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Abstract 
Fault-based testing fqGuses on the detection of particular classes of faults. RELAY is 

a fault-based testing te~hnique whose model resembles a relay race. Analysis has shown 
that RELAY overcomes the weaknesses of other fault-based testing techniques. 

RELAY defines revealing conditions that guarantee that a fault originates an error 
during execution and that the error transfers through computations and data flow until 
a failure is revealed. This model of error detection provides a fault-based criterion for 
test data selection. The model is applied by choosing a fault classification, instantiating 
the conditions for the classes of faults, and evaluating them for the program being tested. 
Such an application guarantees the detection of errors caused by any fault of the chosen 
classes. As a formal model of error detection, RELAY provides the basis for an automated 
testing tool. This paper presents the concepts behind RELAY, discusses how RELAY could 
be used as the foundation for a test' 'g system, and compares RELAY to other fault-based 
testing techniques. 

This work was supported by grants DCR-'8, · · >i404217 from the Na.-
tional Science Foundation, CCR-8704311 (ARPA '\o. , v) and CCR-8704478 
(Arpa Order No. 6104) from the National Science Foundation witn cooperation from the 
Defense Advanced Research Projects Agency, 84M103 from Control Data Corporation, 
and F30602-86-C-0006 from the Rome Air Development Center. 
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1 Introduction 

Testing is intended to reveal failures in program execution or to provide confidence that 

. failures do not occur. This is typically done by selecting test data expected to cause 'erroneous 

execution should faults exist in the program. A testing technique can be classified as "error­

based" or "fault-based". An error-based technique is geared toward revealing specific error 

types, where an error is an erroneous result produced by program execution. Fault-based 

testing selects test data by focusing on detecting particular fault types, where a fault is a 

particular mistake in the source code. Fault-ba.sed testing is capable of detecting many of the 

subtle errors of commission that are revealed only for very specific data, although it does not, 

in general, detect errors of omission. Moreover, fault-based testing facilitates debugging. 

Fault-based testing, when done accurately, can guarantee that faults are detected or do not 

exist. We analyzed several fault-based test data selection techniques, however, and demon­

strated two major failings of these techniques (RT86a]. First, most techniques do not consider 

the conditions required to guarantee that a fault actually reveals observable erroneous be­

havior. Instead, the "fault-specific rules" that comprise these techniques may introduce an 

erroneous intermediate value caused by a corresponding fault, but do not guarantee that such 

a value affects the output. Second, in most cases, these rules are merely sufficient (but not 

necessary and sufficient) to introduce an error. When such a fault-specific rule is unsatisfiable, 

a corresponding fault will not necessarily cause erroneous execution, and thus may remain 

undetected. 

This paper reports on the RELAY model of testing, which remedies the weaknesses that 

remain in other fault-based testing techniques. The RELAY model provides a framework for 

describing faults in software and a mechanism for developing conditions that guarantee their 

detection. As such, RELAY is a basis for a fault-based test data selection tool. 

The next section surveys related works in fault-based testing and indicates their major 

weaknesses. The third section summarizes the RELAY model; a more detailed presentation 

appears in other papers [RT86b, RT88b]. The fourth section outlines how the model is used 

to select test data and describes a RELAY-based testing tool. In conclusion, we highlight how 

RELAY overcomes the weaknesses in other fault-based testing techniques, discuss RELAY's 

status, and outline our future research directions. 

I 
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2 Related Fault-based Testing Work 

Fault-based testing techniques consist, in some sense, of "fault-specific rules", each intended to 

detect a particular fault type. Fault-based heuristics have been used by testers since the dawn 

of programming. Such heuristics are employed by examining the source code and selecting test 

data sensitive to commonly-introduced faults. Myers outlines many such heuristics [Mye78]. 

The attempts to formalize fault-based testing have a common underlying theme: distin­

guishing the test program from alternatives in a set of related programs that differ by defined 

fault types. These techniques assume the test program is "almost correct" and differs from 

some hypothetical correct program by at most some definable faults (the competent program­

mer hypothesis [DLS78]). This near correctness might be determined by successfully passing 

some high-level functional testing phase or by satisfying some structural testing criterion. In 

its various forms, this assumption essentially implies that the hypothetical correct program is 

in the "neighborhood" of the test program. Differences between the two can be detected by 

considering the alternative programs in that neighborhood that are associated with the faults 

the technique considers. If the class of faults is broad enough - that is, the neighborhood is 

large enough - we gain confidence in the tested program. 

Formal fault-based testing approaches fall into two categories: those that evaluate pre­

selected test data adequacy and those that guide test data selection. In what follows, we first 

discuss several fault-based test data evaluation techniques and then describe several fault­

based test data selection techniques. It is beyond the scope of this paper to fully compare 

these techniques. A more thorough survey of fault-based testing appears elsewhere [RT88a]. 

The earliest formalized fault-based testing techniques were introduced independently by 

Hamlet and by DeMillo, Lipton and Sayward. Both techniques seed or substitute particu­

lar types of faults into the test program and evaluate a user-selected set of test data ade­

quacy in terms of its ability to detect the seeded faults. Hamlet's testing with the aid of 

a compiler [Ham77], seeds faults that are alternative expressions "smaller" than the origi­

nal expression in the source code. An extended compiler instruments the code to compare 

the values computed by each alternate and the corresponding original expression. Mutation 

analysis [DLS78], introduced by DeMillo, Lipton, and Sayward, seeds simple, single-token 

faults into the source code to produce "mutant" programs. The system then executes the 

i 
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original and mutant programs on the pre-selected test data and determines which mutants 

are "killed" - that is, "'.hich produce different output results from the original for at least 

one test datum. In each of these approaches, the tester augments the test data set iteratively 

to eliminate the seeded faults. The philosophy behind these approaches is that the process of 

finding all seeded faults also eliminates real faults in the source code. 

These two approaches require explicit construction and execution (or at best partial inter­

pretation) of many alternate programs. Two more recent evaluation techniques take a more 

mathematical approach. Rather than evaluate a pre-selected test data set through execution, 

Zeil's and Morell's techniques analyze the test data set and the program and determine faults 

that could exist in the program and would remain undetected by execution on the test data. 

Zeil 's perturbation testing [Zei83, Zei84] provides a functional description of a "perturbation" 

class that would not be detected by the pre-selected test data set. Morell described a fault­

based testing model [Mor84] that introduces two concepts: "creating" an initial error for a 

fault, and "propagating" it to the output. Symbolic fault-based testing [Mor88] uses the model 

to symbolically represent faults that would not be detected by a particular execution. 

These fault-based test data evaluation approaches do not provide much guidance as to how 

to select test data that eliminate the faults considered. Several fault-based testing techniques 

more directly guide the test data selection process. Foster introduced the idea of conditions 

under which a fault manifests itself as an erroneous value [Fos80]. Foster's error-sensitive test 

case analysis consists of conditions sufficient to distinguish expressions that may contain a 

fault from the correct expression for several fault classes~ In weak mutation testing [How82] 

(more recently called fault-based functional testing), Howden refined these conditions and 

introduced others. Weak mutation testing is applied to the low level "functions" (e.g., state­

ments) in a program. Functional testing [How85, How87] augments this low-level testing by 

test selection rules applicable to the synthesis of functions from component (already tested) 

functions. 

Two extensions to mutation analysis are oriented toward test data selection. In his muta­

tion testing suite, Budd includes a component called error-sensitive test monitoring [Bud83] 

with conditions that must minimally be satisfied to detect some of the mutant classes in 

expressions containing them. Offutt described constraint-based testing [DGK+ss] as a part of 

the MoTHRA mutation analysis system. This approach explicitly selects test data to detect 

I 
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mutants at the statement containing them, and then program execution on such test data is 

compared with mutant program execution to determine if the mutant has been killed. If it 

has not been killed, additional test data is tried. 

These condition-based approaches have three major weaknesses. First and foremost, they 

are not easily extensible; they provide specific rules rather than defining a general framework 

within which test data selection rules can be defined for particular faults. Second, these 

techniques focus only on introducing a potential error, either at the fault location or at the 

statement containing the fault; there is no guarantee that a failure is produced. Third, many 

of the rules that comprise these techniques are sufficient but not necessary to introduce a 

potential error; if a rule is unsatisfiable, therefore, faults of the associated class may not be 

detected. 

The RELAY model differs significantly from each of the fault-based testing techniques 

described here. The RELAY model is most siinilar to Morell's work. We. introduce concepts 

similar to Morell 's creation and propagation; our origination and transfer1 refer to the first 

erroneous evaluation and the persistence of that errc;meous evaluation, respectively. We refine 

his theory by more precisely defining origination and by differentiating between the transfer 

of an error through computations and its transfer through data fl.ow. This differentiation 

facilitates defining fault-based rules for test data selection, whereas Morell's model is used for 

test data evaluation. In what follows, we outline the RELAY model and describe its use for 

test data selection. In the conclusion, we discuss the benefits that distinguish RELAY from 

other fault-based testing techniques. 

3 The RELAY Model 

RELAY is a fault-based testing technique that generates test data guaranteed to detect specific 

classes of faults. It does so by developing revealing conditions that guarantee that a fault 

originates an erroneous value and that this error is transferred through computations and data 

fl.ow until a failure is revealed. Note that a fault is a syntactic discrepancy in the source code, 

1 We have chosen the term "originate" rather than "create" or "introduce", because we feel it better connotes 
the first location at which an erroneous evaluation occurs and does not imply the mistake a programmer makes 
while coding. We have chosen the term "transfer" over "propagate" so as to avoid the connotation of an 
"increase in numbers" and instead of "persist" so as not to conflict with Glass's notion (Gla81], where an error 
is persistent if it escapes detection until late in development. 
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an error is an incorrect intermediate value, and a failure is observable incorrect behavior. 

As currently formulated, RELAY is limited to the detection of failures resulting from a single 

fault. 

1: x := u* v 

! 
2: Y := (V * *2) - 4 

! 
3: Z := A-B 

4: if A= B 

't 
6: W := X*Y 

7: output W 

Figure 1: Test Module 

To see that the process of revealing a failure is more complicated than it might appear, 

let us consider the module whose control :flow graph is shown in Figure 1. Suppose that the 

reference to variable U at statement 1 should be a reference to B - that is, statement 1 

should be X := B * V. The fault in this case is an incorrect variable reference. Let's walk 

through the test data set shown in Table 1. This table shows the values for the test data in 

the' first column and the values of intermediate computations in the remaining columns2 • All 
2 In the table and the discussion that follows, variable names are indicated by upper case while symbolic 

variable values are indicated by lower case 
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1 a= 1,b = 1 u 1 
u = 1,v = 1 B 1 

2 a= 1,b = 2 u 1 0 
u = 1,v = 0 B 2 0 

3 a= 1,b = 2 u 1 2 2 0 
u = 1,v = 2 B 2 4 4 0 

4 a= 1,b = 2 u 1 3 3 15 15 I 
u = 1,v = 3 B 2 6 6 30 30 I 

Table 1: Test Data Set for Module in Figure 1 

shown test data execute the faulty statement, yet only one test datum reveals a failure. 

Test datum 1: The values of b and u are the same; a failure cannot possibly result because 
no erroneous value is introduced. 

Test datum 2: b and u have different values, but this error is masked upon multiplication by 
v, which has the value zero (both U * V and B * V evaluate to zero). Hence, no failure 
could be revealed. 

Test datum 3: An error is manifested in different values for X, and that value is used at 
statement 6. In the computation at statement 6, however, the error is masked by 
multiplication by Y, which has the value zero. 

Test datum 4: An error in X used at statement 6 is not masked, and W evaluates erroneously. 
A failure is revealed when Wis output at statement 7. 

As seen in the above discussion, to guarantee a particular fault's detection by revealing a 

failure, careful attention must be paid to introducing intermediat~ erroneous values and to 

carrying intermediate errors throughout module execution. These ideas are captured in the 

RELAY model. 

RELAY starts with a source code expression that contains a discrepancy from some cor­

rect module3 • As demonstrated, it is possible to mask such a discrepancy during execution. 

Module execution may mask the discrepancy for some, but not all, test data; output appears 

correct but just by coincidence of the test data selected. This is often referred to as coin­

cidental correctness. It is also possible that a discrepancy is masked by all test. data that 

3 As we shall see later, the actual fault need not be known in advance 
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may execute the discrepancy. In this case, although a discrepancy exists between the test 

module and some correct module, the two are equivalent. In sum, we do not know whether 

a discrepancy can cause a failure, and thus it is only potentially a fault. A potential fault 

is a syntactic discrepancy between the test module and some correct module. Potential fault 

execution may introduce incorrect intermediate values, but coincidental correctness may still 

occur; later computations may mask the incorrect intermediate value. An incorrect value is 

thus referred to as a potential error. 

The RELAY model determines test data requirements that must be satisfied for a potential 

fault to introduce a potential error, carry it throughout execution, and eventually produce a 

failure. Given a potential fault, RELAY first considers the requirement to introduce a poten­

tial error. We say that a potential error originates if the smallest subexpression containing 

the potential fault evaluates differently from the corresponding subexpression in the correct 

module. After a potential error originates, it must be carried through module execution to 

affect subseq,~ent computations and eventually the output; this is called transfer. There are 

two types of transfer. Computational transfer .refers to transfer of an erroneous result 

through a statement that uses potentially erroneous values. Data flow transfer refers to 

transfer from an erroneous variable assignment to a use of that variable. When a potential 

error transfers to the outermost expression in a statement, a context error results. For 

an assignment statement, for instance, an erroneous value assigned to a variable manifests a 

context error. For a conditional statement, the selection of an incorrect branch4 manifests a 

context error. A context error results after a potential error originates and transfers through 

all computations in the potentially faulty statement. Context errors may also result at sub­

sequent statements where at least one referenced variable still holds an erroneous value due 

to the potential fault. When a potential error transfers through all computations and data 

flow to reach an output, a failure results5• 

Let us look again at the test data shown in Table 1 and see how each fits into the RELAY 

model. 

•To simplify the discussion in this paper, we assume that context errors in conditional statements are 
sufficient to reveal failure, since an incorrect path is traversed. We concentrate here on the transfer of context 
errors in assigned variables. 

5 0ther failure types include fatal run-time errors and deadlock. We are currently concentrating on revealing 
output failures. 

l 
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dat~4kow 
transfer 

Figure 2: The RELAY .Model 

Test datum 1: A potential error fails to originate. 

context 
error 

8 

Test datum 2: A potential error originates but computational transfer does not occur through 
the multiplication. 

Test datum 3: A context error occurs after statement 1, and data flow transfer occurs to the 
use of X at statement 6; the potential error fails, however, on computational transfer 
through the multiplication. 

Test datum 4: A potential error originates and transfers through all computations and along 
data flow to cause a failure. The potential fault is indeed a fault. 

The RELAY model is summarized in Figure 2. As shown in the figure, we start with a po­

tential fault. The potential fault must first originate a potential error (1). The potential error 

must computationally transfer through all ancestor operators in the statement containing the 

potential fault (2), after which a context error is revealed (3). This context error, which is 

manifested as an erroneous value for some variable, is transferred by data flow to some use of 

this variable (4), resulting in a potential error at the statement where the use occurs. Again, 

the potential error must transfer through all computations in the statement. This process 

of transferring through all computations at a statement to produce a context error followed 
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by transfer of the context error through data fl.ow to some other statement (2,3,4) continues 

until a statement is reached where the potential error is revealed as a failure (5). 

The model described above details how a particular fault causes a failure to be revealed, 

which seems to require prior knowledge of the existence of a fault. How then can this model 

be used to guide testing a module? Certainly, if we knew ahead of time where and what the 

faults were, we would not be testing for them but would simply fix them. RELAY selects test 

data that produces failures for specific classes of faults that might occur in the code. RELAY 

assumes that the test module is "almost correct" and considers how it might differ from a 

hypothetical correct module. RELAY considers that every statement in the code is potentially 

faulty and hypothesizes what potential faults could exist in the code. Hypothesizing that 

a module contains a potential fault in some expression means that a hypothetical correct 

module contains an alternate expression that is correct. RELAY's task is to select test data 

that guarantees the test module and the hypothetical correct module behave differently. Given 

such test data, If the test module produces a failure for such test data, then it actually contains 

the potential fault that is hypothesized (since the correct module containing the alternate 

behaves correctly and the test module and the correct module behave differently). If the 

test module does not cause a failure for such test data, then the hypothesized potential fault 

is not a fault. RELAY's application does not require constructing the hypothetical correct 

module containing the alternate to determine the existence or nonexistence of the potential 

fault that was hypothesized, but only requires executing the test module on the selected test 

data. Based on the ideas of origination and transfer, RELAY constructs the conditions that 

are necessary and sufficient to guarantee a failure occurs if the fault exists. 

The first step is to guarantee that a potential error originates and produces a context 

error. The origination condition is the necessary and sufficient condition to guarantee that 

the smallest subexpression containing the potential fault and the alternate subexpression 

evaluate differently. A potential error originating at the smallest subexpression containing 

a potential fault must transfer to affect evaluation of the entire statement by assigning an 

erroneous intermediate value. Thus, the potential error must transfer through each operator 

that is an ancestor of the subexpression in which the potential error originates. The compu­

tational transfer condition guarantees that a potential error transfers through all ancestor 

operators by distinguishing each ancestor expression referencing a potential error from the 
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The RELAY model of faults, errors, and failures is analogous to a relay race, as shown 
in Figure 3, hence its given name. In this analogy, the starting blocks correspond to the 
fault location. The take off of the first runner, as the gun sounds the beginning of the 
race, is analogous to the origination of a potential error. The runner carrying the baton 
through the first leg of the race illustrates the computational transfer of the potential 
error through that first statement. The successful completion of a leg of the race has 
a parallel in revealing a context error, and the passing of the baton from one runner to 
the next is analogous to the data flow transfer of the context error from one statement 
to another. Each succeeding leg of the race corresponds to the computational transfer 
through another statement. The relay team completes the race when the finish line 
is crossed, which is analogous to revealing a failure. Here, this failure is revealed as 
erroneous output with an output oracle. 

/ 
I 

data flow 

context 
error 

1~--
transfer CONTEXT 

ORACLE 
\. 

- - - .-

com putationa I 
transfer 

context 

---- .. tfilor 
--~ 

computational 
transfer 

OUTPr ORACLi;_-

Figure 3: The Testing Relay 
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ancestor expression referencing the evaluation of the correct subexpression. The context 

error condition at the originating statement, is the conjunction of the origination condition 

and the computational transfer condition. 

From here, the context error must transfer to some output statement where a failure is 

demonstrated. There may be many routes along which the potential error may transfer. 

Each route is defined by a chain of alternating definitions and uses, def-use pairs, where each 

definition reaches the next use in the chain and that use partially defines the next variable 

in the chain. A data flow transfer condition describes the requirements for transfer of 

a context error from a definition in the chain to the next use (e.g., execution of a def-use 

pair). To transfer a potential error along a selected chain, the data fl.ow transfer conditions 

for all def-use pairs in the chain must be satisfied. In addition, at each use in the chain, 

the computational transfer condition to transfer the use of the potential error to the next 

definition must also be satisfied. The chain transfer condition for a selected chain is the 

conjunction of the data fl.ow transfer conditions for the def-use pairs along the chain and the 

computational transfer conditions required by each use in the chain. 

The conjunction of the context error condition at the originating statement along with 

the chain transfer condition forms a sufficient failure condition. If test data can be selected 

to satisfy this failure condition and the module executes correctly, then the potential fault 

is not a fault. If test data that satisfies the condition produces a failure, then the module 

contains the hypothesized fault. ff we are unable to satisfy this failure condition, then we 

must consider other routes along which the potential error could transfer to output. The 

disjunction of the sufficient failure conditions for all chains from the originating statement to 

a failure is both necessary and sufficient to reveal a failure' due to this potential fault. This is 

the failure condition. If this disjunction is unsatisfiable, then it is not possible to transfer the 

potential error along any of the routes. This means that the potential fault and the alternate 

are equivalent, and the potential fault is not a fault. 

Turning back to the example, we hypothesized that the reference to U at statement 1 

should be a reference to B. The origination condition for this potential fault is (u :j:. b). The 

only computation at this statement is multiplication by V. The transfer condition through 

multiplication is that the other operand (the one that does not contain a potential error) 

is not zero-valued.· When applied to this statement, the computational transfer condition is 
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( v # 0). Thus, the context error condition at the originating statement resulting from this 

potential fault is the conjunction of these conditions - (u # b) and (v # 0). From here, we 

consider the chains to output that use X's value defined at statement 1. There are two such 

chains. 

Let us first consider the chain consisting of the use of X at statement 5, where W is 

defined, followed by the output of Wat statement 7. Here, the data flow transfer condition is 

(a = b ). Next, the computational transfer at statement 5 must be considered. The potential 

error in X must transfer through the division by Z. The transfer condition through division 

requires that the non-erroneous operand have a non-zero value; evaluation of .(z # 0) results 

in the computational transfer condition (a-b # 0), since z = (a-b). Thus, the chain transfer 

condition is (a = b) and (a - b # 0), which is infeasible because (a = b) and (a - b ;/; 0) 

are contradictory. The context error cannot transfer along this chain, therefore, and another 

chain must be considered. 

The second chain consists of the use of X at statement 6, where W is defined, followed 

by the output of w at statement 7. For this chain, the data flow transfer condition is (a;/; b ). 

Computational transfer through the multiplication at node 6 requires that the variable Y have 

a non-zero value. Since y = ( V**2)-4, the computational transfer condition is (( V**2)-4 # 0), 

which simplifies to v # ±2. Thus, the chain transfer condition is (a # b) and ( v # ±2). The 

sufficient failure condition for this chain is 

(u#b) and (v#O) and (a#b) and (v#±2) 

This condition is satisfied by the test datum (a= 1, b = 2, u = 1, v = 3), which would reveal 

a failure caused by the hypothesized fault. 

4 A RELAY Testing Tool 

Using the RELAY model to select test data may seem time and resource consumptive, but we 

do not intend for it to be applied blindly to test for all fault classes at all locations. We are 

designing a user model based on process programming [Ost87, RA089], whereby a user can 

choose a RELAY criterion, which specifies a group of source code locations and class( es) of 

potential faults that may occur at those locations. For example, one such RELAY criterion 

is variable reference faults for the entire program; another is conditional operator faults in 
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loop conditions. The RELAY tool derives the appropriate revealing conditions for a given 

criterion and selects test data to satisfy those conditions. In this section, we discuss the 

implementation of a RELAY tool and describe the steps involved in applying RELAY. 

The RELAY model, itself, is generic - that is, it describes generic model conditions for 

origination and transfer that are instantiated for specific faults. To derive revealing conditions, 

the RELAY tool needs fault specific origination and transfer conditions. As an example of a 

fault specific origination condition, consider a multiplication operator mistakenly replaced by 

an addition operator. The origination condition for this potential fault type has the form 

( exp1 * exp2 :j:. exp1 + exp2), which simplifies as ( exp1 :j:. 0 or exp2 :j:. 0). As an example of 

a fault specific computational transfer condition, consider transfer through a multiplication 

operator. The transfer condition has the form exp1 * exp2 :j:. exp1 * exp2, where exp1 is the 
., ' 

operand containing the potential error, which simplifies as exp2 :j:. 0. 

In deriving the fault specific conditions, we group faults into classes based on a common 

characteristic transformation. For example, all faults that involve replacement of an arith­

metic operator by another are grouped into the more general class of arithmetic operator 

faults. We then instantiate fault class origination conditions for each fault. class. The origina­

tion conditions have been instantiated for the following fault classes: boolean operator fault, 

relational operator fault, arithmetic operator fault, variable reference fault, constant reference 

fault, and variable definition fault (see [RT88a]). Given a particular fault class, computa­

tional transfer conditions must also be instantiated for each operator whose operands may 

be a potential error caused by a fault in the class. For an arithmetic operator, for example, 

an originated potential error :might need to transfer through arithmetic operators; relational 

operators, and/or boolean operators, and the transfer condition must be instantiated for each 

to consider this fault class. Note that, in general, a transfer condition is applicable to many 

fault classes. The computational transfer conditions have been instantiated for the following 

operator types: boolean operator, relational operator, arithmetic operator, assignment oper­

ator (see [RT88a])6 • Fault classification is useful, because there is often substantial overlap 

amongst the origination conditions for the potential faults in a class. Hence, the generation 

of origination conditions for each fault in a class is similar, and a single test datum often 

satisfies multiple origination conditions. Moreover, the failure conditions for the faults in the 

6 These operators are applicable to those faults for which origination conditions have been developed 

I 
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class differ only in origination condition, sharing identical transfer conditions (computational 

as well as data flow). 

A prototype RELAY testing tool is currently being developed. The initial instantiation 

is for the six fault classes mentioned above. The tool contains the fault class origination 

and computational transfer conditions for these six classes in tables. It is easy, therefore, to 

extend the tool to cover new fault classes by adding new fault class conditions to the relevant 

tables. 

Testing with the RELAY tool consists of four steps: 1) determining the RELAY require­

ments, 2) generating the context error condition, 3) generating the chain transfer condition, 

4) creating the failure condition, and 5) evaluating and/ or selecting test data. These steps 

are outlined in Figure 4 and discussed more completely below. 

When testing with the RELAY tool, the user specifies a RELAY criterion, which dictates 

testing for some fault class( es) and some source code locations. The tool identifies each 

potential fault, which consists of a particular fault class and an applicable location, specified 

by the chosen criterion. To develop the revealing condition for a particular potential fault, 

the appropriate fault class conditions are evaluated as determined by the fault class, location, 

and transfer chain. 

Note that a RELAY criterion may specify a number of fault classes and locations at a single 

statement. The RELAY tool reduces costs by isolating those parts of the revealing conditions 

that are independent of a potential fault. Derivation of the context error condition (both 

origination condition and computational transfer conditions) at the originating statement is 

specific to a particular fault class and location. Contrarily, the transfer of a context error from 

the originating statement along a chain to produce a failure is independent of a particular 

fault; each fault at the statement may transfer along the same chain. Thus, chain transfer 

conditions are developed independently of the context err-0r conditions. 

For each potential fault, the tool first derives the context error conditions. This requires 

evaluating the appropriate fault class origination conditions at the fault location to provide 

the actual origination conditions, and then evaluating the applicable transfer conditions for 

each ancestor operator in the originating statement. The computational transfer condition 

is conjoined to each origination condition to create context error conditions for the class of 

potential faults. This is done for all potential faults for· which we are testing at a selected 
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Step 1 Determine RELAY Requirements 

1. select RELAY criterion for which to test 

2. identify fault class( es) 

3. identify potential faults (class and location) 

Step 2 Context Error Condition at Originating Statement 
(for each potential fault) 

1. evaluate origination condition for potential fault 

2. evaluate the computational transfer condition for each ancestor operator at 
statement 

3. conjoin to form context error condition 

Step 3 Chain Transfer Condition 
(for an originating statement) 

1. select a chain of alternating definitions and uses from originating statement 
to output 

2. determine data flow transfer condition for each def-use pair and computa­
tional transfer condition for each use 

3. conjoin to form chain transfer condition 

Step 4 Failure Condition 
(for all potential faults at an originating statement) 

1. conjoin chain transfer condition to context error condition to form failure 
condition 

Step 5 Test Data Selection/Evaluation 
(for each failure condition) 

1. check existing test data for satisfaction of failure condition 

2. select test data to satisfy failure condition (if necessary) 

Figure 4: Application of RELAY 
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statement. 

Then, the tool derives the chain transfer condition for a selected chain of alternating 

definitions and uses from the originating statement to output. A chain is selected by analyzing 

a flow graph annotated with def-use pairs. For each def-use pair along the chain, the data flow 

transfer condition is determined by evaluating the required conditional transfers between the 

definition and the use, and the computational transfer condition is determined. by evaluating 

the applicable transfer conditions for the ancestor operators of the use. The same chain 

transfer condition is conjoined to each context error condition at the originating statement 

to provide a failure condition. 

Note that the failure conditions are constructed incrementally and may at any time become 

infeasible - that is, the new transfer condition may be inconsistent with another condition 

in the conjunction. The tool checks feasibility incrementally so as not to waste valuable 

computation time extending an already infeasible condition. 

Finally, the RELAY tool is used to evaluate pre-selected test data and/ or to select test 

data. Since the RELAY model of error detection assumes that the module being tested is 

almost correct, the module should have passed some other testing phase. This may simply be 

user-selected test data. We have also been investigating the integration of RELAY with other 

automated testing techniques [RA089]. The tool, therefore, first determines what failure 

conditions are satisfied by any pre-selected test data. Test data is then selected for any 

failure conditions not yet satisfied. Augmenting a pre-selected test data set is more efficient, 

because determining that a condition is satisfied is less costly than solving that condition and 

retesting. 

The RELAY testing tool is one of the inhabitants of TEAM [CRZ88], a support environment 

for testing, evaluation, and analysis of software. The TEAM environment provides the essential 

building blocks, through generic component technology, for easily constructing new tools. 

Within TEAM, testing tools are built upon generic analysis components providing capabilities 

that seem to be required by most testing techniques. One important TEAM component 

is ARIES [ZE88], a generic interpretation tool that provides symbolic evaluation capabilities. 

Symbolic evaluation assigns symbolic names to input values and interprets a path, maintaining 

variable and condition values in terms of the symbolic input values. Our implementation 

relies heavily upon the symbolic capabilities provided by ARIES. Symbolic evaluation is 
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necessary for 1) interpreting a path up to a potential fault, 2) interpreting a path covering 

a selected chain, 3) evaluating the fault class origination and transfer conditions in terms 

of symbolic values, and 4) evaluating the data flow transfer conditions along a chain in 

terms of symbolic values. Another essential component in ARIES provides formal reasoning 

capabilities, which are used for determining feasibility of the failure conditions and solving 

the failure conditions to provide test data. TEAM also provides low-level facilities such as 

language processing and object management. The TEAM environment enables us to build a 

RELAY testing tool more rapidly and with lower development costs than could be achieved 

by independent implementation. 

5 Conclusion 

In this paper, we present the RELAY model of fault detection and demonstrate its use as a test 

data selection technique. RELAY models detection of a fault by origination of an erroneous 

value that transfers through execution until a failure is revealed. The model also defines 

model origination and transfer conditions, which provide the general requirements for fault 

detection. The model conditions are instantiated for various fault classes to produce program­

independent fault class origination and transfer conditions, which define guaranteed detection 

of faults in the classes. To test a program, a RELAY criterion is selected, which specifies 

fault classes and potential fault locations in the source. RELAY provides revealing conditions 

that guarantee detection of the faults identified by the RELAY criterion by evaluating the 

appropriate fault class conditions in the context of the program. Implementation of a testing 

tool based on the RELAY model is currently underway. This tool is part of the TEAM 

environment [CRZ88] for testing, evaluation and analysis and makes use of the generic analysis 

components provided in that environment. 

Related works in fault-based test data evaluation and test data selection are described. A 

more comprehensive survey and comparison of fault-based testing techniques including their 

relationships to RELAY is reported in [RT88a], while a formal analysis of several fault-based 

test data selection techniques is found in [RT86a]. RELAY provides several advantages over 

other fault-based testing techniques: 

1. RELAY actually provides a mechanism for test data selection and does not merely eval-
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uate the adequacy of user-selected test data, as do the fault-based test data evaluation 

techniques. 

2. RELAY recognizes the need to produce an observable failure for a givenfault; most other 

fault-based test data selection techniques just introduce an intermediate erroneous value. 

3. RELAY develops conditions that are both necessary and sufficient to detect faults, 

whereas most of the fault-based test data selection techniques consist of rules that 

are only sufficient for introducing intermediate erroneous results. 

4. RELAY distinguishes between origination of a potential error for a fault class and com­

putational transfer of that potential error, which facilitates extension to additional fault 

classes. 

5. RELAY provides a specific framework in which all these components fit and which is 

applicable for test data selection. 

We believe that RELAY provides a cleaner, clearer view of fault- based testing than other 

approaches to date and that it ts a significantly more powerful approach. 

We continue to extend the RELAY model of error detection. We are evaluating its gen­

erality by instantiating it for other classes of faults, including more complex and higher 

level faults. Our current investigation of data fl.ow transfer focuses on more complex def-use 

chains: those that include a statement that uses more than one potentially erroneous variable 

and those that cover looping constructs. We are also examining the application of RELAY 

within an integration testing paradigm by considering the conditions that must be satisfied 

to guarantee transfer of a potential error across a procedure invocation. In addition, we are 

considering the use of the RELAY model as a specification-based testing technique. 

Our evaluation of the RELAY model of error detection has thus far been of an analytical 

nature through which its error detection capabilities have been compared to those of other 

fault-based techniques [RT86a]. While this has provided considerable insight, and we expect 

that further analysis will prove useful, there is a clear need for empirical evidence of the 

model's worth. Empirical studies are particularly important in testing research since often the 

worst case analysis can lead to very different conclusions than experimental studies of typical 

operational performance. The TEAM environment will enable us to experiment with other 
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fault-based techniques and not only RELAY, thus providing empirical evidence of RELAY's 

merits relative to similar techniques. 
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