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Advanced accelerators have great promise in reducing the size and cost of high

energy colliders as well as bringing high brightness x-ray sources to the laboratory

tabletop scale. The inverse free electron laser (IFEL) is a high gradient advanced

accelerator scheme that is one of the most efficient ways of transferring energy

from a laser to an electron beam. By copropagating a laser and a relativistic

electron beam through an undulator in vacuum and taking advantage of resonant

ponderomotive motion of the electron beam, IFEL avoids the breakdown asso-

ciated with other schemes that use a material to couple the laser fields to the

electron beams.

This dissertation provides an overview of IFEL, the photoinjector electron

beams to be used in IFEL interactions, and two IFEL applications: compression

and synchronization of a photoinjector electron beam to a laser application using

THz driven IFEL and high gradient acceleration using IFEL.

The numerically investigated THz IFEL application shows that with a 10 µJ

THz 8 pulse train, an electron beam bunch length of 100 fs RMS can be compressed

to 14 fs RMS and have the beam’s time of arrival jitter relative to an external

laser reduced by an order of magnitude.
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High gradient acceleration by IFEL was examined experimentally at Lawrence

Livermore National Laboratory (LLNL). This experiment marks the first attempt

to use sub-picosecond time pulse, TW peak power scale titanium:sapphire laser

pulses to perform IFEL acceleration. The demonstrated energy gain from 77

to 120 MeV combined with particle tracking simulations shows an accelerating

gradient of over 200 MeV/m. Because the laser pulse length is the same order

as the slippage experienced by the electron beam with respect to the laser and

the time of arrival jitter has been measured to be greater than 2 ps, the overlap

is investigated through relative single shot time of arrival measurements using

electro-optic sampling based spatial encoding techniques. The temporal overlap

measurement was found to be consistent with a cross-correlation model taking

into account the independently measured laser and electron beam lengths.
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CHAPTER 1

Introduction

There is a large variety of applications for particle accelerators in modern science

and technology. High energy, high quality beams are required to push the energy

frontier with high luminosity colliders in high energy physics and as drivers for

high brightness x-ray sources. Radiofrequency (RF) acceleration methods are

the workhorse for producing high energy electron beams both in high energy

physics [1–3] and 4th generation light sources [4–7].

In high energy physics, lepton (i.e., positron - electron) colliders are preferred

since owing to the fundamental nature of the leptons, the collision is character-

ized by lower backgrounds when compared with hadron colliders. Nevertheless,

several energy frontier collider projects use hadrons due to the limitations on the

maximum achievable energy imposed on electron rings by synchrotron radiation

losses. The synchrotron radiation power [8] is described by

P =
e2a2

6πε0c3
(1.1)

where e is the fundamental unit of charge, a is the acceleration, ε0 is the

permittivity of free space, and c is the speed of light. For a relativistic particles

traveling on a constant radius trajectory, a scales like γ2/R, where γ is the energy

of the particle divided by its rest mass and R is the radius of the ring. This

means that the power scales as γ4/R2, and the energy loss per revolution scales as

γ4/R [9], increasing quickly as γ >> 1. Electrons and positrons have rest energies

of .511 MeV/c2, whereas protons have rest energies of 938 MeV/c2, a factor of 103
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larger mass. This allows hadron accelerators to reach energies in the tens of TeV

with tens of km rings without limiting synchrotron losses.

Lepton accelerators overcome these radiative losses by use of linear accelera-

tion, with the disadvantage of only having a single pass through the accelerating

structures and hence they require a long linear footprint.

To reach the ultrahigh energy scale with traditional RF technology, we must

construct large facilities, km-scale accelerators which can prove prohibitively ex-

pensive in terms of construction and infrastructure costs.

1.1 Why Develop Advanced Accelerators?

There is a practical limit to the maximum accelerating gradient that traditional rf

accelerators produce due to breakdown at the cavity surface. This limit, which is

on the scale of 60 MV/m for traditional rf accelerating structures is what prevents

decreasing the footprint of the accelerators. For example, SLAC’s 3.2 km linac

accelerates electrons to 50 GeV, with an average gradient of 16 MV/m. One

solution to further increase these gradients is to decrease the wavelength of the

accelerating structures. An attractive option is to take advantage of the large

fields associated with modern laser technology.

Although advanced accelerators currently have far less wall-plug efficiency than

their rf counter parts, due to reliance on TW power lasers which typically have

< .1% wall-plug efficiency, they have the potential to surpass rf systems as laser

technology continues to evolve.

The goal of the development of advanced accelerators is to limit the footprint

and therefore cost of energy frontier accelerators for colliders and to bring high

brightness short wavelength (x-ray and gamma ray) light sources to the university

lab scale where they can be used in a variety of experiments including diffraction,

spectroscopy, pump-probe experiments, ultrafast science, etc.
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1.2 Survey of Advanced Accelerators

Before we go into a detailed description of one particular scheme of laser acceler-

ation, the Inverse Free Electron Laser (IFEL), which is the main subject of this

thesis, it is useful to review the types of advanced accelerators in order to un-

derstand where IFEL fits in among them. The characteristic common to these

accelerators is their goal is to create a high peak accelerating field that is phase

matched with the electron beam over a long distance to allow for large energy

gain, not just accelerating gradients, and to have focusing control over the elec-

tron beam as it accelerates resulting in an high quality output beam.

1.2.1 X-band RF Accelerators

We begin with X-band rf accelerators. Although they use radiofrequency wave-

lengths, these accelerators push the limits of what can be done with current rf

technology. They operate in the 10 GHz range. High gradient X-band acceleration

has many technical challenges including tight tolerances and fabrication practices.

X-band accelerators are being planned in TeV energy positron projects such as

CLIC [3], which uses beam driven cavities to power the accelerating structures

and in light source development such as MEGaRay [10] [11], which uses X-band

klystrons as power sources. X-band accelerators have advantages in gradient over

tradition acceleration, achieving gradients of ∼ 100MeV/m, but are limited by

breakdown at these gradients.

1.2.2 Dielectric Wakefield Acceleration

Next we examine the beam driven dielectric wakefield accelerator. In this scheme

a high peak current relativistic electron beam passes a bore through a dielectric

structured tube. The fields from the electron beam drive wakefields within the

dielectric, allowing for modes that can phase match with a witness beam that

3



typically travels one radiation wavelength behind, extracting energy out of the

wakefield. This scheme relies on near-field interaction of the THz (1012 Hz) scale

wakefields with the dielectric structures. Experiments of this scheme include E-

201 at SLAC [12]. These accelerators are capable of achieving gradients on the

order of GeV/m.

1.2.3 Plasma Accelerators

Plasma wakefield accelerators overcome the obstacle of breakdown in materials by

use of a material that is already ionized. These accelerators use either high peak

current electron beams or high peak power laser pulses to drive large wakefields in

plasmas. In the bubble or blowout regime, the plasma electrons evacuate regions

periodically, causing bubbles that of exposed background ions. In these regions

there are accelerating and focusing forces that can capture plasma electrons from

the back of the plasma bubble and propel (or push) them as the bubble follows the

driver through the plasma. This kind of acceleration has produced the highest

accelerating gradients to date: 50 GeV/m for electron driven plasma wakes as

SLAC [13] and 100 GeV/m gradients for 40 TW peak power laser driven plasmas

by LBNL [14]. Ultimately these accelerators will be staged with subsequent stages

operating in the quasi-linear regime to preserve beam quality while accelerating

to TeV energy scales.

1.2.4 Dielectric Laser Accelerators

In dielectric laser accelerators (DLA) complicated dielectric microstructures are

fabricated to generate laser modes that can be phased matched with an electron

beam. These microstructures have a spatial scale on the order of the laser wave-

length, so typically hundreds of nm, but can modulate electrons’ energies on the

scale of keV, resulting gradients above 250 MeV/m. A proof of principle exper-
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iment was performed at SLAC’s NLCTA facility [15] which demonstrated these

gradients, paving the way for staged DLA structures that can be printed on in-

tegrated circuits and extended for gradients over longer distances with a small

footprint. The structures serve the purpose of converting the plane wave laser

field into a near field which possesses a longitudinal component of the electric

field with respect the electron beam that has the right phase velocity to interact

with the beam. As these are high intensity near electric fields, the gradients can

be limited by dielectric material breakdown.

1.2.5 IFEL

The free electron laser (FEL) interaction is one of the most efficient mechanisms

to transfer energy from a relativistic electron beam to a radiation pulse. Coupling

between transverse electromagnetic waves and relativistic electron motion is made

possible in the FEL by the presence of the undulator magnetic field that bends the

electron trajectories enabling the energy exchange. Synchronous energy transfer

is achieved if electrons oscillations fall behind the laser wavefronts by an integer

number of wavelengths for each undulation period (resonant condition). In FELs,

the electrons on average lose energy to the electromagnetic wave as they propagate

through the undulator field.

The same mechanism can be employed in reverse to enable laser driven accel-

eration of relativistic electrons. To achieve large energy gains, the IFEL resonant

condition must be maintained over a large distance by tapering the magnetic field

profile of the undulator in field strength and/or period as the energy of the elec-

tron beam increases. With current laser technology, the gradients available in

IFEL approach GeV/m.

Ultimately IFEL is not well suited as a multistage accelerator for a collider at

TeV energy scales and above as it begins to suffer from synchrotron losses above
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the GeV energy scale. IFEL does, however, have a excellent qualities up to 1 GeV,

including gradients on the scale of ∼ 200MeV/m, decent emittance preservation

of the captured beam, and electron bunching that occurs at the wavelength of the

laser used.

This bunching can be utilized in light source generation to create mode locked

free electron laser [16] to potentially generate pulse trains in the 10 nm(XUV) and

1 Å (X-ray) wavelength regimes with each pulse length on the scale of attoseconds.

1.3 A History of IFEL Experiments

IFEL, first proposed by Palmer [17], then investigated by Courant, Pellegrini,

and Zakowicz [18], has an experimental history that started in the 1990’s after

the development of the free electron laser and the realization occurred that pon-

deromotive resonance could be obtained with a changing energy electron beam by

tapering the period and or the magnetic field strength of the undulator to allow for

resonant acceleration could continue as the energy of the electron beam changed

along the undulator. This section contains a brief history of IFEL experiments, a

map of which can be seen in Figure 1.1.

1.3.1 IFELA

The history of experimental IFEL begins with the inverse free electron laser accel-

erator (IFELA) experiment performed at Columbia in 1992 [19]. The experiment

took divided their undulator into two parts. The first part of the undulator acted

as a light source oscillator due to the resonant wavelength of the undulator being

at 1.6 mm and the lack of the available laser sources for 1.6 mm. The second half

of the undulator was tapered from 1.8 cm to 2.25 cm. A 750 keV electron beam

was injected and 9 % of the electrons were accelerated to 1 MeV resulting in an

accelerating gradient of 700 keV/m.
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Figure 1.1: History of IFEL Experiments

1.3.2 BNL-IFEL

The next significant IFEL experiment was performed in 1996 at Brookhaven Na-

tional Lab’s(BNL) Advanced Test Facility(ATF) [20] [21]. This experiment used

a 1-2 GW CO2 laser focused to 1 mm beam waist, a tapered undulator with

a period from 2.89 cm to 3.14 cm and magnetic field strength from 1.000 T to

1.024 T. A 40 MeV electron beam was injected into the accelerator and they

were able to measure 2.3 MeV of energy gain. Moreover, they were able to study

IFEL microbunching by measuring the coherent transition radiation (CTR) from

a foil after the undulator then adjusting the CO2 power to adjust the optimal

longitudinal bunching position toward and aways from the foil [22]. The resulting

accelerating gradient from this experiment was 5 MeV/m.
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1.3.3 MIFELA

The microwave inverse free electron laser [23] explored large orbit behaviors of a

pulsed helical wiggler magnet and S-band microwave in a traveling wave structure

to perform detailed benchmarks of three-dimensional numerical calculations of

the IFEL interaction. Although the accelerating gradient of 360 keV/m was low

compared to the BNL-IFEL experiment, the use of microwave instead of optical

wavelengths and the resulting large orbits allowed for accurate benchmarking of

fully three dimensional IFEL codes.

1.3.4 STELLA

The staged electron laser acceleration experiment, (STELLA) was the first at-

tempt to do staged IFEL. The experiment began by demonstrating multiple stage

IFEL at ATF in 2000 [24]. STELLA further demonstrated in 2004 high efficiency

trapping using the first staged IFEL to bunch the electron beam and the second

to accelerate the beam claiming trapping efficiencies of up to 80 %, [25] and was

able to demonstrate acceleration up to 8 MeV with an electron beam injected at

45 MeV and using of a >100 GW CO2 laser focused such that the peak intensity

in the second undulator was approximately 2 TW/cm2. The main contribution of

this experiment was to demonstrate that reasonably high trapping efficiencies can

be achieved through prebunching of the electron beam in addition to achieving

an improvement in the IFEL acceleration gradient of above 10 MeV/m.

1.3.5 NEPTUNE

The IFEL experiment performed at UCLA’s Neptune laboratory in 2004 [26] was

able to demonstrate energy gain of trapped electrons in excess of 20 MeV. By use

of a 400 GW CO2 laser and the KIAE-2p planar undulator [27] a 14 MeV electron

beam was accelerated above 20 MeV. The undulator was designed to correct for

8



the Gouy phase shift that occurs through the laser’s waist to maintain resonant

energy exchange between the laser and electron beam throughout. Due to the

aggressive undulator tapering the laser intensity at the center of the undulator

was insufficient to maintain the electron beams on the resonant acceleration curve,

resulting in only significant energy gain in the first half of the undulator as verified

with consistent simulations. The acceleration gradient for a record of 70 MeV/m.

Although the fundamental IFEL resonance is lost half way through the undulator,

higher harmonics of the electron orbits became resonant toward the end of the

undulator, allowing for a systematic study of the effects of higher harmonics in

IFEL.

1.3.6 Rubicon

The Rubicon experiment [28], performed at BNL from 2013-2014, initially demon-

strated gradients of > 100 MeV/m using a helical undulator constructed at UCLA

by J.Duris et al and circularly polarized CO2 laser light with 200 GW peak power.

After re-tapering the undulator for a gentler accelerating gradient, large capture

was demonstrated from 50 to 90 MeV with energy spread on the scale of 2 %.

1.3.7 LLNL IFEL

Lastly we discuss LLNL IFEL [29–31] which explores the effects of short laser

pulses using 800 nm Ti:Sapphire technology with pulse lengths of 100 fs rather

than the traditionally used 10.6 µm with pulse lengths of a few ps. A chapter of

this dissertation is dedicated to this experiment.
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1.4 Motivation of Dissertation

This dissertation examines the generation of high brightness electron beams in

the photoinjector blowout regime and studies the effects of the IFEL interaction

both at THz wavelengths as a method of compression and synchronization and at

800 nm with sub ps laser pulses as a method of high gradient acceleration with

applications for gamma ray generation by inverse Compton scattering (ICS).

1.5 Organization of the Dissertation

This dissertation is organized as follows: We begin with an examination of the

generation of high brightness electron beams in the photoinjector blowout regime.

We then look at the theory of the inverse free electron laser interaction, followed by

two applications of IFEL. The first application examines the interaction when the

electron beam interacts with THz generated by pulse front tilt optical rectification

of ultrafast laser pulses, while the second looks at high gradient acceleration by

sub picosecond TW scale laser pulses at Lawrence Livermore National Laboratory

(LLNL).

10



CHAPTER 2

High Brightness Electron Beams Produced in

the Photoinjector Blowout Regime

A key element for a laser accelerator is the high brightness electron beam which

is being accelerated. The generation of such high brightness electron beams will

be the subject of this chapter.

2.1 Beam Development

A beam is a collection of particles with a specific set of approximations and con-

straints applied. Being a collection of particles it can be described using statistical

mechanics. As such, the particle beam can be described by a discrete set having

spatial coordinates, Xi , and corresponding momentum coordinates, Pi, where

i = 1...N , and N is the number of particles in the set. Each particle in the beam

can be seen as a point in a 6D space and each beam can be seen as a single point

in a 6-DN space of all possible beam of N particles. We can treat the collection

of particles as a density in phase space, nPS composed of Dirac delta functions:

nPS =
N∑
i=1

δ(x−Xi(t))δ(p−Pi(t)) (2.1)

We can then use the conservation of phase space volume as prescribed by the

Liouville theorem,
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D

Dt
N(x,p, t) = 0 (2.2)

Where D/Dt is a convective derivative with the form of

D

Dt
=

∂

∂t
+ ẋ · ∇x + ṗ · ∇p (2.3)

From this phase space density conservation we can construct a probability for

the distribution being in phase space. The BBKGY hierarchy, which describes

the dynamics of a system of a large number of interacting particles [32] can be

applied to construct a recursion relation between the probability of N particle in-

teractions, fN , and N−1 particle interactions, fN−1. Justified by the unlikelihood

of three particle interactions and higher, one can truncate the series and reduce

the system down to an averaged probability distribution, f1 and the effects of

binary interactions, which can be reduced to a correlation function, g(12). Lastly,

ignoring binary interactions such as collisions, as can be done with photoinjector

electron beams, one arrives at the Vlasov equation:

∂f

∂t
+ ẋ · ∇xf + ṗ · ∇pf = 0 (2.4)

This equation seems markedly similar to that described by the Liouville the-

orem but there is an important subtlety, however, as f , previously indicated by

f1, is the smooth averaged distribution function, neglecting the binary and higher

order interactions. Thus this equation describes the evolution of a smooth distri-

bution in 6 dimensional space, instead of a spiky distribution of systems in 6N

dimensional space. Whereas the Liouville equation described the complete forces,

the ṗ term in the Vlasov equation is the average force over all of the particles (ne-

glecting the particle in question). The Vlasov equation combined with the fields

described by Maxwell’s equations characterize the time evolution of the electron

beam.
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The distribution function can be characterized by looking at its moments.

Integrating over the distribution function gives you the number of particles, N ,

while integrating over the first moment gives the centroid:

< x >=

∫ ∞
−∞

xf(x,p, t) dp dx (2.5)

Integration over the second moment while subtracting the average gives the

variance :

σ2
x =

∫ ∞
−∞

x2f(x,p, t)− < x > dp dx (2.6)

Because the beam has a relatively low energy spread and divergence, the parax-

ial approximation can be applied which is valid when px, py << pz ∼| p |, allows

for the restatement of px, py, and pz into x′, y′, and δp/ < p0 > respectively.

The phase planes then are commonly known as the three trace planes. We can

represent these coordinates as a six dimensional paraxial column vector for easy

beam tracking calculations:

X =



x

x′

y

y′

z

δp
p0


(2.7)

If the force acting on the beam is linear with respect to the offset of the coor-

dinates then the dynamics resembles that of a simple harmonic oscillator with the

particles following elliptical trajectories in the trace planes, moving together and

preserving the area of the distribution. These oscillations are called betatron or

synchrotron motion depending if they happen to in the transverse or longitudinal
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plane. Any linear force, drift or combination thereof can be represented by the

following linear transfer matrix:

R =



R11 R12 R13 R14 R15 R16

R21 R22 R23 R24 R25 R26

R31 R32 R33 R34 R35 R36

R41 R42 R43 R44 R45 R46

R51 R52 R53 R54 R55 R56

R61 R62 R63 R64 R65 R66


(2.8)

For most cases the phase planes are decoupled, meaning that the off-diagonal

elements (other than between xi and x′i) are zeros. Notable exceptions to this

are dispersive and angular-dispersive elements which have non-zero R16 and R26

elements, assuming that the dispersion is in the horizontal plane. Other examples

are longitudinally dispersive elements that have nonzero R56 such as doglegs and

chicanes. These elements are necessary for compression of chirped high energy

beams because this element of the transfer matrix for a drift goes like 1/γ2, so it

has a small value at higher energies.

In this notation, the transfer matrix can be constructed for individual elements

and a single transport matrix can be constructed from the elements through matrix

multiplication, following the rule, like any operator, that the earlier element that

the beam encounters is on the right of the matrix chain.

For a particle with initial 6-D trace space coordinates, Xi, we can then use

the total R-matrix to determine its final propagated coordinates:

Xf = R ·Xi (2.9)

The size of the area occupied by the beam in trace space is known as the

emittance. The transverse RMS emittance are defined in the paraxial coordinates
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as:

εxi =
√
< x2

i >< x′2i > − < xix′i >
2 (2.10)

If the beam experiences acceleration, the RMS emittance will decrease due to

the longitudinal momentum increasing, which has the effect of scaling down the

beam angles, x′ and y′, proportional to γβ. As we are interested in a constant of

the motion for the propagation, we can introduce the normalized emittance,

εn,xi = γβ
√
< x2

i >< x′2i > − < xix′i >
2 (2.11)

The normalized emittance appears as a nonlinear term in the beam enve-

lope equation which describes how the second moment described by Equation 2.6

evolves along z:

d2σx
dz2

+
(β0γ0)′

β0γ0

dσx
dz

+ κ2
xσx =

ε2n,x
(β0γ0)2σ3

x

+
2I

I0β3
0γ

3
0σ

(2.12)

where κ is the focusing forces due to external fields in the lattice, (β0γ0)′/(β0γ0)

is the acceleration, I is the peak beam current and I0 is the characteristic or Alfven

current, which is 17 kA for electrons. This equation resembles that of a damped

driven harmonic oscillator with two nonlinear terms, one that is proportional to

the square of the normalized emittance and the other one (representing space

charge forces) that is proportional to the peak current. As the beam becomes

increasingly relativistic we can see that the space charge term will decrease faster

than the emittance term so that at high energy the evolution of the beam size

is dominated by the emittance and one can neglect effects due to space charge

forces.

The normalized longitudinal emittance can be defined as,
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εz =

√
< δz2 >< δp2 > − < δzδp >

m0c
(2.13)

The RMS emittances represents the area of ellipses in trace space enclosing

the particle distribution. These ellipses change orientation and perform rotations

under linear transformations but never change in area, reflecting the fact that the

emittance is preserved under linear transformations.

A good figure of merit for beam quality is the six-dimensional beam brightness,

which can be seen as an RMS 6D trace space density. As opposed to the com-

monly used four-dimensional brightness, the six-dimensional brightness includes

the longitudinal emittance, a figure that describes the compressibility of the beam

as it relates to energy spread. The 6-D brightness is given as:

B =
N

εxεyεz
(2.14)

The 6-D brightness is also useful as there are several emittance exchange

schemes, where longitudinal and transverse emittances can be swapped, result-

ing in smaller transverse emittance and therefore a potentially tighter focus at

the exchange of compressibility or energy spread.

If the explicit time derivative of the Vlasov is zero, the solutions to the mod-

ified equation will describe equilibrium states. Assuming separability of the dis-

tribution function into three phase plane functions, as well as that each of those

functions are separable in coordinates and momenta, we can solve the equilibrium

Vlasov equation and arrive at the bi-Gaussian distribution for each phase plane:

fbiGaussian(xi, x
′
i) =

1

2πσxσx′
Exp

[
− x2

2σ2
x

]
Exp

[
− x′2

2σ2
x′

]
(2.15)

The bi-Gaussian distribution in each trace plane gives a noninteracting equi-

librium solution to the Vlasov equation and is self similar through linear trans-

formations, and a great deal of research goes into the design of both magnets and

16



RF accelerating sections to make the forces experienced by the beam as linear as

possible. The self-forces due to space charge from a beam with the bi-Gaussian

distribution are, however, very non-linear resulting in phase space area (and thus

emittance) growth. Consequences of these nonlinearities include beam halo and

general phase space dilution of charged particle beams as they propagate through

and accelerating beamline.

The bi-Gaussian distribution is not the only solution to the Vlasov equation.

One of particular interest to the beam community is the Kapinchski-Vladimirski(KV)

distribution [33], which is that of a uniformly filled ellipsoidal beam. The density

within the ellipsoid is constant, i.e. ρ0 = 3Ne/4πABC for an ellipsoid with a

constraining boundary of

(
x

A
)2 + (

y

B
)2 + (

z

C
)2 = 1 (2.16)

Solving the electrostatic problem for a uniformly filled ellipsoidal distribution,

the electric field seen by the beam in the rest frame is linear. Consequently the

there is no emittance growth due to the nonlinearities of the space charge field

while the beam propagates, making this distribution ideal for preserving beam

quality throughout propagation through a linear lattice.

This has motivated the beam community to experimentally create such a dis-

tribution right from the start, that is, in the photoinjector.

One technique for producing this distribution is to shape the laser profile that

is applied to the photocathode to have an intensity profile such that the electron

beam distribution at the cathode will become an ellipsoidal beam. This method

is complicated and expensive, reflecting the qualities of laser pulse shapers.

In the rest of this chapter we will discuss a different method based on illumi-

nating the cathode with an ultrashort laser pulse and relying on the space charge

forces to obtain a nearly ideal uniformly filled ellipsoidal distribution.
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2.2 Photoinjector Blowout Regime

A more attractive option to produce the distribution takes advantage of the ultra-

fast rearrangement of the beam as it expands longitudinally under the influence

of strong space-charge forces. Luiten et al. [34], reconsidering an idea proposed

by Serafini [35], have shown that to obtain a final ellipsoidal distribution there is

essentially no requirement on the initial laser pulse shape other than it be much

shorter than the final bunch length after expansion. This has motivated the use of

a ”pancake regime” where the only requirement of the laser profile on the cathode

is that the transverse to longitudinal aspect ratio is large, σr >> σz

With the advent of chirped pulse laser amplification (CPA) [36] production

of sub-picosecond laser pulses has become routine making possible to realize the

large aspect ratio of the laser required for the photoinjector blowout regime.

2.2.1 Experimental Generation, Observation, and characterization of

Uniformly Filled Ellipsoidal Electron Beam: Methodology

The generation and characterization of a near uniformly filled ellipsoidal elec-

tron beam was performed at UCLA’s Pegasus [37]. Other than the photoinjector

blowout beam studies, this lab has focused on advanced accelerator diagnostics

such as electro-optic sampling [38] with applications in ultrafast electron diffrac-

tion [39]. A diagram of the setup experimental beamline can be seen in Figure 2.1.

The experiments were performed using a Coherent Inc. Titanium:Sapphire

Laser system capable of generating pulses with a central wavelength of 800 nm

that have a 40 fs FWHM as measured by a single shot autocorrelator . This

laser is frequency tripled using nonlinear optical elements to pulses with a cen-

tral wavelength of ∼200 nm and temporal RMS of 35 fs. An ultraviolet laser

pulse is used to overcome the work function of the copper cathode of a 1.6 cell

SLAC/BNL/UCLA photoinjector gun driven at 2.856 GHz. The transverse laser

18



Figure 2.1: Layout for Photoinjector Blowout Regime Beam Measurements. An

X-band deflecting cavity and a dispersive spectrometer allows the longitudinal

spatial profile and phase space to be measured.

profile is shaped by overfilling a Gaussian mode imaged 1 mm pinhole aperture

onto the cathode. This cut Gaussian distribution results in an good approxima-

tion of
√

1− (r/a)2 for r ≤ a, where r is the radial cylindrical coordinate and a

is the fixed constant radius. This is the ideal radial profile prescribed by Luiten,

as it represents radial density of the thin disk resulting from the collapse of an

astronomical uniformly filled ellipsoidal object. As the gravitational and electri-

cal forces only differ by sign, (i.e. repulsive vs. attractive), this distribution is

the best place to start to obtain a uniformly filled ellipsoidal distribution upon

expansion. The expansion occurs as the electron beam is accelerated by the gun

to a final energy of 3.75 MeV. As the electron beam accelerates the space charge

force is reduced by a factor of 1/γ2 or ∼50, effectively freezing the dynamics (and

the evolution of the distribution) at the gun exit. A solenoid, typically used for

emittance compensation techniques [40] is used as a lens to collimate the electron

beam as it travels to the deflecting cavity. A 50 or 100 µm slit serves to cut the

electron beam in the deflecting cavity plane, thereby increasing the resolution of
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the temporal measurement.

The deflector is a 9 cell standing wave cavity driven at 9.599 GHz with a

maximum deflecting voltage, V0 of 500 kV. The deflector, designed by R.J. Eng-

land [41],operates in a TM101 mode. The effects of the deflector can be modeled

as a linear transformation on the beam distribution using a thin kick model for

the deflecting cavity. This linear transformation has a representation of a 6x6

I matrix with the exception of the R45 and R63 elements are eV0
m0cγ

× 2πν
c

, where

c is the speed of light, e and m0 are the electron charge and mass and γ is the

Lorentz factor. As such, it imparts a linear correlation between the longitudinal

position in the beam, z, and the vertical position detected on the downstream

fluorescent screen, y. After a drift of 17 cm between the center of the deflector

and the imaging screen,a proportionality factor of K ' 1.1 fs/µm is determined

between the transverse position at the screen and the longitudinal position in the

deflector.

To obtain synchronization between the electron beam and the deflecting volt-

age, the low level reference signal for the deflector at 9.599 GHz is obtained multi-

plying the 79.333 MHz laser oscillator master clock by 121, i.e. phase locking the

laser pulses with the RF cavity. The RMS temporal jitter of the X-band signal

with respect to the laser pulse’s time of arrival introduced by this multiplication

is ∼ 1 ps. This results in a significant (∼ 1 mm) vertical jitter of the beam po-

sition on the screen thus preventing collection of data by simple integration over

multiple shots. For the measurements presented here a post-processing routine

selected data only from images for which the beam centroid was < 100 µm from

the beam line axis.

The vertical RMS beam size observed on the downstream screen can be approx-

imately written as the quadrature sum of the contribution due to the deflection

and the minimum RMS spot size achieved when the cavity voltage is off, that is

σy =
√
σ2

0 + (Kσz/c)2 where σz is the RMS bunch length. In order to resolve the
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Figure 2.2: Image of deflected electron beam at diagnostic screen immediately

after deflecting cavity. (Top) Image with deflector set to zero voltage. (Bot-

tom) Image with cavity set to maximum voltage, resulting in a streak with 50 fs

resolution.

time structure of the bunch, we require that the contribution to the vertical spot

size due to the t-correlated deflection be much greater than σ0. The minimum

measurable bunch length (which sets the temporal resolution) is given by σ0/K.

There are two methods employed for the minimization of σ0 prior to turning

on the deflecting voltage: One relies on focusing with a quadrupole lens and the

second is obtained by selecting only the central beam slice by collimation using

a horizontal slit. The information extracted from these different configurations is

complementary, as in the former method we measure the full beam distribution

projected into 2D, while using the latter method we measure only a nearly 2D

slice extracted from it.

By employing the vertically focusing quadrupole just upstream of the rf cavity

we focused the beam down to a thin (σ0 < 40 µm thick) horizontal line on the

measurement screen, yielding a temporal resolution better than 50 fs. The streak

images obtained both before and after the 500 kV deflecting voltage is turned on,

for the beam parameters given in Table 2.1, are shown in Figure 2.2. Since the
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Blowout Experimental Parameters

Beam energy 3.75 MeV

Peak field at the cathode 80 MV/m

Photoinjector injection phase 25 deg

Laser spot size (RMS) 400 µm

Laser pulse length (RMS) 35 fs

Table 2.1: Pegasus photoinjector parameters

initial y-betatron size is negligible, there is an almost perfect correlation between

the y axis and time. Thus one of the most striking features is the sharp ellipsoidal

beam boundary which encloses the particle distribution function projected onto

the x-t plane. This direct verification of the ellipsoidal boundary provides a strong

validation of the theoretical prediction of dynamical formation of ellipsoidal beams

through ultrashort laser pulse cathode illumination.

2.2.1.1 Discussion of Blowout Measurement Results

The sharpness of the distribution boundary in t is predicted to be limited by the

initial spread in emission times. The measured bunch length is 300 fs RMS in

good agreement with particle tracking simulations performed using the ASTRA

beam dynamics code [42]. Even including the possible delay time associated with

photoemission, the beam distribution has stretched by almost an order of mag-

nitude. We then expect that it would show little memory of its initial size; the

sharp density transition at the boundary verifies this expectation.

The intensity distribution inside the ellipse of Figure 2.2 merits further consid-

eration. Since the quadrupole lens focuses the beam in the vertical direction (y),

effectively projecting the beam distribution along this axis, we expect an intensity

distribution resembling the projection of a uniformly filled ellipsoid onto the x-z

plane. In other words if the beam distribution, ρ(x, y, z) is constant and differs
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Figure 2.3: Blowout beam X-Z spatial distribution measurement with a lineout

demonstrating the expected behavior of a near-uniformly filled ellipsoid: Flat top

with fast falling edges.

from zero only for x2

a2
+ y2

b2
+ z2

c2
< 1 where a, b, c are the three semiaxes of the ellip-

soidal, on the screen one should observe an intensity distribution proportional to

the projection of ρ onto the (x, z) plane, f(x, z) =
∫
ρ(x, y, z) dy ∝

√
1− x2

a2
− z2

c2
.

This prediction is verified in Figure 2.4, where a surface plot of the pixel intensities

from Figure 2.2 is compared to the ideal distribution f(x, z).

In the original proposal of the radial shape of the initial transverse laser profile

is deemed critical for creating the ellipsoidal beam. However, in our measurements

the initial laser transverse profile has been shaped by simply imaging onto the

cathode an iris of aperture ra illuminated with a larger Gaussian laser spot of

measure. We observe in t-dependent beam images that the shape of the final

beam distribution is not particularly sensitive to the initial transverse profile, as

long as this one has sharp edges. Only when the laser transverse profile presents

long tails, i.e., when the laser is apertured at a radius ra > 1.5 σg, does the beam

lose its characteristic sharp ellipsoidal boundary.
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Figure 2.4: X-Z distribution integrated with model superimposed.

This mild dependence on the initial laser transverse shape is in good agreement

with particle tracking simulations. It originates in the details of the dynamics of

the beam rearrangement. A half-circle initial distribution would be required if

the beam expansion were entirely longitudinal. However, because of relativistic

dilation the beam rest-frame aspect ratio (i.e. the ratio between the transverse

and longitudinal beam sizes) grows very quickly to be of order unity. Hence the

space-charge driven expansion and distribution rearrangement take place both

radially and longitudinally, leading to an ellipsoidal boundary that is not critically

dependent on the details of the initial conditions.
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2.2.2 Longitudinal Phase Space Measurement

The measurement of the longitudinal phase space (LPS) of the blowout beam

exploits the two dimensional nature of the images obtained with the rf deflector,

where the horizontal coordinate can be used to encode any information whose vari-

ation along the bunch temporal coordinate is under study. Examples include the

position and amplitude of a Bragg diffraction peak for ultrafast electron diffrac-

tion studies, or the beam size after a horizontally focusing quadrupole for slice

emittance measurements [43]. In this section we discuss the measurement of the

longitudinal phase space of the blow-out beam where we utilize the unstreaked

dimension to display the momentum spectrum of the beam after it is dispersed

by a magnetic dipole.

The dipole magnet employed has a design bend of 45 degrees and a radius

of curvature of 0.67 m. After a longitudinal distance of 29 cm from the exit of

the dipole, chosen in order to maximize the energy resolution and acceptance,

the transverse x-y profile of the beam containing the mapped longitudinal phase

space is imaged onto a 1 inch diameter yttrium aluminum garnet (YAG) fluores-

cent screen from Radiabeam Technologies IBIS profile monitor. The emittance

compensation solenoid is employed to guide the beam to a very gentle focus a

few meters downstream of the cathode. A 100 µm wide horizontal aperture at

a distance 1 m downstream from the cathode is used to select a central slice of

the beam to perform the measurement. The need for this experimental procedure

arises from consideration of the effects of the deflecting electromagnetic field on

the beam energy distribution and it is discussed in detail in the next section. The

small aperture reduces the charge to < 5 % of its initial value, thus effectively

stopping any further space charge driven dynamical evolution, as confirmed by

GPT simulations. For photoinjector parameters typical of the measurements de-

scribed here, in the region after beyond 1 m downstream of the cathode the energy

spread would slightly (10 %) increase. When the collimating slit aperture is in-
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serted in the beam path,however, the simulated energy spread remains constant.

This can be explained noting that even though the local charge density remains

unmodified by the aperture, the beam aspect ratio and hence the magnitudes of

the space charge forces in the transverse and longitudinal direction are strongly

affected.

The only longitudinal phase space transformation that takes place after the slit

is a drift propagation up to the deflecting cavity plane where the beam longitudinal

profile gets imprinted by the transverse deflecting kick into the vertical plane.

Two quadrupole magnets of effective length Lq of 10.4 cm located, at respec-

tive longitudinal positions of 1.54 m and 1.66 m from the cathode are used to

minimize the betatron beam sizes both in x and y at the measurement screen.

The measured y-spot size on the YAG screen is < 100 µm Obtaining a well re-

solved LPS measurement requires that these beam sizes be small compared to the

streaked and dispersed spot dimensions.

For the LPS measurement there is a drift of L = 110 cm from the center of the

deflecting cavity to the imaging screen. The voltage applied to the deflector was

V0 = 100 kV, resulting in a proportionality factor wasK = 6.3 fs/µm. Taking into

account a camera calibration of 31 µm/pixel, the calibration value is 16 fs/pixel.

This value is cross-checked with a direct measurement of the calibration factor

obtained by lowering the deflecting voltage to a level in which a full phase sweep

of the rf field can be observed on the measurement screen. The vertical centroid

of the beam is then measured as a function of the phase of the deflecting cavity.

The slope of the resulting sinusoidal variation at the zero crossing yields the pixel

to phase calibration. The slope is then scaled by the ratio of the operating voltage

and the phase sweep voltage as measured with an independent power meter and

finally divided by kc to obtain the time calibration for a single pixel on the CCD.

For the LPS vs charge measurement case, this method yielded a (15± 1) fs/pixel

calibration in close agreement with the predicted value.
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The screen momentum calibration can be estimated using linear matrix trans-

port analysis. The horizontal deviation from the design trajectory due to disper-

sive terms is

x = [ρ(1− cos θb) + Ld sin θb]
δγ

γ
(2.17)

where ρ is the bending radius, θb the bending angle, and Ld = 29 cm is the

drift distance from the exit of the dipole to the imaging screen. Again, taking into

account the camera magnification, this gives a 270 eV/pixel calibration. In order

to verify this experimentally we measured the shift in the horizontal centroid

of the beam when varying the magnetic field in the dipole magnet by a small

amount, noting that a small variation δB/B is equivalent to −δp/p. A linear fit

gives (0.0073 ± 0.0003)% pixel calibration factor. For a central beam energy of

(3.55± 0.05 MeV this corresponds to (260± 10) eV/pixel in close agreement with

our estimate.

Applying the calibrations discussed above to the raw image data from the

digital camera, a direct measurement of the longitudinal phase space beam dis-

tribution is obtained. In order to simplify the description of the physics of the

blow-out regime, we break down the characterization of the LPS to a few essential

physically relevant parameters. These are the energy chirp that describes the cor-

related energy spread of the beam denoted by C, the RMS energy spread (σdE),

the RMS bunch length (σt), the slice or uncorrelated or slice energy spread (σdEs),

and lastly the longitudinal phase space area or longitudinal emittance (εz,n). De-

pending on the application each one of these parameters may be more important

than the others. Ultimately, only the complete phase space distribution fully de-

scribes the beam, but these parameters can give insight into important physical

processes inherent to the photoinjector blow-out regime.

The image analysis is performed by a routine that starts by filtering the raw
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image data. As in transverse phase space reconstruction measurements, filtering

the noise is a critical issue in determining the phase space area. The only differ-

ence in this case is that the raw image (with proper calibration applied) directly

carries the longitudinal beam distribution information. As this method involves

no numerical reconstruction in the data except rescaling the axes from x-y to p-z,

the filtering problem is simplified. The filtering method proceeds as follows. An

upper limit threshold is first applied to eliminate any saturated pixels that have

resulted from x rays hitting the imaging camera CCD. After selecting a region

of interest, an iterative RMS cut is applied line by line until the computed beam

RMS values converge within a threshold of 0.1%. Finally, the filtered image is

integrated in the two transverse dimensions over the region of interest. A lower

bound threshold is applied until the total integrated intensity is decreased to 90%

of its initial value to eliminate the noise contribution at the tails of the beam

profile.

The beam chirp (C) is determined by slicing the beam in 50 fs slices for one

RMS bunch length around the beam centroid. The centroid of each slice is then

computed and slope is determined by a linear least squares regression. The thick-

ness of the distribution in each slice gives a local measure of the uncorrelated

energy spread. The RMS bunch length and energy spread are calculated by pro-

jecting the full image intensity distribution on the two correspondent axes.

2.2.2.1 Complication to LPS measurement: Panofsky-Wenzel Theo-

rem

The most substantial source of systematic error in our measurement setup is the

deflecting cavity. Use of a deflecting cavity to measure the longitudinal profile of

an electron beam imposes an additional energy spread for off-axis particles. This

additional energy spread is well described by the Panofsky-Wenzel theorem which

in its differential form can be written as
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Figure 2.5: Plot of energy spread induced by the deflecting cavity as a function

of transverse spot size through the deflector.

∇⊥(∆pz) =
∂(∆p⊥)

∂z
(2.18)

Equation 2.18 indicates a relationship between the transverse momentum im-

parted to particles that are longitudinally off the center of phase of the beam,

and the longitudinal momentum imparted to particles that are transversely off

center of the axis of symmetry. When applied to a deflecting cavity the Panofsky-

Wenzel theorem implies that the same factor that causes the deflection of the

beam induces an increase in energy spread which depends on the transverse beam

width inside the deflecting cavity. By using a thin kick approximation, the energy

change of an off-axis particle due to the rf fields of the deflector can be written,

following Equation 2.18, as
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dγ

γ
=

keV0

γm0c2β
y (2.19)

where y is the vertical particle position. The rest of the parameters are the

same as those of Equation 2.18. When applied to the second moment of the beam

distribution, Equation 2.19 describes the expected increase in energy spread in

terms of the RMS vertical beam size at the deflecting cavity. An experimental

study of the effect of energy spread imposed upon the electron beam by the de-

flecting cavity is shown in Figure 2.5. A measurement of the increase in energy

spread as a function of vertical spot size was performed by using the solenoid as a

lens to change the transverse profile of the electron beam as it traveled through the

deflecting cavity. The energy spreads for each spot size in Figure 2.5 were normal-

ized by the energy spread measured without any deflecting voltage, as changing

the beam focusing has also an effect on the beam energy spread. The data is com-

pared with the normalized quadrature sum of the measure initial energy spread

and the induced contribution calculated using Equation 2.19. The data is in good

agreement with the kick model for the deflecting cavity, demonstrating the ef-

fect predicted by the Panofsky-Wenzel theorem on the beam energy spread. This

study motivated the use of an aperture in order to minimize the beam transverse

dimensions in the deflecting cavity. Because of the deflecting mode field profile,

the field gradient is maximum in the vertical axis and minimal along the horizon-

tal axis. Hence, a horizontal aperture is used to minimize the induced additional

energy spread. When the 100 µm wide slit is inserted, the energy spread of the

beam on the spectrometer screen increases by approximately 600 eV with the de-

flector turned on at 100 kV with respect to the unstreaked beam. Although this

value may be negligible when considering the total energy spread of the beam,

the contribution from the deflecting cavity constitutes an additional uncorrelated

energy spread, which limits the resolution of the measurement of this parame-

ter at about 1 keV. Given the low charge, the beam distortions that could arise
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from wakefields produced by the interaction between the beam and the slit are

negligible.

2.2.3 Longitudinal Phase Space Measurement Results

Figure 2.6: Linear Longitudinal Phase Space (LPS) Measurement. (Left) Mea-

sured LPS distribution. (Right) Simulated LPS distribution.

A direct measurement of the LPS of a typical beam generated by the Pegasus

photoinjector operated in the blow-out mode mode of operation is shown in Fig-

ure 2.6. For this measurement the laser spot on the cathode was 500 µm RMS, RF

gun launch phase 22 degrees, and a charge of 20 pC. The measured LPS is quite

linear and has a very low longitudinal emittance. These results are expected for

the uniformly filled ellipsoidal beam distribution, which is characterized by space

charge forces being linear as a function of all three coordinates measured from

the bunch center. For photoinjector operating modes which involve the use of

longer laser pulses on the cathode (> 3 ps), the LPS beam distribution would be
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characterized by a significant second order component due to the RF curvature.

In the blow-out case, due to the linearity of the dynamics, it is the thickness of the

energy distribution at a constant time relative from the bunch center, or uncorre-

lated energy spread, which determines the final longitudinal emittance. For this

reason, the resolution of the LPS, which sets a limit on the minimum recordable

linewidth is crucial in this measurement. The measured longitudinal emittance

for the case shown in Figure 2.6 is (0.5±0.1) mm-mrad. We observe that the high

beam quality of the phase space implies the feasibility of very large compression

ratios.

In order to benchmark our understanding of the beam evolution, we compared

the measurement with particle tracking simulations from GPT. The simulations

start from the cathode and use a 2.5D field map for the rf gun and the on-axis

magnetic measurement map for the emittance compensation solenoid. The beam

dynamics is followed by GPT up to the slit plane. At this point a linear drift

propagation matrix transformation up to the rf deflector plane is applied to the

particle coordinates. Spacecharge forces are not taken into account for this region

of propagation as the slit has removed most of the beam charge.

We compare the resulting particle coordinates in the time-energy plane with

the data. The simulation results obtained with GPT are also shown in Figure 2.6

and are in remarkably good agreement with the data. There are essentially no free

parameters in the simulation as the initial transverse and longitudinal spot size

are taken from the laser measurements. A small degree of uncertainty is given by

the nonuniform emission at the cathode which alters the beam spatial distribution

and can thus affect the creation of the final state, causing some deviation from a

uniformly filled ellipsoidal beam.

In Table 2.2 we summarize the longitudinal phase space parameters measured

and compared with the simulation. A significant characteristic of the measured

longitudinal phase space is the strong correlation between energy and position
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Parameter Simulated Measured Unit

Chirp (C) 91 90 ± 1 keV/c mm

εz,n 0.3 0.5 ± 0.1 mm-mrad

σdE 22 21 ± 2 keV

σt 797 788 ± 8 fs

Table 2.2: LPS Parameter Comparison

along the bunch, i.e., energy chirp which is quantified with the chirp parameter

C = 90 keV/(c mm) . This large correlation is due the final beam state being

the result of a strong space charge driven expansion so that particles at the head

of the beam have been pushed further and hence have higher energy. In order

to obtain an analytical estimate, we observe that in the pancake approximation

limit, the bunch length is given by τ = m0cσ/eεE
2
0 , where σ = Q/(2πσ2

l ) is the

surface charge density at emission and E0 the accelerating gradient. The beam

energy spread in the same approximation is given by m0c
2∆γ = eσLs/ε0 , where

Ls = 5 cm is the length over which the space charge forces act. Ls gives a good

estimate for the propagation region where the expansion takes place has been

taken from the simulations as the point where the aspect ratio in the beam rest

frame changes from an oblate to a prolate ellipsoid. In the drift region following

the gun, the energy spread stops increasing since the beam has become long in

its rest frame and the residual elongation comes from the previously imprinted

difference in beam velocities. The final bunch length is τf = τ +∆γLd/γ
3c, where

Ld is the drift length to the deflecting cavity plane.

The resulting final chirp is

C ' m0c
2 ∆γ

cτf
∼ 85

keV

mm
(2.20)

This value is in close agreement with that which was found experimentally.
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Figure 2.7: Determination of longitudinal slice energy spread. The resolution is

determined to be 1 keV.

2.2.3.1 Longitudinal Slice Emittance Measurement

By calculating the RMS energy spread on 50 fs temporal slices we obtain the result

shown in Figure 2.7 which displays the local slice or uncorrelated energy spread

along the bunch. This quantity determines how cold the beam distribution is

locally and is a critical beam parameter for many applications since it determines

the growth rate of any beam instability, both desired like FEL amplification and

harmful to the beam quality such as, for example, coherent synchrotron radiation

instability. In current short wavelength FEL injector designs, a laser heater is usu-

ally introduced in the beam line to be able to externally control the uncorrelated

energy spread and damp the undesired instabilities.
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Examining Figure 2.7 we note that, although we cannot resolve the small local

slice energy spread of the central region of the beam, the measured slice energy

spread follows the simulation for values larger than 1.0 keV. This is an indication

of the resolution of the measurement. The 1.0 keV measured slice energy spread

corresponds to a 0.027 % relative energy spread and is, in absolute value, the lowest

uncorrelated energy spread measured to date from an rf photoinjector beam.

We note that this is still much larger than the thermal spread of the particles

coming out of the cathode. Consequently, the measured longitudinal emittance is

at least 2 orders of magnitude larger than the thermal limit (in striking contrast

with transverse emittances obtained from rf photoinjectors that are within a factor

of 2 from the corresponding thermal limit).

The source of the uncorrelated or slice energy spread is primarily due to radial-

energy correlations in the beam dynamics. The space charge field of a uniformly

filled ellipsoidal charge distribution has ellipsoidal equipotential surfaces and hence

a slice (a plane at constant z) contains particles at different energies. This ac-

counts for most of the keV-level slice energy spread seen in the measurements and

simulations.

Another effect which has to be taken into account is the radial dependence of

the rf accelerating field. The energy spread calculated from GPT simulations for

the photoinjector gun operating at a 100 MV/m gradient was found to be 1 keV

RMS energy spread per 1 mm RMS laser spot size on the cathode. This quantity

is proportional to the square of the RMS laser spot size, so for a 400µm RMS

spot size at the cathode (Pegasus nominal parameter value) this contribution is

< 0.2 keV.

An estimate for the resolution can be obtained by measuring the vertical spot

size before turning the rf deflector on for streaking. With the proper quadrupole

settings, the spot size is found to be 87 µm RMS or 2.8 pixel RMS. Taking into

account the large beam chirp of 90 keV/c mm or 30 keV/ps, this accounts for
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1.1 keV energy uncertainty in agreement with the limit set by Figure 2.7.

2.2.3.2 Electron Beam Chirp Studies

Figure 2.8: LPS Chirp as a function of rf gun phase.

We have further characterized the behavior of the longitudinal phase space as

a function of various photoinjector parameters. In Figure 2.8 the variation of the

main LPS parameters obtained by changing the injection phase is shown. Both the

RMS bunch length and the energy chirp show a very weak dependence on the rf

phase. By lowering the laser launch phase the gun acts as an RF compressor. This

behavior is not clearly observed in the case of a very short laser pulse illuminating

the cathode due to the RF focusing effect being small for a very short beam in

addition to the large amplitude longitudinal space charge field associated with the

pancake shaped beam. In order to take advantage of RF velocity bunching in the

gun, the laser pulse should be stretched to a few ps to sample a few degrees of
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the RF wave. In the case studied here, the self-fields of the bunch dominate the

longitudinal expansion and the RF wave only makes a small contribution to the

final beam phase space distribution. The energy distribution chirp does not vary

significantly in the relatively large interval of phases under study.

Figure 2.9: LPS Chirp as a function of charge.

More interesting behavior is seen when we vary the input charge as seen in

Figure 2.9. We observe, as expected, a significant variation in the RMS bunch

length and energy spread. For these measurements the initial laser spot size at

the cathode was 500 µm which explains the slightly shorter bunch lengths.

What may be less expected is the weak dependence of the chirp slope (C) on

the beam charge. As the RMS beam parameters increase by a factor of two, the

time-energy correlation remains quasi-constant. For a typical beam in the blow-

out regime of photoinjector operation, we observe that in the one-dimensional
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approximation of the longitudinal expansion, the resulting analytical estimate for

C (Equation 2.20) does not depend on the surface charge density at the cathode.

This ceases to be true when the approximation of space charge driven expan-

sion of an initial pancake beam is violated. For example, at the lowest charge

point, the bunch lengthening due to the space charge is minimal and other dy-

namical factors, for example the RF field curvature and transverse dependence,

influence the beam evolution.

Figure 2.10: LPS Chirp as a function of laser spot on the cathode.

Lastly, we studied the LPS as a function of the laser spot size at the cathode

while keeping the charge constant as can be seen in Figure 2.10. Since surface

charge density determines the longitudinal expansion, reducing the beam dimen-

sions on the cathode will have a large effect on the expansion dynamics. As the

initial spot size on the cathode is decreased, the bunch length increases quickly,
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while the slope of the chirp decreases at first weakly then more noticeably for the

smaller spot sizes. This can be explained by observing that a smaller chirp is due

to a relatively longer beam and smaller energy spread. The longitudinal space

charge force decreases more rapidly for smaller laser spot at the cathode due to

the fact that the beam (longer and transversely smaller) exits the pancake regime

after a shorter propagation distance. In this situation, which by definition is not

accounted for in the approximation leading to Equation 2.20), the energy spread

growth rate diminishes quickly, leading to a final state with a lower energy chirp.

2.2.4 Limits of Photoinjector Blowout Regime Measurement: Phase

Space Distortions Due to Asymmetry

Figure 2.11: X-Z distribution with nonlinear behavior due to image charges at the

cathode.(Left) Measured X-Z distribution, semi-axes are labeled b and c. (Right)

Simulated X-Z distribution.

The streak image seen left in Figure 2.11 corresponds to a beam of charge of

50 pC, and is taken in the projection (quadrupole-focused) mode. For this mea-

surement, the phase of the deflecting field is such that an upward kick is imparted

on the leading edge of the beam, which is thus found at the top of the image. For

these charge levels, the beam after expansion is quite a bit longer (> 600 fs RMS)

and develops an asymmetry in the ellipsoidal boundary showing an elongated tail.
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This effect is well predicted by simulations, as seen in the ASTRA phase space

displayed on the right side of Figure 2.11. It is due to the deceleration exerted on

the beam in the near-cathode region by the beam image charge. This symmetry

breaking in the longitudinal space-charge forces is always present, but becomes

noticeable only when the magnitude of the image-induced electric field becomes a

significant fraction of the RF accelerating field. In the case shown in Figure 2.11,

the surface charge is 50 pC for a laser RMS spot size at the cathode, σl, of 400 µm.

Including the image charge contribution, the peak decelerating field at the beams

trailing edge is ESC,max = Q/(2πσ2
L,RMS) = 5.6 MV/m which is > 16 % of the RF

accelerating field at injection phase, E0 sinφ0∼ 34 MV/m.

Figure 2.12: Transverse Emittance as a function of x-z asymmetry.

To quantify this effect, we first introduce an asymmetry parameter A defined

as the ratio of the semi-axes shown in Figure 2.11 (i.e., A = b/c). In Figure 2.12

we show the dependence of A on the charge and laser spot size on the cathode.

A linear dependence on charge is found, with a slope increasing as σ−2
L,RMS. The

errors mostly come from fluctuations in the beam charge which was up to ± 12%

shot to shot due to both pulse-to-pulse laser energy jitter and pointing jitter on

the laser iris aperture. In Figure 2.12(b) the effect of beam asymmetry on the

normalized transverse emittance εn, as measured with a multishot pepper pot
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technique, is illustrated. Since the beam emittance has a thermal component th

directly proportional to σL,RMS, we normalized the measurements to the emit-

tance values th obtained for negligible (< 1 pC) beam charge. There is a strong

correlation between A and the amount of emittance growth. When the beam loses

its uniformly filled ellipsoid shape, nonlinearities associated with the spacecharge

fields quickly degrade the transverse quality of the beam. Values of A > 1.2 are

to be avoided, which from the data indicate that ESC,max should be limited to less

than 10% of the applied field E0 sinφ0.

Figure 2.13: Nonlinear LPS due to beam asymmetry.

The effects of this asymmetry on the longitudinal phase space are apparent in

the case of a 20 pC beam with an initial RMS laser spot of 100 µ at the cathode.

Figure 2.13 demonstrates the beam quality degradation due to the asymmetry

in both the measured and simulated LPS beam distributions. The effect is quite

dramatic with the beam distribution losing its nearly ideal linear correlation.

Projecting the beam distribution onto the time axis, one finds an asymmetric

shape. Such a density profile is the self-consistent cause for the curvature in the

self-field dominating the phase space distribution in Figure 2.13. The distortion at
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the tail of the beam can be attributed to the retarding effect of the image charge

that lowers the energy of the beam tail.

2.3 Conclusion

Now that we have examined the current state of high brightness beams to be

injected into an advanced accelerators, we move onto the theoretical background

of the inverse free electron laser interaction.
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CHAPTER 3

The Inverse Free Electron Laser Interaction

After the description of the generation of high brightness beams in Chapter 2

we now examine theoretical background of the IFEL interaction. We will start

by describing the IFEL fundamental principles, focusing on the concept of a pe-

riod average resonant interaction. We’ll derive and explore the one dimensional

equations motion for an electron moving in a planar undulator with the approxi-

mation that the laser is a simple plane wave. Then, moving away from the plane

wave approximation and toward more realistic models for the laser propagating

through the undulator, we’ll look at the case where the interaction occurs with

a diffraction limited Gaussian laser beam, then at the flattened Gaussian modes

which best represent the transverse profile from laser amplifiers operating near

saturation. The effects of short pulses are then examined, and found to be im-

portant in particular when the laser pulse length is on the order of the amount of

slippage that occurs as the electron beam falls behind the laser in the undulator.

We then discuss the simulations modes of the interaction in three dimensions and

how they apply to the physical experiments under study.

3.1 Concept of IFEL Interaction

As discussed in the Introduction, IFEL is an interaction that occurs when a rel-

ativistic electron beam co-propagates with a high power laser in vacuum with its

trajectory set by a periodic magnetic structure called an undulator. There is a

theorem that states to first order there can be no average energy gain induced by a
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laser pulse on a relativistic electron beam. It is useful to examine the assumptions

of this theorem and how IFEL overcomes them.

The Lawson-Woodward theorem (LWT) [44, 45] states that the energy gain

(or loss) of an electron beam from an unbounded interaction with a laser for an

infinite extent is zero if there are no static electric or magnetic fields present. The

theorem can be better understood by looking at short proof by Esarey et al [46].

A highly relativistic electron with β → 1 is propagating along the z direction

with the plane wave laser wave vector, k in an arbitrary direction. For simplicity

we will have the laser field be linear polarized in the x-z plane. The change in

electron energy over the entire interaction is ∆U =
∫
Ezzdz, where the integral

is taken from −∞ to +∞. The component of the electric field that is responsible

for the acceleration is

Ez =
1

2π

∫
dkxdkzdkyÊz(x, y)ei(kzz−ωt) (3.1)

and kx and kz are the wavenumbers in x and z, and Êz is the Fourier trans-

formed electric field. We can plug for vacuum dispersion ω = kc then ap-

ply Gauss’s law ∇ · E = 0 using the fields in Fourier transform space we get

Êz = − 1
kz
kxÊx where Êx is the transformed transverse electric field. Plugging our

results into Equation 3.1 we get,

∆U =
e

2π

∫
kx
kz
Êx(x, y)dkxdky

∫ ∞
−∞

dzei(kz−k)z (3.2)

Looking at the last integral in Equation 3.2 we see that this is a Dirac delta

function, δ(kz − k). This means that the integral vanishes unless k = kz which

implies that kx must be zero and therefore the entire integral vanishes.

In effect LWT shows that you cannot achieve a force that is along the motion of

the electron beam and maintain phase matching with it. As a result, the electron
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beam slips through all of the phases of the laser field, canceling out whatever

forces would have accelerated the beam if the extent is infinite.

There are several schemes which break one of the assumption of the theorem

to achieve electron acceleration using laser fields. One possibility is to use nearby

structures to obtain phase matching, or limit the interaction region (dielectric or

half-plane). Another possibility is to use non linear interactions like beatwave or

ponderomotive scattering. IFEL achieves acceleration while still considering the

laser as a plane wave in vacuum and the interaction infinite in extent.

The idea behind IFEL is to add a periodic magnetic field to induce transverse

motion of the relativistic electron beam. This will enable coupling of the electrons

to the transverse electric field of the plane wave, while also controlling the phase

seen by the electron beam as it slips with respect to the laser.

The IFEL interaction allows for maximal energy exchange when the period

and magnetic field strength of the undulator are chosen to satisfy the resonance

condition. This condition occurs when the electron beam slips exactly one laser

wavelength per undulator period. Particles away from resonance sample all phases

of the laser, resulting in no average energy change.

3.2 One Dimensional Case in Planewave Laser Field

The 1-D IFEL equations are covered by Courant et al [18]. We begin with the

case of a relativistic electron beam moving in planar undulator and a plane wave

laser with its wave number vector parallel to the undulator axis. The equation of

motion governing the evolution of an electron in electric and magnetic fields are

given by the Lorentz force equation:

m
d(γv)

dt
= e(EL + v × (Bu + BL)) (3.3)
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Figure 3.1: Cartoon of concept of IFEL interaction. The relativistic electron

beam’s slippage with respect to the laser is controlled by the undulator. When

the electron beam slips by one radiation wavelength per undulator cycle, resonant

energy exchange is obtained.

where EL and BL are the electric and magnetic fields of the laser and Bu is the

magnetic field of the undulator, γ = (1 − β2)−1 is the relativistic Lorentz factor,

β = v/c is the magnitude of the electron velocity normalized by the speed of light,

and e is the electron charge.

If we set up a Cartesian coordinate system such that the direction of the beam

propagation is along z. We can choose linear polarized plane wave to have the field

in x, the direction of propagation along z and the magnetic field from undulator

in the y direction. A setup of the coordinate system can be seen in Figure 3.1.

The magnetic field of a planar undulator with no transverse dependence can
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be described by:

Bu = (0, B0 sin(kuz), 0) (3.4)

Where ku is the undulator wave number or 2π/λu and λu the undulator period.

The plane wave laser can be described as:

EL = (E0 sin(kz − ωt), 0, 0) (3.5)

The corresponding magnetic field due to the laser, BL = EL/c. To provide us

insight about the symmetries of this system we can write down the Lagrangian [8]:

L =
−mc2

γ
+ ev · (AL + Au) (3.6)

Where AL = −E0/(kc)cos(kz − ωt)x̂ and Au = −B0/kucos(kuz)x̂ are the

vector potentials for the laser and undulator, respectively. As there is no trans-

verse dependence to any of the forces involved, the Lagrangian is invariant un-

der translations of the transverse coordinates and therefore their conjugate mo-

menta is a conserved quantity [47]. The transverse canonical momentum by taking

the derivative of the Lagrangian with respect to the transverse coordinates, i.e.

pT = ∂L /∂ẋT . This yields

pT = γmvT + e(AL + Au) = C (3.7)

The constant, C is the initial transverse momentum of the beam outside of

the undulator. For an electron entering the undulator on axis with zero angle,

this constant is zero. If we assume a small angle between the two (paraxial

approximation) and a relativistic beam, then pT0 = γβθ, where θ is the angle.

We can write the longitudinal component of the electron velocity in the undulator

as
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βz =

√
1− 1

γ2
− β2

T (3.8)

Now we solve for βT in terms of the explicit forms vector potentials from

Equation 3.7. Assuming co-propagation of the laser and electron beams,

βT =
eB0

γmcku
cos(kuz) +

eE0

γmc2k
cos(kz − ωt) (3.9)

We can solve for βz using our result for βT by plugging into Equation 3.8.

We can simplify the result with the following scale (unit-less) parameters, K =

eB0/mcku and KL = eE0/mc
2k resulting in

βz =

√
1− 1 +K2cos2(kuz) +K2

Lcos
2(kz − ωt) + 2KLKcos(ku)cos(kz − ωt)

γ2
)

(3.10)

We can now make use of the half angle trigonometric identities: cos2(α) =

1/2 + 1/2cos(2α) and cos(α)cos(β) = 1/2cos(α+ β) + 1/2cos(α− β) and assume

that the beam is relativistic (γ >> 1), therefore we can expand βz to first order

safely, giving us

βz ' 1−2 +K2 +K2
L + 2KLK(cos(ψ+) + cos(ψ−)) +K2cos(2kuz) +K2

Lcos(2(kz − ωt))
4γ2

(3.11)

Here we define ψ+ = (k+ ku)z− ωt and ψ = (k− ku)z− ωt for the combined

cross terms seen in Equation 3.10. Since the laser wavelength is typically several

orders of magnitude below that of the undulator, KL << K and we can neglect

most of the terms involving KL.

The work-energy theorem for a charged particle in an electric fields tells us:

dU

dt
= eE · v (3.12)
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Since E only has an x component from 3.9 for βx, the explicit form of the

electric field, the relativistic energy we get

dγ

dz
=
kKL

γ
sin(kz − ωt)(Kcos(kuz) +KLcos(kz − ωt)) (3.13)

Here we change the independent variable d/dt ∼ cd/dz instead of cβzd/dz as

we are interested in the slow behavior (on the order of ∆z ∼ λu) of the energy

evolution along the undulator. Again we can use trigonometric identities to write,

dγ

dz
=
kKLK

2γ
(sin(ψ+) + sin(ψ )) (3.14)

The energy evolution is proportional to sin(ψ+) and sin(ψ ). We can write

these functions explicitly by examining the time evolution,

ct = ct0 + z +

z∫
0

dz
2 +K2 + 2KLK(cos(ψ+) + cos(ψ−))

4γ2
+

K2

8γ2ku
sin(2kuz)− φ0

(3.15)

Here the final term can be integrated so long as the K and ku do not vary too

violently over an undulator period.

Plugging into the phase we can now write the phases

ψ± = ±kuz − k
z∫

0

dz
2 +K2 + 2KLK(cos(ψ+) + cos(ψ−))

4γ2
− kK2

8γ2ku
sin(2kuz)− φ0

(3.16)

There is a way to elegantly combine these terms using the following expansion

of Bessel’s functions:

sin(a+ b sinφ) =
∞∑

n=−∞

Jn(b) sin(a+ nφ) (3.17)
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We can use this to write each term:

sin(ψ±) =
∞∑

n=−∞

(−1)nJn(G) sin[(2n± 1)kuz

−
z∫

0

dz
2 +K2 + 2KLK(cos(ψ+) + cos(ψ−))

4γ2
− φ0]

(3.18)

Here G = kK2/8γ2ku. When we sum the two together we can use the dummy

indices, n for sin(ψ+)and m for sin(ψ ). If we can collect terms with equal phase,

we can collect terms with equal phase when m = n+1. The result after collecting

terms and exploiting the parity of the Bessel functions,

sin(ψ+) + sin(ψ ) =
∞∑

n=−∞

(
Jn(G)− Jn+1(G)

)
sin
[
(2n+ 1)kuz

− k
z∫

0

dz
2 +K2 + 2KLK(cos(ψ+) + cos(ψ−))

4γ2
− φ0

] (3.19)

If we look at the terms in which n 6= 0, we see the harmonic interactions. The

strongest interaction is the one in which we select the n = 0 term. In this case we

define JJ = J0(G)− J1(G) and the energy evolution is

dγ

dz
=
kKKL

2γ
JJ sin(ψ) (3.20)

The ponderomotive phase term ψ in this equation is the coordinate of interest

in our one dimensional equations of motion. Taking a spatial derivative on this

phase gives us

dψ

dz
= k + ku −

k

βz
(3.21)

By continuing to use the relativistic approximation for βz we can then write

the phase evolution as
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dψ

dz
= ku − k

2 +K2 + 2KLK(cos(ψ+) + cos(ψ ))

4γ2
(3.22)

The second harmonic undulator term goes to zero when averaged over a period.

With the phase evolution determined in terms of laser and undulator parameters

we turn our attention to the energy evolution along the undulator.

This equation, along with the phase evolution shown in Equation 3.22 form

the two 1-D equations of motion. Most of the physics of the system are apparent

if we neglect terms with KL in the phase evolution giving us,

dψ

dz
= ku − k

1 + K
2

2

2γ2
(3.23)

Upon examination of equation 3.23 we can set the left hand side to zero, mean-

ing that the ponderomotive phase is now a constant of the motion. For a given

set of undulator and radiation parameters, there exists an electron beam energy,

γ, that satisfies this condition. We name this the resonant energy, designated as

γr. The resonant condition can be written as

γ2
r =

k(1 + K2

2
)

2ku
(3.24)

which can physically be interpreted as the relationship between the undulator

period and strength, and the laser wavelength that result in an electron beam

slipping one radiation wavelength per undulator period. With the approximations

we have applied, no KL terms appear in this equation, meaning that the resonance

does not depend on the laser intensity.

If we choose to inject our electron beam far away from this resonant energy, we

will get very little energy transfer from the laser to the electrons as the beam will

sample all phases quickly over a period and have little energy modulation. Most

cases of interest will involve injection at or near the resonant energy. In light of
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this we can expand our energy variable about the resonant energy: γ = γr + δγ

where δγ/γr � 1. Our dynamical equations then become

d(δγ)

dz
' kKLKJJ

2γr

(
sin(ψ)− sin(ψr)) (3.25)

dψ

dz
' 2ku

δγ

γr
(3.26)

Here ψr is the resonant phase, whose explicit value is related to the energy

change of the resonant particle. These equations resemble those of a physical

pendulum.

Equations 3.25 and 3.26 are Hamilton’s equations of motion for this Hamilto-

nian:

H =
kuδγ

2

γr
− kKLKJJ

2γr

(
cos(ψ) + ψ sin(ψr)) (3.27)

Using this Hamiltonian we can investigate our first case of interest, in which we

allow the resonant phase to be zero and the potential involved then is proportional

to cos(ψ). We can then map out the interactions by looking at the curves of

constant Hamiltonian as seen in Figure 3.2. We can see ellipses that represent

closed orbits of particles that are injected close to the stationary phase space

point at (0, 0). The cusp-like boundary is known as the separatrix and separates

trapped particles from passing particles. All of the particles within the separatrix

remain local to the stationary design point, while anything outside of the bucket

passes through phase space.

The region inside the separatrix is commonly known as a ”bucket”. Its height

from the stationary point can be derived using the Hamiltonian and is equal to

δγbucket
γr

=
1√

1 + K2

2

√
2KKLJJ (3.28)
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Figure 3.2: Phase Space Plot with trajectories and particles. (Left) Phase space

at injection. (Right) Phase space at injection for a buncher.

All of the particles that are trapped within the bucket will undergo synchrotron

oscillations. If the particle is injected near the stationary point at the center of

the bucket the oscillation period will be well defined as

Z =
λu

√
1 + K2

2√
2KLKJJ

(3.29)

For cases of interest the electron beam will be much longer than the wavelength

of the laser radiation, and thus we will fill all phases within some energy spread

of the resonant energy. The particles orbits will evolve along the phase space

trajectories shown as the lines in Figure 3.2.

We can stop the interaction after that the electrons undergo a quarter period

synchrotron oscillation if we choose an appropriate length for the undulator. The

electrons will then be clustered around the stationary point in phase space with

an increased energy spread. This results in an electron beam density modulated

at the radiation wavelength in a process called bunching.
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3.3 Tapering and Acceleration

For a fixed set of undulator parameters (K, ku) and radiation wavenumber k any

electron beam injected into this interaction will simply rotate in phase space

around the stationary point. In order to achieve energy gain we must allow the

parameters to evolve over the length of the undulator in a way that maintains

the resonant condition for the accelerating particles. Taking the derivative with

respect to z on Equation 3.24 we get

d

dz
(γ2
r )Taper =

k(1 + K2

2
)

2ku

[
2K

dK

dz
− 1

ku

dku
dz

]
(3.30)

This equation describes the tapering required for a chosen energy gain along

the undulator. Note that this does not depend on KL, and therefore the laser field

intensity. Plugging the resonant energy and phase into Equation 3.20, multiplying

through with γr and pulling the derivative to the outside, we get

d

dz
(γ2
r )Ponderomotive = kKKLJJ sin(ψr) (3.31)

Here we have something that explicitly depends on the laser field intensity as

it contains KL. If we match the tapering and ponderomotive gradients we can

achieve an optimal accelerating gradient.

When designing the undulator tapering profile we must still choose a resonant

phase, ψr. This parameter sets the ponderomotive gradient for the localized sta-

tionary point in phase space. If it is set to be π/2 then there will be a maximum

energy gain but the bucket’s extent in phase space will be limited to a single point

and therefore there will be no acceleration of a realistic beam. If we choose the

resonant phase to be zero then we return once more to the case of the buncher.

For most cases this parameter is chosen as a compromise of π/4.
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3.4 Gaussian laser propagation

Thus far we have treated the ideal case for the interaction when the laser prop-

agation or KL is a constant over the length of the undulator. In an effort to

accurately model the interaction we allow the laser field to become a function of

z and have a finite transverse extent. A simple model including these effects is to

assume a Gaussian mode for laser pulse,

EL = E0e
−
(

x2+y2

w2
0

)
w0

w(z)
sin
(
kz − ωt− φG − k

r2

2R(z)

)
x̂ (3.32)

This mode, the TEM00, is characterized by w the waist parameter, R(z) the

radius of curvature of the phase fronts, and φG is the Guoy phase shift that results

from going through a waist.

The waist parameter w is equal to
√

2σr, where σr is the second moment

of the time-averaged Gaussian intensity distribution. The waist parameter will

vary along the laser propagation according to w(z) = w0

√
1 + (z/zr)2 where zr =

πw2
0/λ is the Rayleigh length. The radius of curvature of the phase fronts are

R(z) = z
[
1 + (zr/z)2] The radius of curvature is infinity when the Gaussian

laser beam is at the waist. The Guoy phase shift is a result of transverse spatial

confinement of the wave and is specified by φG = arctan(z/zr)]. These three

effects modify the radiation field from a simple harmonic plane wave function by

lowering its value away from the waist, shifting the phase off axis away from the

waist, and finally changing the phase due to crossing the waist.

Once the effects of diffraction are included the ponderomotive gradient can be

computed, set equal to the tapering gradient and the accelerator designed. The

tapering will be weaker in at the ends of the undulator as the ponderomotive

gradient will have decreased due to the spot size increasing. Because IFEL has

phase dependence on the laser, it is important to rephase the electron beam as it

passes through the waist.
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Ideally the ponderomotive gradient and tapering gradients will be equal to

each other but in the context of an experiment in which laser intensity, transverse

mode and pointing substantially fluctuates the ponderomotive gradient can fall

below or above a given undulator tapering design along the undulator.

For the case of the ponderomotive gradient becomes less than the tapering

gradient during propagation, there is a lack of available field intensity to accelerate

the electrons and their energy gain on the curve set by the tapering gradient. This

causes the electrons to fall out of ponderomotive bucket, away from resonance,

and their average energy gain by the fundamental IFEL interaction will go to zero.

3.4.1 Flattened Gaussian

An more accurate model for a laser from a modern amplifier are Flattened Gaus-

sian (FB) modes. They result from gain saturation in the transverse profile of

the beam as it propagates through the amplifier. These modes are comprised of

higher order Laguerre-Gaussian (LG) modes [48]. These modes are

E = E0

N∑
n=0

c(N)
n Ln

((2N + 1)r2

w2
0

)
exp

[
− (N + 1)r2

w2
0

]
(3.33)

where Ln is the nth Laguerre polynomial and the c
(N)
n are coefficients defined

by:

c(N)
n = (−1)n

N∑
m=n

1

2m

m
n

 (3.34)

The higher order modes have a faster Guoy phase shift through the waist and

even lower on axis field near the waist as can be seen in Figure 3.3. This figure

compares the radial profiles of zero-order Gaussian and second and fourth order

FB modes at three points they propagate from a 6.5 m focal length lens to a waist.

The on axis fluence for the higher order modes show nearly a factor of 2
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decrease while propagating near the waist compared to that of a TEM00 Gaussian

mode. This decrease in field intensity can cause an IFEL accelerator’s that was

optimally designed for Gaussian laser profiles to have the ponderomotive gradient

to drop below the tapering gradient throughout the undulator resulting in either

fail to capture at the beginning of the undulator or the captured electron beam

to fall out of the ponderomotive bucket prematurely.

Figure 3.3: Radial Profiles of Flattened Gaussian Modes. a) far from waist b)

.5 m from waist c) at waist.

3.5 IFEL Interaction in the Limit of Short Laser Pulse

A concern of use of short pulse lasers for this interaction is when the pulse length

of the laser is on the same scale as the slippage of electron beam with respect to

the laser. Under these conditions, KL(z) becomes further reduced at the ends of

the undulator in addition to the reduction due to the Gaussian mode propagation.

The laser pulse length gives limited duration to the interaction, as the electron

beam will slip completely outside of the laser envelope, cutting off the interaction

completely. To avoid this in longer undulator designs, the laser pulse length should

be greater than the slippage in the undulator, or c∆t > λNu where Lu is the length

of the undulator.

When it is on the same scale we can modify our existing equations and examine

the effect of the slippage. The electric field from Equation 3.32, which we will call
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E1 now becomes:

EL = E1 exp
[
− (kz − ωt)2

(ωτ)2

]
(3.35)

This electric field form is a solution to the slowly varying envelope approxima-

tion (SVEA) to Maxwell’s equations where there is a Gaussian profile with second

moment τ with the fast phase term contained in Equation 3.32.

As the IFEL acceleration process occurs, the electron beam slips a wavelength

per period in the undulator

Figure 3.4: Demonstration of slippage of the electron beam at beginning and end

of undulator. Electron beam (blue) and laser (red) longitudinal profiles at the

beginning (left) and end (right) of the undulator

3.6 Three dimensional simulations of IFEL interaction

To make the most realistic possible model of the interaction we must look at the

full three dimensional evolution of the electron beam in a laser field.

To simulate the interaction using particle tracker simulations, a magnetostatic

field map was used to represent the field of the undulator. The laser is represented

by the time dependent field in Equation 3.35.

The particles’ trajectories are then integrated the fields then pushing the par-

ticles at each timestep. The first 3D beam studies were performed by cbeam,
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a particle tracing code developed at LLNL, then compared and verified by the

commercial code, general particle tracer.

Now that we have established the theoretical groundwork for the IFEL in-

teractions we can look at specific experimental cases that use this interaction to

manipulate ultrashort electron beams. Particularly using the a laser in the THz

regime to do synchronization and compression and high gradient acceleration us-

ing TW power laser pulses.
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CHAPTER 4

Synchronization and Compression using THz

IFEL Interaction

With an understanding of the IFEL interaction we are now in position to examine

the application of ultrashort electron beam compression and synchronization using

the IFEL interaction with a THz laser field.

Although high power sources of optical scale radiation are readily available,

the wavelength and thus the length scale of the modulation of the electron beam

density is typically several orders of magnitude smaller than the bunch length of

high brightness beams created by photoinjectors. If we wish to compress a single

bunch of electrons using an IFEL interaction, we should choose a wavelength that

is initially on the same scale as the beam to manipulate the beam. This could

be used for electron diffraction or to control injection (maximize capture and

minimize energy spread) into a high gradient short wavelength accelerator.

A THz driven IFEL has the advantage of a high gradient interaction over

a short length that can be used to compress and synchronize an electron beam

produced by a photoinjector to a laser if the THz is produced by that laser.

The THz regime is the region of the electromagnetic spectrum extending from

0.1 to 10 THz in frequency with a corresponding wavelength band of 3 mm to

30 µm. This band falls between the optical infrared and microwave regions of the

electromagnetic spectrum as can be seen in Figure 4.1

This band is colloquially known as the THz gap because of technological gap
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f (Hz)

Figure 4.1: Electromagnetic Spectrum showing the THz Gap.

left by the lack of efficient high power THz sources, in spite of there being a

high demand for such sources. Due to many molecular transitions in this regime

there are a large range of applications for THz radiation from medical imaging,

to security to cultural heritage verifications [49–51].

With so much demand for THz sources, their development of THz remains

an ongoing area of active research. There are several avenues the development of

THz sources. They include quantum cascade lasers [52] radiation from relativistic

electron beam sources such as CTR, CSR and THz FELs, and optical conversion

processes such as rectification of ultrashort laser pulses.

Our application demands a relatively high peak power of THz radiation that is

synchronized to the laser. As we plan on interacting the electron beam with THz

radiation and the currently available resources are limited to a single beamline

we chose to generate the THz through optical rectification of an ultrashort laser

pulse.

4.1 Optical Rectification Model

4.1.1 Nonlinear three wave mixing

Optical rectification can be seen a three wave difference mixing process where

two of the waves to be mixed are subcomponents of a wide bandwidth continuous

spectrum. We can begin our examination by following the example in Yariv [53]
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by looking at the three wave mixing process for two waves that are closely spaced

in frequency space. We begin with Maxwell’s equations in a non-magnetic medium

with polarization, P stated explicitly:

∇×H = J +
∂

∂t
(ε0E+P)

∇×E = − ∂

∂t
(µ0H)

(4.1)

Here we can break the polarization into the linear and nonlinear parts, P =

ε0χLE + PNL. Here χL is the linear susceptibility and PNL is the nonlinear

polarization. The nonlinear polarization to second order is defined by (PNL)i =

2dijkEjEk where dijk is the effective second order susceptibility. We can simplify

the curl of h in Equation 4.1 by introducing the conductivity through Ohm’s law,

J = σE, also we can substitute ε = ε0(1 + χL) .

Taking the curl on the curl of E and recognize that ∇ · E = 0 by Gauss’s law

with no free charges. We get a wave equation for E,

∇2E = µ0σ
∂E

∂t
+ µ0ε

∂2E

∂t2
+ µ0

∂2

∂t2
PNL (4.2)

Since we are examining three wave mixing, we can assume three Fourier modes

and simplify the problem by assuming plane waves with complex notation,

E(ω1)(z, t) = E1e
i(ω1t−k1z)

E(ω2)(z, t) = E2e
i(ω2t−k2z)

E(ω3)(z, t) = E3e
i(ω3t−k3z)

(4.3)

Here we are explicitly stating the real part using complex notation for the three

plane waves. Em,n(z) are indexed such that m is the selected mode corresponding

to ωm and n is the vector component.
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We can now write the solution to Equation 4.2 in terms of our first mode. For

the spatial part we can employ the slowly varying wave approximation, (dE1/dz)k1 �

d2E1/dz
2 which allows us to state

∇2(E1) = −1

2

[
k2

1E1 + 2ik1
dE1

dz

]
ei(ω1t−k1z) (4.4)

For the right hand side of the wave equation we get,

rhs = (−iω1µ0σ + ω2
1µ0ε)

E1

2
ei(ω1t−k1z) − µ0ω

2
1

[
P

(ω1)
NL (z, t)

]
(4.5)

Recognizing that ω2
1µ0ε = k2

1, we cancel these terms on both sides of the wave

equation. We then can cancel the time dependent phase terms because we choose

the difference frequency, ω1 = ω2−ω3. Finally, we divide by ik exp(−ikz) on both

sides and we get

dE1

dz
= − cσµ0

2n(ω1)
E1 −

iµ0cω1

2n(ω1)
ei∆kzPNL (4.6)

This equation describes the amplitude evolution of the THz as it passes through

a nonlinear material with an index of refraction that has frequency dependence,

n(ω). We can further simply the expression by recognizing that the first term

acts as a damping term. We introduce α, a damping parameter. Moreover,

∆k = k1 − k2 − k3 which we can apply material dispersion to make ∆k =

1/c
[
n(ω1)ω1 − n(ω2)ω2 − n(ω3)ω3

]
.

4.1.2 Bandwidth continuum mixing and THz generation

So far we have been looking at discrete 3 waves, but optical rectification is differ-

ence frequency mixing across a continuous bandwidth. As such, we will change

notation and introduce the continuous frequency variable ω within the bandwidth
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of laser and the THz frequency variable Ω The nonlinear polarization then be-

comes

PNL(Ω)i = dijk

∫ ∞
0

Ej(ω + Ω)Ek(ω)∗dω (4.7)

With our simplifications and change of notation the THz amplitude field evo-

lution equation becomes

dE1(Ω, z)

dz
= −α(Ω)

2
E1(Ω, z)− iµ0cΩ

2n(Ω)
ei∆kz[PNL] (4.8)

frequency

Figure 4.2: Cartoon of difference mixing within bandwidth of the spectrum of the

laser.

With the continuum bandwidth our ∆k term also changes. We can expand the

function ∆k(Ω) = k(Ω)−k(ω)−k(ω+Ω) ∼ k(Ω)+∂k/∂ω Ω ∼ Ω/c
(
n(Ω)−ng(ω0)

)
Looking at Equation 4.8, we see that there are three terms of interest that we

can control in the generation of THz radiation by optical rectification. First is
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the strength of PNL, which is controlled by the second order coefficient, dijk. The

second term of interest is the absorption term containing α(Ω) and the third is

a multiplicative phase matching factor, exp[i∆kz]. These three factors, and thus

the efficiency of the optical rectification process, are dependent upon the choice of

nonlinear material. A chart of nonlinear materials, compiled by Hebling [54] can

be seen in Table 4.1. The effective nonlinear coefficient can be seen in the second

column of this chart.

Nonlinear Materials

Material deff ngr
800nm nTHz α(cm−1) FOM

(pm/V) (pm2cm2/V2)

CdTe 81.8 – 3.24 4.8 11.0

GaAs 65.6 4.18 3.59 0.5 4.21

GaP 24.8 3.67 3.34 0.2 0.72

ZnTe 68.5 3.13 3.17 1.3 7.27

GaSe 28.0 3.13 3.27 0.5 1.18

sLiNbO3 168 2.25 4.96 17 18.2

sLN 100K ” ” ” 4.8 48.6

DAST 615 3.39 2.58 50 41.5

Table 4.1: Chart of Nonlinear Materials from

We selected stoichiometric magnesium oxide doped lithium niobate (MgO : LiNbO3).

The 0.67 % MgO doping allows for a reduction of photorefractive damage as the

high intensity short laser pulse travels through the crystal. Although DAST, an

organic molecule has the highest nonlinear coefficient, it also has a very large

absorption coefficient. Stochiometric lithium niobate (sLN) was chosen because

when it is cooled to 100 K, has the highest figure of merit (FOM), a measure

defined by
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FOM =
4d2

eff

α2n2
800nmn2

THz

(4.9)

Region Not Empirically 

Characterized Due To 

Di!raction E!ects

Figure 4.3: Nonlinear Polarization resulting from optical rectification of a Gaus-

sian pulse in sLN with a temporal full width at half max of 40 fs, as well as

empirically found absorption spectra for the room temperature and 100 K.

The spectral characteristics of the produced THz in the generating term will

be dependent on the bandwidth of the laser pulse. The resulting nonlinear polar-

ization from a 40 fs transform limited Gaussian laser pulse is shown in Figure 4.3.

This plot shows the potential bandwidth generated by the autocorrelation of the

laser pulse. The tail extends past the 4.5 THz value but virtually no power is

generated in this spectral range due to the absorption peak at 4.5 THz.
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4.1.2.1 Absorption

The second term of interest is the absorption term. α(ω) can be split into two

parts, one related to the imaginary part of complex dielectric function that is

temperature dependent, αε and one part that is related to free carrier absorption,

αfc, that has dependence on the intensity of the pump laser.

We will first examine the temperature dependent complex dielectric absorp-

tion. The absorption due to this can be viewed as arising from phonon-polariton

resonances. The width of these resonances are strongly temperature dependent

and their effects over the generating spectrum can be significantly reduced by

decreasing the temperature.

The complex dielectric function from phonon-polariton modes is well described

by a Lorentz oscillator model as explained by Yeh [55]. It can be used to find both

the index of refraction, n(Ω), and the material dependent absorption, αε found in

Equation 4.8. To determine the dielectric function we look back at the explicit

form of the polarization as a function of frequency in terms of lattice vibrations

and the electric field:

P (Ω) = b21Q(Ω) + b22E(ω) (4.10)

The dielectric function can be extracted from the polarization,

P (Ω) = ε0[ε(Ω)− 1]E(Ω) (4.11)

The lattice displacements are described by independent oscillators:

Q(Ω) =
b12

Ω2
i − iΩγ − Ω2

(4.12)

Where b21 and b22 are material dependent oscillator strength coefficients. Ωi is

the resonant frequency of each mode and γ is related to the width of the resonance

spike, which has a strong dependence on temperature.
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When we combine these equations we find the frequency dependent explicit

form of the dielectric function:

ε(Ω) = 1 +
b22

ε0
+

b2
12

ε0(Ω2
i − iΩγ − Ω2)

(4.13)

The dielectric function specifies both the absorption and the index of refraction

by taking its real and imaginary parts,

n(Ω) = Re(
√
ε)

αε(Ω) = −2πΩ Im(
√
ε)

(4.14)

The absorption spectral dependence for MgO doped stochiometric LiNbO3

was experimentally characterized by Palfalvi [56]. Applying the results of these

measurements we have curves for the material dependence of the absorption that

we can apply to the measurement. These curves are shown in Figure 4.3.

The intensity dependent absorption is due to the creation of free carriers within

the crystal that then absorb the THz as it propagates. This form of absorption

is well described by Fulop [57] using the Drude model [58]. The free carrier

absorption has a form similar to that of metallic or plasma absorption.

The density of the free carriers resulting from the laser pulse propagating

through the crystal is determined by and expansion of the intensity of the pump

Nfc =
α0τIλ0

hc
(α0 +

1

2
β2I +

1

3
β3I

2) (4.15)

where α0 = αε(ω0) is the material response at the central frequency of the

laser, τ is the pump pulse length, and β2 and β3 are the two and three photon

absorption coefficients.

With this density we can specify a plasma frequency for the free carriers,

ωpfc = e
√
Nfc/(ε0ε∞meff ), where e is the electron charge, meff is the effective
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mass of the free carrier, and ε∞ is the high frequency response of the dielectric

function.

These free carriers couple to the electromagnetic field of the THz radiation as

it propagates through the crystal, then scatter, resulting in loss of energy for the

wave. This absorption process can be expressed by,

αfc = 2
Ω

c
Im

[√
ε∞

(
1−

ω2
pfc

Ω2 + iΩ/τsc

)]
(4.16)

Here τsc is the scattering time of the free carriers, estimated to be 200 fs.

We can now combine these two forms of the absorption of lithium niobate into

single spectral terms that corresponds to each temperature. These curves can be

seen if Figure 4.8.

4.1.2.2 Phase Matching

We lastly examine the phase matching factor in Equation 4.8. If we ignore all

absorption terms and integrate to find the THz field generated, it will have a

dependency that is proportional to sinc(∆k/2). While LiNiO3 has a high effective

nonlinear coefficient, the difference in the index of refraction between the THz

(n = 4.96) and the group velocity of the pump (2.25) results in a of dephasing

of π/4 in only 100 µm. This severely limits the amount of THz that can be

generated.

To achieve phase matching in these nonlinear materials, one can select a mate-

rial the has collinear phase matching, but this condition is only nearly matched in

materials such as ZnTe or GaP which have an order of magnitude lower effective

second order coefficients, as can be seen in Table 4.1.

Other phase matching methods include periodic poling of the material which

allows the waves to catch up with each other as they undergo collinear propaga-
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tion [59], or using pulse front tilting of the pump pulse.

Because of the results by Hebling et al. [60], we selected the pulse front tilt

method of phase matching. The generation of the THz can be described by

Huygen’s principle, in which the point response of the material acts as a spherical

wave. For an extended pump distribution the direction is parallel to the gradient

of the envelope of the pump pulse and there can be controlled by tilting the pulse

front. By tilting the pump pulse front along the phase matching angle in the

material, the propagating THz will sample the same phase of the response of

the material as it propagates through the crystal. This phase matching angle is

determined by θPM = cos−1
(
vphTHz/v

gr
800nm

)
where vphTHz is the phase velocity of the

produced THz and vgr800nm is the group velocity of the pump.

To pulse front tilt at this angle we need to develop an x-z linear correlation in

the laser pulse using an angular dispersive optical element. We can describe the

pulse front tilt, γtilt from one of these elements by

tan γtilt =
n800nm

ngr800nm

ω
dΘ

dω
(4.17)

Where dΘ/dω is the angular dispersion. Because we are using an ultrashort

pulse, we prefer to not have material longitudinal dispersive effects such as pulse

group dispersion found in prisms, therefore we choose to use a grating. Mar-

tinez [61] begins with the grating equation for an diffraction order m, central

wavelength λ and line spacing d′ = 1/Nlines/length

sin θin + sin θout =
mλ

d′
(4.18)

and finds the change from the central output angle in a small angle approxi-

mation

∆θout = α∆θin + βω (4.19)
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Where α = − cos(θin0)/ cos(θout0) is the mixing term between input and output

angles and β = m/(2πcd′ cos θout0) is the angular dispersion term we are looking

for in Equation 4.17.

We can now choose a set of parameters for the grating in terms of the incident

angle and the grating line spacing to choose a pulse front tilt angle to match the

phase matching angle. We then use an achromatic lens to image the laser pulse

into the crystal and we can achieve phase matching as the laser pulse propagates

through the crystal.

There are two limitations to single lens imaging the pulse in this fashion.

The first is any aberrations that may occur, such as astigmatism from lens tilt

misalignment or spherical aberrations that may happen from the lens or curvature

interface boundary at the crystal entrance.

With all of the terms modeled Equation 4.8 is then numerically integrated

using a Runge-Kutta algorithm with zeros for the magnitude of the field’s initial

conditions. The results of these models are then compared to the measured THz

spectra and are seen as the curves in Figure 4.8.

4.2 Experimental THz Generation

The THz generation and characterization experiments were performed using the

Ti:Sapphire laser at the UCLA Pegasus lab. The relevant parameters are listed

in Table 4.2

4.2.1 Experimental Setup of THz Generation

A diagram of the THz generation setup is shown in Figure 4.4. The laser pulse

is sent to a diffraction grating of 900 lines per mm. The blazed grating is in

an Littrow configuration to optimize efficiency scattering into the first order. An
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Pegasus Laboratory Laser Parameters

Parameter Value

Pulse Energy 2 mJ

σt 35 fs

λ0 800 nm

∆λ 30 nm

Table 4.2: Pegasus laser parameters

achromatic lens with a focal length of 5 cm images the laser pulse from the grating

to within the crystal with a magnification factor such that the pulse front is tilted

at the phase matching angle.

Figure 4.4: Experimental Setup of Single Cycle THz Generation via Optical Rec-

tification

Using a golay cell that was cross-calibrated with pyro-electric detectors and

a low pass filter with a cutoff at we were able to measure an optimal room tem-

perature value for the single cycle pulse to be on the order of 1 µJ. With the

input pulse energy at 2 mJ, the conversion efficiency is about 10−3, a two order

of magnitude increase over the conversion efficiencies of similar length materials

such as GaP or ZnTe that have near collinear phase matching condition but lower

second order dielectric coefficients.
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4.2.1.1 Cooling

Figure 4.5: Cooling Chamber with Thermal Simulation

To further increase the efficiency by reducing the absorption due to the phonon-

polariton resonance during THz generation a thermal device was designed to cool

the crystal to 77 K by contact with liquid nitrogen.

The chamber was made of a vacuum with a laser quality window for the input

laser as well as a THz transparent window to couple the THz out of the chamber.

The crystal holder is made of copper for high thermal conductivity and has uses
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vacuum safe thermal gel to ensure that crystal is thermally coupled to the copper.

A stainless steel reservoir is filled with the liquid nitrogen. A thermal simulation

is showed inf Figure 4.5, describing the equilibrated temperature profile of the

crystal assuming that the copper surface is held at 77 K. Due to the decrease in

the material absorption, an increase in the conversion efficiency can be nearly an

order of magnitude as measured by calibrated Golay cell.

4.2.1.2 Pulse Train Generation

In Chapter 3 we saw that the IFEL interaction’s relies on slippage but will cease

to interact if the envelope of the laser is on the same scale as the slippage. The

THz pulses that are generated by our method are only a single cycle. This limits

the electrons’ interaction with the THz to only a few undulator periods. For

significant modulation to take place this interaction length must be extended by

effectively stretching the pulse. One option is to create a pulse train, by making

several single cycle pulses that are spaced near the radiation wavelength.

A method of creating a pulse train is by using α Barium Borate crystals. These

crystals have a well determined birefringence and the laser can be split rotating

these crystals such that the electric field of the linearly polarized laser is at 45

degrees between the fast and slow axes. The delay between the two pulses are

specified by ∆t = L/c(no − ne), where L is the length of the crystal, no is the

ordinary index of refraction and ne is the extraordinary index of refraction. The

crystals can be stacked to make a pulse train where the number of pulses are 2N

where N is the number of crystals. This has the advantage of being able to tune

the spacing of the THz pulses by adjusting the length of each crystal but also

results in dividing the pump energy and therefore the intensity by up to a factor

of 2N .

Another option is to place the single cycle pulse into a waveguide, which will
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increase the phase velocity of the THz wave but decrease its group velocity. A

waveguide mode could be chosen such that the electron beam can propagate at

near the group velocity of the THz pulse while the undulator parameters can be

chosen to match the resonant condition and have optimal electron beam modula-

tion.

4.2.2 Measurements

To successfully characterize the THz source, the methodology to measure it should

be understood. The autocorrelation function of the THz pulse can be measured

using interferometry, then through the Wiener-Khinchin autocorrelation theorem

[62], we can determine the power spectrum of the THz pulse.

Figure 4.6: BLIS Interferometer

Figure 4.6 shows the device that was used to measure the autocorrelation of the

THz signals. The Bunch Length Interferometer System (BLIS) is a Michelson type

interferometer that was developed by Radiabeam Technologies. The incoming

THz pulse is split by a Pellicle beam splitter that sends 50 % of the pulse energy

to a fixed arm, while the other half of the energy goes to a mirror on a translation

stage that can be controlled to the precision of tens of nanometers. The relative

path length then can be adjusted and half of the original pulse energy is focused
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into a Golay Cell detector after being recombined at the beamsplitter. The other

half of the pulse energy leaves in the direction of the THz source.

If we have a complex electric field from the THz signal called E0(t) impinging

on the interferometer, then, is split, has one quarter of the pulse delayed the

moving arm by a time τ , then the field at the detector by superposition will be

Edet(t, τ) =
1

2

[
E0(t) + E0(t− τ)

]
(4.20)

The signal measured by the detector, however will be an integrated intensity,

or

S(τ) ∝
∫
Edet(t, τ)E∗det(t, τ)dt (4.21)

Expanding out the terms we end up with a Signal that looks like

S(τ) ∝
∫

dt
(
|E0(t)|2 + |E0(t− τ |+ 2

(
E0(t)E∗0(t− τ)

))
(4.22)

The first two terms of the signal are equal and constant with respect to the

delay. The third term is the autocorrelation function of the pulse, that which we

desire to measure. To extract it from the signal the constant background must

be subtracted. We can now take the Fourier Transform of the autocorrelation

function and by the Wiener-Khinchin Theorem we now have the Power spectrum

for the pulse.

A sample raw measurement is taken from and power spectrum from the in-

terferometer is shown in Figure 4.7. Because a second detector is not used to

normalize the input energy of the THz pulse, each delay position is sampled for a

population of 5 measurements, then averaged. The subtraction of the average of

the entire signal is usually enough to eliminate the DC components and extract

the autocorrelation. On occasion a small misalignment can result in a small linear
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increase in the autocorrelation signal. As the signal should be symmetric around

the main peak where there are equal path lengths, this is a misalignment artifact

and can be removed through low pass filtering, linear fitting, and subtraction of

the linear behavior to obtain the autocorrelation function.

The power spectrum is then determined by taking using the fast Fourier trans-

form algorithm. This spectrum peaks around 1 THz but has very little power in

lower frequencies due to the fast diffraction of these spectral components, result-

ing in their absence at the detector. The spectral modulation is a result of the

strong absorption of THz by water.

Figure 4.7: Sample signal (left) and resulting power spectrum (right) for a single

THz measurement.

4.2.3 Results of THz Source Characterization

The results of the characterization of the optical rectification THz source can be

seen in Figure 4.8. The integration model discussed earlier was compared with the

average of ∼30 power spectra taken both at room temperature of 300 K and at

liquid nitrogen temperatures of 77 K. The left scale for the power spectral density

was normalized by the pulse energy as measured by the Golay cell.

A significant increase in the power spectral density can be seen both in its

amplitude and the extension into higher frequencies as a result of cooling to liquid

nitrogen temperatures. The models tend to overestimate the damping at lower
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frequencies due to the free carrier model, however this may be a result of some of

the less precisely determined parameters in the model such as the effective mass

of the free carriers. The water spectra are shown at the top to give insight into

the spectral modulation seen, particularly in the 77 K case.

Figure 4.8: Results of THz Characterization

This experiment demonstrated that significant power can be generated in the

spectral region up to 2 THz using this laser locked radiation source. With the

source characterized we can now discuss interacting this source’s radiation with

a relativistic electron beam in an undulator for the purposes of compressing and

synchronizing a high brightness electron beam for injection into a laser driven

application.
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4.3 Description and Simulation of Proposed THz experi-

ment

Figure 4.9: Experimental Setup of OR

The interaction of laser locked THz radiation with a photoinjector driven has

been proposed at the UCLA Pegasus lab. In this scheme, a high intensity laser

pulse used to drive an application such as a laser wakefield accelerator, is split into

two additional arms: One to drive a photocathode and the second to generate a

THz pulse train to interact with the electron beam to compress it and compensate

for the loss of synchronization with the driver laser that occurs from RF phase

jitter in the photoinjector gun. A conceptual diagram of this experiment can be

seen in Figure 4.9.

Table 4.3 shows the parameters selected for the IFEL compression and syn-

chronization experiment. The laser strength parameter, Kl is the value set by an
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THz IFEL Parameters

Parameter Value

Kl 4.2 · 10−3

K 1.6

JJ 0.84

γr 7.0

λu 1.7 cm

Table 4.3: Compression and Synchronization Experimental Parameters.

8 pulse THz train with each single cycle pulse’s central frequency at 1 THz, and

longitudinal separation of a wavelength. The total energy of this train should be

10 µJ to achieve this laser strength parameter. The injection energy from the

electron beam 3.5 MeV, as is achievable from the Pegasus photoinjector.

4.3.1 Modeling of IFEL Interaction in Proposed Experiment

The preliminary investigation of this interaction was performed by integrating the

1-D equations of motion seen in Chapter 3. These equations were numerically in-

tegrated using a Runge-Kutta algorithm with initial conditions set by the particle

set expected by the chirp of 1 pC ultrashort beam with a temporal RMS value of

100 fs.

4.3.1.1 Results of 1-D Integration model

The results of the 1-D integration can be seen in Figure 4.10 and Figure 4.11. The

left side of Figure 4.10 shows the particle beam injected into the IFEL interac-

tion. The horizontal axis if displayed in time, meaning that the right side of the

distribution arrives at a longitudinal position later than the left side, representing

a positive chirp. At the exit of the undulator we see full compression down to an
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RMS value of 14 fs, resulting in nearly an order of magnitude compression of an

ultrashort electron beam.

The synchronization was studied by varying the central average time of arrival

(TOA) that the electron beam is injected into the IFEL, thus with respect to

the laser phase. Examining the final average TOA of the electron beam at the

exit of the undulator, we see that there is an order of magnitude reduction in the

variation. For the selected parameters, this effect will begin to break down for

cases in which the time of arrival jitter is much bigger than 200 fs.

Figure 4.10: Compression of ultrashort beam. A 100 fs RMS beam is injected

into the IFEL. The results

This study was performed with no question to the effects of the energy jitter.

There is an effect of energy jitter simply due to the R56 of the undulator which

can be describe by [63]:

R56Und =
Nλu
γ2

0

+
(3NK2λu

2γ2
0

)
(4.23)

For the parameters selected in this experiment, the R56 for the undulator is

1.3 cm. This sets a limit on the amount of energy jitter than the electron beam

can acquire from the RF photogun. For a jitter of 50 fs resulting from this effect,

the electron beam must have an energy jitter of less than 0.1 %. This figure is

achievable by modern RF systems.
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Figure 4.11: Synchronization of ultrashort beam by THz IFEL interaction. The

final average time of arrival (TOA) is reduced by roughly an order of magnitude

compared to the inital average TOA.

4.3.1.2 3-D Simulation

To include three dimensional effects, the interaction was then modeled with a

start-to-end simulation. A 1 pC electron beam is created at the photoinjector and

propagated using the commercial particle tracing code, GPT. The beam is then

imported into the FEL code, Genesis 1.3 [64], at a location one meter downstream

from the cathode.

The Genesis 1.3 model uses a 2 mm x 2mm rectangular boundary. The mod-

ified parameters to meet the resonance condition with the waveguide mode are

an undulator strength parameter of K = 0.829 with a resulting coupling factor of
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JJ = 0.93. The initial THz transverse profile is modeled as a Gaussian pulse with

a RMS spot size of 500 µm. The electron beam is focused by quadrupole magnets

so that it is matched to the focusing channel established by the undulator with

an entrance spot size of 150 µm. All other parameters from the 1-D case remain

the same.

Figure 4.12: Results of 3-D simulation using GPT and Genesis 1.3

The results of the 3-D study is shown in Figure 4.12. With this parameter set

the coupling is a weaker, resulting in a beam at the output of the undulator that

is not fully compressed, but has a strong negative chirp. After a drift of 9 cm

from the exit of the undulator, the electron beam reaches a fully compressed state

of 6 fs RMS.

83



CHAPTER 5

High Gradient IFEL Acceleration at LLNL

In this chapter we discuss discuss an experiment where the IFEL interaction was

used for high gradient acceleration. This experiment represents the first time an

IFEL accelerator was driven by a high intensity short pulse (sub-ps) laser sys-

tem. The experiment was performed at Lawrence Livermore National Laboratory

(LLNL) in Building 194. This facility houses a 100 MeV electron linac that was

used to measure many fundamental nuclear cross-sections [65]. In the last decade,

the accelerator complex has been used for X-ray and gamma-ray production. X-

rays have been obtained colliding the high brightness electron beam from an RF

photoinjector with a high energy laser pulse in the PLEIADES and TREX [66]

experiments. The IFEL experiment was funded as a potential injector for a future

compact gamma-ray production facility for nuclear material detection based on

photofission or nuclear resonance fluorescence.

5.1 Experimental Description

The experimental setup can be divided into three components: the electron beam

source, the laser system and the interaction region. The modeling of each of

the components is explained as each component is discussed. First we look at

the electron beam generation and acceleration and chirping. The interaction laser

and the photocathode drive laser will then be explained, and lastly, the interaction

area and diagnostics.
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Figure 5.1: Building 194 Artist rendering and Historical Plaque

5.1.1 Electron Linac Beamline

The electron beam is generated by a SLAC/UCLA/BNL 1.6 Cell photoinjector

gun of the same design as that in the Pegasus Laboratory in the blowout exper-

iments seen in Chapter 2. A short ultraviolet (UV) laser pulse (260 nm) that is

discussed illuminates the copper cathode to produce the electron beam. For these

experiments we operate at a charge of 100-500 pC per pulse as a compromise to

provide a strong signal on the various beam and timing diagnostics and to limit the

beam quality degradation which occurs at very high (∼ nC) beam charges. The

UV laser applied to the cathode is 120 fs full width at half maximum (FWHM)and

its transverse mode was a Gaussian distribution with cut tails obtained by relay

imaging of an overfilled 1 mm pinhole onto the cathode. Considering these initial

electron beam parameters, we can calculate the figure of merit for determining

the effects of the nonlinearity in the photoinjector blowout regime. This is given

by the ratio of the electric field due to the surface charge density of the initial

beam distribution, Esc = σsurface/ε0 to the RF accelerating field at the cathode,

Erf = (120 MV/m) sinφ, where φ is the injection phase. The figure of merit values
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ranged from 3-14 % for the operational range of charges. From the investigation

of the photoinjector blowout regime in Chapter 2 we know that when this ratio

exceeds 10 %, space-charge driven nonlinearities degrade the quality longitudinal

phase space, preventing optimal compression.

Low Energy Beamline

Accelerating Sections

Chirping Section

Quadrupole 

Doublets and Triplets

Figure 5.2: Building 194 Linac Beamline. The low energy section is visible after

the RF photoinjector at models right side. The beam can them be accelerated by

5 3 m long RF linacs with inter-spaced matching quadrupole sections.

The RF gun and solenoid were modeled using the Superfish and Parmela codes

by Los Alamos National Laboratory (LANL) [67] [68]. Superfish solves Maxwell’s

equations on a mesh using boundary conditions to obtain the RF fields in the

gun and Parmela is a particle tracing code that solves the equations of motion of

the particles in any external fields and tracks the evolution of the 6D phase space

including the effects of space charge. In addition, the Parmela code was compared

to a model of the beam was developed using an independent commercial particle

tracing computer code, General Particle Tracer (GPT) [69] and their results were

found to be consistent.
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Before the first accelerating section the low energy beamline is formed by

three skew quads to compensate for any transverse mixing that occurs in the gun

and solenoid, an integrated current transformer (ICT) to measure the charge of

the electron beam, and a set of slits to perform an emittance measurement on the

beam. The normalized emittance was measured for 100 pC case to be 2 mm·mrad.

As the beam is accelerated in the gun, the solenoid controls its spot size and

minimizes the emittance using the emittance compensation scheme and by match-

ing the beam to the invariant envelope solution [70] at the entrance to the first

RF accelerating section.

The 3 m SLAC style accelerating sections [71] are designed to get a constant

gradient acceleration (by tapering the shunt impedance) of 25 MeV per section.

LLNL Bldg. 194 has 5 sections available to accelerate the electron beam. The

IFEL requires an injection energy of 50 MeV so that three sections are minimally

needed. However, in order to have more flexibility, four RF linac sections are used

to inject the into the IFEL at a higher energy and to allow running off crest for

compression. This also has the advantage of running the linacs at a lower average

accelerating gradient, easing the power requirements on the relatively aged RF

kystron systems. A model of the section is shown in Figure 5.2. The first three

sections are run with an on crest phase to use the maximum gradient and are

used to accelerate the electron beam up to the chosen injection energy. The last

section is run at a compressing phase to imbue a negative energy chirp on the

electron beam so that a magnetic chicane can compress it.

Quadrupole doublets and triplets are used to collimate and control the beam

as it propagates through the accelerating sections, particularly to compensate for

the defocusing kicks that the electrons receive as they exit the sections.

A Parmela simulation of the beam evolution through the linac is shown in

Figure 5.3. Plot a) of this figure shows the normalized transverse emittances and

the average energy, E of the beam. Looking at the energy evolution of the beam,
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a) b)

Figure 5.3: Results of beam acceleration using the Parmela tracing code. a)

Normalized emittance in x,y as and energy. b) Longitudinal and transverse RMS

spot sizes.

one can see the increase resulting from each of the RF sections, with the third

section being close to zero and the small dip in the average energy as the beam is

chirped at the last section.

Plot b) of Figure 5.3 shows the transverse and longitudinal RMS spot sizes

during the linac section. After matching the transverse spot size of the beam to

the invariant envelope at the first accelerating section, the spot size is controlled

with quadrupole magnets, compensating for the defocussing kicks that occur at

the exits of the accelerating sections. The longitudinal RMS pulse length expands

during the blowout process then stops evolving as the space charge forces and

velocity differences between the particles become negligible for γ >> 1.

5.1.2 Laser

The laser system has the double function of driving the IFEL acceleration process

and of generating the electron beam at the photocathode. The amplification sys-

tem is a chirped pulse amplifier (CPA) design, which is the standard for current

ultrafast lasers. In CPA, high bandwidth laser pulses are produced in an ultrafast
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oscillator. These pulses are then stretched by imposing a linear chirp using an

aberration free Offner stretcher, amplified by 6 orders of magnitude in a regen-

erative amplifier, and a multi-pass amplifier provides the remaining amplification

to the required pulse energy. Finally the laser is compressed back to the original

pulse length using a grating based compressor. CPA allows for the generation of

very high intensity compressed laser pulses as the intensity during the amplifica-

tion process can be held below the damage threshold of the lasing media using

high stretching ratios. The Centarus X laser system, purchased from Amplitude

Technologies, is a 10 Hz Titanium-Sapphire based system. In the following sec-

tions we will describe the system from oscillator to the preamplifier then describe

the two paths that lead to the photocathode and the interaction point at the

undulator. The laser parameters are summarized in Table 5.1 .

5.1.2.1 Oscillator and Stretcher

Roof 

Mirror

Aberration Cancelling Telescope

Grating

Prism

Photodiode

Fiber Oscillator

SHG Module

Figure 5.4: Oscillator and Stretcher for Front End Laser System.

The laser’s oscillator is a C-fiber 780 erbium doped fiber oscillator developed

by MenloSystems. It produces a pulse train with a repetition rate of 100 MHz with

a minimum pulse length of 120 fs FWHM and an energy of 1 nJ per pulse of 10 nm

bandwidth laser light centered on 780 nm. The erbium doped fiber generates IR

light at 1560 nm which is then cover 780 nm using second harmonic generation

crystals. Although the bandwidth is limited compared to titanium-sapphire oscil-
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lators that can have bandwidths of 40 nm and produce pulse widths of only 35 fs,

the fiber oscillator is far more stable, requiring no alignment adjustments over the

duration of the experiment.

The pulse train of the oscillator is then stretched to 300 ps in an Offner

stretcher [72]. This design of uses a single grating, prism, a reflective telescope,

and a roof mirror to provide compact, aberration free stretching of the laser pulses.

The prism and grating work together to provide dispersion with minimal higher

order spectral phase distortions, while a telescope comprised of concave and con-

vex mirrors force the spectral components to cancel any aberrations that may have

been acquired from the optics or gratings. These aberrations would result in a lack

of cancellation of the dispersion at the exit of the stretcher, and in non-optimal

compression after the amplification.

Laser Parameters

Parameter Value

Interaction Laser Pulse Energy 500 mJ

Photocathode Drive Laser Energy 3 mJ

Compressed Pulse Temporal FWHM 120 fs

Central Wavelength 780 nm

Bandwidth 10 nm

Table 5.1: Laser Parameters

5.1.2.2 Amplifiers

After stretching occurs the laser pulse train then enters a regenerative amplifier

that amplifies the energy of the pulses from the nJ scale to the mJ scale. A diagram

of the regenerative amplifier can be seen in Figure 5.5. The regenerative amplifier

uses Brewster Polarizers and two Pockels cells to close and open a resonant cavity

so that the pulse to be amplified passes through the and close a cavity. Brewster
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Polarizers work using Brewster’s angle, defined as

θb = arctan
(n2

n1

)
(5.1)

here n2 and n1 are the indices of refraction for the selected material. At this

angle of incidence to a material interface there will be no reflected light if the laser

has p polarization. The laser pulse enters the regenerative amplifier cavity from

the stretcher with s polarization, causing it to reflect off the first two polarizers

and propagates through the lasing material and to the first Pockels cell. The

Pockels Cell acts on the polarization of the laser pulse, by acting as a quarter

waveplate twice as the laser pulse travels through it, refects off of the end of

the cavity mirror and back through the Pockels cell, changing the polarization to

from s to p. With p polarization the laser pulse travels through the gain media,

back through the Brewster polarizers to the other Pockels cell which has no effect

until about 10 round trips occur, when the amplification of the laser pulse reaches

saturation. When saturation occurs, the second Pockels cell is switched on and

the laser pulse switches back to s polarization, reflecting out of the regenerative

cavity to further amplification.

Each time the laser pulse passes through the lasing medium it acquires phase

delay dispersion(PDD). This changes the chirp set by the stretcher and the com-

pressor parameters may need to be adjusted if the number of round trips through

the regenerative amplifer is changed from the design value. A photodiode moni-

tors the bleed through of the second end cavity mirror to assist in adjustment of

the Pockels cell timing and alignment of the cavity to the proper build up time of

the amplification process.

The laser pulse is further amplified by two four-pass amplifers. The first am-

plifier increases the laser pulse energy from 3 to 30 mJ. 3 mJ of the laser energy

is split off and sent to drive the photoinjector, while the remaining 27 mJ is sent
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Figure 5.5: Diagram of Regenerative Amplifier. The Regenerative amplifier uses

the first Pockels cell to close the cavity, resulting in 10 round trips of the laser

pulse through the Ti:Sapphire lasing material. After saturation occurs a second

Pockels cell switches out the amplified pulse to go to secondary amplifiers.

to a second Ti:Sapphire amplifier, increasing the energy from 27 to 700 mJ.

5.1.2.3 Compressor

The compressor for the photocathode drive laser consists of a simple two grating

configuration to undo the chirp placed on the laser from the stretcher and PDD

acquired in the lasing gain media. The laser is then frequency multiplied from

780 nm to 260 nm for application to the photocathode to generate the electron

beam.

The main interaction laser has a similar design as the photocathode drive laser

arm but scaled up and placed in vacuum to avoid the nonlinear breakdown effects

and self focusing in air when dealing with a TW scale peak power laser.

To verify that the interaction laser was compressed to its transform limit, we

used of a Swamp Optics Grenouille system [73] which records the spectrogram
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(time and frequency) of the laser pulse and has a computer algorithm that can re-

construct the phase and amplitude of the optical waveform using second harmonic

generation frequency resolved optical gating (SHG FROG).

120 fs

FWHM

10 nm

BW

a b

c d

Figure 5.6: Swamp Optics Grenouille and Pulse Length Measurements.(Left)

physical picture of the diagnostic.(Right) a. Measured spectrogram b. Recon-

structed spectrogram. FROG reconstructed profiles of time (c) and frequency

(d).

5.1.3 Interaction Area

A diagram of the interaction area is shown in Figure 5.7 We will break down the

interaction area into its components: the compression of the electron beam, the

undulator region, the timing diagnostics, and the beam spectrometer.

5.1.3.1 Chicane

Since IFEL acceleration only occurs when the electron beam is temporally over-

lapped with the short pulse laser system, a magnetic chicane was designed to

compress the electron beam so that the maximal amount of the beam can be cap-

tured and accelerated. The left side of Figure 5.7 shows the chicane. The magnetic

chicane compressor functions by imparting a correlation between the longitudinal
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Figure 5.7: Interaction Area. The high power interaction laser approaches from

the right side is focused in the OAP chamber, goes through a periscope that

preserves its horizontal polarization, and is sent down the beamline on axis in the

center of the chicane compressor. The electron beam approaches from the left, is

compressed in the chicane, and is focused to a waist at the center of the undulator

by two quadrupole triplets.

position of a given particle with it’s energy or a nonzero R56 element of the transfer

matrix. Particles with higher energy will travel a shorter path length, resulting

in an earlier time of arrival at the end of the chicane with respect to the design

particle. For a chicane with four equal dipole magnets of length Ldipole separated

by drift length Ldrift and deflecting the beam be angle θ longitudinal position /

energy correlation is given by

R56 = 2θ2(Ldrift +
2

3
Lmag) (5.2)

Given the constraint imposed on the maximum amount of chirp that can be

imbued on the electron beam set by the maximum field in the chirping accelerating
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section, the chicane compressor is designed to have an R56 of 5.66 cm.

Propagation of the beam through the chicane was modeled using Elegant [74].

This simulation code offers a one dimensional model to compute the energy mod-

ulation on the beam due to coherent synchrotron radiation.

a)

b)

c)

d)

Figure 5.8: Dispersion and Normalized Horizontal Emittance Plots for Chicane in

Elegant without and with Coherent Synchrotron Radiation (CSR). a),b) Disper-

sion and emittance respective plots without CSR. c),d) Dispersion and emittance

respective plots with CSR.

The simulation results of the dispersion and horizontal normalized emittance

plots can be seen in Figure 5.8. The left side of the figure shows the designed

symmetric chicane where the dispersion cancels and there is no growth to the

normalized horizontal emittance. The right side shows the effects of the CSR.

The CSR creates nonlinearity in the longitudinal particle dynamics and poses a

challenge to cancel the dispersion effectively, resulting in mixing between the x
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and z trace planes and an increase in normalized emittance from the design 2

mm-mrad to 3 mm-mrad after the chicane with CSR effects included for a ∼ps

electron beam compressed to ∼100 fs.

a)

b)

c)

d)

a)

t (fs)

b)

t (fs)

δ
 γ

/γ

δ
 γ

/γ

Figure 5.9: Longitudinal Phase Spaces after compression with (a) and without

(b) CSR model.

5.1.3.2 Final Focusing

The final focusing for the electron beam is accomplished by using two quadrupole

triplets. The first triplet serves to expand the beam and to correct for any astig-

matism. The second triplet focuses the beam to a minimum waist at the undulator

center.

The final focusing for the laser occurs at a tank with an off axis parabola made

from a dielectric substrate that is was coated for high reflectivity at 800 nm. The

off axis parabola has a diameter of 40 mm and a focal length of 6.5 m. It is

placed upstream of the center of the undulator by its focal length to ensure the

minimum spot of the laser is at the center of the undulator as required by the

IFEL dynamics design.
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Figure 5.10: CAD Drawing of Focusing Chamber and Measured Spot at Virtual

Focus.

5.1.3.3 Undulator

The Kurchatov undulator was built for Neptune IFEL experiment. Being able to

reuse an existing undulator greatly reduced the cost of the experiment. As can

be seen in the left side of Figure 5.11, the magnetic field is tapered nonlinearly in

both field intensity and period. This field map was used to model the undulator

field in the ”cbeam” and GPT simulations of the interaction.

Roof 

Mirror

Figure 5.11: Undulator Field Map and Picture in Vacuum Chamber.

For the Neptune experiment, this undulator was designed to be tapered such

that the IFEL resonance condition for the fundamental interaction was maintained

from 14 MeV to 52 MeV for 10 µm wavelength CO2 laser light. The undulator
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period increases along the undulator for an initial value of 1.5 cm and a final period

of 5.0 cm. The peak undulator strength parameter, K is likewise tapered from 0.2

to 2.8. To achieve resonance with this undulator using 800 nm Ti:Sapphire light,

the electron beam injection energy must be increased to 50 MeV resulting in an

ending resonant energy of 200 MeV at the end of the undulator. As can be seen

in the undulator field map, a trajectory phase shifter is located at the center of

the undulator. This is designed to re-phase the periodic trajectory of the electron

beam and compensate for the laser’s Guoy phase shift that occurs at the waist

of a Gaussian laser beam. The compensation is designed to correct for the shift

associated with a diffraction limited Gaussian laser pulse with a 3.5 cm Rayleigh

range.

5.1.4 Diagnostics

There is a suite of diagnostic required to determine spatial and temporal overlap

of the electron beam and laser, as well as the longitudinal and transverse charac-

teristics of the laser pulse and electron beam; these include the measurements of

the electron beam bunch duration and transverse spot size, the characterization

of the laser pulse and of th temporal and spatial overlap up to the measurement

of the energy spectrum out of the IFEL accelerator.

5.1.4.1 Electron beam Diagnostics

To measure the transverse profile of the electron beam as it propagates through

the beamline, we used Yttrium-Aluminum Garnet (YAG) fluorescent screens. The

images of the transverse profiles were acquired using CCD cameras looking at the

screens.

DRZ fluorescent screens are used for the transverse profiles of the electron

beam at the entrance, center, and exit of the undulator as well as the spectrometer
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screen. The DRZ screens were used in these locations as they have a sensitivity

that is about 50 % better when compared to standard Kodak Lanex and about

five times greater sensitivity than that of the YAG crystals. The DRZ screens

were purchased from MCI Optonix LLC [75].

The BLIS interferometer, discussed in Chapter 4, was used to spectrally an-

alyze the coherent transition radiation generated at an aluminum foil located

between the two sets of final focusing quadrupole magnets to make an electron

bunch length diagnostic. The foil is placed at 45 degrees with respect to the beam

propagation and the radiation passes through a THz transparent sapphire window.

The radiation is then collimated by a metallic off-axis parabolic mirror located

its focal length from the foil, and the CTR signal is propagated to the BLIS. The

BLIS model we used did not have the option of a second detector to normalize the

shot-to-shot fluctuations in CTR energy, so we used the same technique discussed

in Chapter 4 in which we sampled several shots for a given delay and averaged.

The model we used to fit the CTR signal was a beam with a longitudinal Gaussian

profile with a low frequency spectral cut due to diffraction [76]. The RMS bunch

length was measured to be σt = 200 fs after the chicane compression at when

operating with a charge of (100 ± 10) pC.

5.1.4.2 Laser Diagnostics

Because the laser’s transverse mode quality can affect the field experienced by the

electron beam during the IFEL interaction, diagnosis of the mode quality, spot size

at the waist, and longitudinal position of the waist are all necessary to properly

ensure a sufficient laser field interacts with the electron beam to accelerate the

beam.

A Rayleigh range measurement was set up by pumping the main amplifier ”off-

time”, i.e. by delaying the pump laser by 100 ns so that the seed laser propagates
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without gain. This allows the laser pulses to propagate through the medium

without amplification but including the correct thermal effects to the index of

refraction in the lasing medium which act to focus effect on the laser pulse as

if it were being amplified. The laser is then propagated through the compressor

and beamline up to a meter before the undulator where it is brought out of the

beamline and sent to a camera on a delay stage with ND filtering.

50 cm

ND Filters

Camera on sliding rail

Virtual Focus

Figure 5.12: Setup for Rayleigh Range Measurement. A neutral density filtered

camera on a sliding rail passes through the virtual focus of the laser and records

images of the transverse profile.

This camera sits at a virtual focus, set at an equal distance as the center of

the undulator from the off axis parabolic mirror. The camera is then scanned at

several points moving away from this virtual focus, measuring the waist parameter,

w defined as the 1/e2 intensity radius of the transverse profile, at each point. Using

these values we can fit to the model for a Gaussian beam traveling through a waist

which gives,

w(z) = w0

√
1 +

( z
zr

)2

(5.3)

where w0 is the waist parameter at the focus, zr is Rayleigh length(range)

defined by zr = πw2
0/λ. For a laser profile with a distribution other than diffraction

limited Gaussian beam the divergence angle will go like θ = M2λ/(πw0) [77]. M2
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is a quality parameter that is equal to unity for a diffraction limited Gaussian and

greater than one for other profiles.

Figure 5.13: Rayleigh Range Measurements.

For an distribution with a M2 > 1, the waist can be written as

w(z) = w0

√
1 +M2

( z
zr

)2

(5.4)

indicating that for a given w0 the beam will diffract faster, resulting in an

increased spot size for a given longitudinal distance away from the focus.

The results of the Rayleigh range measurement are seen in Figure 5.13. There

is some asymmetry between x and y and the minimum spot size does not reach

the predicted w0 of 100 µm. The fitted values are shown in Table 5.2 and are

compared to a design Gaussian model.
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Rayleigh Range Measurements

Parameter Measured X Measured Y Gaussian Model

w0 200 µm 160 µm 100 µm

zRayleigh 7 cm 12 cm 3.5 cm

M2 1.7 1.4 1

Table 5.2: Transverse Laser Properties

The laser profile is clearly non-Gaussian, and given the OAP with a 6.5 m

focus, has a large spot size and longer Rayleigh range. This lowers the intensity

by nearly a factor of two from the design value at the waist.

As a check to the off-time filtering method, we ran the amplifier at full power

and used two wedges, one located at the output of the main amplifier and another

at the last turn before the virtual focus, to verify the spot size and location of the

waist on the virtual focus.

A Coherent EnergyMax pyroelectric Sensor and LabMax [78] energy meter

was used to measure the laser pulse energy offline, with checks performed at the

output of the amplifier and at the end of the electron beamline where the laser

exits the system (when the electron beam is not in use). The laser energy before

after the main amplifier before the compressor was measured to be 700 mJ with

a 5% RMS fluctuation, while at the the exit of the beamline it was measured to

be 500 mJ with a 5 % RMS fluctuation.

5.1.4.3 Electron Beam Spectrometer

The results of the interaction are a modulation on the electron beam energy

distribution that is measured by use of an electron spectrometer. A picture and

path diagram of the electron spectrometer can be seen in Figure 5.14. For the

purposes of our experiment we needed to be able to measure the electron beam’s

energy over a large dynamic range of 50 MeV to 200 MeV. An magnetic dipole
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was utilized to serve this purpose. Additional side coils were added to allow the

magnetic field inside the gap to reach 4 kGauss. To view the entire dynamic

range in a single image we chose to place a long DRZ fluorescent screen on a

pop-in directly inside a custom spectrometer vacuum tank that was designed at

LLNL and built at the UCLA machine shop.

The spectrometer was designed assuming that a portion of the electron beam

would be accelerated to 200 MeV. At full amplitude, the dipole would impart

a 14 degree angle change, then the beam would further propagate to a set of

quadrupole magnets and a beam dump. The pop-in screen and the computed

paths for various energies can be seen on the right image of Figure 5.14.

A telescope consisting of an objective lens with a focal length of 5 cm and

a compound lens system imaged the fluorescent screen on to a (CCD) camera

so that the entire fluorescent screen, and hence the dynamic energy range of the

spectrometer, could be captured in a single image.

Figure 5.14: Spectrometer picture and Diagram

Typically with electron spectrometers a small angle approximation can be used

so that the calibration is linear over the energy range of interest. In our case,

however, the large energy range did not allow for a small angle approximation,

and in the calibration we could not neglect the nonlinearity.

The calibration of energy to pixels of the spectrometer image can be seen in
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Figure 5.15. This calibration was performed by first cross-correlating the magnetic

field that the beam experiences at the center of the magnet with the fringe field

that we can measure while the beam is present using two hall probes. The electron

beam was then propagated for a fixed energy while varying the magnetic field.

This relation is described by

p = eBR (5.5)

where p is the momentum of the electron beam, e is the charge, B is the

magnetic field intensity and R is the radius of curvature of the trajectory. By

using a fixed energy electron beam and the magnetic field intensity changes the

radius of curvature, which results in different intersection points on the fluorescent

screen. We then fix the magnetic field intensity at a set value and calculate the

momenta required to obtain the radii of curvature corresponding to the different

positions on the spectrometer screen.

The result, seen in Figure 5.15 was compared to an analytical model which

assumed an input particle momentum and magnetic field then computed the hori-

zontal intercept of the particle trajectory with the fluorescent screen with one free

parameter, the location of the left side of the camera’s field of vision with respect

to the edge of the fluorescent screen. This analytical model is the smooth curve

seen in Figure 5.15. The two are in reasonably good agreement.

One minor complication with the calculation of the electron beam trajectory

in the spectrometer is to properly account for the fringe magnetic field. To achieve

consistency between the analytical model and the electron beam based empirical

calibration, we used effective length obtained by measuring the fringe field at the

5 Gauss level with a Hall probe. The field was then numerically integrated and

an effective length was determined for the magnetic field of the spectrometer.

As a check the map was placed in a particle tracer and the trajectories were
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Figure 5.15: Spectrometer Calibration Curve. The data points are an empirically

derived calibration while the solid curve is the results of an Analytical model.

determined precisely. The effective length dipole of constant magnetic field was

consistent with the particle tracing model to within 1 % of the intercept position

on the fluorescent screen.

5.1.4.4 Temporal Overlap

The temporal overlap between the interaction laser and the electron beam is

obtained by varying the relative time-of-arrival through use of an optical delay line.

The length of the delay line is set to match the path length of the photocathode

drive arm after the beamsplitter, plus the length of the electron beamline up to

the center of the undulator minus the remaining distance of the interaction laser
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arm after the delay line.

Figure 5.16: Diagram of Race Track Delay Line for the Interaction Laser.

The absolute temporal overlap was measured to the level of 2 ps using a streak

camera. A foil between the two final focus triplets is inserted in order to obtain

an optical signal corresponding to the electron beam from the transition radiation

of the electrons. The foil has optical quality flatness and is also used to reflect

the drive laser to the streak camera. The interaction laser is heavily filtered using

OD 7 filters and pumping off time in the main amplifier. This reduces the pulse

energy from 20 mJ to sub nJ levels so that it does not saturate the streak camera

and is on the same scale as the collected optical transition radiation (OTR). Both

the OTR and the filtered laser are then propagated out of the beamline and into

the streak camera. The delay line is then adjusted until the OTR and laser pulse

are overlapped on the streak camera.

5.2 Experimental Results and Analytical Discussion

The measurement of the modulated spectrum and the time of arrival correlated

are discussed in the following sections.
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5.2.1 Accelerated Electron Beam Spectrum

Initially, the ideal case was explored by injecting the electron beam at an energy

50 MeV with a design output energy of 200 MeV as can be seen in the red design

acceleration curve seen in Figure 5.18. This, however, resulted in no observable

energy modulation of the electron beam by the IFEL process due a lack of capture

of the electron beam at the beginning of the undulator. This lack of capture is

primarily due to the lower than design laser intensity caused by the higher order

spatial mode in the transverse profile of the laser.

We then decided to increase the injection energy of the electron beam, ef-

fectively injecting the beam further into the undulator since the interaction is

minimal until the resonance curve is at the injection energy of 57 MeV, and we

were able to observe energy modulation. An example of this on the left side of

Figure 5.17. The observed energy modulation accelerated a small fraction (< 1%)

of the beam from 57 MeV to 73 MeV.

The experiment ran at 10 Hz, which is the repetition rate of the laser. The

data collection, however, based upon Gig-E cameras, limited the data collection to

2 Hz. The repeatability of the results was fairly low, where energy modulation is

observed approximately 3 shots out of 10. This is due to both time of arrival and

pointing jitter corresponding to rf phase fluctuations in the electron beam gun

and accelerating sections, particularly in the section used to chirp the electron

beam for compression in the chicane.

In an attempt to observe a larger accelerating gradient, we then injected at

the largest energy that would be allowed by the magnetic fields of the dipoles in

the chicane - 77 MeV. We observed acceleration from 77 MeV to 120 MeV.

The two cases were simulated using GPT using the achievable laser profile and

comparing it to the the ideal case.

The simulated energy gain profiles of the highest observable electrons are
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Figure 5.17: Electron Beam Spectrum Results. a) No laser b) Experimental

Measured Spectrum c) GPT Simulated Spectrum

shown in Figure 5.18. The red curve describes the energy gain set by the ta-

pering gradient of the undulator while the blue and green curves represent the

simulated gradients corresponding to the measured best shots observed in the

experiment for injection energies of 57 MeV and 77 MeV. Because we injected

at energies higher than the resonant energy at the beginning of the undulator,

the resonance does not begin until around the intersection of design acceleration

curve.

For the 77 MeV case we saw acceleration to a final energy of 120 MeV, but

according to the simulation most of the acceleration took place from 20 cm to

35 cm, resulting in a peak accelerating gradient of 200 MeV per meter. The

average acceleration over the resonant region was approximately 130 MeV per

meter.

Injection of the electrons into the accelerator at an energy above that of the

resonant energy at the entrance of the undulator leads to phase area displacement

as described by Kroll. [79]. In phase area displacement, electrons move along the

outside of the bucket resulting in an energy modulation amplitude of the electron

beam that is on the order of the bucket height. While this may account for some
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Figure 5.18: Energy gain profiles. The maximum energy gain along the undulator

from simulated cases consistent with the measured cases.

of the energy modulation experienced by the electron beam, the 40 MeV gain

observed at an injection energy of 77 MeV can not explained by this model, as

the approximate bucket height is 7 MeV at injection. The phase space separa-

trix concept derives from a one dimensional Hamilitonian approximation of the

beam dynamics. In reality there are many effects such as varying resonant phase

and strong tapering that allow for particles ‘crossing the separatrix’ and getting

trapped into the bucket, resulting in acceleration to the final 120 MeV energy.
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5.2.2 Temporal Overlap Study

Because the laser pulse is on the same scale as the relative slippage between the

electrons and the laser pulse in the undulator, the amplitude of the ponderomotive

bucket responsible for the beam acceleration evolves due to the electron slipping

with respect to the envelope of the pulse. With the electron beam’s and laser

pulse’s lengths on the same scale as the slippage (i.e. 100 fs time scale), the time

of arrival jitter between the electron and laser beams can have a significant effect

on the performance of the accelerator. Due to aged RF sections with significant

phase jitter and instability, the time of arrival jitter of the electron beam was

estimated to be on the order of 1 ps. To successfully characterize the temporal

overlap, the electron beam’s time of arrival with respect to the laser must be

determined for each shot. Electro-optic sampling provides for a diagnostic that

can accomplish this measurement.

This diagnostic in fact can provide two useful pieces of information. If the

delay line is fixed we can measure the time of arrival jitter of the electron beam

with respect to the interaction laser. The second is the relative timestamping the

IFEL energy modulated electron beam spectra by taking coincident measurements

of the spectrometer and EOS diagnostic.

5.2.2.1 Electro-optic Sampling Based Time of Arrival Measurement

In electro-optic sampling a crystal is used to sample the near field of the electron

beam which induces a birefringence in the crystal via the Pockels effect. A linearly

polarized optical laser is used to probe this index change, resulting in a polarization

shift that can be then detected by an analyzing polarizer. In our case of interest

the low frequency fields are the near fields of the relativistic electron beam passing

by the crystal.

A 90 degree crossing geometery spatially encoding the time stamping based
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on EOS effect was developed by C. Scoby [80] for timestamping of pump-probe

ultrafast electron diffraction experiments.

The induced phase delay between the fast and slow axes in the crystal for a

laser pulse propagating along the [1,0,0] plane of a “Zinc Blende” (i.e. ZnTe, GaP,

etc.) is

Γ =
ωd

2c
n3

0r41ETHz
√

1 + 3 cos2 α (5.6)

where ω is the angular frequency of the laser pulse, d is the length of the

crystal, n0 is the zero order index of refraction for the laser pulse, r41 is the

Pockels coefficient for the crystal, ETHz is the magnitude of the electric field of

the THz scale field, or near field of the relativistic electron beam, and α is the

angle of the electric field with respect to the [-1,1,0] axis of the crystal.

This phase retardation causes a rotation in the polarization of a linear polarized

laser pulse with its electric field direction between the induced slow and fast axes.

If a crossed polarizer configuration is used, where the analyzer is fixed at 90

degrees with respect to the initial polarization, the transmitted intensity to the

CCD camera will be

Idetector = I0 sin2(
Γ

2
) (5.7)

In this configuration we see that for small Γ we get an intensity that is pro-

portional to Γ2.

A figure of this setup applied to the LLNL beamline is shown in Figure 5.19.

The main interaction laser is focused by the OAP in the focusing chamber then

reflects off of a flat mirror located immediately after it. This mirror’s coating

allows approximately a tenth of a percent of the laser energy to be transmitted

through the four inch optic. The core of this beam leakage is then reflected by a

one inch mirror to the EOS optical transport beamline.
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Figure 5.19: Diagram of Electro-Optic Sampling Timing Diagnostic

Because the mirror only intercepts a small portion of the larger laser beam

bleeding through, the reflected laser pulse has a very poor spatial quality. A spatial

filter was therefore designed using two positive lenses and a 300 µm pinhole. The

telescope was chosen so that the overfilled spatial filter is imaged onto the ZnTe

crystal. Once the polarization shift has occurred within the ZnTe, the plane of

the crystal is imaged to the CCD. The spatial filtering results in a very uniform

background, an important aspect of 90-degree spatially encoded EOS.

For coincident EOS and IFEL measurements to be captured, the electron beam

must be as close to the crystal as possible. Indeed Scoby et al measured 100 kV/m

with the electron 1 mm from the surface of the crystal. In the LLNL case, however,

the separation between the crystal edge and the electron beam axis must be larger

due to the main interaction laser co-propagating with the electron beam under

the crystal. The scattering off of the crystal from the tail of the 500 mJ pulse is

sufficient to saturate the camera and therefore the crystal must be kept sufficiently

far away to prevent saturation of the image and damage of the crystal.

With the crystal placed 50 cm upstream from the waist of the laser, with the

112



assumption that the laser profile is approximately Gaussian with a spot size at

the waist of w0 = 150 µm and a Rayleigh range of 7 cm , the intensity of the

laser at this point at 1 mm is 20 TW/cm2, far beyond the damage threshold of

the crystal. We must therefore move the crystal further away from the previ-

ously demonstrated 1 mm distance from the electron beam. A safe threshold for

the intensity at the crystal’s surface is less than 10 W/cm2. According to the

propagation model, a distance of 5 mm is required, resulting in an intensity of

5 W/cm2.

For a relativistic Gaussian electron beam, the radial near electric field a dis-

tance r away from the beam is

E =
q

(2π)3/2ε0rcσt
(5.8)

For a 100 pC 200 fs electron beam this gives us a radial field of 1 MV/m a

distance of 5 mm from the center of the electron beam. For this field we expect a

phase retardation on the scale of hundreds of degrees from Equation 5.6 if we use

the full thickness of the crystal.

The measured phase retardation, however, was determined to be ∼ 7%. This

phase retardation was determined by first finding the initial intensity value, I0 in

Equation 5.7 with the polarizers in an uncrossed state by measuring the values

on a 12 bit CCD camera with calibratied neutral density filters applied. The

polarizers are then configured in a crossed state and the intensity values are again

measured during the experiment. Using the compared intensities in Equation 5.7,

the phase retardation is determined.

The apparent discrepancy between the measured and expected phase retar-

dation can be explained by the use of the effective length of the crystal that

contributes in Equation 5.6. This length is not the full thickness of the crystal

but a thinner effective length that the laser pulse probes. As the laser pulse moves
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through the crystal, the birefringence is being induced on the same timescale as

the traversal times of both the laser and the near field through the crystal. For

a given transverse slice of the crystal with respect to the propagation of the laser

pulse, then, only a small length estimated to be on the order of 100 µm of the

polarized crystal is sampled by the probe laser pulse.

1 ps relative time

di�erence

MeV

MeV

Figure 5.20: Sample Coincident EOS and measured IFEL Spectra

Sample shots of the EOS measurement can be seen in Figure 5.20. The coinci-

dent images show calibrated spectra from the IFEL interaction as well as the near

field maps captured by the EOS measurement. To determine the relative time of

arrival, a lineout near the edge of the crystal is used and the peak of the resulting

distribution is determined. The meaningful quantity is the relative shift of the

peak of the distribution in the lineout. For each shot this peak is determined

and then recorded along with the maximum energy modulation measured by the

spectrometer.

The image analysis is performed by first sampling the backgrounds. For the

spectrometer this is a sample image without the laser to guarantee no IFEL inter-

action while with the EOS measurement the background is determined by sam-

pling without the electron beam to induce the polarization shift. Several of these

backgrounds images are sampled then the average and RMS values are taken by
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pixel values. For every measurement shot, a filter is applied by zeroing any pixel

with an intensity value less than two standard deviations above the mean of the

background pixels. This results in high contrast signals in which the peak of the

distribution and its relative position are well determined. The measurement gives

a 60 fs per pixel resolution for the relative position of the peak of the EOS signal.

The energy modulation by the spectrometer is determined by applying the

same filtering technique as the EOS image analysis but instead of searching for a

peak signal from a lineout we are interested in the maximum energy modulation

from the initial center of the electron beam on the spectrometer with no energy

modulation. To accomplish this, after the background subtraction is applied, a

loop is performed from the maximum energy values to minimum energy values

searching for five contiguous non zero value, the first value is determined to be

the maximum energy modulation associated with the distribution.

The results of the time of arrival study can be seen in Figure 5.21. Over two-

hundred correlated images were examined and binned into 200 fs bins. The points

and error bars were determined by averaging over values in each bin, taking the

RMS and dividing by the square root of the number of values in each respective

bin. Due to the pointing jitter of the electron beam, for each time of arrival there

are several zero modulation values even around the peak of the correlated region,

therefore binning was required and taking the average value was necessary.

A simple cross correlation model was applied for Gaussian models between the

electron beam and the laser pulses with the values of 120 fs FWHM and 240 fs

RMS, respectively. This model was found to be consistent with the envelope of

the overlap data.
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Figure 5.21: Results of Time of Arrival Study. Over 200 correlated relative time

of arrival and energy modulation were sampled and binned to provide modulation

time of arrival overlap profile.

5.3 Conclusions

The IFEL interaction with this undulator and laser resulted in 40 MeV energy

gain over approximately 25 cm, resulting in an average accelerator gradient of

∼150 MeV/m and a peak gradient. of 200 MeV/m.

Acceleration with a short pulse using CPA Ti:Sapphire technology was inves-

tigated in which the laser pulse length was of the same scale as the electron beam

slippage with respect to the laser. The overlap was found to agree with a Gaussian

cross correlation model that with the measured pulse length values for the laser
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and electron beams.
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