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Inferring the mode and strength of ongoing selection

Gustavo V. Barroso and Kirk E. Lohmueller
Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California 90095-1606, USA; Department of
Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA

Genome sequence data are no longer scarce. The UK Biobank alone comprises 200,000 individual genomes, with more on

the way, leading the field of human genetics toward sequencing entire populations. Within the next decades, other model

organisms will follow suit, especially domesticated species such as crops and livestock. Having sequences from most individ-

uals in a population will present new challenges for using these data to improve health and agriculture in the pursuit of a

sustainable future. Existing population genetic methods are designed to model hundreds of randomly sampled sequences

but are not optimized for extracting the information contained in the larger and richer data sets that are beginning to

emerge, with thousands of closely related individuals. Here we develop a new method called trio-based inference of dom-

inance and selection (TIDES) that uses data from tens of thousands of family trios to make inferences about natural selection

acting in a single generation. TIDES further improves on the state of the art by making no assumptions regarding demog-

raphy, linkage, or dominance. We discuss how our method paves the way for studying natural selection from new angles.

[Supplemental material is available for this article.]

Genetic variation in natural populations is influenced by muta-
tion, genetic drift, and natural selection. The fraction ofmutations
in genomes that are deleterious, neutral, or beneficial has been de-
bated throughout the history of population genetics and remains
controversial (Hey 1999; Kern and Hahn 2018; Jensen et al.
2019). One challenge is that genetic diversity fromnatural popula-
tions likely has been affected by multiple evolutionary forces
simultaneously, making it hard to isolate and test for the effects
of any one such force (Barroso and Dutheil 2021). However,
many nonsynonymous mutations are detrimental (Keightley
and Lynch 2003), and because natural selection has limited effi-
ciency in removing them from the population, segregation of del-
eterious polymorphism is unavoidable, with direct consequences
for the fitness of individuals (Agrawal and Whitlock 2011). In hu-
mans, for example, such genetic load contributes to an ∼50%mis-
carriage rate (Rice 2018), most of which occur in the first 12 wk of
pregnancy. Inferring the strength of selection acting on these mu-
tations (i.e., by howmuch they affect fitness of homozygous carri-
ers, measured by the selection coefficient s) is therefore a central
goal in biology (Eyre-Walker and Keightley 2007; Nielsen et al.
2007). Equally important is characterizing the degree to which
new mutations influence fitness when counterbalanced by the
presence of the “ancestral” allele in the homologous chromosome
copy (i.e., their contribution to fitness of heterozygous carriers,
measured by the dominance coefficient h in the canonical fitness
function 1+h× s) (Agrawal andWhitlock 2011; Huber et al. 2018).
Together, knowledge of the selection coefficient (s) and the dom-
inance coefficient (h) can inform about functional constraints in
protein structure (Moutinho et al. 2019) and interaction networks
(Park et al. 2019; Ratnakumar et al. 2020), shedding light into both
evolutionary and medical genetics.

Existingmethods to infer the strength of selection use the dis-
tribution of allele frequencies of a population known as the site fre-

quency spectrum (SFS) to infer a distribution of fitness effects
(DFE) of new mutations (Eyre-Walker et al. 2006; Keightley and
Eyre-Walker 2007; Boyko et al. 2008; Kim et al. 2017; Tataru
et al. 2017). Although they have greatly contributed to advancing
population genetics in the past 15 yr (Moutinho et al. 2020), these
models have important shortcomings, stemming mostly from the
limited amount of information retained in the SFS. First, they treat
selected sites independently, neglecting linkage disequilibrium
(LD) (Slatkin 2008) and selective interference among them (Hill
and Robertson 1966; Garcia and Lohmueller 2021). Second, they
only incorporate oversimplified demographic histories, which
are likely to be insufficient to accurately capture the effect of ances-
tral population sizes on genetic diversity. Third, because the equi-
librium allele frequencies depend heavily on the fitness of
heterozygotes, which in turn depend on the product of s and h
but not on their individual values, the SFS alone cannot disentan-
gle between these two crucial parameters (Huber et al. 2018).
Consequently, the DFE is typically inferred assuming additivity;
that is, the fitness of heterozygotes is the average of both homozy-
gotes. This is problematic because deleteriousmutations tend to be
recessive, with heterozygotes having fitness values closer to those
of individuals that are homozygous for the ancestral allele (Bosse
et al. 2019; Huber et al. 2018). Fourth, and perhaps most impor-
tantly, the magnitude of selection can change over time (Orr
and Betancourt 2001; Wittmann et al. 2017). For example, genes
that have been highly constrained in the past may experience re-
laxation upon environmental change or even becomemore prone
to mutations favored by selection. Conversely, previously neutral
alleles may become deleterious. Several methods model a DFE
with a proportion of positively selected variants (Boyko et al.
2008; Schneider et al. 2011; Galtier 2016; Zhen et al. 2021), but
these methods still capture long-term signals of selection from
the SFS, effectively averaging s over several thousand generations.
Such averaging may result in misleading inference if there have
been substantial fluctuations in selective pressures during the
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history of the population under study. Although progress has been
recently made in inferring temporal trajectories of selection using
ancientDNA samples (Mathieson2020), a sufficient number of an-
cient samples is not always available from the relevant population.
Finally, a different approach to find signatures of ongoing selec-
tion is to look for allele frequency changes with the age of pre-
sent-day individuals (Mostafavi et al. 2017) or transmission
distortions in family trios (Meyer et al. 2012). Both of these meth-
ods focus on finding variants having large effects on viability (by
testing the null hypothesis of neutrality); however, they do not es-
timate selection or dominance coefficients, which are critical pa-
rameters to quantify the functional constraint of mutations.
Taken together, these limitations reduce the ability of existing
methods to accurately infer parameters of natural selection occur-
ring in contemporary populations.

Here we suggest a way forward to overcome these challenges
in inferring fitness effects for mutations that takes a different
perspective of modeling natural selection acting on a single
generation, rather than throughout the entire history of the pop-
ulation. Our new approach is made possible by the explosion of
genome resequencing data fromnatural populations. For example,
deCODE Genetics has genotype data on more than 160,000 indi-
viduals and 60,000 whole-genome sequences of much of the pop-
ulation of Iceland, including 2926 family trios (Halldorsson et al.
2019). Other projects like the UK Biobank have genotype data
on 500,000 individuals, 200,000 exome sequences, and 150,000
whole-genome sequences (Halldorsson et al. 2022), whereas the
TopMed project has sequenced 53,835 (Taliun et al. 2021), includ-
ing 1465 family trios (Kessler et al. 2020). It is anticipated that
within the next few years, entire populations will be sequenced,
naturally incorporating hundreds of thousands of parent–off-
spring trios.

The availability of sequences from thousands of closely relat-
ed individuals presents both an opportunity and a challenge. On
the one hand, these data will provide an opportunity to overcome
the aforementioned limitations of SFS-basedmethods in the infer-
ence of selection. On the other hand, they presentmethodological
challenges, as traditional assumptions (e.g., absence of relatedness
among sampled individuals) break down with such large samples.
Further, such large data sets require dedicated statistical models
that are accurate and computationally efficient. Herewe overcome
these challenges by developing a new model called trio-based
inference of dominance and selection (TIDES) that is able to infer
dominance and natural selection using tens of thousands of
parent–offspring trios. Our method is designed to handle such
large data sets efficiently, in anticipation of their availability in
the near future. Moreover, a unique feature of TIDES is that it is
sensitive to the strength of selection acting on the current genera-
tion, and it is therefore ideal to study population-specific signa-
tures of selection while not being confounded by other
evolutionary forces like demography or like averaging selective ef-
fects over long time periods. TIDES can be applied to either sets of
variants across the genome or a single variant at a time, further
showcasing its flexibility.

Results

Overview of the model

TIDES uses approximate Bayesian computation (ABC) (Pritchard
et al. 1999; Beaumont et al. 2002; Beaumont 2019) to model the
effect of selection on genetic diversity during the span of a single

generation. It leverages phased sequences from parent–offspring
trios to detect signatures of selection in the transmission of sin-
gle-nucleotide polymorphisms (SNPs) (Meyer et al. 2012) and
uses this information to infer dominance and selection coeffi-
cients. By exploiting the random shuffling of haplotypes during
meiosis, family trio data become immune to external confound-
ing factors that lurk in traditional population genetic studies
(Bates et al. 2020), such as nonequilibrium demography (Sul
et al. 2018; Barton et al. 2019). The first step in our simulation
framework is to use parental haplotypes and recombination
maps to generate an array of potential zygotes for each trio
(note that de novo mutations are identified and removed from
children, because they are not transmitted from the parents)
(Fig. 1A; Algorithm 1).We then sequentially impose rounds of vi-
ability selection on the simulated zygotes, for independent val-
ues of s and h drawn from their prior distributions, and
compute summary statistics from the set of “selected” zygotes
(Fig. 1B). Comparing genomes from children (the observed
data) with genomes from simulated zygotes that could have
been conceived by their parents provides information about
the (unobserved) embryos that did not survive and is therefore
indicative of the strength of selection.

In essence, TIDES is a fitness-based model that mimics the
process of meiosis followed by natural selection. We compute
the fitness f of each individual (both real and simulated) using a
multiplicative model:

f = (1+ s)[khomo] × (1+ h× s)[khet], (1)

where khomo and khet are the counts of derived sites in homozygous
(i.e., carrying two copies of the mutant allele) and heterozygous
states, respectively. To compute summary statistics, we consider
the combined genetic diversity of the parents separately from
the combined genetic diversity of the offspring.We use the relative
differences in the averages of khomo and khet between offspring and
parents as our two summary statistics, denoted Δhomo and Δhet.
Specifically, let x0, y0 be the average number of homozygous and
heterozygous sites among the entire parental generation, and x1,
y1 be the corresponding averages among children. We define
Qobs as the vector storing the quantities Δhomo = x1 – x0 and Δhet =
y1 – y0. Likewise, if x(i)2 and y(i)2 are the averages among simulated
zygotes that have survived selection for the ith parameter combi-
nation, then Q(i)

sim is the vector storing Dhomo = x(i)2 − x0 and
Dhet = y(i)2 − y0. Disregarding the influx of de novo mutations
(which could balance the effect of selection on genetic diversity),
such trio-based summary statistics can be used to model both neg-
ative and positive selection on a set of candidate sites. Whenmod-
eling negative selection, higher values of |s| (corresponding to
stronger negative selection) should lead to sharper reductions in
the overall number of deleterious variants in the offspring and
therefore lower values of both Δhomo and Δhet. Higher values of h
should result in lower values of Δhet but not Δhomo. Conversely,
when modeling positive selection, higher values of s (correspond-
ing to stronger positive selection) should lead to sharper increases
in the overall number of beneficial variants in the offspring and
therefore higher values of both Δhomo and Δhet. Higher values of
h should result in higher values of Δhet but not Δhomo. Therefore,
retaining genotype information instead of reducing genetic diver-
sity to the SFS is key to disentangling the combined effects of dom-
inance and selection.

Inferring ongoing selection
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Evaluating the performance of TIDES

Inferring the exome-wide strength of negative selection

We first evaluate TIDES’ ability to infer the strength of negative se-
lection on a set of deleterious SNPs. To benchmark our model and
method, we simulated trio sequence data from a population re-
flecting the European demographic history (Gravel et al. 2011)

and sex-specific recombination maps (Halldorsson et al. 2019),
as well as the human exome structure using SLiM (Methods)
(Haller andMesser 2019). These simulated data should reflect a rea-
sonable picture of deleterious standing variation, in terms of both
derived allele frequencies and their LD patterns. We then sampled
60,000 individuals from the final generation, matched females
and males at random to generate offspring, and finally down-
sampled to 50,000 trios in each scenario, which became our test
data sets for inference. Throughout the following simulation
study, we used flat, uninformative priors in order to assess
TIDES’ ability to extract information from the data when there is
weak a priori knowledge about the parameters. Specifically, we
let h be uniformly distributed in the open interval (−0.1; 0.6)
and s be log-uniformly distributed in the open interval (−10−5;
−10−1) (except for neutral simulations, where s was uniformly dis-
tributed in the open interval (−0.01; 0.01)).

We found that in neutral simulations, TIDES infers s to be
centered around zero, and in all replicates, the posterior distribu-
tions include both positive and negative values (Supplemental
Fig. S1), indicating that noise in the sampling of parental SNPs
(i.e., genetic drift) does not generate a spurious signal of selection.
TIDES has overall high accuracy in the six combinations of s
(−10−4, −10−3, −10−2) and h (0, 0.5) that we tested, with the medi-
ans of the inferred posterior distributions centered around the true
values of s (Fig. 2). In general, accuracy is higher in the recessive
scenarios and especially as selection becomes stronger. The small
difference in power between additive and recessive scenarios is re-
flected as a negative correlation between posterior samples of s and
h in some additive simulation replicates (Supplemental Fig. S2).
The large difference in power with stronger selection occurs
because we treat our sample of parents as a de facto population

s

Figure 2. Inference of s from a genome-wide set of deleterious SNPs for
different strengths of selection (weak: s=−0.0001; moderate: s=−0.001;
strong: s =−0.01) and dominance effects (recessive: h=0; additive: h=
0.5). Each scenario includes the estimates from 10 simulated data sets.
True values are shown as black horizontal segments, with medians of the
inferred posterior distributions denoted by gray circles and their 95% cred-
ible intervals by gray vertical lines. The y-axis is in log10 scale; all values are
in absolute numbers. Here, 50,000 trios are used.

A

B

C

Figure 1. Schematic representation of TIDES. (A) Observed family trios
(black outline) together with the zygotes generated from parental haplo-
types (gray outline). (B) Illustration of the TIDES simulation engine for two
draws from the prior distribution of s and h, representing strong (blue) and
weak (red) values of selection. The middle row shows the computation of
zygotic fitness and natural selection. (C) Comparison between the ob-
served summary statistics (black offspring/green parents) and the sum-
mary statistics from the simulations using the selection parameters from
the prior distribution (red and blue). The left panel shows the comparison
of the number of homozygous genotypes (ΔHOMO), and the right panel
shows the comparison for the number of heterozygous genotypes
(ΔHET). In this example, the values of s and h from the red parameter com-
bination better fit the observed data than do the parameters shown in
blue.
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and project it forward by one generation, where (disregarding de
novo mutations) negative selection has the opportunity to reduce
deleterious genetic diversity. Therefore, similarly to the classic
population genetics result in which selection becomes more effi-
cient as |Ne

∗ s| grows beyond one (Kimura 1979), the product of
n (the number of trios) and |s| must be large enough for TIDES to
have high inferential power. Indeed, for our sample size of
50,000 trios, |n ∗ s| equals 500 in the strong selection scenario
and 50 in the moderate selection scenario, but equals only five
when selection is weak. Taken together, these results suggest that
for sufficiently large sample sizes, our trio-based framework can ac-
curately infer the strength of ongoing selection for an arbitrary
range of selection coefficients.

It has been well established that the selection coefficients of
deleterious SNPs vary widely, from nearly neutral to lethal (Eyre-
Walker et al. 2006; Boyko et al. 2008; Kim et al. 2017). To assess
the performance of TIDES in the presence of a DFE, we performed
simulations in which the selection coefficient of new mutations
comes from a gamma-distributed DFE parameterized by α=
−0.186 and β=0.071. As negative selection purges strongly delete-
rious alleles more efficiently, the average selection coefficient of
segregating SNPs is expected to be less negative than that of new
mutations. In our simulations of European evolutionary history,
the average s of newmutations is −0.013, whereas that of segregat-
ing SNPs is −0.00015. Because TIDES focuses on a single genera-
tion instead of modeling long-term frequency trajectories, it
infers the average s of SNPs segregating in the parents. Although
the value of −0.00015 falls within the weak selection regime,
where our power with 50,000 trios is reduced, the medians of
the posterior distributions are located near the true value (Fig. 3),
showing that when mutations have different selection coeffi-
cients, TIDES can infer their average.

Finally, we asked whether TIDES could capture a shift in the
strength of selection happening in current generation. The goal
of this simulation was to assess the performance of our method
in a scenario of environmental change in which the selective pres-
sure is abruptly reduced. To this end, we started from the same pa-
rental sequences from the recessive scenario with historical s=
−10−2, except this time we imposed viability selection in the off-
spring generation by changing s of all segregating SNPs to −10−3.
Although a 10-fold decrease in the strength of selection is a statisti-
cally challenging signal to capture (because the level of standing
variation reflects the previously stronger selection and is therefore
reduced relative to the new expectation, with respect to both the
count of deleterious SNPs as well as their frequencies), TIDES re-
covers the updated value of s (Fig. 3), showcasing that our model
is sensitive to the strength of ongoing selection and is not bur-
dened by memory of the past.

Inferring the selection coefficient of a single deleterious SNP

The results above suggest that TIDES can infer the (average) selec-
tion coefficient from a set of deleterious SNPs, but in some situa-
tions, single SNPs may be of interest. A few methods have been
recently developed to infer selection coefficients of single SNPs us-
ing contemporary data (Stern et al. 2019) or their temporal trajec-
tories using ancient DNA data (Mathieson 2020), but tools for
detecting ongoing selection in the focal population are still lack-
ing. To achieve high accuracy with single variants in TIDES, we
once again should require that |n ∗ s| >> 1, noting that only infor-
mative trios (those where at least one parent is heterozygous,
hence the couple has the potential to produce more than one off-

spring genotype) should be included in the analysis. Because inter-
est in individual SNPs may be motivated by situations in which
large effects are expected, we tested TIDES’ accuracy to infer strong
negative selection using the open interval (−10−4; −100) as a log-
uniform prior on s. We simulated data sets where the frequency
q of the deleterious allele among parents is ∼0.5, and we varied
the number of informative trios (10,000, 30,000, or 100,000), as
well as s (−0.01,−0.05, or−0.1) and h (0.0 or 0.5). TIDES is accurate
in all scenarios of s=−0.1, whereas it requires at least 30,000 infor-
mative trios to have high accuracy when s=−0.05 and does not
start to perform well until 100,000 trios and recessive selection
for s=−0.01 (Fig. 4). TIDES’ accuracy on single SNPs depends on
higher values of |n ∗ s| than for exome-wide inference (because all
couples are highly informative in the latter case owing to the large
number of SNPs they carry), but given enough data, our model is
able to infer ongoing selection on a single deleterious variant.

In genomic regions with unusually strong and positive LD,
however, TIDES’ inference on a single deleterious SNP could po-
tentially be biased by transmission distortion induced by the joint
effect of neighboring SNPs. To assess the magnitude of this effect,
we simulated an extreme scenario in which 11 SNPs are 1 kb apart

s

Figure 3. Inference of s from a genome-wide set of deleterious SNPs un-
der complex models of selection. Each scenario includes the estimates
from 10 simulated data sets. Left panel shows the results when the true
DFE follows a gamma-distribution (mean value of s shown by black hori-
zontal line). The right panel shows the case in which there was a 10-fold
reduction in the selection coefficient. Ancient and current values of s
shown by dashed and solid horizontal lines, respectively. Medians of the
inferred posterior distributions denoted by gray circles and their 95% cred-
ible intervals by gray vertical lines. The y-axis is in log10 scale; all values are
in absolute numbers. Here, 50,000 trios are used.
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from each other with pairwise D′ values all equal to one (i.e., max-
imum LD between each SNP) and the recombination rate per site
in the generation of sampling is 10−12 (i.e., 10,000 times lower
than the genome-wide average in humans). We then used TIDES
to infer s and h on themiddle SNP (sixth position in the sequence)
and ignored the presence of its 10 constrained neighbors during
the inference. Using 10,000 trios, we found that when selection
on the focal SNP is 10 times stronger than selection on each of
the neighboring SNPs (s=−0.1 vs. −0.01), our inference remains
accurate (Supplemental Fig. S3A). However, if selection is equally
strong against all 11 variants (s=−0.1), the other linked deleterious
variants bias the inferences of selection at the focal variant
(Supplemental Fig. S3A). This is expected as the fully linked SNPs
reduce fitness and contribute to the inferred value of s, but are
not being modeled in the inference framework. The effect of
hidden linkage on the inference of h is more complex, with 11
equally deleterious variants leading to a small upward bias but
substantially reduced variance of the posterior distributions
(Supplemental Fig. S3B). Because SNPs of similar deleterious effects

will tend to be found in negative as opposed to strongly positive
LD (Hill and Robertson 1966; Garcia and Lohmueller 2021), the
scenario we simulated aimed primarily to test the technical limita-
tions of our method, but is not anticipated to occur in real data
sets. However, caution should be taken when using TIDES on sin-
gle SNPs that belong to tight linkage blocks. In these cases, we rec-
ommend also inferring parameters using all the SNPs in the region
and comparing the posterior distributions from both procedures.

Because the frequency of deleterious SNPs segregating in nat-
ural populations is inversely proportional to the strength of nega-
tive selection against them,more strongly deleterious variants will
tend to be kept at a lower frequency, requiring larger samples from
the population in order to find a sufficient number of informative
trios. On the other hand, the number of informative trios required
for inference decreases with increasing deleteriousness of variants
because, in this case, each SNP exerts a stronger signal in the data
(i.e., sharper transmission distortion). Therefore, the overall sam-
ple size required for accurate inference (with subsequent down-
sampling to consider only informative trios) is a function of

s

Figure 4. Inference of s for a single deleterious SNP with different dominance effects. Each scenario includes the estimates from 10 simulated data sets.
Columns show different values of the true selection coefficient, and rows show different sample sizes, in terms of the number of trios used. True values are
shown as black horizontal segments, with medians of the inferred posterior distributions denoted by gray shapes and their 95% credible intervals by gray
vertical lines. The y-axis is in log10 scale; all values are in absolute numbers.
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both of these parameters that act in opposing directions. To assess
whether it is realistic to expect that any single, strongly deleteri-
ous, variant segregates at appreciable frequencies in humans, we
performed simulations with exponential population growth in
which the final population size is 10,000,000 and assumed that
the total number of target sites subject to mutations of each selec-
tion coefficient is 1,000,000 for s=−0.1, 5,000,000 for s=−0.05,
and 5,000,000 for s=−0.01 (Methods). In all cases, we found
SNPs segregating at the absolute frequency thresholds required
for accurate inference with TIDES (Table 1). In other words, the
simulations show that we would expect a few strongly deleterious
SNPs to segregate at frequencies high enough such that it would be
possible to subset a collection of 10,000,000 total trios down to a
sample size where both q∼0.5 and we meet the required number
of informative trios. We conclude that there are strongly deleteri-
ous variants likely segregating in the population at sufficient fre-
quency to be analyzed using TIDES in the foreseeable future.
With the sample sizes described here, it will already be possible
to use the single-variant model in TIDES to test for strong ongoing
selection, which can provide valuable biological information for
prioritizing particular sites of functional importance (e.g., in regu-
latory regions).

Inferring the selection coefficient of a single beneficial SNP

Although strongly deleterious SNPs tend to segregate in very small
numbers even in large samples, the opposite is true for beneficial
variants subject to positive selection. Although the fraction of
the genome in which mutations are expected to be beneficial is
considerably smaller than that for deleterious mutations, there
are examples of SNPs putatively under strong positive selection
in recent humanhistory (Stern et al. 2019;Mathieson 2020). To in-
vestigatewhether TIDES can infer the strength of positive selection
acting on single SNPs, we simulated data sets inwhich the frequen-
cy q of the beneficial allele among parents is ∼0.5, and we varied
the number of informative trios (10,000, 30,000, or 100,000), as
well as s (0.01, 0.05, or 0.1) and h (0.5 or 1.0). We opted for includ-
ing fully dominant beneficial alleles in order to assess TIDES’ pow-
er in this typically less explored (but still plausible) scenario.When
performing inference, we flipped the sign of the prior on s (log-
uniform in the open interval (10−4; 100)). As expected, our statisti-
cal power is very similar to the analogous analysis of negative selec-
tion. TIDES is accurate in all scenarios of s=0.1, whereas it requires
30,000 informative trios to have high accuracy when s=0.05 and
does not start to performwell until 100,000 trios and dominant se-
lection for s= 0.01 (Fig. 5). Because such variants are expected to
segregate at a range of frequencies on their way to fixation (de-
pending on their age and fitness effect), finding the necessary
number of informative trios should not require that entire popula-

tions are sequenced, expediting the application of TIDES to study
candidate single beneficial SNPs. A particularly attractive applica-
tion of our method will be to test whether variants with a strong
signal of positive selection in the past few thousand years of hu-
man evolution are still under strong selection today. Lactase persis-
tence is a typical example of such recent and strong positive
selection (Bersaglieri et al. 2004), with the 13910∗T variant segre-
gating at frequencies of ∼0.77 and ∼0.43 in Northern and
Southern Europeans, respectively (Liebert et al. 2017). Therefore,
a total of approximately 40,000 random trios from Northern
Europe or approximately 25,000 random trios from Southern
Europe would be required to find approximately 10,000 informa-
tive trios in each of these populations. Assuming that the children
are old enough such that the advantage conferred by the derived
allele (if any) has had the opportunity to bemanifested, with these
numbers, it will already be possible to test the hypothesis that the
strength of (population-specific) ongoing selection is ∼0.1 or
greater for this allele.

Inferring the dominance coefficient

Modeling the transmission of genotype counts in family trios al-
lows us to tease apart the selection coefficient s from the domi-
nance coefficient h because h directly impacts the expected
number of heterozygous but not homozygous sites in the children
(Eq. 1). When inferring posterior distributions for the dominance
coefficient using the exome-wide data from the simulations de-
scribed above, we observe similar trends in accuracy as for the se-
lection coefficient: The posterior distributions fall near the true
values of h in both the strong and moderate selection scenarios,
but not for weak selection, because the small value of |n ∗ s| also af-
fects our ability to infer h from SNP transmission distortions (Fig. 6;
Supplemental Fig. S2). On the other hand, estimating the domi-
nance coefficient for single variants is more challenging than esti-
mating the selection coefficient in terms of the required sample
size. For both negative selection (Supplemental Fig. S4) and posi-
tive selection (Supplemental Fig. S5), posterior distributions of h
are too wide when |s| = 0.01 (spanning almost the entire range of
the prior), whereas we need more than 30,000 informative trios
when |s| = 0.1 and more than 100,000 informative trios when |s|
= 0.05 for accurate inference.

In addition to inferring posterior distributions for h, we can
compare the fit of different models of dominance through
Bayesian model selection (Csilléry et al. 2010, 2012). To this end,
we fitted constrained models to each exome-wide data set and
then computed posterior probabilities for each model based on
their acceptance rates in the standard rejection algorithm.We test-
ed TIDES’ ability to distinguish between “neutral,” “additive,” and
“recessive” models. In the “additive” and “recessive” models, h is
fixed to 0.5 and zero, respectively, and only s is drawn from its pri-
or distribution. In the “neutral” model, s is fixed to zero, and any
fluctuation in the frequencyof SNPs is owing to genetic drift alone.
To benchmark the accuracy of our method in model selection, we
ascribed equal prior probabilities to the three models (in ABC, we
do this by considering the same number of candidate simulations
under each model). Using this framework, TIDES shows remark-
able accuracy in classifying data sets (Fig. 7), with posterior proba-
bilities of 1.0 being assigned to the correct model in all 20
replicates of the strong selection regime (s=−0.01). Likewise, pos-
terior probabilities of 1.0 are assigned to “recessive” in all 10 repli-
cates of recessive and moderate selection (s=−0.001), whereas
posterior probabilities > 0.9 are assigned to “additive” in all the

Table 1. Segregation of strongly deleterious variants in simulations

s
No. of

target sites
No. of trios
required

SNP freq.
threshold

No. of SNPs >
threshold

−0.1 1,000,000 10,000 20,000 149
−0.05 5,000,000 30,000 60,000 27
−0.01 5,000,000 100,000 200,000 12

For each selection coefficient, we show the number of target sites simu-
lated, the number of trios required for accurate inference by TIDES, and
the number of SNPs segregating at frequency q∼0.5 (shown as SNP
count among parents).
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10 replicates of additive and moderate selection. As seen above for
quantitative parameter inference, the weak selection regime (s=
−0.0001) is the most challenging, in which the posterior probabil-
ities are diffuse across the three models in all 20 replicates. Here,
TIDES often cannot reject a neutral model of evolution, in agree-
ment with sample size being insufficient for efficient negative se-
lection in the parents. In summary, besides inferring the
strength of selection, ourmodel offers high accuracy to distinguish
between recessive and additive models of the genotype to fitness
map.

Discussion

Sequence data from family trios offer a fresh perspective for the in-
ference of natural selection. We have implemented these ideas
into a new statistical model called TIDES, which has several con-
ceptual improvements over traditional SFS-based methods. First,
the parent–offspring structure grants immunity to biases arising
from a complex demographic history (Bates et al. 2020).
Demography sensu lato (including population size changes, subdi-

vision, and migration) has been shown to be a confounder in the
inference of selection in general (Williamson et al. 2005; Nielsen
et al. 2007, 2009), and eliminating this effect is considered amajor
enhancement inmodel design. Second, TIDES does not require the
specification of putatively neutral variants for contrasting frequen-
cy spectra. Third, we explicitly model linkage and selective inter-
ference among SNPs, which improves estimates of s and h
compared with a maximum likelihood approach that assumes
SNPs are independent of one another (Supplemental Note S1;
Supplemental Figs. S6–S9). Fourth, TIDES jointly infers the domi-
nance coefficient h. This not only improves inference of s by inte-
grating it over a range of dominance values but also enables
directly testing for additive versus recessive effects of mutations,
a notoriously challenging problem in human population genetics
because different combinations of values for s and h can yield the
same SFS. Moreover, methods to infer strong negative selection
must rely on the assumption of mutation-selection balance
(Haldane 1937; Weghorn et al. 2019) and hence can only infer
the strength of selection against the heterozygote genotype
(Cassa et al. 2017). Finally, TIDES is notably sensitive to the

s

Figure 5. Inference of s from a single beneficial SNP with different dominance effects. Each scenario includes the estimates from 10 simulated data sets.
Columns show different values of the true selection coefficient, and rows show different sample sizes, in terms of the number of trios used. True values are
shown as black horizontal segments, with medians of the inferred posterior distributions denoted by gray shapes and their 95% credible intervals by gray
vertical lines. The y-axis is in log10 scale.
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strength of selection acting on the current generation. This is a
unique feature of our method that avoids conflating the selective
constraint from different periods in time into a single estimate.
For instance, it is conceivable that human cultural evolution (the
advent of medicine in particular) may have modulated the selec-
tive pressure on several genes, and ourmethod captures the updat-
ed state of selective constraint. These improvements come at the
cost of targeting inference at the average s rather than a DFE
(when usingmultiple SNPs) and requiring sample sizes of the order
of tens of thousands of trios. Fortunately, extravagantly large geno-
mic data sets are becoming commonplace, and we anticipate that
TIDES will make its debut analyzing human data within the next
few years. The application to domesticated species will follow, in
which breeding and genetic engineering are used to impose chang-
es along phenotypic gradients.

There are yet other properties that distinguish TIDES from ex-
isting methods. First, because TIDES computes summary statistics
conditioning on the parental haplotypes, it is able to perform infer-
ence in biased data sets (e.g., in which genetic load is expected to be
higher than average), whereas existing methods require random
samples from the population. Second, the type of polymorphism
analyzed is not restricted to SNPs. Using our ABC approach, it is
straightforward to infer the s and h from structural variants such
as copy number variation and chromosomal inversions, some of
which have already been hypothesized to have strong phenotypic
and fitness effects (Alonge et al. 2020; Hämälä et al. 2021). Third,
the age of offspring at themoment of sampling is relevant to under-
standwhich components of fitness are being captured by themodel
(Orr 2009). In the simplest case of SNPs implicated solely in embry-
onic development, TIDESwill infer parameters concerning viability
selection acting up to the time of birth. Estimating s and h for SNPs
whose effects are manifested later in life requires that offspring are

sequenced after the desired phenotype has developed (and conse-
quently its fitness effect has been realized; for a consideration of
the case of the lactase persistence phenotype, see Results). A more
complex picture arises for SNPs that influence viability throughout
adulthood. In these cases, the deleterious effects of the SNPs on fit-
ness can be modeled as increasing the probability of death per unit
time throughout the individual’s lifetime, such that the frequency
of the deleterious alleles decreases with age in a stratified sample
(Mostafavi et al. 2017). Incorporating the effect of this class of
SNPs into our framework could involve, for example, an exponen-
tial decay of offspring survival as a function of both their fitness
and their age, with different flavors of pleiotropy introducing fur-
ther complexity. Modeling these nuances is a benefit of ABC and
contrasts with methods that infer long-term selection, which con-
flate all fitness components (including relative fitness) into a single
estimate. Considering the flexibility that results from TIDES’ prop-
erties put together, we anticipate that it will fundamentally change
inference of natural selection.

The current implementation of TIDES uses the difference in
the counts of heterozygous- and homozygous-derived genotypes
between parents and offspring as the key summary of the data. A
possible extension of TIDES could include additional summary sta-
tistics of genetic variation data, such as allele frequency informa-
tion or patterns of LD. Although such richer statistics should
extract additional information from the data, they come at a com-
putational cost because of the additional bookkeeping needed to
evaluate them at every simulation step. Another future direction
could be to jointly leverage transmission patterns in trios with
counts of heterozygous and homozygous genotypes in large sam-
ples of individuals from the population to coestimate s and h.
Although this approach would have the advantage of leveraging
large data sets of unrelated individuals, by using patterns of stand-
ing genetic variation, it would not be as robust to demographic
processes, like population structure or assortative mating.
Nevertheless, this is a promising avenue for future work.

A potential limitation of TIDES in real data applications is to
distinguish the small effect of transmission distortion on the
background of biases of short-read sequencing data if some of
these biases correlate with parameters of selection. Specifically,
genotyping errors can lead to over transmission of themajor or ref-
erence allele in family-based association studies owing to under-
calling heterozygous genotypes in the offspring (Mitchell et al.
2003; Yan et al. 2016). Such genotyping errors in TIDES could
lead to an overestimation of the strength of selection as it would
appear that the minor (putatively deleterious) alleles are being
undertransmitted. Thus, data quality is of paramount importance
for studies using transmissionpatterns, and only variants in the ac-
cessible part of the genome should be considered. Additionally, as
a control analysis, TIDES could be applied to putatively neutral var-
iants (i.e., intronic variants). If selection was detected, it would
suggest that data artifacts could be driving transmission patterns.
Nevertheless, despite these potential caveats, we are confident
that this challenge will eventually be overcome as improved se-
quencing methods are being developed.

A thought-provoking possibility is that TIDES may open an
avenue for experimental evolution in multicellular organisms
with relatively long generation times. Our results suggest that it
is possible to infer s and h of single SNPs artificially introduced
in model species (e.g., by CRISPR) (Ran et al. 2013). By measuring
fitness in a large sample, but in a single generation (as opposed to
small samples collected over hundreds of generations, as tradition-
ally performed in single-cell organisms), TIDES can be used to

Figure 6. Inference of h from a genome-wide set of deleterious SNPs for
different strengths of selection (weak: s=−0.0001; moderate: s =−0.001;
strong: s=−0.01) and dominance effects (recessive: h=0; additive: h=
0.5). Each scenario includes the estimates from 10 simulated data sets.
True values are shown as black horizontal segments, with medians of the
inferred posterior distributions denoted by gray circles and their 95% cred-
ible intervals by gray vertical lines. Each scenario includes 50,000 trios.
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study fitness effects of mutations (e.g., Sarkisyan et al. 2016) in
highly constrained genes in which natural variation is too low
for traditional methods to work. Much like sequencing itself, the
ease and cost of genetically editing model organisms are expected
to greatly improve in the upcoming years, broadening the range of
application of single-generation inference of selection.

TIDES has potential application to management of species of
conservation concern. In managed populations, biologists may
choose which individuals mate. The fitness model used in TIDES
could be applied to aide in selecting which individuals likely
have the lowest burden of deleterious mutations. Specifically, par-
ents whose offspring have similar counts of heterozygous- and
homozygous-derived genotypes as they do likely carry lower bur-
dens of deleterious variation than do parents whose offspring
have substantially lower counts of heterozygous- and homozy-
gous-derived genotypes. Thus, such parents could be prioritized
in controlled breeding programs. More generally, TIDES will help
determine the dominance effects of deleterious mutations, which
will aide in understanding the relative importance of strongly del-
eterious recessive mutations versus additive weakly deleterious
mutations at reducing fitness in small populations.

Future progress in genomics depends on extracting informa-
tion from large data sets in which assumptions about the related-
ness of individuals (or lack thereof) break down. We have shown
that going beyond random samples from a population allows stat-
istical methods to capture signals that are both more subtle (e.g.,
with respect to timescale) and more robust (requiring fewer as-
sumptions about the data-generating process) than the current
state of the art. Therefore, we believe that upcoming studies should
prioritize the inclusion of family trios or larger pedigrees in their

sequencing efforts (Meyer et al. 2012) because they provide an
overall richer data structure that can be exploited to infer pre-
sent-day recombination rates (Halldorsson et al. 2019), mutation
rates (Francioli et al. 2015), and now dominance as well as selec-
tion. As TIDES conditions onparental haplotypes, anynew “child”
in the data set will add a similar amount of information, regardless
of its kinship coefficient with other members of the data set (sib-
lings, trans-generational pedigrees, etc.). Thus, larger pedigrees
may be used in TIDES without loss of accuracy. We hope that as
the TIDES framework continues to develop, it will also inspire oth-
er groups to consider how to leverage the future abundance of fam-
ily trio data to infer other types of selection.

Methods

TIDES is a fast simulator ofmeiosis followed by selection.We opted
to embed TIDES in an ABC framework because its high flexibility
will foster extensions of the model in the future. Here we outline
a typical execution with default options. For each of n trios,
TIDES simulates an array of 150 zygotes. The number of zygotes
each parent generates is proportional to the number of children
they have in the data set, avoiding bias in the presence of siblings.
Because meiosis is independent of s and h, the n arrays are precon-
structed and retained throughout the execution of the program
(Fig. 1A), substantially improving computational performance.
TIDES then iteratively (1) draws s and h values from their prior dis-
tributions, (2) computes the fitness of all zygotes and samples once
per trio with probability proportional to their fitness (Fig. 1B), and
(3) computes summary statistics for the batch of “selected” zygotes
(note that sampling one zygotewith probability proportional to its

Figure 7. TIDES can accurately distinguish among neutral, recessive, and additivemodels of selection. Truemodels are shown above each simplex (weak:
s=−0.0001; moderate: s=−0.001; strong: s=−0.01; recessive: h=0; additive: h=0.5). The coordinates along each axis denote posterior probabilities as-
signed to the respective model. The color of each tile represents the proportion of simulations that fall within that probability bin (scale shown at far right).
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fitness is more efficient than sampling one zygote at random, im-
posing viability selection, and repeating this process until a zygote
survives in each trio) (Fig. 1C; Algorithm 1). Contrasting summary
statistics computed from the simulated survivors (Qsim) with those
computed from the actual children (Qobs) offers an objective ap-
proach to inference: Values of s and h that generate substantial dif-
ferences between Qsim and Qobs are discarded, whereas those that
best agree are used to paint posterior distributions for the parame-
ters. In the pilot run, we use a uniform prior (e.g., (−0.1; 0.6)) for
h and a log-uniform prior (e.g., (−10−5; −10−1)) for s, the latter in
order to more frequently sample from regions of low selection co-
efficients that would otherwise not be sufficiently explored by a
uniform prior.

Given sufficient summary statistics, the accuracy of ABC con-
verges to that of full likelihood methods as the acceptance rate of
proposed parameters decreases toward zero (Beaumont 2019). In
practice, the performance of specific ABC methods increases
with the total number of simulations performed (Csilléry et al.
2010). Therefore, motivated by improving computational efficien-
cy, several approaches have been developed to sample parameter
values from a region of high posterior density (Sisson and Fan
2018). These mostly rely on proposing a new set of values condi-
tional on the acceptance of previous proposals. Consequently,
these approaches complicate parallelization of the simulation en-
gine, being of most value when individual simulations are compu-
tationally expensive. When focusing on the one-generation
interval between parents and offspring, however, each individual
simulation is computationally cheap such that, in TIDES, we prior-
itized multithreading over more elaborate sampling techniques.
After obtaining a reference table of the simulation using TIDES,
all downstream analyses regarding model selection and parameter
inference were performed using a combination of the packages
abc, rethinking, scales, cowplot, and tidyverse in R 3.6 (scripts
available in the GitHub repository; see Software availability) (R
Core Team 2020).

The algorithms below briefly summarize the ABC implemen-
tation of TIDES.

Algorithm 1

1. Setting up
Compute summary statistics Qobs for the actual children;
For each trio 1..n, generate 150 zygotes based on parental hap-
lotypes and sex-specific recombination maps;

2. Pilot simulations
For each pilot simulation 1..MPILOT:
a. Draw s and h from their prior distributions;
b. For each trio 1..n, compute the fitness of zygotes 1..150;
c. For each trio 1..n, sample one zygote with probability pro-

portional to its fitness;
d. Compute summary statistics Qsim for the sample on n select-

ed zygotes;
3. Updating priors

Accept a proportion t of the pilot simulations using the stan-
dard rejection algorithm based on the Euclidean distances be-
tween Qobs and each Qsim;

Set the sorted arrays of accepted s and h values as prior dis-
tributions for step 4;

4. Final simulations
For each simulation 1..MFINAL:
a. Draw s and h from their updated prior distributions using

Algorithm 2;
b. For each trio 1..n, compute the fitness of zygotes 1..150;
c. For each trio 1..n, sample one zygote with probability pro-

portional to its fitness;

d. Compute summary statistics Qsim on the sample on n select-
ed zygotes;

5. Use TIDES output files as input for abc_adjust.R to paint the
posterior distributions of s and h using rejection followed by re-
gression adjustment.

Algorithm 2

1. Letw1 be an element drawn uniformly at random from the sort-
ed array of parameter values;

2. Ifw1 is the first element of the array, letw2 be the next element;
Else if w1 is the last element of the array, let w2 be the previous
element;
Else set w1 and w2 as the previous and next elements in the list,
respectively;

3. Draw a random number uniformly between w1 and w2.

Simulation study

When benchmarking inference on individual SNPs, genomes for
the test data sets were simulated within TIDES itself; each of the
two haplotypes in each parent received the derived allele with
50% probability. Then, when joining females and males in cou-
ples, we avoidedmatches inwhich both parents were homozygous
for the same allele.When benchmarking inference on a large set of
candidate SNPs (e.g., all nonsynonymous mutations), the simula-
tion of the test data set was more involved. Parental genomes were
generated using SLiM 3.1 (Haller andMesser 2019). The sequences
were 66.8 Mb in size, approximately the size of the human exonic
coordinates obtained with Ensembl annotation in the biomaRt
package (https://bioconductor.org/packages/release/bioc/html/
biomaRt.html). Nonsynonymous sites were distributed according
to exome coordinates provided for GRCh38 in Ensembl, after re-
moving overlapping genes. The nonsynonymous mutation rate
was set to 6.65×10−9 per site per generation, and we used sex-spe-
cific recombination maps from deCODE (Halldorsson et al. 2019).
The nonsynonymous mutation rate is in the low end of the spec-
trum commonly adopted, meaning that our simulations are con-
servative with respect to the amount of standing deleterious
diversity, and therefore, our simulation study is likewise conserva-
tive with respect to statistical power. The demography of the sam-
ple approximated the demography of Europeans (Gravel et al.
2011), where we omitted African populations for computational
efficiency as well as increased the number of generations from
58,000 to 58,300 so that approximately 60,000 diploid individuals
are sampled in present time. To allow reproducibility, we set the
random seed of simulations in each evolutionary scenario to its
corresponding replicate number (one to 10). All scripts necessary
to reproduce the above procedures can be found in the GitHub re-
pository (see Software availability).

The simulations described above were performed under the
Wright–Fisher model that uses relative fitness among individuals
and in which selection occurs in the mating stage of the life cycle.
Because we focused on viability selection, we had SLiM output ge-
nomes from the parental generation exclusively. These were then
input in TIDES, where they underwent viability selection followed
by randompairing of females andmales, and reproduction; finally,
viability selection was imposed on the resulting embryos. These tri-
os became the “observed” data in each of our simulated scenarios.
To ensure that in all scenarios exactly 50,000 children are available
after viability selection in the embryos (i.e., so we can directly relate
statistical power to sample size), we generated 10 embryos per cou-
ple, subsequently down-sampling the number of surviving children
to 50,000 at random. Because for some couplesmore than one child
survives this process, our simulated data sets naturally contain sib-
lings. Viability selection was executed according to the description
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in the SLiM manual (individuals were deleted if their fitness was
smaller than a uniform random number between zero and one)
and using the same s and h values as in the Wright–Fisher step of
the simulation, except for simulated data sets for which the purpose
was to test sensitivity to recent changes in s (Fig. 3). For the data sets
in which the selection coefficient of each mutation follows a DFE,
this information was extracted from the VCF files output by SLiM,
and the fitness of each individual was computed using its exact ge-
notype-fitness map. In summary, the simulated trios experienced a
Wright–Fisher human demographic model with mating selection,
followed by non-Wright–Fisher dynamics with viability selection
in the last two generations.

For the simulations to assess the frequency of strongly delete-
rious variants segregating in the population (Table 1), we used a
simpler demographic model in which the population size is cons-
tant at 10,000 individuals for 57,000 generations and then grows
for 1000 generations until it reaches 10,000,000. In these simula-
tions, the number of target sites is 1,000,000 (for s=−0.1),
5,000,000 (for s=−0.05), and 5,000,000 (for s=−0.01), with a
constant recombination rate of 10−3 between each pair of sites in
order to partially mimic their dispersion across the genome.
Simulations to benchmark single-SNP inference were conducted
within TIDES itself by assigning the derived allele to each parental
haplotype according to a Bernoulli trial with P=0.5. When per-
forming inference on (single) beneficial SNPs, we subtracted 0.2
from the fitness of each individual throughout the ABC simula-
tions to prevent individuals from having survival probabilities > 1.

Simulations of tight linkage blocks were again performedwith-
in TIDES itself. We simulated haplotypes with 11 SNPs, each sepa-
rated by a 1-kb distance. The relative frequency of each SNP was
drawn from a geometric distribution with mean equal to 0.5. The
frequency of the middle SNP (at position 6) was set to exactly 0.5.
The true selection coefficient of the middle SNP was set to −0.1,
whereas the true selection coefficient of its neighbors was set to ei-
ther −0.1 (model 1×) or −0.01 (model 10×). SNPs were then distrib-
uted among simulated haplotypes in maximum LD: Not only were
all pairwiseD′ values equal to 1.0, but we alsomaximized higher-or-
der linkage among the SNPs. This is equivalent to there being a sin-
gle genealogical tree describing the ancestry of the resulting
haplotypes (in other words, zero recombination events in their
past), with mutations on different branches of this tree determining
their frequency. Haplotypes were then assembled into diploid indi-
viduals, and diploid individuals were randomly paired to form cou-
ples. Reproduction was performed with a uniform recombination
rate of 10−12 per base-pair per generation during meiosis to keep
the LD intact. Viability selection was performed based on the multi-
plicative fitnessmodel that takes into consideration all SNPs in a dip-
loid individual. Inference was performed by considering only the
middle SNP. In other words, TIDES was blind to the effect of its
neighbors in the tight linkage block (i.e., only one SNP was assumed
to be potentially under selection when performing inference).

In our simulation study of human-like exons, we omitted de
novomutations (in the last generation) from our test data in order
to focus on the reduction of deleterious variation caused by nega-
tive selection between parents and offspring. However, we provide
two options for TIDES users to accommodate de novomutations in
real data sets. First, one can specify the total number of sites that
can be targeted by deleterious mutations (L) as well as the muta-
tion rate per site per generation among these sites (μ). In this
case, SNPs are added to each simulated zygote with Poisson rate
equal to L× μ. In case the user-specified rate is zero (its default val-
ue), de novomutations are identified as those absent from parents
but present in children, from which they are removed. These op-
tions are presented in the test run that can be found in TIDES
GitHub repository (see Software availability).

Software availability

The TIDES software package, composed of the simulation engine
written in C++ and R scripts (R Core Team 2020) for downstream
analyses and visualization of the results, is freely available as
Supplemental Code and at GitHub (https://github.com/
gvbarroso/TIDES).
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