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Extinction Models for Cancer Stem Cell Therapy
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†Department of Biomathematics, ‡Department of Human Genetics, David Geffen
School of Medicine, §Department of Biostatistics, School of Public Health, ¶Department
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Abstract
Stem cells are now viewed as initiating and sustaining many cancers. This

suggests that cancer can be cured by driving cancer stem cells to extinction.
The problem with this strategy is that ordinary stem cells are apt to be killed
in the process. This paper sets bounds on the killing differential that must exist
for the survival of an adequate number of normal stem cells. Our main tools are
birth-death Markov chains in continuous time. In this framework, we investi-
gate the extinction times of cancer stem cells and normal stem cells. Application
of extreme value theory from mathematical statistics yields an accurate asymp-
totic distribution and corresponding moments for both extinction times. We
compare these distributions for the two cell populations as a function of the
killing rates. Perhaps a more telling comparison involves the number of normal
stem cells NH at the extinction time of the cancer stem cells. Conditioning on
the asymptotic time to extinction of the cancer stem cells allows us to calculate
the asymptotic mean and variance of NH . The full distribution of NH can be
retrieved by the finite Fourier transform and, in some parameter regimes, by an
eigenfunction expansion. Finally, we discuss the impact of quiescence (the rest-
ing state) on stem cell dynamics. Quiescence can act as a sanctuary for cancer
stem cells and imperils the proposed therapy. We approach the complication of
quiescence via multitype branching process models and stochastic simulation.
Improvements to the τ -leaping method of stochastic simulation make it a ver-
satile tool in this context. We conclude that the proposed therapy must target
quiescent cancer stem cells as well as actively dividing cancer stem cells. The
current cancer models demonstrate the virtue of attacking the same quantita-
tive questions from a variety of modeling, mathematical, and computational
perspectives.

Key words. birth-death process, cancer stem cells, extinction probability, finite
Fourier transform, stochastic simulation
AMS subject classifications. 60J80, 60J85, 92B05
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1 Introduction

Cancer stem cells represent a novel target of therapy that may revolutionize the

treatment of cancer. Mathematical models sharpen our understanding of how cancer

stem cell populations evolve and suggest optimal strategies to attack them. Because

they undergo repeated divisions, stem cells accumulate mutations over time. Cells

derived from stem cells start down differentiation pathways that involve a limited

number of cell divisions. Once they reach the end of their pathways, diffentiated

cells no longer accumulate the mutations caused by faulty DNA replication during

cell division. Thus, many oncologists contend that only stem cells can drive cancer

[48, 50, 59]. Because normal stem cells are vital for the maintenance and repair

of tissues, safe eradication of cancer stem cells requires selectively targeting cancer

stem cells while sparing normal stem cells. In the current paper we explore in depth

this hypothetical strategy and discuss its implications for the design of the next

generation of cancer therapeutics.

Our point of departure is the stochastic theory of linear birth-death processes.

This is well trod ground mathematically [14, 25, 23, 33, 34, 36, 39], but the cur-

rent problems raise novel issues not encountered in the standard treatments. For

instance, how can one approximate the distribution of the extinction time for ei-

ther population of stem cells? This brings in extreme-value theory from statistics,

eigenfunction expansions, and the finite Fourier transform. We particularly fixate

on three related questions: a) What is the killing differential that makes our hypo-

thetical therapy viable? b) What is the distribution of the number of normal stem

cells at the random time of extinction of the cancer stem cells? c) What implica-

tions does the phenomenon of quiescence have for the proposed therapy? To answer

questions a) and b), we condition one birth-death process on the random extinction

time of the other birth-death process. To answer question c), we turn to multi-type
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branching processes, with stem cells of either kind divided into active and quies-

cent types. Because some of our answers are approximate, it helps to look at the

same problem from multiple perspectives. This leads us to introduce the subject of

stochastic simulation by τ -leaping [53]. Except for numerically unstable eigenfunc-

tion expansions, the different techniques discussed here reinforce one another and

increase our confidence in the basic model.

Before presenting an overview of the rest of the paper, let us comment on the

relevance of stochastic models in general and birth-death processes in particular.

In a nutshell, stochastic models are ideal for studying stem cell dynamics because

stem cell population sizes are small relative to total cell numbers and key events

of interest are probabilistic in nature. Stem cells occupy well defined niches in the

body, and it is not too hard to imagine the stem cell clans behaving independently,

at least in the short run. Thus, linear birth-death processes appear to offer a good

vehicle for modeling [14, 25, 23, 33, 34, 36, 39].

In the next two sections, we provide a brief overview of stem cell biology and

background information on birth-death processes. In Section 4 we rederive the

distribution of the extinction time for a subcritical birth-death process starting

with a single cell. This classical result is inadequate for our purposes because we

typically start with many cells and must track all clans issuing from them. Using

extreme-value theory, we find an accurate asymptotic distribution for the time at

which all clans go extinct. This result allows us to compare probability densities

for the extinction times of two coexisting populations of stem cells: normal stem

cells and cancer stem cells, dying at different rates under therapy. Convergence in

distribution does not imply convergence of moments, so we verify in Section 4.2

convergence of the mean and variance of the extinction times to the mean and

variance of the asymptotic distribution.

In Sections 4.3 and 4.4, we study the number of normal stem cells NH remain-
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ing at the random time all cancer stem cells go extinct. We derive the mean and

variance for NH by conditioning on the extinction time of cancer stem cells. These

quantities are heavily dependent on the selectivity of a therapy. We also compute

the full distribution of NH using eigenvalue expansions and the finite Fourier trans-

form. In Sections 4.5 and 4.6 we discuss the quiescent (resting) state of the stem

cell, and its impact on cancer stem cell dynamics under therapies that selectively

eliminate actively dividing cells. Quiescence requires new models and a different set

of numerical tools. We particularly focus on simulation and τ -leaping in Section 5.

Our discussion summarizes all findings and comments on the role of mathematical

modeling in cancer therapy.

2 Biological Background

Let us begin by describing some biological features of stem cells that fit within the

framework of birth-death processes. Two of the principal distinguishing features

of stem cells are self-renewal and potency [42]. Self-renewal capacity is defined

as the ability of a cell to indefinitely reproduce copies of itself at the same level

of differentiation. In asymmetric cell division, a stem cell produces an identical

daughter cell and a second more differentiated daughter cell. A stem cell can also

divide symmetrically, giving rise to two copies of itself. Figure 1 depicts the two

modes of cell division. Potency is the capacity of a stem cell to replenish all of the

highly specialized cells of a tissue. Embryonic stem cells are the least differentiated

of all cells. They can be coaxed into producing cells populating any of the three

embryonic germ layers. These layers in turn ultimately produce all cell types in the

body.

Non-embryonic stem cells lack the totipotent capacity of embryonic stem cells.

For instance, hematopoietic stem cells can only give rise to a closely related family of

cells that circulate in the blood. Figure 2 illustrates the ability of the hematopoietic
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Figure 1: Self-renewal capacity of stem cells.

stem cell to generate multipotent progenitors, which can then begin the process of

differentiation, either into the myeloid lineage or the lymphoid lineage. The myeloid

lineage generate cells that carry oxygen to tissues (erythrocytes), cells that help with

clot formation (platelets), and cells that fight acute infection (granulocytes), while

the lymphoid lineage gives rise to cells of the immune system (B and T lymphocytes).

It is noteworthy that progenitor cells do have the ability to self-renew, but only for

a limited time. Only stem cells have the capacity for indefinite self-renewal.

Additional important features of stem cells include slow self-renewal and quies-

cence; these allow stem cells to maintain a long life span [42]. Different kinds of stem

cells spend varying percentages of time in an actively dividing state and a quiescent

(resting) state. For example, embryonic stem cells spend about 90% of the time in

an actively dividing state, whereas hematopoietic stem cells are quiescent approxi-

mately 75% of the time [9]. Stem cells can enter the state of quiescence and later

re-awaken. Cellular senescence occurs when a cell is no longer able to divide [26]. A

final important defining property of stem cells is niche-dependence [42]. Stem cell

niches, distributed throughout the body, serve to regulate the total number of stem

cells and whether or not stem cells maintain an undifferentiated state.

Stem cells have been shown to play a role in the pathogenesis and progression
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Figure 2: Multipotency of hematopoietic stem cells.

of many malignancies, including acute myeloid leukemia [40], chronic myelogenous

leukemia [58], breast cancer [2], acute lymphoblastic leukemia [10], glioblastoma [56],

multiple myeloma [43], prostate cancer [32, 47, 61], colorectal cancer [45], squamous

cell carcinoma of the head and neck [49], sarcoma [57], and melanoma [52]. Chronic

myelogenous leukemia [16] provides some of the best evidence that mutation in a

single stem cell can give rise cancer. Here one can follow the full cascade of tumor

cell types from malignant stem cells to progenitors on to fully differentiated cells.

Cancer stem cells have also been implicated in the development of resistance to

therapy [4, 31, 35, 41]. Finally, the deleterious effects of extinction of a population

of normal stem cells is not just a matter of conjecture. For example, deletion of

the ATR gene in adult mice causes extinction of stem cells and leads to premature

aging manifested by allopecia and osteoporosis [51].

Therapies that target cancer stem cells have recently been proposed. These
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Figure 3: Selective destruction of cancer stem cells under targeted therapy.

include monoclonal antibody therapy [46], vaccine therapy [13], drugs targeting the

Notch signaling pathway [55], and other targeted therapies [5, 24, 62, 63]. Several

therapies are currently being proposed to selectively eliminate cancer stem cells while

sparing normal stem cells. For example, a sesquiterpene lactone called parthenolide

has been shown to cause induce programmed cell death in leukemic stem cells, while

leaving relatively large populations of normal hematopoietic cells [24]. Figure 3

demonstrates the basic biological question we address with modeling. While exposed

to a therapy targeting cancer stem cells, cancer stem cells (in red) are selectively

eliminated, while the normal stem cells (in blue) are also killed, but at a slower rate.

After some length of time, all cancer stem cells are eliminated while a population

of surviving ordinary stem cells remains. In our opinion, the critical question is

whether the number of surviving normal stem cells remains above the threhshold

adequate to maintain tissue homeostasis.
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3 Background on Linear Birth-Death Processes

In our simplified model of therapy, there are two populations of stem cells, normal

stem cells and cancer stem cells. These coexisting populations do not interact. The

cancer stem cells originate by a sequence of mutations from the normal stem cells.

We take the existence of cancer stem cells as given and ignore repeated transitions

to the cancer state. We model each population as a linear birth-death process Xt in

continuous time t with constant birth rate β and constant death rate δ per particle.

The process Xt counts the number of particles at time t. Birth-death processes have

been the subject of extensive study for many decades [14, 25, 23, 33, 34, 36, 39].

For the convenience of the reader, we now summarize some basic facts.

Let us begin by heuristically deriving the mean and variance of Xt. These

moments are determined by the infinitesimal mean and variance of the increment

Xt+s −Xt. Over a short time interval, it is obvious that

E (Xt+s −Xt | Xt = x) = βxs1 + δxs(−1) + o(s)

= (β − δ)xs+ o(s)

Var(Xt+s −Xt | Xt = x) = βxs12 + δxs(−1)2 + o(s) − [(β − δ)xs+ o(s)]2

= (β + δ)xs+ o(s).

If we take expectations in the equation

E (Xt+s | Xt) = Xt + (β − δ)Xts+ o(s),

form the corresponding difference quotient, and send s to 0, then we arrive at the

ordinary differential equation

d

dt
E (Xt) = (β − δ) E (Xt)

with solution

E (Xt) = E (X0)e(β−δ)t. (1)
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To derive a differential equation for the variance, we reason that

Var(Xt+s) = E [Var(Xt+s | Xt)] + Var[E (Xt+s | Xt)]

= E [Var(Xt+s −Xt | Xt)] + Var[Xt + (β − δ)Xts + o(s)]

= E [(β + δ)Xts+ o(s)] + [1 + (β − δ)s]2 Var(Xt) + o(s)

= (β + δ) E (Xt)s+ [1 + 2(β − δ)s] Var(Xt) + o(s).

Once again we form the difference quotient and send s to 0. These maneuvers yield

the ordinary differential equation

d

dt
Var(Xt) = (β + δ) E (Xt) + 2(β − δ) Var(Xt)

with solution

Var(Xt) = Var(X0)e2(β−δ)t + E (X0)
(β + δ)
(β − δ)

[
e2(β−δ)t − e(β−δ)t

]
. (2)

For our purposes, X0 is a constant n, so E (X0) = n and Var(X0) = 0.

Extinction is certain in a linear birth-death process in the subcritical case β < δ.

Fortunately, it is possible to calculate exactly the distribution function F (t) of the

extinction time starting with a single particle at time 0. The standard argument

hinges on the time until the first event, either a birth or death. This waiting time is

exponentially distributed with intensity η = β + δ. At the end of the waiting time,

the initial particle dies with probability p0 = δ/η or gives birth with probability

p2 = β/η. In the latter case, the clans issuing from the mother and daughter particles

behave independently and, in a stochastic sense, identically. These considerations

imply that

F (t + s) = (1 − ηs)F (t) + ηsp01 + ηsp2F (t)2 + o(s)

Forming the difference quotient and sending s to 0 now produce the ordinary differ-

ential equation

d

dt
F (t) = −(β + δ)F (t) + δ + βF (t)2
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of Ricatti type with initial condition F (0) = 0. The solution

F (t) =
δ − δe(β−δ)t

δ − βe(β−δ)t
. (3)

can be easily checked. Note that F (t) is the value of the well-known probability

generating function

E(sXt) = 1 +
1(

1
s−1 − β

δ−β

)
e(δ−β)t + β

δ−β

(4)

at s = 0 [39].

4 Stem Cell Extinction Times under Therapy

The major theme of this paper is the comparison of the times until extinction of the

two stem cell populations. We now apply and refine the elementary results of the

last section.

4.1 Extinction Times with Multiple Clans

Suppose we start with n stem cells at time 0. If Ti denotes the time of extinction of

the clan emanating from stem cell i, then we are interested in the timeMn = maxi Ti

at which all n clans go extinct. Assuming that each clan behaves independently as

a linear birth-death process with parameters β and δ, the distribution of Mn is

Pr(Mn ≤ t) = F (t)n,

where F (t) is given by equation (3). Fortunately, we can apply the asymptotic

theory of extreme order statistics [15] to understand the distribution of Mn. The

standard case of the theory says that there are two sequences of constants an and

bn such that

lim
n→∞

Pr
(Mn − an

bn
≤ t
)

= lim
n→∞

Pr(Mn ≤ an + bnt) = e−e−t
(5)

10



for all t. The extreme value (Gumbel) distribution exp(−e−t) has mean γ and

variance π2/6, where γ ≈ 0.57722 is the Euler-Mascheroni constant. The moment

generating function of the extreme value distribution can be written for argument

θ as
∫ ∞

−∞
eθxe−xe−e−x

dx = Γ(1 − θ) (6)

in terms of Euler’s gamma function. It is plausible that

E (Mn) ≈ an + γbn, Var(Mn) ≈ b2nπ
2

6
,

and we will prove this later.

The key to finding the sequences an and bn is to identify a function R(t) such

that

lim
t→∞

1 − F [t + xR(t)]
1 − F (t)

= e−x (7)

for all x. (See Theorem 14 of [15].) Once we have R(t) in hand, we determine an

and bn via the equations 1 − F (an) = 1
n and bn = R(an). In the current situation,

R(t) is the constant (δ − β)−1. The equation

1
n

= 1 − F (an) = 1 − δ − δe(β−δ)an

δ − βe(β−δ)an
=

δ − β

δe(δ−β)an − β

entails

n(δ − β) + β

δ
= e(δ−β)an,

which in turn implies

an =
1

δ − β

[
lnn + ln

(δ − β + β
n

δ

)]
. (8)

It follows that E (Mn) grows at the slow rate lnn and Var(Mn) tends to the constant

π2/[6(δ − β)2].
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These conclusions are all predicated on satisfaction of condition (7). In view of

equation (3), we have

lim
t→∞

1 − F [t + xR(t)]
1 − F (t)

= lim
t→∞

1− δe(δ−β)t+x−δ
δe(δ−β)t+x−β

1 − δe(δ−β)t−δ
δe(δ−β)t−β

= lim
t→∞

δe(δ−β)t − β

δe(δ−β)t+x − β

= e−x.

This proves condition (7) and validates all of the conclusions drawn from it.

We can also solve for the time t that renders the extinction probability F (t)n

equal to a given number p > 0. Since

lim
n→∞

1 − p
1
n

1
n

= − d

dx
(px) |x=0 = − ln p,

we have

ln
[
n(1 − p

1
n )
]

≈ ln(− ln p).

In view of the identity (3), the solution of the equation p = F (t)n therefore satisfies

t = − 1
δ − β

ln

(
δ − δp1/n

δ − βp1/n

)

=
1

δ − β

{
ln
(
δ − βp

1
n

)
− ln δ + lnn− ln

[
n(1 − p

1
n )
] }

(9)

≈ an − 1
δ − β

ln(− ln p).

This is precisely the approximation the extreme value theory entails.

As an illustration of our results, consider an advanced form of leukemia. We

now have separate birth rates, death rates, and initial numbers of stem cells, which

we subscript by the index H for healthy and C for cancerous, corresponding to

the normal hematopoietic stem cell (HSC) and cancer stem cell (CSC) populations.

Total initial hematopoietic stem cell population size (22, 000) is based on numbers
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extrapolated from murine and feline data [1]. Because recent evidence suggests

that HSCs divide approximately once every 42 weeks [1], we chose our birth rates

βH = βC = 0.02 week−1. Suppose for the sake of argument, we start with nH =

4, 400 and nC = 17, 600 and take δH = 0.08 week−1, and δC = 0.59 week−1. Our

asymptotic results allow us to examine the probability densities of the extinction

times of both CSCs and HSCs. The top panel of Figure 4 shows that the asymptotic

probability density of the extinction time of CSCs has a narrow spike around 18

weeks, whereas that of HSCs has a narrow spike around 139 weeks. We observe

good agreement between results obtained using the Gumbel approximation and

exact results obtained by differentiating the distribution function. There is very

little overlap between the two extinction-time densities. This suggests that for the

given parameter values, most likely the CSCs would be eradicated long before the

HSCs become extinct. The appearance of these probability density curves confirms

a wide therapeutic window of opportunity. However, when we take the death rates

δH = 0.31 week−1, and δC = 0.59 week−1, the densities displayed in the bottom

panel of Figure 4) dangerously overlap.

The weak lnn dependence of the sequence an on n suggests the possibility of

safely eradicating CSCs even when they sharply outnumber HSCs. In this regard,

it is helpful to define the selectivity σ of a therapy as the ratio

σ =
δC − βC

δH − βH

of the differences between death and birth rates for CSCs versus HSCs. For safe

eradication one needs σ to be substantially greater than lnnC/ lnnH .

Passing back and forth between the formulas (3) and (10) allows us to plot the

extinction probability for the HSCs at the time when the extinction probability for

the CSCs reaches a predetermined level p. The survival probability of the HSC

population increases fairly quickly as the difference between δH and δC grows. For

example, take δH = 0.08 week−1 and βC = βH = 0.02 week−1. To be 80% certain

13



that at least one ordinary stem cell remains when we are 99.9% certain no CSC

remains, δC must be 0.15 week−1 or larger, corresponding to s ≥ 2.2.

4.2 Convergence of Extinction Time Moments

The convergence in distribution displayed in equation (5) does not necessarily entail

convergence of moments. We address this delicate question first for means. Our

point of departure is the right-tail integral

E (Mn) =
∫ ∞

0
Pr(Mn > t) dt =

∫ ∞

0

{
1 −

[ δ − δe(β−δ)t

δ − βe(β−δ)t

]n}
dt

for the mean of Mn. To gain insight into how this integral depends on n, we make

the change of variables

s =
δ − δe(β−δ)t

δ − βe(β−δ)t
, t = − 1

(δ − β)
ln
δ − δs

δ − βs
. (10)

The change of variables implies the change in differentials

dt =
[ 1
(δ − β)(1− s)

− β

(δ − β)(δ − βs)

]
ds (11)

and the range of integration (0, 1) for s. Since

1 − sn

1 − s
= (1 + s+ · · ·+ sn−1),

it follows that

E (Mn) =
∫ 1

0
(1− sn)

[ 1
(δ − β)(1− s)

− β

(δ − β)(δ − βs)

]
ds

=
1

δ − β

[
1 +

1
2

+ · · ·+ 1
n

]
−
∫ 1

0

(1 − sn)β
(δ − β)(δ − βs)

ds (12)

=
1

δ − β
[lnn + γ] +

1
δ − β

ln
(δ − β

δ

)
+O

( 1
n

)
,

where γ enters the picture through the well-known expansion

Hn = lnn+ γ +
1
2n

+ O
( 1
n2

)
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Figure 4: Extinction time densities for CSCs and HSCs. Top: δC = 0.59 week−1,
δH = 0.08 week−1. Bottom: δC = 0.59 week−1, δC = 0.31 week−1.
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of the harmonic sum Hn = 1 + 1
2 + · · ·+ 1

n [22], and

β

δ − β

∫ 1

0

sn

δ − βs
ds = O

( 1
n

)

by virtue of the boundedness of 1/(δ−βs) on [0, 1]. Our formula for E (Mn) confirms

the limit

lim
n→∞

E
(Mn − an

bn

)
= γ.

We now validate a similar limit for the variance of the extinction times. Ex-

pressing the second moment as an integral of the right-tail probability and taking

into account equations (10) and (11) produce

E (M2
n) = 2

∫ ∞

0
tPr(Mn > t) dt (13)

= − 2
(δ − β)2

∫ 1

0
ln

(
1 − s

1 − β
δ s

)
(1− sn)

[ 1
(1 − s)

− β

(δ − βs)

]
ds.

We will attack the integral (13) in piecemeal fashion. For instance,

∫ 1

0
(1− sn)

ln(1 − s)
1 − s

ds =
∫ 1

0
ln(1− s)

n−1∑

k=0

skds

= −
∫ 1

0

∞∑

j=1

sj

j

n−1∑

k=0

skds

= −
∞∑

j=1

n−1∑

k=0

1
j(j + k + 1)

= −
∞∑

j=1

n−1∑

k=0

(1
j
− 1
j + k + 1

) 1
k + 1

= −
n−1∑

k=0

1
k + 1

(
1 +

1
2

+ · · ·+ 1
k + 1

)

= −
n∑

k=1

Hk

k
.
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Fortunately, the two further helpful identities
n∑

k=1

Hk

k
=

1
2

( n∑

k=1

1
k2

+H2
n

)
,

∞∑

k=1

1
k2

=
π2

6

are true [22]. It follows that
∫ 1

0
(1 − sn)

ln(1 − s)
1 − s

ds = −1
2

[π2

6
+ (lnn + γ)2

]
+O

( lnn
n

)
.

Another piece of the integral (13) is amenable to the fundamental theorem of

calculus; namely,

β

∫ 1

0

ln(1− β
δ s)

δ − βs
ds = −1

2

[
ln
(
1 − β

δ
s
)]2∣∣∣

1

0
= −1

2

[
ln
(
1 − β

δ

)]2
.

The integral

∫ 1

0

βsn
ln
(
1− β

δ s
)

δ − βs
ds = O

( 1
n

)

because (δ − βs)−1 and ln(δ − βs) are bounded on [0, 1]. Likewise,
∫ 1

0
βsn

ln(1 − s)
δ − βs

ds = O
( lnn
n

)

because
∫ 1

0

sn ln(1− s)ds = −
∫ 1

0

∞∑

j=1

1
j
sn+jds

= −
∞∑

j=1

1
j(n+ j + 1)

= O
( lnn
n

)
.

Two other parts of the integral partially cancel. The first part amounts to

−
∫ 1

0
ln
(
1 − β

δ
s
)1 − sn

1 − s
ds =

∫ 1

0

∞∑

j=1

(β
δ

)j sj

j

n−1∑

k=0

skds

=
∞∑

j=1

(β
δ

)j 1
j

n−1∑

k=0

1
j + k + 1

=
∞∑

j=1

(β
δ

)j 1
j
(Hn+j −Hj).
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The second part is

−
∫ 1

0

β ln(1− s)
1

δ − βs
ds =

β

δ

∫ 1

0

∞∑

k=1

sk

k

∞∑

j=0

(β
δ

)j
sjds

=
∞∑

j=1

(β
δ

)j
∞∑

k=1

1
k(j + k)

=
∞∑

j=1

(β
δ

)j 1
j

∞∑

k=1

( 1
k
− 1
j + k

)

=
∞∑

j=1

(β
δ

)j 1
j
Hj .

The sum of these two parts is
∞∑

j=1

(β
δ

)j 1
j
Hn+j =

∞∑

j=1

(β
δ

)j 1
j

[
ln(n+ j) + γ +O

( 1
n

)]

=
∞∑

j=1

(β
δ

)j 1
j

ln
(n+ j

n

)
+

∞∑

j=1

(β
δ

)j 1
j
(lnn + γ) + O

( 1
n

)

=
∞∑

j=1

(β
δ

)j 1
j

ln
(
1 +

j

n

)
− (lnn + γ) ln

(
1 − β

δ

)
+O

( 1
n

)

Because ln(1 + x) ≤ x for x > 0, it follows that
∞∑

j=1

(β
δ

)j 1
j

ln
(
1 +

j

n

)
≤ 1

n

∞∑

j=1

(β
δ

)j
= O

( 1
n

)
.

Putting together the various parts of the integral (13) and multiplying by − 2
(δ−β)2

give

E (M2
n) =

1
(δ − β)2

{π2

6
+
[
lnn+ γ + ln

(δ − β

δ

)]2}
+ O

( lnn
n

)
.

In view of the asymptotic expression (12) for the mean, we have

Var
(Mn − an

bn

)
=

π2

6
+ O

( lnn
n

)
,

which implies the convergence of the variance of b−1
n (Mn − an) to the variance of

the Gumbel distribution.

18



4.3 How Many HSCs Remain When CSCs Go Extinct?

The single most important measure of success in therapy is the count of HSCs when

the cancer stem cells go extinct. This is a difficult issue to attack mathematically

because one must take a snapshot of the HSC population at a random stopping

time. Let NH be the number of HSCs at the random time DC when the cancer stem

cells are eradicated. This notation is consistent with the convention in this section

of subscripting all quantities by either H and C to indicate the HSC population

and the CSC population, respectively. To make progress, we make the simplifying

assumption that the random variable

MnC
− anC

bnC

conforms exactly to the extreme value distribution. To recover the mean and vari-

ance of NH , we condition on DC in the formulas

E (NH) = E [E (NH | DC)] (14)

Var(NH) = E [Var(NH | DC)] + Var[E (NH | DC)]. (15)

Consider first the mean of NH . According to equation (1), we have

E (NH | DC) = nHe
(βH−δH)DC .

Thus, equation (14) shows that evaluation of E (NH) boils down to evaluation of

the moment generating function of DC . In view of equation (6), DC has moment

generating function

E (eθMnC ) = eanC
θΓ
(
1 − θbnC

)
. (16)

A brief calculation now gives

E (NH) = nHΓ
(

1 +
δH − βH

δC − βC

)[
nC(δC − βC) + βC

δC

]− δH−βH
δC−βC

.
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To calculate the variance of NH from the decomposition (15), we note that

equation (2) implies

Var(NH | DC) = nH
(βH + δH)
(βH − δH)

[
e2(βH−δH)DC − e(βH−δH)DC

]
.

Invoking the generating function (16) therefore yields

E [Var(NH | DC)]

= nH
(βH + δH)
(βH − δH)

Γ
(

1 + 2
δH − βH

δC − βC

)[
nC(δC − βC) + βC

δC

]−2
δH−βH
δC−βC

(17)

− nH
(βH + δH)
(βH − δH)

Γ
(

1 +
δH − βH

δC − βC

)[
nC(δC − βC) + βC

δC

]− δH−βH
δC−βC

.

We handle the second term on the right of equation (15) by first noting that

E [E (NH | DC)] = E (NH). We combine this with

E [E (NH | DC)2] = n2
H E [e2(βH−δH)DC )]

= n2
HΓ
(

1 + 2
δH − βH

δC − βC

)[
nC(δC − βC) + βC

δC

]−2
δH−βH
δC−βC

to get

Var[E (NH | DC)] = n2
HΓ
(

1 + 2
δH − βH

δC − βC

)[
nC(δC − βC) + βC

δC

]−2
δH−βH
δC−βC

(18)

−n2
HΓ
(

1 +
δH − βH

δC − βC

)2 [nC(δC − βC) + βC

δC

]−2
δH−βH
δC−βC

.

Equations (15), (17), and (18) fully determine Var(NH).

Let us define the killing efficiency κ of a therapy as the ratio of the death rate to

birth rate of CSCs, κ = δC/βC . We can then formulate the mean number of HSCs

present at the time when all the CSCs are eradicated as a function of the selectivity

σ of a therapy and the killing efficiency, according to the formula

E (NH) ≈ nHΓ
(
1 + σ−1

) [
nC(1− κ−1) + κ−1

]− 1
σ . (19)
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The variance can also be formulated as a function of κ and σ. Figure 5 plots the

average E (NH) as a function of σ and κ. A higher selectivity entails a higher average

number of HSCs at the time of eradication of the CSCs. For example, starting with

nH = 4, 400 and nC = 17, 600, with a killing efficiency κ = 25, and a selectivity

σ = 10 or greater, we expect approximately 1,581 HSCs to survive. It is noteworthy

that the selectivity required to ensure that, on average, 1, 000 HSCs remain at the

time of CSC extinction (σ = 10) is much higher than the selectivity required to be

80% sure that at least one HSC survives (σ = 2.2). Values of the average E (NH)

are heavily dominated by σ. Examination of equation (19) reveals that κ is less

important in determining the average E (NH). In contrast, κ does play a large role

in determining the average time to eradication of the CSCs. For instance with σ

held constant at 10, the extinction time is approximately 4 years when κ = 3 and

18 weeks when κ = 25). The corresponding values for E (NH) are 1,640 and 1,581.

4.4 Eigenfunction Expansions and Finite Fourier Transforms

Previous sections have dealt with means and variances. Finding the full distribution

of the number of HSCs at the time of extinction of the CSCs requires new techniques.

Here we explore two possibilities, eigenfunction expansions and Fourier analysis.

Despite their elegance, eigenfunction expansions turn out to be far less reliable than

approximations based on the finite Fourier transform.

The dynamics of linear birth-death processes that reach equilibrium are well

encapsulated by the classical Karlin-McGregor spectral representation [33]. This

formula applies to a general birth-death process with birth rate λn and death rate

µn in state n, where n in this case is the number of cells of a certain type. All of

these rates are positive except for µ0 = 0. If pmn(t) denotes the probability that the

system occupies state n at time t given that it starts in state m at time 0, then the
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Figure 5: Dependence of E (NH) on selectivity σ and killing efficiency κ of a therapy.
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forward and backward equations

d

dt
pmn(t) = λn−1pm,n−1(t)− (λn + µn)pmn(t) + µn+1pm,n+1(t)

d

dt
pmn(t) = λmpm+1,n(t) − (λm + µm)pmn(t) + µmpm−1,n(t)

govern the evolution of the system subject to the initial conditions pmn(0) = 1{m=n}.

The Karlin-McGregor representation constitutes a diagonalization of the matrix

exponential of infinite dimension solving the forward and backward equations. It is

based on a finite spectral measure ω and corresponding set of orthogonal polynomials

qn(x). The representation reads

pmn(t) = πn

∫ ∞

0
e−xtqm(x)qn(x)dω(x), (20)

where the vector π with components

π0 = 1, πn =
λ0λ1 · · ·λn−1

µ1µ2 · · ·µn
, n > 0,

is the equilibrium distribution up to a normalizing constant. The orthogonality

relations
∫∞
0 qm(x)qn(x)dω(x) = 1{m=n}π

−1
n are designed to capture the initial con-

ditions pmn(0) = 1{m=n}. If we choose q0(x) = 1, then the normalizing constant

necessarily equals the mass that ω assigns to the point 0. The recurrence

−xqn(x) = λnqn+1(x) − (λn + µn)qn(x) + µnqn−1(x),

starting with q−1(x) = 0 and q0(x) constant, ensures the validity of the forward

equations. It also guarantees that qn(0) = q0(0) for all n.

Unfortunately, the Karlin-McGregor formula (20) does not apply to our model

with λn = nβ and µn = nδ because λ0 = 0. We can force compliance by introducing

immigration. This corresponds to taking λn = nβ+βλ, where βλ is the immigration

rate. In the altered model, the process reaches a nontrivial equilibrium in the
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subcritical setting β < δ. One can also show that the spectral measure follows a

negative binomial distribution putting probability

ω({(δ − β)x}) =
(
λ+ x− 1

x

)(
1 − β

δ

)λ(β
δ

)x

on the point (δ − β)x for each nonnegative integer x [33]. We shift mass from the

point (δ − β)x to the integer x by replacing e−xt in the Karlin-McGregor formula

by e−(δ−β)xt. With this change made, the relevant orthogonal polynomials qn(x) are

the Meixner polynomials

Mn(x;λ, ρ) =
n∑

k=0

(−n)k(−x)k

(λ)kk!

(
1 − 1

ρ

)k

with ρ = κ−1 = β/δ. Note here the use of the rising polynomial notation (y)k =

y(y+ 1) · · ·(y+ k− 1). The Meixner polynomials are hypergeometric functions sat-

isfying M0(x;λ, ρ) = 1 and Mn(x;λ, ρ) = Mx(n;λ, ρ). In view of this last property,

we can write the Karlin-McGregor formula as

pmn(t) = πn

∞∑

x=0

e−(δ−β)xtMx

(
m;λ,

β

δ

)
Mx

(
n;λ,

β

δ

)(λ+ x− 1
x

)(
1 − β

δ

)λ(β
δ

)x
.

Following the lead of Ismail et al. [30], we now take limits in this version of

the Karlin-McGregor representation as λ tends to 0. In the limit, state 0 becomes

absorbing, so limλ→0 p0n(t) = 1{n=0}. The case m > 0 is more delicate. The x = 0

term in our modified expansion tends to 1 when n = 0 and to 0 when n > 0. When
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x > 0 and n > 0, an important part of the limit is

lim
λ→0

Mx

(
n;λ,

β

δ

)(λ+ x− 1
x

)

= lim
λ→0

x∑

k=0

(−x)k(−n)k

(λ)kk!

(
1 − δ

β

)k (λ)x

x!

=
x∑

k=1

(−x)k(−n)k

x(k − 1)!k!

(
1 − δ

β

)k

= n
(
1 − δ

β

) x−1∑

k=0

[−(x− 1)]k[−(n− 1)]k
k!(k + 1)!

(
1 − δ

β

)k

= n
(
1 − δ

β

)
Mx−1

(
n− 1; 2,

β

δ

)
.

In the same situation,

lim
λ→0

πnMx

(
m;λ,

β

δ

)
=

mx

n

(β
δ

)n(
1 − δ

β

)
Mx−1

(
m− 1; 2,

β

δ

)
.

Combining these two limits produces the expansion

lim
λ→0

pmn(t)

= m
(β
δ

)n(
1 − δ

β

)2
∞∑

x=1

xe−(δ−β)xtMx−1

(
m− 1; 2,

β

δ

)
Mx−1

(
n − 1; 2,

β

δ

)(β
δ

)x

for m > 0 and n > 0. Finally, when m > 0 and n = 0, similar arguments yield

lim
λ→0

pm0(t) = 1 +m
(
1 − δ

β

) ∞∑

x=1

e−(δ−β)xtMx−1

(
m− 1; 2,

β

δ

)(β
δ

)x
.

These representations of pmn(t) are convenient in studying the distribution of

the number of HSCs at a random time because they depend on time only through

the factors e−(δ−β)xt. Invoking the Gumbel approximation (16) to the moment

generating function of the extinction time DC of the CSCs gives

E [e−(δH−βH )xDC ] ≈
[
nC(1 − βC

δC
)
]−x(δH−βH )

δC−βC Γ
[
1 +

x(δH − βH)
δC − βC

]
.
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The top panel of Figure 6 shows the distribution of the number of HSCs NH at the

random extinction time of the CSCs based on the limiting eigenfunction expansions

with the Gumbel approximation. Here the parameter values are nH = 4, 400, βH =

0.024 week−1, δH = 0.03 week−1, nC = 17, 600, βC = 0.024 week−1, and δC = 0.036

week−1. Smaller death rates are used for this comparison of the two methods because

we were not able to obtain meaningful results from the eigenfunction expansion using

higher death rates.

The eigenfunction approximation to the distribution ofNH suffers serious round-

off errors when NH is supported on a large number of points. The terms in the series

are large and tend to alternate in sign. Fourier analysis offers a more numerically

stable method of computing the distribution of NH . The Fourier approach applies

generically to any probability generating function P (s) =
∑∞

j=0 pjs
j [27, 38]. To

extract the coefficients of P (s), extend it to the boundary of the unit circle in the

complex plane via the equation P (e2πit) =
∑∞

j=0 pje
2πijt, where i =

√
−1. This

creates a periodic function in t whose kth Fourier coefficient pk can be recovered via

the finite Riemann sum

pk =
∫ 1

0

P (e2πit)e−2πiktdt ≈ 1
m

m−1∑

j=0

P (e2πij/m)e−2πikj/m.

In practice, one evaluates this finite Fourier transform via the fast Fourier transform

algorithm for some large powerm of 2. For sufficiently largem, all of the coefficients

p0, ..., pm−1 can be computed accurately. Accuracy can be checked by comparing

the numerically computed mean of P (s) with its theoretical mean and variance.

To apply the Fourier method to found the distribution of NH , let GH(s, t) and

GC(s, t) be the probability generating functions of the number of HSCs and CSCs

at the fixed time t. These are special cases of expression (4). Thus the generating

function of the number of normal stem cells at the random time when cancer stem
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Figure 6: Comparison of two numerical methods for calculating the distribution of
normal stem cells when cancer stem cells are eradicated. The parameter setting is
nH = 4, 400, βH = 0.024 week−1, δH = 0.03 week−1, nC = 17, 600, βC = 0.024
week−1, and δC = 0.036 week−1. Top: Based on the Karlin-McGregor representa-
tion. Bottom: Based on the finite Fourier transform.
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cells are eradicated is given by

GNH
(s) =

∫ ∞

0
GH(s, t)

∂

∂t
GC(0, t)dt,

which can be numerically evaluated for any s, including s on the boundary of the unit

circle. With this generating function at our disposal, we can retrieve the distribution

of NH by the fast Fourier transform as just explained.

The top panel of Figure 6 shows the distribution of normal cells at the random

time when cancer stem cells become extinct calculated by fast Fourier transform

under the same parameter settings. The numerical means and variances from both

distributions match those implied by formulas (14) and (15). In the following nu-

merical experiments, we only show the results from the more stable finite Fourier

transform method. Figures 7 and 8 display the distributions of normal stem cells

at fixed and random times under two typical parameter settings.

4.5 Therapy in the Presence of Quiescence

In the reversible state of quiescence, a stem cell does not divide. For many targeted

therapies, the death rates of quiescent stem cells and active stem cells will be the

same. Here we consider therapies that target actively dividing stem cells and largely

spare quiescent stem cells. In this case, we predict that the active cancer stem cell

population will be eradicated first and leave behind a quiescent cancer stem cell

population, which on awakening causes recurrence of the cancer. We now present

a model that validates this intuition. The model therefore highlights the danger in

targeting only active cancer stem cells. For the sake of simplicity, we ignore the

slow flow of active stem cells into the resting state of quiescence. We will repair this

defect in Section 4.6.

Let ν be the death rate per quiescent cancer stem cell, α be rate of awakening

of a quiescent cancer stem cell, and G(t) be the probability that a quiescent cancer

stem cell and all of its descendants have gone extinct by time t. As in the previous
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Figure 7: Distribution of HSCs when CSCs become extinct, assuming death rate
of HSCs δH = 0.08 week−1. Initial clan sizes are nH = 4, 400 and nC = 17, 600,
birth rates are βH = βC = 0.024 week−1, and death rate of CSCs δC = 0.59 week−1.
Top: Distribution at the (fixed) mean cancer extintction time 18 weeks. Bottom:
Distribution at the (random) cancer extinction time.
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Figure 8: Distribution of HSCs when CSCs become extinct, assuming death rate
of HSCs δH = 0.31 week−1. Initial clan sizes are nH = 4, 400 and nC = 17, 600,
birth rates are βH = βC = 0.024 week−1, and death rate of CSCs δC = 0.59 week−1.
Top: Distribution at the (fixed) mean cancer extintction time 18 weeks. Bottom:
Distribution at the (random) cancer extinction time.
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model, β and δ are the birth and death rates, respectively, per cell for the actively

dividing cancer stem cells. We begin by deriving an expression for G(t). Considering

the short time interval (0, s), it is clear that

G(t+ s) = [1 − (α+ ν)s]G(t) + νs+ αsF (t) + o(s),

where F (t) is the extinction probability by time t starting with a single active stem

cell. Sending s to 0 leads to the differential equation

d

dt
G(t) = −(α+ ν)G(t) + ν + αF (t).

with solution

G(t) =
ν

α+ ν

[
1 − e−(α+ν)t

]
+ αe−(α+ν)t

∫ t

0

e(α+ν)sF (s)ds.

Given the identity

αe−(α+ν)t

∫ t

0
e(α+ν)sds =

αe−(α+ν)t

α+ ν

[
e(α+ν)t − 1

]

=
α

α+ ν

[
1 − e−(α+ν)t

]
,

it follows that

G(t) = 1− e−(α+ν)t + αe−(α+ν)t

∫ t

0

e(α+ν)s [F (s) − 1]ds. (21)

In view of equation (3), we have

1− F (t) =
(δ − β)e(β−δ)t

δ − βe(β−δ)t
.

Substituting this in equation (21) produces

1 −G(t) = e−(α+ν)t + αe−(α+ν)t

∫ t

0
e(α+ν)s [1 − F (s)]ds

= e−(α+ν)t

[
1 + α

∫ t

0
e(α+ν)s (δ − β)e(β−δ)s

δ − βe(β−δ)s
ds

]
.
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Further progress can be made by exploiting the expansion

1
1 − β

δ e
(β−δ)s

=
∞∑

k=0

(β
δ

)k
ek(β−δ)s

in the integral

∫ t

0
e(α+ν)s (δ − β)e(β−δ)s

δ − βe(β−δ)s
ds =

(δ − β)
δ

∫ t

0

∞∑

k=0

(β
δ

)k
e[α+ν+(k+1)(β−δ)]sds

=
(δ − β)
δ

∞∑

k=0

(β
δ

)k e[α+ν+(k+1)(β−δ)]t − 1
α + ν + (k + 1)(β − δ)

.

In conclusion, we find that

1 −G(t) = e−(α+ν)t
[
1 − α(δ − β)

δ

∞∑

k=0

(β
δ

)k 1
α+ ν + (k+ 1)(β − δ)

+
α(δ − β)

δ

∞∑

k=0

(β
δ

)k e[α+ν+(k+1)(β−δ)]t

α+ ν + (k + 1)(β − δ)

]
. (22)

The explicit expression (22) allows us to determine the fate of a population of

m cancer stem cells in quiescence. Consistent with our assumption that the killing

rate δ of active cancer stem cells is much higher than the killing rate ν of quiescent

cancer stem cells, we take α + ν + β − δ < 0. In this regime, formula (22) can be

replaced by the approximation

1 − G(t) = e−(α+ν)t [1 + c+ o(1)] (23)

where c is the positive constant

c = −α(δ − β)
δ

∞∑

k=0

(β
δ

)k 1
α+ ν + (k + 1)(β − δ)

.

Note that the error term o(1) in (23) tends to 0 exponentially fast as t tends to ∞.

The extinction time for the last surviving clan issuing from them initial quiescent

stem cells has distribution function Gm(t) = G(t)m. The asymptotic theory of
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extreme order statistics also applies to Gm(t). Once again we proceed by identifying

a constant R such that

lim
t→∞

1 −G(t+ xR)
1 −G(t)

= e−x

for all x. In light of the approximation (23), we have

1 −G(t+ xR)
1 − G(t)

=
e−(α+ν)(t+xR) [1 + c+ o(1)]
e−(α+ν)t [1 + c+ o(1)]

= e−(α+ν)xR [1 + o(1)] ,

and this ratio approaches e−x if and only if R = (α+ν)−1. Therefore, the previously

cited extreme value theorem implies that

lim
m→∞

Gm(am + bmt) = e−e−t

for sequences am and bm defined by

1
m

= 1 −G(am) = e−(α+ν)am [1 + c+ o(1)]

and bm = R = (α+ ν)−1. Ignoring the error term o(1), we deduce that

am =
1

α+ ν

[
lnm+ ln(1 + c)

]
.

The bottom line of this analysis is that the mean time to extinction for the m

quiescent cancer stem cells is approximately

1
α+ ν

[
lnm+ ln(1 + c)

]
+

γ

α + ν
. (24)

On the other hand, the mean extinction time for the n active cancer stem cells is

1
δ − β

[
lnn + ln

(δ − β + β
n

δ

)]
+

γ

δ − β
. (25)

Our assumption α+ ν < δ − β is equivalent to (δ − β)−1 < (α+ ν)−1. Thus, unless

n is much larger than m, the active cancer stem cells go extinct before the quiescent

cancer stem cells. This is the opposite of what a viable therapy should achieve.
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4.6 Distribution of HSCs in the Presence of Quiescence

Instead of ignoring flow into the quiescent state, one can incorporate it as part of

a comprehensive branching process model [12]. We now briefly sketch this model.

Consider a two-type branching process with quiescent cells as type 1 particles and

active cells as type 2 particles. In addition to the notation of the previous section,

let φ be the rate per cell of falling into quiescence. In a branching process, a particle

reproduces at the time of its death. Let fij be the mean number of daughter particles

of type j that a type i particle produces. Straightforward reasoning determines the

reproduction matrix F = (fij) in our model as

F =

(
0 α

α+ν
φ

φ+β+δ
2β

φ+β+δ

)
.

Other key ingredients are the death rates per particle. These can be summarized

by the vector ψ with components ψ1 = α+ ν and ψ2 = φ+ β+ δ. These constructs

determine a matrix M(t) whose typical entry mij(t) equals the mean number of

particles of type j at time t starting with a single particle of type i at time 0. Again

standard arguments show that M(t) = etΩ, where Ω = [ψi(fij − 1{i=j})]. Similar

but more complicated reasoning yield the variance-covariance matrix of the particle

counts starting from any initial configuration of particles [12].

To capture the full distribution of particle counts at a future time, it is convenient

to introduce a bivariate generating function Pi(t, z) for the joint particle counts at

time t starting from a single particle of type i at time 0. In our model, the backward

differential equations for these two generating functions amount to

∂

∂t
P1(t, z) = −(α + ν)P1(t, z) + ν + αP2(t, z)

∂

∂t
P2(t, z) = −(φ + β + δ)P2(t, z) + δ + φP1(t, z) + βP2(t, z)2

with initial condition Pi(0, z) = zi. The probability of extinction by time t equals

P1(t, 0)n1P2(t, 0)n2 , where ni is the number of type i particles at time 0. Although
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it is impossible to solve for P1(t, z) and P2(t, z) analytically, it is certainly possible

to solve for them numerically for any fixed value of z. This suggests retrieving the

bivariate distributions via the 2D fast Fourier transform. In practice, this procedure

works well and gives means and variances closely approximating the theoretical

means and variances. Extension to the kind of random times we have stressed is

feasible. Figure 9 displays some typical results, for the parameter choices: βH =

βC = 0.024 week−1, δC = 0.59 week−1, δH = 0.08 week−1, νH = νC = 0.00024

week−1, φC = φH = 0.007 week−1, and αC = αH = 0.07 week−1. Here we show

the distribution of quiescent and active CSCs at the fixed mean extinction time of

active CSCs, as estimated from equation (25), and the distribution of HSCs at the

mean extinction time of quiescent CSCs, as estimated from equation (24). Finally,

we show the distribution of HSCs at the random time of extinction of both quiescent

and active CSCs.

5 Stochastic Simulation

Because branching process models resist full mathematical analysis, progress de-

pends on a variety of numerical tools. Unfortunately, as model complexity increases,

all known deterministic numerical methods falter under the overwhelming computa-

tional loads. At this point simulation becomes an attractive alternative. Simulation

has the further virtue of simplicity of implementation. Even when better tools are

available, simulation promotes rapid testing of models and checking of approximate

solutions. For these reasons, we now describe our experience with stochastic simu-

lation in the stem cell model.

Recent advances in stochastic simulation are geared to the study of continuous-

time Markov chains with a finite number of particle types, interacting via a finite

number of reaction channels. While the methods first described by Gillespie [18, 19]

were rooted in applications to chemical reaction kinetics, particle-based stochastic
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Figure 9: Dynamics of quiescent and active HSCs and CSCs at fixed and random
extinction times. Top: Distribution of HSCs remaining at the mean extinction time
of quiescent CSCs (114 weeks). Middle: Distribution of CSCs at the mean extinction
time of active CSCs (18 weeks). Bottom: Distribution of HSCs at the random time
of CSC extinction. 36



simulation models have broad applications in fields as diverse as queuing theory, pop-

ulation dynamics, gene regulation, and biochemical networks [28, 60]. The stochastic

simulation algorithm (SSA) employs a wait and jump mechanism to simulate the

behavior of a chain. Because it simulates every reaction, SSA can be annoyingly

slow in models with large particle counts. The τ -leaping method [7, 20] leaps over

intermediate events by taking a fixed time step of length τ , chosen so that all re-

action propensities (intensities) are relatively constant during the leap interval. At

the end of the interval, each reaction channel fires a Poisson number of times with

mean determined by the product of its propensity and τ . The τ -leaping method

trades small losses in accuracy for much larger time steps. Our recent step antic-

ipation leaping (SAL) method [53] generalizes τ -leaping by projecting linear and

quadratic changes in reaction propensities. This promotes better accuracy without

compromising speed. Here we employ the SAL method to explore stem cell dynam-

ics in both the presence and absence of quiescence. The simulations substantiate

our previous analytic and numerical results.

In a continuous-time Markov chain with a finite number of particle types, let Xt

be the particle count vector at time t, rj be the propensity of reaction j, and εj be

the increment to Xt caused by the firing of reaction j. The τ -leaping method runs

an independent Poisson process for each reaction channel and sums the results over

short time intervals. In ordinary τ -leaping, reaction channel j will fire rjτ times on

average during (t, t + τ). One therefore updates the particle count vector Xt = x

by the sum Xt+τ = x +
∑

j Njε
j , where Nj are independent Poisson variates with

means rjτ . In SAL, we expand each propensity to first order, replacing the constant

intensity rj of ordinary τ -leaping by the linear intensity

rj(Xt+s) ≈ rj(Xt) +
d

dt
rj(Xt)s.

Under this approximation, reactions of type j occur according to an inhomogeneous

37



Poisson process during (t, t+ τ), and the mean number of reactions is

ωj(t, t+ τ) =
∫ τ

0

[
rj(Xt) +

d

dt
rj(Xt)s

]
ds = rj(Xt)τ +

d

dt
rj(Xt)

1
2
τ2.

This raises the question of how to calculate the derivative d
dtrj(x). The most

natural route uses the chain rule

d

dt
rj(x) =

d∑

k=1

∂

∂xk
rj(x)

d

dt
xk

and sets

d

dt
xk =

c∑

j=1

rj(x)ε
j
k, (26)

where εjk is the increment to species k caused by reaction j. The reaction rate

equation (26) models the mean behavior of the system when particle counts are

high and stochastic fluctuations can be ignored. The following examples employ

linear SAL. Quadratic extrapolation is possible, but the improvements over linear

extrapolation are rather modest [53].

Empirical Distribution of HSCs When CSCs Go Extinct

In our basic model without quiescence, there are 2 populations of cells and 4 reac-

tion channels. The Markov chain Xt has component Xt1 counting the CSCs and

component Xt2 counting the HSCs. Table 1 lists the reaction channels, propensities,

and reaction increments. Here εkj indicates the change in species k under reaction

j. Any unspecified εkj is assumed to be 0.

Stochastic simulation allows us to explore the distribution of the number NH of

HSCs at the random time of extinction of the CSCs; we simply record the number

of HSCs when the CSC count reaches 0. Figure 10 shows the distribution of NH

over 10,000 SAL trials for the two values δH = 0.08 week−1 and δH = 0.31 week−1.
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Reaction Propensity Increment Vector

CSC birth βCx1 ε11 = +1
CSC death δCx1 ε21 = −1
HSC birth βHx2 ε32 = +1
HSC death δHx2 ε42 = −1

Table 1: Simulation of CSCs and HSCs under therapy.

The other reaction rates βC = βH = 0.024 week−1 and δC = 0.59 week−1 match our

earlier choices.

These results highlight the dependence of NH on the selectivity σ of therapy. In

the top panel of Figure 10, with selectivity σ = 10, there is very little chance that

the population of HSCs goes extinct before all CSCs are eradicated. By contrast,

in the bottom panel of Figure 10, with selectivity σ = 2, there is a good chance

that HSCs go extinct before CSC eradication. The random variable NH has mean

± one standard deviation of 1, 580 ± 198 for σ = 10 and 30.0 ± 17.1 for σ = 2.

These results agree well with our analytic formulas and numerical results based on

the finite Fourier transform.

Simulations in the Presence of Quiescence

When we introduce quiescence into the model, we have 4 populations of cells: active

CSCs (type 1) and HSCs (type 2) and quiescent CSCs (type 3 or qCSC) and HSCs

(type 4 or qHSC). Table 2 lists the reactions, propensities, and increment vectors of

the extended model.

Because the deaths of quiescent cells, both qCSCs and qHSCs, are rare events, we

set νC = νH = 0.00024 week−1. To deduce the relative rates of awakening and falling

into quiescence, consider a simple 2-state Markov chain ignoring birth and death and

modeling only the passage of a single stem cell back and forth between the active
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Reaction Propensity Increment Vector

CSC birth βCx1 ε11 = +1
CSC death δCx1 ε21 = −1
CSC quiescence φCx1 ε31 = −1, ε33 = +1
qCSC awakening αCx3 ε41 = +1, ε43 = −1
qCSC death νCx3 ε53 = −1
HSC birth βHx2 ε62 = +1
HSC death δHx2 ε72 = −1
HSC quiescence φHx2 ε82 = −1, ε84 = +1
qHSC awakening αHx4 ε92 = +1, ε94 = −1
qHSC death νHx4 ε10

4 = −1

Table 2: Simulation with quiescence and awakening

and quiescent states. This chain is reversible, and the principle of detailed balance

identifies π = α/(φ + α) as the equilibrium fraction of active stem cells. Based

on observations in adult mice that approximately 75 % of long-term self-renewing

hematopoietic stem cells are quiescent [9], and observations in patients with chronic

myelogenous leukemia that 8.7 % of CD34 cells are in a quiescent state [29], we take

πH = 0.25 and πC = 0.9. While no data are available on rates of activation and

quiescence of stem cells, we start with activation rates αH = αC = 0.07 week−1, and

calculate the rates of quiescence φH = 0.21 week−1 and φC = 0.007week−1 using

the detailed balance condition. Given a total stem cell population size of 22, 000

[1], we again start with a large proportion (80%) of CSCs: nH = 4, 400 HSCs and

nC = 17, 600 CSCs. Based on the above proportions of quiescent and active HSCs

and CSCs, the initial value X0 = x has components x1 = 15, 840, x2 = 1, 100,

x3 = 1, 760, and x4 = 3, 300.

We will consider two cases. The first assumes a slow backflow to quiescence

(φC = φH = 0.007 week−1). This scenario may be more realistic as quiescence is

most likely regulated by similar mechanisms for both types of cells, and healthy stem

41



cells might be expected to spend more time in an active state during malignancy.

The second scenario is less likely and assumes that the CSCs and HSCs have reached

two different equilibrium distributions. Here the backflow of quiescence is slow for

CSCs (φC = 0.007 week−1) and fast for HSCs (φH = 0.21 week−1). We use our

previous birth rates βH = βC = 0.024 week−1 and death rates δC = 0.59 week−1

and δH = 0.08 week−1.

Following the trajectories of the 4 populations of stem cells over time in Figure

11, we see it takes a much longer time for the CSCs to go extinct when quiescence

is involved (t= 40 weeks). When the backflow to quiescence is much slower for

CSCs (φC = 0.007 week−1; φH = 0.21 week−1), there is still an adequate number of

HSCs at the time of extinction of the CSCs, approximately 590 (124 active and 466

quiescent), though far fewer than if therapy were to target quiescent CSCs. However,

when backflow to quiescence is slow for both CSCs and HSCs, φC = φH = 0.007

week−1, by the time all CSCs are finally eradicated, there are only approximately

18 HSCs (13 active and 5 quiescent). In the second scenario, quiescence serves as

a sanctuary for the HSCs. The first scenario agrees with the analytic results of our

modeling described in Section 4.5 and emphasizes the need for therapy to target

both active and quiescent CSCs. The second scenario hints at greater subtlety and

emphasizes the need for accurate measurement of all parameters.

6 Conclusions

Cancer therapy based on eradicating CSCs is admittedly speculative. However,

given the toll of mortality and morbidity exacted by cancer, this is a strategy worth

considering in detail. Mathematical models can guide the rational design of drugs

and treatments. Of course, model predictions will have to checked by animal ex-

periments and careful analysis of patient outcomes. Premature trials with poor

outcomes can sour the prospects of even a good therapy. Our findings are cause for
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guarded optimism. We have shown that the relative numbers of CSCs and HSCs

at the time of initiating therapy are less relevant than the selectivity of therapy.

Modeling stem cell population dynamics as a birth-death process permits charac-

terization of the extinction times for active and quiescent stem cells and calculation

of the distribution of the number of HSCs at the time of eradication of CSCs. We

anticipate that comparing in vitro killing rates of CSCs and HSCs will be useful

in screening targeted therapies. How applicable the models will be depends on un-

derlying parameters such as absolute quantities of stem cells, death rates of HSCs

and CSCs, and relative rates of quiescence and awakening. These parameters will

doubtless vary for different tumor types and stem cell populations.

Cancer modeling is becoming more of a preoccupation for applied mathemati-

cians. The variety of approaches is impressive. These range from continuum mechan-

ics models of tumor growth to reaction-diffusion models of tumor vascularization and

optimization of radiation doses in radiation therapy [3, 8, 17, 54]. Branching pro-

cesses and continuous-time Markov chain models have long provided quantitative

insights into the dynamics of cancer initiation and proliferation [36, 39]. Our stem

cell models continue in this tradition. In stem cell dynamics, the population of

HSCs is critically small, and their chance elimination has devastating consequences.

This sober fact highlights the importance of tight control over killing differentials.

Stochastic models of drug resistance of stem cells have also been explored [21, 37, 44].

Here modeling mutation is crucial. Further research is surely merited on the muta-

tional pathways leading to cancer, the genetic instability of cancer stem cells, the

development of resistance mutations during therapy, and the role of the stem cell

niche in regulating stem cell and progenitor expansion.

We predict that stochastic simulation methods will play an increasing role in the

development of more sophisticated cancer models. Stochastic simulation is ideal for

studying complex systems with multiple cellular species tied together by multiple
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reaction channels. We have modeled sensitivity to therapy by varying death rates.

To capture the role of the stem cell niche, one could assign CSCs that escape niche

regulation higher birth rates or higher rates of awakening from quiescence. We have

omitted progenitor cells and partially and fully differentiated cells from our models.

Adding all of the complications requires flexible modeling tools. Multitype branch-

ing processes can take us only so far. As soon as the different cell types begin to

interact, the branching process paradigm breaks down. This should not mean the

abandonment of stochastic models, but it does put a premium on the development

of faster, more accurate, and more convenient implementations of stochastic simu-

lation. These urgent needs and the burgeoning of systems biology as a whole will

drive the field of stochastic simulation.

In conclusion, mathematical modeling and the development of rational stem cell

therapy will go hand in hand. The current stem cell models give us hope that

attacking CSCs can cure cancer. To be successful, targeted therapies must be tuned

to spare HSCs and eradicate quiescent as well as active CSCs. This second criterion

rules out drugs that solely attack dividing cells. Only stochastic models can capture

the extinction and small numbers phenomena connected with stem cells. These

models will ultimately provide the same extraordinary insight into cancer therapy

responses and resistance that they have in HIV treatment [11]. If we are fortunate,

models of the two diseases will cross fertilize each other for years to come.
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