UC Santa Barbara

UC Santa Barbara Previously Published Works

Title

Highly Stereoselective Synthesis of 2-Azido-2-Deoxyglycosides via Gold-Catalyzed SN2 Glycosylation

Permalink

https://escholarship.org/uc/item/2rw648kh

Journal CCS Chemistry, 5(12)

ISSN

2096-5745

Authors

Zhang, Yongliang Ma, Xu Zhang, Liming

Publication Date

2023-12-04

DOI

10.31635/ccschem.023.202303086

Peer reviewed

HHS Public Access

Author manuscript *CCS Chem.* Author manuscript; available in PMC 2024 December 04.

Published in final edited form as:

CCS Chem. 2023 December ; 5(12): 2799-2807. doi:10.31635/ccschem.023.202303086.

Highly Stereoselective Synthesis of 2-Azido-2-Deoxyglycosides via Gold-Catalyzed S_N 2 Glycosylation

Yongliang Zhang,

Xu Ma,

Liming Zhang^{*}

Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106

Abstract

Highly stereoselective synthesis of 2-azido-2-deoxyglucosides and 2-azido-2-deoxygalactosides is achieved via a gold-catalyzed $S_N 2$ glycosylation. The glycosyl donors feature a designed 1-naphthoate leaving group containing an amide group. Upon gold activation of the leaving group, the amide group is optimally positioned to direct an $S_N 2$ attack by an acceptor via H-bonding interaction. Both 2-azido-2-deoxyglucosyl/galactosyl donor anomers can undergo stereoinversion at the anomeric position, affording the opposite anomeric glycoside products with excellent levels of stereoselectivity or stereospecificity and in mostly excellent yields. This $S_N 2$ glycosylation accommodates a broad range of acceptors. The utility of this chemistry is demonstrated in the synthesis of a trisaccharide featuring three 1,2-*cis*-2-azido-2-deoxyglycosidic linkages.

Graphical Abstract

Conflict of Interest

^{*}Corresponding author: zhang@chem.ucsb.edu.

Supporting Information

Supporting Information is available and includes experimental procedures and NMR spectra.

The authors declare no competing financial interest.

Keywords

aminosugar; glycosylation; 1,2-cis-glycosidic linkage; gold catalysis; directing group

Introduction

2-Amido/amino-2-deoxy-D-glycopyranosyl units are found in many biologically important poly-/oligasaccharides, glycoconjugates, and glyco-based antibiotics and medicines (see Scheme 1a for examples).^{1–5} Their efficient assembly with high levels of anomeric stereoselectivity⁶⁻¹¹ is essential to glycoscience research and the development of glycomedicine. 1,2-trans-2-amido/amino-2-deoxyglycosides can be reliably synthesized through the neighboring group participation of a C(2)-amido/imido/alkoxycarbonylamino group, albeit with drawbacks (Scheme 1b).^{10,12–14} In comparison, the stereoselective construction of 1,2-*cis*-counterparts remains challenging.¹⁵ In the 1970s, Paulsen et al.¹⁶ and Lemieux and Ratcliffe¹⁷ pioneered the use of 2-azido-2-deoxyglycosyl donors for stereoselective 1,2-cis glycosylation. Despite the 2-azido group serving as an ideal masked amino group due to its relative stability, nonparticipating property, and ease of transformation to the amino/acetamido group, the glycosylation reactions exhibit mostly moderate to poor 1,2-cis selectivity¹⁸⁻²⁰ and low/moderate yields.^{21,22} Several innovative solutions have since been documented, including the use of ringfused 2,3-oxazolidinone thioglycoside donors, 23-25 the Lewis/Brønsted acid-catalyzed aglycosylation of benzylidene-protected 2-aminoglycosyl trihaloacetimidate donors, 26-29 and the employment of steric shielding or remote participation,³⁰ but they can be limited in scope,^{30,31} afford moderate yields²⁵ due to side reactions,^{31,32} and/or exhibit moderate/ varied α/β selectivity. As such, considering the biological significance of aminoglycosides, there is still a great need for developing high-yielding and highly stereoselective synthesis of 1,2-cis-2-amido/amino-2-deoxyglycosides that applies to a broad range of acceptors.

In 2021, we published a study introducing an $S_N 2$ glycosylation strategy that employs a directing-group-on-leaving-group strategy (DGLG)^{33,34} based on Yu's glycosyl *ortho*alkynylbenzoate system.^{35,36} Recently, we reported that a second-gen approach improved upon the original work by replacing the oxazole-functionalized *O*-alkynylbenzoate with a synthetically much more accessible amide-functionalized 1-naphthoate in the glycosyl donor, which exhibited enhanced $S_N 2$ characteristics in the construction of both 1,2-*cis* and 1,2-*trans* glycosidic linkages as well as both 2-deoxyglucoside anomers.^{37,38} Based on these results, we speculated that this DGLG strategy could effectively address the long-standing challenges of achieving high stereoselective glycosylation with 2-azido-2-deoxyglycosyl donors. In this work, we disclose the synthesis of 2-azido-2-deoxyglucosides and 2-azido-2deoxygalactosides based on this consideration. The glycosylation method offers several desirable features, including mild reaction conditions, accommodation of a wide range of acceptors, high yielding, and high levels of $S_N 2$ characteristics (Scheme 1c). Both 1–2-*cis*and 1,2-*trans*-2-azido-2-deoxyglycosides can be synthesized with high efficiency and high to excellent stereoselectivity.

Experimental Section

General procedure for gold-catalyzed S_N2 glycosylation

A donor (0.06 mmol), an acceptor (2.0 equiv, 0.12 mmol), and 100 mg grounded white drierite were added sequentially to a vial. Trifluorotoluene (PhCF₃, 0.45 mL) was then injected. The vial was capped with an open-top screw cap with a silicon liner, sealed with parafilm, shaken, and cooled to the corresponding temperature. Meanwhile, a PhCF₃ solution (0.3 mL) of (PhO)₃PAuCl (0.1 equiv, 0.006 mmol, 3.26 mg), AgNTf₂ (0.1 equiv, 0.006 mmol, 2.33 mg), and HNTf₂ (0.2 equiv, 0.012 mmol, 3.37 mg) was injected into the vial. The reaction progress was monitored by thin-layer chromatography. Upon completion, a dichloromethane (DCM; 0.3 mL) solution of tetrabutylammonium chloride (1.0 equiv, 0.06 mmol, 16.7 mg) and *N*,*N*-diisopropylethylamine (1.0 equiv, 0.06 mmol, 7.8 mg) was used to quench the reaction, and the reaction mixture was filtered through a Celite pad before column chromatography.

Results and Discussion

The desired 2-azido-2-deoxyglycosyl 1-naphthoate donors of type **1** (e.g., **1a** in Table 1) were readily prepared in two steps—alkylation and Sonogashira coupling—from the corresponding 2-azido-2-deoxyglycosyl halides^{39–41} and commercially available 8-bromo-1-naphthoic acid (Scheme 2, see the Supporting Information for details). The two-step yields range from 70% to 85%.

We initiated the conditions study by examining the reaction between 2-azido-2-deoxy-D-glucosyl 1-naphthoate donor 1a and the methyl α -D-glycopyranoside A1—a primary acceptor. First, the reaction was conducted using 1.2 equiv of A1 in the presence of 10 mol % IMesAuCl/AgNTf₂ and 20 mol % HNTf₂, in PhCF₃ (0.08 M) at 0 °C. Within 3 h, the reaction was complete, yielding methyl (3,4,6-tri-O-benzyl-2-azido-2-deoxya-D-glucopyranosyl)- $(1\rightarrow 6)$ -2,3,4-tri-O-benzyl-a-D-glucopyranoside **2a** in 75% nuclear magnetic resonance (NMR) yield, with the con-comitant generation of the byproduct 3.3^{7} The reaction showed a favorable α/β ratio of 19/1 (Table 1, entry 1). Lowering the reaction temperature to -20 °C and prolonging the reaction time resulted in an improved α/β ratio of >30/1 (Table 1, entry 2). More acidic gold catalysts such as Ph₃PAu⁺ and (PhO)₃PAu⁺ improved the yield slightly and sped up the reaction, notably in the latter case (Table 1, entries 3 and 4). By increasing the amount of A1 to two equivalents, the reaction yield was substantially improved to 94% while maintaining the excellent α selectivity (entry 5). In the absence of 20% HNTf₂, the reaction proceeded much more slowly, requiring 24 h to reach complete consumption of 1a, and the yield was a lower 76% (entry 6). This outcome is consistent with our previous conclusion³⁷ as well as that of Zhu and Yu,⁴² that is, a strong acid additive facilitates protodeauration and hence catalyst regeneration, there-by speeding up the reaction. A similarly sluggish and lower-yielding reaction was observed when the reaction solvent was DCM (entry 7). This solvent effect was previously observed³⁷ and rationalized to be due to the much higher solubility of the interfering byproduct 3 in DCM than in PhCF₃. For the more hindered and hence more challenging secondary acceptor A_2 , similar trends were observed in the stereoselective formation of the diglucoside product 2b

under these varied conditions (entries 8-12). Moreover, the reactions exhibited complete α -selectivity, and by using two equivalents of the acceptor, the yield was 85% (entry 12).

With the optimized conditions in Table 1, entries **5** and **12** in hand, we further examined the reaction of donor **1a** with a range of additional acceptors. As shown in Table 2, remarkably, all the cases, i.e., **2c–2l** exhibited exclusive α selectivities. For these cases employing primary acceptors (**2f**, **2g**, and **2k**), the reaction yields are above 90%, as is the case in **2a**. For the cases using challenging secondary acceptors (**2d**, **2e**, **2i**, and **2l**), the reaction yields (71–85%) are comparatively lower. On the other hand, both the yields of **2h** and **2j** were 94%. With *tert*-butanol as the acceptor, the product was obtained in 84% yield (**2c**). The acceptors included nonsugar alcohols *tert*-butanol (**2c**), L-menthol (**2d**) and cholesterol (**2e**), primary glycosyl acceptors derived from galactose (**2f**), glucose (**2g**), and arabinose (**2k**), and secondary acceptors derived from glucose (**2h**, **2i**), rhamnose (**2j**), and xylose (**2l**). Of note is that the benzoyl-protecting groups in the cases of **2g** and **2h** did not affect the outstanding reaction outcomes, suggesting that these acceptors are sufficiently nucleophilic despite inductive deactivation.

We also prepared the 2-azido-2-deoxy donor variants of **1a** with the benzyl groups at 6-*O* and 4-*O* positions replaced by acetyl groups, respectively. As shown in the cases of **2m–2q**, the glycosylation reactions again exhibited exclusive α -selectivities with both primary and secondary glycoside acceptors, and the reaction yields ranged from 76% to 94%.

We then applied our methodology to the synthesis of 1,2-*cis*-2-azido-2-deoxygalactosides. However, the reactions of per-benzylated 2-azido-2-deoxy- β -D-galactopyranosyl donors **1b** were surprisingly slow at -20 °C. Elevating the reaction temperature to 0 °C led to a complete reaction in 3–24 h. As shown in Table 3a, the glycosylation reactions proceeded with mostly excellent levels of stereoinversion, affording 1,2-*cis*-2-azido-2deoxygalactosides **2r**, **2s**, and **2u**–**2y** exclusively or with >20:1 α/β selectivities and in mostly excellent yields. The exception was the case of **2t** with an α/β ratio of 12/1. Similar to the 2-azido-2-deoxyglucoside cases, a variety of acceptors including secondary (**2u**–**2w** and **2y**) and electronically deactivated (**2t** and **2v**) were readily tolerated. However, this strategy is not suitable for the synthesis of β –2-azido-2-deoxymannosides.

In addition to these conversions of β -donors to 1,2-*cis*- α -2-azido-2-deoxyglycosides, we wondered whether this strategy would permit the stereoselective synthesis of 1,2-*trans*-2-azido-2-deoxyglycosides⁴³⁻⁴⁵ by using the corresponding 1,2-*cis*-2-azido-2-deoxy donors. Despite the synthesis of 1,2-*trans*-2-amido-2-deoxyglycosides, as discussed previously, can be achieved reliably via neighboring group participation, the multiple steps needed for converting a suitable participating group to the often-desired acetamido and the harsh reaction conditions employed therein often lead to diminished synthetic efficiency. The stereoselective synthesis of 1,2-*trans*-2-azido-2-deoxyglycosides via this S_N2 glycosylation strategy represents a valuable and unified approach to stereoselective access to both anomers of 2-azido-2-deoxyglycosides. As shown in Table 3b, the 2-azido-2-deoxymannoside **2z** was formed with exclusive stereoinversion and in 78% yield. The α -counterpart of glucosyl donor **1a** was prepared with an α/β ratio of 15/1. As shown in Table 3c, its reaction with the primary acceptor **A1** resulted in near inversion of the α/β ratio of the product

2aa at 1:16, suggesting high levels of $S_N 2$ glycosylation. With the challenging **A2** as the acceptor, the α/β ratio of the product **2ab** is 1/8, which amounts to an estimated α/β ratio of 1:18 if the pure α -donor is used. In addition, its reaction with an arabinose-derived acceptor afforded the product **2ac** in 95% yield and with an α/β ratio of 1/12. In the cases of the α -galactosyl donor ($\alpha/\beta = 22/1$, Table 3d), the reactions with primary acceptors were also highly stereoinvertive, affording **2ad–2af** in excellent yields and with $20:1 \beta/\alpha$ selectivities.

To demonstrate the synthetic utility of this chemistry, we set out to prepare the synthetically challenging trisazidoglucoside **6** containing three 1,2-*cis*-2-azido-2-deoxy glycosidic linkages. The pseudoiterative synthesis sequence is shown in Scheme 3: the first such glycosidic linkage in **4** was formed with exclusive α -selectivity and in 92% overall yield upon coupling the 6-*O*-acetyl donor **1c** with pent-4-en-1-ol (2.0 equiv), followed by basic methanolysis. Subsequent glycosylations using the 4-*O*-acetyl donor **1d** and the per-*O*-benzylated donor **1a**, respectively, again exhibited complete anomeric configuration inversion and high reaction efficiency. In both cases, two equivalents of the acceptor (i.e., **4** or **5**) were employed. After the reaction, the excess acceptor in the case of **5** was recovered.

The high level of stereoinversions observed in most of the cases, that is, the conversion of β donors to a glycosides and vice versa, is consistent with the directed S_N2 glycosylation mechanism. As shown in Scheme 4a, the directed S_N^2 reaction of the cyclized and hence activated intermediate β -A-Au generated from a β -donor (i.e., β -1) should afford the stereo-inverted 2-azido-2-deoxyglycoside product α -2. A minor S_N1 pathway leading to the oxocarbenium intermediate **B** may occur, which is trapped by the stoichiometric and more nucleophilic amide moiety from species bearing this functional group to form the trapped intermediate α -C-Au/ α -C. Intermediate C favors the α configuration due to the anomeric effect. In addition, α-C-Au can be generated directly from β-A-Au via intramolecular stereoinvertive amide attack. In the presence of a good nucleophile, for example, a primary alcohol donor, this intermediate undergoes further glycosylation to deliver β -2. In contrast, with a poor nucleophilic acceptor such as a secondary alcohol, this glycosylation does not occur. Consequently, when using β donors, employing a primary alcohol acceptor results in compromised α/β selectivity but increased yield. When reacting with secondary alcohols, complete stereo inversion is maintained, but the yield can be compromised. In the case of 2t, the α/β ratio of 12/1 is much lower than that of 2r. We attributed the moderate stereoselectivity to the decreased nucleophilicity of the tri-O-benzoyl-protected acceptor, which leads to increased formation of α -C-Au/ α -C. The acceptor, despite being inductively deactivated, is a primary alcohol and hence sterically viable to attack α -C-Au/ α -C. As such, a significant amount of β -2t is formed.

We noticed that the β/α ratio of **2aa** (16/1) is higher than that of **2ab**. The former is formed from an α -glucosyl naphthoate donor and the primary acceptor **A1**, and the latter is formed from the same donor and the secondary acceptor **A2**. These results are contrary to the trend observed using β -donors and not consistent with the rationale put forth in Scheme 4a but can be rationalized in Scheme 4b. In this case, β -C-Au was generated from the cyclized intermediate α -C-Au via intramolecular stereoinvertive amide attack and should exhibit

increased electrophilicity compared to its α -counterpart. As a result, it can glycosylate secondary acceptors. In comparison to using A1 as the acceptor, the glycosylation of A2 led to the increased formation of β -C-Au due to a comparably slow S_N2 process. As such, more α -2 can be formed via β -C-Au, resulting in a lower β/α ratio in the case of 2ab.

Conclusion

In summary, a gold-catalyzed $S_N 2$ glycosylation method was achieved for highly stereoselective synthesis of 2-azido-2-deoxyglucosides and 2-azido-2-deoxygalactosides. This method employs a 1-naphthoate leaving group featuring an amide directing group. Upon gold activation of the leaving group, the amide is optimally positioned to direct an $S_N 2$ attack by an acceptor via H-bonding interaction. From 1,2-*trans*-2-azido-2-deoxyglycosyl donors, this chemistry provides highly stereoselective and efficient construction of 1,2*cis*-2-azido-2-deoxyglycosidic linkages. In most cases, exclusive 1,2-*cis* stereochemistry is achieved. This approach is also applicable to the stereoselective construction of 1,2*trans*-2-azido-2-deoxyglycosides. A broad range of acceptors is allowed. The utility of this chemistry was demonstrated in the synthesis of a trisaccharide featuring three 1,2-*cis*-2azido-2-deoxyglycosidic linkages.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

L.Z. thanks the National Institutes of Health (grant nos. U01GM125289 and R35GM139640) for financial support and the National Science Foundation (grant no. MRI-1920299) for the acquisition of two Bruker NMR instruments. We also thank Dr. Rachel Behrens from the University of California-Santa Barbara and Dr. Felix Grun from the University of California-Irvine for their help with HRMS analysis.

References

- Dube DH; Bertozzi CR Glycans in Cancer and Inflammation—Potential for Therapeutics and Diagnostics. Nat. Rev. Drug Discov 2005, 4, 477–488. [PubMed: 15931257]
- Hainrichson M; Nudelman I; Baasov T Designer Aminoglycosides: The Race to Develop Improved Antibiotics and Compounds for the Treatment of Human Genetic Diseases. Org. Biomol. Chem 2008, 6, 227–239. [PubMed: 18174989]
- 3. Peng W; Zou L; Bhamidi S; McNeil MR; Lowary TL The Galactosamine Residue in Mycobacterial Arabinogalactan Is α-Linked. J. Org. Chem 2012, 77, 9826–9832. [PubMed: 23043372]
- 4. Cao X; Du X; Jiao H; An Q; Chen R; Fang P; Wang J; Yu B Carbohydrate-Based Drugs Launched During 2000–2021. Acta Pharm. Sinica B 2022, 12, 3783–3821.
- Wei Q; Zhang J; Dao Y; Ye M; Liu D; Dong W; Yuan N; Li H; Song C; Li M Exploiting Complex-Type N-Glycan to Improve the in Vivo Stability of Bioactive Peptides. CCS Chem. 2023, 5, 1623–1634.
- Nielsen MM; Pedersen CM Catalytic Glycosylations in Oligosaccharide Synthesis. Chem. Rev 2018, 118, 8285–8358. [PubMed: 29969248]
- 7. Hoang KM; Lees NR; Herzon SB General Method for the Synthesis of α- or β-Deoxyaminoglycosides Bearing Basic Nitrogen. J. Am. Chem. Soc 2021, 143, 2777–2783. [PubMed: 33555855]
- Rai R; McAlexander I; Chang C-WT Synthetic Glycodiversification. From Aminosugars to Aminoglycoside Antibiotics. A Review. Org. Prep. Proc. Int 2005, 37, 337–375.

- Bongat AF; Demchenko AV Recent Trends in the Synthesis of O-Glycosides of 2-Amino-2-Deoxysugars. Carbohydr. Res 2007, 342, 374–406. [PubMed: 17125757]
- Enugala R; Carvalho LC; Dias Pires MJ; Marques MM Stereoselective Glycosylation of Glucosamine: The Role of the N-Protecting Group. Chem. Asian J 2012, 7, 2482–2501. [PubMed: 22753270]
- Banoub J; Boullanger P; Lafont D Synthesis of Oligosaccharides of 2-Amino-2-Deoxy Sugars. Chem. Rev 1992, 92, 1167–1195.
- Marqvorsen MH; Pedersen MJ; Rasmussen MR; Kristensen SK; Dahl-Lassen R; Jensen HH Why Is Direct Glycosylation with N-Acetylglucosamine Donors Such a Poor Reaction and What Can Be Done About It? J. Org. Chem 2017, 82, 143–156. [PubMed: 28001415]
- 13. Beau J-M; Boyer F-D; Norsikian S; Urban D; Vauzeilles B; Xolin A Glycosylation: The Direct Synthesis of 2-Acetamido-2-Deoxy-Sugar Glycosides. Eur. J. Org. Chem 2018, 2018, 5795–5814.
- Di Bussolo V; Liu J; Huffman JLG; Gin DY Acetamidoglycosylation with Glycal Donors: A One-Pot Glycosidic Coupling with Direct Installation of the Natural C(2)-N-Acetylamino Functionality. Angew. Chem. Int. Ed 2000, 39, 204–207.
- Manabe S The Synthesis of 1,2-Cis-Amino Containing Oligosaccharides Toward Biological Investigation. Methods Enzymol. 2010, 478, 413–435. [PubMed: 20816492]
- Paulsen H; Kolá ; Stenzel W Bausteine Von Oligosacchariden, Xi: Synthese α-Glycosidisch Verknüpfter Disaccharide Der 2-Amino-2-Desoxy-D-Galactopyranose. Chem. Ber 1978, 111, 2358–2369.
- Lemieux RU; Ratcliffe RM The Azidonitration of Tri-O-Acetyl-D-Galactal. Can. J. Chem 1979, 57, 1244–1251.
- Andreotti AH; Kahne D The Effects of Glycosylation on Peptide Backbone Conformation. J. Am. Chem. Soc 1993, 115, 3352–3353.
- Jiaang W-T; Chang M-Y; Tseng P-H; Chen S-T A Concise Synthesis of the O-Glycosylated Amino Acid Building Block; Using Phenyl Selenoglycoside as a Glycosyl Donor. Tetrahedron Lett. 2000, 41, 3127–3130.
- Ngoje G; Li Z Study of the Stereoselectivity of 2-Azido-2-Deoxyglucosyl Donors: Protecting Group Effects. Org. Biomol. Chem 2013, 11, 1879–1886. [PubMed: 23380832]
- Park J; Kawatkar S; Kim JH; Boons GJ Stereoselective Glycosylations of 2-Azido-2-Deoxy-Glucosides Using Intermediate Sulfonium Ions. Org. Lett 2007, 9, 1959–1962. [PubMed: 17432867]
- 22. Zulueta MM; Lin SY; Lin YT; Huang CJ; Wang CC; Ku CC; Shi Z; Chyan CL; Irene D; Lim LH; Tsai TI; Hu YP; Arco SD; Wong CH; Hung SC Alpha-Glycosylation by D-Glucosamine-Derived Donors: Synthesis of Heparosan and Heparin Analogues That Interact with Mycobacterial Heparin-Binding Hemagglutinin. J. Am. Chem. Soc 2012, 134, 8988–8995. [PubMed: 22587381]
- Benakli K; Zha C; Kerns RJ Oxazolidinone Protected 2-Amino-2-Deoxy-D-Glucose Derivatives as Versatile Intermediates in Stereoselective Oligosaccharide Synthesis and the Formation of α-Linked Glycosides. J. Am. Chem. Soc 2001, 123, 9461–9462. [PubMed: 11562237]
- Boysen M; Gemma E; Lahmann M; Oscarson S Ethyl 2-Acetamido-4,6-Di-O-Benzyl-2,3-N,O-Carbonyl-2-Deoxy-1-Thio-β-D-Glycopyranoside as a Versatile Glenac Donor. Chem. Commun 2005, 3044–3046.
- Manabe S; Ishii K; Ito Y N-Benzyl-2,3-Oxazolidinone as a Glycosyl Donor for Selective α-Glycosylation and One-Pot Oligosaccharide Synthesis Involving 1,2-Cis-Glycosylation. J. Am. Chem. Soc 2006, 128, 10666–10667. [PubMed: 16910646]
- Mensah EA; Nguyen HM Nickel-Catalyzed Stereoselective Formation of α-2-Deoxy-2-Amino Glycosides. J. Am. Chem. Soc 2009, 131, 8778–8780. [PubMed: 19496537]
- 27. Mensah EA; Yu F; Nguyen HM Nickel-Catalyzed Stereoselective Glycosylation with C(2)-*N*-Substituted Benzylidene D-Glucosamine and Galactosamine Trichloroacetimidates for the Formation of 1,2-*Cis*-2-Amino Glycosides. Applications to the Synthesis of Heparin Disaccharides, GPI Anchor Pseudodisaccharides, and α-GalNAc. J. Am. Chem. Soc 2010, 132, 14288–14302. [PubMed: 20860359]

- Sletten ET; Tu YJ; Schlegel HB; Nguyen HM Are Bronsted Acids the True Promoter of Metal-Triflate-Catalyzed Glycosylations? A Mechanistic Probe into 1,2-Cis-Aminoglycoside Formation by Nickel Triflate. ACS Catal. 2019, 9, 2110–2123. [PubMed: 31819822]
- Zhu S; Samala G; Sletten ET; Stockdill JL; Nguyen HM Facile Triflic Acid-Catalyzed α–1,2-Cis-Thio Glycosylations: Scope and Application to the Synthesis of *S*-Linked Oligosaccharides, Glycolipids, Sublancin Glycopeptides, and T_N/T_F Antigens. Chem. Sci 2019, 10, 10475–10480. [PubMed: 32110337]
- 30. Zhang Y; Zhang H; Zhao Y; Guo Z; Gao J Efficient Strategy for α-Selective Glycosidation of D-Glucosamine and Its Application to the Synthesis of a Bacterial Capsular Polysaccharide Repeating Unit Containing Multiple α-Linked Glcnac Residues. Org. Lett 2020, 22, 1520–1524. [PubMed: 32030988]
- Kerns RJ; Zha C; Benakli K; Liang Y-Z Extended Applications and Potential Limitations of Ring-Fused 2,3-Oxazolidinone Thioglycosides in Glycoconjugate Synthesis. Tetrahedron Lett. 2003, 44, 8069–8072.
- 32. Yu F; Nguyen HM Studies on the Selectivity Between Nickel-Catalyzed 1,2-Cis-2-Amino Glycosylation of Hydroxyl Groups of Thioglycoside Acceptors with C2-Substituted Benzylidene N-Phenyl Trifluoroacetimidates and Intermolecular Aglycon Transfer of the Sulfide Group. J. Org. Chem 2012, 77, 7330–7343. [PubMed: 22838405]
- Ma X; Zheng Z; Fu Y; Zhu X; Liu P; Zhang LA "Traceless" Directing Group Enables Catalytic S_N2 Glycosylation Toward 1,2-Cis-Glycopyranosides. J. Am. Chem. Soc 2021, 143, 11908– 11913. [PubMed: 34319729]
- Ma X; Zhang Y; Zhu X; Zhang L An S_N2-Type Strategy Toward 1,2-*Cis*-Furanosides. CCS Chem. 2022, 4, 3677–3685. [PubMed: 38186678]
- Yu B Gold(I)-Catalyzed Glycosylation with Glycosyl O-Alkynylbenzoates as Donors. Acc. Chem. Res 2018, 51, 507–516. [PubMed: 29297680]
- 36. Li Y; Yang Y; Yu B An Efficient Glycosylation Protocol with Glycosyl Ortho-Alkynylbenzoates as Donors Under the Catalysis of Ph3PAuOTf. Tetrahedron Lett. 2008, 49, 3604–3608.
- 37. Ma X; Zhang Y; Zhu X; Wei Y; Zhang L Directed S_N2 Glycosylation Employing an Amide-Functionalized 1-Naphthoate Platform Featuring a Selectivity-Safeguarding Mechanism. J. Am. Chem. Soc 2023, 145, 11921–11926. [PubMed: 37229760]
- 38. Zhang X; Xu P; Zhou Z; Zhang Y; Yu B; Zhu Y An Anomeric Base-Tolerant Ester of 8-Alkynyl-1-Naphthoate for Gold(I)-Catalyzed Glycosylation Reaction. Chin. J. Chem 2023, 41, 1305–1312.
- Pavliak V; Kovac P A Short Synthesis of 1,3,4,6-Tetra-O-Acetyl-2-Azido-2-Deoxy-Beta-D-Glucopyranose and the Corresponding Alpha-Glucosyl Chloride from D-Mannose. Carbohydr. Res 1991, 210, 333–337. [PubMed: 1878884]
- Saxon E; Luchansky SJ; Hang HC; Yu C; Lee SC; Bertozzi CR Investigating Cellular Metabolism of Synthetic Azidosugars with the Staudinger Ligation. J. Am. Chem. Soc 2002, 124, 14893– 14902. [PubMed: 12475330]
- Plattner C; Hofener M; Sewald N One-Pot Azido-chlorination of Glycals. Org. Lett 2011, 13, 545–547. [PubMed: 21244046]
- 42. Zhu Y; Yu B Characterization of the Isochromen-4-YI-Gold(I) Intermediate in the Gold(I)-Catalyzed Glycosidation of Glycosyl Ortho-Alkynylbenzoates and Enhancement of the Catalytic Efficiency Thereof. Angew. Chem., Int. Ed 2011, 50, 8329–8332.
- Tsuda T; Nakamura S; Hashimoto S A Stereocontrolled Construction of 2-Azido-2-Deoxy-1,2-*Trans*-β-Glycosidic Linkages Utilizing 2-Azido-2-Deoxyglycopyranosyl Diphenyl Phosphates. Tetrahedron Lett. 2003, 44, 6453–6457.
- 44. Kinzy W; Schmidt RR Glycosylimidate, 16. Synthese Des Trisaccharids Aus Der "Repeating Unit" Des Kapselpo-lysaccharids Von *Neisseria meningitidis* (Serogruppe L). Lieb. Anna der Chem 1985, 1985, 1537–1545.
- 45. Schmidt RR; Behrendt M; Toepfer A Nitriles as Solvents in Glycosylation Reactions: Highly Selective β-Glycoside Synthesis¹. Synlett 1990, 1990, 694–696.

OH H_2N OH OH H₃C NH₂ OHC N H_2N NH₂ HO Tobramycin (antibiotic) H₂N Streptomycin (antibiotic) OH OH 038 OH HO HC AcHN OH AcHN HS || 0 DR O₃S ΟН AcHN OF Bacterial O-polysaccharide Heparin (anticoagulant) Mycothiol (an intracellular reducing component agent used by mycobacteria)

(a) Selected examples of naturally occurring saccharides featuring 1,2-cis-2-amido/amino-2-deoxy glycosidic linkages

(b) Neighboring group participation for the synthesis of 1,2-trans-2-amido/imido/alkoxycarbonylamino-2-deoxyglycosides

(C) This work: Construction of 2-azido-2-deoxyglycosidic linkages via a DGLG-enabled S_N2 glycosylation (1,2-*cis* shown)

Scheme 1 |. Background of this work.

Synthesis of the trisazidoaccharide 6. Two equivalents of acceptors were used, and the yields were calculated based on the donor. ^a1.0 equiv **5** was recovered after the reaction.

Proposed mechanism rationalizing the observed selectivity.

Author Manuscript

BnO OMe

LAuCI (10 mol %) AgNTf₂ (10 mol %) HNTf₂ (20 mol %) PhCF₃ (0.08 M) Drierite

Bno OMe

Bnol

A1 5

4

HO

5 2a Bno-

OBn ç

OBn ç

PHO H

13

Conditions Optimizations^a

A2 A2			> ~
Acceptor	Ligand	Temp./time	Yield ^{b} (a/ β) ^{c}
1.2 equiv A1	IMes	0 °C/3 h	75% (19/1)
1.2 equiv A1	IMes	−20 °C/24 h	78% (>30/1)
1.2 equiv A1	Ph_3P	−20 °C/12 h	80% (>30/1)
1.2 equiv A1	P(OPh) ₃	−20 °C/8 h	84% (>30/1)
 2.0 equiv A1	P(OPh) ₃	−20 °C/5 h	94% (>30/1)
 2.0 equiv A1	P(OPh) ₃	−20 °C/24 h	76% (>30/1)
 2.0 equiv A1	P(OPh) ₃	−20 °C/24 h	74% (>30/1)
1.2 equiv A2	IMes	0 °C/5 h	70% (α only)
1.2 equiv A2	IMes	−20 °C/24 h	72% (a only)
1.2 equiv A2	Ph_3P	−20 °C/12 h	70% (α only)
1.2 equiv A2	P(OPh) ₃	–20 °C 9 h	77% (α only)
 2.0 equiv A2	P(OPh) ₃	−20 °C/6 h	85% (α only)

 $_{\rm c}^{\rm A}$ Reaction was stirred in a cooling bath before being quenched by 1.2 equiv $^{\rm D}$ Bu4NCI and N,N-diisopropylethylamine.

 $b_{\text{The yield was based on the donor.}}$

 $^{\mathcal{C}}$ Anomeric ratio was determined by $^{1}\mathrm{H}$ NMR analysis of the crude reaction mixture.

 $d_{\rm Without\ HNTf2}$.

ZII

Author Manuscript

*

Reaction Scope with 2-Azido-2-Deoxy-β-d-Glucopyranosyl Donors. Reaction Conditions: Donor 1 (0.06 mmol), Acceptor (0.12 mmol), (PhO)₃PAuCl/ AgNTf₂ (0.006 mmol), HNTf₂ (0.012 mmol), PhCF₃ (0.08 M), Drierite, $-20\ ^{\circ}C$

Author Manuscript

Table 3 |

Reaction Scope with Additional Donors. Reaction Conditions: Donor 1 (0.06 mmol), Acceptor (0.12 mmol), (PhO)₃PAuCl/AgNTf₂ (0.006 mmol), HNTf₂ (0.012 mmol), PhCF₃ (0.08 M), Drierite, 0 °C.

Zhang et al.

CCS Chem. Author manuscript; available in PMC 2024 December 04.

 ${\cal C}_{Starting}$ from the donor with a 22/1 α/β ratio.

 $b_{-20 \text{ °C.}}$