
∂x

−
1
Λ

 x

0
∆a(s, t)ds (82)

where ∆a(x, t) = an+1(x) − an(x) is the amplitude of APD alternans (see Refs. [302,303] for derivation of the equation
and definitions of the parameters). Using a periodic boundary condition and linear stability analysis, one can obtain the
eigenvalues for the steady state of Eq. (82), from which it can be demonstrated that both standing patterns (the node is
stationary) and traveling patterns (the node is moving) can exist. The wavelength of the two patterns can be estimated as

λ =


2π(wΛ)1/2 (standing nodes)
4π/

√
3(ξ 2Λ)1/3 (traveling nodes).

(83)

The second mechanism of spatially discordant alternans is a spatial instability when Ca2+-to-APD coupling is negative and
alternans is Ca2+-driven [364]. In this mechanism, CV restitution is not required. The negative Ca2+-to-APD coupling can
cause Ca2+ amplitude in two neighboring cells to alternate out-of-phase. Due to the electrotonic coupling, APD alternates
out-of-phase over a much large spatial scale. Since Ca2+ and voltage are bidirectionally coupled, if one of the two systems
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forms spatially discordant alternans, then the other will also be spatially discordant. Certain distinct spatial properties of
Ca2+ alternans amplitude in spatially discordant alternans have also been shown when alternans is driven by Ca2+ cycling
instabilities [298,365].

Spatially discordant APD alternans can be initiated by a premature stimulation [358] or by the pre-existing hetero-
geneities [349]. However, based on the current theories, if no CV restitution or no spatial instability is engaged, the induced
nodal lines by a premature stimulation or heterogeneities cannot be stable. The nodal lines will eventually disappear and
alternans becomes spatially concordant [349]. Therefore, premature stimulation or pre-existing heterogeneities help to in-
duce discordant alternans, but CV restitution or dynamical spatial instability is needed to maintain discordant alternans.
On the other hand, more complex spatial patterns of discordant APD alternans have been shown in experiments [353,354],
which remain to be elucidated by theories of nonlinear dynamics.

7.2.2. Chaos synchronization
Besides discordant APD alternans, dispersion of refractoriness develops in homogeneous tissue when chaos is present in

single myocytes. It is well studied in nonlinear dynamics that two chaotic systems desynchronize when they are weakly
coupled [366]. This conclusion was extended to arrays of coupled chaotic oscillators [367]. As discussed earlier in this
article, there are several mechanisms for cardiac cells to exhibit chaotic behaviors, which can desynchronize to induce
large dispersion of refractoriness, forming a substrate for reentry [242]. Fig. 38a shows voltage evolution in time in a 1D
cable of coupled cells paced simultaneously, showing desynchronization of voltage and formation of chaotic spatial patterns.
Synchronization depends on tissue size and the gap junction coupling. Synchronization failswhen the tissue is greater than a
critical size or the gap junction coupling strength becomes smaller than a critical value. Fig. 38b shows the standard deviation
of voltage over the cable versus the cable length L, demonstrating that synchronization fails after L exceeds a critical size (Lc).
Lc can also be predicted by calculating themaximum Lyapunov exponent versus thewave number (Fig. 38c) using single cell
simulations [242], i.e., Lc = 2π/kc for a periodic boundary condition. kc is thewave number atwhich the Lyapunov exponent
crosses zero. The same dynamics can be observed when chaos is caused by EADs [166]. Fig. 38d shows APD distribution for
three consecutive beats after a certain number of pacing beats in a 2D tissuemodel, in which chaos is caused by the presence
of EADs. In this case, EAD islands form in tissue and the APD distribution changes from beat to beat chaotically.

Chaos synchronization in cardiac tissue can be further studied by coupled iterated maps. Coupled iterated maps were
constructed in a theoretical study by Wang et al. [363] to study chaos synchronization and discordant alternans in coupled
cardiac cells. One of these coupled maps is:

an+1(i) = f [dn(i)] + ε

α
j=1

wj{f [dn(i + j)] + f [dn(i − j)] − 2f [dn(i)]}, (84)

where f is the APD restitution function, wj is a Gaussian function, i.e., wj =
e−j2/2σ2
√
2πσ

, which defines the range and the weight
of coupling, α the maximum number of neighbors, and ε the coupling strength. The spatial stability of the uniform state can
be analyzed by calculating the Lyapunov exponent as a function of wave number k, which can be analytically obtained for
this model as

λk = λ0 + ln

1 − 4ε
α

j=1

wj sin2 π jk
L

 (85)

where λ0 is the Lyapunov exponent of the single cell, which depends on the APD restitution property and PCL. Once λ0 is
known, one can predict the characteristic wavelength or the critical size which is determined by the minimum k(kc) that
makes λk 6 0, i.e., the critical size is Lc = 2π/kc . The iterated map predictions agree well with those from the ionic model
[363].

7.3. Initiation of reentry

A clinically important issue is howarrhythmias are initiated in the heart, since understanding the underlyingmechanisms
may lead to the development of effective therapeutics to prevent arrhythmias. Both planarwave and spiral wave (or reentry)
are solutions of an excitable medium. In other words, the heart, as an excitable medium, can always have two solutions:
a planar wave solution (e.g., the sinus beat in the heart) and a spiral wave (or a reentry) solution, as long as the tissue
size is large enough to accommodate a spiral wave. The transition from sinus rhythm to reentry requires that the system
moves from the basin of attraction of the planar wave solution to the basin of attraction of a spiral wave solution (or reentry
around an obstacle). The transition from a planarwave to a spiral wave also needs a symmetry break, whichwas first pointed
out by Winfree, who noted that SCD is a problem of topology [3]. In the normal heart, breaking the symmetry of a planar
wave to initiate a spiral wave requires a very large perturbation, such as an electrical shock. In diseased heart, the basin of
attraction of the planar solution is reduced while that of the spiral wave solution is increased, so that the threshold for the
transition is much lower. Therefore, symmetry breaking and basins of attraction are two important dynamical behaviors
that responsible for the initiation of arrhythmias. Here we summarize the different scenarios and the underlying dynamics
with which arrhythmias can be initiated.
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Fig. 38. Chaos synchronization in cardiac tissue. a–c. Chaos synchronization in a tissue model with fast pacing-induced chaos. a. Time–space plot of voltage
of a 1D homogeneous cable (L = 6 cm) of coupledmyocytes under periodic pacing. All myocytes were identically paced with T = 100ms and started with
roughly the same initial condition at t = 0. The myocytes were modeled by the Beeler–Reuter model [130] with modifications [242]. b. Average standard

deviation (⟨σ ⟩) of voltage versus the cable length L. ⟨σ ⟩was defined as: ⟨σ ⟩ = limD→∞
1

D−T0

 D
T0

dt
 L

0 [V (x, t) − V̄ (t)]2dx/L, where V̄ (t) is average voltage
over the whole cable at time t , T0 is a time after the transient, and L is the length of the cable. Synchronization therefore occurs when ⟨σ ⟩ approaches zero.
c. The maximum Lyapunov exponent (λ) versus wave number k calculated using the single cell model, which can well predict the critical cable length at
which chaos desynchronization occurs. d. Chaos synchronization in a tissuemodel with the presence of EADs. APD distributions for three consecutive beats
in a homogeneous 2D tissue (4.5 cm × 4.5 cm) with stimuli applied uniformly at the left edge of the tissue. Islands of long APD (with EADs) surrounded
by regions with short APD (without EADs) develop as a result of the spatial instabilities via chaos desynchronization due to chaotic EAD dynamics [166].

7.3.1. Reentry around an obstacle
Reentry was first demonstrated in an annulus of cardiac tissue [68], and the formation of reentry around an obstacle

is well understood in cardiology. Fig. 39 is a text-book schema of reentry formation around an obstacle. Consider a cardiac
tissuewith an obstacle (scar tissue or a vascular structure). A planar wave, a sinus rhythm or a PVC, can successful propagate
both sides of the obstacle if the refractory period of the tissue is uniform (Fig. 39a). However, if the tissue is heterogeneous
and the refractory period in a region in the right pathway is longer than that of the remaining tissue, an appropriately timed
premature impulse will not be able to propagate through the right pathway, but will successfully propagate through the left
pathway and reenter the right pathway in the retrograde direction. If the impulse from the left pathway reaches the right
pathway too early so that the right pathway is still in refractory, it cannot propagate through the right pathway (Fig. 39b). If
the delay is long enough for the right pathway to have recovered, the impulse can then reenter the left pathway and continue
to circulate around the obstacle, forming a reentry (Fig. 39c). In other words, a PVC entering into the pathways too early or
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Fig. 39. Induction of reentry around an obstacle. a. A PVC successfully propagates through both sides of the obstacle with no conduction block. b. A PVC is
blocked in the right pathway and the one from the left is also blocked in the right pathway. c. A PVC is blocked in the right pathway but the one from the
left successfully propagates through the right pathway, forming a reentry around the obstacle.

too late cannot induce reentry, but a PVC in a certain time interval can induce reentry. This time interval is called vulnerable
window.

7.3.2. Induction of reentry by a strong stimulus
Applying a strong stimulus to either a normal heart or a diseased heart, such as an electrical shock [80] or a mechanical

impact [368,369], can cause ventricular arrhythmias and SCD. It has been demonstrated in many experiments [80,81,370,
371] that reentrant arrhythmias can be induced by a properly-timed strong electrical stimulus delivered during the T-wave
in the normal heart. A theory for the initiation of reentry by strong electrical stimulation from a point electrode was first
proposed by Winfree [3,73,74] who called it the ‘‘pinwheel experiment’’ or ‘‘singular point hypothesis’’, later called the
‘‘critical point hypothesis’’ by Frazier et al. [81]. Fig. 40a is a schematic plot illustrating the mechanism. At a critical time Tc ,
an electrical stimulus (S2) is applied from a point electrode, which occurs during the repolarization phase of a rectilinear (S1)
wave, such as a sinus beat. This stimulus depolarizes a spatial domain of critical size Ac . The S2 excitation cannot propagate
in the same direction of the S1 beat, since the tissue in this region has not recovered, but can propagate downwards where
the tissue has recovered. At the boundary of propagation and non-propagation of the S2 beat, two singularities (wavebreaks)
form,which subsequently turn inwards and attempt to form counter-rotating spiral waves. ‘‘Figure-of-eight’’ reentry results
if the two spiral wave tips have enough room to form a central common conduction pathway. However, if the S2 depolarizes
a spatial domain smaller (because of a weaker strength) than the critical area, or if the S2 is given too early or too late, the
two spiral wave tips will collide and annihilate (annihilation occurs if the two dashed circles in Fig. 40a intersect). This is
demonstrated in Fig. 40b which shows once a large enough area is depolarized by S2, reentry forms. However, if the area is
too small, the two tips collide and no reentry forms. If S2 depolarizes the whole recovered tissue, then no singularities can
form and thus no reentry can form. Based on these arguments, reentry can only be induced in a certain time window and
with a certain S2 strength range. Fig. 40c shows the vulnerable window in a coupling interval and stimulation strength plot
obtained from experiments of a dog ventricular tissue by Gotoh et al. [371].

Cardiac tissue includes an intracellular space and an extracellular space which exhibit different conductivities and
anisotropic ratios. Models that take into account the conductivities in both spaces are called bidomain models [159]. Novel
electrical behaviors have been shown to occur in bidomain models responding to a strong stimulus. A strong point stimulus
causes virtual electrodes, consisting of cathodal and anodal regions in a ‘‘dog bone’’ pattern [160]. This pattern was demon-
strated in experiments of cardiac tissue [158]. Based on the new excitation properties of the bidomain model, Roth [372]
extended the pinwheel experiment and showed that the bidoman effect would affect the size of the vulnerable period and
number of rotors created. The effects of a bidomain model on rotor initiation have also been shown in real cardiac tis-
sue [156]. In addition, APD and APD restitution can also affect the vulnerable window of arrhythmias caused by a strong
stimulus, as indicated by computer simulations [373].

7.3.3. Unidirectional conduction block and reentry induced by premature excitations
In clinical settings, either electrical shocks or mechanical impacts are large extrinsic perturbations. But most arrhythmic

events and SCDs occur spontaneously as a result of triggering events intrinsic to the heart. The prevailing theory is that a PVC
(called a trigger) encounters proper tissue conditions (called a substrate) which results in reentry, leading to arrhythmias
and SCD. A PVC is an early excitation in the heart, which is very different from the external strong stimulus. Unidirectional
conduction block can occur when a PVC enters into a repolarizing region of a previous excitation and if the block is localized
then reentry can form.Many simulation studies [65,359,361,362,374–385] and experimental studies [386–388] have carried
out to investigate how a premature S2 beat induces unidirectional conduction block or reentry following the sinus rhythm
(S1 beats) in heterogeneous tissue under various conditions.

The key to understanding how PVC induces reentry is unidirectional block, and the basic dynamics can be investigated
using a 1D cable. An analytical treatment of the problem has been carried out by Qu et al. [362,381]. As illustrated in Fig. 41a,
assume that a premature S2 beat propagates in the same direction as the S1 beat. If the tissue is homogeneous, then the
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Fig. 40. Induction of reentry by a strong stimulus. a. Winfree’s pinwheel experiment where S1 is a planar wave propagating upward and S2 is delivered at
a critical time (Tc ) from a point electrode which depolarizes a critical circular domain (Ac ) with a critical radius (Rc ). Two singularities are generated at the
intersection of the circle’s edgewith thewaveback of S1, which turn inwards to form two spiral waves and figure-of-eight reentry. b. Computer simulations
showing that an S2 with a smaller area of depolarization results in two phase singularities but no reentry, but an S2 with a larger area of depolarization
successfully induces figure-of-eight reentry. c. Vulnerable window (black squares) versus stimulus strength and S1S2 interval, obtained from experiments.
Source: Panel c is reproduced from Gotoh et al. [371].

waveback velocity (Θ1) of the S1 beat is the same as its wavefront velocity (θ1). In this case, the wavefront velocity (θ2) of
the S2 beat is the same or slower than that of the S1 beat, and thus S2 can propagate safely. If there is an APD gradient (σ ) in
the tissue (Fig. 41b), then Θ1 of the S1 beat in the gradient region is slower than θ1 due to the increasing refractory period,
which can be slow enough so that the S2 beat collides with the waveback of the S1 beat and fails to propagate (Fig. 41c). The
relationship between Θ1 and θ1 can be derived as [65,100,381,382]:

Θ1(x) =
θ1(x)

1 + θ1(x)σ (x)
(86)

where σ(x) = ∆a(x)/∆x is the spatial APD gradient of the S1wave. The time interval (i.e., the DI) between the S2wavefront
and S1 waveback obeys the following differential equation:

d[d(x)]
dx

=
1

θ2(x)
−

1
Θ1(x)

(87)
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Fig. 41. Unidirectional conduction block in heterogeneous tissue. a. A schematic plot showing an S1wave followed by an S2wave in a 1D cable. b. A schematic
plot of an APD gradient in space. c. Space–time plot of voltage (in a gray scale) showing S2 block in 1D heterogeneous cable. Pacing stimuli are applied at
x = 0. Arrow indicates the location at which the S2 wave is blocked. d. Vulnerable window (w) versus ∆a from computer simulations (symbols) and from
the theory (Eq. (88)).

where d(x) is the DI preceding the S2 beat. If Θ1 < θ2, d(x) decreases with x, the S2 wavefront approaches the S1 waveback.
If the difference is large, d(x) will decrease to a critical value (see CV restitution in Fig. 36d) at a certain location in the
heterogeneous region, and thus the S2 beat fails to conduct through the heterogeneous region.

The time interval in which an S2 beat blocks somewhere in heterogeneous region is defined as the vulnerable window
(w). w can then be analytically derived from Eq. (87) using a piece-wise linear APD distribution as in Fig. 41b and a CV
restitution curve described by an exponential function as θ = θ0(1 − δe−(d−dc )/τ ), which is [381]:

w = ∆a −
τ

1 + σθ0
ln

σθ2
0

θc + σθcθ0 − θ0
(88)

where ∆a is the refractory barrier, σ = ∆a/h is the APD gradient as defined in Fig. 41b, and θc is the critical CV at which
conduction fails as defined in Fig. 36d. Eq. (88) describes the roles of APD gradient and the properties of CV restitution in
the vulnerable window for unidirectional block. Specifically, the vulnerable window for unidirectional conduction block
is proportional to the refractory barrier for a fixed σ once σ exceeds a critical value (Fig. 41d). The analytically derived
vulnerable window also agrees well with the results from simulations using a detailed action potential model. Since a larger
τ means a broader DI range over which CV changes, broadening CV restitution reduces the vulnerable window, i.e., CV
restitution is protective under this condition. Note that CV restitution is also important in promoting spatially discordant
APD alternans, which promotes large APD gradients and increase vulnerability. Therefore, the slope of the CV restitution has
either suppressed or promoted vulnerability, depending on the specific conditions.

The critical APD gradient (σc) for conduction block can be obtained from Eqs. (87) or (88) as [381]:

σc =
1
θc

−
1
θ1

. (89)
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Therefore, σc depends on the CV of the S1wave and the critical CV for conduction failure. For faster S1 rates, θ1 is smaller, and
thus σc is also smaller. For normal conduction in the longitudinal direction, θ1 = θ0 ∼ 0.5 mm/ms and θc ∼ 0.2 mm/ms,
which gives rise to a minimum APD gradient of 3 ms/mm for unidirectional conductional block to occur. This agrees with
observations by Laurita and Rosenbaum [389] from experiments in normal guinea pig hearts, which required a minimum
APD gradient of 3.2 ms/mm for unidirectional conduction block to occur. An interesting implication of Eq. (89) relates to the
effects of decreased coupling strength between cells. It is well known that decreasing gap junction conductance increases
the gradient of refractoriness, which was thought to promote unidirectional conduction block [390]. However, since CV
scales to the square root of gap junction conductance, i.e., θ ′

∝
√
Dθ , then Eq. (89) can be written as σ > 1

√
D
( 1

θc
−

1
θ0

),
which indicates that a larger refractory gradient is needed for conduction block when gap junction conductance is reduced.
This agrees with the following experimental observations: polymorphic VT could only be inducedwhen the transmural APD
gradient was greater than 10 ms/mm in failing dog hearts [386] in which gap junction conductance was reduced by heart
failure. Also conduction block occurred at APD gradients from 10 to 120 ms/mm in sub-acute myocardial infarction [387],
in which cell coupling is likewise reduced.

Unidirectional conduction block in a 1D cable does not guarantee reentry in 2D or 3D tissue. Similar to the case shown in
Fig. 40, reentry formation requires that the two tips of the localized block are separated by a critical distance. For example,
for a heterogeneous island in tissue [375], reentry cannot form for a small refractory barrier, but it also cannot form for a
too large refractory barrier since the refractory period in the island is too long, the two tips will collide behind the island,
preventing reentry to form. This type of tip collision has been observed in an experimental study of ischemia [391] in which
high dose of lidocaine (a Na+ channel blocking drug) prolonged the refractory period in the border zone muchmore than in
the normal tissue, causing the tips to collide on the other side of the border zone. In addition to the height of the refractory
barrier, the spatial scale of the heterogeneities is also an important factor as shown in simulation studies [375,380].

In clinical settings, however, multiple PVCs often appear to be involved in the genesis of arrhythmias [392,393]. For
example, during clinical cardiac electrophysiological testing, programmed stimulation with multiple PVCs is often required
to induce reentry. Relevant to this observation, experimental studies have shown that dispersion of refractoriness, which
correlates inversely with the VF threshold [394], is modulated by PVCs [395] and rapid heart rates [386,396]. Other
experiments [397–402] have demonstrated that dispersion of refractoriness and inducibility of reentry are affected by the
activation sequence of PVCs. Computer simulation studies [65,358,403] have shown that the ability of a PVC to modulate
dispersion of refractoriness depends on APD restitution and CV restitution properties. Using a kinematic model, Fox
et al. [383] showed that the likelihood of conduction block bymultiple PVCs depended on APD restitution and CV restitution.
In addition, spatially discordant APD alternans induced by rapid pacing [64,347] also dramatically increases the dispersion
of refractoriness, creating a heterogeneous substrate favoring conduction block and initiation of reentry [65,360,361,385].
Fig. 42 shows an example of induction of reentry promoted by spatially discordant APD alternans in a computer simulation
of a 2D tissue model.

7.3.4. EAD-induced reentry
An EAD can trigger a PVC which propagates in cardiac tissue. If the PVC encounters the proper tissue substrate, it may

induce reentry by the mechanism described above. However, EADs may also induce reentry without requiring additional
tissue substrate heterogeneity, if multiple regions susceptible to EADs are present in the tissue. This scenario is shown in
Fig. 43. In Fig. 43a, a circular area of cells exhibit EADs is placed in the center of the tissue. The first three EADs fails to
propagate while the 4th EAD propagates successfully in all directions, forming a target wave and thus a PVC. In Fig. 43b, an
area composed of two circular regions is placed in the center of the tissue and all other parameters are the same as in Fig. 43a.
The first two EADs fail to propagate, while the 3rd one propagates into the negatively curved region and then around the
heterogeneous region, forming a reentry circuit. The negatively curved region enhances the source effect, helping the EADs
to propagate.

7.3.5. Spatiotemporal instabilities and arrhythmia initiation
In the case of reentry induced by a strong stimulus, the symmetry is broken by the stimulation itself. In the cases of PVC

or EAD induced reentry, the symmetry is broken due to strong tissue heterogeneities. Besides the mechanisms discussed
above, reentry can be induced by symmetry breaking due to dynamical instabilities—the development of spatiotemporal
chaos due to chaos desynchronization [166,242]. Reentry can be induced under two cases. In the first case (Fig. 44a), chaos
occurs due to steep APD restitution and rapid pacing as shown in Fig. 23. In a homogeneous 2D tissue, pacing fromone side of
the tissue generates planar waves propagating from left to right, which is initially synchronous in the y-direction. However,
as pacing continues, the synchrony cannot be maintained because the underlying action potential dynamics of each cell is
chaotic. Due to sensitivity to initial conditions, a characteristic of chaos, very small differences develop into large gradients,
causing localized failure of conduction, initiation of reentry and complexwave dynamics. In the second case (Fig. 44b), chaos
is caused by EAD dynamics (Fig. 33). The planar waves generated by pacing from one side of the 2D tissue desynchronize
in the y-direction, forming islands of long APD. Differing from the first case (in which localized conduction failure occurs to
the pacing beats to induce reentry), EADs generated from these long APD islands propagate in one direction but fail in the
other direction, forming reentry and eventually developing complex spatiotemporal electrical wave dynamics.
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Fig. 42. Induction of reentry due to discordant alternans. S1 (15 beats at PCL = 170 ms) and S2 (S1S2 = 120 ms) were delivered at the same site.
a. Membrane potential at different sites in tissue (along the dashed line indicated in the middle panel in b), with conduction block initiating reentry
indicated by arrows. b. Snapshots of membrane voltage during last 2 S1 beats (beats 14 and 15) and at various times after S2 was delivered, showing
initiation of figure-eight reentry leading to fibrillation. c. Spatial APD distribution for the S1 beats 14 and 15, showing discordant APD alternans.
Source: Qu et al. [65].

7.4. Dynamics of reentry in cardiac tissue and organ

Reentry in cardiac tissue can be either stable or unstable, and the latter leading to complex wave dynamics. The stability
of reentry has been widely investigated analytically and in computer simulation studies. These studies have shown that a
Hopf bifurcation leading to quasi-periodicity is the first bifurcation followed by a transition to chaos. The quasi-periodicity
and chaos are also observed in experimental recordings of arrhythmias [404,405]. Moreover, the quasi-periodic behavior
of reentry may be responsible for the quasi-periodic ECG dynamics of Torsade de Pointes, whereas the chaotic behavior of
reentry may be responsible for the irregular ECG dynamics of polymorphic VT and VF. In this sub-section, we summarize:
the bifurcation theory and nonlinear dynamics of reentry around an obstacle; the spiral wave and scroll wave stability and
dynamics in generic excitable media and in cardiac tissue; spiral wave dynamics in culturedmyocytemonolayers and in the
real heart; and finally bi-stable spiral wave behavior in generic excitable media of the FHN model and in cardiac tissue.
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Fig. 43. Induction of PVC and reentry by EADs in a 2D heterogeneous tissue. a. A PVC resulted from an EAD in a 2D tissue with a heterogeneous region
composed of a circular area in which EADs occur. A PVC is formed by the fourth EAD (around 1820 ms) propagating to the normal tissue in all directions. A
single S1 stimulus was applied at the bottom edge of the tissue at t = 0 to cause a planar wave to propagate from bottom to top. The time of each voltage
snapshot is above each panel. b. Reentry induced by an EAD in a 2D tissue with a heterogeneous region composed of two circles (dashed) in which EADs
occur. Reentry occurs spontaneously due to the EAD successfully propagating in one direction but failing in the other direction, forming figure-of-eight
reentry. Asterisks indicate the tips of the spiral wave reentry, while arrows indicate directions of propagation.
Source: Panels are modified from a supplemental figure in Chang et al. [477].

7.4.1. Quasi-periodicity of reentry around an obstacle
Reentry around an obstacle was first demonstrated by Mines in 1914 in an annulus (Fig. 45a) cut from a dog’s right

ventricle [68], which was first mathematically modeled and explained by Wiener and Rosenbluth [69]. In an experimental
study, Frame and Simson [406] found that the reentry could be unstablewith fluctuating circulating time andAPD, exhibiting
a quasi-periodic pattern (Fig. 45b). This behavior can be readily recapitulated in computer simulations using a 1D ring
[241,345,407–411], as shown in Fig. 45c for comparison with the experimental data. The quasi-periodic behavior has been
well-studied theoretically, first by Courtemanche et al. [345,408] who developed an integral-delay equation for a wave
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Fig. 44. Reentry initiation via spatiotemporal chaotic dynamics. a. Rapid pacing-induced spatiotemporal chaos and wavebreaks in a homogeneous 2D
tissue [242]. The stimulation is applied to the cells at the left edge of the tissue, which generates planar waves propagating from left to right. At the
beginning, the waves are synchronized in the vertical direction, but as time elapses, this synchronization is lost and voltage gradients develop in the
vertical directionwhich causes localized conduction block (marked by the arrow in the second panel), leading to reentry and complex electrical turbulence.
b. Pacing-induced spatiotemporal chaos and induction of reentry in a homogeneous tissue in the presence of EADs [166]. The stimulation is applied to the
left edge with a slow PCL to allow EADs to occur. Due to chaos, EAD islands form (indicated by the arrow in the second panel), and the EAD propagates in
one direction and induces reentry.

circulating in a ring, i.e.,

d(x) =

 x

x−L

ds
θ(s)

ds − a(x − L) (90)

where d(x) is the DI at location x, a(x) is the APD at location x which is determined by the APD restitution function
a(x) = f [d(x)], θ(x) is the CV at location x which is determined by the CV restitution function θ(x) = g[d(x)], and L is
the perimeter of the ring. The equation simply follows the conservation ‘‘DI = circulating time-APD’’. By taking derivatives
with respect to x, the integral-delayed equation becomes

d
dx

[d(x) + a(x − L)] =
1

θ(x)
−

1
θ(x − L)

(91)

which is called the neutral delayed-differential equation. By performing linear stability analysis of the steady-state solution
of the neutral delayed-differential equation, they found that an infinite-dimensional Hopf bifurcation occurs when the slope
of the APD restitution curve is equal to one, i.e., f ′

= f ′
c = 1. The steady-state solution is unstable when f ′ > f ′

c . The
wavelength at the bifurcation point can be approximately calculated from the linear stability analysis as

λk =
2L

2k + 1
−

2L2α
(2k + 1)3π2

, k = 0, 1, 2, . . . (92)

where α = g ′/θ2 and g ′ is the slope of the CV restitution curve at the steady-state solution, indicating that the wavelength
is determined by CV and CV restitution.

Note that the neutral delayed-differential equation does not take into account the effects of cell coupling on APD. This
coupling effect was later considered by Vinet [410,412] who introduced a coupling term in the neutral delayed-differential
equation as

d(x) =

 x

x−L

ds
θ(s)

−

 α

−α

w(s)a(x − L + s)ds (93)
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Fig. 45. Quasi-periodicity in a ring of cardiac tissue. a. An annulus of tissue cut from a dog ventricle in Mines’ experiment (adopted from Glass [4]). The
line with an arrow indicates a circulating wave, red indicates that the tissue is refractory, and green means the tissue is recovered. b. APD recorded in an
experiment from a circulating wave in an annulus of tissue from a dog heart, reproduced from Frame and Simpson [406]. c. APD recorded from a computer
simulation of a ring of coupled cells. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

wherew(s) is aGaussian functiondescribing the long-range coupling and [−α, α] is themaximumcoupling range. Following
the same stability analysis, they found that the critical slope of the APD restitution curve for instability became [412],

f ′

c = eηq2 (94)

where η is a positive parameter depending on the coupling strength. When η = 0, the APDs of the cells are uncoupled,
which is the case studied by Courtemanche et al. [345,408]. Note that the steady-state solution becomes unstable, not at the
slope of the APD restitution curve equals one, but at a critical slope that is greater than one, i.e., f ′

c = eηq2 > 1, indicating
that the coupling between cells stabilizes the system. In addition, the Hopf bifurcation is no longer infinite-dimensional as
in the model by Courtemanche et al. [345].

A 1D ring is an idealized geometry to model reentry around an obstacle. Models of 2D annuli have been also used to
investigate the dynamics of reentry around an obstacle and demonstrated how the size of the obstacle as well as wavefront
curvature interacts with APD restitution to develop complex spatiotemporal wave dynamics [102,413,414]. For example,
the cycle length of reentry is mainly determined by the size of the obstacle when the reentry is intact, but once wavebreaks
occur due to a smaller obstacle size or a steeper APD restitution curve, the obstacle has little effects on the cycle length or
the dynamics of the reentrant waves.

7.4.2. Dynamics of spiral waves in 2D tissue models

7.4.2.1. Spiral wave dynamics in generic excitablemedia. Spiral waves are a generic property of excitablemedia. A spiral wave
in an excitablemedium is called stable if its tip traces out a circle in a homogeneous space, but instabilities can occur leading
to complex spiral wave behaviors. Meandering of the tip is a spiral wave behavior widely observed in computer models
[92–94,415] and experiments [416,417]. Fig. 46a shows spiral wave behaviors in a two-parameter space in the model by
Barkley [415], showing stable spiral wave, meandering spiral wave, and drifting spiral wave regimes. The transition from
a stable spiral wave to a meandering spiral wave occurs via a Hopf bifurcation [93]. The different meandering and drifting
patterns of the tip of a spiral wave depend on the rotation frequency of the spiral wave (ω1) and frequency arising from the
Hopf bifurcation (ω2). When ω2 < ω1, the tip traces out an inward flower petal, and when ω2 > ω1, the tip trances out an
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Fig. 46. Spiral wave dynamics in generic excitable medium. a. Spiral wave behaviors in a two-parameter space from a two-variable model by Barkley [415].
b. Tip trajectory of a spiral wave for a FHN model simulation by Winfree [94]. c. Spiral wave breakup in a 2D medium generated using the model by Bar
et al. [95].

outward flower petal. When ω2 = ω1, a resonant behavior occurs, which causes the spiral tip to drift along a straight line in
space.Winfree [94] observed amore complexmeandering pattern (Fig. 46b), and called it hypermeander in which the spiral
tipwanders irregularly in space. Evenmore complex spiral wave dynamics can occur, i.e., spiral wave breakup (Fig. 46c), first
shown in modified FHN models by Bar et al. [95] and by Panfilov and Hogeweg [96]. During breakup, the spiral waves are
unstable, and new spiral waves are continuously created via wave breaks, and at the same time, the existing spiral waves
disappear by spiral tip colliding and meandering off the boundaries, producing a very complex spatiotemporal electrical
wave pattern.

7.4.2.2. Spiral wave dynamics in homogeneous cardiac tissue models. The first computer simulation using a detailed
cardiac action potential model to simulate spiral wave dynamics in cardiac tissue was carried out by Courtemanche and
Winfree [418] with the ventricular action potential model by Beeler and Reuter [130] using a supercomputer at the San
Diego Supercomputer Center. Due to improvements in computer power and better numerical methods, simulation of spiral
wave in 2D tissue using detailed cardiac action potential models is now routine, but still non-trivial. Although the action
potentialmodels have becomemore andmore physiologically detailed, however, the basic spiral wave behaviors exhibit the
same dynamics as in generic excitable models, i.e., stable spiral waves, quasi-periodic meandering spiral waves, chaotically
meandering spiral waves, resonant spiral wave drift, and spiral wave breakup (‘‘electrical turbulence’’) [98–102,419–421].

To better understand the spiral wave dynamics in cardiac tissue, it is useful to first understand some of the basic proper-
ties of spiral waves. Following Zykov [88], certain characteristic points in a stable spiral wave can be defined (Fig. 47a) [102]:
the rotation center (labeled as ‘O’); the ‘q’ point at which the wavefront meets the waveback; and the ‘Q’ point at which the
CV is tangential to the circle it traces out. An arbitrary point in the spiral arm far away from theQpoint is labeled as a ‘P’ point.
Note that any point in a stable spiral wave traces out a circle, but only the CV of the Q point is tangential to its own trace. The
Q point is the point in a spiral wave where conduction changes from regenerative (outside the circle) to decremental (inside
the circle). The cycle length of a spiral wave (T ), the radius of the spiral core (rQ ), and the CV (θQ ) of the Q point satisfy: T =

2πrQ /θQ . Since theQpoint is the locationwhere regenerative conduction becomes decremental, one can define the excitable
gap to be zero at this point. The excitable gap is the time interval between the end of the present wave and the next coming
wave, during which a cell is in its excitable state. From the Q point to the P point, the wavefront curvature decreases. Based
on the eikonal relation (Eq. (71) or Eq. (72)), a larger wavefront curvature results in a slower conduction, and thus the con-
duction of theQpoint is slower than that of the arbitrary P point. Also due to the curvature effect (Eq. (74)), APD at theQpoint
is also different from that of the P point. The properties of the Q and P points, such as CV and APD, can be directly measured
from the 2D spiralwaves. Alternatively, they can also be obtained from1D cable simulations using different curvatures [102].
Figs. 47b and c show CV and APD restitution curves obtained from 1D cable simulations for two different curvatures, close
to the curvatures of the P and Q points, respectively. The tilted dashed linesmark the smallest values of CL or DI at which the
wavewill propagatewithout failure at different curvatures. The solid vertical line in Fig. 47bmarks the CL of the correspond-
ing spiral wave in 2D tissue. This line intersects the conduction failure line at a point Q ′ and intersects the zero curvature CV
restitution curve at another point P ′. Comparison of the calculated quantities in the 1D simulation, such as APD, DI, CV, V , at
Q ′ and P ′, to the same quantities at Q and P measured from the 2D spiral wave shows that they are virtually identical [102].
This has the following consequences for 2D spiral waves: (1) There is an excitable gap ahead of the wave front that can be
quantitatively defined (patch regions in Figs. 47b and c), which decreases to zero at theQpoint; (2) The CL is selected by theQ
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Fig. 47. Characteristics of a stable spiral wave in cardiac tissue. a. Schematic plot of characteristic points in a stable spiral wave. ‘‘O’’ is the rotation center. ‘‘q’’
is the joint of the wavefront and waveback. ‘‘Q’’ is the point where decremental conduction meets regenerative conduction. At the Q point, the direction of
conduction is normal to its radial direction, which is the only point in a stable spiral that has this property. ‘‘P’’ is an arbitrary point in the spiral arm. b. CV
versus T for two different curvatures. c. APD versus DI for two different curvatures.
Source:Modified from Qu et al. [102].

point atwhich the critical curvature for conduction failure is reached. In otherwords, the Q point is a location along the spiral
arm of a stable spiral wave at which its CL equals its refractory period (and thus there is no excitable gap). The properties of q
(spiral core), Q (spiral tip), and P (spiral arm) are also important for understanding spiral wave dynamics, as discussed below.

As opposed to the case of generic excitable media, in cardiac tissue, a physiological parameter determining spiral wave
dynamics has been identified, namely the slope of the APD restitution curve is a critical parameter that regulates the stability
of spiral wave reentry. The link of APD restitution to spiral wave stability and breakup were investigated in early simulation
studies by Karma [99], Courtemanche [100], Qu et al. [101,102], and others. A detailed analysis of the mechanisms by which
APD restitution influences different spiral wave dynamics was carried out by Qu et al. [102], and is summarized below.

Fig. 48a shows three spiralwave dynamics in homogeneous 2D tissue using a cardiac action potentialmodel. APD andAPD
restitution are altered by changing themaximumconductance of the Ca2+ current. A stable spiralwave can also be generated
with additional changes to the Na+ channel [102]. When the APD restitution curve is flat, the spiral wave is either stable or
meanders weakly. As the APD restitution curve becomes steeper, the spiral wave meanders more and more violently and
becomes chaotic. As the slope of the APD restitution curve increases further, the spiral wave breaks up spontaneously into
multiple small waves. In this case, spiral waves are constantly created and annihilated in a chaotic manner. As shown by the
cycle length returnmaps, the transitions from ameandering spiral wave, to a chaoticallymeandering spiral wave, eventually
to spiralwave breakup, are transitions fromquasi-periodicity to spatiotemporal chaos. The transition to chaos is also verified
by the calculated Lyapunov exponent (Fig. 48b). This transition from quasi-periodicity to chaos may be consistent with the
quasi-periodicity in arrhythmias observed in experiments [404,405].

The nonlinear dynamical mechanisms of spiral wave breakup and chaos in cardiac tissue have not been rigorously
investigated but can be generally understood in terms of the properties of the characteristic points of the spiral wave as
follows [102].

Case 1: stable and quasi-periodic meander. When the slope of APD restitution curve is <1 for all DIs, no instability occurs
in the spiral arm (from Q to P). Studies in generic excitable media [92,93] show that the transition from a stable spiral wave
to quasi-periodic meander is via a Hopf bifurcation which arises from an instability of the spiral core (q region). Therefore,
when APD restitution curve is flat, the spiral wave is either stable or quasi-periodically meander via a Hopf bifurcation.

Case 2: breakup. When the slope of APD restitution curve is>1 over a wide range of DIs, an instability occurs in the spiral
arm far away from the core. This instability is similar to the instability induced by rapid pacing with steep APD restitution,
which result in alternans. If the magnitude of oscillation is large enough, conduction failure can occur and produce wave-
breaks. However, for a spiral wave to break up, conduction block has to occur locally, but not everywhere, along the spiral
wave arm, which requires the presence of a spatial mode instability to be present. Excitation of longitudinal spatial modes
has been well characterized in 1D cables of coupled cardiac cells [302,345,363,412]. In 2D tissue, however, not only the lon-
gitudinal modes but also the spatial modes transverse to the direction of propagation are excited if the tissue size is large
enough [102]. The occurrence of both the longitudinal and transverse spatial modes causes the wavelength modulations in
the spiral arm, leading to localized conduction failure. The nonlinear dynamical mechanisms of the spatial mode instability
have not been rigorously analyzed and need further theoretical investigations. However, wavefront curvature is required,
since this type of spatial mode instability cannot occur in planar wave conduction. As for any spatial mode instability, a
certain tissue size is needed. Fig. 48c shows the development of these spatial modes versus the tissue size. The size of the
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Fig. 48. Spiral wave dynamics in a homogeneous 2D tissue model. a. Quasi-periodic and chaotic spiral wave meander and spiral wave breakup in a
homogeneous 2D tissue. The spiral wave behaviors were resulted by altering the maximum conductance of the Ca2+ current, Ḡsi , in the LR1 model. Upper
panels: snapshots of voltage and tip trajectories. Lower panels: returnmaps of cycle length (CL, recorded froma certain location in the tissue) showing CLn+1
versus CLn for the corresponding cases in the upper panels. b. Maximum Lyapunov exponent versus Ḡsi obtained via numerical simulation. c. Development
of spatial mode instability as tissue size increases for a reentry around a fixed circular obstacle. A ‘‘speed bump’’ develops (marked by the arrow) in the
waveback due to this instability in a large tissue but not in the smaller ones. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
Source: Panels are modified from Qu et al. [102].

obstacle in each panels is the same so that the cycle length of reentry is the same. In a small tissue, no spatialmode instability
occurs. But when the tissue is large enough, a spatial mode instability develops, which causes the occurrence of a bump of
refractoriness in the back of the spiral arm (arrow in Fig. 48c).

Case 3: chaotic meander. Between Cases 1 and 2 is the case in which the slope of APD restitution curve is smaller than 1
everywhere except for a narrow range of short DIs. As shown in Fig. 47, the excitable gap is zero at the Q point but non-zero
at the P point. Due to the curvature effect, the DI of the Q point is shorter than that of the P point. Therefore, it is possible
that the slope of the APD restitution at the Q point is >1 but <1 at the P point, and thus oscillations occur at the Q point not
at the P point. Since the excitable gap at Q is zero, any oscillations will result in conduction failure of the Q point, but since
the excitable gap is much larger at the P point, conduction failure does not occur at this point. Thus, conduction block at the
Q point cannot create new spiral waves, but rather affects the course of the spiral tip, resulting in a complex meandering
pattern, i.e., chaotic meander.

The chaotic spiral wave dynamics in 2D tissue can be understood based on dynamics of the paced single cells. The chaotic
dynamics in the paced cells is governed by a nonlinear shift map. The essential conditions are the slope of APD restitution
curve >1 and loss of 1:1 capture. Slope >1 is necessary to create instability at a fixed point in a map, and the discontinuity
caused by the lost of 1:1 capture makes the map non-invertible. Even though for the 2D spiral waves, this process is much
more complex and it is not possible to use low-dimensional maps to study it, the mechanism of chaos in single cell is
essentially still responsible, i.e., the same requirements for chaos to occur in 2D: an APD restitution slope>1, and conduction
failure.When conduction failure begins to occur at the Q point, quasi-periodicmeander becomes chaoticmeander. Note that
as indicated by the returnmap in Fig. 48a, the chaotic behavior is modulated by the quasi-periodicity due to instability from
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the core. As demonstrated in numerical simulations, chaos indeed occurs locally in the inner part of the spiral wave when it
meanders chaotically [422].When conduction failure occurs in the spiral arm far away from the Q point, spiral wave breakup
occurs, and chaos becomes global and truly spatiotemporal [422].

Spiral wave breakup does not always lead to spatiotemporal chaos, and can produce multiple stable spiral waves, called
spiral glass. In a simulation study by Karma [99] using the Noble model, spiral waves broke up due to APD alternans,
but the final state consisted of many stable spirals. This can also be explained by the APD restitution theory described
above [102]. Similarly, in the presence of cardiac memory, an induced spiral wave can undergo spiral wave breakup by
the same mechanism as described above, but eventually evolve to multiple stable spiral waves in the tissue as the memory
effect evolves [248]. It has also been shown that different spiral wave instabilities can be caused by non-monotonic APD
restitution curves [423]. Other mechanisms of spiral wave breakup have also been shown in 2D cardiac tissue models [421].

7.4.2.3. Spiral wave dynamics in heterogeneous tissue models. Normal cardiac tissue is both structurally and electrically het-
erogeneous, and the degree of heterogeneity is increased in diseased hearts. Electrical heterogeneity is caused by hetero-
geneous ion channel density causing heterogeneous APD distribution and APD gradients in the heart. The effects of APD
heterogeneities can be summarized into the following three cases. In the first case in which the APD gradient is mild, a
spiral wave in this tissue drifts toward the long APD region at a certain angle to the direction of APD gradient (Fig. 49a)
[374,424]. This drift property has also been shown in generic excitable medium, and the direction of drift depends on the
excitability of the medium [425]. In addition, when multiple spiral waves are initially present in the tissue, the fastest one
always drives the slower ones out toward a tissue border where they are extinguished, i.e., spiral waves with different cycle
lengths cannot coexist in the same tissue [374,426] so that thewhole tissue is entrained into a single frequency by the fastest
one. The time taken to entrainment is proportional to the difference in frequency [426], i.e.,

T ∝
1

|f1 − f2|
. (95)

In the second case [115,374] in which the APD gradient exceeds a critical value, conduction blocks occur in the heteroge-
neous region via the same mechanism as described in Section 7.3.3. A spiral wave in the short APD region is fast, and the
wavefronts emanating from it cannot propagate one-to-one through the large APD gradient region, such that conduction
block occurs and forms new spiral waves (Fig. 49b). The spiral waves rotate with different frequencies, and the frequency
jumps suddenly from one to the other (see bottom panel in Fig. 49b). The competition between spiral waves with different
frequencies results in complex conduction patterns, including chaos [115]. In the third case, spiral wave breakup occurs via
dynamical instabilities caused by a steep APD restitution curve. Even though the APD gradient is large, the distribution of
the average frequency does not jump suddenly but varies nearly continuously in space, tracking the APD heterogeneity in
space (Fig. 49c). Note that in real cardiac tissue, the heterogeneities may exhibit different spatial scales and even vary from
cell to cell. It has been shown that the spiral wave dynamics also depends on the spatial scale of the heterogeneity [427].

7.4.3. Dynamics of scroll waves in 3D tissue models
The heart is 3D and inhomogeneous, and the spiral waves seen on the epicardial surface of the heart are in fact scroll

waves. The simplest case is a stack of 2D spiral waves to form a straight scroll wave in 3D (Fig. 50a). The line that links
the spiral tips in space is called the scroll filament (the red line in Fig. 50a). If the tissue is heterogeneous and thus the
spiral waves rotate at different periods in different layers, the filament can no longer remain straight, and twists to form a
twisted scroll wave (Fig. 50b). Twisted scroll waves can also result from fiber rotation in cardiac tissue, or due to dynamical
instabilities of the filament itself in homogeneous tissue. In addition, more complex scroll behaviors can exist in excitable
medium, such as scroll rings (Figs. 50c and d) and knotted scroll rings. Finally, fiber rotation and tissue thickness may cause
instabilities resulting in scroll wave breakup. In this sub-section, we summarize the roles of tissue thickness, excitability,
and fiber rotation in scroll wave stability in 3D tissue models.

7.4.3.1. Thickness induced scroll wave instabilities. Winfree [428] argued that a certain tissue thickness (3–4mm) is required
for fibrillation (or electrical turbulence), based on his interpretation of experiments. Rotors (spiral and scroll waves) that are
stable in thin tissue (e.g., the right ventricle) can become unstable in thick tissue (e.g., the left ventricle). Although we now
know that fibrillation can occur in thin tissue, tissue thickness plays an important role in scroll wave dynamics. Thick tissue
not only can allow reentry to occur in the third dimension, but also can generate instabilities that do not exist in 2D.

Since no analytical solutions can be obtained for spiralwaves in excitablemedium, the stability analysis becomes nontriv-
ial. Stability analyses of a straight or a twisted scroll wave filament have been carried out by a number of authors [429–433],
showing filament instability in thick homogeneous tissue. Here we summarize in detail one of the methods that has been
used to study the scroll wave stability and the phenomena observed in numerical simulations by Qu et al. [431].

Consider a FHN type model in a 3D medium using the following equations:

∂u
∂t

= f (u, v) + D∇
2u

∂v

∂t
= g(u, v).

(96)
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Fig. 49. Spiral wave drift and dynamics in heterogeneous 2D tissue models. a. Spiral wave drift in a mildly heterogeneous tissue. Red line is the tip trajectory
and arrow indicates the direction of drift. b.Wavebreaks and co-existence ofmultiple spiral waveswith different frequencies due to a severe heterogeneity.
c. Spiral wave breakup via dynamical instabilities in a heterogeneous tissue. Upper panels: snapshot of voltage; middle panels: FFT spectra for voltage
recordings from three different locations of the tissue; lower panels: averaged cycle length (⟨CL⟩) versus position recorded during the spiral wave activities
and APD versus position recorded during a planar wave propagating from left to right in the same tissue.

Fig. 50. Different types of scroll waves. a. A straight scroll wave [582]. The line linking the spiral tips is called filament of the scroll wave, which is a
straight line in this case. b. A twisted scroll wave [582]. c. A schematic plot of a scroll ring [451]. d. An experimentally measured scroll ring in a chemical
reaction [583]. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 51. Effects of tissue thickness on scroll wave stability. a. Filament and its trajectory on the bottom surface of a 3D medium for an inward petal of
tip trajectory. b. Same as a but for an outward petal in tip trajectory. c. Maximum Lyapunov exponent versus wave number k for the case in b. d. Spiral
turbulence synchronizes in the z-direction in a thin tissue but desynchronizes in a thick tissue, resulting in 3D turbulence. e. Maximum Lyapunov exponent
versus wave number k for d.
Source: Simulations were done using the Bar model, and panels are modified from Qu et al. [431].

Assume that a spiral wave solution [u0(x, y, t), v0(x, y, t)] exists in a 2D tissue. Note that this solution is not limited to a
stable spiral wave, but can be any type of spiral waves, including spiral wave turbulence. The corresponding 3D solutions
are straight scroll waves. To analyze the stability of a straight scroll wave solution, one gives a small perturbation to this
solution, i.e., u(x, y, z, t) = u0(x, y, t) + δu(x, y, t) exp(ikz)and v(x, y, z, t) = v0(x, y, t) + δv(x, y, t) exp(ikz). Inserting
this perturbation into Eq. (96), one obtains a linearized equation around the scroll wave solution as

∂w/∂t = (M − Dk2Γ )w (97)

where w =


δu(x, y, t)
δv(x, y, t)


, M =


f ′u + D∇xy f ′v

g ′
u g ′

v


, Γ = (Γxy), and Γxy =


1 0
0 0


. w is a vector and M , and Γ are matrices in the

x–y coordinate system. By numerically simulating Eqs. (96) and (97), one can obtain the maximum Lyapunov exponent as a
function of wave number k using

λk = lim
t→∞

1
t
ln

∥w(t)∥
∥w(0)∥

. (98)

The scroll wave is unstable when λk > 0 for any k. The critical tissue thickness can be determined by the critical wave
number kc at which λk changes from positive to negative.

Figs. 51a and b show two filaments and their trajectories on the bottom surface of a thick homogeneous 3Dmedium from
simulations of Eq. (96). The corresponding spiral waves meander in a 2D medium. The filaments are no longer straight but
become twisted. However, if the thickness is smaller than the critical value, the filaments remain straight, i.e., no filament
instability can occur. Fig. 51c shows λk versus k for the parameters used in Fig. 51b showing that λk first increases and
then decreases with k, demonstrating that unstable spatial modes develop due to tissue thickness. The critical thickness for
instability is predicted by the calculated λk [431]. Another type of tissue thickness related instability is in the regime of spiral
wave breakup. Since in this regime, the spiral wave dynamics is chaotic, the filament stability becomes a problem of chaos
synchronization in a 3D medium. Similar to the meandering cases, the filaments are stable when the tissue thickness is less
than the critical value, but become unstable when it exceeds the critical value (Fig. 51d), which can also be predicted from
the calculated λk (Fig. 51e). Note that in this case, λk decreases monotonically with k, indicating that no new instability is
induced by the tissue thickness.

The tissue thickness induced instability shown in Figs. 51a–cwas not found in simulations using a cardiac action potential
in 3D tissue [104], at least in tissue models as thick as 15 mm which is roughly the thickness of the left ventricle of large
animals. But filament instability due to chaos was observed in the samemodel, which occurred at tissue thickness less than
9 mm [104].
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Filament instability has been demonstrated experimentally in a 3D Belousov–Zhabotinsky reaction by Luengviriya
et al. [434].

7.4.3.2. Fiber rotation induced scroll wave instabilities. In cardiac tissue, the tip of a stable spiral wave is an ellipse, rather than
a circle, due to anisotropic conduction in cardiac tissue. In the presence of fiber rotation from epicardium to endocardium,
the ellipsoid trajectory also rotates as one goes down the filament axis, forming a twisted filament (Fig. 52a). The effects of
fiber rotation on scroll wave stability was first investigated in 3D tissue slabs by Panfilov and Keener [435] using a FHN type
model, and then by Fenton and Karma [103,436] using the Beeler–Reuter model, Qu et al. [104] using the LR1 model, and
in a dog anatomic ventricular model by Xie et al. [164]. These simulation studies have shown that fiber rotation causes an
instability which further destabilizes scroll waves in 3D tissue compared to their 2D spiral wave counterparts.

When a spiral wave is stable in 2D tissue, the twisted filament in 3D tissue is also stable [103,104]. But when the spiral
wavemeanders violently in 2D tissue, the filament in 3D tissue becomes unstable, causing it to bend, which then encounters
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tissue boundaries, breaking into two filaments (Fig. 52b). The filament bending may also lead to formation of scroll rings.
As these processes continue and more twisted filaments are created, a turbulent scroll wave pattern forms in the 3D tissue
(Fig. 52c), resulting in a spatiotemporally chaotic pattern. The mechanism of the filament bending can be understand as
follows. During hypermeander, the spiral wave movement is violent, which leads to a large area of excitable tissue in the
core region of the spiral wave (see the blue region in the chaotic meander in Fig. 48a). In a 2D tissue, this area cannot
be readily re-excited since no wavefront can enter into this region. However, in a 3D tissue, fiber rotation results in out-
of-phase movements of the wavefronts in different layers (and thus filament twist). This out-of-phase excitation gives an
opportunity for the excitable area in the core region to be re-excited by a wavefront from the z-direction, which results in
the filament bending seen in Fig. 52b. If the spiral wave is stable or meanders mildly, no large excitable regions near the core
exist, precluding re-excitation from the z-direction, such that filament twist caused by fiber rotation cannot induce large
scale filament bending.

The fiber rotation induced scroll wave instability depends not only on spiral wave stability (mainly controlled by APD
restitution), but also on the tissue thickness and the rate of fiber rotation. Fig. 52d shows simulation results using the LR1
model, summarizing how these factors interact to affect this instability. In the three panels shown, one of the three pa-
rameters is fixed and the other two are varied to show the boundary for filament breakup. The results are straightforward:
filament breakup occurs more easily when the spiral wave is more unstable (meanders more violently), the tissue is thicker,
and the fiber rotation rate is larger. It is noting that in the chaoticmeander region (Ḡsi from0.045 to 0.06), the tissue thickness
for breakup is around 5 mm and the fiber rotation is about 10 deg/mm, which is roughly comparable to the left ventricle of
largemammals. The thickness for scroll wave breakup agreeswithWinfree’s observation that 3–4mm thick tissue is needed
for fibrillation to occur [428]. Moreover, the frequency of excitations in 3D tissue is much faster than the corresponding 2D
spiral waves due to re-excitation of the recovered excitable region by reentry from the z-direction (Fig. 52e). The effects of
fiber rotation induced wavebreaks have also been demonstrated in an anatomically detailed ventricle model (Fig. 53) [164].

7.4.3.3. Negative filament tension. A scroll ring is usually not a stable solution in an excitable medium. For normal excitabil-
ity, the scroll ring shrinks and drifts. The drift direction depends on the chirality of the spirals (Fig. 54a). It has been shown
theoretically that the velocities of the scroll ring shrinking and drifting obey the following equations [437]:

dr
dt

= −
α

r
(99)

and
dz
dt

=
β

r
(100)

which were demonstrated in experiments [438,439].
However, in a simulation study, Panfilov and Rudenko [440] showed that the scroll ring can also expand under certain

parameters (Fig. 54b). This expanding behavior was later called negative filament tension [441], since α in Eq. (99) becomes
negative. It is clear now that negative filament tension occurs under conditions of low excitability. Filament tension can also
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and greatly reduced Na+ channel conductance to simulate low excitability. d. A straight scroll wave decays into a complex spatiotemporal scroll pattern
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Source: Panels c and d are reproduced from Alonso and Panfilov [451].

be studied using spiral waves subjected to an electrical field in a 2Dmedium [442–444]. Electrical field induced spiral wave
drift has been observed in chemical reactions and in simulation studies [442,445,446]. In a 2D medium (x–y system) with
an electrical field in the x-direction, the first equation of Eq. (96) becomes:

∂u
∂t

= f (u, v) + D∇
2
xyu + E

∂u
∂x

(101)

where E is a constant proportional to the electrical field strength. In a 3D medium with a scroll ring solution, if the (x, y, z)-
coordinates are replaced by polar (r, θ, z)-coordinates (see Fig. 54a), due to the rotational invariance of the scroll ring, the
first equation of Eq. (96) in a 3D medium can be transformed to the one in a 2D medium as:

∂u
∂t

= f (u, v) + D∇
2
rzu +

D
r

∂u
∂r

. (102)

Therefore, in the r–z plane, the spiral waves experience an additional force due to the curvature (κ = 1/r) of the scroll
ring, which is equivalent to the force generated by the electrical field in 2D. Therefore, understanding how a spiral wave
responds to an electrical field in a 2D medium can give information relevant to the filament tension in a 3D medium. The
observations and theories in 2D systems show that dense (normally excitable) spiral waves and sparse (low or weakly
excitable) spiral waves drift in opposite directions under the same electrical field, indicating that the filament tension for
the two types of waves are opposite. The tension is positive under normal excitability conditions but negative under low
excitability conditions. It should be pointed out that negative tension can also occur in high excitability conditions as shown
in simulations by Alonso and Panfilov [447].

Negative filament tension has been demonstrated in simulation studies of generic excitable medium [441,448,449] as
well as in cardiac action potentialmodels (Figs. 54c and d) [447,450,451]. The development of this instability froman initially
straight scroll wave also depends on tissue thickness. When the tissue is thin (Fig. 54c), the filament is stable. When the
tissue exceeds a critical thickness (Fig. 54d), however, filament instability develops, causing filament twist and bending.



70 Z. Qu et al. / Physics Reports ( ) –

ba

c

-D600 (baseline) +D600 (0.5 mg/L)

1 sec

+D600 (0.5 mg/L)

-D600 (baseline)

S1 PCL (ms)

A
P

D
 (

m
s)

160

140

120

100

80

60

B

0.1

0.5

2.5
5.0

100 200 300 400 500

Baseline (No D600)

D600 0.1 mg/L
D600 0.5 mg/L
D600 2.5 mg/L
D600 5.0mg/L

Fig. 55. Effect of APD restitution on spiral wave stability in a rabbit heart. a. APD versus PCL for different doses of D600, a Ca2+ channel blocker. b. Optical
images of voltage before and after D600. c. Pseudo-ECG before and after D600.
Source: Reproduced fromWu et al. [461].

This results in a complex scroll wave pattern in tissue. Note that the critical thickness for instability in the presence of
negative filament tension can be predicted using the linear stability analysis as shown in the study by Qu et al. [431]. Note
that filament instability can occur in the case of normal excitability but does not lead to complex spatiotemporal patterns
because the filament tension is positive. Whether negative filament tension is responsible for complex wave dynamics in
real cardiac tissue has not been demonstrated.

7.4.4. Spiral wave dynamics in real cardiac tissue
Since the heart is a 3D object, reentry in the heart occurs in the form of scroll waves. However, optical imaging can only

be performed on the surface of the heart, such that only 2D projections on the surface of the scroll waves can be imaged.
Genuine 2D cardiac spiral waves have been observed, however, in cultured cardiac monolayers which are true 2D tissue.
Here we review the scroll/spiral wave dynamics observed in both native 3D cardiac tissue as well as in 2D cultured cardiac
monolayers.

In cardiac monolayers, almost all spiral wave behaviors shown in generic excitable medium or chemical reactions have
been observed. In a series of studies, Hwang et al. observed stable and meandering spiral waves [452], period-1, 2, 3 and
irregular spiral wave behaviors [453], and spiral wave with lines of defect [454]. Bursac et al. [455] observed multi-armed
spiral waves, as has been shown in generic excitable media [456,457].

In the real heart, various spiral wave dynamics (as surface projections of scroll waves) have been observed including
stable spiral waves, meandering spiral wave, and spiral wave breakup. Different spiral wave behaviors have been linked to
different ECG morphologies and arrhythmias [458]. In the normal ventricles, spiral waves are unstable and break up into
electrical turbulence, manifesting as cardiac fibrillation. In a number of experimental studies [459–462], pharmacological
agents that reduce the slope of APD restitution curve convert irregular fibrillation dynamics into more periodic tachycardia,
supporting the theory developed through computer modeling studies. An example of such observations by Wu et al. [461]
is shown in Fig. 55, in which a Ca2+ channel blocker D600 was used to alter the APD restitution properties. The drug, which
reduces the steepness of the APD restitution curve, converts multiple reentrant wavelets (fibrillation) with an irregular ECG
behavior to a pair of stable spiral waves (tachycardia) with an almost periodic ECG signal. These studies have demonstrated
the importance of dynamical instabilities, more specifically the importance of the steepness of the APD restitution curve in
cardiac arrhythmias.

However, cardiac tissue is heterogeneous, and the role of heterogeneity in arrhythmia formation and maintenance has
always been considered to be very important. As shown in computer simulations (Fig. 49), when the spiral wave is intact
and the heterogeneity is mild, only a single wave exists and the whole tissue is entrained by a single frequency. But when
the heterogeneity is large, wavebreaks can occur in regions of steep APD gradient, resulting in multiple waves and sudden
transitions in frequency. This scenario agrees with the case of mother rotor fibrillation in which a fast stable rotor causes
fibrillatory conduction block [15,463–465], resulting in discretized regions of frequency distribution in space (Fig. 56a). In
the spiral wave breakup regime, a discretized frequency distribution no longer exists but correlates regionally with the
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heterogeneity. This behavior likewise agrees with experimental observations under other conditions (Fig. 56b) [466–468],
supporting the multiple wavelets hypothesis [469,470] in which dynamical instabilities, rather than tissue heterogeneities,
play the dominant role.

7.4.5. Bistable spiral wave conduction
In a computer simulation of a 2D excitable medium with the FHNmodel, Winfree [342] has observed that over a certain

parameter range, the medium can have two different stable spiral wave solutions, with one rotating faster than the other.
As shown in Fig. 57a, starting from a small ε, the period of the spiral wave increases slightly with ε until ε reaches a critical
value, at which point the period suddenly shift to a longer one. If one starts with a large ε, the period of the spiral wave
decreases until another critical value at which point the period jumps suddenly to the short one, forming a hysteresis loop.
Therefore, for a range of ε, the fast rotating spiral wave and the slow one co-exist, exhibiting a bistable behavior. Fig. 57b is
a simulation ofWinfree showing the co-existence of the two types of spiral wave in the samemedium, where the faster one
finally entrains the whole system.

The exact mechanism of the bistable behavior is not well understood, but Winfree showed that this may be related to
the non-monotonic dispersion relation in which CV oscillates with wave length (Fig. 58a). The non-monotonic behavior in
conduction can also occur in cardiac tissue, which is called supernormal excitability or supernormal conduction [471], a
well-known phenomenon in cardiac system. Fig. 58b shows recordings from a Purkinje fiber, showing that the conduction
time has a minimum at the end of the action potential. Supernormal excitability has been shown by Chialvo et al. [59] to be
a cause of chaotic action potential dynamics in cardiac myocytes. Whether the supernormal excitability can cause bistable
spiral wave behavior has not been demonstrated in cardiac tissue. However, supernormal conduction has been shown to
cause novel conduction and spiral wave dynamics in computer simulations and experiments [472–476].

Another type of bistable spiral wave conduction has been described in computer models and in experiments by Chang
et al. [477,478]. In both the atrial and ventricular tissue, the wave conduction is mainly facilitated by INa which mediates
the steep upstroke of the action potential. It is also known that when the resting potential is high so that INa is inactivated,
ICa,L becomes the major current facilitating conduction. Chang et al. [477] have shown that bistable spiral wave behavior
can occur in cardiac tissue in which two distinct types of spiral waves can be induced in the same tissue (Fig. 59). In the
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first type of spiral wave, voltage recovers close to the resting potential (−80 mV) and both INa and ICa,L are activated. In the
second type of spiral wave, however, voltage only recovers to around −50 mV, so that INa is inactivated, and only ICa,L is
activating, resulting in a slower spiral wave. Differing from the bistable spiral wave behavior observed by Winfree [342],
in this case, the system exhibits two distinct excitable states, and therefore is referred to as bi-excitability. Experimental
evidence of bi-excitability has been shown in experiments of cultured neonatal rat ventricular myocyte monolayers
[477,478], by demonstrating that one type of conduction can be blocked by a Ca2+ channel blocker but not by a Na+ channel
blocker, while the other type cannot be blocked by a Ca2+ channel blocker but can be blocked by a Na+ channel blocker.

Bi-excitability is a novel dynamics in cardiac tissue which gives rise to insights into the mechanisms of arrhythmias. As
shown by Chang et al. [477,478], bi-excitability may provide a mechanism for Torsade de Pointes and explanation for why
Torsade de Pointes often spontaneously terminates but sometimes degenerates into VF. Bi-excitability may also occur in
other excitable systems; however, its generality and nonlinear dynamics require further elucidation in future studies.

7.5. Formation of focal excitations in cardiac tissue

Focal excitations are spontaneous activities occurring locally in the heart, which not only play the role of arrhythmia
triggers, i.e., PVCs, but also can perpetuate arrhythmias. Therefore, it is important to understand the mechanisms by which
focal excitations are generated in cardiac tissue. In this sub-section, we summarize different dynamical mechanisms of focal
excitations in cardiac tissue.
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7.5.1. Focal excitation formation in heterogeneous tissue
Since cardiac tissue is heterogeneous, a straightforward question is: if a group of cells in a cardiac tissue are capable of

oscillating like the pacemaker cells, or exhibit EADs or DADs, under what conditions can they emerge and propagate? The
question arises from a well-known property of excitable medium, the source–sink effect. That is, in a cardiac tissue, if only
one cell is oscillatory while its neighbors are only excitable, this oscillation will not cause excitable waves; on the contrary,
the cell itself may stop oscillating due to the source current being small compared to the sink arising from neighboring cells.
Only when a region has enough cells in the oscillatory state to generate a current sufficient to overcome the sink from the
surrounding cells can a pacemaker site form to drive focal excitations (Figs. 60a and b) [479]. Although the source–sink effect
is well known, a rigorous mathematical analysis on this issue has only been performed recently by Tveito and Lines [480].
These authors used nonlinear stability analysis to show that the critical cell coupling strength for a certain size (a) of the
oscillatory region is

Dc = ηa2 (103)

where η = 0.0458 for 1D cable and η = 0.0229 for 2D tissue, which agree with numerical simulations using the LR1 model
(Figs. 60c and d). Specifically, when D > Dc = ηa2, no focal excitation can occur since the resting state is stable. In other
words, the oscillatory cells in the oscillatory region are stabilized by the surrounding cells. When D < Dc = ηa2, the resting
state in the oscillatory region becomes unstable and oscillations emerge to drive focal excitations. Although the parameter
η may depend on many factors, the scaling relation between the coupling strength and the size of the oscillatory region
should hold true universally. The same phenomenon has been demonstrated in simulations in which the oscillatory region
of cells generate EADs or DADs triggering focal excitations [479].



74 Z. Qu et al. / Physics Reports ( ) –

-80 mV 20 mV
3 cm

-80 mV 20 mV
1 cm

-100

-10

-40
-20

0
20

0

-50

0

V

a b

40

0

-40

-80

V

INa

ICa,L

ID

-5

-4

-2

0

2

0

ICa,L

-5

0

INa

ID

0.0 0.5 1.0
Time (s)

1.5 2.0 0.0 0.5 1.0
Time (s)

1.5 2.0

40

0

-40

-80

Fig. 59. Bi-excitability. a. An INa-mediated spiral wave in a homogeneous 2D tissue induced by cross-field stimulations, with traces of voltage, INa , ICa,L , and
the diffusion current (ID) versus time at a representative location. b. An ICa,L-mediated spiral wave induced by a different cross-field stimulation pattern in
the same tissue, with traces of voltage, INa , ICa,L , and ID versus time from the same site as in a.
Source: Reproduced from Chang et al. [477].

7.5.2. Coupling of excitable cells with non-excitable cells promotes oscillations
Cardiac tissue is composed of not only myocytes but also other types of cells, such as fibroblasts or myofibroblasts [481].

Fibroblasts are small and non-excitable cells which play an important role in cardiac mechanics and wound repair. Recent
studies have shown that fibroblasts may also develop gap junction coupling with myocytes [481,482], which may affect
cardiac electrophysiology. Fibroblasts have a more depolarized resting potential than myocytes, ranging from −50 to
0 mV. Therefore, the coupling of myocytes with fibroblasts causes myocyte depolarization, which can promote a Hopf
bifurcation leading to oscillatory behaviors [483]. The oscillatory activity induced by myocyte–fibroblast coupling was
demonstrated in cultured monolayers [483], in which the density of fibroblasts can be experimentally controlled and thus
their effects on oscillations can be directly studied (Fig. 61a). Theoretical and simulation studies have also been carried by
other authors [484–486] on oscillatory activity, focal excitations, and complex self-organized patterns induced by coupling
excitable cells to non-excitable cells.

Another scenario is when the coronary artery of a heart is occluded during a heart attack. The blood and oxygen supply to
themyocytes in the corresponding region by the artery is substantially reduced, causing themyocytes to becomedepolarized
and non-excitable even while they are still coupled to the normal oxygenated myocytes. The higher resting potential of the
ischemic cells can thereby generate current flow to the normal cells which have a lower resting potential, called a ‘‘current of
injury’’ in cardiology [487], whichmay induce PVCs or oscillatory activity leading to arrhythmias. This has been investigated
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theoretically by Keener [488] and by Peercy and Keener [489]. In their studies, the authors have shown that when a normal
excitable cell is coupled to an ischemic non-excitable cell, even though the resting states of both cells are stable, an instability
occurs in the coupled system via a Hopf bifurcation leading to oscillations (Fig. 61b).

7.5.3. Focal excitation in homogeneous tissue via pattern formation
In the previous two mechanisms, heterogeneity is key for localized oscillations to occur. Focal excitations can also occur

in homogeneous tissue via pattern formation. In a study by Yochelis et al. [490], localized pacemaker sites can form in a
homogeneous excitable medium via an instability similar to the Turing instability, in which the inhibitor diffuses much
faster than the activator. However, this condition is not feasible in cardiac tissue in which only voltage diffuses. On the other
hand, in the presence of EADs, the action potential dynamics can be chaotic, such that chaos desynchronization results in
islands of long APD with EADs bordering with islands of normal APD without EADs, forming a complex spatiotemporal
pattern (see Fig. 38d). When the EADs can propagate out of the EAD islands into the regions without EADs, focal excitations
occur. Fig. 62a shows a simulation of a 1D homogeneous cable which is initially paced at one end six times. After the pacing
stops, focal excitations form in the cable which maintain the activity transiently before self-terminating. Similarly, one can
induce multifocal excitations in 2D tissue (Fig. 62b) and in the whole-heart model [166]. Note that the focal excitations
formed via this mechanism are not stable (unlike the above two mechanisms), but vary dynamically in space and time. This
feature agrees with the experimental observations of focal arrhythmias in drug induced long QT syndrome [491,492], in
which multiple shifting foci occur (Fig. 62c).

8. Nonlinear dynamics of the pacemaking system

The SAN is a specialized area in the right atrium of the heart [493], in which the myocytes are oscillatory. The oscillation
frequency of a SAN cell is determined intrinsically by the oscillation dynamics of voltage and intracellular Ca2+ cycling
which are regulated by many signaling pathways. The cells in the SAN area are not identical but exhibit a heterogeneous
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Fig. 61. Oscillations induced via coupling of normal excitable cells and non-excitable cells. a. Percentage of monolayers exhibiting oscillations and the average
oscillation frequency (number of activations per minute) versus myofibroblast density obtained in cultured rat neonatal ventricular myocyte monolayers,
reproduced from Miragoli et al. [483]. b. A normal ventricular cell coupled with ischemic ventricular cell results in oscillatory behavior from a computer
model, modified from Keener [488]. φ is the membrane potential and h is a gating variable. Upper panels indicate that the normal cell is excitable while
the ischemic cell is inexcitable with a high resting potential. Lower panels show limit cycle oscillation in both types of cells after they are coupled.

distribution [493], and the gap junction coupling of the cells synchronizes them to result in electrical impulses for
pacemaking. The SAN is surrounded by atrial tissue and the electrical impulses exit the SAN area to excite the atrial tissue
to generate the heart rhythms. Moreover, the heart rate is extrinsically regulated by the central nervous system, i.e., the
parasympathetic nerves tend to decelerate the heart rate and the sympathetic nerves tend to accelerate the heart rate. More
specifically, the parasympathetic nerve (or vagal) activity is elevated at rest to decrease the heart rate and sympathetic
nerve activity is elevated during excise to increase the heart rate. The regulation of heart rate by the central nervous system
is called autonomic control. A proper autonomic control is needed for the heart to be efficiently adaptive to different
energy demands of the body and other environmental changes. When the SAN functions improperly, it causes a disease
called sinus node dysfunction or sick sinus syndrome, such as sinus tachycardia, bradycardia, and sinus arrhythmias. Sinus
node dysfunction can be asymptomatic or symptomatic, and the only effective treatment of the bradycardic symptoms is
pacemaker implantation. Since the implanted pacemaker is not autonomically responsive, developing an autonomically
responsive biological pacemaker is a very attractive alternative therapy [494]. Another clinically important property of the
SAN is HRV, a normal behavior of the heart. However, numerous clinical studies have shown that certain properties of HRV
may link to the risk of ventricular arrhythmias and SCD. HRV has been not only clinically attractive but also an important
research topic of nonlinear dynamics, yet the underlying mechanisms are not well understood. In this section, we review
the nonlinear dynamics that may be responsible for normal SAN function, sick sinus syndrome, and HRV.

8.1. Oscillatory mechanisms of pacemaker cells

Ever since the first model was developed by van der Pol in 1928 [23], the concept that the SAN oscillates as a limit cycle
has beenwell accepted. Manymathematical models of SAN cells have been developed to study the oscillatory dynamics and
the physiological features [25,28,128,495–498]. These models, combined with experimental observations, have provided
a detailed understanding of the roles of each ionic current in generating the oscillatory behavior and regulating the heart
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Fig. 62. Chaos synchronization induced focal excitations. a. Focal excitations (indicate by ‘‘∗’’ in the space–time plot of voltage) form in a homogeneous 1D
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firing pattern and eventually terminate. b. Focal excitations (voltage snapshots) form in a homogeneous 2D tissue using the same cell model as in a. c. Focal
excitations recorded from the epicardial surface in a rabbit heart with optical mapping. Stars mark the origin of the foci and grid lines are isochrones.
Source: Panels a and b are reproduced from Sato et al. [166], and c from Choi et al. [492].

rate. Bifurcation analyses of these models have shown very complex bifurcations for the SAN cells entering into or exiting
limit cycle oscillations. These bifurcations include Hopf bifurcations, homoclinic bifurcations, saddle–node bifurcations
of periodic orbits, and saddle–node on an invariant cycle, etc. Fig. 63 show three ways that a SAN cell can exit limit
cycle oscillations obtained from the Irisawa–Noma model [128] studied by Guevara and Jongsma [25]. The first one is
via Hopf bifurcation (Fig. 63a): as a parameter (such as the magnitude of a current) gradually changes, the magnitude of
the oscillations decreases and eventually the oscillation disappears. This same behavior was observed in experiments by
blocking the Ca2+ current with a drug [499]. The second way that a SAN cell exits limit cycle oscillation is via skipped beats
(Fig. 63b): as a parameter gradually changes, the amplitude has little change, but the frequency decreases by skipping beats
between two beats until the oscillation stops. This behavior is a consequence of homoclinic bifurcation. This skipped-beats
behavior has been observed in many experiments (see cited references in [25]). The third way of exiting the limit cycle is
via a perturbation, such as a stimulus (Fig. 63c), which brings the system to another stable solution. In this case, a limit cycle
co-exists with a stable equilibrium point. Conversely, a stimulus can also cause the transition from the stable equilibrium
point to the limit cycle. Evidence of this type of behavior has also been shown in experiments in SAN cells and other types
of cardiac cells (see cited references in [25]).

The view that the oscillation of the SAN is a single limit cycle oscillator of voltage has been challenged in recent studies
[24,500,501], which show that SAN oscillation is regulated by two coupled voltage and Ca2+ oscillators. For a limit cycle of
pure voltage, the major ionic currents that are necessary for the oscillator are: the funny current (If ), ICa,L, and different K+

currents. If causes the phase-4 depolarization (the slowly depolarizing phase) which elevates voltage to a level at which ICa,L
is activated, causing the fast depolarization. The activation of the K+ currents causes repolarization. This process repeats
to result in oscillations. However, studies show that NCX also plays an important role in pacemaker activity [502,503],
indicating that intracellular Ca2+ cycling may play an important role in pacemaker activity, which has been demonstrated
in many later experimental studies. Fig. 64a is a plot of voltage and Ca2+ from a SAN cell, showing that spontaneous Ca2+
release occurs before the fast depolarization. These spontaneous Ca2+ release events are called local Ca2+ releases, which
are collective events of the CRU network in the SAN cells (Fig. 64b) [504]. It has also been shown that the cycle length of the
voltage oscillation correlateswell with the local Ca2+ release period (Fig. 64c), providing further evidence for the importance
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line as illustrated in the inset. b. An optical image of CRUs in a SAN cell. c. Cycle length versus local Ca2+ release (LCR) period from a SAN cell.
Source: Panels are reproduced from Maltsev et al. [584,504], and Vinogradova et al. [585].

of Ca2+ cycling in pacemaking activity. Since Ca2+ can oscillate independent of voltage, and voltage can oscillate independent
of Ca2+, the viewof coupled oscillators is now the dominant hypothesis inwhich two oscillators entrain each other to control
the heart rate. However, intracellular Ca2+ regulation is governed by a complex network of coupled CRUs, in which complex
spatiotemporal and stochastic dynamics occur. The interactions between these dynamics in rhythm control of the heart
await further investigation, and detailed Ca2+ cycling models are being developed for this purpose [111,226,504,505].

8.2. Phase locking and chaos in periodically paced pacemaker cells

In a series of studies by Guevara, Glass, Shrier and colleagues [29–36] as well as by other authors [37–39], the nonlinear
dynamics of periodic stimulated pacemaker cells has been studied both experimentally and theoretically. These cells exhibit
phase-locking behavior at different locking ratios, exhibiting the devil’s staircase (Figs. 65a and b). Irregular responses have
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Fig. 65. Phase locking and chaos in periodically paced pacemaker cells. a. Voltage recordings from a rabbit SAN cell showing different phase locking
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aggregates showing an irregular response. d. Circle map under three conditions. Left: φi+1 versus φi obtained from experimental data. Middle: fitting of
the experimental data to a function to obtain a circle map. Right: simulation results using the constructed circle map with noise.
Source: Panels a and b are modified from Anumonwo et al. [38]. Panels c and d are modified from Clay et al. [32].

also been observed (Fig. 65c). The nonlinear dynamics can be generally studied by a circle map of the following form [32]:

φi+1 = g(φi) + τ (mod 1) (104)

where φi is defined as the phase right before the ith stimulus and τ is the normalized period between stimuli. Fig. 65d shows
an example of using a circle map to model the irregular response. The left panel Fig. 65d is a plot of the relation between
φi+1 and φi, i.e., the first return map of phase φ, obtained from the experimental data. The middle panel shows that the first
return map was fitted to a function as Eq. (104). The right panel shows the simulation results by iterating the obtained map
equation with noise, which recapitulates the experimental data.

8.3. Spatiotemporal dynamics in the SAN

Even though the SAN is an anatomically small region in the right atrium, complex spatiotemporal dynamics can still oc-
cur. The SAN is a heterogeneous area in which the cells in the central region exhibit different behavior from the cells in the
periphery, with cells isolated from the central region have a slower oscillation frequency, a shorter action potential duration,
and a less negative phase-4 maximum diastolic potential [493,497]. However, even though the peripheral cells beat faster
than the central cells, the leading pacemaking site in the intact SAN is still located in the central region, indicating that pace-
making is an emergent phenomenon caused by the interactions between the coupled SAN cells. Computer modeling studies
have been carried out to investigate the dynamics of pacemaker formation and impulse propagation in heterogeneous tissue
structures [497,506]. Recent optical mapping studies have shown complex shifting patterns of the leading pacemaking site
and dynamics of impulse propagation under varying autonomic conditions [507,508], and the underlying mechanisms are
still in debate [509].
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Fig. 66. Heart rate variability. a. Heart rate (beats per minute) versus time recorded from a normal human heart. b. Heart rate versus time recorded from
a diseased heart. c. Power spectrum of the heart rate of the normal heart.
Source: Reproduced from Goldberger et al. [42].

8.4. Fractal heart rate variability

The heart rate of a normal heart is not fixed but varies over time (Fig. 66a), while in certain diseased hearts, such as in
hearts with severe congestive heart failure, the heart rate loses its variability (Fig. 66b). The Fourier transform power spec-
trum of the normal heart rate shows a power-law distribution (Fig. 66c). This fractal behavior has been widely observed in
many studies [40–42,236,510–513], for both normal and diseased hearts. HRV is an important parameter for risk stratifica-
tion of arrhythmias and SCD, and the fractal exponents have been demonstrated to be a useful predictor [43,44]. However,
despite the widely observed phenomenon and clinical association, both the biological and dynamical mechanisms of HRV
are still not well understood.

The heart rate is affected bymany external factors, such as respiration, circadian rhythm, sympathetic and vagal activity,
as well as intrinsic factors, such as ion channel fluctuations and other molecular fluctuations. HRV can be abolished
by blocking both parasympathetic and sympathetic activity [514], but why autonomic regulation causes fractal HRV is
unknown. One hypothesis is that the autonomic control of SAN activity may give rise to chaotic heart rates and thus fractal
HRV. Chaos was shown in amathematical model of a vagally driven SAN cell [37]. However, whether HRV is chaotic remains
under debate [45,515–517]. On the other hand, recent studies [237,518,519] have shown that power-law HRV exists in
cultured monolayers or cell aggregates lacking autonomic control (Fig. 67), indicating that the autonomic control is not
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Fig. 67. Heart rate variability in cultured monolayers. a. Heart rate versus time. b. Power spectrum.
Source: Reproduced from Ponard et al. [237].

necessary for fractal HRV, and intrinsic mechanisms can be responsible. Computer modeling studies exclude random ion
channel fluctuations as a cause of the power-law behavior [237].

So far, the fractal nature of HRV is largely an observation from analyses of experimental and clinical data [514,520], the
underlying biological origins and dynamical mechanisms are unclear. Even though autonomic control plays an important
role in HRV based on experimental and clinical observations, whether it is the primary cause is still unknown. The HRV
and its fractal nature can be originated from different sources or a combination of them. At the cellular scale, even though
the random membrane ion channel fluctuations are shown not likely to be a cause, the self-organization of random Ca2+
sparks into more deterministic Ca2+ waves and oscillations for the Ca2+ clock of the SAN cell can be a source of fractal HRV.
As summarized in Section 5, the transition from Ca2+ sparks to waves underlies criticality in which power-law behavior is
observed [111,226]. At the tissue scale, power-law cluster firing has been shown in culturedmonolayers of cardiac cells [521]
and in cultured networks of glial cells [522]. Since the SAN is a spatially extended tissue composed of coupled pacemaker
cells, the tissue-scale self-organization phenomenamay also be a contributor to the fractal properties ofHRV. The fractal HRV
can also be directly stemmed from the neural bursting since power-law neural bursting is widely observed [523]. Besides
these individual sources, fractal HRV is most likely a result of the complex interactions of the whole system. Nevertheless,
to better understand how the fractal behavior occurs and why it has the potential to be predictive for risk of arrhythmias,
future multi-scale modeling with nonlinear dynamics at the systems level may eventually provide an answer

9. Control and termination of arrhythmias

Therapeutically, preventing the occurrence of arrhythmias is the ideal strategy. However, once life-threatening arrhyth-
mias occur, prompt termination is the only choice. Clinically, defibrillation is the most reliable way to terminate an arrhyth-
mia, by delivering a strong electrical shock to the heart to ‘‘reset’’ the system. Since the transition from sinus rhythm to
an arrhythmia is a type of dynamic instability in the heart, suppressing instabilities to prevent arrhythmias or utilizing the
instabilities to promote arrhythmia termination is of great interest among dynamicists, which may provide mechanistic
insights leading to the development of effective therapies for arrhythmias. In this section, we summarize the recent devel-
opments of arrhythmias control based on nonlinear dynamics, including controlling alternans and chaos using nonlinear
dynamical control methods; self-termination or drug-induced termination of arrhythmias due to transient spatiotempo-
ral chaos; wave competition due to entrainment in excitable medium; and control of electrical turbulence via low-energy
electrical stimulations.



82 Z. Qu et al. / Physics Reports ( ) –

Fig. 68. Controlling cardiac chaos. a. Return map of inter-beat interval showing chaos induced by a drug in the septum of a rabbit heart. b. The induced
chaotic rhythm is converted to periodic rhythm using a chaos control algorithm.
Source: Reproduced from Garfinkel et al. [524].

9.1. Dynamical control of cardiac chaos and alternans

Experiments have shown that single cardiac cells can exhibit chaotic dynamics [29,58,524], and that irregular arrhyth-
mias in heart tissue can be dynamical chaos. Dynamical chaos has been shown to be controllable by small perturba-
tions [525], validated experimentally [526]. A controlmethodwas applied byGarfinkel et al. [524] to convert chaotic rhythms
to periodic rhythms in cardiac tissue experiments (Fig. 68). Following the same idea, controlling cardiac alternans is also a
topic of interest, which has been studied theoretically and experimentally by many authors [527–537]. Since alternans is a
precursor of arrhythmias, control of alternans might prevent arrhythmias. In cardiac cells or tissue, the accessible parame-
ters are limited, and most control algorithms vary the PCL. A typical control algorithm of this type is [532,535]:

Tn =


T0 + ∆Tn, if∆Tn < 0
T0, if ∆Tn > 0 (105)

where ∆Tn = γ (an − an−1)/2, T0 is the intrinsic period of the heart rhythm (e.g., sinus rhythm), γ is the feedback control
strength, and an and an−1 are APDs of two consecutive beats. One is restricted to delivering premature stimulations which
advance the intrinsic heartbeat, since there is no general method to delay the intrinsic beats. Therefore, in the control al-
gorithm, only negative ∆Tn can be used. This algorithm is effective in controlling alternans in single cells, but has limited
effectiveness at controlling alternans in tissue. Fig. 69 shows experimental results of controlling alternans in a canine Purk-
inje fiber by Christini et al. [535]. The pacing and the controlling stimuli are given at the left end of the fiber. As shown in this
experiment, when alternans is weak, it can be controlled along the 2 cm long fiber, but when its amplitude is large or dis-
cordant alternans develops, control is lost. Moreover, the control may convert spatially concordant alternans into spatially
discordant alternans [532], which is undesirable since it amplifies APD gradients. The failure can be analytically shown to
be due to the inability of a local pacing algorithm to stabilize the unstable spatial mode along the fiber [532,534].

Whether these control methods are applicable in the real heat is still unclear [538]. First, arrhythmias and discordant
alternans are spatiotemporal phenomena. As shown in a theoretical study by Hu and Qu [539], multiple control sites are
needed to control a spatiotemporal system. How to safely implement pacing at multiple control sites in the heart is a chal-
lenging issue. Second, alternans may not necessarily be causal to ventricular arrhythmias, and clinical VT/VF episodes are
not always preceded by alternans. Therefore, whether control of alternans can reliably prevent clinical arrhythmias is an
open question.

9.2. Transient spatiotemporal chaos and spontaneous termination of arrhythmias

Arrhythmias occur spontaneously but can also terminate spontaneously. For example, Torsade de Pointes is a type
of arrhythmia that usually terminates after a variable number of beats from several to several hundred [540,541]. VF is
generally lethal but episodes of spontaneous termination have also been observed clinically [15,542–545] (e.g., the case
shown in Fig. 2), and in experiments [405,546]. Spontaneous termination of atrial fibrillation is widely observed [547,548].
In almost 100 years ago, Garrey [546] observed that persistence of fibrillation depends on tissuemass and form, leading to the
well-known ‘‘critical mass hypothesis’’. The rationale for many drug therapies is based on this concept, which is designed to
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Fig. 69. Controlling APD alternans. APD of two consecutive beats recorded from six sites in a Purkinje fiber at different PCL, with and without alternans
control. Arrows indicate the pacing and control site. a. T = 200 ms, alternans is concordant and is controlled. b. T = 190 ms. Alternans is concordant and
is controlled close to the pacing site but not the entire fiber. c. T = 160 ms, alternans is discordant and control fails.
Source:Modified from Christini et al. [535].

increase the wavelength and thus effectively reduce the tissue size. This hypothesis has been validated by recent theoretical
studies using nonlinear dynamics and chaos theory [117,549].

Fig. 70 shows a computer simulation of spiralwave breakup in a finite size 2D tissue [117]. The turbulent electrical activity
lasts for a certain period and eventually self-terminates. Termination is facilitated by two processes: spiral waves can collide
to annihilate each other, and they also can drift to a tissue border. Since the spiral wave breakup process continuously
generates new spiral waves, the competition between the birth and death of spiral waves can finally lead to a quiescent
tissue. The nonlinear dynamics of spontaneous termination of spiral wave turbulence in an excitable medium has been
first analyzed by Strain and Greenside [549], who have shown that spiral wave breakup in a finite size tissue is transient
spatiotemporal chaoswhose duration depends on tissue size. They show that the Lyapunov dimension is proportional to the
area of the medium (Fig. 71a). In a simulation study using the same generic excitable medium model, Qu [117] has shown
that the duration of the turbulent behavior is inversely proportional to the maximum Lyapunov exponent (Fig. 71b). In
cardiac tissue, the stability of spiral waves is mainly determined by the steepness of the APD restitution curve, and Qu [117]
has also shown that the duration of the electrical turbulence is shorter if the slope of APD restitution curve is steeper. Due to
the chaotic behavior of the spiral waves, the duration of the turbulent behavior is irregular. The likelihood of spontaneous
termination decreases exponentially as tissue size increases but also depends on the geometry of the medium. Spiral wave
turbulence terminates faster in the rectangular tissue than in the square tissue of the same area. This is because in both
generic excitable media and cardiac tissue, the average duration of electrical turbulence is exponentially proportional to the
area-to-perimeter ratio (Fig. 71 c and d) [117].

Chaos may also play an important role in the spontaneous termination of multi-focal polymorphic VT. As shown in
Fig. 65a, the pace-induced foci terminate spontaneously due to their chaotic appearance and disappearance. The number
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Fig. 70. Spontaneous termination of spiral turbulence. Computer simulation showing an episode of spontaneous termination of electrical turbulence in a 2D
homogeneous tissue. Arrows indicate the three forms of wave disappearance: spiral tip colliding, waves run into refractory tissue, and drift off the tissue
border.
Source: Reproduced from Qu [117].

of foci occurring in the tissue depends on the tissue size, with a larger size tissue accommodating more foci. Thus, the
duration of the focal activity (i.e., the inverse of the probability that all foci will self-terminate) is size-dependent. This
same mechanism may be responsible for the frequently observed spontaneous termination of polymorphic VT or Torsade
de Pointes in clinical settings [540,541].

Real cardiac tissue is a 3D object of complex geometry with fiber rotation and electrical heterogeneities. These factors
affect the transient behavior of the electrical turbulence in the heart. In addition, arrhythmias themselves can affect the
cellular and tissue properties, such as causing ischemia of the heart due to ineffective pumping of blood. There is a well-
known phenomenon in cardiology that ‘‘atrial fibrillation begets atrial fibrillation’’ [547]: with sustained rapid heart rates,
atrial fibrillation becomes permanent rather than transient. But the general influences of dynamical stability and tissue size
on arrhythmia duration still apply when the key nonlinear dynamics involves transient spatiotemporal chaos.

9.3. Drug-induced spiral wave instability and termination of arrhythmias

Anti-arrhythmic drugs can sometimes terminate ventricular fibrillation and are more effective at terminating atrial
fibrillation [542,550,551]. To some extent, their antifibrillatory actions have been rationalized according to Garrey’s ‘‘critical
mass hypothesis’’ [546] and Moe’s ‘‘multiple wavelet hypothesis’’ [469,470]. For example, Class IA (Na+ channel blocker)
and class III (K+ channel blocker) anti-arrhythmic drugs prolong wavelength, so that the same size tissue can support
fewer reentrant circuits, which may cause fibrillation to self-terminate. However, this mechanism has been challenged by
experimental studies [552,553] which show that these drugs have limited effects on wavelength and refractory period.
Therefore, the rationale for these drugs to terminate arrhythmias may not be simply lengthening the wavelength. In a
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Fig. 71. Fibrillation duration versus tissue size and stability. a. Lyapunov dimension versus area, determined from 2D medium. b. Average duration of
turbulence versus the reciprocal of themaximum Lyapunov exponent. c. Average duration of turbulence versus the area-to-perimeter ratio in a 2Dmedium
using the Bar et al. model. Simulations were done in square (black) and rectangular (open) tissues. d. Same as c but a cardiac tissue model using the LR1
cell model.
Source: Panel a is reproduced from Strain and Greenside [549] and c–d from Qu [117].

simulation study, Qu and Weiss [374] have shown that blocking the Na+ channel does increase the refractory period and
the core size of spiral wave reentry, but also promotes meandering, such that the drift in heterogeneous tissue is much
faster, increasing the likelihood of self-termination at a tissue border. These two actions may contribute to the effect of Na+

channel blockers at terminating arrhythmias. K+ channel blockers prolong APD at slow rates, but much less at fast rates,
making APD restitution steeper. This steepening causes the reentrant waves to become more unstable and drift, enhancing
the probability of colliding with other waves or tissue borders and self-terminating. Promoting spiral wave instabilities
by drug-induced steepening of APD restitution to terminate arrhythmias has been demonstrated in experimental studies
[554–556], in agreement with the theoretical predictions.

9.4. Fast pacing induced termination of arrhythmias

Certain arrhythmias can also be terminated by pacing, such as anti-tachycardia pacing that is used clinically [116,557].
The basic rationale is that in excitable media, high frequency excitations always entrain low frequency excitations. If low
frequency waves originate from reentry, they will be eventually terminated by the faster paced beats [342,426]. In a series
of computer simulation studies, Zhang and colleagues [114,449,558–560] showed that spiral wave turbulence can be driven
out of the medium by rapid pacing (Fig. 72a), but only over a narrow frequency range (Fig. 72b) and in homogeneous tissue.
Due to the narrow frequency window requirement, and because the controlling frequency is close to the frequency of spiral
turbulence, the time that it takes to drive all waves off the tissue may be too long to be practical, and thus its application
to real cardiac tissue is limited. In the real heart, anti-tachycardia pacing is effective only for slow VT, but not for faster
arrhythmias [561], such as VF, because the heart is heterogeneous and the arrhythmias, in particular VF, exhibit a wide
range of frequencies.

9.5. Termination of arrhythmias by low-energy electrical stimulations

Defibrillation is currently the only reliable therapy to prevent SCD. The basic idea of defibrillation is that a high energy
electrical shock depolarizes the whole tissue and thus eliminates excitable tissue required for wavefronts to continue to
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Fig. 72. Turbulence control by rapid pacing. a. Turbulence is driven out of the medium by the target waves induced by fast pacing applied in the center.
b. The power spectrum of the turbulence. The region between the two vertical lines is the pacing frequencies that can successfully control the turbulence.
Source: Reproduced from Zhang et al. [559].

propagate. The success of defibrillation is probabilistic due to the irregular dynamics of fibrillation. The probability of
defibrillation success increases with energy, exhibiting a sigmoid relation and across roughly a 10-fold increase in energy
from no success to 100% success [562]. The lowest energy needed for defibrillation is comparable to the highest energy that
induces reentry and VF (see Fig. 40c for vulnerability window versus energy), called the upper limit of vulnerability [563].
In other words, when the energy delivered is lower than the upper limit of vulnerability, it not only fails to eliminate the
existing reentrantwaves but can also induce new reentrantwaves. Therefore, to ensure successful defibrillation, an electrical
shock with an energy higher than the upper limit of vulnerability is necessary. Shocks of this energy level are quite painful
if the patient is awake, which limits the usefulness of defibrillators in patients with slow VT or atrial fibrillation. Recent
theoretical and experimental studies, however, are shedding light on how to lower the energy requirements. For example,
a theoretical study carried out by Takaji et al. [564] showed that low-energy field stimulation can cause depolarization at
an obstacle in cardiac tissue (Fig. 73a). If reentry is pinned around the obstacle during slow VT, for example, a low energy
shock could cause the spiral wave, depending on the relative phase of the reentry, to become unpinned so that it would drift
and terminate. This mechanism has been demonstrated in experiments by Ripplinger et al. [565], and shown to be more
effective than anti-tachycardia pacing. However, this method is only suitable for terminating reentry around an obstacle,
and there is also a chance that the low energy shock will induce VF.

In a more recent study, Pumir et al. [566] proposed another theory on how low-energy field stimulation can control
complex spatiotemporal electrical turbulence which capitalizes on structural heterogeneities of the heart. The basic idea is
as follows:

First, field stimulation causes depolarization at obstacles (Fig. 73a), which can be described by the following equa-
tion [567]:

∇
2e −

e
λ2

= 0 (106)

where e = V − Vrest with V being the membrane potential and Vrest the resting potential, and λ is the space constant on the
order of mm. The solution of Eq. (106) in a polar coordinate system is

e(r, θ) = −
K1(r/λ)

K ′

1(R/λ)
Eλ cos θ (107)

where K1 is the modified Bessel function of the second kind, monotonically decaying with r , and K ′

1 is its derivative. For a
fixed electrical field E, the maximum depolarization occurs at the boundary of the obstacle in the direction of electrical field
(θ = 0), i.e.,

emax = −
K1(R/λ)

K ′

1(R/λ)
Eλ. (108)

Therefore, the depolarization level depends on the size of the obstacle and the strength of the field. The smaller size needs
a stronger stimulation to reach the same depolarization. When emax exceeds the threshold voltage for excitation, action
potentials occur and can propagate in tissue. The threshold electrical field strength Eth is then estimated as

Eth = −
eth
λ

K ′

1(R/λ)

K1(R/λ)
(109)
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Fig. 73. Low energy defibrillation in a computer model. a. Electrical field stimulation induced excitation versus obstacle size and field strength. At low
electrical field strength, excitations only occur at the large obstacles, but as the field strength increases, excitations also occur at small obstacles. b. Voltage
snapshots showing unsuccessful control by field stimulation pacing (T = 98ms) with E = 0.6 V/cm. c. Voltage snapshots showing unsuccessful control
with E = 1.1 V/cm in which the electrical waves were terminated.
Source: Reproduced from Pumir et al. [566].

where eth = Vth − Vrest. For a small heterogeneity of radius R, the electrical field needed is

Eth ∝ 1/R (110)

and therefore, as E increases, excitations occur at smaller obstacles (Fig. 73a).
Second, in the real heart, there are different kinds and sizes of obstacles. For example, the coronary arteries form a scale-

free structure, which provides many obstacles with different sizes (Figs. 74a and b). Luther et al. [568] showed that during a
field stimulation, multiple depolarization sites occur (Fig. 74c). Based on the scale-free distribution of obstacle size, Luther
et al. showed that the activation time (τ ) of the whole tissue also follows a power-law with respect to E, i.e., τ ∝ Eβ , which
was demonstrated in their experiments (Fig. 74d) [568].

Third, to control a spatiotemporal chaotic systems,many control sites are needed, as shown in studies byHu andQu [539].
It is technically not feasible to apply control at many sites using electrodes in real hearts. However, excitations around the
obstacles by a field stimulus make it possible to have multiple control sites in the heart to control arrhythmias.

Termination of arrhythmias by low-energy field stimuli based on the above theory was first demonstrated in computer
simulations by Pumir et al. (Figs. 73b and c) [566], and later in animal experiments by Luther et al. and Fenton et al.
[568,569].
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Fig. 74. Low energy defibrillation in the real heart. a. Image of coronary arteries in the heart, showing a fractal tree structure. b. Probability distribution
p(R) of coronary artery radii for ventricular tissue. Different symbols for different hearts. The black line indicates the power law. c. Activation sites in
cardiac tissue observed in an experiment with a field stimulation (E = 0.34 V/cm). Color indicates the time of activation after the stimulus. d. Ventricular
activation-time measurements (blue squares) and prediction of activation times (green diamonds) based on p(R). The black line indicates the power law.
Source: Panel a is reproduced from Karma [7], and panels b–e are reproduced from Luther et al. [568].

10. Conclusions and perspective

SCD due to VF is a leading killer in the developed countries [1,2]. VF and other cardiac arrhythmias have been studied
for more than a century, and clinical, experimental, and computational modeling studies have led to important insights into
the mechanisms. However, current anti-arrhythmic drugs have limited efficacy at preventing arrhythmias and impacting
SCD, and not uncommonly make some arrhythmias worse rather than better. The most reliable therapy is still based on
the simple idea of using a large electrical stimulation to destroy all the waves by eliminating the excitable gaps or using
radiofrequency catheter ablation to block the reentrant pathway [570].

The difficulty of treating this disease lies in the fact that the heart is a complex system that is regulated by many
biological factors at different scales, and the abnormal electrical activities are emergent phenomena arising from dynamical
instabilities. Besides many of the dynamics reviewed in this article, there are several general features of arrhythmias that
are closely related to complex dynamical systems, such that these features can only be fully understood in the context of
nonlinear and stochastic dynamics:

(1) Unlike many other human diseases, the transition from normal sinus rhythm to arrhythmias, particularly atrial and
ventricular arrhythmias, is a change in the dynamical state of the same heart which does not necessarily require a
change in the properties of the heart itself. For example, in every normal healthy heart, VF can be induced by large
enough properly-timed electrical stimulation (commonly known as the VF threshold). On the other hand, if the induced
arrhythmias are promptly defibrillated, the heart will return back to its normal state and work properly. Therefore,
in a simple dynamical view, one can consider this transition as a change of topology of the electrical wave dynamics,
or a transition between two states with different basins of attraction (Fig. 75). In other words, sinus rhythm is one
solution of the heart and VF is another solution. In the normal heart, there is a high threshold to across from the sinus
rhythm basin to the VF basin, but in the diseased hearts, the thresholds are much lower. Based on this simple dynamical
view, therapeutics must target the transition (by increasing the threshold) rather than trying to remove the VF basin
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a b

Fig. 75. Schematic plots showing basins of attraction of normal sinus rhythm (SR) and arrhythmias (AR). a. Normal hearts. b. Diseased hearts.

completely, since VF is also a solution of the normal heart. However, arrhythmia solutions differing from that of the
normal heart also occur in diseased hearts, which can be also therapeutic targets.

(2) Lethal ventricular arrhythmias, such as VF, are ‘‘rare’’ and random events. Compared to the number of heart beats during
a lifetime, or even the number of PVCs that are often very frequent, especially in diseased hearts, lethal ventricular
arrhythmic events are very rare. For example, if a patient has one PVC perminute, he/she will have a half million PVCs in
a year, but sustained arrhythmias often occur on a time scale ofmonths, years or even decades. For arrhythmias triggered
by a PVC, the odds are very low (less than one in several million PVCs). Moreover, once an arrhythmia is successfully
terminated, the patient may not have another event for years or decades. The question, then, is what is special about the
PVC that triggers the lethal event? This remains one of themost interesting questions in cardiac electrophysiology and is
central to efforts to develop effective therapeutics, identifying individuals at risk who should be treated, and predicting
when or under what conditions the arrhythmias will occur. A famous query posed by a leading cardiologist, Dr. Douglas
Zipes, epitomizes this issue: ‘‘Why did my patient die on Tuesday and not on Monday?’’ [571]. A different way of asking
this question is: why do cardiac arrhythmias occur so randomly and unpredictably? If one can identify the patients at
high risk for life-threatening arrhythmic events, this alone would greatly improve selection of patients for ICD therapy,
since currently only 1 of 5 ICDs implanted actually delivers a life-saving shock [18,19].

There are many challenges still facing experimental and computational modeling studies. Even though modern tech-
nologies allow experimental measurements at many scales, ranging from genetics, to subcellular, cellular and tissue scale
mappings, experiments are usually carried out under specific conditions in specific animalmodels, which capture only some
aspects relevant to human patients. In addition, arrhythmias in the human heart are typically rare events, occurring at a time
scale ofmonths or years. How to identify the factors that are responsible in triggering arrhythmias in human heart is difficult
to assess from animal experiments.

Theoretical and computationalmodeling studies have generated important insights into themechanisms of the dynamics
that are important for arrhythmias that will help to surmount these challenges. Due to the accurate experimental measure-
ment of electrical properties and structures, and the modeling approach pioneered by Hodgkin and Huxley, the heart may
be themost quantitatively modeled system in biology. However, computer simulation itself faces many challenges. Because
of the limitations in computational power, it is impossible to include all the molecular and structural information in a com-
puter model of cardiac tissue (or the whole-heart), mandating a multi-scale modeling approach. The approach of ‘‘coarse
graining ’’ is the major means to represent a high-dimensional lower (‘‘finer’’) scale system using a low-dimensional model
at a higher (‘‘coarser’’) scale, e.g., a myocyte’s action potential and Ca2+ cycling are described by several dozen ordinary dif-
ferential equations. These low-dimensional action potential and Ca2+ cycling models have been critical in tissue and organ
scale studies. However, there are many gaps in the coarse graining process, and how to close these gaps is challenging, not
only in cardiac modeling but also in biological modeling in general [146]. One such gaps is the transition from single cell
modeling to tissue modeling. Ideally, one would like to use a cell model with detailed spatiotemporal intracellular Ca2+ cy-
cling dynamics in tissue- and organ-scale simulations so that the effect of the spatiotemporal Ca2+ cycling dynamics (such as
Ca2+ waves and sub-cellular discordant Ca2+ alternans) on tissue-scale excitation dynamics can be investigated. However,
this is computationally impractical, and no such simulation has been carried out so far. It is only possible to simulate a very
small piece of tissue (e.g., several hundred cells) using current advanced computational technology (e.g., GPU computation).
Alternatively, one can omit the spatial information at the sub-cellular level and represent it by a low-dimensional system.
Most of the existing action potential models are low-dimensional cell models. Such models are largely valid under normal
excitation–contraction coupling conditions where local control is dominant. However, once spontaneous Ca2+ release and
Ca2+ waves occur in a myocyte, representing these dynamics in a low-dimensional model becomes nontrivial. Based on a
recent study byNivala et al. [111], the cell is in criticality at the spark-to-wave transition,which cannot be captured by a low-
dimensional cell model, or even represent it correctly and accurately by a low-dimensional system. Therefore, overcoming
this bottleneck in modeling is essential for developing multi-scale modeling approaches to understand the mechanisms of
cardiac arrhythmias.

Even if computational power were not limiting, high-dimensional cardiac models are too complex to systematically
analyze the dynamics arising from the complex nonlinear interactions. Nonlinear dynamics and statistical physics are the
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two sciences dealing with complex systems that can provide proper analytical techniques for this purpose, especially when
used interactively with high-dimensional models to relate dynamical principles to biological entities.

How to properly integrate diversified experimental data with computer modeling and determine the model parameters
is another challenge. A close combination of modeling with experiments is necessary for the systems biology approaches,
but is not straightforward. The data available for model parameters: (1) are limited and (2) vary from lab to lab and from
experiment to experiment, sometimes by several-fold. In addition, based on recent simulation and experimental studies
[572–574], very different combinations of channel conductance can give rise to the same or similar action potentials, in-
dicating that the traditional way of using the averaged data may not be appropriate. Alternative modeling approaches are
required.

Moreover, biological systems tend to rely on multiple redundant parallel mechanisms, which can work synergistically
or competitively to promote or suppress a phenomenon. For example, in the heart, both voltage and Ca2+ cycling systems
can generate instabilities resulting in alternans. How to infer the origins of mechanisms from experimental measurements
is an important but challenging issue. Computer modeling may provide tell-tale signatures to differentiate the origins. For
example, simulation studies have shown that the properties of spatially discordant APD and Ca2+ alternans exhibit different
signatures when the instabilities originate from voltage versus Ca2+, which can be used to infer the mechanistic origins of
alternans [298].

Finally, the ultimate goal of understanding the underlying mechanisms of arrhythmias is to use them for arrhythmia
risk stratification and development of effective therapeutics, which is the most challenging problem in the research of
cardiac arrhythmias. There is no doubt that the mechanistic insights gained from the nonlinear dynamics andmathematical
modeling will be of great importance for prediction of arrhythmia risk and finding proper therapeutic targets, not only for
drug therapies but also for device therapies, such as ICD and catheter ablation. Similar to defibrillation, catheter ablation
is another widely used therapy for treating arrhythmias [575,576], which is largely based on anatomical reentrant circuit
in tissue and has limited efficacy. Future mathematical and computational studies are needed to gain better mechanistic
insights and to improve the efficacy of these device therapies. A very important future direction in computational cardiology
is to design in silico drug therapies using systematic approaches to identify robust therapeutic strategies. An effective and
robust therapy should at least be able to suppress one type or one cause but not to promote other causes of arrhythmias,
or ideally, suppress all causes. The failure of the current anti-arrhythmic drugs is because they suppress one cause but
promote other causes of arrhythmias, ending up increasing mortality [16,17]. Considering the complexity of the problem,
it will be difficult to identify the risk factors as well as develop robust anti-arrhythmic therapeutics based on experimental
and clinical studies alone, computer simulations combinedwithmulti-scalemodeling and nonlinear dynamicswill also play
a fundamental role in achieving this ultimate goal.

In conclusion, cardiac arrhythmias can only be fully understood using a systems approach which integrates clinical,
experimental, and computational studies. Complex system theories from statistical physics and nonlinear dynamics have
been essential tools to unravel the underlying mechanisms and in helping to design novel therapeutic approaches. On the
other hand, the nonlinear dynamics itself will also be enriched via this interdisciplinary research. As P.W. Anderson, a Noble
laureate in physics, once said [577]: ‘‘. . . ,we should recognize that such roads [between the sciences], while the quickest shortcut
to another part of our own science, are not visible from the viewpoint of one science alone’’.
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