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Abstract 

Evidence has shown that goals systematically change risk pref-
erences in repeated decisions under risk. For instance, decision 
makers could aim to reach goals in a limited time, such as 
“making at least $1000 with ten stock investments within a 
year.” We test whether goal-based risky decisions differ when 
facing gains as compared to losses. More specifically, we ex-
amine the impact of outcome framing (gains vs. losses) and 
state framing (positive vs. negative resource states) on goal-
based risky decisions. Our results (N=100) reveal no framing 
effects; instead, we find a consistently strong effect of the goal 
on risk preferences independent of framing. Computational 
modeling showed that a dynamic version of prospect theory, 
with a goal-dependent reference point, described 87% of par-
ticipants best. This model treats outcomes as gains and losses 
depending on the state-goal distance. Our results show how 
goals can erase standard framing effects observed in risky 
choices without goals. 

Keywords: risky choice; framing; energy budget rule; risk sen-
sitivity; goals; choice modeling 

Introduction 

In many situations, people make risky choices under consid-

eration of a future goal and a finite time horizon, for instance 

when people make stock investments they often have a goal 

of a specific annual return. Such a goal-driven risky decision 

represents a dynamic problem of resource accumulation of 

interest for cognitive and economic psychologists. To date, 

the research on risk taking with goals has mainly focused on 

gain outcomes and little is known about the role of the out-

come domain, such as gains versus losses. A vast literature in 

psychology discusses the effect of outcome domains on risky 

decisions without goals. Almost forty years of research and 

formal risky choice models, such as cumulative prospect the-

ory (Tversky & Kahneman, 1992), suggest increased risk tak-

ing (variance preference) in the loss compared to the gain do-

main (hereafter gain-loss framing effects, Kühberger, 1998; 

Tversky & Kahneman, 1981). This research, however, has 

given little attention to the influence of goals. 

The relevance of goals in risky choice has been highlighted 

in recent work. Results have shown that in the presence of 

goals people shift from risk aversion (variance avoidance) to 

risk seekingness as the risky option’s chance to reach the goal 

increases over the safe option’s chance (Fujimoto & 

Takahashi, 2016; Jarecki & Rieskamp, 2020; Korn & Bach, 

2018, 2019; Mishra et al., 2012; Pietras et al., 2003; Pietras 

& Hackenberg, 2001; Searcy & Pietras, 2011). Critically, the 

standard model for risk taking with goals does not account 

for gain-loss framing effects; rather, it treats behavior as 

guided only by the chance to reach the goal (Houston & 

McNamara, 1988). 

The few investigations of gain-loss framing effects in risky 

choices with goals (Mishra et al., 2012; Mishra & Fiddick, 

2012) have yielded mixed results, and the generalizability of 

these tests is somewhat limited because the tasks were one-

shot risky choice tasks with goals (e.g., “reach a goal of 

$11000 in one choice”). This one-shot task differs from al-

most all research into risky decisions with goals in which de-

cision makers have a longer time horizon to reach the goal. 

The time horizon is crucial because a short time horizon dras-

tically reduces the computational complexity of risky choices 

with goals (Jarecki & Rieskamp, 2020). 

We investigate if gain-loss framing effects that have been 

found in risky choices without goals generalize to risky 

choices with goals. To this end, we employ two frames to 

demonstrate framing effects (see Task Design): The outcome 

framing, which refers to a change in the option's outcomes 

from gains into losses, and the state framing, which refers to 

the resource states (hereafter states). The state framing alters 

the state at the beginning of a choice task and the goal (e.g., 

by an additive shift of the initial state and the goal), but im-

portantly it does not change the distance between the initial 

state and the goal. In addition, we investigate how optimal 

people behave in framed risky choices with goals and com-

pare three formal choice models. 

Risky Choice Models for Goals and Domains 

The standard optimal choice model for risk taking with goals 

(risk-sensitive foraging model) can describe an effect of goals 

on risk taking but has not been specified in a way to deal with 
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gains versus losses. A standard risky choice model for fram-

ing effects (cumulative prospect theory) can model the effect 

of gains and losses but cannot model goal-based shifts in risk 

taking. An extension of prospect theory (dynamic prospect 

theory) can describe goal-dependent risky choices that devi-

ate from the optimal choice. 

 

Optimal Risk-Sensitive Foraging Model. The benchmark 

model for risky choices with goals is the risk-sensitive forag-

ing model (Houston & McNamara, 1988), it provides an op-

timal model for risky choices with a goal and limited time. It 

yields the choice that maximizes the chance to reach the goal 

in the remaining time. We investigate repeated choices be-

tween two risky options that occur at discrete times (hereafter 

trials) until a time horizon T is reached. The optimal choice 

in trial t depends on the number of remaining trials, the op-

tions, the goal g, and the state st-1 prior to the tth choice. The 

model yields the chance to reach the goal for each possible 

state st in each trial t using stochastic dynamic programming 

via backward induction (for reasons of space we will describe 

the model only briefly here, for further details, see Houston 

& McNamara, 1988; Jarecki & Rieskamp, 2020). To this end, 

the model enumerates the possible future decisions and the 

obtainable future states for all trials. Given the obtainable 

states after the last choice sT, it calculates a reward, which we 

take to be an indicator of the state sT meeting the goal g:  

𝑅(𝑠𝑇 , 𝑔) =   {
0, if  𝑠𝑇 < 𝑔
1, if  𝑠𝑇 ≥ 𝑔

 

Based on the rewards for all possible states sT after the last 

choice, the model calculates the expected reward in trial T-1 

for both options for each obtainable state sT-1 in the trial be-

fore the last. The expected reward is the expected probability 

to reach the goal by choosing an option in a state in a trial 

given future optimal choices. The expected reward for select-

ing the risky option R in a state s in T-1 is: 

𝐸𝑅𝑅(𝑜𝑅 , 𝑠, 𝑇 − 1) =   ∑ 𝑅(𝑠𝑇−1 + 𝑥𝑖 , 𝑔) × 𝑝𝑖
𝑖

,  

where xi and pi denote a risky option’s ith outcomes and prob-

abilities, g is the goal. The expected reward of the safe option, 

𝐸𝑅𝑆 is computed analogously. The optimal choice 𝑎∗maxim-

izes the expected reward for each state s in trial T-1: 

𝑎∗(𝑠, 𝑇 − 1) = 𝑀𝑎𝑥{𝐸𝑅𝑅, 𝐸𝑅𝑆}. 
The optimal model assumes a deterministic choice of the op-

timal option. Based on the optimal choice 𝑎∗ in T-1, the 

model then calculates the expected reward of both options for 

all possible states in T-2. For instance, for the risky option: 

𝐸𝑅𝑅(𝑜𝑅 , 𝑠, 𝑇 − 2) = ∑ 𝑎∗(𝑠𝑇−2  + 𝑥𝑖 , 𝑇 − 1) × 𝑝𝑖
𝑖

, 

and the expected reward of the safe option, 𝐸𝑅𝑆 in T-2 is com-

puted analogously. Based on the expected rewards in T-2, the 

optimal model defines the optimal choice 𝑎∗ for all potential 

states s in T-2. Given the optimal choice 𝑎∗ in T-2, the model 

determines the optimal choice 𝑎∗ for all potential states in T-

3. This process of backward optimal choice selection, given 

optimal future choices, repeats until the first choice in the first 

trial is reached. Thus, the optimal model returns the optimal 

option for each state in each trial and it assumes that the de-

cision maker deterministically chooses the optimal option, 

which yields the highest probability to reach the goal condi-

tional on selecting the optimal option in all subsequent trials. 

Broadly speaking, in risky choice tasks with rather high 

goals (which makes goal achievement difficult) the risky op-

tion’s expected reward is tendentially higher than the safe op-

tion’s expected reward, and therefore the optimal model pre-

scribes that decision makers favor the risky option over the 

safe option in difficult tasks, and vice versa for easy tasks. 

Framings such as the domain of the outcomes (gain vs. loss 

outcomes) or the domain of the state (positive vs. negative 

state) should not affect risk taking, if the conditional chance 

to reach the goal (expected reward) does not differ across the 

domains.  

 

Cumulative Prospect Theory. Cumulative prospect theory 

is the standard model describing the effect of gain-loss fram-

ing on risky choice without goals (Kahneman & Tversky, 

1979; Tversky & Kahneman, 1992). The theory assumes that 

people always choose the option with the highest subjective 

prospect. The utility u of an option o (i.e., "prospect") is cal-

culated by the sum of the subjective values 𝜐 of the outcomes, 

each multiplied by a decision weight 𝜋: 𝑢(𝑜) =
 ∑ 𝜐(𝑥𝑖)𝜋(𝑝𝑖),𝑖  where xi and pi denote the risky option’s ith 

outcomes and the probabilities, respectively. The value func-

tion is 𝜐(𝑥) = 𝑥𝛼  for x  r and 𝜐(𝑥) = −(−𝑥) for x < r, in 

which λ is the loss aversion parameter and r is a reference 

point. Outcomes below the reference point represent losses, 

and outcomes above the reference point represent gains. The 

cumulative decision weight (𝑝𝑖) is defined by 

(𝑝𝑖) = 𝜔( ∑ 𝑝𝑖)𝑥𝑖  𝑥 − 𝜔( ∑ 𝑝𝑖)𝑥𝑖  𝑥  for x  r and 

𝜔( ∑ 𝑝𝑖)𝑥𝑖  𝑥 − 𝜔( ∑ 𝑝𝑖)𝑥𝑖  𝑥  for x  r. The probability 

weighting function is 𝜔(𝑝𝑖) =𝑝𝛾 ( 𝑝𝛾 + (1 − 𝑝)𝛾)1 𝛾⁄⁄  with 

+ for x  r and − for x  r. 

Via the parameters α, β and  the shape of the value func-

tion 𝜐(𝑥) can differ for gains and losses, and consequently, 

can produce risk aversion for gains and risk seekingness for 

losses. This can describe the observed framing effects in risky 

choices without goals in the sense of higher risk seeking for 

losses compared to gains (Tversky & Kahneman, 1981). Im-

portantly, cumulative prospect theory in its standard form 

does not consider goals, time horizons, or states in goal-based 

risky choices. Cumulative prospect theory therefore can pre-

dict gain-loss differences but cannot predict differences in 

risk taking based on the distance to goals when no modifica-

tions to the standard model are incorporated (Houston et al., 

2014; Jarecki & Rieskamp, 2020; McDermott et al., 2008; 

Payne et al., 1980). 

 

Dynamic Prospect Theory. Dynamic prospect theory (Jar-

ecki & Rieskamp, 2020) is an extension of cumulative pro-

spect theory that specifies how goals change risk taking. Its 

prediction need not to correspond with optimal choices. Con-

trary to standard prospect theory it assumes a dynamic refer-

ence point rt that depends on the distance to the goal. The 

dynamic reference point corresponds to the average outcome 

(1) 

(2) 

(4) 

(3) 
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necessary to obtain for reaching the goal. The dynamic refer-

ence point is defined by the distance between the current state 

st and the goal g, and the remaining number of trials (T-t): 

𝑟𝑡 =  
(𝑔 − 𝑠𝑡)

𝑇 − 𝑡
. 

For each trial the reference point rt is calculated and the 

outcomes of the options are transformed into gains or losses 

by subtracting the reference point rt from the outcomes: x -rt. 

The dynamic reference point allows an adaption of risk-

taking behavior to the current state and the goal. A high dis-

tance between current state and goal, and few trials left, 

which is typical for a difficult choice problem, lead to a high 

reference point. For high difficulty the dynamic reference 

point rt tends to be higher than the outcomes, thus the out-

comes are perceived as losses, resulting in risk seekingness 

according to standard prospect theory. Vice versa, for low 

difficulty (lower goals, higher state, or a longer time horizon) 

the reference point tends to be lower than the outcomes, out-

comes are perceived as gains, resulting in risk-aversion. 

In summary, dynamic prospect theory models the percep-

tion of outcomes as gains or losses relative to a dynamic ref-

erence point, which depends on the distance to the goal, and 

not on whether the outcomes are actually gains or losses. Dy-

namic prospect theory predicts that risk taking adapts to the 

difficulty of reaching the goal in the remaining time. It pre-

dicts no framing effect for the outcome domain (gain vs. loss) 

if the underlying mathematical structures of choice problems 

are identical, because in dynamic prospect theory the out-

comes are transformed into gains and losses based on their 

distance to the reference point (Eq. 5). Similarly, the theory 

predicts no effect of the state domain (positive vs. negative 

resource state) if the distance between state and goal does not 

differ across domains, because a mere shift of the state or goal 

by an additive factor does not change the dynamic reference 

point. 

Experiment 

To examine framing effects in risky choices with goals, we 

conducted an experiment employing a risky choice task with 

goals and different outcomes and states (see Fig. 1). 

 

Participants. 106 participants recruited from Prolific Aca-

demic completed an online study, six participants were ex-

cluded (because they failed multiple attention check choices), 

leaving a final sample of N = 100; 71 males, 29 females, the 

mean age was 26 years (Med = 23, SD = 9, range 19-58 

years), data were collected from November 2020 to Decem-

ber 2020, the study was approved by the ethics committee of 

the Faculty of Psychology at the University of Basel. The 

mean study duration was 48 minutes (Med = 43, SD = 18.93). 

The study was incentivized (four randomly drawn problems 

were rewarded with a bonus payment when reaching the 

goals in the different problems). 

 

Task Design. Our design manipulated the presentation 

(framing) of risky choices using 2x2 within-subject condi-

tions (Fig. 1), keeping the mathematical properties of the 

choice problem equivalent across conditions. It involved 24 

two-option risky choice problems with T=5 trials to reach 

goals; options had two outcomes, equal expected values but 

unequal variances. One experimental factor manipulated the 

outcome domain by presenting options with gain vs. loss out-

comes (Fig. 1b-c). This allowed a test of the outcome do-

main's effect on goal-based risk taking, aligning with classic 

gain-loss framing. The second factor manipulated the state 

domain, where state refers to the experienced resource states 

(Fig. 1d). We presented negative vs. positive/zero initial re-

source states, defined as the number of points at the start of 

the task. This allowed a test of the state domain’s effect on 

goal-based risk taking. 

Outcome framing and state framing were combined as fol-

lows. Half the problems (12 of 24) offered gains with a goal 

Figure 1. The 5-trial choice problems. (a) Example choice in a positively framed gain problem with a threshold of 22 in trial 2 

of 5. The right option is chosen, an outcome is drawn and feedback is provided; the outcome raises the point state from 8 to 13, 

and the trial counter increases from 2 to 3. (b) Example gain task with positive state frame, an initial state of 0, and a threshold 

of 22. (c) Example loss task with positive state frame, an initial state of 28 points and a threshold of 0. (d) The negative state 

framed gain and loss problem corresponding to (b), and (c) respectively. (e) Experimental procedure, see text. 

(5) 
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to reach or exceed a point threshold (gain problems, Fig. 1b); 

the remaining 12 problems offered losses with a goal to not 

fall below a point threshold (loss problems, Fig. 1c). In half 

of the gain problems the points started with an initial state of 

0 and moved upwards towards a threshold greater 0 (positive 

state problems), the remaining gain problems started in a neg-

ative state < 0 moving towards a threshold of 0 (negative state 

problems). In half of the loss problems the points started from 

a positive state > 0 moving to a threshold of 0 (positive state 

problems), the remaining loss problems started with a state of 

0 moving towards a negative threshold < 0 (negative state 

problems). A positive state frame means that state is primar-

ily positive throughout the task, while a negative state frames 

means is primarily negative (Fig. 1d). Overall, we presented 

24 unique problems, repeated them three times, resulting in a 

total of 72 choice problems. 

We optimized the design of the choice problems to be 

mathematically equivalent across the four framing condi-

tions. This means that across gain-loss framing we selected 

the choice problems such that gain and loss problems had the 

same expected rewards (as per the optimal model) for each 

possible obtainable state for each possible trial. Also, across 

positive-negative state framing the states and thresholds dif-

fered only by an additive factor. The mathematical equiva-

lence of problems across all framing conditions allows testing 

for framing effects while controlling for the risky and the safe 

option's expected rewards, that is the option’s expected 

chance to reach the goal as per the optimal model (Eq. 4). 

The choice problems had two levels of difficulty, measured 

as the best chance to achieve the goal as per the optimal 

model (the expected reward in the first trial, Eq. 4). Easy tasks 

had a 72%-79% chance, and hard tasks had only 47%-54%. 

These difficulty levels resemble the difficulty levels in previ-

ous goal-based risky choice experiments (Jarecki & Rie-

skamp, 2020; Searcy & Pietras, 2011). 

 

Procedure. After task familiarization, participants com-

pleted 72 choice problems with goals. They chose five times 

between two risky options instructed to achieve a goal; the 

screen displayed the point threshold, the point state, the op-

tions, and a trial counter, as shown in Fig. 1a. After partici-

pants made their choice, one outcome was drawn from the 

chosen option and the point state changed by the value of the 

outcome. After five choices, the point state was reset to the 

predefined initial state; no points were carried over between 

problems. New problems involved different options, thresh-

olds, and initial states. 

To avoid confusion about the goal in a particular problem, 

we presented the differently framed problems in blocks: gain 

tasks with positive states, gain tasks with negative states, loss 

tasks with positive states, and loss tasks with negative states. 

 
1 Mixed effect regression; predicting choices from the fixed effect 

predictors outcome domain + state domain + difficulty and the ran-

dom effect predictor by-participant random intercept. 
2 BF(0) = Bayes Factor for  = 0; BF(+) = Bayes Factor for  > 0; 

BF(−) = Bayes Factor for  < 0 
3 Mixed effect regression; predicting choices in trial 1 from the fixed 

The block order and the problem order within blocks was ran-

domized across participants. Each block contained 6 unique 

problems repeated 3 times resulting in 18 problems per block 

(Fig. 1e). 

Results 

Analyses were conducted in R (v4.0.2, R Core Team, 2020); 

inferential statistics are based on Bayesian models with a nor-

mal prior on the coefficients (µ = 0, σ = 10) using the brms 

package (v2.13.5, Bürkner, 2017); modeling used the cogni-

tivemodels package (v0.0.10, Jarecki & Seitz, 2020). 

 

Risk Preferences. Overall, participants chose the risky op-

tion in 49% of all choices (SD = 9.5%). Table 1 shows that 

the participants selected the risky option equally often in each 

framing condition: Across conditions, the proportion of risky 

choices ranged from 0.48 to 0.49. A regression1 revealed ev-

idence for a null effect of the outcome domain ( = 0.00, 95% 

CI[-0.05, 0.04], BF(0) = 498.53) and the state domain ( = 

0.02, 95% CI[-0.02, 0.06], BF(0) = 296.74) on risky choice2. 

The proportion of risky choices increased with the difficulty 

from easy (M = 0.48, SD = 0.11) to hard (M = 0.50, SD = 

0.11, estimated  = 0.10, 95% CI[0.06, 0.14], BF(+) > 1000). 

A comparison of models showed that a model including only 

the predictor difficulty outperformed the full model contain-

ing three predictors (BF > 1000). Previous findings have 

shown that repeating conditions might change framing effects 

(Kühberger, 1998). Thus, we analyzed only the first block, 

treating the two framing conditions as between-subject vari-

ables. The results showed an effect opposite to the classic out-

come framing effect ( = -0.11, 95% CI[-0.20, -0.03], BF(-) = 

189.48) with higher proportion of risky choices for gains (M 

= 0.51, SD = 0.11) than for losses (M = 0.48 , SD = 0.13), and 

no effect state framing ( = 0.00, 95% CI[-0.08, 0.09], BF(0) 

= 248.36). Furthermore, because in trials 2-5 of a problem the 

states depend on the realized outcomes of previous trials we 

also run a robustness check3 to control for path dependency. 

The results4 regarding framing did not change substantially. 

The finding that framing did not affect risky choices in 

risky choice tasks with goals are in line with the predictions 

of the optimal model and dynamic prospect theory and con-

trary to the predictions of cumulative prospect theory. The 

findings are also at variance with previous findings regarding 

framing effects and risk taking (Tversky & Kahneman, 

1981). The subsequent analysis will show the effect of fram-

ings on the task performance and choice optimality. 

 

Task Performance. Collapsed across framing conditions 

participants achieved the goal in 52% of all choice problems 

(SD = 6.8%), which is smaller than the success rate of 63% 

effect predictors outcome domain + state domain + difficulty and 

the random effect predictor by-participant random intercept. 
4 Outcome domain,  = -0.05, 95% CI[-0.15, 0.05], BF(0) = 119.43; 

State domain,  = -0.02, 95% CI[-0.12,0.08], BF(0) = 188.19; diffi-

culty,  = -0.29 , 95% CI[-0.39, -0.18], BF(−) > 1000. 
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expected by the optimal model, BF(−) > 1000. Table 1 dis-

plays the success rate separately by framing conditions. Gain-

loss framing seemed to affect successes: Participants 

achieved the goal more often in gain problems (M = 0.53, SD 

= 0.10) compared to loss problems (M = 0.50, SD = 0.09); 

regression  = -0.13 95% CI[-0.23, -0.04], BF(−) = 799.00). 

We found no evidence for an effect of the state domain on the 

success rate ( = 0.00, 95% CI[-0.10, 0.09], BF(0) = 219.48). 

As expected by the optimal model participants reached the 

goal more often in easy (M = 0.64, SD = 0.09) than in hard 

problems (M = 0.39, SD = 0.09),  = -1.03 (95% CI[-1.12, -

0.93], BF(−) > 1000).  

Two aspects of these findings are worth highlighting: the 

observed success rate is smaller than the success rate ex-

pected by the optimal model, which is in line with previous 

results (Jarecki & Rieskamp, 2020; Korn & Bach, 2018). 

Moreover, the deviation from optimality seems more pro-

nounced for losses than for gains, which we will analyze in 

more detail next. 

 

Table 1. Proportion of risky choices and success rate 

 

Framing  Success rate  Pr. of risky choices 

Out-

come 
 State  

pre-

dicted1 observed  
pre-

dicted1 observed 

Gain  positive  0.63 0.53 (0.13)  0.55 0.49 (0.11) 

Gain  negative  0.63 0.53 (0.12)  0.57 0.49 (0.11) 

Loss  positive  0.63 0.50 (0.11)  0.56 0.49 (0.15) 

Loss  negative  0.63 0.50 (0.13)  0.58 0.48 (0.15) 

Note: Shown are means and standard deviations (in parenthe-

ses); success rate = the proportion of successful problems. 
1 Predicted by the optimal model. 

 

Choice Optimality in Framed Choices with Goals. Over-

all, 68% of the observed choices aligned with the optimal 

model. A regression5 showed that participants were less opti-

mal in the loss domain ( = -0.08, 95% CI[-0.12, -0.03], 

BF(−)  > 1000) but the state domain did not affect optimality 

( = 0.01, 95% CI[-0.03, 0.06], BF(0) = 391.17). To obtain a 

continuous measure of choice optimality, we calculated the 

predicted advantage a of the risky option over the safe option 

from the optimal model (Jarecki & Rieskamp, 2020). The ad-

vantage is a continuous measure of whether the risky or the 

safe option yields a higher chance to achieve the goal. We 

computed the advantage a for all experienced states and trials 

by subtracting the risky option’s expected reward (ERR) from 

the safe option’s expected reward (ERs), a = ERR − ERS. For 

a > 0, the risky option is advantageous over the safe option, 

a = 0 means no advantage, and for a < 0, the safe option is 

advantageous. The higher the absolute value of a, the stronger 

the advantage. According to the optimal model, agents deter-

ministically choose the advantageous option for a  0 and 

 
5 Mixed effect regression; predicting optimality of choices from the 

fixed effect predictors outcome domain + state domain + difficulty 

and the random effect predictor by-participant random intercept. 

randomize for a = 0 independently of framing. 

Contrasting the advantage with behavior, we found that 

participants followed the advantage in a soft-max fashion (S-

shaped curve) rather than in a deterministic manner in each 

framing condition. Fig. 2 shows that across framing condi-

tions, the risky choice proportions at zero advantage were 

close to 50%, which corresponds to the optimal behavior. A 

regression6 showed more risky choices with a higher ad-

vantage of the risky option, which is in line with the optimal 

model ( = 4.91, 95% CI[4.71, 5.11], BF(+) > 1000). But crit-

ically, neither the outcome domain ( = -0.03, 95% CI[-0.07, 

0.02], BF(0) = 213.74) nor the state domain ( = 0.05, 95% 

CI[0.00, 0.09], BF(0) = 62.12) affected risky choice when con-

trolling for advantage. A model comparison showed that ex-

clusion of the outcome domain and the state domain greatly 

improved the model fit (BF > 1000). 

The choice optimality analysis seems to show less optimal 

choices in the loss domain, but this measure does not consider 

the strength of the advantage of the optimal option over the 

other option. Controlling for advantage, we found no substan-

tial framing effects on choice optimality. Our results replicate 

previous research; the result revealed that risky choices fol-

low the advantage in a soft-max fashion (Jarecki & Rie-

skamp, 2020). Interestingly our results showed that human 

choices approximate optimality independent of the framing. 

 

Model Comparison. To test which model best describes be-

havior in framed risky choices with goals we compared the 

performance of cumulative prospect theory (CPT), dynamic 

prospect theory (DCPT) and the optimal model (OPT). Each 

model was implemented with a soft-max choice rule (Sutton 

& Barto, 2018). The OPT had one free parameter (choice rule 

parameter ), CPT and the DCPT had a total of six free pa-

rameters; parameters were estimated using maximum likeli-

hood at the individual level. We included a random-choice 

model predicting Pr(Risky)=0.50 as baseline model (BASE). 

6Mixed effect regression predicting choices from the fixed effect 

predictors outcome domain + state domain + advantage the random 

effect predictor by-participant random intercept. 

Figure 2. Observed risky choices across framing conditions 

by advantage (see text) of the risky option as per the optimal 

model. Lines = best-fitting regressions; colors = framing con-

ditions; N = observation count at each advantage. 
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We compared the models using an individual-level strategy 

classification based on Akaike weights (Wagenmakers & 

Farrell, 2004) as measure of evidence strength (values of 1 

indicate strong evidence for a model) and classified using a 

threshold of  0.75. The results (Fig. 3) show that DCPT de-

scribed the majority of participants best (87 of 100), CPT de-

scribed n=7, and OPT described n=2 best (BASE described 

n=2; n=4 were unclassified). The models’ mean Bayesian in-

formation criterion (BIC) across all participants equaled 

BICDCPT = 424.04, BICOPT = 467.43, BICCPT = 498.06 and 

BICBASE = 499.07. The mean Akaike information criterion 

(AIC) was AICDCPT = 400.72, AICOPT = 463.54, AICCPT = 

474.75 and AICBASE = 499.06 (lower values indicate better 

model fit). 

 

Illustration of Differences Between Dynamic Prospect 

Theory and Optimal Model. To illustrate the differences be-

tween DCPT and OPT, we take a closer look at the choices 

of participant 83, who is well described by the DCPT but not 

by the OPT. Fig. 4 shows their choices in trial 1 in the gain 

problems compared to the model predictions. The DCPT pa-

rameters for participant 83 are =0.83, =0.58, =2.15, 

+=2.00, −=0.66 and =0.26, and =0.12 for OPT. Consider 

the choices in problem P4 that offered a risky option R “8 

with 40% or 2,” a safe option S “5 with 70% or 3,” and a 

threshold of 22 points (option’s EVs = 4.4). In P4 the partic-

ipant consistently selected the safe option. DCPT describes 

this behavior, and OPT does not. According to the optimal 

strategy, OPT, the expected reward of a risky choice ERR = 

0.72 is almost identical to the safe option’s expected reward 

ERS = 0.70. Thus, OPT predicts a slight preference for the 

risky choice, Pr(R | OPT) = 0.53, which is not in line with the 

data. Unlike OPT, DCPT transforms the outcomes relative to 

the reference point as follows. Relative to DCPT’s reference 

point (r=4.4, Eq. 5) the risky option is perceived as “3.6 with 

40% or -2.4,” and the safe option as “0.6 with 70% or -1.4.” 

DCPT computes the risky option’s utility7 u(R) = -1.15 as 

lower than the safe option’s utility u(S) = -0.43; thus, DCPT 

predicts a strong preference for the safe choice in line with 

the data; Pr(R | DCPT) = 0.06. 

DCPT’s parameters matter here. The value parameter ’s 

diminishing marginal utility means the 3.6 points offered by 

 
7 uRisky = υ(xR1)(pR1)+ υ(xR2)(pR2) = 2.9  0.22 + (-3.57)  0.50 = 

-1.15; uSafe = υ(xS1)(pS1)+ υ(xS2)(pS2) = 0.65  0.64 + (-2.61)  

0.32 = -0.43 

the risky option are diminished to 2.9, whereas the safe op-

tion’s 0.6 points are boosted to 0.65, increasing the safe op-

tion’s relative attractiveness. Secondly, the participant under-

weights the risky option’s 40% gain outcome stronger than 

the safe option’s 70% gain; further the risky option’s 60% 

loss weights stronger than the safe option’s 30% loss. This 

enables DCPT to capture the preference for the safe option, 

although the options have the same EV. It is worth highlight-

ing that the key mechanism of DCPT involves the conceptu-

alization of outcomes in goal-based risky choices as psycho-

logical gains and losses relative to the dynamic reference 

point, that is the distance to the goal. In other words, DCPT 

can capture the absence of classic gain-loss framing effects 

by assuming a psychological re-framing of risky outcomes as 

a loss when the outcome falls short of the average goal dis-

tance in the remaining time horizon. 

Discussion 

In the current study, we have shown that classic gain-loss 

framing exhibits no systematic effect on goal-based risk tak-

ing. Rather than being affected by framing, risk preferences 

were sensitive to the goal. Participants were risk-seeking if 

the risky option increased the chance to meet a goal. This dy-

namic goal-induced change of risk preferences was not af-

fected by framing: neither the outcome domain (gains vs. 

losses) nor the state domain (positive vs. negative) affected 

people’s risk taking stronger than the goal. A dynamic ver-

sion of prospect theory described behavior very well. It holds 

that choice outcomes are psychologically re-framed as a loss 

if outcomes fail to meet the average remaining goal distance. 

Importantly, in this study, we tested two specific difficulty 

levels in goal-based risk taking. We therefore cannot gener-

alize our findings across different difficulties. It is conceiva-

ble that in extremely easy problems that involve very low 

goals, framing effects might be found because the goal be-

comes less important for decision makers in very easy goal-

based risky choices. Further research is needed to address this 

question. 

Taken together, the results show that goals, rather than 

presentation formats, serve as strong reference points in risky 

decision making. 

Figure 4. Participant 83, model predictions (dots) and M 

across three observed choices (bars). OPT = optimal model, 

DCPT = dynamic prospect theory 

Figure 3. Evidence strength by participant. BASE = base-

line model, DCPT = dynamic prospect theory, CPT = cu-

mulative prospect theory, OPT = optimal model 

998



References  

Bürkner, P. C. (2017). brms: An R package for bayesian 

multilevel models using stan. Journal of Statistical Soft-

ware, 80(1), 1–28. https://doi:10.18637/jss.v080.i01 

Fujimoto, A., & Takahashi, H. (2016). Flexible modulation 

of risk attitude during decision-making under quota. Neu-

roImage, 139, 304–312. https://doi.org/10.1016/j.neu-

roimage.2016.06.040 

Houston, A. I., Fawcett, T. W., Mallpress, D. E. W., & 

McNamara, J. M. (2014). Clarifying the relationship be-

tween prospect theory and risk-sensitive foraging theory. 

Evolution and Human Behavior, 35(6), 502–507. 

https://doi.org/10.1016/j.evolhumbehav.2014.06.010 

Houston, A. I., & McNamara, J. M. (1988). A framework 

for the functional analysis of behaviour. Behavioral and 

Brain Sciences, 11(1), 117–130. 

https://doi.org/10.1017/S0140525X00053061 

Jarecki, J. B., & Rieskamp, J. (2020). Prospect theory and 

optimal risky choices with goals. In S. Denison, M. Mack, 

Y. Xu, & B. C. Armstrong (Eds.), Proceedings of the 

42nd Annual Conference of the Cognitive Science Society. 

(pp. 43–49). Cognitive Science Society. https://cog-

sci.mindmodeling.org/2020/papers/0015/0015.pdf 

Jarecki, J. B., & Seitz, F. I. (2020). Cognitivemodels: An R 

package for formal cognitive modeling. In T. C. Stewart 

(Ed.), Proceedings of the 18th International Conference 

on Cognitive Modelling. (pp. 100–106). University Park, 

PA: Applied Cognitive Science Lab, Penn State. 

https://iccm-conference.neocities.org/2020/papers/Contri-

bution_229_final.pdf 

Kahneman, D., & Tversky, A. (1979). Prospect theory: An 

analysis of decision under risk. Econometrica, 47(2), 

263–292. https://doi.org/10.2307/1914185 

Korn, C. W., & Bach, D. R. (2018). Heuristic and optimal 

policy computations in the human brain during sequential 

decision-making. Nature Communications, 9(2018), 1–41. 

https://doi.org/10.1038/s41467-017-02750-3 

Korn, C. W., & Bach, D. R. (2019). Minimizing threat via 

heuristic and optimal policies recruits hippocampus and 

medial prefrontal cortex. Nature Human Behaviour, 3(7), 

733–745. https://doi.org/10.1038/s41562-019-0603-9 

Kühberger, A. (1998). The influence of framing on risky de-

cisions: A meta-analysis. Organizational Behavior and 

Human Decision Processes, 75(1), 23–55. 

https://doi.org/10.1006/obhd.1998.2781 

McDermott, R., Fowler, J. H., & Smirnov, O. (2008). On 

the evolutionary origin of prospect theory preferences. 

The Journal of Politics, 70(2), 335–350. 

https://doi:10.1017/S0022381608080341 

Mishra, S., & Fiddick, L. (2012). Beyond gains and losses: 

The effect of need on risky choice in framed decisions. 

Journal of Personality and Social Psychology, 102(6), 

1136–1147. https://doi.org/10.1037/a0027855 

Mishra, S., Gregson, M., & Lalumière, M. L. (2012). Fram-

ing effects and risk-sensitive decision making. British 

Journal of Psychology, 103(1), 83–97. 

https://doi.org/10.1111/j.2044-8295.2011.02047.x 

Payne, J. W., Laughhunn, D. J., & Crum, R. (1980). Trans-

lation of gambles and aspiration level effects in risky 

choice behavior. Management Science, 26(10), 1039–

1060. https://doi.org/10.1287/mnsc.26.10.1039 

Pietras, C. J., & Hackenberg, T. D. (2001). Risk-sensitive 

choice in humans as a function of an earnings budget. 

Journal of the Experimental Analysis of Behavior, 76(1), 

1–19. https://doi.org/10.1901/jeab.2001.76-1 

Pietras, C. J., Locey, M. L., & Hackenberg, T. D. (2003). 

Human risky choice under temporal constraints: Tests of 

an energy-budget model. Journal of the Experimental 

Analysis of Behavior, 80(1), 59–75. 

https://doi.org/10.1901/jeab.2003.80-59 

R Core Team. (2020). R: A Language and Environment for 

Statistical Computing. R Foundation for Statistical Com-

puting. https://www.r-project.org/ 

Searcy, G. D., & Pietras, C. J. (2011). Optimal risky choice 

in humans: Effects of amount of variability. Behavioural 

Processes, 87(1), 88–99. https://doi.org/10.1016/j.be-

proc.2011.01.008 

Sutton, R. S., & Barto, A. G. (2018). Reinforcement Learn-

ing: An Introduction (2nd ed.). MIT Press Cambridge. 

Tversky, A., & Kahneman, D. (1981). The framing of deci-

sions and the psychology of choice. Science, 211(4481), 

453–458. https://doi.org/10.1126/science.7455683 

Tversky, A., & Kahneman, D. (1992). Advances in prospect 

theory: Cumulative representation of uncertainty. Journal 

of Risk and Uncertainty, 5(4), 297–323. 

https://doi.org/10.1007/BF00122574 

Wagenmakers, E. J., & Farrell, S. (2004). AIC model selec-

tion using akaike weights. Psychonomic Bulletin & Re-

view, 11(1), 192–196. 

https://doi.org/10.3758/BF03206482 

 

999




