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Large single-cell reference atlases1–4 comprising millions5 of cells 
across tissues, organs, developmental stages and conditions are 
now routinely generated by consortia such as the Human Cell 

Atlas6. These references help to understand the cellular heteroge-
neity that constitutes natural and inter-individual variation, aging, 
environmental influences and disease. Reference atlases provide an 
opportunity to radically change how we currently analyze single-cell 
datasets: by learning from the appropriate reference, we could auto-
mate annotation of new datasets and easily perform comparative 
analyses across tissues, species and disease conditions.

Learning from a reference atlas requires mapping a query dataset 
to this reference to generate a joint embedding. Yet query datas-
ets and reference atlases typically comprise data generated in dif-
ferent laboratories with different experimental protocols and thus 
contain batch effects. Data-integration methods are typically used 
to overcome these batch effects in reference construction7. This 
requires access to all relevant datasets, which can be hindered by 
legal restrictions on data sharing. Furthermore, contextualizing a 
single dataset requires rerunning the full integration pipeline, pre-
supposing both computational expertise and resources. Finally, 
traditional data-integration methods consider any perturbation 
between datasets that affects most cells as a technical batch effect, 
but biological perturbations may also affect most cells. Thus, con-
ventional approaches are insufficient for mapping query data onto 
references across biological conditions.

Exploiting large reference datasets is a well-established approach 
in Computer Vision8 and Natural Language Processing9. In these 

fields, commonly used deep learning approaches typically require 
a large number of training samples, which are not always avail-
able. By leveraging weights learned from large reference datasets to 
enhance learning on a target or query dataset10, transfer-learning 
(TL) models such as ImageNet11 and BERT12 have revolutionized 
analysis approaches8,9: TL has improved method performance with 
small datasets (for example, clustering13, classification and/or anno-
tation14) and enabled model sharing15–18. Recently, TL has been 
applied to single-cell RNA-seq (scRNA-seq) data for denoising19, 
variance decomposition20 and cell type classification21,22. However, 
current TL approaches in genomics do not account for technical 
effects within and between the reference and query19 and lack of sys-
tematic retraining with query data20–23. These limitations can lead to 
spurious predictions on query data with no or small overlap in cell 
types, tissues or species24,25. Nonetheless, deep learning models for 
data integration in single-cell genomics demonstrated superior per-
formance7,26–28. We propose a TL and fine-tuning strategy to lever-
age existing conditional neural network models and transfer them 
to new datasets, called ‘architecture surgery’, as implemented in the 
scArches pipeline. scArches is a fast and scalable tool for updating, 
sharing and using reference atlases trained with a variety of neural 
network models. Specifically, given a basic reference atlas, scArches 
enables users to share this reference as a trained network with other 
users, who can in turn update the reference using query-to-reference 
mapping and partial weight optimization without sharing their 
data. Thus, users can build their own extended reference mod-
els or perform stepwise analysis of datasets as they are collected, 
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which is often crucial for emerging clinical datasets. Furthermore, 
scArches allows users to learn from reference data by contextual-
izing new (for example, disease) data with a healthy reference in a 
shared representation. Due to the flexible choice of the underlying 
core model that is transferred using scArches, we can learn refer-
ences with various base models but also train on multimodal data. 
We demonstrate the features of scArches using single-cell datasets 
ranging from pancreas to whole-mouse atlases and immune cells 
from patients with COVID-19. scArches is able to iteratively update 
a pancreas reference, transfer labels or unmeasured data modalities 
between reference atlases and query data and map COVID-19 data 
onto a healthy reference while preserving disease-specific variation.

Results
scArches enables mapping query data to reference. Consider the 
scenario with N ‘reference’ scRNA-seq datasets of a particular tis-
sue or organism. A common approach to integrate such datasets is 
to use a conditional variational autoencoder (CVAE) (for example, 
single-cell variational inference (scVI)29, transfer variational auto-
encoder (trVAE)30) that assigns a categorical label Si to each dataset 
that corresponds to the study label. These study labels may index 
traditional batch IDs (that is, samples, experiments across laborato-
ries or sequencing technologies), biological batches (that is, organs 
or species when used over the set of orthologous genes), perturba-
tions such as disease or a combination of these categorical variables. 
Training a CVAE model with reference studies S1:N (Fig. 1a) results 
in a latent space where the effects of condition labels (that is, batch 
or technology) are regressed out. Thus, we can use this embedding 
for further downstream analysis such as visualization or identifica-
tion of cell clusters or subpopulations.

Architectural surgery is a TL approach that takes existing ref-
erence models and adapts these to enable query-to-reference map-
ping. After training an existing autoencoder model on multiple 
reference datasets, architectural surgery is the process of trans-
ferring these trained weights with only minor weight adaptation 
(fine tuning) and adding a condition node to map a new study 
into this reference. While this approach is broadly applicable on 
any deep conditional model, here we apply scArches to three 
unsupervised models (CVAEs, trVAE, scVI), a semi-supervised 
(single-cell annotation using variational inference (scANVI))31 
algorithm and a multimodal (total variational inference (totalVI))32  
algorithm (Methods).

To facilitate model sharing, we adapted existing reference-building 
methods to incorporate them into our scArches package as ‘base 
models’. Reference models built within scArches can be uploaded 
to a model repository via our built-in application programming 
interface for Zenodo (Methods). To enable users to map new data-
sets on top of custom reference atlases, we propose sharing model 
weights, which one can download from the model repository and 
fine tune with new query data. This fine tuning extends the model 
by adding a set of trainable weights per query dataset called ‘adap-
tors’. In classical conditional neural networks, a study corresponds 
to an input neuron. As a trained network has a rigid architecture, it 
does not allow for adding new studies within the given network. To 
overcome this, we implement the architecture surgery approach to 
incorporate new study labels as new input nodes (Methods). These 
new input nodes with trainable weights are the aforementioned 
adaptors. Importantly, adaptors are shareable, allowing users to 
further customize shared reference models by downloading a refer-
ence atlas, choosing a set of available adaptors for that reference and 
finally incorporating the user’s own data by training query adaptors 
(Fig. 1b). Trainable parameters of the query model are restricted 
to a small subset of weights for query study labels. Depending on 
the size of this subset, this restriction functions as an inductive bias 
to prevent the model from strongly adapting its parameters to the 
query studies. Thus, query data update the reference atlas.

To illustrate the feasibility of this approach, we applied scArches 
with trVAE, scVI and scANVI (see Supplementary Tables 1–7 for 
detailed parameters) to consecutively integrate two studies into a 
pancreas reference atlas comprising three studies (Fig. 1c). To addi-
tionally simulate the scenario in which query data contain a new cell 
type absent in the reference, we removed all alpha cells in the train-
ing reference data. We first trained different existing reference mod-
els within the scArches framework to integrate training data and 
construct a reference atlas (Fig. 1d,e and Supplementary Fig. 1, first 
column). Once the reference atlas was constructed, we fine tuned 
the reference model with the first query data (SMART-seq2 (SS2)) 
and iteratively updated the reference atlas with this study (Fig. 1d,e, 
second column) and the second query data (CelSeq2, Fig. 1d,e, 
third column). After each update, our model overlays data from all 
shared cell types present in both query and reference while yielding 
a separate and well-mixed cluster of alpha cells in the query datasets 
(black dashed circles in Fig. 1d,e). To further assess the robustness 
of the approach, we held out two cell types (alpha cells and gamma 
cells) in the reference data while keeping both in the query datasets. 
Here our model robustly integrated query data while placing unseen 
cell types into distinct clusters (Supplementary Fig. 2). Additional 
testing using simulated data showed that scArches is also robust to 
simultaneously updating the reference atlas with several query stud-
ies at a time (Supplementary Fig. 3).

Overall, TL with architectural surgery enables users to update 
learnt reference models by integrating query data while accounting 
for differences in cell type composition.

Minimal fine tuning performs best for model update. To deter-
mine the number of weights to optimize during reference mapping, 
we evaluated the performance of different fine-tuning strategies. 
Reference mapping performance was assessed using ten metrics 
recently established to evaluate data-integration performance7 in 
terms of removal of batch effects and preservation of biological vari-
ation. Batch-effect removal was measured via principal-component 
regression, entropy of batch mixing, k-nearest neighbor (kNN) 
graph connectivity and average silhouette width (ASW). Biological 
conservation was assessed with global cluster matching (adjusted 
Rand index (ARI), normalized mutual information (NMI)), local 
neighborhood conservation (kNN accuracy), cell type ASW and 
rare cell type metrics (isolated label scores). An accurate reference 
mapping integration should result in both high conservation of bio-
logical variation and high batch-removal scores.

Next to fine tuning only the weights connecting newly added 
studies as proposed above (adaptors), we also considered (1) train-
ing input layers in both encoder and decoder while the rest of the 
weights were frozen and (2) fine tuning all weights in the model. 
We trained a reference model for each base model using 250,000 
cells from two mouse brain studies33,34. Next, we compared the 
integration performance of candidate fine-tuning strategies when 
mapping two query datasets1,35 onto the reference data. Applying 
scArches trVAE to the brain atlas, the model with the fewest param-
eters performed competitively with other approaches in integrating 
different batches while preserving distinctions between different 
cell types (Fig. 2a–c). Notably, the strongly regularized scArches 
reduced trainable parameters by four to five orders of magnitude 
(Fig. 2d). Overall, evaluating integration accuracy for different base 
models demonstrates the optimal time and integration performance 
trade-off of using adaptors to incorporate new query datasets com-
pared to that of other approaches (Fig. 2e).

Architectural surgery allows for efficient data integration. To use 
scArches, one requires a reference atlas model. The quality of refer-
ence mapping performed by scArches relies on the parameterization 
and architecture chosen for the base model as well as the quality and 
quantity of reference data. To determine the sensitivity of scArches 
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reference mapping to the reference model used, we investigated 
how much reference data are needed to enable successful reference 
mapping. Therefore, we leveraged a human immune cell dataset 
composed of bone marrow36 and peripheral blood mononuclear 
cells (PBMCs)37–39. We built reference models of increasing qual-
ity by incrementally including more studies in reference building 
while using the rest of the studies as query data. To further chal-
lenge the model, we included a unique cell type for each study 
while removing it from the rest of the studies. In our experiments, 
the reference mapping accuracy of scArches scANVI substantially 
increased until at least 50% (~10,000 cells) of the data were used as 
reference (Fig. 3a–c). Specifically, we observed distinct clusters of 
megakaryocyte progenitors, human pluripotent stem cells, CD10+ 
B cells and erythroid progenitors only in higher reference ratios 
(Fig. 3b,c), while these were mixed in the lowest reference frac-
tion (Fig. 3a). This observation held true across other base models  
(Fig. 3d and Supplementary Fig. 4). We repeated similar experi-
ments on brain and pancreas datasets (Supplementary Figs. 5 and 6).  

Overall, while performance is both model and data dependent, 
we observed a robust performance when at least 50% of the data, 
including multiple study batches, are used in reference training  
(Fig. 3d and Supplementary Figs. 7–10).

Reference mapping is designed to generate an integrated dataset 
without sharing raw data and with limited computational resources. 
Thus, it must be evaluated against the gold standard of de novo data 
integration, for which these restrictions are not present. To assess 
this, we performed scArches reference mapping using a reference 
model containing approximately two-thirds of batches and com-
pared this to existing full integration autoencoder methods and 
other existing approaches22,40–44. The overall score for the scArches 
reference mapping model is similar to that of de novo integration 
performance (Fig. 3e and Supplementary Figs. 13–15).

We also evaluated the speed of scArches reference mapping 
compared to full integration strategies. In an scArches pipeline, 
the reference model must either be built once and can be shared 
or it can be downloaded directly to map query datasets. Therefore, 
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we consider the time spent by the user to map query datasets 
as the relevant basis for our comparisons. The running time 
is also dependent on the base model type. For example, trVAE 
was much slower than other base models due to the maximum 
mean discrepancy term, while scVI and scANVI were the fastest 
(Supplementary Fig. 11a). Overall, scArches can offer a speed-up 
of up to approximately fivefold and eightfold for scVI and scANVI 
compared to that of running a de novo autoencoder-based 
integration for these methods (Supplementary Fig. 16a). 
This allows mapping of 1 million query cells in less than 1 h  
(Supplementary Fig. 11b).

scArches is sensitive to nuanced cell states. We further evaluated 
scArches under a series of challenging cases. A particular challenge 
for deep learning methods with many trainable parameters is the 
small data regime. Thus, we first tested the ability of scArches to 
map rare cell types. For this purpose, we subsampled a specific 

cell type in our pancreas and immune integration tasks (delta cells 
and CD16+ monocytes, respectively), such that this population 
constituted between ~0.1% and ~1.0% of the whole data. Next, 
we integrated one study as query data and evaluated the quality 
of reference mapping for the rare cell type. While in all cases the 
query cells are integrated with reference cells, rare cluster cells can 
be mixed with other cell types when the fraction is smaller than 
~0.5%, and we only observed a distinct cluster for higher fractions 
(Supplementary Fig. 12).

Second, we evaluated our method on data with continuous tra-
jectories. We trained a reference model using a pancreatic endo-
crinogenesis dataset45 from three early time points (embryonic 
day (E)12.5, E13.5 and E14.5). We integrated the latest time point 
(E15.5) as query data. Here query data integrated well with refer-
ence data, and our velocity46 analysis on the integrated data con-
firmed the known differentiation trajectory toward major alpha, 
beta, delta and epsilon fates (Supplementary Fig. 13).
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Finally, we evaluated how well scArches resolves nuanced, tran-
scriptionally similar cell types in the query. We therefore trained a 
reference model excluding natural killer (NK) cells, while the ref-
erence data contained highly similar NKT cells. Integrated query 
and reference cells resulted in a separate NK cluster in proximity 
to NKT cells (Supplementary Fig. 14a). Repeating a similar experi-
ment with both NK and NKT cells absent in the reference repro-
duced distinct clusters for both populations in the vicinity of each 
other (Supplementary Fig. 14b).

scArches enables knowledge transfer from reference to query. 
The ultimate goal of query-to-reference mapping is to leverage and  

transfer information from the reference. This knowledge transfer can 
be transformative for analyzing new query datasets by transferring 
discrete cell type labels that facilitate annotation of query data47,48 or 
by imputing continuous information such as unmeasured modalities 
that are present in reference but absent from query measurements32,48,49

We first studied transferring discrete information (for exam-
ple, cell type labels) to query data. We used the recently published 
Tabula Senis3 as our reference, which includes 155 distinct cell types 
across 23 tissues and five age groups ranging from 1 month to 30 
months from plate-based (SS2) and droplet-based (10x Genomics) 
assays. As query data, we used cells from the 3-month time point 
(equivalent to Tabula Muris (TM)).
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The query data consists of 90,120 cells from 24 tissues includ-
ing a previously unseen tissue, trachea, which we excluded from 
the reference data. scArches trVAE accurately integrates query 
and reference data across time points and sequencing technolo-
gies and creates a distinct cluster of tracheal cells (n = 9,330)  
(Fig. 4a,b and Supplementary Fig. 15a; see Supplementary Fig. 16 
for tissue-level data).

We then investigated the transfer of cell type labels from the 
reference dataset. Each cell in the query TM was annotated using 
its closest neighbors in the reference dataset. Additionally, our 
classification pipeline provides an uncertainty score for each cell 
while reporting cells with more than 50% uncertainty as unknown 
(Methods). scArches achieved ~84% accuracy across all tissues 
(Fig. 4c). Moreover, most of the misclassified cells and cells from 
the unseen tissue received high uncertainty scores (Fig. 4d and 
Supplementary Fig. 15b). Overall, classification results across tis-
sues indicated a robust prediction accuracy across most tissues  

(Fig. 4e), while highlighting cells that were not mappable to the ref-
erence. Therefore, scArches can successfully merge large and com-
plex query datasets into reference atlases. Notably, we used scArches 
to map a large query (the mouse cell atlas2) onto TM and further 
onto a recently published human cell landscape (HCL)4 reference, 
demonstrating applicability to study similarity of cell types across 
species (Supplementary Note 1 and Supplementary Figs. 18–21). 
Overall, scArches-based label projection performs competitively 
when compared with state-of-the-art methods such as SVM rejec-
tion47,50, Seurat version 3 (ref. 22) and logistic regression classifiers50 
(Supplementary Fig. 17).

In addition to the label transfer, one can use reference atlases to 
impute continuous information in the query data such as missing 
antibody panels in RNA-seq-only assays. Indeed, one can combine 
scArches with existing multimodal integration architectures such as 
totalVI32, a model for joint modeling of RNA expression and surface 
protein abundance in single cells. Leveraging scArches totalVI, we 
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built a cellular indexing of transcriptomes and epitopes by sequenc-
ing (CITE-seq)51 reference using two publicly available PBMC data-
sets (Fig. 4f). Next, we integrated query scRNA-seq data into the 
reference atlas (Fig. 4g) and used the multimodal reference atlas to 
impute missing protein data for the query dataset. Using imputed 
protein abundances, we can distinguish the observed major popu-
lations such as T cells (CD3+, CD4+ and CD8+), B cells (CD19+) 
and monocytes (CD14+) (Fig. 4h) (see Supplementary Fig. 22 for 
all proteins).

Preserving COVID-19 cell states after reference mapping. In the 
study of disease, contextualization with healthy reference data is 
essential. A successful disease-to-healthy data integration should 
satisfy three criteria: (1) preservation of biological variation of 
healthy cell states; (2) integration of matching cell types between 
healthy reference and disease query; and (3) preservation of distinct 
disease variation, such as the emergence of new cell types that are 
unseen during healthy reference building. To showcase how one 
can perform disease contextualization with scArches, we created a 
reference aggregated from bone marrow36, PBMCs37–39 and normal 
lung tissue52–54 (n = 154,723; Fig. 5a–c) and then mapped onto it a 
dataset containing alveolar macrophages and other immune cells 
collected via bronchoalveolar lavage from (1) healthy controls and 
patients with (2) moderate and (3) severe COVID-19 (n = 62,469)55. 
As described by Liao and colleagues, this dataset contains immune 
cells found in the normal lung (for example, tissue-resident alveo-
lar macrophages, TRAMs) as well as unique populations that are 

absent in the normal lung and emerge only during inflammation 
(for example, monocyte-derived alveolar macrophages, MoAMs)55. 
We used a negative binomial (NB) CVAE base model for this exper-
iment (Methods).

We first evaluated the integration of query batches in the refer-
ence. scArches successfully integrated alveolar macrophages from 
different datasets and preserved biological variability between them, 
although some ambient RNA signals remained (Supplementary 
Note 2 and Supplementary Fig. 23). For example, activated TRAMs 
(FABP4+IL1B+CXCL5+) that originate from a single individual 
(donor 2 in the Travaglini et al.52 dataset) formed a distinct subclus-
ter within TRAMs (Fig. 5a–d). We then evaluated the projection of 
COVID-19 query data onto the reference model. The dataset from 
Liao and colleagues contains the following cell types: airway epi-
thelial cells, plasma cells and B cells, CD4+ and CD8+ T cells, NK 
cells, neutrophils, mast cells, dendritic cells, monocytes and alveolar 
macrophages (Fig. 5b,c and Supplementary Fig. 24)55. Within the 
macrophage cluster (characterized by the expression of C1QA), 
two distinct populations dominated the structure of the embedding  
(Fig. 5c,d): TRAMs (FABP4+C1Q+CCL2−) and inflammatory 
MoAMs (FABP4−C1Q+CCL2+). As expected, query TRAMs from 
healthy controls integrated well with TRAMs from the reference 
dataset. While TRAMs from patients with moderate COVID-19 inte-
grated with TRAMs from control lung tissue, they did not mix with 
normal TRAMs completely, as they were activated and character-
ized by increased expression of IFI27 and CXCL10. MoAMs are pre-
dominantly found in samples from patients with severe COVID-19  
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and to a lesser extent in samples from patients with moderate 
COVID-19. MoAMs originate from monocytes that are recruited 
to sites of infection (as illustrated by the gradient of C1QA expres-
sion) and thus do not appear in healthy reference tissue. Indeed, 
MoAMs were embedded in closer proximity to monocytes than to 
TRAMs in our embedding, reflecting their ontological relationship 
(see Supplementary Fig. 25 for partition-based graph abstraction56 
proximity analysis).

We then evaluated CD8+ T cells. While the reference bone 
marrow and blood cells predominantly contained naive CD8+ 
T cells (CCL5−), lung and bronchoalveolar lavage fluid contained 
cytotoxic memory CD8+ T cells (GZMA+GZMH+; Fig. 5e and 
Supplementary Fig. 26). Moreover, cytotoxic memory CD8+ T cells 
from patients with COVID-19 were characterized by the expres-
sion of interferon-response genes ISG15, MX1 and others, which is 
in agreement with a recent report that the interferon response is a 
feature separating severe acute respiratory syndrome coronavirus 2 
pneumonia from other viral and non-viral pneumonias57,58 (Fig. 5e, 
Supplementary Note 2 and Supplementary Fig. 26).

Overall, the scArches joint embedding was dominated by 
nuanced biological variation, for example, macrophage subtypes, 
even when these subtypes were not annotated in reference data-
sets (for example, activated TRAMs from patients with moderate 
COVID-19 or a patient with a lung tumor). Although disease states 
were absent in the reference data, scArches separated these states 
from the healthy reference and even preserved biological varia-
tion patterns. Hence, disease-to-healthy integration with scArches 
met all three criteria for successful integration.

Discussion
We introduced architectural surgery, an easy-to-implement 
approach for TL, reusing neural network models by adding input 
nodes and weights (adaptors) for new studies and then fine tuning 
only those parameters. Architectural surgery can extend any con-
ditional neural network-based data-integration method to enable 
decentralized reference updating, facilitate model reuse and provide 
a framework for learning from reference data.

In applications, we demonstrated how integration of whole- 
species atlases enables the transfer of cell type annotations from a 
reference to a query atlas. We further showed that COVID-19 query 
data can be mapped on top of a healthy reference while retaining 
variation among both disease and healthy states, which we promote 
in scArches by avoiding showing the method the disease effect 
during training. In general, different effects such as disease states 
are assumed to be orthogonal in high-dimensional space43; thus, 
if a batch-confounded effect (for example, any donor-level covari-
ate when donor is used as batch) is not seen during training, we 
would not expect it to be removed. We observe this phenomenon in 
our COVID-19 example and in multiple experiments: biologically 
meaningful variations from held-out alpha cells in the pancreas 
(Fig. 1d,e) or unseen nuanced cell identities in immune cell data 
(Supplementary Fig. 14) are mapped to a new location when they 
are unseen during training.

The reduction in model training complexity by training adaptors 
moreover leads to an increase in speed while preserving integra-
tion accuracy when compared to full integration methods. It also 
improves usability and interpretability, because mapping a query 
dataset to a reference requires no further hyperparameter optimiza-
tion and keeps reference representation intact. Adaptors only impact 
the first network layer and therefore ‘commute’: application order is 
irrelevant for iteratively expanding a reference, arriving always at 
the same result due to the frozen nature of the network and inde-
pendence of adaptor weights. With scArches, one can therefore use 
pre-trained neural network models without computational exper-
tise or graphics processing unit power to map, for example, disease 
data onto stored reference networks prepared from independent 

atlases. We make use of these features by providing a model data-
base on Zenodo (Methods).

Model sharing in combination with reference mapping via 
scArches allows users to create custom reference atlases by updat-
ing public ones and paves the way for automated and standardized 
analyses of single-cell studies. Especially for human data, sharing 
expression profiles is often difficult due to data-protection regu-
lations, size, complexity and other organizational hurdles. With 
scArches, users can obtain an overview of the whole dataset to 
validate harmonized cell type annotation. By sharing a pre-trained 
neural network model that can be locally updated, international 
consortia can generate a joint embedding without requiring access 
to the full gene sets. In turn, users can quickly build upon this by 
mapping their own typically much smaller data into the reference, 
acquiring robust latent spaces, cell type annotation and identifica-
tion of subtle state-specific differences with respect to the reference.

scArches is a tool that leverages existing conditional autoencoder 
models to perform reference mapping. Thus, by design, it inherits 
both benefits and limitations of the underlying base models. For 
example, a limitation of these models is that the integrated out-
put is a low-dimensional latent space instead of a corrected feature 
matrix as provided by mnnCorrect or Scanorama. While generat-
ing a batch-corrected input matrix is possible30, this may lead to 
spurious and false signals similar to denoising methods59. Similarly, 
imputation of modalities not measured in query data (for example, 
via scArches totalVI) performs better for more abundant features, 
which has already been outlined in the original totalVI publication32. 
A further limitation is the need for a sufficiently large and diverse 
set of samples for reference building. Deep learning models typically 
have more trainable parameters than other integration methods and 
thus often require more data. This constraint translates directly to 
the performance of scArches reference mapping (Fig. 3a–d): using 
a small reference along with a low number of studies leads to poor 
integration of query data while removing biological variation such 
as nuanced cell types. Furthermore, even with equal training data, 
reference model performance will differ, affecting reference map-
ping via scArches. As robust and scalable reference building is still 
ongoing research in the scRNA-seq field7, the choice of reference 
model is a central challenge when using scArches. Yet we demon-
strate that even imperfect reference models (Supplementary Note 3) 
can be used for meaningful analyses as demonstrated by our data 
analysis of patients with COVID-19. Finally, one must consider the 
limitations of the base model on batch-effect removal during ref-
erence mapping, in which it is unlikely to remove stronger batch 
effects than those seen in the training data. In our cross-species 
experiments, reference mapping performs well mostly in immune 
cell populations, which appear to contain the smallest batch effect 
across species (Supplementary Figs. 18, 20 and 21).

While scArches is applicable in many scenarios, it is best suited 
when the query data consists of cell types and experimental pro-
tocols similar to the reference data. Then, the query data may eas-
ily contain new cell types or states such as disease or other kinds 
of perturbations, which are preserved after mapping. Additionally, 
we advise against using scArches for integrating query data with a 
reference created out of a single study and recommend integration 
with full sample access instead. Further, the number of overlapping 
genes between query and reference data can also influence integra-
tion quality. We generally recommend using a larger set of highly 
variable genes (HVGs) in the reference-building step to guarantee a 
bigger feature overlap between reference and query, which increases 
the robustness of reference mapping in the presence of missing 
genes (Methods and Supplementary Fig. 28).

We envision two major directions for further applications 
and development. First, scArches can be applied to generate 
context-specific large-scale disease atlases. Large disease refer-
ence datasets are increasingly becoming available60–62. By mapping 
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between disease references, we can assess the similarity of these 
diseases at the single-cell level and thus inform for finding mecha-
nisms, reverting disease state or studying perturbations, for exam-
ple, for drug repurposing. The suitability of model organisms for 
disease research can be directly translated into the human context: 
for example, projecting mouse single-cell tumor data on a reference 
human patient tumor atlas may help to identify accurate tumor 
models that include desired molecular and cellular properties of 
a patient’s microenvironment. Incorporating additional covariates 
as conditional neurons in the reference model will allow model-
ing of treatment response with a certain perturbation or drug63,64. 
Secondly, we envision assembling multimodal single-cell reference 
atlases to include epigenomic65, chromosome conformation66, pro-
teome51 and spatially resolved measurements.

In summary, with the availability of reference atlases, we expect 
scArches to accelerate the use of these atlases to analyze query 
datasets.
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Methods
Architecture surgery. Our method relies on a concept known as TL. TL is an 
approach in which weights from a model trained on one task are taken and used as 
weight initialization or fine tuning for another task. We introduce an architecture 
surgery, a strategy to apply TL in the context of conditional generative models and 
single-cell data. Our proposed method is general and can be used to perform TL 
on both CVAEs and conditional generative adversarial nets67.

Let us assume that we want to train a reference CVAE model with a 
d-dimensional dataset (x ϵ Rd) from n different studies (s ϵ Rn), where R denotes 
real number space. We further assume that the bottleneck z with layer size 
is k(z ϵ Rk). Then, an input for a single cell i will be x′ = x · s, where x and s 
are the d-dimensional gene expression profile and n-dimensional one-hot 
encoding of study labels, respectively. The · symbol denotes the row-wise 
concatenation operation. Therefore, the model receives (d + n)-dimensional 
and (k + n)-dimensional vectors as inputs for encoder and decoder, respectively. 
Assuming m query datasets, the target model will be initialized with all the 
parameters from the reference model. To incorporate m new study labels, we add 
m new dimensions to s in both encoder and decoder networks. We refer to these 
new added study labels as s′. Next, m new randomly initialized weight vectors 
are also added to the first layer of the encoder and decoder. Finally, we fine tune 
the new model by only training the weights connected to the last m dimensions 
of x′ that correspond to the condition labels. Let us assume that p and q are the 
number of neurons in the first layer of the encoder and decoder; then, during the 
fine tuning, only (m) × (p + q) parameters will be trained. Let us parameterize the 
first layer of the encoder and decoder part of the scArches as f1 and g1, respectively. 
Let us further assume that ReLU activations are used in the layers. Therefore the 
equations for f1 and g1 are

f1(x, s, s′;ϕx,ϕs,ϕs′) = max(0,ϕT
x x + ϕT

s s + ϕT
s′s′)

g1(z, s, s′;θz, θs, θs′) = max(0, θT
z z + θT

s s + θT
s′s′),

where ϕ and θ are parameters of encoder and decoder, and T denotes transpose 
operation. Therefore, the gradients of f and g with respect to ϕs′ and θs′ are

∇ϕs′
f1 =

{

0 if ϕT
x x + ϕT

s s + ϕT
s′ s

′
≤0

s′ otherwise

∇θs′
g1 =

{

0 if θT
z z + θT

s s + θT
s′ s

′
≤0

s′ otherwise

Finally, because all other weights except ϕs′ and θs′ are frozen, we only compute 
the gradient of scArches’ cost function with respect to ϕs′ and θs′:

∇ϕs′LscArches(x, s, s′;θ,ϕ) = ∇f1LscArches(x, s, s′;ϕ) · ∇ϕs′ f1(x, s, s′;ϕx,ϕs,ϕs′)

∇θs′LscArches(x, s, s′;θ,ϕ) = ∇g1LscArches(z, s, s′;θ,ϕ) · ∇θs′ g1(x, s, s′;θz, θs, θs′).

scArches base models. Conditional variational autoencoders. Variational 
autoencoders (VAEs)68 were shown to learn the underlying complex structure 
of data. VAEs were proposed for generative modeling of the underlying data 
leveraging variational inference and neural networks to maximize the following 
equation:

pθ(X | S) =

∫

pθ(X | Z, S)pθ(Z | S)dZ,

where X is a random variable representing the model’s input, S is a random  
variable indicating various conditions, θ is the neural network parameters,  
and pθ(X | Z, S) is the output distribution that we sample Z to reconstruct X.  
In the following equation, we exploit notations from ref. 29 and a tutorial 
from ref. 69. We approximate the posterior distribution pθ(Z|X, S) using the 
variational distribution qϕ(Z|X, S) that is approximated by a deep neural network 
parameterized with ϕ:

LCVAE(X, S;ϕ, θ) = log pθ(X | S) − α · DKL(qϕ(Z|X, S)||pθ(Z|X, S)) =

= Eqϕ(Z|X,S)[log pθ(X | Z, S)] − α · DKL(qϕ(Z|X, S)||pθ(Z|S)),

where θ = {θ′, θz, θs} and ϕ = {ϕ′,ϕx,ϕs} are parameters of decoder and 
encoder, respectively, E is the expectation and DKL is the Kullback-Leibler 
divergence scaled by parameter α. On the left-hand side, we have the log likelihood 
of the data and an error term that depends on the capacity of the model. The 
right-hand side of the above equation is also known as the evidence lower bound. 
CVAE70 is an extension of VAE framework in which S ̸= ∅.

scArches trVAE. trVAE30 builds upon VAE68 with an extra regularization to further 
match the distribution between conditions. Following the method proposed by 
Lotfollahi et al.30, we use the representation of the first layer in the decoder, which 

is regularized by maximum mean discrepancy71. For implementation, we use 
multi-scale radial basis function (RBF) kernels defined as

k (x, x′) =

l
∑

i=1
k (x, x′, γi) ,

where k (x, x′, γi) = e−γi|∗x−∗x′|2, γi is a hyperparameter, and l denotes maximum 
number of RBF kernels.

We will parameterize the encoder and decoder part of scArches as fϕ and  
gθ, respectively. So the networks fϕ and gθ will accept inputs x, s and z, s, respectively. 
Let us distinguish the first ( g(1)θz ,θs

) and the remaining layers ( g(2)θ′ ) of the decoder 
network gθ = g(2)θ′ ◦ g(1)θz ,θs

. Therefore, we can define the following maximum mean 
discrepancy (MMD) cost function:

LMMD(X, S;ϕ, θz, θs) =

No. studies
∑

i̸=j
lMMD(g(1)θz ,θs

(fϕ(XS=i , i), i), g(1)θz ,θs
(fϕ(XS=j , j), j)),

where

lMMD(X, X′
) =

1
N2
0

N0
∑

n=1

N0
∑

m=1
k(xn, xm)

+
1
N2
1

N1
∑

n=1

N1
∑

m=1
k(x′n, x′m) − 2

N0N1

N0
∑

n=1

N1
∑

m=0
k(xn, x′m).

We used the notation XS=i for samples drawn from ith study distribution in the 
training data. Finally, the trVAE’s cost function is

LtrVAE(X, S;ϕ, θ) = LCVAE(X, S;ϕ, θ) − β · LMMD(X, S;ϕ, θz, θs),

where β is a regularization scale parameter. The gradients of trVAE’s cost function 
with respect to ϕs and θs are

∇ϕs LtrVAE(X, S;θ,ϕ) = ∇ϕs LCVAE(X, S;θ,ϕ) − β · ∇ϕs LMMD(X, S;ϕ, θz, θs),

∇θs LtrVAE(X, S;θ,ϕ) = ∇θs LCVAE(X, S;θ,ϕ) − β · ∇θs LMMD(X, S;ϕ, θz, θs).

Therefore LtrVAE can be optimized using stochastic gradient ascent with respect 
to ϕs and θs as all the other parameters are frozen.

scArches scVI. Lopez et al.27 developed a fully probabilistic approach, called 
scVI, for normalization and analysis of scRNA-seq data. scVI is also based on 
a CVAE, described in detail above. But, in contrast to the trVAE architecture, 
the decoder assumes a zero-inflated negative binomial (ZINB) distribution; and 
therefore the reconstruction loss differs to the MSE loss of trVAE. Another major 
difference is that scVI explicitly models the library size, which is needed for the 
ZINB loss calculation with another shallow neural network called the library 
encoder. Therefore, with similar notation as above, we have the output distribution 
p(X|Z, S, L), where L is the scaling factor that is sampled by the outputs of the 
library encoder, namely the empirical mean Lμ and the variance Lσ of the log library 
per batch:

L ∼ lognormal(Lμ , L2σ).

When we now separate the outputs of the decoder gθ into gxθ, the decoded mean 
proportion of the expression data, and gdθ, the decoded dropout effects, we can 
write the ZINB mass function for p(X|Z, S, L) in the following closed form:



















































p(X = 0|Z, S, L) =

gdθ(Z, S) + (1 − gdθ(Z, S))
(

Σ
Σ+L·gxθ(Z,S)

)Σ

p(X = Y|Z, S, L) =

(1 − gdθ(Z, S))
Γ(Y+Σ)

Γ(Y+1)Γ(Σ)

(

Σ
Σ+L·gxθ(Z,S)

)Σ (

gxθ(Z,S)
Σ+L·gxθ(Z,S)

)Y
,

where Σ is the gene-specific inverse dispersion, Γ is the gamma function, and Y 
represents non-zero entries drawn from a ZINB distribution. Because the evidence 
lower bound and therefore the optimization objective can be calculated by applying 
the reparameterization trick and supposing Gaussians, which is possible here 
because of the proposed ZINB distribution, we can write the scVI cost function as 
follows:

LscVI(X, S;ϕ, θ) = LCVAE(X, S;ϕ, θ) − α · DKL(qϕ(L|X, S)||pθ(L)).

Furthermore, because of the applied reparameterization trick, an automatic 
differentiation operator can be used, and the cost function can be optimized by 
applying stochastic gradient descent. For the application in scArches, we removed 
the library encoder and computed the library size for each batch in a closed 

NATuRe BIOTechNOLOGY | www.nature.com/naturebiotechnology

http://www.nature.com/naturebiotechnology


AnAlysis NAtUre BIOteCHNOLOgY

form by summing up the counts. This does not decrease the performance of the 
model and accelerates the surgery step. The resulting network can then be used 
similarly to the trVAE network by simply retraining only the condition weights 
corresponding to the new batch annotations in S.

scArches scANVI. scANVI is a semi-supervised method that builds up on the 
scVI model and was proposed in detail by Xu et al.31. By constructing a mixture 
model, it is able to make use of any cell type annotations during autoencoder 
training to improve latent representation of the data. In addition to this, scANVI 
is capable of labeling datasets with only some marker gene labels as well as 
transferring labels from a labeled dataset to an unlabeled dataset. For the training 
of scANVI, the authors proposed an alternating optimization of the cost function 
LscANVI(X, S;ϕ, θ) and the classification loss C, which results from a shallow neural 
network that serves as a classifier with a cross-entropy loss after the last softmax 
layer. In more detail, the cost function can be formulated in the following manner:

LscANVI(X, S;ϕ, θ) = Llabeled(X, S, C;ϕ, θ) + Lunlabeled(X, S;ϕ, θ),

where C is the cell types in the annotated datasets, and both cost function 
summands Llabeled and Lunlabeled are obtained by similar calculations as in the case of 
scVI. The major difference here, however, is that the Kullback–Leibler divergence 
is applied to an additional latent encoder that takes cell type annotations into 
account. For the unlabeled case, each sample is broadcasted into every available 
cell type. As scANVI builds up on scVI, we use the same adjustments here to apply 
surgery. On top of that, we also freeze the classifier even for semi-supervised query 
data, because we want an unchanging reference performance for building a cell 
atlas and also to force cells in the query data with the same cell type annotation to 
be near to the corresponding reference cells in the latent representation.

scArches totalVI. For the purpose of combining paired measurement of RNA 
and surface proteins from the same cells, such as for CITE-seq data, Gayoso 
et al.32 presented a deep generative model called totalVI. totalVI learns a joint 
low-dimensional probabilistic representation of RNA and protein measurements. 
For the RNA portion of the data, totalVI uses an architecture similar to that 
of scVI, which we discussed in detail above; but, for proteins, a new model is 
introduced that separates protein information into background and foreground 
components. With the surgery functionality of scArches added to totalVI, it is 
now possible to learn a joint latent space of RNA and protein data on a CITE-seq 
reference dataset and do surgery on a query dataset with only RNA data to impute 
protein data for that query dataset as well. To accomplish this goal, we again only 
retrain the weights that correspond to the new batch labels.

CVAEs for single-cell genomics. CVAEs were first applied to scRNA-seq data 
in scVI29 for data integration and differential testing. Here we focus on how 
CVAEs perform data integration and potential pitfalls. These models receive a 
matrix of gene expression profile for cells (X) and label (condition) matrix (S). 
The condition matrix comprises a nuisance variable, which we want to regress 
out from the data. Labels can encode batch, technologies, disease state or other 
discrete variables. The CVAE model seeks to infer a low-dimensional latent space 
(Z) for the cell that would be free of variations explained by the label variable. For 
example, if the labels are the experimental batches, then similar cell type separated 
by batch effect in the original gene expression space will be aligned together. 
Importantly, variation attributed to the labels will be merely regressed in the latent 
space while still present in the output of the CVAE. Therefore, the reconstructed 
output will still contain batch effects. Additionally, while autoencoder-based 
data-integration methods were shown to perform best when outputting integrated 
embeddings, these methods can also output corrected expression matrices. This is 
achieved by forcing all batches to be transformed to a specific batch as previously 
shown in scGen.

scArches builds upon existing CVAEs. The results of the integration heavily 
depend on the type of labels used as batch covariates for condition inputs. If the 
dataset is the batch covariate, within-dataset donor effects will not be removed, 
but donors become more comparable across datasets. In our COVID-19 example, 
the disease is used as a query and thus is not captured fully in the encoder, which 
is trained on data from healthy individuals. Adaptor training removes the donor- 
and/or dataset-specific batch effect from a disease sample but does not remove 
variation unseen in network training. Thus, choice of training data and choice of 
batch covariate are crucial to assess whether variation from disease is removed in 
training or not.

Overall, the choice and design of the label matrix is a crucial step for optimal 
outcome. The label matrix can encode one covariate (for example, batch), 
multiple covariates (for example, technology, cell types, disease, species,…) or a 
combination of covariates (for example, technology and species). However, the 
interpretability of the latent space will be challenging in the presence of complex 
label design and will require extra caution.

Model sharing. We currently support an application programming interface to 
upload and download model weights and data (if available) using Zenodo. Zenodo 
is a general-purpose open-access repository developed to enable researchers to 
share datasets and software. We have provided step-by-step guides for the whole 

pipeline from training and uploading models to downloading, updating and 
further sharing models. These tutorials can be found in the scArches GitHub 
repository (https://github.com/theislab/scarches).

Feature overlap between reference and query. An important practical challenge 
for reference mapping using scArches is the number of features (genes) that 
are shared between the query and the reference model and/or dataset. It is 
important to note that, with the current pipeline, the query data must have the 
same gene set as the reference model. Therefore, the user has to replace missing 
reference genes in the query with zeros. We investigated the effect of zero filling 
and observed that integration performance was robust when 10% (of 2,000 
genes) were missing from query data. However, the performance will deteriorate 
with larger differences between query and reference (Supplementary Fig. 28a). 
We further observed good integration with 4,000 HVGs, even when 25% of 
genes were missing from the query data, conveying that the model would be 
robust if the overall number of shared genes is large (for example, 4,000 HVGs, 
Supplementary Fig. 28b).

Evaluation metrics. Evaluation metrics and their definitions in the current paper 
were taken from work by Luecken et al.7, unless specifically stated otherwise.

Entropy of batch mixing. This metric43 works by constructing a fix similarity matrix 
for cells. The entropy of mixing in a region of cells with c batches is defined as

E =

c
∑

i=1
pi logc(pi),

where pi is defined below as

pi =
no. cells with batch i in the region

no. cells in the region
.

Next, we define U, a uniform random variable on the cell population. Let BU 
be the frequencies of 15 nearest neighbors for the cell U in batch x. We report the 
entropy of this variable and then average across T = 100 measurements of U. To 
normalize the entropy of the batch mixing score between 0 and 1, we set the base of 
the logarithm to the number of batches c.

Average silhouette width. Silhouette width measures the relationship between 
within-cluster distances of a cell and between-cluster distances of that cell to 
the closest cluster. In general, an ASW score of 1 implies clusters that are well 
separated, an ASW score of 0 implies overlapping clusters, and an ASW score of 
−1 implies strong misclassification. When we use the ASW score as a measure of 
biological variance, we calculate it on cell types in the following manner:

ASWc =
ASW + 1

2
,

where the final score is already scaled between 0 and 1. Therefore larger values 
correspond to denser clusters. In contrast to the ASWc score, we also calculate 
an ASW score on batches within cell clusters to obtain a measure for batch-effect 
removal. In this case, we again scale but also invert the ASW score to have a 
consistent metric comparison:

ASWb = 1 − abs(ASW).

A higher final score here implies better mixing and therefore a better 
batch-removal effect.

Normalized mutual information. We use NMI to compare the overlap of two 
different cell type clusterings. In detail, we computed a Louvain clustering on the 
latent representation of the data and compared it to the latent representation itself 
in a cell type-wise manner. To obtain scores between 0 and 1, the overlap was 
scaled using the mean of entropy terms for cell type and cluster labels. Therefore an 
NMI score of 1 corresponds to a perfect match and good conservation of biological 
variance, whereas an NMI score of 0 corresponds to uncorrelated clustering.

Adjusted Rand index. This metric considers correct clustering overlaps as well as 
counting correct disagreements between two clusterings. Again, similar to NMI, 
cell type labels in the integrated dataset are compared with Louvain clustering. The 
adjusted Rand index score is normalized between 0 and 1, where 1 corresponds to 
good conservation of biological variance and 0 corresponds to random labeling.

Principal-component regression. In contrast to principal-component analysis (PCA), 
we calculate a linear regression R with respect to the batch label onto each principal 
component. The total variance (Var) explained by the batch variable can then be 
formulated as follows:

Var(X|B) =

N
∑

i=1
Var(X|PCi) · R2

(PCi|B),
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where X is the data matrix, B is the batch label, and N is the number of principal 
components (PC).

Graph connectivity. For this metric, we calculate a subset kNN graph G(Nc, Ec) for 
each cell type label c, such that each subset only contains cells from the given label. 
The total graph connectivity score can then be calculated as follows:

gc = 1
|C|

∑

c∈C

|LCC(G(Nc, Ec))|
|Nc|

,

where C is the set of cell type labels, |LCC()| is the number of nodes in the largest 
connected component of the graph, and |Nc| is the number of nodes with the given 
cell type label. This means that we check if the graph representation of the latent 
representation connects all cells with the same cell type label. Therefore, a score 
of 1 would imply that all cells with the same cell type label are connected, which 
would further indicate good batch mixing. A graph in which no cells are connected 
would result in a score of 0.

Isolated label F1. We defined isolated labels as cell type labels that are present in 
the least number of batches. If there are multiple isolated labels, we simply take 
the mean of each score. To determine how well those cell types are separated from 
other cell types in the latent representation, we first determine the cluster with 
the largest number of an isolated label. Subsequently, an F1 score of the isolated 
label against all other labels within that cluster is computed, where the F1 score is 
defined as follows:

F1 = 2 precision · recall
precision + recall

.

This results in a score between 0 and 1 once again, where 1 implies that all cells 
with the isolated label are captured in the cluster.

Isolated label silhouette. For this metric, we use ASWc, defined above, but only on 
the isolated label subset of the latent representation. Scaling and meaning of the 
score are the same as described for ASW. If there are multiple isolated labels, we 
average over each score similar to the isolated labeled F1 score.

kNN accuracy. We first compute the 15 nearest neighbors of each cell in the data. 
We then compute the ratio of the correct cell type annotations inside those 15 
neighbors. This cell-wise score is then averaged over all cell types separately and 
then averaged over all remaining scores again to obtain a single kNN-accuracy 
score between 0 and 1. A higher kNN-accuracy score corresponds to better 
preservation of local cell type purity. This metric was inspired by a similar metric 
used in scANVI.

Visualization of integration scores. To compare performances of different 
models, we designed an overview table (inspired by Saelens et al.72) that displays 
individual integration scores as circles and aggregated scores as bars. Each 
individual score is minimum–maximum scaled to improve visual comparison 
of different models and then averaged into aggregated scores by category (batch 
correction and biological conservation). Finally, an overall score is calculated as 
a weighted sum of batch correction and bio-conservation, considering a ratio of 
40:60, respectively. When shown, reference and query times are not considered 
in the calculation of aggregated scores. Moreover, these time values are scaled 
together to allow direct comparison. The overall ranking of each model, for each 
score, is represented by the color scheme.

Datasets. All cell type labels and metadata were obtained from original 
publications unless specifically stated otherwise below.

Brain data. The mouse brain dataset is a collection of four publicly available 
scRNA-seq mouse brain studies1,33–35, for which additional information on cerebral 
regions was provided. We obtained the raw count matrix from Rosenberg et al.34 
under GEO accession ID GSE110823, the annotated count matrix from Zeisel 
et al.35 from http://mousebrain.org (file name L5_all.loom, downloaded on 9 
September 2019) and count matrices per cell type from Saunders et al.33 from 
http://dropviz.org (DGE by region section, downloaded on 30 August 2019). Data 
from mouse brain tissue sorted by flow cytometry (myeloid and non-myeloid cells, 
including the annotation file annotations_FACS.CSV) from TM were obtained 
from https://figshare.com (retrieved 14 February 2019). We harmonized cluster 
labels via fuzzy string matching and attempted to preserve the original annotation 
as far as possible. Specifically, we annotated ten major cell types (neuron, astrocyte, 
oligodendrocyte, oligodendrocyte precursor cell, endothelial cell, brain pericyte, 
ependymal cell, olfactory ensheathing cell, macrophage and microglia). In the 
case of Saunders et al.33, we facilitated the additional annotation data table for 585 
reported cell types (annotation.BrainCellAtlasSaundersversion2018.04.01.TXT 
retrieved from http://dropviz.org on 30 August 2019. Among these, some cell types 
were annotated as ‘endothelial tip’, ‘endothelial stalk’ and ‘mural’. We examined 
the subset of the Saunders et al.33 dataset as follows: we used Louvain clustering 

(default resolution parameter, 1.0) to cluster, followed by gene expression profiling 
via the rankgenesgroups function in scanpy. Using marker gene expression, we 
assigned microglia (C1qa), oligodendrocytes (Plp1), astrocytes (Gfap, Clu) and 
endothelial cells (Flt1) to the subset. Finally, we applied scran73 normalization 
and log (counts + 1) to transform count matrices. In total, the dataset consists of 
978,734 cells.

Pancreas. Five publicly available pancreatic islet datasets74–78, with a total of 15,681 
cells in raw count matrix format were obtained from the Scanorama42 dataset, 
which has already assigned its cell types using batch-corrected gene expression by 
Scanorama. The Scanorama dataset was downloaded from http://scanorama.csail.
mit.edu/data.tar.gz. In the preprocessing step, raw count datasets were normalized 
and log transformed by scanpy preprocessing methods. Preprocessed data were 
used directly for the pipeline of scArches. One thousand HVGs were selected for 
training the model.

The human cell landscape. The HCL dataset was obtained from https://figshare.
com/articles/HCL_DGE_Data/7235471. Raw count matrix data for all tissues were 
aggregated. A total of 277,909 cells were selected and processed using the scanpy 
Python package. Data were normalized using size factor normalization such that 
every cell had 10,000 counts and then log transformed. Finally, 5,000 HVGs were 
selected as per their average expression and dispersion. We used processed data 
directly for training scArches at the pre-training phase.

The mouse cell atlas. The mouse cell atlas dataset was obtained from https://
figshare.com/articles/HCL_DGE_Data/7235471. Raw count matrix data for 
all tissues were aggregated together. A total of 150,126 cells were selected and 
processed using the scanpy Python package. Homologous genes were selected 
using BioMart 100 before merging with HCL data. Data were normalized together 
with HCL as explained before.

Immune data. The immune dataset consists of ten human samples from two 
different tissues: bone marrow and peripheral blood. Data from bone marrow 
samples were retrieved from Oetjen et al.36, while data from peripheral blood 
samples were obtained from 10x Genomics (https://support.10xgenomics.
com/single-cell-gene-expression/datasets/3.0.0/pbmc_10k_v3), Freytag et al.37, 
Sun et al.38 and Villani et al.79. Details on the retrieval location of datasets, the 
different protocols used and ways in which samples were chosen for analysis 
can be found in Luecken et al.7. We performed quality control separately for 
each sample but adopted a common strategy for normalization: all samples for 
which count data were available were individually normalized by scran pooling73. 
This excludes data from Villani et al.79, which included only TPM values. All 
datasets were log+1 transformed in scanpy80. Cell type labels were harmonized 
starting from existing annotations (Oetjen et al.36) to create a consistent set of 
cell identities. Well-known markers of cell types were collected and used to 
extend annotation to samples for which they were not previously available. When 
necessary, subclustering was performed to derive more precise labeling. Finally, 
cell populations were removed if no label could be assigned. Four thousand 
HVGs were selected for training.

Endocrine pancreas. The raw dataset of pancreatic endocrinogenesis (n = 22,163)45 
is available at the GEO under accession number GSE132188. We considered a 
subset of 2,000 HVGs for training. Cell type labels were obtained from an adata 
object provided by the authors of scVelo46.

CITE-seq. We obtained three publicly available datasets from 10x Genomics, 
already curated and preprocessed as described in the totalVI study32. These data 
include ‘10k PBMCs from a Healthy Donor—Gene Expression and Cell Surface 
Protein’ (PBMC, 10k (CITE-seq)81), ‘5k PBMCs from a healthy donor with cell 
surface proteins (v3 chemistry)’ (PBMC, 5k (CITE-seq)82) and ‘10k PBMCs from 
a Healthy Donor (v3 chemistry)’ (PBMC, 10k (RNA-seq)57,83,84). Reference data 
included 14 proteins, and 4,000 HVGs were selected for training.

COVID-19. The COVID-19 dataset along with its metadata was downloaded 
from https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE1459261 and 
https://github.com/zhangzlab/covid_balf. The dataset that was used in this paper 
includes n = 62,469 cells. Data from lungs52–54, PBMCs37–39 and bone marrow36 were 
later merged with those from COVID-19 samples. Data were normalized using 
scanpy, and 2,000 HVGs were selected for training the model. Cell type labels were 
obtained from the original study.

Tabula Muris Senis. The TM Senis dataset with GEO accession number GSE132042 
is publicly available at https://figshare.com/projects/Tabula_Muris_Senis/64982. 
The dataset contains 356,213 cells with cell type, tissue and method annotation. We 
normalized the data using size factor normalization with 10,000 counts for each 
cell. Next, we log+1 transformed the dataset and selected 5,000 HVGs according 
to their average expression and dispersion. All preprocessing steps were carried 
out using the scanpy Python package. In this study, we used a combination of 
sequencing technology and time point as batch covariates.
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Benchmarks. Full integration methods. We ran PCA with 20 principal components 
on the final results from Seurat, Scanorama and mnnCorrect to be comparable 
(similar approach as described in ref. 31) when computing metrics to deep learning 
models, which had a latent representation of size 10–20.
•	 Harmony: we used the Harmony Matrix function from the Harmony package. 

We provided the function with a PCA matrix with 20 principal components 
on the gene expression matrix.

•	 Scanorama: we used the correct_scanpy function from the Scanorama package 
with default parameters.

•	 Seurat: we applied Seurat as in the walkthrough (https://satijalab.org/seurat/
v3.1/integration.html) with default parameters.

•	 Liger: we used the Liger method as in the walkthrough (https://github.com/
welch-lab/liger/blob/master/vignettes/walkthrough_pbmc.pdf). We used 
k = 20, λ = 5 and resolution = 0.4 with other default parameters. We only scaled 
data as we had already preprocessed data.

•	 Conos: we followed the Conos tutorial at https://htmlpreview.github.
io/?https://raw.githubusercontent.com/kharchenkolab/conos/master/doc/
walkthrough.html. Unlike the tutorial, we used our own preprocessed data 
for better comparisons. We used PCA space with parameters k = 30, k.self = 5, 
ncomps = 30, matching.method = ’mNN’ and metric = ’angular’ to build the 
graph. We set the resolution to 1 to find communities. Finally, we saved the 
corrected pseudo-PCA space with 20 components.

•	 mnnCorrect: we used the mnnCorrect function from the scran package with 
default parameters.

Cell type-classification methods. 
•	 Seurat: we followed the walkthrough (https://satijalab.org/seurat/v3.1/integra-

tion.html) and used reciprocal PCA for dimension reduction. As described in 
the original publication48, we examined projection scores and assigned cells 
with the lowest 20% of values to be ‘unknown’.

•	 SVM: we fitted an SVM model from the scikit-learn library to the reference 
data and classified query cells. We assigned cells with uncertainty probability 
greater than 0.7 as ‘unknown’.

•	 Logistic regression: we fitted logistic regression from the scikit-learn library to 
the reference data and predicted query labels.

All these methods were tested on a machine with one eight-core Intel 
i7-9700KQ CPU addressing 32 GB RAM and one Nvidia GTX 1080 ti (12 GB) 
addressing 12 GB VRAM.

Model output. Throughout this paper, all low-dimensional representations were 
obtained using the latent space of scArches models. The output of scArches 
models will be confounded with condition variables not fit for data-integration 
applications but best for imputation or denoising scenarios.

Cell type annotation. To classify labels for the query dataset, we trained a weighted 
kNN classifier on the latent-space representation of the reference dataset. For each 
query cell c, we extracted its kNNs (Nc). We computed the standard deviation of 
the nearest distances:

s.d.c,Nc =

√

∑

n∈Nc
(dist(c, n))2

k ,

where dist(c, n) is the Euclidean distance of the query cell c and its neighbors n in 
the latent space. Next, we applied the Gaussian kernel to distances using

Dc,n,Nc = e
−

dist(c,n)
(2/s.d.c,Nc )

2 .

Next, we computed the probability of assigning each label y to the query cell c 
by normalizing across all adjusted distances using

p(Y = y|X = c, Nc) =

∑

i∈Nc
I(y(i) = y) · Dc,ni ,Nc
∑

j∈Nc
Dc,nj ,Nc

,

where y(i) is the label of ith nearest neighbor and I is the indicator function. Finally, 
we calculated the uncertainty u for each cell c in the query dataset using its set of 
closest neighbors in the reference dataset (Nc). We defined the uncertainty uc,y,Nc for 
a query cell c with label y and Nc as its set of nearest neighbors as

uc,y,Nc = 1 − p(Y = y|X = c, Nc).

We reported cells with more than 50% uncertainty as unknown to detect 
out-of-distribution cells with new labels, which do not exist in the training data. 
Therefore, we labeled each cell c in the query dataset as follows:

ŷ′c = argminy uc,y,Nc

ŷc =
{ ŷ′c if uc,ŷ′c ,Nc

≤0.5

unknown o.w.

}

Protein imputation. For scArches totalVI, missing proteins for RNA-seq-only data 
were imputed by conditioning query cells as being in the other batches in the 
reference with protein data. It is possible to impute based on a specific batch or 
average across all batches. In the example in the paper, the average version was used.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All datasets used in the paper are public, referenced and downloadable at https://
github.com/theislab/scarches-reproducibility.

code availability
Software is available at https://github.com/theislab/scarches. The code to reproduce 
the results is available at https://github.com/theislab/scarches-reproducibility.
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