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Packing and Protein Structure
by

Lydia Maria Gregoret

Abstract

This thesis addresses the protein folding problem from a computational perspec

tive. A central theme to the work presented here is amino acid packing in proteins. A

method for evaluating packing in model-built, or predicted protein structures is

described in Chapter 2. The effects of compactness on protein folding are studied in

Chapter 3. Chapter 4 is a description of a method of protein structure prediction

known as “modeling by homology,” along with an application of this technique to an

enzyme involved in schistosomal infection, and a method for modeling the conforma

tions of side chains in homology-built structures. Chapter 5 describes the frequency

and significance of hydrogen bonds involving sulfur atoms in proteins, and Chapter 6

describes unusual packing of proteases.
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Chapter 1.

Introduction



Proteins are crucial to every cellular function. They are involved in the catalysis of

chemical reactions, the transport of molecules across cell membranes and through the

blood, cell - cell communication, cell motility and muscle contraction, and cell division

and growth. The three-dimensional structures of proteins are therefore interesting

because they give us an understanding of the mechanisms of these actions at a
molecular level.

Protein structures are currently determined using x-ray crystallography and nuclear

magnetic resonance spectroscopy (NMR). These methods are time-consuming and

depend on technical variables such as whether a protein will crystallize (in the case of

x-ray crystallography) or whether a protein is soluble in water at high concentration

(in the case of NMR). The structures of only several hundred proteins have been

determined using these techniques. In contrast, the number of protein sequences

determined using DNA cloning and sequencing methods is in the tens of thousands. It

would be extremely useful to have an efficient way to translate these sequences into
StructureS.

Thus, the protein folding problem may be stated as follows: how does the amino

acid sequence of a protein (its primary structure) determine its three dimensional (or

tertiary) structure? It was first shown by Christian Anfinsen and co-workers

(Anfinsen et al., 1961) that the small protein, ribonuclease A, could refold in vitro into

an active catalyst from a large collection of denatured conformations. It is hypothe

sized that the active, folded conformation is found by the polypeptide chain because it

is at a global free energy minimum (Kauzmann, 1959; Dill, 1990). Though more than

thirty years have passed since Anfinsen’s fundamental experiments, no one has yet

discovered how the three-dimensional structure of a protein is encrypted in its

Sequence.

This thesis addresses the protein folding problem from a computational perspec

tive. A central theme to the work presented here is amino acid packing in proteins.

Globular proteins, those which are soluble in water, are observed to be very well

packed (Richards, 1977). Protein interiors do not contain holes or large, water-filled



cavities, and the volumes occupied by amino acids in a protein are not unlike the vol

umes of the amino acids in pure crystals (Chothia, 1975). It is remarkable that

proteins are so efficiently packed. Efficient packing, however, may be inevitable. A

protein is probably forced to be compact by the hydrophobic effect which seeks to

minimize exposed, non-polar surface area in water (Chan & Dill, 1990; Lau & Dill,

1990). There is evidence that even when the volume of several nearby, internal

residues is changed dramatically, the protein accommodates by rearranging slightly,

but still retaining the same overall fold (Lesk & Chothia, 1980; Lim & Sauer, 1989;

Lim & Sauer, submitted)

A method for the evaluation of packing in proteins and the effects of compactness

on protein folding are presented in this thesis. The thesis is organized as follows. In

Chapter 2, a new method for evaluating the quality of predicted protein structures on

the basis of amino acid packing and amino acid distribution is described. Evaluating

packing in model-built protein structures can give a measure of model quality and can

serve to help sort between alternative predictions. The method uses a simplified

representation of the polypeptide chain where amino acids are modeled as spheres

(Gregoret & Cohen, 1990).

Chapter 3 is a study of the significance of compactness in driving secondary struc

ture formation. It has long been assumed that the hydrogen bonding capability of the

polypeptide backbone is responsible for the preponderance of 0-helices and 3-sheets

in proteins. Recent studies by Chan and Dill (1990) suggest that compactness, aris

ing from the hydrophobic effect which seeks to minimize exposed, non-polar surface

area in water, may account for a significant fraction of the secondary structure we see

in proteins. By exhaustively searching conformation space on a cubic lattice, these

workers found that in maximally compact structures, fifty percent of residues, on aver

age, were in either a helical or a sheet-like conformation. In order to determine if com

pactness alone can explain the secondary structure content of real proteins, I have

tested the Chan-Dill hypothesis off the lattice by generating more realistic structures

using a self-avoiding random walk. The results of this work suggest that compactness

3



does indeed promote the formation of secondary structure. Without the constraint of a
lattice, however, most of the structure which forms is helical. Sheet formation is rare,

suggesting that other forces, perhaps hydrogen bonds, may be necessary to bring

together strands which are sequentially distant from one another along the

polypeptide chain.

Chapter 4 focuses on a method of protein structure prediction known as modeling

by homology. This is the most successful method of structure prediction because the

structure of the protein of interest is modeled based on a related protein whose three

dimensional structure has been determined experimentally. Chapter 4 is divided into

three parts. Part A is an introduction to modeling by homology. Part B describes the

modeling of an elastinolytic protease implicated in the invasion of human skin by the

parasite Schistosoma mansoni and subsequent inhibitor design based on this model.

This work was done in collaboration with Dr. James McKerrow’s group at UCSF

(Cohen et al., submitted). The schistosomal elastase has sequence similarity to the

trypsin-like serine proteases, and the model was built using pancreatic elastase as a

scaffold. Part C of Chapter 4 describes a technique for predicting the conformations of

side chains in homology-built models (Wilson et al., in preparation). This method

uses the Ponder and Richards (1987) library of side chain rotamers. The

conformations of nearby side chains are combinatorially changed to optimize amino

acid packing and side chain - side chain interactions subject to a force field which
contains both non-bonded and solvation terms.

Chapters 5 and 6 are observations about protein structures. Chapter 5 is a study

of the frequency of occurence of hydrogen bonds involving sulfur atoms in proteins

(Gregoret et al., 1991). Sulfur's ability to hydrogen bond has been ignored in previous

reviews of hydrogen bonding in proteins. With the popularity of site-directed mutage

nesis the propensities of all amino acid side chains should be understood fully.

Chapter 6 is a short study of unusual packing in proteases. A study of the distri

bution of alpha-carbon - alpha-carbon distances in a large data set of proteins showed

that the number of short distances in proteases is unusually high. Proteases also



seem to have slightly lower surface area : volume ratios than other proteins. These

observations suggest that proteases may have convergently evolved to be more well

packed or to have less-convoluted surfaces in order to be more resistant to proteoly
sis.

Three of the five chapters described above (numbers 2, 3, and 5) have been pub

lished previously. Thus, each chapter is self-contained, with introduction, methods,

results, discussion, and conclusions sections. References pertaining to each chapter

are found at the end of that chapter.
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Chapter 2.

A Novel Method for the Rapid Evaluation of Packing
in Protein Structurest

f This chapter has been published in the Journal of Molecular Biology, volume 211, pages 959-974, 1990.



Introduction

It would be of tremendous benefit to the general understanding of biological pro

cesses to be able to predict the three-dimensional structure of a protein from its amino

acid sequence. The current methods for the determination of high-resolution structures

(x-ray crystallography, nuclear magnetic resonance) have fallen significantly behind the

rate of sequence publication. Here we present a method for evaluating predicted

protein structures for correctness to assist in model building.

It is often possible to predict the overall fold of a novel sequence if the structure of a

closely related protein (> 35% sequence similarity) has already been solved (Greer,

1981; Greer, 1985; Strynadka & James, 1988; Taylor, 1988). If the structure of more

than one homologous protein is known, the quality of the model generally improves

(Blundell et al., 1987; Taylor, 1986; Zvelebil et al., 1987). It is difficult, however, to

detect errors in homology-built models. Energy minimization does not conveniently

lend itself to the analysis of regional errors, particularly the misalignment of secondary

structure elements. Loops and side chains are difficult to model because they have

many degrees of conformational freedom. Also, identical residues in identical backbone

positions in homologous structures do not always adopt the same side chain dihedral

angles (Summers et al., 1987).

“De novo” modeling, that is, predicting the structure of a novel sequence that

bears no resemblance to any known structures, is much more challenging. Additional

difficulties arise because many alternative solutions can appear feasible, and

preliminary models tend to be much more speculative than models built by homology.

Most approaches to de novo structure prediction apply a hierarchical scheme of first

predicting secondary structure (Chou & Fasman, 1974; Cohen et al., 1983; Cohen et

al., 1986b; Garnier et al., 1978; Lim, 1974a; Lim, 1974b), and then predicting the

tertiary fold (Cohen et al., 1983; Cohen et al., 1986a; Cohen & Sternberg, 1980b; Cohen

et al., 1980; Cohen et al., 1982). To predict the tertiary fold, we use a combinatorial
9



method to generate every possible assembly of secondary structural elements. This

generally results in about one hundred structures which satisfy the topological and

spatial constraints of all residues being connected in a fixed linear sequence. These

resulting structures are rather crude, in that only the backbone is modeled. Because of

the lack of detail in these structures, evaluating them by conventional energy calcu

lations has been ineffective (Cohen, Sternberg & Robson, unpublished data). A few

close non-bonded interactions can overwhelm any correct features of the model.

An important consideration in all model-building strategies is that of locating errors

in the model. In order to construct a better model, one must be able to determine the

errors in the current model. Novotny and co-workers (1984; 1988) purposely created

incorrect model structures in order to help answer this question. Using two small

proteins, hemerythrin (an all-alpha four-helical bundle), and immunoglobulin kappa

chain (a beta sheet sandwich), they modeled each sequence onto the other's backbone

and minimized the energy of the model structures. Their initial conclusion was that it

was not possible to distinguish the “misfolded” models from the correct models on an

energetic basis alone. Upon closer examination, however, it could be seen that the

misfolded structures did not conform to certain known features of globular proteins:

Hydrophobic residues were located on the exterior of the protein and unpaired charges

on the interior. It was postulated that these alternative folded forms would not be

stable in aqueous solution.

Richards (1974; 1977) notes that proteins elegantly solve the packing problems

posed by a compact heterologous chain. Here we present a method for quickly eval

uating packing density. In addition, we derive a measure of the quality of pairwise

amino acid contacts. In our model, amino acids are represented as spheres (the

aromatic amino acids are modeled as either two or three spheres.) Our representation

of the protein is based loosely on the centroid-based model of Levitt and Warshel

(1976; 1975) used for folding simulations.
10



Using our method, and with the assistance of computer graphics, it is possible to

qualitatively determine which regions of the model protein are poorly packed in terms of

side chain steric overlap. We are able to differentiate between alternative

combinatorially-produced structures, and to select a subset of “best” structures using

a residue-residue interaction potential. Our new method for evaluating packing will be

a valuable adjunct to model building and combinatorial structure prediction schemes.

Methods

1. Th here Growth Meth

The polypeptide chain is represented as a series of spheres. With the exception of

aromatic amino acids, histidine, phenylalanine, tyrosine and tryptophan, each amino

acid is modeled as one sphere located at the center of mass of all side chain atoms plus

the alpha carbon. The aromatic amino acids histidine, phenylalanine and tyrosine are

modeled as two spheres: one at the fl-carbon and the other at the centroid of the

aromatic ring atoms. Tryptophan is modeled as three spheres: one at the 3-carbon,

another at the center of the five-membered ring, and a third at the center of the six

membered ring. The coordinates of the backbone atoms, N, Co., C, and O are retained

for viewing purposes, but ignored in the actual packing calculation.

To evaluate packing density and pairwise interactions, each amino acid-sphere is

assigned an “ideal” radius (r.0) according to its amino acid type (see Table II.1). The

“actual” radius of each amino acid (r) is initially set equal to zero. Then, all of the

radii in the protein are increased at a rate proportional to r". Once the sum of the

actual radii of two residues i and j, (r. 4 rp, is equal to the separation between their
centroids dii, their sizes are fixed. Figure 2.1 depicts three snapshots of the

11



Table II.1

residue sample ideal ideal ideal volume
name size radius (Å) radius (Å) radius (Å) (A3)

...tring). (ring—2).
ALA 1388 2.25 + 0.23

-- -- -- --
47.7

ARG 564 2.53 + 0.50
-- -- -- --

67. 8

ASN 712 2.42 + 0.36
-- -- -- -- 59.4

ASP 945 2. 38 + 0.37
-- -- -- --

56.5

CYS 131 2.25 + 0.21
-- -- -- -- 47.7

CYX 250 2.43 + 0.26
-- -- -- --

60.1

GLN 582 2.51 + 0.38 -- -- -- --
66.2

GLU 838 2.54 + 0.42
-- -- -- --

68. 6

GLY 1539 2.02 + 0.25
-- -- -- --

34.5

HIS 379 2.35 + 0.33 2. 39 + 0.50
-- --

97.8

ILE 842 2.53 + 0.25
-- -- -- --

67. 8

LEU 1208 2.54 + 0.25
-- -- -- --

68. 6

LYS 998 2. 65 + 0.45
-- -- -- --

78. 0

MET 262 2.45 + 0.28
-- -- -- --

61. 6

PHE 615 2. 27 HE 0.29 2. 23 + 0.30
-- --

87.6

PRO 734 2.28 + 0.28
-- -- -- --

49. 6

SER 1324 2.29 + 0.29
-- -- -- --

50.3

THR 1071 2. 40 + 0.28
-- -- -- --

57. 9

TRP 237 2.26 + 0.27 2.22 + 0.33 2. 12 + 0.28 110. 7

TYR 570 2.29 + 0.30 2. 15 + 0.35
-- --

87.9

VAL 1253 2.50 + 0.26
-- -- -- --

65.4

Ideal sphere sizes for the 21 amino acids with standard deviations (across a dataset of 72
structures) and the resulting residue volumes. (“CYX” is half-cystine.) The aromatic amino
acids, histidine (HIS), phenylalanine (PHE) and tyrosine (TYR) are represented by two
spheres, “beta” and “ring.” The beta sphere is located at the 3-carbon of the side chain, and
the ring sphere is located at the centroid of the aromatic ring atoms. Tryptophan (TRP) is
represented by three spheres: one at the 3-carbon, another at the centroid of the five
membered ring and a third at the centroid of the six-membered ring (designated here as
“ring2”) The volume of each of these residues is the volume enclosed by their two or three
intersecting spheres.

12



sphere-growing process. In this Figure, ri is increased in finite increments. Initially,

we used a step size of 0.01 x r". As the step size is made infinitely small, the

analytical solution to this problem emerges. The current version of our program uses

the analytical approach in which we determine first the effective distance between all

pairs of residues, dj/(r.” + r"), then identify the shortest effective distances to
establish the unique order in which “growing” residues will bump into each other. This

order depends solely on the positions of the centroids in space and their ideal radii.

Once a residue's growth is terminated, all effective distances to that residue are

adjusted to reflect the inability of this residue to grow any larger. As we are interested

in non-bonded contacts, the radius of the residue CYX (half-cystine) is allowed to

interpenetrate its crosslink partner CYX. Similarly, the individual spheres comprising

the aromatic amino acids are allowed to interpenetrate each other.

To derive an r" for each amino acid or centroid type, the sphere growth calculation

was performed on a data set of 72 protein structures from the Brookhaven Protein Data

Bank (Abola et al., 1987; Bernstein et al., 1977) (see Table II.2). The data set was

selected from structures which were non-degenerate and for which complete atomic

detail was available at an atomic resolution of 2.5A or less. Initially, the ideal radii of
3.0A were used for every amino acid sphere. At the conclusion of the calculation,

statistics were tabulated for each amino acid type to determine the average actual

sphere size attained for that type of residue over the data set of proteins. These aver

age sizes were designated as the ideal sizes and the calculation was repeated on the

data set of proteins. Again, at the conclusion of the calculation, average sizes were

tabulated. After five iterations, the average sizes and their associated standard devia

tions were observed to converge (Table II.1). The resulting ideal radii did not depend

on the starting ideal radii (all 3.0 Å): the same radii resulted when the initial ideal radii

were all set to either 5.0A or 1.0A. Nor did the resulting ideal radii depend on the

algorithm used (stepwise or analytical).
13
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Figure 2.1 Frames A, B and C show the stages of the packing calculation. The centroids
and alpha-carbons of four residues in a hypothetical protein are shown. The solid circles
represent the “ideal” radii, ro, for the amino acids depicted. The relative sizes of the amino
acids are exaggerated. In frame A, the radius of each residue has been incremented by one
step (lighter circles.) Note that the step size is proportional to the ideal radius for each
amino acid type. For the sake of clarity, the step sizes have been exaggerated. Frame B
shows of the calculation after three steps. The sum of the radii of alanine and leucine, ralA +
rleU, is now equal to the distance between their centroids, dALA-LEU, so the radii of these
residues are fixed. Alanine and leucine are colored grey to indicate that they have reached
their final size. These residues both achieved approximately 80% of their ideal size before
their growth was terminated (ralA/roALA = rileU/roLEU = 0.8). Frame C shows the status
of the calculation after five steps. Now, isoleucine is also colored grey because rile + r.EU =
diLE-LEU. Isoleucine exceeded its ideal radius by approximately 20% before its radius was
fixed (rILE/rolle = 1.2). Threonine, after five steps, still has not come in contact with any
other residues and will continue having its radius incremented until it contacts one of the
other residues. Two pairwise interactions have occurred so far in this scenario: ALA-LEU
and LEU-ILE.
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Table II.2
Data set of protein structures used to derive ideal radii for amino acid-centroids

PDB resolution protein name reference
©ntry (Å)
1ACX 2.0 Actinoxanthin (Pletnev et al., 1982)
1BP2 1.7 Phospholipase A2 (cow) (Dijkstra et al., 1981)
1CPV 1.85 Calcium-binding Parvalbumin B (Moews & Kretsinger, 1975)
1CRN 1.5 Crambin (Hendrickson & Teeter, 1981)
1CTF 1.7 L7/L1250S Ribosomal Protein (Leijonmarck & Liljas, 1987)
1ECO 1.4 Erythrocruorin (Steigemann & Weber, 1979)
1FB4 1.9 Immunoglobulin Fab (Marquart et al., 1980)
1FDX 2.0 Ferredoxin (Adman et al., 1976)
1FX1 2.0 Flavodoxin (D. vulgaris) (Watenpaugh et al., 1980)
1GCR 1.6 Gamma-II Crystallin (Slingsby et al., unpublished data

submitted to the PDB)
1LH1 2.0 Leghemoglobin (Arutyunyan et al., 1980)
1LZ1 1.5 Lysozyme (human) (Artymiuk & Blake, 1981)
1MLT 2.0 Melittin (Terwilliger & Eisenberg, 1982)
1PCY 1.6 Plastocyanin (Guss & Freeman, 1983)
1PP2 2.5 Phospholipase A2 (rattlesnake) (Brunie et al., 1985)
1PPT 1.37 Avian Pancreatic Polypeptide (Blundell et al., 1981)
1REI 2.0 Bence-Jones Immunoglobulin (Epp et al., 1975)

REI Variable Portion

1RHD 2.5 Rhodanese (Ploegman et al., 1978)
1RN3 1.45 Ribonuclease A (Borkakoti et al., 1982)
1RNT 1.9 Ribonuclease T1 (Arni et al., 1988)
1SBT 2.5 Subtilisin BPN (Alden et al., 1971)
1.TIM 2.5 Triose Phosphate Isomerase (Banner et al., 1976)
1TON 1.8 Tonin (Fujinaga & James, 1987)
1UBQ 1.8 Ubiquitin (Vijay-Kumar et al., 1987)
2ABX 2.5 Alpha-Bungarotoxin (Love & Stroud, 1986)
2ACT 1.7 Actinidin (Baker & Dodson, 1980)
2ALP 1.7 Alpha-lytic Protease (Fujinaga et al., 1985)
2APP 1.8 Penicillopepsin (James & Sielecki, 1983)
2AZA 1.8 Azurin (Baker, 1988)
2CAB 2.0 Carbonic Anhydrase Form B (Kannan et al., unpublished data

submitted to the PDB)
2CCY 1.67 Cytochrome c' (Finzel et al., 1985)
2CNA 2.0 Concanavalin A (Reeke et al., 1975)
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Table II.2 continued

PDB resolution protein name
entry (Å)

reference

(Poulos et al., 1987)
(Finzel et al., 1984)
(Fermi et al., 1984)
(Weaver & Matthews, 1987)
(Birktoft & Banaszak, 1983)
(Bode et al., 1985)
(Blake et al., 1978)
(Bode, Epp et al., 1985)
(Betzel et al., 1988)
(Moult et al., 1985)
(Legg, 1977)
(Tainer et al., 1982)
(Dreusicke et al., 1988)
(Suguna et al., 1987)
(Babu et al., 1988)
(Smith et al., 1988)
(Meyer et al., 1988)
(Saul et al., 1978)
(Weber & Steitz, 1987)

(Karplus & Schulz, 1987)
(Szebenyi & Moffat, 1986)
(Bryant et al., 1974)
(Remington et al., 1988)
(Read et al., 1983)
(Holmes & Matthews, 1982)
(Eklund et al., 1976)

Acid Proteinase Endothiapepsin (Pearl et al., unpublished data

2CPP 1.63 Cytochrome P450cam
2CYP 1.7 Cytochrome c Peroxidase
2HHB 1.74 Hemoglobin (Deoxy)
2LZM 1.7 Lysozyme (Bacteriophage T4)
2MDH 2.5 Malate Dehydrogenase
2OVO 1.5 Ovomucoid Third Domain
2PAB 1.8 Prealbumin
2PKA 2.05 Kallikrein A
2PRK 1.5 Proteinase K

2SGA 1.5 Proteinase A (S. griseus)
2SNS 1.5 Staphylococcal Nuclease
2SOD 2.0 Superoxide Dismutase
3ADK 2.1 Adenylate Kinase
3APR 1.8 Rhizopuspepsin
3CLN 2.2 Calmodulin
3EBX 1.4 Erabutoxin B
3EST 1.65 Porcine Elastase

3FAB 2.0 Lambda Immunoglobulin Fab
3GAP 2.5 Catabolite Gene Activator

Protein
3GRS 1.54 Glutathione Reductase

3ICB 2.3 Calcium-binding Protein
3PGK 2.5 Phosphoglycerate Kinase
3RP2 1.9 Rat Mast Cell Protease II

3SGB 1.8 Proteinase B (S. Griseus)
3TLN 1.6 Thermolysin
4ADH 2.4 Apo-liver Alcohol

Dehydrogenase
4APE 2.1

4CHA 1.68 Alpha-chymotrypsin
4CYT 1.5 Cytochrome c
4DFR 1.7 Dihydrofolate Reductase
4FXN 1.8 Flavodoxin

4LDH 2.0 Lactate Dehydrogenase
4PTI 1.5 Trypsin Inhibitor

submitted to the PDB)
(Tsukada & Blow, 1985)
(Takano & Dickerson, 1980)
(Bolin et al., 1982)
(Smith et al., 1977)
(White et al., 1976)
(Marquart et al., 1983)
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Table II.2 continued

PDB resolution protein name reference
antry—(A)

4PTP 1.34 Beta Trypsin (Chambers et al., unpublished data
submitted to the PDB)

4RXN 1.2 Rubredoxin (Watenpaugh, Sieker et al., 1980)
4TNC 2.0 Troponin C (Satyshur et al., 1988)
5CPA 1.54 Carboxypeptidase A (Rees et al., 1983)
6LYZ 2.0 Lysozyme (hen egg white) (Diamond, 1974)
7CAT 2.5 Catalase (Fita & Rossmann, 1985)
9PAP 1.65 Papain (Kamphuis et al., 1984)

2. Derivati f Pair P ial

To compute a pair potential matrix describing the tendencies of particular amino

acids to contact each other, all residue-residue interactions, or “bumps” which

occurred during the sphere growing procedure were recorded. (See Figure 2.1.) Then,

in order to increase the number of contacts per residue, the sphere-growing procedure

was repeated on the data set, this time allowing residues to grow through their

nearest neighbor until they made contact with their next nearest neighbor. Combining

the pairwise interactions resulting during these first and second rounds of sphere

growth, the number of interactions of a given type (e.g. ALA-LEU) was divided by the

number of interactions expected given a random distribution of residues throughout the

protein. The natural logarithm of this ratio multiplied by -1 gives the “pair potential” for

that type of interaction. For example, if nAL ALA-LEU interactions occurred in the data

set and there were NA interacting alanines, NL interacting leucines and Ntot

interacting residues total (thus Ntot/2 total interactions), the pair potential (PPIA][L])

would be calculated as follows:
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NA N N - -
NA-NLk—t NL A(Not) (No- 1)" (No.)(No. - 1)

The sum in the denominator of the middle expression reflects the fact that ALA-LEU

PPIA][L] = - ln

interactions and LEU-ALA interactions are equivalent. This ratio may be thought of as

a pseudo-equilibrium constant. Thus, by analogy to free energy, a pair potential less

than zero is favorable. The pair potential matrix is shown in Table II.3. For an

individual protein, the sum of all of the pair potentials of all of the interactions is

computed, for example: XPP = (PPIA][L] + PPIC][S] + 3PP[D][K] + 2PP[I][I] + ...)

where there is one ALA-LEU interaction, one CYS-SER interaction, three ASP-LYS

interactions, two ILE-ILE interactions, etc.. The individual spheres of the aromatic

residues are treated separately. On average, a typical one-sphere residue made 2.8

contacts after two rounds of sphere growth, a two sphere aromatic residue made 5.1

contacts and tryptophan made 7.2 contacts.

In order to test the extent of the dependence of side chain conformation on our

packing algorithm, we used the program MIDAS (Ferrin et al., 1988; Jarvis et al.,

1988) to substitute the crystallographically-determined side chain at each position of

every protein in the data set with the same amino acid in its most frequently observed

conformation as tabulated by Ponder and Richards (1987). We arbitrarily chose 180°

for the outer dihedral angles (X3 and greater) of methionine, arginine and lysine.

Ponder and Richards did not compute rotamer conformations for the outer (X, +)

dihedral angles of these residues because of small sample size (Met, Arg) and poor

determination of surface residues (Lys, Arg). To create a control set of structures, we

scrambled the sequence of each protein in the data set and, again using the most fre

quently occurring side chain conformations, built side chains onto the original
18



backbones. The program JUMBLE from the Baylor College Molecular Biology

Information Resource (MBIR) suite of sequence analysis programs was used to

scramble the sequences of the data set proteins.

4 n ion of Combinatorially-Folded Model

We subjected a set of 20 combinatorially-generated myoglobin models, eight

flavodoxin models, and 10 adenylate kinase models to the packing evaluation. The

myoglobin models were generated by identifying potential helix-helix packing sites on

the A,B,E,F,G, and H helices and then creating an exhaustive set of “folded”

structures incorporating inter-helix packing at these sites. Structures not satisfying

chain connectivity constraints were discarded (Cohen et al., 1979; Cohen & Sternberg,

1980b). Twenty structures remained at the end of this analysis. These structures fell

into several different topological classes based on their helix packing geometry and

root mean square (r.m.s.) deviation from the x-ray structure of sperm whale myoglobin

(Takano, 1977). The flavodoxin and adenylate kinase structures were generated in a

similar fashion, though the surviving structures did not fall into as many topological

classes (Cohen et al., 1982).

The combinatorial models do not include loop residues, so each myoglobin model

has only 103, instead of the actual 153 residues, each flavodoxin has 93 instead of 138

residues and each adenylate kinase has 97 instead of 194 residues. The models

contain coordinates for o-carbons only. We fitted ideal, all-backbone-atom o-helices or

B-strands to the o-carbons in the models and then installed side chains in their most

frequently observed conformations.

f Three-Dimensional

We generated several sets of random, compact three-dimensional structures in

order to compare packing in these structures to packing in native proteins. These
19



structures were generated by employing a self-avoiding random walk. The walk is

constrained to be within a sphere whose radius is equal to the radius a protein of a

given molecular weight would have if it were exactly spherical. The constraining radius

(R) is computed from the average density of globular proteins, 1.4 g/ml (Creighton,

1983). (See Cohen & Sternberg, 1980a.)

The correct amino acid sequence is used when building random structures and new

amino acids are added sequentially, subject to certain constraints. Residue placement

is recursive, so if a new residue i can not be placed after five attempts, residue i-1 is

repositioned. The structures contain only o-carbons and centroids 3 (and Y in the case

of aromatic residues). Adjacent Co.'s are placed 3.8 Å apart and all sets of three
adjacent alpha carbons (Coi-1, Coli, Coit 1) are constrained to be at an angle of 106.3°.

Centroids 3 lie in the plane of three adjacent Co.'s at a distance that represents the

average distance Co. to B for residues of that type in real structures. Aromatic ring cen

troids are placed at an angle of 110.5° to Co. and the CB. No two ot-carbons or

centroids are allowed to come closer than an absolute cutoff distance of 3.0A from each

other. Contact distances greater than or equal to 4.0 Å are allowed. If two “atoms”
are within a distance of 3.0 to 4.0 Å, the position is either accepted or rejected using a
Monte Carlo method. If the random number is larger than P, the new position is re

jected. The resulting distribution of distances drops off as 1/r3, due to excluded volume

effects. The absolute (3.0A) and “soft” (4.0A) cutoffs were chosen so as to resemble
actual distributions of contact distances in the data set of structures.

Seven sets of 50 structures having the flavodoxin sequence were generated in this

manner. Each set of structures had a different constraining radius. The most compact

structures had a constraining radius of 100%R and the least compact had a radius of

160%R.
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T inimizati lavodoxi

Flavodoxin (Smith et al., 1977) was energy-minimized using AMBER (Singh et al.,

1987). We performed a total of 700 cycles of conjugate gradient minimization in

intervals of 100 cycles. A distance-dependent dielectric constant (E = R) and a united

atom representation of the polypeptide chain were used (Weiner et al., 1984). This

calculation was conducted in the absence of flavine.

Results and Discussion

1. Th here Model for Amino Acid Packin

The representation of amino acids as spheres is a reasonable simplification of the

packing problem. Spherical residue volume correlates well (correlation coefficient, r =

0.90) with amino acid volume as computed by Chothia (1975) using the Voronoi

method. (See Figure 2.2.) Histidine (Vhis = 98 A3) is an outlier for reasons that are

unclear. It is possible that His is more compact than the other aromatic amino acids

and thus actually better represented as a single sphere. The volume of tryptophan,

when modeled as two spheres, is uncharacteristically small (Vup = 84 A3) in
comparison to its molecular weight and Voronoi volume. For this reason, we decided

to represent tryptophan as three spheres: one at the fl-carbon, one at the center of the

five-membered ring and one at the center of the six-membered ring. When we

recomputed the ideal radii for all residue types, incorporating this three-sphere model

for tryptophan, the ideal radii of the remaining amino acids changed either not at all or

by less than one percent. The volume of three sphere tryptophan is 110 Å3.

The sphere growth calculation may be used both qualitatively and quantitatively to

evaluate amino acid packing in model structures. Computer graphics provides a useful

tool for visualizing the results of this calculation. Each amino acid in a protein can be

colored according to the percentage of its ideal radius attained. This makes it possible
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Figure 2.2 Volume of spherical amino acid (Vs) plotted as a function of amino acid
volume as computed by C. Chothia using the method of Voronoi (Vs) (Chothia, 1974).
Arginine is omitted since it is predominantly a surface residue and no accurate
Voronoi volume for it could be computed. Two points are shown for tryptophan (W):
one modeled as two spheres and the other as three spheres. The three sphere model
is used for all calculations herein.
Vs – 7.5 + 0.40Vy r = 0.90

to locate nonuniformities in packing. To display packing, we use the portion of the

color wheel that includes the range green-cyan-blue-violet-magenta-red-orange. We

chose this scheme because the extreme colors, green and orange, stand out well

against the intermediate violets, making it easy to spot irregularities in packing. In
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this scheme, cyan corresponds to a radius 60% (r; /ri 0 = 0.6) of the ideal size, red

corresponds to 140% (ri / ri0 = 1.4), and green represents 100% (ri = r. 9). A well

packed protein will be predominantly violet. A few exterior residues may be orange or

red (loosely-packed) since they have fewer neighbors and are less likely to bump into

other residues. Figure 2.3 shows four flavodoxin structures colored in this manner.

The crystallographic structure is the most homogeneous while various models with

increasing amounts of error appear inhomogeneous.

Homogeneity can be quantified through the statistical distribution of sphere sizes

in an individual protein. For crystallographically-determined structures, this

distribution is predominantly Gaussian but skewed slightly towards larger-than-ideal

spheres: mean 100.0% of ideal; median 98.1%. The skewness corresponds to

exterior residues (see Figure 2.4). The standard deviation of the distribution for an

individual protein is typically it!3 percentage points (see Figure 2.5A.) There is no

correlation between crystallographic resolution and mean sphere size nor

crystallographic resolution and standard deviation of sphere sizes. Small proteins (<

100 residues) have the most deviant means and standard deviations.

A useful metric derived from this statistical characterization is the “number of

outliers” (NO): the number of residues which achieve a final size greater than 112% or

less than 88% of the ideal. The boundaries of 88% and 11.2% were determined so as to

include 15% of residues in the data set on each side of the mean. For individual pro

teins, the number of outliers correlates well with molecular weight: NO = -6.5 +

0.37N; r = 0.95 (where N is the number of residues.)

The amino acid - amino acid pairwise interaction potentials derived from the number

of centroid-centroid collisions are reasonable. Table II.4 ranks from best to worst

which residues an amino acid of a particular type prefers to interact with according to

the pair potential matrix (Table II.3). Arginine and lysine prefer to interact with

glutamate and aspartate; serine and threonine prefer to interact with other hydrophilic
23



º
* *
Figure 2.3 Graphical representation of packing for four models of flavodoxin. Only
alpha carbons are shown. Residues are colored according to the percentage of their
ideal sphere size they attain. Scale is green to orange where green residues are those
which are too tightly ºcked (ri < r 9) and orange residues are those which are tooloosely packed (ri > r"). Purple is intermediate on this scale (ri = r■ 9). Clockwise
from top left: random walk flavodoxin; x-ray structure (Smith, et al., 1977); x-ray
structure with most common side chain dihedral angles installed; combinatorially-gen
erated structure. The x-ray structure appears to be the most homogeneously colored
and the random structure the least homogeneously colored. Both the combinatorially
generated model and the model with incorrect side chain dihedral angles contain
packing errors. The combinatorially-produced model appears to have regional errors:
the two helices on the left are too far apart while the two helices on the right collide
with eachother and with the B-sheet. The model with incorrect side chain dihedral
angles has packing errors distributed more evenly throughout the structure and is
more uniformly well-packed than the combinatorially-generated structure.
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Figure 2.4. Distribution of sphere sizes relative to the ideal for amino acids in the data
set of 72 proteins. Mean 100.0; standard deviation 13.4; median 98.1;

residues; the hydrophobic residues prefer to interact with other hydrophobic residues.

A striking aberration is the tendency of cysteine and half-cystine to appear near the

extremes of these rankings. This unusual behavior may be explained by the fact that

the data set contains several iron binding proteins, such as 1FDX (ferrodoxin) and

4RXN (rubredoxin). These proteins bind iron by way of the sulfur atoms of cysteines.

The presence of these proteins in the an set combined with the rarity of cysteine and

half-cystine (Table II.1) may skew its statistics. Also, it is surprising that lysine and

arginine interact favorably with the ring spheres of tryptophan. We looked at these

interactions individually and concluded that they are legitimate. Tryptophan

occasionally protrudes to the surface of proteins to make hydrogen bonds with surface
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TableII.4 Thepairpotentialmatrixsortedinorderof
preference
of
interaction (top—

bottom
=best—worst) ALA—ARGASNASECYSCXXGLNGLUGLYHISHIr—ILE_LEU
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residues. Its rarity in the data set (237 tryptophans) may cause these interactions to

be exaggerated. There are 20 instances of tryptophan and arginine being proximal and

33 instances of tryptophan and lysine being proximal. We chose to compute separate

pair potentials for the individual spheres of the aromatic amino acids because the

interactions they make are distinctly different. The centroid sphere of tyrosine, for

example, prefers to interact with hydrophilic amino acids to a much greater extent than

the 3-carbon sphere. This is presumably due to the hydrogen bonding ability of

tyrosine's hydroxyl group.

We decided to allow residues to contact both their first and second nearest

neighbors in order to increase the “valence” of the amino acids. By restricting a

residue to bump only into its nearest neighbor, information about the environment of

that particular residue is limited and described by only one or perhaps two neighboring

amino acids. In reality, an amino acid in a protein has several spatial neighbors. When

two rounds of collision are performed, the situation is more realistic: a one-sphere

residue makes contact with three neighboring spheres and an aromatic residue makes

contact with between five and seven neighbors. When more interresidue interactions

are allowed, the pair potential sum for an individual protein, particularly an unrefined

model, is less likely to be dramatically influenced by a few chance interactions.

Our pair potential formulation is similar in its statistical nature to that of Miyazawa

and Jernigan (1985), although we do not account for interaction with solvent. Tanaka

and Scheraga (1976) derive pairwise interaction energies for all pairs of amino acids as

well. Though the potentials derived by these three methods are qualitatively similar,

our definition of an amino acid contact is unique since it is based on effective distances

between residues rather than actual distances. We also include interactions between

sequential nearest neighbors in the determination of a pair potential, whereas the other

methods do not. As a consequence of these particularities, our matrix is best-suited to

the analysis of structures presented here.
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In addition to the identities of interacting residues, the sequential distance along

the polypeptide chain between these residues is interesting. If a “short range”

interaction is defined as one which occurs between residues which are five or fewer

positions apart in sequence, 54% of the interactions occurring in the data set of 72

proteins are short-range.

ide Chai nformati

Since the position of the centroid is computed from the positions of the side chain

atoms, the dihedral angles (XI-Xa) that the side chain adopts could affect the number

of outliers and the pair potential sum. We investigated the dependence on side chain

conformation by comparing three sets of structures: 1) the data set of 72

crystallographically-determined structures, 2) the same data set of 72 structures with

the most frequently occurring side chain dihedral angles installed at every position, and

3) the data set of structures with the correct backbone but a scrambled amino acid

sequence and side chains in their most frequently occurring conformations. The results

of these calculations are shown in Figure 2.5.

Figures 2.5A shows mean sphere size, plotted as a function of standard deviation

for the three sets of structures. The x-ray structures (circles) cluster about a mean (p1)

of 100.4% of ideal radii and a standard deviation of (o) 13.2%. The structures with

incorrect side chain conformations (triangles) are less uniformly packed (pl = 97.4%; o

= 21.2%) and the scrambled sequence structures are the least uniformly packed (1 =

97.1%; o = 25.8%). The fact that the three classes of structures appear to fall into

separate groups suggests that our method is sensitive to volume packing errors: the

structures with merely incorrect side chain conformations should have mostly steric

errors resulting from disrupted residue-residue interactions. The structures with a

scrambled amino acid sequence, however, could have serious volume constraint

violations where too many large residues occupy too small of a space.
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In Figure 2.5B, NO is plotted as a function of N. Again, the crystallographically de

termined structures are more uniformly packed than either the scrambled sequence

structures or the most frequent side chain conformation structures. The slopes of the

lines indicate the percentage of residues expected to be outliers for a given set of

structures. Thus, while the x-ray structures have 37% of their residues as outliers, the

scrambled sequence typically have 62% and the most common side chain conformation

structures have 55% of their residues as outliers. Even though the average standard

deviations for the incorrect side chain conformation and scrambled sequence structures

are quite different (Figure 2.5A), here they have similar numbers of outliers. This is

because these two classes of structures are both too densely packed and have a large

number of residues achieving a final size of less than 88% of their ideal size.

Figure 2.5C shows XPP plotted as a function of N. Here, the structures with merely

incorrect side chain conformations are much more similar to the x-ray structures than

are the scrambled sequence structures. The x-ray and incorrect side chain

conformation structures usually attain a negative pair potential sum, in particular, only

three x-ray structures have a pair potential sum greater than zero. The pairwise

interactions that occur in the scrambled sequence structures are frequently

destabilizing and result in a positive XPP. Here, only three structures have a pair

potential sum less than zero. In Figure 2.5D, NO is plotted against XPP for the three

groups of structures. This graph suggests that taken together, the XPP and NO are

discriminating measures of model quality since the three classes of structures fall into

separate regions of the graph. The boundaries between the three classes of structures,

however, are not easily demarcated. It may be possible to resolve the classes further

using a third criterion of model quality.
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Figure 2.5 A: Packing uniformity of x-ray (open circle), scrambled sequence (open
square) and perturbed side chain (filled triangle) structures: mean sphere size versus
standard deviation of sphere sizes.
B: Number of outliers (NO) plotted against number of residues (N)
x-ray (circle): NO = 0.37N - 6.50 r = 0.95
most frequently observed side chain (triangle): NO = 0.55N + 0.12 r = 0.98
scrambled sequence (square): NO = 0.62N + 0.68 r = 0.99
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Figure 2.5 C: Pair potential sum (XPP) plotted against number of residues (N)
x-ray (circle): XPP = -0.080N - 1.3 r = -0.76
most frequently observed side chain (triangle): X-PP = -0.051N + 0.2 r = -0.52
scrambled sequence (square): XPP = 0.057N + 1.2 r = 0.70
D: Pair potential sum (XPP) plotted against number of outliers (NO) (same symbols
apply)

32



4 inatorially Folded Model

In the process of structure prediction, a modeler may generate a set of alternative

model structures. To test the utility of our packing algorithm in discriminating between

a group of proposed models, we subjected a set of combinatorially folded sperm whale

myoglobin structures (Cohen, Richmond et al., 1979) to our packing scheme. The

results of this calculation are shown in Figures 2.6. The combinatorial models all have

a large number of outliers (Figure 2.6A) compared to the native structure. However,

the errors in model structures are comparable to a structure derived from the native

backbone and statistically most likely side chain conformations. The models are a little

too densely packed -- their mean sphere size is, on average, 97.5%. This is comparable

to the data set structures with the most common side chain conformations installed. It

is not possible to discriminate among the models on the basis of correctness of volume

packing alone.

The pair potential sum suggests a way to differentiate between the models. In

Figure 2.6B, XPP is plotted against r.m.s. deviation. There is a positive correlation (r

= 0.54) between r.m.s. deviation and XPP. The most native-like structures have a

negative pair potential sum and structure number thirteen, which has the lowest r.m.s.

deviation, also has one of the lowest pair potential sums of all of models. Still, the pair

potential sum is not uniformly instructive: structures nine and ten are relatively native

like but have pair potential sums near zero. Two poor models, numbers four and five,

have pair potential sums even better than the best models. If these two structures are

excluded from the calculation of a best fit line relating pair potential sum and r. m.s.

deviation, the correlation improves to 0.75. It is not clear why these two structures

have such favorable pair potential sums. The individual interactions that contribute to

the pair potential sums of these two models are not particularly unusual, though both

models have a fair number of interactions between oppositely-charged side chains. In

general, these results suggest that sorting between alternative model structures may
33
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for 20 combinatorially-folded myoglobins. B: Relationship between pair potential
(XPP) and r.m.s. deviation for combinatorially-folded myoglobin models. R.m.s.
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The individual models are referenced 1-20 in each graph.
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be facilitated by evaluating pair potential sums. A significant fraction of unreasonable

structures can be discarded.

We also performed the packing calculation on a set of 10 combinatorially-generated

adenylate kinase structures and eight flavodoxin structures. These proteins have

similar O■ 3 doubly-wound parallel sheet topologies (Richardson, 1981) Unlike the

myoglobin models, there is much less variation in these structure sets. The range of

rims. deviations for the flavodoxins is 3.9A to 4.5A and the range for the adenylate
kinases is 5.3Å to 6.7A. The second best flavodoxin model (r.m.s. deviation = 3.95 Å)

had the lowest pair potential sum and the worst model had the largest positive pair

potential sum. However, a less optimal model (r.m.s. deviation = 4.35A) also had a

favorable pair potential sum. There was no correlation between r.m.s. deviation and

XPP for the adenylate kinase models. There was little variation in the number of

outliers in either set.

The pair potential sum does not do as well at discriminating between either the

flavodoxin or adenylate kinase models as it does for the myoglobin models. The range

of r.m. s. deviations for the flavodoxin and adenylate kinase models, however, is very

small and hence it is difficult to discriminate between them using an approximate

InCaSUITC.

f f Energy Minimization on Packin

In the past, energy minimization techniques in vacuo have been observed to have a

compressional effect on proteins because of the inadequacies of dielectric models and

surface tension. We wanted to investigate whether these compressional effects could

be detected using our measures of packing density and uniformity as reflected by the

mean sphere size and standard deviation of sphere sizes. Table II.5 shows the

outcome of successive steps of the minimization of flavodoxin.
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As expected, with successive cycles of energy minimization, mean sphere size

decreases, implying an overall compression of the molecule. Packing uniformity

worsens -- both NO and standard deviation increase. Surprisingly, XPP worsens from

-11.1 to a high of -4.8 after 200 cycles of minimization and then fluctuates about an

Table II.5

Congugate gradient minimization of flavodoxin

Cycles | RMS(A] Etot MEG Inean SD NO XPP
0 0.00 1577. 144.9 102.5 13.6 46 -11.1

100 0.18 -2112. 122.9 102.8 13.8 48 -9.8
200 0.40 -2334. 179.1 101.8 14.3 52 -4.8
300 0.46 -2461. 42.6 101.4 14.0 54 -6.9
400 0.56 -2553. 30.9 101.0 14.3 51 –7.9
500 0.62 -2631. 64.9 100.6 14.4 62 -6.9
600 0.67 -2688. 26.3 100.2 14.5 60 –7.8
700 0.76 -2749. 93.5 99.4 14.6 70 –7.9

Footnote:
Cycles: number of cycles of conjugate gradient minimization
RMS: all-atom root-mean-square deviation from x-ray structure (Å)
Etot: total energy (kcal/mol)
MEG: maximum energy gradient (kcal/(mol/A))
InCan. mean sphere size of residues in structure
SD: standard deviation of sphere sizes
NO: number of outliers
XPP, pair potential sum

average of -7.5. We did not notice any unusually large atomic displacements in the

vicinity of the missing flavine ligand.

Whitlow and Teeter (1986) observe both compaction and molecular shape change

over the course of minimization of crambin. In their study, molecular shape seemed to

be most affected by the strength of electrostatic forces. The formation of new salt

bridges and hydrogen bonds could occur in our models at the expense of atomic packing

and lead to our observed decrease in packing uniformity.
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These calculations have important implications for modeling. The modeler should

be aware of the approximations inherent to minimizers and to use caution when refining

a structure. Models built on the basis of sequence similarity to known structures may

be the most susceptible to minimization artefacts. The inclusion of discrete solvent

may avoid some of these artefacts (Richards et al., 1989), as could the use of more

sophisticated dielectric functions than e = r (Harvey, 1989).

n 1 T

In order to understand and appreciate the difficulty in generating uniform packing,

we created some “random” three-dimensional flavodoxin structures which were

evaluated by QPACK. Six sets of random flavodoxins having different constraining

radii, ranging from 100% to 160% of the expected protein radius (R), were generated

using this method (see Table II.6.) It can be seen that as the constraining radius R is

increased, the resulting random structures become less densely packed (mean radius

increases.) Packing uniformity (standard deviation, NO) remains virtually constant.

Not surprisingly, the pair potential sums of all but nineteen of 350 of these structures

are positive (data not shown.)

The set of structures which behaves most like real proteins in terms of the average

sequential distance between interacting residues is the 120% R set. In this set of

structures, 54% of the interactions are between residues five or fewer apart in

sequence -- the same as in the crystallographically-determined structure. The 120% R

set of structures, however, are not densely packed (mean radius size = 103.7%.) The

most densely packed set of structures is the 100% R set. Here, however, too many

long-range interactions (> 5 residues apart in sequence) are forced and the percentage

of short-range interactions is only 38%. In this set of structures, local interactions

least resemble those observed in native proteins. These results point out that it is

difficult to generate random three-dimensional structures which satisfy all

characteristics of real proteins at once.
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Table II.6

Statistics for random walk flavodoxins

R RMS In ean std. dev. NO %short range
100% 14.5 + 1.1 98.3 + 1.4 23.8 + 1.2 99.0+ 5.0 38 + 3

1.10% 15,0+ 1.3 101.5 + 2.1 24.1 + 1.5 99.1 + 5.3 49 + 5

120% 15.9 + 1.2 103.7 ± 1.9 24.2 + 1.8 100.3 + 6.7 54 + 5

130% 15.7+ 1.0 105.0+2.5 24.1 + 1.4 99.4 + 7.5 57+ 6

140% 16.2 + 1.4 106.2 + 2.6 24.2 + 1.5 100.4 + 7.3 62 + 6

150% 16.8+ 1.5 1092 + 2.8 23.7+ 1.5 101.6+ 7.0 68+ 6

160% 17.5 + 1.4 109.0+2.0 23.7+ 1.6 101.5 + 7.1 70+ 6

Footnote:
Data for each R is averaged over a set of 50 random structures.
R: contstraining radius (100% = the radius flavodoxin would have if it were sphereical
and of uniform density.)
RMS: root-mean-square deviation from x-ray structure
mean: mean sphere size
std.dev.: standard deviation of sphere sizes
NO: number of outliers
%short range: percent of reisdue collisions whichare between residues five or fewer
positions apart in squence (computed over entire set of structures combined)

Conclusions

We have presented a new method for evaluating model protein structures. Amino

acid packing, as evaluated by the sphere growth method, is consistent with the ac

curacy of model built structures: as one builds models which deviate more and more

from crystallographically-determined structures, packing uniformity is seen to worsen,

and amino acid distribution becomes less ideal. Structures with perturbed side chain

conformations more closely resemble native proteins in terms of packing density and

amino acid distribution than structures with scrambled amino acid sequences. Random

walk structures do not resemble native proteins in many respects at all, aside from

mean density.
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Using the pair potential sum, which measures amino acid distribution, it is possible

to eliminate a group of poor structures from a set of combinatorially-generated

structures. The ability of the pair potential metric to discriminate between alternative

combinatorially-generated structures is especially encouraging, since it could directly

assist in structure prediction and perhaps lead to a second-generation structure

prediction method which considers long-range interactions between amino acids distant

in sequence, as well as local interactions. We are investigating the possibility that

pair potential functions and their derivatives will provide information useful for model

structure refinement.

Our packing algorithm may also be used as a graphical tool to assist in model

building. Since QPACK is fast, it should be feasible to incorporate it directly into a

molecular modeling package. Once could envision constantly evaluating packing and

coloring a model accordingly as modifications, such as side chain rotations or loop

deformations, are made. We are planning to incorporate the QPACK algorithm in UCSF

MIDAS (Ferrin, Huang et al., 1988; Jarvis, Huang et al., 1988) and its successorsf.

The calculations involving structures with scrambled amino acid sequences and per

turbed side chain conformations offer some insight into the number of sequences that

can fit into a structural template. Given the large variety of protein sequences, yet the

limited number of tertiary structural motifs (Richardson, 1981) it has been proposed

that there exist broad “tertiary templates” for sequences which direct them to fold into

a particular one of these motifs (Blundell & Sternberg, 1985; Ponder & Richards,

1987). Recent experiments by Lim and Sauer (1989) suggest that a number of

sequences which are compatible with maintaining tertiary structure in a hydrophobic

core of lambda repressor is governed primarily by amino acid composition, rather than

combined amino acid volume. Steric clashes which result when side chains of an

forACK may now be accessed from Midas with the midas command “pdbrun”.
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appropriate total volume cannot efficiently pack around one another also play an

important, but not easily experimentally quantifiable role. Our pair potential, which

monitors amino acid composition, perhaps in conjunction with a rotamer searching

algorithm (Ponder & Richards, 1987), to monitor steric interference, might be used as a

preliminary screen to determine a priori which sequences can be accommodated in the

core of a given protein.
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Chapter 3.
Protein Folding: Effect of Packing Density on Chain

Conformation?

f This chapter is in press in the Journal of Molecular Biology and should be published in 1991.
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Introduction

Fifty to sixty percent of amino acids in a globular protein participate in some form

of secondary structure, typically as o-helices or 3-sheets. While several forces are

predicted to stabilize such structures, the recent work of Chan and Dill (1989; 1990b)

suggests that compactness may be a significant driving force for the formation of sec

ondary structure in globular proteins. The origin of the compacting force is postulated

to be the hydrophobic effect which seeks to minimize exposed non-polar surface area

in water. These workers have enumerated the conformational states available to a

chain on a cubic lattice and shown that in compact conformations, about 50% of the

residues participate in some form of secondary structure.

A major advantage of lattice models is computational efficiency -- simulations on

lattices involve integer arithmetic rather than computationally costly floating point

operations. Excluded volume effects are handled seamlessly. In addition, exhaustive

searches of conformation space on a lattice are feasible. Several types of lattices have

been used to study protein folding. Square and cubic lattices have been used by Go

and co-workers to simulate protein folding using a Monte Carlo method (Go & Take

tomi, 1978). Covell and Jernigan and have investigated face-centered cubic lattices

and body-centered cubic lattices for representing proteins (Covell & Jernigan, 1990)

and Skolnick and co-workers have used both a tetrahedral lattice (Skolnick & Kolin

ski, 1989) and a 2-1-0, or “knight's walk” lattice in their dynamics simulations

(Skolnick & Kolinski, 1990). Each of these lattices has advantages over the others in

terms of how realistically it reproduces some aspect of protein structure, or in how

efficiently it allows one to explore conformational space. While lattices are a reason

able approach to studying the properties of protein molecules, a critical assessment of

their advantages and limitations has not been undertaken. In this paper we address

the effects of lattice constraints, compactness constraints, and shape constraints on

chain fold and discuss their relevance to understanding protein folding.
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We have tested the Chan-Dill hypothesis for proteins using a model of the

polypeptide chain which is not restricted to a lattice. Structures are generated via a

self-avoiding walk inside a constraining ellipsoid. Virtual bond angles and dihedral

angles between sequential alpha-carbons are chosen at random from the distribution

of angles observed in native proteins. We call these “native-like random walk struc

tures.” We are able to make large numbers of structures which obey the same

boundary constraints and have the same distribution of virtual bond angles and dihe

dral angles between O-carbons seen in protein structures. The shape and density of a

set of structures are easily varied. However, this representation does not allow us to

enumerate all possible structures, so complete sampling cannot be guaranteed.

We find qualitative agreement with the conclusion of Chan and Dill that compact

ness induces secondary structure formation. However, a significant discrepancy

exists as to the magnitude of this effect. In folding a protein from an unconstrained

random walk to the density of typical proteins, secondary structure does not increase

significantly (<5%). To obtain a significant increase in secondary structure content,

the protein must be packed more than 20% more densely than most protein structures

are folded. The secondary structure that does form is predominantly alpha-helical.

Shape can also influence secondary structure content. Helical structure is

enhanced in random walk structures constrained to extremely prolate ellipsoids.

Extremely oblate ellipsoids contain significantly less helical structure, but contrary to

our expectations, little strand-strand pairing is found. The lack of sheet structure in our

simulations suggests that the cubic lattice imposes significant biases on the types of

structures that are observed.

54



Methods

1. Generation of random walk structures

The native-like random walk structures are constructed by performing self-avoiding

random walks. Consecutive alpha-carbons are separated by 3.8 Å and joined by vir
tual bonds. This mimics the distance between sequential alpha-carbons in native pro

teins. The model construction method is shown in Figure 3.1. Each structure is gen

erated starting from a random position within the constraining ellipsoid. After three

atoms have been placed, the position of each successive atom is determined by ran

domly choosing an inter-Co. angle O. (ZCoi-1 Coi Coit 1) and a torsion angle t

(ZCoi-2 Coi-1 Coi Coit 1) subject to the correlated O/t probability distribution

observed in native proteins (Figure 3.2). The frequency with which a pair of angles

(O., t) is picked is directly related to the frequency with which that combination occurs

in native proteins. The o/t distribution has a direct mapping to Ö/\!y space normally

used to describe backbone geometry in proteins and follows from the local excluded

volume effects of a polypeptide chain. The distribution of angles () and y derived from

crystal structures is very similar to the one predicted from a hard-sphere model by

Ramachandran et al. (1963; 1968) Unlike torsion angles () and y, however, angles O.

and t have equivalents in lattice models. A similar distribution was derived previously

by Levitt (1975). For computational efficiency in choosing (0,1) pairs, the distribution

was digitized into 10368 2.5° x 2.5° bins and then mapped to one dimension and inte

grated as described in Numerical Recipes in C (Press et al., 1988, page 215).

Therefore, angles smaller than 75°, which presumably are the result of experimental

error, are never chosen.

The self-avoidance procedure works in the following way. A new alpha-carbon i is

always allowed to be placed at least some minimum distance dmin (4.25 Å) from any

other non-bonded alpha-carbon j (j > i + 2) but never closer than an absolute cutoff

distance, dabs (3.75 Å). If an atom position is chosen that places it between dabs and
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dmin of another atom, a Monte Carlo approach is taken to decide whether to allow

placement. A random number between 0 and 1 is chosen. If that number is smaller

than pi where

dmin - dii
(1) H = 1 - ++ (where dii is the distance between atoms i and j)

then placement is allowed. Thus, distances closer to dmin are usually accepted and

distances closer to dabs are usually rejected. This soft sphere model was found to be

more realistic than a hard sphere model. The distances of 3.75 Å and 4.25 Å where

chosen to most closely approximate the distribution of inter-Co distances in native

proteins. Atom placement is recursive. If an atom cannot be placed after four

Figure 3.1. Construction of native-like random walk proteins showing con
straining ellipsoid with vertices a, b, and c. Virtual bond angle o and virtual
dihedral angle t are indicated.
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attempts, the previous atom is replaced. A maximum of 107 replacements is allowed

before the program prints the atoms which it was able to place and exits with a time

Out CITOT.

Compactness is enforced because each model is constrained to be within an ellip

soid whose shape and dimensions are controllable. The size of the ellipsoid is scaled

relative to the radius, R, a protein of N residues would have if it were perfectly spheri

cal (Cohen & Sternberg, 1980; Gregoret & Cohen, 1990):

3 - N - m

4T "Qp " 106. NA
. 1010

(where N is the number of residues, m is the average molecular weight of an amino

acid (110 g/mol), pr is the density of globular proteins (1.4 g/ml, Creighton, 1983, p.
268), NA is Avogadro's number, and 10% ml/m3 and 10.10 Å■ m are unit conversion fac
tors) Compactness is varied by scaling the volume in which random walk takes place

by a factor £:

47tr3 4
(3) W = e . º

-
.* (where a, b, and c are the scaled ellipsoid

vertices)

The program for generating random three-dimensional structures, RANPROT, was

written in C. CPU time required for generating a structure depends both on the num

ber of residues to be modeled and the volume constraint. Average time for generating

a compact (scale factor e = 1.0), native-like 138 residue protein is 0.3 minutes on a

Silicon Graphics Personal Iris 206. Average time for a 275 residue protein is 17.4

minutes.

In addition to these “native-like” random walk structures (incorporating native

like bond and torsion angles), we also produced structures on two types of lattices.
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Cubic lattice random walk structures were generated using the same recursive algo

rithm, but restricting angles o to 0°, +90°, and 180°. We also generated “knight's

walk” random walk structures (Skolnick & Kolinski, 1990) on a cubic lattice taking

steps like a knight's move on a chess board -- two steps in any direction on the lat

tice followed by a 90° turn and another step. The spacing of this lattice is 1.69A so
that inter-Cº distances are 3.8 Å. The excluded volume of each atom consists of that

point itself and the six nearest lattice points. From any given residue i, the next

residue in sequence, i+1, may be placed any of 24 places, excluding the position of

residue i-1. Consequently, 10 different virtual bond angles o are possible and 58 dif

ferent torsion angles t are possible. Some bond angles are prohibited in the knight's

walk structures: an angle of 180°, although possible on such a lattice, is not allowed

since in true protein structures, the i to i+3 inter-Co distance is always less than 10.5

Å (J. Skolnick, personal communication). Similarly, very acute angles are excluded.

Parameters and features of all three types of models are shown in Table III.1.

2. Construction of model sets

Several sets of structures were generated (Table III.2). We elected to simulate a

64 residue protein for ease of comparison with maximally-compact cubic lattice struc

tures and to permit enough structures to be generated to ensure reliable statistics.

Eight densities were studied for the native-like random walk model. One thousand

structures were generated at each density, except for the most compact densities

where 250 structures were made due to time constraints. Sets of structures at nine

different densities were produced for the cubic lattice and knight's walk lattice. Apart

from the maximally compact cubic structures which were constrained to 4x4x4 cubes,

all structures were constrained to
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Table III.1.

Properties of lattice and non-lattice protein chains

Toperty Real proteins | Native-like Cubic Lattice I Knight’s walk
random walk | structures lattice struc
Structures tures

Chain Geometry:

virtual bond length T3.8 Å 3.8 Å (adjustable).T3.8 Å (adjustable).T3.8 Å (adjustable)
virtual bond angle o effective range 0° to 180° in 2.59 TQ0° or 180° 7 allowed angles:

75° to 150° increments (same 66°, 78°, 90°, 102°,
effective range as 114°, 127°, 143°
real proteins)

virtual dihedral 0° to 360° contin- || 0° to 360° in 2.5° | 0°, 90°, 180°,270° | 0° to 360° (58 dis
angle t uous range increments crete angles)
O/t correlation correlated correlated uncorrelated correlated

out symmetry asymmetric asymmetric symmetric symmetric
(about of - 90° and t
= 180°)

Packing Characteris
tics:

closest observed or TT3.7AT 3757 3.8A 24 A
allowed contact

per-residue Packing TEDT3K." 100 A3/Co. # 36A3/Co. f 28 A3/Co. f
volume observed on
average", allowedf,
or achieved;
packing uniformity generally uni- uniformity not uniformly com- | uniformity not
of maximally com- |formly compact guaranteed pact guaranteed in our
pact structures simulations
separation between
ith and it 3rd o-car. I-5.0A = 5.0 Å 38,54,66,or 8.5 |24 to 5.5 Å
bons in a helix Å
separation between
adjacent a-carbons inl - 5.1 A 3.75 to 5.5 Å 3.8 Å 24, 34 or 3.8 Å
sheets



Table III.2. Compactness parameters of 64-residue random walk models

random walk type volume scale number of mean radius of |mean number of
factor (e) Structures gyration (A) contacts

produced
native-like 0.7 250 8.8 + 0.1 67.6+ 8.1
native-like 0.8 600 9.1 + 0.2 59.6+ 7.9
native-like 0.9 1000 9.3 + 0.2 52.9 + 7.8
native-like 1.0 1000 9.5 + 0.2 47.5 + 7.9
native-like 1.3 1000 10.2 + 0.3 38.4 + 7.6
native-like 1.5 1000 10.5 + 0.4 35.3 + 7.7
native-like 2.0 1000 11.2 + 0.5 31.7+ 7.7
native-like 1000. 1000 17.4 + 3.5 22.2 + 7.6
cubic lattice 0.48 250 7.3 81.0

(4x4x4 cube)
cubic lattice 0.5 250 7.5 + 0.1 65.1 + 4.6
cubic lattice 0.7 1000 8.2 + 0.3 47.4 + 8.4
cubic lattice 0.9 1000 9.0 + 0.2 31.0+ 6.3
cubic lattice 1.0 1000 9.2 + 0.3 28.1 + 6.1
cubic lattice 1.3 1000 9.8 + 0.4 24.7 it 6.1
cubic lattice 1.5 1000 10.1 + 0.4 23.9 + 6.1
cubic lattice 2.0 1000 10.7 HE 0.7 22.9 + 6.4
cubic lattice 1000. 1000 17.6+ 3.7 7.8 + 5.4

knight's walk lattice 0.3 1000 6.6 + 0.1 100.9 + 9.5
knight's walk lattice 0.5 1000 7.6+ 0.2 52.1 + 8.1
knight's walk lattice 0.7 1000 8.2 + 0.3 39.1 + 8.0
knight's walk lattice 0.9 1000 8.8 + 0.4 32.6+ 7.7
knight's walk lattice 1.0 1000 9.0 +0.4 30.7:H7.9
knight's walk lattice 1.3 1000 9.6 + 0.6 25.7+ 7.6
knight's walk lattice 1.5 1000 9.9 + 0.6 24.5 + 7.4
knight's walk lattice 2.0 1000 10.6+ 0.8 21.3 + 7.2
knight's walk lattice 1000. 1000 15.5 + 3.4 15.1 + 7.3

Footnote for Table III.2: The volume scale factor is the fraction of the volume expected for a
protein assuming a uniform density of 1.4 g/ml as described in the text. For a 64-residue protein,
the expected volume is 8.38 x 103 Å3. The expected radius of gyration for a 64-residue protein
can be estimated assuming a linear relationship between the radius of gyration (rg)and the num
ber of residues (Nres ). For 24 crystallographically-determined small proteins with less than 150
residues, this relationship is linear and is given by rg=0.042 - Nres + 839 (r=0.92). A 64
residue protein would be expected to have rg = 11.0+0.7 Å. The number of interresidue contacts
is computed using a cutoff distance of 3.8 Å for the cubic lattice and knight's walk lattice struc
tures and 5.5 Å for the native-like structures. Connected neighbors are not included as contacts.
The ratio between the number of interresidue contacts (Ncont) and number of residues (Nres )
for a set of 72 crystallographically-determined structures, is 0.75 + 0.10 allowed to adopt any
“reasonable” angle between 75° and 150° with equal probability, and t any angle between 0° and
360° with equal probability. Eight sets of structures of the same densities as above were gener
ated using this uniform distribution.
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spheres. Table III.2 contains the average radii of gyration and the average number of

interresidue contacts for the various sets of structures.

We studied the effect of chain length on the native-like random walks simulations

using 58, 138, and 275 residue chains. Structures were generated at four different

densities: e = 1.0, 1.3, 1.5 and 1000 (effectively unconstrained). Since real proteins

are generally slightly non-spherical, a prolate ellipsoid with an axial ratio of 1.25:1:1

was used to constrain these structures. No timeouts occurred during the generation of

these nine sets of structures. To investigate the dependence on chain length in cubic

lattice structures, one set of 250 maximally compact cubic lattice structures (i.e.

restricted to a 3x3x3 cube) with a chain length of 27 was generated.

It should be noted that when we construct our model sets, we have no way of

ensuring that we do not regenerate the same structure twice. To avoid this potential

problem, a backtracking procedure, such as the scanning method described by

Meirovitch and Lim (1990) should be used. Practically speaking, for the chain lengths

used here, the chances of creating the same structure twice are infinitessimal. For a

chain length of 64, even if each atom has a conservative choice of two conformations,

there are 264 = 1.85x1019 total chain conformations possible. In the native-like struc

tures, the number of possible conformations per residue is much larger than two, so

the probability of reforming the same structure twice is negligible.

Native proteins are made from L-amino acids, and therefore adopt main chain tor

sional angles which minimize steric hindrance between the side chain at the ot-carbon

and the main chain. The lattice models, on the other hand, are achiral. In order to

study the effect of chirality in our native-like random walk structures, we made the o/t

probability distribution, p(Q,t), symmetric about t = 180°. The new probabilities,
p’(o.,t), at t = x* and t = 360 - x* were set to ; (p(0,x) + p(O., 360-x)). Eight sets of

structures with compactness ranging from e = 0.70 to 1000 were generated using ot,t

pairs from this new distribution. In addition, a uniform distribution without angular
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preferences was made such that o is allowed to adopt any “reasonable” angle

between 75° and 150° with equal probability, and t any angle between 0° and 360°
with equal probability. If in an all-backbone-atom model, () and V were allowed to

adopt any angle betwen 0° and 360°, but bond angles and bond lengths were held

fixed, this mapping to out space would result (J. Troyer, personal communication).

Eight sets of structures of the same densities as above were generated using this
uniform distribution.

We also made random structures constrained by ellipsoids of unusual shapes in

order to identify other constraints which may influence secondary structure formation.

Discus-shaped flavodoxin structures were made with ellipsoid vertex ratios of 2:2:1,

4:4:1, 10:10:1 and 15:15:1. Cigar-shaped structures were generated with vertex ratios

of 2:1:1, 10:1:1 and 100:1:1. The volumes of all ellipsoids were normal (i.e. scaled by

e = 1.0).

RANPROT also has the capability of generating structures with correct secondary

structure as listed in the HELIX and SHEET records of Protein Data Bank (PDB)

files (Abola et al., 1987; Bernstein et al., 1977). Helical residues are constrained to

angles O. = 92° and t = 50° whereas beta sheet residues are assigned angles O =

120° and t = 200°. Residues at the ends of helices and strands are allowed to adopt

any conformation in the o/t map. We were able to generate twenty-five 138-residue

structures with the secondary structure observed in flavodoxin (Marquart et al., 1983)

at a volume 130% of the expected native volume. Ellipsoid vertex ratios of 1.27:1.27:1

were chosen to correspond with the lengths of the eigenvectors of the principal

moments of inertia of flavodoxin.

3. Evaluation of secondary structure content in models

Two methods were used to evaluate secondary structure in the random models,

the difference distance matrix method of Richards and Kundrot (1988), and the con
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tact-based method of Chan and Dill (1990a; 1990b) Both methods use internal dis

tances to assign secondary structure. The Chan-Dill method is attractive because it is

theoretically applicable to any type of chain representation. It is the only useful

method for cubic lattice and knight's walk lattice random walk structures since the

Richards-Kundrot method is parameterized for real proteins. The Richards-Kundrot

method is well-suited to these calculations because it requires only Co. positions.

Di nce di matrix definiti

The method of Richards and Kundrot (1988) assigns secondary structure using a

difference distance matrix. All inter-Co distances in the protein are computed. These

distances are then compared to the interresidue distances in an idealized segment of

secondary structure. If the distances fall within some rmsd (root-mean-square devia

tion, Ar) limit, an assignment is made. We have found that for crystallographically

determined structures, the optimal value for helical assignment is Ar = 0.75 Å and the
optimal value for strand assignment is Ar = 0.5 Å (N. Colloc'h and S. Presnell, per
sonal communication). Using this method, Richards and Kundrot are able to identify

five different types of secondary structure. Here we will only consider helices (O. and

310) together, and 3-strands. This method could theoretically be used for lattice struc

tures, however, the Ar limits would have to be set to extremely large values and the

accuracy of the method would be compromised.

ntact-based definition

The method of Chan and Dill (1990a; 1990b) is very similar to the Richards and

Kundrot method, except instead of requiring specific, consistent interresidue dis

tances, the method is only sensitive to whether a subset of inter-Co distances is

within some threshold value. Helices are identified if at least one of four sets of inter

residue distance constraints is met (see Figure 3.3). A “type I” helix is defined by
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contacts between alpha-carbons i and i+3, i and i+5, i+1 and i+6, i+2 and i+7, i44

and i-7, a “type II” helix is defined by contacts between alpha-carbons i and i-3, i

and i+7, i+1 and i+6, i+2 and i-F5, i44 and i+7; a “type III” helix is defined by con

tacts between residues i and i+3 and i+2 and i+5; and a “type IV” helix is defined

by the contacts of a type II helix plus a contact between residues i44 and i+7.

Residues assigned to more than one type of helical structure are counted only once.

The Chan-Dill definitions are entirely contact-based in two dimensions on the

square lattice, but helices III and IV require coordinate information in three dimen

sions to completely specify chain geometry (H.S. Chan, personal communication).

Here, since we apply the Chan-Dill definition to several types of structures, we use

topological contacts only. The consequences are that on a cubic lattice, a type III

helix is allowed to be “bent” rather than planar, much like a three-quarter length type

IV helix. Similarly, a type IV helix is allowed to be planar (Figure 3.3).

Antiparallel sheets are defined if contacts between residues i and j+2, i+1 and

j+1, i4-2 and joccur simultaneously (for j 2 i+3). If i-3 = j, the antiparallel sheet

occurs at a turn and residues i+2 and j are counted as being in a turn while residues i,

i+1, j, and j+1 are assigned to antiparallel sheet conformation. Parallel sheets are

defined if contacts occur between residues i and j, i+1 and j+1, i+2 and j+2. Chan

and Dill require sheets to be planar on the lattice. Planarity is approximated here by

requiring the virtual bond angles oil and ojt1 to be greater than or equal to 120°.
Unlike the Richards-Kundrot method, the Chan-Dill method has no definition for an

isolated strand.

A distance cutoff of 5.5 Å was used to assign contacts in the random walk struc
tures. For the cubic lattice structures, a distance cutoff of 3.8 Å was used, since Chan

and Dill consider only the 6 nearest lattice points in tabulating topological contacts.

The cutoff used in the knight's walk structures was also 3.8 Å. For this lattice type,
each point is surrounded by 24 possible neighbor sites within at least 3.8 Å.
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Results and Discussion

1. Examples of Random Walk Models

We carefully chose chain characteristics in order to develop the most protein-like

random walk structures possible. Table III.1 shows a comparison of properties for real

proteins, native-like random walk structures, structures restricted to cubic lattices and

knight's walk lattice structures. Three random walk structures (native-like, cubic lat

tice and knight's walk) are shown at the same scale in Figure 3.4 along with the crys

tallographically-determined structure of pancreatic trypsin inhibitor (Marquart et al.,

1983), a 58-residue protein. Helices and sheets, as identified by the contact-based

method of Chan and Dill, are highlighted in red and blue respectively. The native-like

structure shown is of a density comparable to real proteins. The cubic lattice structure

shown is maximally-compact and the knight’s walk lattice structure is as compact as

we are able to generate (e = 0.3).

The native-like structures can look very protein-like: packing is relatively efficient,

secondary structure is observed, and reversals of chain direction are common near the

surface. Apart from the large amount of random coil structure, there are several

notable difference between these structures and real proteins. At densities greater

than those of real proteins (es 1.0), the structures appear suspiciously spherical or

ellipsoidal compared to real proteins (i.e. the fact that the walks were constrained to

spheres or ellipsoids is obvious). Structures which are less dense than real proteins

often appear nonuniformly packed -- one end of the molecule may be quite dense, while

an unpacked loop may meander across to the other end of the molecule.

2. Secondary Structure Definitions

The Chan-Dill contact-based definition of secondary structure works remarkably

well in identifying secondary structure in real proteins. The cutoff distance for
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Figure 3.4. Several random walk structures and a crystallographically-deter
mined structure for comparison. Top left: maximally compact 64-residue cubic
lattice structure; top right: compact, 64-residue knight's walk lattice structure;
bottom right: crystallographically-determined bovine pancreatic trypsin inhibitor
structure (Marquart, et al., 1983); bottom left: native-like 64-residue random
walk structure. Helices are colored red and sheets are colored blue. Secondary
structure was identified using the contact-based method of Chan and Dill. A
cutoff distance of 3.8 Å was used to identify structure in the cubic and knight's
walk lattice structures and a cutoff distance of 5.5 Å was used for the native
like and crystallographically-determined structures.
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assigning contacts of 5.5 A did not consistently over-assign or under-assign

secondary structure in crystallographically-determined structures. Assignments very

closely matched those in the HELIX and SHEET records of the PDB files. Using the

contact-based method, 30 percent of residues in the data set of the 72

crystallographically-determined structures (Gregoret & Cohen, 1990) were assigned

to helical structure and 34% were assigned to sheet structure (11% parallel and 25%

antiparallel). These estimates of total secondary structure content are similar to

those found using other methods (Chan & Dill, 1990b) although sheet content is

slightly higher. The contact-based method will locate shorter, two-strand sheets since

only six residues are required. Also, a hydrogen bond-based method, such as Kabsch

Sander (Kabsch & Sander, 1983) is likely to be more stringent because more atoms

are required to make an assignment. Helix types I and II did not occur at all in the

data set of real proteins. Interestingly, types I and II are rarely observed in cubic

lattice structures as well. The large number of distance constraints required for these

subtypes may select against them in the lattice models (Chan & Dill, 1990b). In

addition, stereochemical constraints may prevent them from occurring in real proteins.

3. Compactness and Secondary Structure

A. Helical Structure

Figure 3.5A shows the dependence of helical content on compactness for the three

classes of structures: native-like structures, cubic lattice structures and knight’s walk

lattice structures. For all structural classes, helical content increases as the mean

radius of gyration decreases. As compactness constraints are removed, however, the

amounts of helix in the various models differs significantly. The native-like proteins

have a large baseline helicity. That is, unconstrained structures have 13% of residues

in a helical conformation on average. The most compact native-like random walk struc

tures which we could generate (e=0.70) contain an average of 28% helix. When
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helical content in the native-like structures is defined using the method of Richards

and Kundrot, the dependence on compactness is still observed. This suggests that

the relationship between helical content and compactness is not an artifact of the

contact-based definitions for helices which could result merely because the overall

number of intrachain contacts is higher.

Maximally compact cubic lattice structures contain 27% helix on average. Uncon

strained cubic lattice structures have a very low baseline helicity. This suggests that

the increases in helical structure resulting from compactness is real and not a conse

quence of the limited number of virtual bond angles and torsional angles allowed on

the cubic lattice. Because we are more lenient in the definitions of type III and IV

helices and require only topological contacts rather than specific spatial geometry, our

estimate of helical content is slightly higher than that of Chan and Dill (1990b). Gen

eration of a random sample of 27 residue maximally compact structures suggests that

we overestimate helical content by about 6% when compared to Chan’s and Dill's

exhaustive study of maximally compact structures.

A dramatic increase in helicity is not observed in the knight’s walk structures,

although, the trend in the points on the graph suggests that at smaller radii of gyra

tion, helical content may increase in these structures as well. Whether it will do so

before the minimum radius of gyration is reached cannot be determined since we are

limited by time constraints in generating more compact (e.< 0.30) structures. Never

the-less, it appears that the knight’s walk lattice does not map as well to O-helical

conformation. Different lattice models may have different inherent compact subcon

formations. Instead of helices, the knight's walk lattice structures may have an alter

native type of regular repeating structure not observed in native proteins.

In native proteins, there is a linear relationship between the number of amino acids

and the radius of gyration (see legend, Table III.2). The radius expected for a 64

residue protein is indicated in Figure 3.5. Real proteins are not as compact as the
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most compact native-like structures we are able to generate nor as the maximally

compact cubic lattice models when judged by both the radius of gyration and also by

the number of intrachain contacts (see Table III.2).

A possible bias in our structure generation method is that it is unidirectional: we

generate structures from the amino terminus and add residues sequentially. Residues

at the beginning of the chain are likely to be subject to fewer excluded volume

constraints. Indeed, very compact native-like random walk structures (e > 1.0)

contain 40-60% more residues in a helical conformation at their C-termini than at their

N-termini. This result shows that our method of conformational searching does not

always produce a truly random set of structures as an exhaustive search would.

Structures with a compactness comparable to proteins, however, are not biased in this

Inanner.

B. Sheet Structure

All three types of structures exhibit a similar dependence of sheet content on the

radius of gyration (Figures 3.5B and C). The native-like random walk structures con

tain little sheet structure. It appears as though sheet content would increase if we

were able to generate more compact structures. However, the increase in sheet con

tent is accompanied by a drop in total strand content (open circles; computed using the

Richards-Kundrot method), so it is unlikely that the native-like structures will ever

have as many sheets as cubic lattice structures.

For the cubic lattice structures, a significant amount of sheet structure is seen only

when maximal compactness is achieved. Compact knight's walk lattice structures

also contain a significant amount of sheet structure. The preponderance of sheet

structure in both types of compact lattice structures is likely to come from a bias in the

lattice, which contains ordered arrays of points on which to form sheets.

Figures 3.5D shows total secondary structure content as a function of the radius of

gyration. Maximally compact cubic lattice structures have the most secondary struc
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ture, to which both helix and sheet contribute equally. Secondary structure content in

the native-like structures is largely dominated by helical structure. Compact knight's

walk structures are dominated by sheet structure.

4. Dependence on chain length

Secondary structure content in the native-like random walk proteins depends little

on chain length. Figure 3.6 shows secondary structure content in compact and uncon

strained 58, 138, and 275 residue structures as evaluated by both secondary structure

assignment methods. Although there is more variation in the amount of secondary

structure with the shorter chains, the average secondary structure content is

independent of length. There is also little difference in secondary structure content

between the compact (e = 1.0) structures and unconstrained structures: helical and

sheet content drops slightly while strand content

increases. Presumably this is because the chain can take longer excursions in a given

direction before encountering either itself or the ellipsoid boundary.

The effect of compactness on the overall distribution of secondary structure content

in a set of structures (e.g., 138-residue structures) is shown in Figures 3.7A through

D. Helical content accounts for most of the secondary structure content. Peaks at 6,

12, and 18 residues reflect the minimum number of residues required to specify a helix

or a sheet. These peaks become more pronounced when the compactness constraint

is removed. This occurs because there is more variation in helix (or sheet) length in

more compact structures. Less compact structures are likely to have one, two, or

three isolated helices (or sheets). Interestingly, structures constrained to ellipsoids

30% larger than the expected volume of real proteins still have a distribution which

resembles that of the more compact structures. This suggests that slightly expanded

structures, perhaps corresponding to a molten globule-like state (Kuwajima, 1989),

may share some features with more compact, folded structures.
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The work of Chan and Dill (1990b) focused only on short chains to allow exhaus

tive sampling of conformation space. Since computation time for a full search of con

formation space increases as CN, where C is the coordination number of the lattice

and N is the chain length, searches for much longer sequences were prohibitive. The

average secondary structure content in maximally compact 27-length proteins was

50%. We found that we could duplicate the observed distribution of secondary struc

ture in maximally compact 27-length structures with a random sample of 250 walks on

cubic lattices (restricted to a 3x3x3 cube). In addition, with a random sample of 64

length structures, total secondary structure remained at 50%. This suggests 1) that

the results of Chan and Dill are applicable to longer chains, and 2) a random sample of

compact conformations can give similar results to an exhaustive conformational

search. In two dimensions, Chan and Dill postulate that secondary structure content

approaches 100% in maximally compact chains of infinite length. In three dimensions,

it appears that the limiting value may be closer to 50%.

5. Effect of chiralit

Helical content may be over-estimated in the cubic lattice studies because chirality

is absent. To see what effect the asymmetric o■ t probability distribution has on sec

ondary structure, we made the distribution symmetric to allow right- and left-handed

helices and strands to form with equal probability. We found a significant decrease in

the overall amount of secondary structure at all densities. The helical content of un

constrained structures is only 7%, as compared to 15% in unconstrained structures

generated using the asymmetric o■ t distribution (Figure 3.8A). In the most compact

structures (E = 0.70), helical content is only 13% -- half as much as in structures of

equal density generated from the asymmetric out distribution. This result is surpris

ing since it may be expected that allowing right-handed, left-handed, and planar
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Figure 3.8A. Helical content in native-like structures (O), native-like
structures made using a symmetric o■ t distribution (O), and structures
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(achiral) helices would increase helical content. However, the opposite occurs since

the chain has more conformational freedom. Consider four connected residues on their

way to forming a right-handed helix. If the fifth residue has equal probability of con

tinuing in a conformation that would extend the right handed helix or adopting a left

handed conformation, the helix may be broken. Perhaps this is the origin of glycine’s

helix breaking behavior. On the cubic lattice, conformation space is still restricted

enough that helices are observed in compact conformations. When the constraint of

the lattice is removed and handedness is eliminated, very little regular structure is

found. This phenomenon may explain why so little helical structure is observed on

the knight's walk lattice. With respect to helices, the knight's walk lattice structures

are more similar to the symmetric o■ t native-like structures because there is much

more conformational freedom in t Fifty-eight discrete torsional angles are allowed on

this lattice (Table III.1) as compared to only four on the cubic lattice. Sheet content in

the symmetric torsion angle structures is about equal to that in the asymmetric native

like structures (Figure 3.8B).

When the o/t distribution is uniform (i.e. there is no preference for particular vir

tual bond or torsion angles) helical structure nearly disappears. The contact-based

definition detects only 4% of residues being in a helical conformation at the most com

pact density (Figure 3.8A). When the Richards-Kundrot definition is used, only 0.5%

of residues are considered to be native-like helices in these structures. Presumably,

as the overall number of interresidue contacts increases, the probability of forming

contacts consistent with the Chan-Dill definitions of helices increases. Interestingly,

the uniform distribution structures have slightly more sheet structure than the native

like structures -- 11% in the most compact structures as opposed to 7% in asymmetric

structures of similar density (Figure 3.8B). The reason for this behavior is the larger

area of the O/t plot which is now accessible to strand conformation coupled with loss

of the strong preference for helical structure.
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fl. Shape and Secondary Structure

In order to investigate other factors which may influence secondary structure con

tent, we generated structures constrained to extremely flat and extremely oblong

ellipsoids. Figure 3.9A shows helical content as measured by both the Richards-Kun

drot and Chan-Dill methods. Shape has little effect on helix formation until very

extremely prolate structures are generated. When the vertex ratio is 100:1:1, helical

content increases dramatically. We observed many more program timeouts in the

generation of the less extremely prolate proteins (e.g. with vertex ratios of 10:1:1)

than in the more extreme case (100:1:1). This result suggests that there is some

intermediate set of boundary conditions for which it is difficult to generate structures.

Once this barrier is surmounted, the chain may have fewer choices of dihedral angles,

but polymerizes quickly. This effect could have significance to the formation of

filamentous proteins.

Strand and sheet content is influenced less by shape. Only the discus with vertex

ratios of 15:15:1 enhances strand content (Figure 3.9B). We do not see a complemen

tary increase in sheet content in these structures as we expected. As in the compact

native-like random walks constrained to spheres or slightly off-spherical ellipsoids,

strand-strand pairing remains a rare event. Figure 3.10 shows a cigar-shaped 138

residue chain constrained to an ellipsoid with vertex ratios of 100:1:1 and a discus

shaped 138 residue chain constrained to an ellipsoid with vertex ratios of 15:15:1.

66 99

Structures with 138 residues and helices and strands distributed along the chain

as seen in flavodoxin (Smith et al., 1977) were generated in order to investigate the

effect of introducing local constraints on non-local interactions. We found that the

mean rms deviation of a set of twenty-five random walk flavodoxin structures from the

crystallographically-determined structure was 15+ 1 Å. The same mean rms deviation
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Figure 3.10. Top: two views of a structure resulting from constraint by an
ellipsoid with vertex ratio 15:15:1. Helices and sheets, as defined by the Chan
Dill method are colored red and blue respectively. Bottom: two views of a
structure resulting from constraint by an ellipsoid with vertex ratio 100:1:1.
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was found for the set of 1000 native-like random walk structures of equal density (E =

1.3). Strand-strand pairing is as rare in these structures as in ordinary native-like

random walk structures. Only 3% of residues were in antiparallel sheets and 2% in

parallel sheets. These structures have volumes 30% larger than the expected volume

of flavodoxin. Computer time constraints precluded the generation of more compact

structures. It is possible that more compact conformations could have more sheet

StructureS.

Conclusions

Compactness induces secondary structure formation in all three lattice and non

lattice representations of polypeptide chains studied here. The types of structures

which predominate differ according to the type of representation used. Native-like

random walk structures are predominantly helical. Random walks performed on a

cubic lattice contain approximately equal amounts of helix and sheet and compact

structures constructed on a knight's walk lattice have a significant amount of sheet

structure but little helix.

A much larger amount of sheet structure is seen in compact cubic lattice structures

and knight’s walk lattice structures than in the non-lattice random walk structures.

This leads us to believe that the lattice imposes a bias which favors sheet formation:

the lattice contains ordered linear arrays of points upon which paired strands can lie.

Our model lacks this bias. In our model, local structures, such as helices and strands

form with a fairly high probability even in volumetrically unconstrained structures: 13%

of residues, on average, will be in a helical conformation in unconstrained structures,

and 20% will be in a strand conformation. We can reconcile the lack of sheet structure

in our model with that obtained on the cubic lattice (Chan & Dill, 1990b) by suggest

ing that the linearly arranged lattice points acts as a guide for sheet formation, much

as hydrogen bonds may “lock in” strand-strand pairing during the folding of real pro

I []
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teins. The geometry of the cubic lattice model introduces an additional attractive term

which promotes the formation of non-local interactions like sheets. If we had included

an attractive term in our native-like random walk model, we may have seen sheets

form as well.

Helical structure in the native-like random walk structures is halved when torsion

angles of both handednesses are equally probable. Fewer helices form because the

chain has more conformational freedom. The inclusion of right-handed, left-handed and

achiral helices in the cubic lattice model probably does not overestimate helical struc

ture. The lack of helical structure in the knight's walk lattice structures may result

because torsion space is extensive yet symmetric. This is consistent with the ten

dency of glycine to terminate secondary structure in proteins. When the preference for

helical structure is taken away by making the o/t distribution uniform, helices vanish

almost entirely.

Are maximally compact structures a valid reference state for real proteins? Struc

tures which have high secondary structure content are much more compact than real

proteins. In our simulations we see enhancement of secondary structure only in

native-like random walk structures which have volumes 20-30% smaller than typical

protein volumes. Though the cubic lattice may be scaled such that lattice points are

the same distance apart as sequential alpha carbons in real proteins (3.8 Å), the
density of alpha-carbons in the maximally compact state is twice as great (see Table

III.1.) Efforts to map alpha-carbon positions of real proteins onto a cubic lattice has

resulted in structures which have only 75% of the available lattice points filled (D.

Yee, personal communication). It may not be relevant, therefore, to compare

maximally compact structures to real proteins. Still, it could be argued that real

proteins are maximally compact since they are as compact as close packed spheres

(Richards, 1977). Because we neglect explicit side chains in our models, the excluded

volume constraints may not take effect until densities greater than those in real
83



proteins are attained. However, studies of molten globule protein folding

intermediates suggest that protein structures which are 10-30% larger in volume than

the native state still contain a significant amount of secondary structure (Kuwajima,

1989). Therefore, we would have expected to have seen a greater amount of

secondary structure at least at densities comparable to native proteins.

Constraints other than compactness can have effects on secondary structure for

mation. Extremely prolate ellipsoidal (cigar-shaped) structures have a greatly

enhanced amount of helical structure. Discus shaped structures have more extended

strands but these are not arranged to form beta-sheets. Apparently, the entropic cost

of strand-strand pairing in our simulations is too great.

Compactness clearly drives the formation of compact substructures such as O.-

helices and 3-sheets. We see greatly enhanced helical content in super-compact

native-like random walk structures. Sheets occur less frequently in our native-like

random walk models. Even though they may be an inherently compact conformation,

compactness alone does not drive their formation. Clearly, lattices impact subtle con

formational bias to chain simulations which can quantitatively influence conclusions

about the origins of protein structure.
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Part A. Introduction to Modeling by Homology
The most accurate method for protein structure prediction is homology-based

modeling. This method relies on sequence similarity between the protein of interest

and a protein (or proteins) whose three-dimensional structure has been determined

experimentally. The sequence of interest is first aligned with that of the protein

whose structure has been determined. Then, following the alignment, the backbone of

the known protein is fitted with the amino acid side chains of the protein of interest.

Obviously, the availability of a structure with significant sequence similarity is a strin

gent requirement which limits the applicability of this technique. However, it has been

speculated (Dorit et al., 1990) that there is a limited number of folding motifs and that

as the structural database grows, homology modeling will become the primary means

for predicting protein structures. Homology modeling is most successful when the

sequence identity between the protein of interest and the known structure is high

(> 75%). Although there can be significant structural similarity between proteins

having as little as 25% sequence similarity, proteins this dissimilar often have

insertions and deletions, making homology modeling a challenge. Homology

modeling, also known as “knowledge-based” protein structure prediction was

recently reviewed by Blundell et al. (1987).

The first step in homology modeling is the generation of a sequence alignment. A

correct alignment between the sequence of interest and the sequence whose structure

is known is the most important step in the modeling process, since all subsequent

modeling depends upon it: if the alignment is incorrect, the entire model is incorrect

(Greer, 1990). It is often advantageous if the structures of several homologous

proteins are available. A multiple, structure-based sequence alignment can then be

generated by superimposing the known structures in space and noting which residues

in the two (or more) structures occupy equivalent positions. The sequence of the

protein of interest is then aligned either manually or automatically to this consensus

alignment. Aligning the known structures in space is a complicated problem which is

not easily automated because two sequences sharing structural identity may have
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different numbers of residues and several insertions and deletions. Consequently, one

must either predefine superimposable residues (thus defeating the purpose of

automation) or automatically generate trial rotation/translation matrices and then

iteratively check for quality of superposition. Such methods are currently under

development at Birkbeck College (Sutcliffe et al., 1987). Recent work by Taylor and

Orenga (Taylor & Orenga, 1989) uses a dynamic programming method to

superimpose structures by aligning their interresidue distance matrices, or contact

maps. This method has the advantage that it does not require the user to predefine

homologous regions.

It is important to recognize that a structure-based alignment is not necessarily the

evolutionarily relevant one. Although it has been observed that regular secondary

structure elements, such as helices and strands, are generally well conserved while

insertions and deletions occur in loops (Chothia et al., 1986), this is not a rule: intra

helical and intrastrand frameshifts resulting from an insertion can occur and have been

shown to be tolerated when engineered (Sondek & Shortle, 1990). Also, the obser

vation that different evolutionary trees are deduced using parsimony methods from

sequences aligned by structural alignment and sequence alignment (Johnson et al.,

1990) suggests that the structure-based alignment is not necessarily evolutionarily

correct. However, for the purpose of building a model based on known structures, a

structure-based alignment is preferred.

Sequences of related, though structurally unsolved proteins are also useful,

particularly when the sequence identity between the protein of interest and the known

structure(s) is low. Confidence in the alignment in regions of low similarity can be

gained if additional sequences are used to generate a multiple sequence alignment.

The multiple sequence alignment method of Taylor (Taylor, 1986) uses information

from structurally-aligned homologous proteins to generate sequence “templates”

against which additional sequences are aligned. The method of Smith and Smith

(1990), although primarily a tool for locating homologous members of the same protein

family from a large database of sequences, makes all possible pairwise comparisons of
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sequences and generates patterns common to both sequences. Additional sequences

are accumulated in a tree pruning fashion if they also match the pattern. Both of these

techniques can generate reasonable alignments from many sequences even when the

individual pairwise sequence identity between set members is low.

Apart from sequence alignment, the two major unsolved problems of homology

model-building are loop building and side chain modeling. Loops are difficult to model
because this is where most insertions and deletions occur. Even in cases where loop

length is preserved, the three-dimensional structure of the loop may not be constant

across members of the same protein family, especially if sequence identity in this

region is low. Most approaches to loop modeling have utilized loop libraries (Jones &

Thirup, 1986; Kneller, 1988). A loop library is a set of peptide conformations derived

from the crystallographic database of protein structures. The library is searched to

find a conformation which has the correct number of residues and overlaps well with

the backbone of the model where the loop is to be fused. The problem with this

method is that both suitable and unsuitable loops may be found and sorting between
them can be difficult. Chothia and co-workers (Chothia & Lesk, 1987; Chothia et al.,

1989) have successfully modeled the hypervariable loop regions of an immunoglobulin

using a more limited set of loop conformations derived from a basis set of

immunoglobulin structures. This method works well but depends on the availability of

a large set of similar structures from which to derive the loops.

Bruccoleri and co-workers have applied a conformation searching technique to

modeling the hypervariable loops in antibodies (Bruccoleri et al., 1988). Their pro

gram, CONGEN, uses an angular grid search method. The coarseness of the grid is

defined by the user and alternative conformations are evaluated using the CHARMM

force field (Brooks et al., 1983). For the two structures modeled, the average back

bone r.m.s. (root-mean-square) deviations from the true structure were 1.4 Å and 1.7
Å. The major difficulty of this method is that it is time consuming and therefore limited
to eight-residue loops. Longer loops must be split in two.
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Modeling the conformations of side chains is difficult because of the number of

degrees of conformational freedom involved. There are several ways in which the

search may be minimized and the problem has mainly been approached in two ways --

using a rule-based approach and using a conformational searching approach. The rule

based approach focuses on the observation that side chains which differ in two homol

ogous structures usually have the same torsional angles (Summers et al., 1987;

Sutcliffe et al., 1987). Therefore, when making a substitution, a good first

approximation may be to place the side chain of the model in a similar conformation as

in the known structure or structures. If the side chain in the modeled protein is much

larger than in the known structure (for example, Ala -> Phe), then the best guess may

be to choose the most frequently observed rotamer as tabulated by Ponder and

Richards from a set of highly-refined protein structures (Ponder & Richards, 1987).

Further refinement of rotamer choice may be made by taking into account the type of

secondary structure the in which the residue is located (McGregor et al., 1987).

Several grid searching methods for the prediction of side chain conformations have

been developed. Early attempts focused on modeling the conformations of only one or

two amino acids (Shih et al., 1985; Snow & Amzel, 1986). The success of these

studies is hard to evaluate because of the small number of examples.

The CONGEN program of Bruccoleri et al. (1987; 1988) uses an angular grid

search to model both the conformations of loops (see above) and the conformations of

side chains. The grid search is adjustable with a maximum coarseness of 120° with

minima at +60° and 180° corresponding to the two gauche and the trans conformations.

A finer search of 30° or 60° steps is usually employed. Side chains are added to a

structure one at a time either in sequential order or from the center of mass out. The

conformation space of each added side chain is searched and the lowest energy

conformation is saved. This method is able to replace side chains onto a known
structure with an r.m.s. deviation of 2.5 Å.

Recently, Schiffer et al. (1990) described a method, called LECS for lowest energy

conformational searching, for predicting side chain conformations using molecular

1.7/,
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mechanics. The conformation space of each amino acid in turn is searched: each

rotamer (Ponder & Richards, 1987) of that amino acid is substituted and that residue

and the surrounding region is subsequently energy-minimized using AMBER (Singh

et al., 1987; Weiner et al., 1984). The rotamer with the lowest energy is chosen as the

prediction. This method is computer-intensive, but seems to work well, particularly for

core residues. This group is currently investigating incorporating the Eisenberg

solvation free energy derivatives into the force field in the hopes of improving

predictions for surface residues (C. Schiffer, personal communication).

The combinatorial aspect of the Ponder and Richards work has been employed by

Wilson et al. (Wilson et al., in press) for predicting relative free energies of binding of

peptide substrates to enzymes. This method, which can also be applied to the side

chain prediction (Wilson et al., in preparation) problem, uses the Ponder and Richards

rotamer library to search conformation space. The side chain rotamers of a cluster of

amino acids are substituted at once. All possible rotamer combinations at that cluster

are then evaluated using the AMBER force field and an implementation of the Eisen

berg-McLachlan solvation free energies. The last section of this chapter describes the

this method in greater detail.
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Part B. Modeling the structure of the cercarial elastase from
Schistosoma mansoni

Introduction

Schistosomiasis affects one quarter of a billion people. The disease is concen

trated primarily in the tropical areas of northeastern Africa, China, and Brazil. It is

estimated that 60% of the inhabitants of the Nile Valley are infected with the blood

fluke, Schistosoma, which causes the disease. The life cycle of the parasite is quite

complex including stages in both snail and mammalian hosts. Schistosomal infection

occurs when humans bathe or wade in infested water. Organisms in the cercarial

(larval) stage of life follow a temperature gradient to the wading human and then

invade the circulatory system by burrowing through the skin. Once in the circulatory

system, the schistosomes mature, reproduce, and lay many eggs. The eggs can

become lodged in many of the human host’s tissues. As a defense mechanism, the

body forms cysts around the eggs, creating scar tissue in previously healthy organs.

The eggs are also excreted in the feces and urine. If they then end up in water inhab

ited by snails, they invade the snail and eventually develop into the free-swimming

cercarial form once again.

Dr. James McKerrow's group at UCSF has purified and cloned a protease

(McKerrow et al., 1985) which is expressed during the cercarial stage of the schisto

some's life. This protease, termed an elastase because of its ability to cleave elastin,

is implicated in the invasion of the human host. It is postulated that the parasite uses

this enzyme, along with perhaps others, to chew its way through the extracellular

matrix of the dermis. The cercarial elastase has been shown in vitro to cleave keratin,

laminin, fibronectin, and type IV collagen as well as elastin (McKerrow et al., 1985).

In collaboration with Dr. McKerrow and co-workers, we undertook a project to

build a three-dimensional model of the cercarial elastase. It was our hope that visual

ization of the active site of the molecule might lead to the design of inhibitors of the

enzyme. Although inhibitors of this enzyme would act to prevent infection rather than

to cure or treat victims of the disease, the design of a compound which could suppress
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skin invasion could lead to the development of a topical ointment, similar to a sun

screen or insect repellent. Currently, a lotion preparation of the compound niclosamide

is being tested by the U.S. Army for efficacy against cercarial invasion (Cherfas,

1989).

Studies with a battery of mechanism-based inhibitors suggested that cercarial

elastase was likely to be a serine protease (McKerrow et al., 1985). The sequence of

cercarial elastase was found to be similar to the trypsin-like class of serine proteases

(McKerrow et al., 1985). Sequence identity was quite high in the region of the three

residues of the catalytic triad (His-57, Asp-102, and Ser-195 -- chymotrypsin number

ing scheme; His-41, Asp-99, Ser-191 -- cercarial elastase sequential numbering), but

rather low overall -- in the neighborhood of 20%. Cercarial elastase was similar in

sequence identity to both the eukaryotic serine proteases and the bacterial serine pro

teases. Figure 4.1 shows an evolutionary tree relating different proteases. This tree

places cercarial elastase as being distantly related to all proteases.

Methods

Modeling the structure of cercarial elastase

We chose to use the available mammalian serine proteases in the Brookhaven

Protein Data Bank (PDB) (Abola et al., 1987; Bernstein et al., 1977) as a basis set

for modeling the cercarial enzyme. Although we could have chosen to use the bacte

rial proteases as a basis set, cercarial elastase is equally similar in sequence identity

to both groups and is closer in size to the mammalian proteases (having 237 amino

acids). At the time of modeling, the structures of six different mammalian or mam

malian-likef proteases had been deposited to the data bank. These were bovine
trypsin (3PTN), porcine pancreatic elastase (3EST), bovine chymotrypsin (4CHA),

rat mast cell protease (3RP2), porcine kallikrein (2PKA) and S. griseus trypsin

f mammalian-like refers to S. griseus trypsin, which is more closely related in sequence and structure to
the mammalian proteases than to the other bacterial proteases in the data bank.
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Human elastase IIA

Human elastase llb

Mouse elastase

Human elastase Ill/A

Pig elastase

Bovine trypsin

Mouse trypsin

Human prostate elastase

Pig kallikrein
Rat tonin

Fruitfly protease

S. griseus trypsin
Bovine Chymotryspin

European hornet chymotrypsin

Oriental hornet chymotrypsin

Fiddler crab collagenase

Grub collagenase
Rat mast cell protease

Human neutrophil elastase

Cercarial elastase

S. griseus protease A

S. griseus protease B

Alpha lytic protease

Figure 4.1. Evolutionary relationships between serine proteases. This tree was constructed using
the method of parsimony. Sequences were first aligned using the method of Smith and Smith
(1990). The tree was generated using the Macintosh program PAUP by Dave Swofford of the
Center for Biodiversity, Illinois Natural History Survey. The method of parsimony constructs trees
of minimum length by determining the minimum number of nucleotide changes required for one
protein to evolve into another. The most parsimonious tree could not be found through an exhaus
tive search because the large number of sequences made the computation time required too great.
The tree was therefore generated using a heuristic method. Three bacterial proteases, alpha-lytic
protease, S.griseus protease A and S. griseus protease B, were designated as an outgroup in order
to root the tree.
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(1SGT). The structure of rat tonin (17ON) was also considered during modeling once

its coordinates became available.

The backbones of the structures were superimposed and refined manually with the

assistance of computer graphics (UCSF MidasPlus: Ferrin et al., 1988; Jarvis et al.,

1988), and from this three-dimensional alignment a sequence alignment was derived.

The sequence of cercarial elastase was aligned manually to the multiple alignment of

the basis set structures. In most regions, the alignment was fairly straightforward.

However, in the region between the catalytic histidine and aspartate, the sequence

identity is very low. In general, this region is not very well conserved among the

serine proteases. In cercarial elastase, alignment is complicated by a fairly long

insertion of approximately 10 or 15 residues. Two different alignments appeared

equally reasonable to the eye. One placed the insertion closer to the catalytic

histidine and the other closer to the catalytic aspartate. At first we tested the

alignments by generating preliminary models. Using computer graphics and the

backbone of porcine elastase as a model, we made the appropriate substitutions of

amino acids (using the command “swapaa” in UCSF Midas) to correspond to the two

alternative alignments. We tried to judge the alternatives on the basis of burial of

hydrophobic residues, but both alignments seemed equally plausible. To help us

decide where to place the insertion, we used the programs Lineup, Profile, and

ProfileGap from the University of Wisconsin UWGCG package to generate an

alignment automatically. The program ProfileGap placed the insertion closer to the

catalytic aspartate. This alignment was one of the two manually-generated

alternatives. The final alignment is shown in Figure 4.2. Table IV.1 shows the

sequence identity between cercarial elastase and the other proteases used in

modeling.

The model of cercarial elastase was built using the backbone of porcine pancreatic

elastase. Elastase was chosen because it was the closest in length (240 residues) to

cercarial elastase. Side chains were substituted in their statistically most frequently

observed conformations (Ponder & Richards, 1987), except in the region of the sub

~ :
- *-*

1.7/
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strate binding site. Here, side chains were modeled to match the conformations seen

in the basis set structures. In earlier, more preliminary models we made a greater
effort to model all side chains in conformations which matched those of the known

structures. However, we found that this level of detail was not necessary for the sub

sequent inhibitor modeling studies. We also subjected our earliest model to AMBER

energy minimization (Singh et al., 1987; Weiner et al., 1984) primarily in order to

improve the lengths of disulfide bonds. Energy minimization introduced additional

errors into our model by excessively distorting the backbone. Therefore, we did not

minimize the ultimate model. Substrate binding was modeled using the coordinates of

alpha-lytic protease with the boronic acid inhibitor Ala-Ala-Pro-Phe-BOH (Bone et

al., 1989) (PDB entry 1P08). The inhibitor was positioned in the binding cleft of cer

carial elastase by superimposing the atoms of the catalytic residues in alpha-lytic pro
tease and cercarial elastase.

Our collaborators performed a number of experiments designed to test both the

model and itself and predictions regarding the substrate specificity of the enzyme. The

enzyme was cloned Dr. Johnny Railey and expressed in E. coli. Mutants were made

using oligonucleotide-based site-directed mutagenesis. Activity and inhibition assays

on the native enzyme were performed by Payman Amiri. Both standard enzyme kinet

ics and skin penetration assays were performed. Conditions for assays are described

in Cohen et al. (submitted).
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l 50
CercFlast IRSGEPVQHP AEFPFIAFLT TERTMCTGSL VSTRAVLTAG HCVCSPLPVI
CONSENSUS ivg|Gtea. . p nswp. Qvsld ... hi■ CGGs.L inq. wVltRA HC. . . . . itv

Trypsin IVGGYTCG. A NTVPYQVSLN S. YHFCGGSL INSQWVVSAA HC. . . . . IQV
SGTrypsin VVGGTRAA. Q. GEFPFMVRLS M. . . GCGGAL YAQDIVLTAA HC. . . . . ITA

RMCprot IIGGVESI.P HSRPYMAHLD I... ICGGFL ISROFVLTAA HC. . . . . ITV
Kallikrie IIGGRECE. K. NSHPWQVAIY H. SFQCGGVL VNPKWVLTAA HC. . . . . YEV
Elastase VVGGTEAQ.R NSWPSQISLQ Y. AHTCGGTL. IRQNWVMTAA HC. . . . . FRV

Chymotryp IVNGEEAV. P. GSWPWQVSLQ D. FHFCGGSL INENWVVTAA HC. . . . . DVV

51 100
Cercelast RVSFLTLRNG DQQGIHHQPS GVKVAPGYMP SCMSARQRRP IAQTLSGFDI
CONSENSUS vlceh. lnq. egt. Qk..vt kv.vhp. yN. . . . . . . . . . . . . . . . . . . Di

Trypsin RLGEDNINVV EGNEQFISAS KSIVHPSYNN . . . . . . . . . . . . . . . . NNDI
SGTrypsin TGGVVDL. QS G. SAVKVRST KVLQAPGYNG . . . . . . . . . . . . . . . . GKDW

RMCprot ILGAHDVRKA ESTQQKIKVE KQIIHESYNL . . . . . . . . . . . . . . . . LHDI
Kallikrie WLGRHNLFEN ENTAQFFGVT ADFPHPGFNS . . . . . . . . . . . . . . . . SHDL
Elastase VVGEHNLNQN NGTEQYVGVQ KIVVHPYWNG . . . . . . . . . . . . . . . . GYDI

Chymotryp VAGEFDQGSS SEKIQKLKIA KVFKNSKYNN . . . . . . . . . . . . . . . . NNDI

101 150
CercFlast AIVMLAQMVN LQSGIRVISL PQPSDIPPPG TGVFIVGYGR DDNDRDPSRK
CONSENSUS mLlkla. . as l. sav. v . . l p. . . . . aa.g. ttcv. . GWGl tr. . . . . . . s

Trypsin MLIKLKSAAS LNSRVASISL PT. . . . ASAG TQCLISGWGN TKS. . . . . . S
SGTrypsin ALIKKAQPIN ... SQPTLKI A. . . . . AYNQ TFTVVAGWGA NRE. . . . . . S

RMCprot MLLKLEKKVE LTPAVNVVPL PSPSDFIHPG AMCWAAGWGK TGV. . . . . . P
Kallikrie MLLRLQSPAK ITDAVKVLEL PT. . . . PELG STCEASGWGS IEP. . . . . . E
Elastase ALLRLAQSVT LNSYVQLGVL PRAGIILANN SPCYITGWGL TRT. . . . . . Q

Chymotryp TLLKLSTAAS FSQTVSAVCL PSASDDFAAG TTCVTTGWGL TRY. . . . . . N

151 200
CercFlast NGGILKKGRA TIMECRHATN GNPICVKAGQ NFGQLPAPGD SGGPLLPSLQ
CONSENSUS tpdtla. a. l p. ls. . a CK. . sm. CaGy. . . . . . . . c. GD SGGPlvck. .

Trypsin YPDVLKCLKA PILSDSSCK. . NMFCAGY. . . . . . . . CQGD SGGPVVCS. .
SGTrypsin QQRYLLKANV PFVSDAACR. . EEICAGY. . . . . . . . CQGD SGGPMFRK. .

RMCprot TSYTLREVEL RIMDEKACV. . FOVCVGS. . . . . . . . FMGD SGGPLLCA. .
Kallikrie FPDEIQCVQL TLLQNTFCA. . SMLCAGY. . . . . . . . CMGD SGGPLICN. .
Elastase LAQTLQQAYL PTVDYAICS. . SMVCAGG. . . . . . . . CQGD SGGPLHCL. .

Chymotryp TPDRLQQASL PLLSNTNCK. . AMICAGA. . . . . . . . CMGD SGGPLVCK. .

201 240
CercFlast GPVLGVVSHG VTLPNLPDII VEYASVARML DFVRSNI
CONSENSUS g. l. GivSwg s. goa. Pgv. . . ytrvs. yv swinqtiasn

Trypsin GKLQGIVSWG. S. GCA. PGV. . . YTKVCNYV SWIKQTIASN
SGTrypsin WIQVGIVSWG Y. GCA. PGV. . . YTEVSTFA SAIASAARTL

RMCprot GVAHGIVSYG HPDAK. PAI. . . FTRVSTYV PWINAVVN. .
Kallikrie GMWQGITSWG HTPCG. PSI. . . YTKLIFYL DWIDDTITEN
Elastase YAVHGVTSFV S. GCN. PTV. . . FTRVSAYI SWINNVIASN

Chymotryp WTLVGIVSWG SSTCS. PGV. . . YARVTALV NWVQQTLAAN

Figure 4.2 Alignment of cercarial elastase with six proteases of known structure.
Only structurally-superimposable residues are shown from the proteins of known struc
ture. Abbreviations: CercBlast: cercarial elastase; CONSENSUS: consensus sequence
generated using the program Lineup from the UWGCG package; Trypsin: bovine pancre
atic trypsin; SGTrypsin: trypsin from S. griseus; RMCProt: mast cell protease from rat;
Kallikrei: porcine kallikrein; Elastase: porcine pancreatic elastase; Chymotryp: bovine
pancreatic chymotrypsin.
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Table IV.1 Amino acid identity matrix for structural alignment of serine proteases.

3EST 3PTN 4CHA 2PKA 3RP2 1SGT CERC
3EST — 36. 7 38.9 31.8 31.5 30.2 19. 7
3PTN 85 - 42.6 37. 4 32.2 30. 5 20. 9
4CHA 91 96 - 32.2 30. 1 29. T 19.4
2PKA 75 85 74 — 32. O 25. 1 17. 5
3RP2 73 72 68 73 - 24.2 24.3
1SGT 70 68 67 57 54 - 20. 9
CERC 47 48 45 41 56 48

The upper half of the matrix shows the percentage of identical residues in identical
positions. The lower half of the matrix is the raw number of identities. Values for cer
carial elastase (CERC) are based on a sequence alignment. (Abbreviations: 3EST
porcine elastase, 3PTN bovine trypsin, 4CHA bovine alpha-Chymotrypsin, 2PKA
porcine kallikrein A, 3RP2 rat mast cell protease II, 1SGT S. griseus trypsin)

Results

Mutagenesis

It is currently difficult to express large quantities of cercarial elastase in E. coli. It

appears that the enzyme is toxic to the host cell. Different expression strategies are

currently being pursued, including the use of a eukaryotic host (yeast) (J. McKerrow,

personal communication). Consequently, the proposed experiments listed below have

yet to be completed.

1) Cercarial elastase shows a preference for large hydrophobic amino acids at the

P1 site (McKerrow et al., 1985). Pancreatic elastase, however, prefers alanine as a

substrate. A comparison of the aligned sequences shows that all proteases have

glycine at position 216 (210 cercarial elastase sequential numbering), except porcine

pancreatic elastase, which has valine. To see if the substrate specificity of cercarial

elastase could be altered to be more pancreatic elastase-like, residue Gly 210 to was
mutated to valine.

2) A very early model suggested that Asp-218 was at the bottom of the P1 bind

ing pocket. We proposed to mutate this residue to both lysine and glutamate to see if

binding affinity would be affected. Later, the automatic alignment generated using the

Wisconsin package placed this residue with position 223 in the chymotrypsin number

ing scheme. This is a surface position, much more likely for a charged residue.
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3) In order to help us position the large insertion between the catalytic histidine

and aspartate of cercarial elastase, a deletion mutant was made in one of the two

regions postulated to be the inserted loop. Residue 52 of cercarial elastase was

deleted. In the current model this residue is predicted to be in a 3-strand. At the

time, we thought that the deletion of a loop residue would not disrupt the structure,

while deletion of a residue internal to a beta-strand would significantly lower the

melting temperature of the enzyme perhaps to such a degree that the enzyme would

not be stable. Recent work by Shortle and Sondek (1990) has shown that insertions

can be accommodated in many places in Staphylococcal nuclease. This suggests that

deletions may be easier to accommodate than previously thought.

Substrate Specificity

Various predictions were made based on the three-dimensional model of cercarial

elastase about the substrate specificity of the enzyme. By examining the model and

comparing it to chymotrypsin, we made various suggestions as to which series of

inhibitors and substrates to assay. These experiments are described in detail in

Cohen et al., 1991. The kinetic assays and skin penetration assays were performed

by Payman Amiri.

The P1 site: It was determined fairly early that cercarial elastase showed a pref

erence for large hydrophobic side chains such as phenylalanine and leucine (McKerrow
et al., 1985). Figure 4.3 shows phenylalanine in the P1 pocket. Our modeling pre

dicted that a side chain as large as tryptophan's could fit in this site, with a slight
energetically unfavorable rotation in X2. A series of substrates and inhibitors of

increasing size were studied. Table IV.2 shows the results of the inhibition assays

and Table IV.3 shows the results of the substrate hydrolysis assays.
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Table IV.2 Kinetic constants for inhibitors of cercarial elastase

Inhibitor Ki (puM) k3 (s-1 x 103) k3/Ki (M-1s- 9% inhibition of
(-P4P3P2P1-) 1) skin invasion

Suc-AAPA-CMK I no inhibition
-

13” O

Suc-AAPV-CMK I no inhibition
-

0.7° not done

Suc-AAPL-CMK 12 18 1485 80

Suc-AAPF-CMK 13 11 798 80

Suc-AAPW-CMK 20 10 493 not done

Suc-AKPF-CMK 7 37 563 53

Suc-WAPL-CMK 2 8 3846 not done

Suc-FAPF-CMK 1 6 5483 80

Suc-WAPF-CMK 12 6 521 not done

Abbreviations used: Suc = mehtoxysuccinyl blocking group; CMK = chloromethyl
ketone; Ki: inhibition constant; k3: effective rate constant of inhibition.
* These values are kobserved/{I} which are equal to k3/Ki since {I}<< Ki.

Table IV.3 Kinetic constants for substrates of cercarial elastase

Substrate Km (11M) kcat (s") kcat/Km (M-'s"
(-P4P3P2P1-)

Suc-AAPA-Sbzl no activity
- -

Suc-AAPV-Sbzl very low activity
- -

Suc-AAPL-Sbzl 464 7.5 16200

Suc-AAPF-Sbzl 96 19.4 202100

Suc-AAPW-Sbzl 20 10 493

Suc-AAPV-pNA very low activity
Suc-AAPI-pMA very low activity
Suc-AAPnL-pNA 300 0.02 56

Suc-AAPL-pNA 118 0.33 2800

Suc-AAPM-pNA 300 0.05 185

Suc-AAPF-pNA 119 0.19 1600

Abbreviations: Sbzl = benzyl thioester; pnA = p-nitroanilide
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As expected, large, hydrophobic amino acids are preferred at the P1 site. For sub

strate hydrolysis, the optimal side chain size appears to be phenylalanine. Leucine at

P1 makes the best chloromethyl ketone inhibitor. Tryptophan defines the size limit of

the P1 pocket: the substrate analog Suc-AAPW-Sbzl is a poor substrate, but the

chloromethyl ketone inhibitor Suc-AAPW-CMK is still reasonable, with a 20 micromo
lar inhibition constant.

As noted previously (McKerrow et al., 1985), beta-branching of the P1 amino acid

significantly reduces activity. According to the model, Pro-188 may be responsible for
specificity against beta-branched substrates. This residue occurs in a loop extension

unique to the cercarial proteases. Other proteases have a cysteine at position 187

(cercarial numbering) which could pull the loop away from the binding pocket. The

cercarial enzyme has alanine at this position.

The P2 site: Proline is in the P2 site. This residue was not altered in the test

compounds since it was thought that the restricted geometry enhanced binding. For
alpha-lytic protease, substituting alanine for proline at this position reduces kcat/Km by

a factor of ten (Bone et al., 1987).

The P3 site: The P3 site is solvent exposed. We predicted that a hydrophilic

residue at this position should improve solubility, while not affecting binding affinity,

so an inhibitor with lysine at this position (Suc-AKPF-CMK) was tested. This
inhibitor had a lower Ki than the “parent” AAPF inhibitor and was only slightly less

effective at inhibiting the protease (k}/Ki = 563 M-1s-1 versus 798 M-1s-1). It was
also 4 times more soluble in water and at this higher concentration, inhibited more cer

cariae from penetrating skin.

The P4 site: As compared to chymotrypsin, the P4 site is much more exposed in

cercarial elastase -- a loop which hangs over this site is missing in our enzyme. We

speculated that a large side chain on the inhibitor or substrate could fit at the P4 sub

site (see Figure 4.4). To test this prediction, substrates with large, hydrophobic

amino acids (Phe, Trp) at this position were first assayed. These large amino acids
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SER 191

Figure 4.3. Space filling model of active site of the cercarial proteases with substrate
Ala-Ala-Pro-Phe. Hydrophobic amino acids are colored red and hydrophilic amino
acids are colored blue. Catalytic residues Ser-191 and His-41 are indicated.

(99 ASP)

Figure 4.4. Comparison of cercarial elastase (green) and chymotrypsin (magenta)
with substrate Phe-Lys-Pro-Phe (cyan). The P4 site in chymotrypsin is crowded with
bulky tryptophan residues while cercarial elastase lacks the large loop which hangs
over the S4 site. Lysine is shown at P3 -- a large hydrophilic residue is easily accom
modated at this position.
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substantially abolished or diminished substrate hydrolysis (Table IV.3). However,
chloromtehyl ketone inhibitors with tryptophan at P4 and phenylalanine or leucine at

P1 were worked well (Table IV.2). We speculate that the interaction of large

hydrophobic residues at P4 with the residues lining the P4 pocket distorts the geome

try of the scisslie bond relative to the active site without destroying binding affinity for
the inhibitor.

Discussion

Modeling the structure of the skin-penetrating enzyme from S. mansoni is an

example of the modeling and subsequent testing of a predicted protein structure. The

enzyme activity assays, in particular, are instructive of what one can do with a model

built structure. Predictions which may otherwise not have been considered regarding

substrate specificity can be made and tested. For example, we proposed that a long,

hydrophilic side chain could work at the P3 site. Indeed, a lysine at this position in an

inhibitor does not diminish binding affinity significantly, but dramatically increases

aqueous solubility. Similarly, we noted that our model lacks a large loop which con

stricts the P4 site and predicted that large amino acid side chains might be tolerated

here. Although substrates with large side chains at P4 were not very good in terms of

kcat/Km, inhibitors bound with high affinity. Since our ultimate goal is to inhibit this

enzyme to prevent schistosomal infection, this model has provided interesting leads to

follow in the development of an inhibitor.
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Part C. Improving Side Chain Positioning

Introduction

In 1987 Jay Ponder and Fred Richards published a paper describing a rotamer

library approach for determining “tertiary templates” for protein structures (Ponder &

Richards, 1987). Ponder and Richards had hypothesized that an important determi

nant for folding was satisfactory packing of the core of the protein. They postulated

that they could predict which sequences were compatible with a particular tertiary fold

by determining which residues could pack in the core. Both volume effects and steric

effects were considered. A tertiary template is therefore a list of permitted sequences

of core residues. To determine the tertiary template for a core structure, a packing unit

of approximately five residues is chosen. All low energy conformations, or rotamers,

for all amino acids are combinatorially substituted. If the side chains overlap exces

sively, or if large cavities are found, the rotamer combination is discarded. Suitable

residue sets for the packing site are those which fill the volume efficiently without
steric clashes.

Although not its original intent, the work of Ponder and Richards suggests a natu

ral method for predicting the conformations of side chains. Described here is a homol

ogy modeling tool which builds side chains onto a structure and optimizes their con

formations. This method, orignially applied to the prediction of relative binding free

energies of peptide inhibitors to mutant alpha-lytic proteases (Wilson et al., in press),

uses the Ponder and Richards rotamer library of side chain conformations. The idea of

packing sites is also implemented: unlike other side chain conformation prediction

methods (Novotny et al., 1988; Schiffer et al., 1990), this method is multidimensional

and optimizes the conformations of of a group of nearby residues at once.

This work was a collaborative project with Charles Wilson. He developed the side

chain conformation prediction algorithm, while I built the test structures by homology

modeling and developed the error analysis methodology. Parts of the Methods,
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Results, and Discussion sections are taken from Wilson et al., in preparation, which

we wrote together.

Methods

Side chain prediction algorithm

The first step in the side chain prediction algorithm is the calculation of coordinates
for all rotamers for all of the amino acids in the structure. The coordinates are com

puted using the Ponder and Richards program, PROPAK and the published rotamer

library is used. Rotamers which make bad contacts with main chain atoms are pruned.

After generating the rotamers, the following step-by-step procedure is appliedf:
1) One of the amino acids in the model is chosen at random as a site center.

2) The five residues whose side chains are the closest to the site center are

identified.

3) For the six residues in the site, all possible rotamer combinations are tested,

and for each combination, and approximate free energy is calculated.

4) After testing all combinations, the set of side chain rotamers which has the

lowest calculated free energy is added to the model.

5) Steps 1-4 are repeated using a different, randomly-chosen central amino acid
until all residues in the model have been used as site centers.

6) Steps 1-5 are repeated until the predicted side chain conformations do not

change from one cycle to the next. Convergence does not always occur because

sites overlap and a given side chain may have different optimal conformations in

several sites. Therefore, the procedure is stopped after having cycled through

the protein three times.

The force field used to evaluate rotamer combinations contains two parts: 1) non

bonded interactions between atom pairs and 2) the change in solvation energy upon

exposing the atoms to solvent. The non-bonded terms (including electrostatic, van der

f The following computations are all done on the MSG VAX using the program REC by Charles Wilson
(see Wilson et al., in press)
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Waals and hydrogen bond energies) are calculated using the AMBER force field
(Weiner et al., 1984) with a distance-dependent dielectric constant, e = r, in the elec
trostatic term.

The solvation energy is calculated using a model similar to that of Eisenberg and

McLachlan (Eisenberg & McLachlan, 1986) (see Wilson et al., in press). In their

formalism, each atom is assigned an atomic solvation parameter (ASP) and the sol

vation energy is the product of an atoms accessible surface area and its ASP. Instead

of computing the solvent accessible surface area for each atom (a time-intensive com

putation), a grid method is used to estimate solvent accessibility. Solvent molecules
are represented as grid points on a 1.0 Å body-centered cubic lattice which surrounds
the protein. The number of grid points surrounding an atom is proportional to the total
atomic accessible surface area and this to the solvation energy for the atom.

Construction of initial model structures

To evaluate the side chain modeling procedure, I constructed several “homology

built” models using pairs of known structures. The pairs covered a wide range of

sequence similarities (from 30 to 100%). The pairs tested are listed in Table IV.4.

The starting models were constructed with the assistance of computer graphics

(UCSF Midasplus: Ferrin et al., 1988; Jarvis et al., 1988). A correct sequence

alignment was made by first generating a structural alignment of the “true” and

“template” structures. The true structure is the known structure of the protein whose

side chain conformations will be modeled, and the template structure is the structure

from which the model is going to be built. A correct alignment had to be assumed in

order to controllably test the side chain modeling algorithm. In a real-life modeling sit

uation, where one has a known three-dimensional structure and a sequence of inter

est, the sequences must be aligned. If the sequence identity is less than 70%, the

alignment, although evolutionarily reasonable, may be structurally incorrect.

In the MacroMolecular WorkBench group at UCSF, we currently have no auto

mated method of generating three-dimensional structural alignments. In this study,
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the structures were superimposed “manually”. The two structures were first aligned

structurally on the graphics screen by eye. Refinement of the structural alignment was

made using successive calls of the “match” command in Midasplus, which performs a

least squares fit of a minimum of four atoms from each structure. When the alignment

of the backbones appeared optimal, the coordinates of the aligned backbones were

saved. The program STRUCTALIGN was written to generate a sequence alignment

from the overlapping coordinate sets. STRUCTALIGN generates a difference distance

matrix for all alpha-carbon - alpha-carbon pairs from the two structures. For each

Table IV.4: Test cases for side chain conformation optimization

model overall identity of resol. resol. backbone
(template—º identity modeled unk tmp I r.m.s.d.

j Nunk Ntmpl Nmod (%) º: (A) (A) (Å)
ALP— ALP 198 198 198 100.0 100.0 1.7 1.7 0.00

LBP—3 LIV 344 346 344 79.1 79.4 2.4 2.4 0.69

LZ1— LYZ 129 130 129 60.2 60.5 1.5 2.0 0.61

SGB–3 ALP 198 185 168 33.4 37.5 1.8 1.7 0.79

PTN—3 SGT 223 223 204 29.7 35.3 1.7 1.7 0.98

The “unknown' proteins were modeled from the “template' structures. Nunk: number of
residues in the unknown structure; Nimpl; number of residues in the template structure;
Nmod: number of superimposable residues in the unknown and template structures which
were modeled in the predicted structure; overall similarity: percent sequence identity
between the unknown and template structure determined using the sequence alignment
method of Smith and Smith (1990); similarity of modeled regions: percent sequence simi
larity for superimposable residues between unknown and template structures; resol. unk:
crystallographic resolution of the unknown structure; resol. timpl; crystallographic resolution
of the template structure; backbone r. m.s.d.; root-mean-square deviation of backbone coor
dinates between the unknown and template structures for the residues modeled.
Structures used (Brookhaven PDB entry names in parentheses): ALP: O-lytic protease
(2ALP) (Fujinaga et al., 1985); SGB; protease B from S. griseus (3SGB) (Read et al.,
1983); SGT. S. griseus trypsin (1SGT) (Read et al., 1984); PTN: bovine trypsin (3PTN)
(Walter et al., 1982); LYZ: hen egg white lysozyme (6lyz) (Diamond et al., 1974); LZ1:
human lysozyme (1LZ1) (Artymiuk et al., 1981); LIV: leucine/isoleucine/valine binding pro
tein (2LIV) (Sack et al., 1989a); LBP: leucine binding protein (2LBP) (Sack et al., 1989b).
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alpha-carbon in the first structure, the closest alpha-carbon in the second structure

within 2.5 Å is located. The sequence alignment is printed. If no alpha-carbons are
within 2.5 A, no partner is assigned for that particular residue. The output of STRUCT
ALIGN was modified by hand. Occasionally, two residues which are clearly homo

logues will be missed because they are in similar but shifted loops, and thus outside

the 2.5 Å cutoff. Generally, spatially distant loops, or loops with large insertions or

deletions were not included in the models. In other instances, two sequential residues

from the first structure will be assigned to the same residue in the second structure

because the alpha-carbon in the second structure is the closest atom to both alpha
carbons in the first structure.

Given the alignment, the residues of the to-be-modeled structure were substituted

for the residues of template structure. All residues were attached in their most fre

quently observed conformation as tabulated by Ponder and Richards (Ponder &

Richards, 1987). Amino acid substitution was performed using the “swapaa” com

mand in Midasplus. A script of swapaa commands was written in order to automate

this process.

Evaluation of model structures

The final predicted models were evaluated on the basis of rms deviation using the

backbones of the template and unknown structures for superposition. Both side chain

and main chain rms deviations for each residue were computed. The overall side chain

rms deviation was computed as well. These calculations were done using the program

SCRMS (which I wrote.)

I generated a “best possible” structure using the template structure backbone and

the rotamer library (also using SCRMS). At each position, the rotamer having the
lowest r.m.s. deviation from the side chain in the true structure was selected. This

structure is the best result we could hope to obtain with the algorithm since we allow

idealized rotamers for the side chains. To score our predictions, we determined the

fraction of side chains assigned to the same rotamer as in the best possible structure.
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To determine whether the procedure actually improves the accuracy of the model,

we generated structures which had the most common rotamer (as tabulated by Ponder

and Richards) assigned to each residue. The r.m. s. deviation of this unrefined model
from the true structure gives a baseline measure against which to compare other

models. These structures are referred to as the “first guess” structures, since placing

side chains in their most common conformations good first approximation.

Results

An idealized test case:

Before applying the algorithm to homology model building, we first tested the

rotamer approximation and the force field to determine how accurately we could iden

tify the correct side chain rotamers under the best possible conditions. In the first test

case, the side chains from the structure of O-lytic protease were removed one at a

time and then built back on to the protein backbone. To isolate the possible sources of

error as much as possible, the following changes in the modeling procedure were

made. 1) For each side chain, the rotamer in the library closest to the observed side

chain (in terms of r.m.s. deviation) was replaced by the true side chain. 2) All symme

try-related atoms within 10Å of any protein atom were included in the energy calcula
tions (since crystal contacts may determine the conformation of surface side chains)

and the two crystallographically-determined sulfate ions were explicitly included in the

calculation. 3) Instead of combinatorially searching all rotamers at sites throughout

the protein, a single residue was searched at a time and after identifying the lowest

energy conformation, the original true side chain was added back to the protein. At

the completion of the calculation, the predicted rotamers were then built onto the

structure at each position. The only possible sources of error in this test case are the

crystallographic coordinates for O-lytic protease and the force field used to estimate

the free energy.
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Of 142 residues with more than one rotamer (i.e. not glycine or alanine residues),

the crystallographic side chain rotamer was identified as the lowest energy rotamer in

126 cases (89% correct). The overall r. m.s. deviation between the lowest energy

structure and the crystal structure was 0.59 Å (side chain atoms only, see Table
IV.5). While the majority of side chains are modeled correctly, there are certainly a

significant number of errors in this best case model. Assuming that the incorrect pre

dictions result from errors in the force field used to evaluate them, we hoped to better

understand these problems by analyzing the characteristics of the poorly placed side

chains. Of the 16 residues which were not correctly predicted, 12 were exposed and 4

were buried. The bias towards exposed residues is not surprising since there are

strong packing constraints on buried residues which do not exist at the surface

(especially when only a single side chain is varied at a time). For 75% of the incorrect

side chains, both non-bonded and solvation terms are lower for the incorrect rotamer

than for the correct rotamer, suggesting that adjustments in the weighting between

these two terms are unlikely to improve the prediction. The second lowest energy

rotamer is the correct choice for 13 of 16 incorrect side chains. The incorrect residues

include an unusually high number of serines (6) and asparagines (5), indicating per

haps that uncharged hydrogen bonds may be treated improperly by the force field.

It is possible that incorrectly placed side chains are indicative of errors in the crys

tal structure rather than of errors in the force field. For residues Asn 62, Asn 118,

Asn 162, and Ser 189, the calculated energy difference between the correct side chain

rotamer and the lowest energy rotamer is more than 10 Kcal/mole — it seems unlikely

that force field errors alone could account for this large difference. The original O-lytic

protease structure (as with most crystal structures) was refined without considering

the interactions of protein hydrogen atoms (Fujinaga et al., 1985). Bad contacts

involving side chain hydrogen atoms are found in the crystal structure for the four

incorrectly-predicted residues with large energy errors. It is possible that these errors
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TableIV.5:Resultsoftheo-lyticproteasetestcases

Conditions
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averager.m.s. deviation(Å)

overall
r.m.s. deviation(Å)

fractioncorrect (correct/total)

1.
Startingwiththecrystalstructureincludingsymmetry relatedmoleculesandcounter-ions;replaced‘best” rotamerswithtruesidechains;varied

a
singlesidechainat a
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4.
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andcounter-ions;
no
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of‘best”rotamerswith truesidechains;varyiedclustersoffiveresidues simultaneously.

0.26+0.58 0.27+0.61 0.68+0.85 0.73+0.91

0.59 0.62 1.21 1.31

0.89(126/142) 0.89(126/142) 0.82(116/142) 0.76(111
/
142)

Footnote:ResultsformodellingthesidechainsofO-lyticproteaseusingthetruebackboneareshown.Averager.m.s.deviation: averageroot-mean-squaredeviation
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may have been avoided if side chain hydrogen atoms had been included in the x-ray

refinement.

The conformation of many solvent-accessible residues may be determined in the

crystal by contacts with symmetry-related molecules. In a true homology-building

exercise, it will be impossible to model the crystal contacts. To test this possibility,

we carried out the calculation again, this time leaving out symmetry-related molecules

and bound counter-ions. The effect appeared to be negligible as the overall r.m.s.

deviation increased only slightly to 0.62 Å with no net change in the number of incor
rectly modeled side chains (Table IV.5). In all subsequent tests, symmetry related

atoms and bound sulfates have been ignored.

In the first test case we replaced the best rotamer in the library with the true side

chain at each site. This was done to remove the possibility that errors in the results

were due to the assumption of idealized rotamer geometry. In the third test case, we

repeated the test using only the standard library rotamers to determine whether the

rotamer approximation would severely hinder the modeling procedure when true side

chains are not known. Using the library rotamers, the overall r.m.s. deviation for side

chain atoms increased from 0.62 Å to 1.21 Å (116 of 142 side chains (82%) were

modeled correctly). The rotamer approximation obviously results in additional errors

in the model but the effect is small. Amino acids with long side chains (lysine, argi

nine, glutamine) account for more than two thirds of the residues which were initially

predicted but are incorrectly placed after reverting to the standard rotamer library.

This bias is not surprising since the rotamer approximation should be worst for those

amino acids with many torsion angles.

In the above simulations, each residue test was done in the context of an other

wise correct structure. To test the ability of the algorithm to converge without the cor

rect neighboring side chains, the above test was repeated with a starting structure

that was completely stripped of side chains. Using the standard algorithm (with sites
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of five residues, cycling through the sequence three times, adding the lowest energy

rotamer combination in each case), the number of correct side chains plateaued at 111

residues (versus 116 residues in the previous test). This result indicates that the

combinatorial conformation search converges well in the absence of a starting bias

towards the correct structure.

The general conclusions of the O-lytic protease test cases (summarized in Table

IV.5) are as follows. 1) The force field is able to correctly predict almost 90% of the

observed side chain conformations, with the incorrectly predicted side chains lying

largely at the surface and including a disproportionately high number of serines and

asparagines. 2) Symmetry-related atoms and bound counter-ions do not significantly

affect the ability to predict side chain conformation. 3) Using side chain rotamers

rather than the true side chains prevents the correct prediction of =7% of the residues.

4) By combinatorially searching local sites throughout the protein, it is possible to

accurately predict most side chains without a starting bias to the correct structure.

Homology Modeling

With the accuracy of the force field and the rotamer assumption well tested, we

have proceeded to use the algorithm to predict side chain conformations for pairs of

homologous proteins. These homology modeling tests differ from the O-lytic protease

test cases in that we have introduced errors in the backbone positions used to place

the side chain rotamers. These results are summarized in Table IV.6. In every case,

there is a significant improvement in the accuracy of the model following application of

the algorithm. The ability to correctly predict side chain conformation decreases as the

deviation between the model backbone and true backbone increases. The improve

ment, as measured by r.m.s. deviation to the true structure or by the fraction of cor

rectly predicted side chains, drops approximately linearly with decreasing sequence

identity (Figure 4.5).
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As with the O-lytic crystal structure test case, the conformations of solvent

accessible residues are signficantly harder to predict than buried residues. Figure 4.6

shows the predicted structure of hen egg-white lysozyme, with both hydrophobic core
residues and some surface residues. While aromatic residues making up the core are

all accurately positioned, exposed residues are often incorrect. The fraction of buried

or solvent accessible residues that are correctly placed for each test case are listed in
Table IV.6.
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Figure 4.5. Accuracy of the side chain prediction as a function of percent homology. The
overall side chain r.m.s. deviation is shown as a function of the percent homology between the
unknown and predicted structures for the first guess, predicted, and ‘best rotamer' (lowest
r.m.s. deviation) models.
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TableIV.6:Homologymodelingresults Structurefirstguessfirstguesspredictedpredictedbestaveragebestoverallfractioncorrectfractioncorrectfraction

averagermsdoverallaVCrageoverallrms(Å)rms(Å)buriedexposedcorrecttotal

rms(Å)rms(Å)rms(Å)

ALP—ºALP
|
1.69+1.312.480.73+0.911.310.39
+
0.440.710.88(58/66)0.67(52/78)0.78 LZ1–3LYZ

|
1.99+1.212.581.44+1.021.900.91+
0.491.060.78(32/41)0.53(34/64)0.63 LBP—3LIV

|
2.05+1.162.491.55+1.051.961.10+0.561.250.78(96/123)0.43(61/143)0.59 SGB—3ALP

|

2.29+1.473.031.88+1.502.661.30+1.071.730.70(37/53)0.57(39/68)0.63 PTN—3SGT
|
2.40+1.603.171.95+1.602.681.44+1.271.920.81(54/67)0.46(38/83)0.61 Footnote:Resultsforhomologymodellingtestcases.“firstguess”structureshavethemostcommonrotamerinstalled

ateveryamino acidposition,“predicted”structureshavehadthe
combinatorialrotamersearchprocedureapplied,and“best”structureshavethe rotamersclosetin

conformation
tothetruestructureinstalled.SolventaccesibilitywascalculatedusingthemethodofLeeandRichards

as
implemented
intheprogramACCESSby
Handschumacher
andRichards.Residuesconsideredburiedhavelessthan20%oftheir accessiblesurfacearesaseexposed(relative

toan
extendedtripeptidemodel).Abbreviations
fortheproteinsarethesameasinTable IV.5.
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Figure 4.6. Comparison between the predicted and observed hen eggwhite lysozyme struc
tures. Side chain and Co. atoms are shown for the predicted (blue) and true (yellow) struc
tures (Co. atoms colored magenta). Residues in the hydrophobic core lie on the left-hand side
while those on the right are generally somewhat solvent accessible.

Increased errors at the surface could be due to additional side chain conformational

freedom (since there are fewer restricting adjacent residues), to more crystallographic

errors at the surface, or to errors in the force field that effect electrostatic interactions

more than van der Waals interactions (since hydrophilic residues are found

predominantly at the surface). Previous analysis of protein crystal structures has

shown that surface residues have systematically highly temperature factors than

buried residues (Alber et al., 1987), indicating that their side chain atoms are less well

fixed in an energy minimum. This observation suggests that the energy differences

between alternate conformations may be smaller at the surface and that slight errors

in the force field should affect surface residues more than buried ones.
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By comparing the predictions made for the ALP—ALP test and the SGB->ALP

test, we can quantify the errors introduced by using the wrong backbone to predict

side chain conformations. Using the standard iterative procedure to place O-lytic pro

tease side chains on the backbone of ot—lytic protease, the conformations of 78% of

side chains (111/142) are correctly predicted. This fraction drops to 63% (76/121)

when the backbone of S. griseus protease B is used instead. The average r.m.s.

deviation of side chains also increases in going from the O-lytic protease backbone

(0.73 Å) to the S. griseus protease B backbone (1.88 Å). This increase is higher than

that observed for the backbone atoms (0.00 Å for ALP, 0.79 Å for SGB), suggesting

that errors in the backbone positions adversely affect the choice of side chain rotamer,

beyond simply displacing the side chain away from the correct position.

Figure 4.7 shows a representative case in which deviations in the backbone be

tween a pair of homologous structures directly lead to an incorrect side chain choice.

The backbone atoms of residues isoleucine 105 and tyrosine 237 in S. griseus protease

B deviate by only -0.4 Å relative to their equivalents in O-lytic protease (tryptophan

105 and tyrosine 238). By altering the direction of the Co-C8 vectors, however,
these shifts cause a significant change in the positions of the calculated rotamers. The

r.m.s. deviation of the ‘best” rotamers at these positions from the true side chains

rises from 0.2 Å (using the o-lytic backbone) to 1.4 Å (using the S. griseus protease B
backbone). More importantly, the SGB->ALP best rotamer structure has several bad

van der Waals contacts between tryptophan 105 and tyrosine 238, causing this combi

nation of rotamers to be ignored during the rotamer search. For instance, the separa

tion between NE1 of tryptophan 105 and CG of tyrosine 238 drops from the close dis

tance of 3.02 Å in the ALP—ALP best rotamer structure to the bad contact distance of

2.43 Å in the SGB-ALP structure (figure 4.7). Whereas the ‘best rotamers for

residues 105 and 238 are identified as the lowest energy combination in the

ALP— ALP test, an alternate set of rotamers is chosen for the SGB->ALP case. The
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same is true of Arginine 48A which lies adjacent to this pair of residues. While it is

correctly placed for the ALP—ALP test case, the incorrectly positioned tyrosine 238 in

the SGB->ALP test forces this arginine into an incorrect position.

Figure 4.7. Errors in the S. griseus protease B — o-lytic protease prediction. The true
(yellow) and predicted (blue) structures for O-lytic protease are shown (using S. griseus pro
tease B as a backbone template). The ‘best” rotamers (those with the lowest r.m.s. devia
tion to the true structure) are shown in magenta. Several bad contacts between the best
rotamers for Trp 105 and Tyr 238 (e.g. NE1-105 - CG-238 distance = 2.43 Å, dotted line) force
an alternate set of rotamers to be chosen as the lowest energy conformation. The misplaced
tyrosine 238 ring subsequently forces Arg 48A to adopt an incorrect conformation. All three
residues are correctly positioned when using the true O.-lytic protease backbone to generate
the side chain rotamers (not shown).

Discussion

This work has shown that a combinatorial rotamer search directed by an approxi

mate free energy calculation can be used to predict side chain conformation in a homol

ogy modeling test. The fraction of properly placed side chains is a function of the simi
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larity between the pair of homologous structures, dropping from =80% in the case of

100% identity, to ~60% for those tests with lower homology. By using rigid rotamers

to coarsely sample conformation space and a grid approach to calculate solvent

accessibility, the complete combinatorial search can be carried out extremely quickly.

Starting with the backbone alone, the prediction of side chain conformation for a 200

residue protein can be completed in less than 5 hours of VAX 8650 CPU time. Our

algorithm compares favorably, both in terms of accuracy and speed, with energy-based

side chain modeling algorithms that have been previously reported (Bruccoleri et al.,

1987; Schiffer et al., 1990). Reasons for this improvement will now be considered.

The CONGEN program of Bruccoleri et al.(1987) uses a grid search over main

chain and side chain torsion angles to model both loop conformation and side chain

conformation. The conformation space of each added side chain is searched individu

ally and evaluated using the CHARMM force field. This molecular mechanics force

field includes terms for covalently-linked atom pairs (bond-stretching, bond angle

bending, torsion angle rotation) and for non-bonded pairs (van der Waals’ forces, elec

trostatics, and hydrogen-bonding). After evaluating all staggered conformations, the

lowest energy conformation is saved. This method can replace side chains onto a

structure with the correct backbone with an r.m.s. deviation of -2.5 Å (averaged over

side chains, not including CB atoms).
While conceptually similar to the approach we have described, there are several

major differences between the two methods. In contrast to our program, CONGEN

includes bonded-energies but ignores solvation effects in evaluating side chains.

Since our approach uses rotamers with idealized internal geometry, it is unlikely that

the lack of bonded terms presents a problem. Work by Bruccelori and others, how

ever, has shown that the side chain rotamers preferred by a molecular mechanics force

field lacking solvation terms are biased towards those that have relatively unfavorable

solvation energy (Novotny et al., 1988; Schiffer et al., 1990). By not taking into
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account solvation effects during the rotamer search, therefore, the CONGEN approach

tends to incorrectly predict the conformation of polar surface side chains (Novotny et

al., 1988).

A second difference between the two methods is in their approach to conformation

space sampling. Whereas the CONGEN program can search an arbitrary number of

rotamers for a single side chain, our algorithm combinatorially tests a handful of

rotamers at each site for a cluster of adjacent residues. By simultaneously varying

several side chain conformations, energetic barriers to co-operative rearrangements

can be surmounted. In support of this, if our algorithm is applied using sites containing

a single residue rather than five adjacent residues, an additional =10% of the side

chains are not correctly predicted after the first cycle (data not shown).

Schiffer et al. (1990) describe a method for constructing side chains that is closely

related to the CONGEN approach. In this algorithm, staggered side chain

conformations are evaluated using the AMBER force field (Weiner et al., 1984). In

contrast to the CONGEN method, however, a zone surrounding each targetted

residue is subject to energy minimization to improve the packing around the altered

side chain. The final minimized energy for each side chain orientation is used to

determine which rotamer is adopted at each site. As with the CONGEN algorithm,

this approach does not take into account solvation effects and does not combinatorially

test adjacent side chains. It does, however, have the significant advantage of allowing

side chains to deviate from their initial idealized rotamer geometry. In cases in which

slight bad contacts exist between the library rotamers (e.g. figure 4.7), energy mini

mization should allow the contacting atoms to relax and thereby yield a more realistic

energy estimate. Because several hundred thousand cycles of energy minimization

must be done to complete a single cycle of side chain optimization, this approach is

extremely computer-intensive. It has currently been applied to only a subset of the

residues in the one test case which has been reported (bovine—rat trypsin). As
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presently implemented, this method seems promising but it may require a significant

increase in computer-speed to be generally practicable.
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Chapter 5.

Hydrogen Bonds Involving Sulfur Atoms in Proteinst

* This chapter has been published with co-authors Stephen D. Rader, Robert J. Fletterick, and
Fred E. Cohen in the journal Proteins: Structure, Function, and Genetics, volume 9, pages 99-107,
1991.
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Introduction

Sulfur is found in proteins in the side chains of the amino acids cysteine and

methionine. Cysteine is best known for its unique ability to form cross-links via disul

fide bonds. Methionine is usually categorized as an uncommon hydrophobic amino

acid. Although a thorough analysis of metal ion binding by these amino acids in pro

teins has recently been completed (Chakrabati, 1989), little attention has been given

to their ability to participate in hydrogen bonding (Baker & Hubbard, 1984) perhaps

because of their relative rarity in proteins of determined three-dimensional structure.

Gray and Matthews (Gray & Matthews, 1984) have called attention to the role of

side chain - backbone hydrogen bonds in helices. We were motivated to survey the

frequency and geometry of sulfur-containing hydrogen bonds in globular proteins in

order to better assess the importance of this interaction and gauge the interatomic

packing interactions of sulfur. Site directed mutagenesis has made it easy to

exchange amino acids in a protein. Methods for predicting the effects of various amino

acid substitutions on protein structure and function are important for experimental

design. A more detailed examination of the interactions particular to specific amino

acids should help reach this end.

Reduced sulfur atoms are known on sound theoretical basis to be capable of

accepting or donating hydrogen bonds (Kollman et al., 1975). The sulfhydryl group of

cysteine can act either as a hydrogen bond donor or as an acceptor. The sulfurs of

methionine and half-cystine, lacking hydrogens, can only accept hydrogen bonds. The

strength of a hydrogen bond between H2S and H2O has been calculated to be 3.1 to

3.2 kcal/mol in vacuo when sulfur is the hydrogen bond donor or acceptor (Kollman et

al., 1975). In non-covalent enzyme-substrate interactions, the magnitude has been

shown experimentally to be slightly smaller: upon replacing a cysteine involved in

substrate binding by glycine and serine, Wilkinson and co-workers calculate the

decrease in transition state stabilization to be approximately 1.1 kcal/mol (Wilkinson
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et al., 1983). The strength of structural hydrogen bonds in proteins has not been

probed experimentally, but it is presumed to be of similar magnitude.

Hydrogen bonds involving sulfur atoms are longer than those involving nitrogen or

oxygen because of sulfur's larger size and more diffuse electron cloud. The equilibrium

distance from donor to acceptor atom in a hydrogen bond between a hydroxyl group

and an oxygen atom is 2.95 Å, whereas the distance between a sulfhydryl group and
an oxygen is 3.66 Å (Kollman et al., 1975). The distance between -SH and O in crys

tals of L-cysteine is 3.4 Å (Kerr et al., 1975).
Sulfur is instrumental in the active sites of the sulfhydryl proteases such as papain

and actinidin (Kamphuis et al., 1985) and in the viral cysteine proteases (Bazan &

Fletterick, 1988). These enzymes use SY of cysteine as a nucleophile for peptide

bond cleavage. McGrath et al. (McGrath et al., 1989) recently substituted serine-195

of rat trypsin with cysteine in order to determine whether trypsin could be engineered

to be a sulfhydryl protease.

We have surveyed protein structures for the occurence of hydrogen bonds involv

ing sulfur atoms. The results of this survey underscore the necessity to separate

reduced cysteine from disulfide bonded half-cystine in analyzing the three-dimensional

coordinates in the protein database. Cysteine behaves differently when it is reduced

and when it is part of a disulfide bond. This difference is in part attributable to the dif

ferences in hydrogen bonding ability of these two types of cysteines.

Methods

We examined the atomic coordinates of 85 protein structures from the Brookhaven

Protein Data Bank (Abola et al., 1987; Bernstein et al., 1977)f . This group was

f Data set of Brookhaven Protein Data Bank structures analyzed:
1ACX, 1ALC, 1BP2, 1CAC, 1CCR, 1CRN, 1CSE, 1ECA, 1FX1, 1GCR, 1GD1, 1GOX, 1GP1, 1HDS,
1HIP, 1HMQ, 1HNE, 1HOE, 1LZ1, 1LZT, 1MB5, 1NXB, 1PAZ, 1PCY, 1PSG, 1RDG, 1RNS, 1SGT,
1SN3, 1TON, 1UBQ, 1UTG, 2ACT, 2ALP, 2APP, 2APR, 2AZA, 2CAB, 2CCY, 20I)V, 2CI2, 20NA,
2CPP, 2CPV, 2CYP, 2FB4, 2LH1, 2LHB, 2LZM, 2MHB, 2MHR, 20VO, 2PAB, 2PRK,2RHE,2RSP,
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selected from structures which were distinct and for which complete atomic detail is

available at an experimental x-ray diffraction resolution better than or equal to 2.0 Å.

All amino acids containing covalently bonded sulfur atoms (other than half-cystine)

and sulfur atoms participating in metal ion binding were not evaluated. Our data set

thus consisted of 109 cysteines, 307 methionines, and 268 half-cystines.

All atoms within 4.25Å of each methionine and cysteine sulfur atom were located.
This distance was chosen to be long enough to include donor -- acceptor pairs within

van der Waals contact of each other, yet short enough to supply meaningful data. For

all nearby atoms, excluding those likely to contribute to nonspecific interactions

(atoms from the cysteine or methionine in question, the backbone carbonyl carbon and

oxygen atoms of the preceding residue, and the backbone nitrogen of the following

residue) we calculated the angles and distances defined in Figure 5.1. We then

sorted these nearby atoms by atom type or functional group into four categories: car

bon, nitrogen, carbonyl oxygen (both backbone and side chain), and hydroxyl oxygen,

and prepared distributions of angles and distances for each atom or group. In order to

compare the distributions, each was normalized by the number of occurrences of that

particular atom or group in the data set and by the number of cysteines, methionines,

or half-cystines. The distance distributions were also normalized by shell volume.

Carbon atoms do not participate in hydrogen bonding, yet short distances between

non-adjacent carbon and sulfur atoms are observed in the data set of structures. X-ray

crystallographic refinement permits some small number of short contacts since the

process is a least-squares minimization. Some of these short contacts are real and

others are erroneous. The carbon to sulfur distance and angle distributions observed

should define background levels for random interactions. In order to look for peculiari

ties in the distance and angle distributions for actual hydrogen bond donor (-NHn, -

2SGA,2SNS,2SOD,2WRP,3BCL, 3C2C, 3DFR,3EST, 3FAB, 3GRS, 3INS,3RNT,3RP2,3SGB,3TLN,
451C, 4FD1,4FXN, 4HHB, 4PTP, 4RXN, 5CHA, 5CPA, 5CYT, 5PTI, 5TNC, 6LDH, 7RSA,9PAP
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OH) and acceptor (carbonyl O) groups, for each group we prepared a “difference dis

tribution” by subtracting the normalized carbon distance or angle distribution from the

distribution in question.

A

SY--- dgº- Y- T5---X Co.()|
0 X --(z CB2^ Cº-c. - y

~~~ N |

y
B

Ce () … x
\|\ºd

<- - - - - - - - 6–--x
! / ºs--- [;

6

CY
|

Figure 5.1 A. For cysteine, the location of the hydrogen bond acceptor atom (or donor
atom in the case of half-cystine), X, is determined by three parameters: d: the dis
tance from the Y-sulfur (SY) to the donor/acceptor (X), 0: the angle between the 3
carbon of cysteine (CB), Sy and X. and (): the dihedral angle defined by the O-carbon
(Co.), C3, SY, and X. B. For methionine, a coordinate system is oriented with respect
to the 6-sulfur (Sö), and the e and Y carbons (Ce, CY). Sö is placed at the origin and
Ce and CY are placed in the y-z plane. The bisector of the angle ZCY Sö Ce is placed
on the z-axis. The three parameters defining the position of the donor atom are d: the
distance from Sö to X, 0: the angle when X is projected onto the x-z plane, and (): the
angle between the y-axis, Sö and X.
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Results and Discussion

Methioni

Hydrogen bonding is not particularly prevalent among methionine residues. In fact,

as shown by the mostly negative distance difference distribution in Figure 5.2B, there

are fewer nitrogen atoms near methionine Sö’s, on average, than there are carbon

atoms. This situation undoubtedly arises both because methionine is hydrophobic and

thus surrounded mostly by carbon atoms, and because Sö is usually more than 5 Á

from the backbone. The distance difference distribution for carbonyl oxygen is very

similar to the nitrogen distribution (Fig. 5.2A) even though one would expect to find

more short distances to nitrogen since nitrogen can donate hydrogen bonds while car

bonyl oxygen is a hydrogen bond acceptor like Sö of methionine.

Close approaches between hydroxyl groups of serine, threonine, and tyrosine occur

with greater frequency than close contacts to carbon, particularly in the expected

hydrogen-bonding range of 3.0 to 3.6A (Fig. 5.2C). Beyond 3.6A, however, the fre
quency of carbon interactions is higher. This result suggests that methionine-Sö --

HO-hydrogen bonds are not negatively biased by x-ray crystallographic refinement

schemes since few are found even in the range of van der Waals contact distance

where they would be if refinement did not allow for closer contacts. We did not find

any angular preferences for methionine-Sö -- HO- hydrogen bonds.

An upper limit on the frequency with which methionine participates in hydrogen

bonding may be estimated by computing the number of methionine Sö’s which are

within 4.0 Å of either a hydroxyl group or a nitrogen. Of the methionine Sö's in our
data set, twenty-five percent were within 4.0 Å of a hydroxyl oxygen or nitrogen (see
Table V).

A good example of a hydrogen bond to methionine can be found in the combined

neutron and x-ray structure of myohemerythrin (2MHR) (Sheriff et al., 1987) between

the hydroxyl group of Thr 110 and the sulfur of Met 76 (Figure 5.3). The Sö - Hyl
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Figure 5.2. Distance difference distributions for methionine. A) carbonyl oxygen to
methionine-Sö distances B) nitrogen to methionine-Sö distances and C) hydroxyl
oxygen to methionine-Sö distances. The number of instances found (N) of each type
of interaction is shown in the top right-hand corner. These distributions were prepared
in the following manner.

for each d where d = 2.8, 2.9,...,4.2 Å, the donor/acceptor density per residue, p(d), is
given by:

-
nX->s(d) no->s(d) No.20-{ Nx NC JN-º

41c((d+0.05) - (d-0.05).)
3and V.h-n(d) =

where nx->s(d) is the number of atoms or functional groups of type X
(e.g. -OH, carbonyl oxygen,...) near sulfur at a distance d

no->s(d) is the number of carbon atoms near sulfur at a distance d
N, is the total number of atoms of type X in the data set
NC is the total number of carbons
No, is the total number of atoms in the data set
Nme is the total number of methionines

The density, p(d), therefore, may be interpreted as the excess or deficit in hydrogen
bond partners at a particular distance as compared to the carbon atom density. The
factor of N, is an arbitrary scaling factor which scales the donors/acceptors or carbon
atoms to be equal to the total number of atoms in the data set.
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Table V.

Frequency of vicinity (< 4.0 Å) of potential hydrogen bond
donor/acceptor groups and carbon

potential donor or || Methionine Sö Half-Cystine SY Cysteine SY
acceptor group(s) In % Il % Il %

-OH 14 5 29 11 13 12

-NHn 71 23 64 24 39 36

>C=0 70 23 158 59 67 62

-OH or -NHn 78 25 85 32 47 43

-OH, -NHn or >C=0 || 118 38 177 66 78 72

-C- 241 78 200 75 80 73

Footnote for Table V: This table shows the frequency with which one finds potential
hydrogen bond donor or acceptor groups and carbon (-OH = hydroxyl; -NHn = nitro
gen; >C=O = carbonyl oxygen; -C- = carbon) in the vicinity of the sulfur atoms of
methionine, half-cystine, and cysteine. n is the number of residues with a sulfur atom
within 40 A of at east one member of the donor/acceptor group. 7% is the percentage
residues found near the donor/acceptor group. Thus, 29 of the half-cystines in the data
set (or 1.1%) are near at least one hydroxyl group. The data set contains 307 methion
ines, 268 half-cystines, and 109 cysteines. When more than one group is listed as the
donor/acceptor (e.g. “-OH or -NHn”) then the number and percentage shown are the
number of sulfurs near either one donor/acceptor group or the other.

(110THR) (110THR)

Figure 5.3. Example of a hydrogen bond between the hydroxyl group of Thr 110 and Sö
of Met 76 in myohemerythrin (2MHR).

135



distance is 2.58A and the S6 - OY1 distance is 3.50A. The bond is nearly linear with
ZOY1 HY1 Sö = 163°. The donor group is not directed at either lone pair of sulfur.

Rather, it is in the plane of atoms CY, Sö and Ce closer to CY (9 = 180; 4) = 50 for both

OY1 and HY1).

Half-Cystine

As with methionine, short distances between hydroxyl groups and Y-sulfurs of

half-cystine residues are observed, suggesting that half-cystine can act as a hydrogen

bond acceptor of hydroxyl (Figure 5.4C). Short distances to nitrogen are rarer (Figure

5.4B). Thirty-two percent of half-cystines in our data set had their SY within 4.0 Å of a

hydroxyl oxygen or nitrogen atom (see Table V). This sets an upper limit for how

frequently half-cystine participates in hydrogen bonding in proteins.

Curiously, although hydrogen bonds can not exist between carbonyl oxygen and

half-cystine sulfur, we found a significant number of short distances between these

groups, in the 3.3 to 4.0 Å range, with a peak at 3.8 Å (Figure 54A). Sixteen percent
(49 of 302) of carbonyl-O -- SY short distances were between the ith half-cystine sulfur

and the backbone carbonyl oxygen of either the i - 2 or the i-3 residue. Upon exam

ining these interactions further using computer graphics (Ferrin et al., 1988; Jarvis et

al., 1988), we noted that many of them occur when the i - 2 or i - 3 residue at the end

of an o-helix or a 3-strand and the ith half-cystine residue is in a turn or loop. This re

sult is not surprising if one considers that half-cystine is most commonly observed in

coil-type secondary structure and that the polypeptide chain must undergo a 180° chain

reversal in order for the topological requirement of the disulfide bond to be satisfied

(Thornton, 1981). Apart from the general observation regarding secondary structure,

we could not find any other conformational similarity among the examples encountered.

There were no angular preferences among the half-cystine SY -- donor/acceptor pairs.
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Cysteine

Of the three residue types surveyed here, cysteine participates in hydrogen bonding

most frequently. Hydrogen bonds between the sulfhydryl group of cysteine and car

bonyl oxygen are particularly numerous (Figure 5.5A). Short distances between -SH

and nitrogen (-NHn) are common as well and several hydrogen bonds to between -SH

and -OH were also observed (Figs. 5.5B, 5.5C). In all, 72 percent of cysteines in our

data set of protein structures were found to be within less than 4.0A of a carbonyl
oxygen, nitrogen or hydroxyl oxygen (see Table V). This gives an estimate of the

frequency with which cysteine could participate in hydrogen bond formation. Most

cysteines (62%) were found near carbonyl oxygens. Proportionately more cysteine

sulfurs were found in the vicinity of nitrogen than half-cystine or methionine sulfurs

(36% vs. 23% and 24%) suggesting that cystine SY also has a greater propensity to

behave as a hydrogen bond acceptor. This is also demonstrated in the positive

distance distribution for nitrogen (Figure 5.5B). We did not find any angular

preferences for cystine-SY -- donor/acceptor pairs.

Twenty-seven contacts were found between sulfhydryl of cysteine residue i and the

carbonyl oxygen of residue i - 4. Like serine and threonine (Gray & Matthews, 1984),

if the two residues are in a helical conformation, the sulfhydryl group of cysteine can

hydrogen bond to the carbonyl oxygen of the i - 4 residue if cysteine adopts a c1 angle

of -60 degrees. The i - 4th carbonyl oxygen is still able to bond to the ith nitrogen and

helical geometry does not appear to be compromised. It has been observed that cys

teine preferentially adopts a helical conformation -- 47% of cysteines are found in

helices (Thornton, 1981). In glycogen phosphorylase, (Newgard et al., 1989; Sprang et

al., 1988) 5 of 8 cysteines are in helical conformations and all of these exhibit the i --> i

- 4 hydrogen bonding described here. Cysteine residues just beyond the C-termini of

helices can also “cap” terminal helical residues three or four residues prior in

sequence by forming hydrogen bonds to their carbonyl oxygens. In this manner, the
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hydrogen bond requirement of one of the terminal residues is fulfilled even though the

amide nitrogen of the i + 4th residue is not available for hydrogen bond formation.

Richardson and Richardson (Richardson & Richardson, 1988) have observed greater

frequencies of occurence of serine, threonine, and glutamine near the C-termini of

helices. These residues are capable of forming side chain - main chain hydrogen bonds.

Presta and Rose (Presta & Rose, 1988) have postulated that capping residues are

important for helix boundary formation during folding. An example of helix capping may

be found in carp parvalbumin (1CPV) (Moews & Kretsinger, 1975) between the

sulfhydryl of residue number 18 and the carbonyl oxygen of leucine 15 (Figure 5.6).

Figure 5.6. Example from carp parvalbumin (1CPV; Moews & Kretsinger, 1975)of “helix
capping.” The unsatisfied carbonyl oxygen of Leu 15 at the C-terminal of a helix accepts a
hydrogen bond from the sulfhydryl group of Cys 18.*

Conclusions

Of the three sulfur-containing amino acids, cysteine participates in hydrogen

bonding most frequently. Cysteine is found in the vicinity of hydrogen bond donating

* The structure 1CPV in the Protein Data Bank has been updated. The current structure is 5CPV.
This structure is different from 1CPV in that the helix containing residues 15 and 18 is shorter.
Residue 18 is not longer in the helix and the putative hydrogen bond distance is 3.84 Å.
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or accepting groups 72 percent of the time, most often near carbonyl oxygens. Intra

helical hydrogen bonds between the sulfhydryl group of cysteine and the carbonyl oxy

gen of the i-4* residue are quite common, as is C-terminal capping, where the

sulfhydryl group of cysteine donates a hydrogen to an unsatisfied carbonyl near the

end of the helix. Half-cystine is also frequently found near carbonyl oxygens, though

the prevalence of this interaction must be fortuitous and may have more to do with

disulfide bond geometry and half-cystine's preference for coil conformation (Thornton,

1981), since half-cystine cannot hydrogen bond to another hydrogen bond acceptor. It

is possible that hydrogen bonding ability may influence such factors as side chain con

formation and secondary structural preference: intrahelical hydrogen bonding may con

tribute to cysteine's preference for helical conformation. Surveys of amino acid behav

ior in proteins should treat free cysteine and half-cystine as unique amino acids.

Sulfur behaves as a hydrogen bond acceptor less frequently. Occasional hydrogen

bonds between hydroxyl groups and sulfur are observed in all three amino acid types

surveyed (methionine, half-cystine, cysteine.) Hydrogen bonds between the

sulfhydryl of cysteine and nitrogen are occasionally observed.

With regard to crystallographic refinement schemes, there does not appear to be a

significant bias against short distances between sulfur and potential hydrogen bond

donating or accepting groups. If this was the case, we would have observed a cluster

of hydrogen bonds at a distance greater than the ideal hydrogen bonding distance. The

peak in the distance difference distribution for cysteine-SH --O-carbonyl is where one

would expect it to be -- at 3.5 Å as expected.
While hydrogen bonds to sulfur are not a common feature in globular proteins, their

existence should be noted in protein structure modeling schemes and site-directed

mutagenesis experiments.
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Chapter 6.

Unusual Packing of Proteases
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Introduction

Proteins are observed to be well-packed (Richards, 1977). One measure of packing

density which has recently been used with reference to cubic lattice models of compact

polymers is the number of topological contacts (Chan & Dill, 1990) -- the total num

ber intrachain contacts between residues which are not connected in sequence. While

investigating the packing density in proteins using this measure, I noted that pro

teases contain an unusually large number of close contacts between alpha-carbons

when compared to other proteins. They also appear to have slightly lower surface

area : molecular weight ratios. Here I present these results and propose why pro

teases exhibit these unusual packing characteristics.

Methods

A data set of 72 protein structures from the Brookhaven Protein Data Bank

(PDB) (Bernstein, 1977; Abola, 1987) was constructed previously (Gregoret &

Cohen, 1990). This set includes 18 proteases, among them three bacterial trypsin-like

serine proteases (2ALP, 2SGA, 3SGB), six mammalian trypsin-like serine proteases

(1TON, 2PKA, 3EST, 3RP2, 4CHA, 4PTP), three aspartyl proteases (2APP, 3APR,

4APE), subtilisin and proteinase K (1SBT, 2PRK), papain and actinidin (9PAP,

2ACT), thermolysin (3TLN), and carboxypeptidase A (5CPA). These cover a variety

of structural and mechanistic classes, and a size range of 18 to 34 kilodaltons.

For each protein in the set, the number of intrachain contacts was determined. A

contact is defined if the Co - Co distance between residues i and j (for j > i+2) is

less than or equal to 5.5 Å. Surface areas were calculated using the method of Lee

and Richards (Lee & Richards, 1971) as implemented by Handschumacher and

Richards in the program ACCESS. Voronoi volumes (Richards, 1974) were calculated

using the program VOLUME, also by Handschumacher and Richards. The principle

moments of inertia of the data set proteins were also computed.
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Results/Discussion

Amongst a data set of 72 protein structures, the 18 proteases are amongst the top

28 proteins in terms of contacts per residue (Figure 6.1). The most compact non-pro

teases in the set of 54 have no obvious structural similarity to the proteases. These

are superoxide dismutase (2SOD), cytochrome C’ (2CCY), L7/L12 small ribosomal

protein (1CTF), gamma crystallin (1GCR), and hemoglobin (2HHB).

A calculation of the solvent accessible surface areas of the data set proteins gives

a similar result (Figure 2): proteases are on the fringe of the expected accessible

surface area for their sizes. This aberration may have been missed in previous stud

ies of surface area dependence on protein size because these studies focused on

smaller sets of proteins or were limited to monomeric proteins (Chothia, 1975; Janin,

1979; Bryant et al., 1990). It is notable that in these papers, proteases frequently

dominated the high molecular weight members of the data sets analyzed. Some of the

debate over the exact power law dependence of surface area to molecular weight may

owe to the peculiarities of protease packing.

The proteases are not unusually dense: the amino acid packing densities are nor

mal when computed using the method of constructing Voronoi polyhedra. This argues

that the forces operating to stabilize the folded protein, such as van der Waals attrac

tions and hydrogen bonds are not present in excess.

One way in which proteases may achieve a smaller surface area : molecular

weight ratio simply by being more spherical. The “roundness” of a protein may be

computed by

W Ixx + Iyy
-

Izz
Roundness =

where Ixx, Iyy, and Izz are the eigenvalues of the inertia tensor

In the limiting case of a perfectly spherical protein, this ratio is equal to 1.0.
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Although we normally think of proteases as being oblong, two-domain entities

with a binding cleft, several of the structural classes of proteases studied are actually

quite round (Figure 6.3). Subtilisin is, in fact, the second most spherical protein in the

set, with a roundness of 0.92. Proteinease K is also quite spherical, as is car

boxypeptidase A and the bacterial and mammalian serine proteases. The aspartyl

proteases, papain, actinidin, and thermolysin are more oblong. These proteins may

acheive a high number of intrachain contacts and lower surface areas by other mecha

nisms, perhaps by having shorter or more well-packed loops on the surface.

Conclusion

I speculate that the large group of proteases may have convergently evolved to be

more compact as protection against autolysis and cleavage by other proteases in the

same milieu. There appear to be at least two mechanisms by which proteases mini

mize their surface areas while maximizing the number of intrachain contacts. One

way in which proteases acheive this is by becoming more spherical. Not all

proteases, however, are round. Some may achieve lower surface area : molecular

weight ratios by making their surfaces less convoluted. This could be achieved

through shorter or more well-packed loops. This and other alternatives have yet to be

investigated in greater detail.
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6.1. Distribution of contacts/residue for the data set of 72 proteins. The average num
ber of non-local (greater than three residues apart in sequence) Co - Co. contacts for
the 54 non-proteases in the data set is 0.75 + 0.12 contacts/residue. For the 18 pro
teases, the average is 0.86 it 0.06 contacts/residue.
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Figure 6.2. Accessible surface area plotted as a function of molecular weight. Surface
area was calculated using the method of Lee and Richards. Proteases are designated
as filled triangles and other proteins as open circles. Linear equations have been fit
ted to each set of proteins. The correlation coefficients are r = 0.96 (proteases) and r
= 0.99 (non-proteases).
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Figure 6.3 Roundness of nonproteases and proteases.
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