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Approximate Solutions for Diffusive Fracture-Matrix
Transfer: Application to Storage of Dissolved CO2 in

Fractured Rocks

Quanlin Zhou 1, Curtis M. Oldenburg 1, Lee H. Spangler 2, Jens T. Birkholzer 1

1 Energy Geosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
2 Big Sky Carbon Sequestration Partnership, Montana State University, Bozeman, MT, USA

Abstract

Analytical solutions with infinite exponential series are available to calculate the rate of diffusive
transfer  between  low-permeability  blocks  and  high-permeability  zones  in  the  subsurface.
Truncation of these series is often employed by neglecting the early-time regime. In this paper,
we  present  unified-form  approximate  solutions  in  which  the  early-time  and  the  late-time
solutions are continuous at a switchover time. The early-time solutions are based on three-term
polynomial functions in terms of square root of dimensionless time, with the first coefficient
dependent only on the dimensionless area-to-volume ratio. The last two coefficients are either
determined analytically for isotropic blocks (e.g., spheres and slabs) or obtained by fitting the
exact  solutions,  and  they  solely  depend  on  the  aspect  ratios  for  rectangular  columns  and
parallelepipeds.  For  the  late-time solutions,  only  the  leading exponential  term is  needed for
isotropic blocks,  while  a  few additional  exponential  terms are needed for highly anisotropic
rectangular  blocks.  The  optimal  switchover  time  is  between  0.157  and  0.229,  with  highest
relative approximation error less than 0.2%. The solutions are used to demonstrate the storage of
dissolved CO2 in fractured reservoirs with low-permeability matrix blocks of single and multiple
shapes and sizes. These approximate solutions are building blocks for development of analytical
and numerical tools for hydraulic, solute, and thermal diffusion processes in low-permeability
matrix blocks. 
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1. Introduction

Analytical  solutions  for  diffusion  in  isotropic  and  anisotropic  blocks  of  low-permeability
materials have been fundamental to modeling hydraulic, solute, and thermal diffusion processes
in the subsurface [Carslaw and Jaeger, 1959;  Crank, 1975]. These solutions are available for
calculating  the  time-dependent  rate  of  transfer  between  low-permeability  blocks  and  high-
permeability  zones,  such  as  generally  found  in  fractured  media.  For  contaminant  transport
modeling,  dominant diffusive transport  in  low-permeability blocks is  coupled with dominant
advective and dispersive transport in the high-permeability zones [Coats and Smith, 1964;  van
Genuchten  and  Wierenga,  1976;  Brusseau  et  al.,  1989].  This  coupling  is  complicated  by
simultaneous diffusion in inherently heterogeneous low-permeability blocks of various shapes
and sizes in natural unconsolidated aquifers. The simultaneous diffusion can be best represented
by multi-rate diffusion models and multi-rate first-order mass-transfer models [e.g.,  Haggerty
and Gorelick, 1995;  Willmann et al., 2008;  Silva et al., 2009]. The complicated coupling, with
time-convolution caused by time-dependent mobile-fluid concentrations, has been solved using
Laplace transforms for certain flow conditions [Moench, 1995; Haggerty et al., 2001], memory
functions with recursion [Carrera et al., 1998; Haggerty et al., 2000], or using simpler multi-rate
first-order mass transfer with semi-analytical or numerical modeling [Haggerty and Gorelick,
1995;  Willmann et al., 2008;  Silva et al., 2009].  Haggerty and Gorelick [1995] showed that a
single-rate diffusion model for an isotropic block of given shape and size could be represented
equivalently by a multi-rate first-order mass-transfer model with specific capacity ratios and rate
coefficients in an infinite series of exponential functions. By this approach, truncation of the
infinite series is often employed by neglecting the early-time transfer regime. When only the
leading term is used with capacity ratio of 1 (unity) assumed, the mass transfer model is reduced
to  equivalency  with  conventional  first-order  dual-porosity  models  [Barenblatt  et  al.,  1960;
Warren and Root, 1963] and with mobile-immobile fluid models [Coats and Smith, 1964] that
may be accurate for the very late-time regime close to equilibrium [e.g., Zimmerman et al., 1993;
Liu et al., 2007; Guan et al., 2008]. Note that modeling approaches for mass transfer in isotropic
low-permeability  blocks,  conceptualized as  spheres  and cylinders  representing soil  grains  or
aggregate soils, and as slabs for clay layers and aquitards, have always assumed locally one-
dimensional (1D) diffusion in contaminant transport and remediation studies.

Analytical solutions to 2D and 3D diffusion processes in isotropic and anisotropic rectangular
blocks are also available in the literature [Carslaw and Jaeger,  1959;  Crank,  1975;  Holman,
1990; Lim and Aziz, 1995]. These solutions can better represent two and three orthogonal sets of
parallel fractures and corresponding matrix blocks in natural fractured reservoirs. However, to
our knowledge, all analytical solutions developed for analyzing tracer tests have assumed one set
of parallel fractures with single-rate diffusion in the matrix blocks regardless of flow geometry,
e.g., for linear flow [Tang et al., 1981; Sudicky and Frind, 1982; Maloszewski and Zuber, 1985,
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1990, 1993], for radial flow [Becker and Charbeneau, 2000; Reimus et al., 2003], and for inter-
well flow [Novakowski et al., 2004]. Using these analytical solutions,  Zhou et al. [2006, 2007]
analyzed  a  large  number  of  field  tracer  tests  and  estimated  apparent  single-rate  diffusion
coefficients. For more complex flow systems,  Carrera et al. [1998] proposed a hybrid model,
with memory functions defined for 1D diffusion, recursion for time-convolution, and numerical
modeling of advection-dispersion in fractures.  A multi-rate  diffusion model was proposed by
Haggerty et al. [2001] to account for the effect of varying block sizes on the late-time behavior
of breakthrough curves (BTCs) measured in a highly fractured dolomite and to  interpret the
power-law BTCs captured at  many sites [e.g.,  Hadermann and Heer,  1996;  Haggerty  et  al.,
2000, 2004; Meigs and Beauheim, 2000].

The exact analytical solutions for 1D, 2D, and 3D diffusion in low-permeability matrix blocks
may  exhibit  different  transfer  regimes  in  the  [0,  ∞ ]  range  of  dimensionless  time,

T d=Dt / l2 ,  where  D  is the diffusion coefficient,  l  is the minimum  half-width of a

rectangular block or the radius of a cylinder or a sphere, and  t  is the time.  For example,

Carrera et al. [1998] developed asymptotic solutions for very early times that show  √Td -

based  behavior,  and  for  very  late  times  after  which  fractures  and  the  rock  matrix  are  at

equilibrium.  Haggerty  et  al. [2001]  defined  a  diffusion  timescale  as  T d=1  after  which

approximate equilibrium can be assumed for a cubical matrix block. Most recently, Zhang et al.
[2011]  approximated  the  exact  solution  for  heat  loss  from a  wellbore  to  the  infinite-extent
surrounding rock using an early-time solution and a late-time solution separated by a switchover

T d  [Dykhuizen,  1990].  March et  al. [2016] approximated the spontaneous counter-current

water-oil imbibition flow using an early-time  √Td -based solution that is based on the 1D

analytical solution of McWhorter and Sunada [1990] and a late-time exp(T d) -based solution

derived  from  the  exponential  solution  of  Aronofsky  et  al. [1958],  with  sufficient  accuracy
compared to high-resolution numerical modeling. The counter-current two-phase flow has also
been addressed using multi-rate mass-transfer models for immiscible displacement [Tecklenburg
et al., 2013, 2016].  Unified-form approximate solutions with early- and late-time solutions are
needed to simplify the exact analytical solutions to 1D, 2D and 3D diffusion in isotropic and
anisotropic blocks of low permeability.  For example,  the exact solution to  3D diffusion in a

rectangular  parallelepiped  at T d=10−7  (i.e.,  a  very  early  time)  requires  a  calculation  of

1000× 1000 ×1000  exponential functions, which is computationally expensive.

In this paper, we present unified-form approximate solutions to capture four different regimes

that can be defined physically: (1) a very-early-time regime with √Td -behavior, (2) an early-

time regime with  √Td

P¿
)-behavior, where  P  represents a three-term polynomial function

3



[Crank, 1975], (3) a late-time regime with exp(T d) -behavior, and (4) an equilibrium regime

in which 99.9% or 99% of the mass has been transferred. Mathematically, the first two regimes
can be represented by the early-time solutions, while the last two regimes can be represented by

the late-time solutions that are continuous at the switchover T d  with the early-time ones. The

unified form of the approximate solutions is developed for isotropic blocks of 1D spherical,
cylindrical, and slab-like diffusion, and isotropic and anisotropic rectangular blocks of 2D and
3D diffusion. 

For demonstration, we consider the problem of estimating mass transfer between matrix blocks
and fractures (or high-permeability zones) in systems relevant to geologic carbon sequestration
(GCS),  such  as  fractured  reservoirs,  coal  beds,  or  fractured  cap  rock.  Specifically,  we
demonstrate the use of these solutions by calculating the storage efficiency of dissolved CO2 in
fractured reservoirs of very low matrix permeability that are of single and multiple block shapes
and sizes. These developed approximate solutions provide a fundamental advance for analytical
and numerical modeling of hydraulic, solute, and thermal diffusion in unconsolidated aquifers,
fractured reservoirs, coal beds, and cap-rock systems. 

2.  Approximate  Solutions  for  Diffusive  Fracture-Matrix
Transfer

2.1. Governing Equation 

We are interested in 1D diffusion of dissolved CO2 (dsCO2) in slab-like, cylindrical, or spherical
matrix  blocks,  2D  diffusion  in  rectangular  columns,  and  3D  diffusion  in  rectangular
parallelepipeds. The diffusion equation for a matrix block can be written

∂ ϕmC r

∂t
=

∂
∂ x i

(ϕm D
∂ C r

∂ xi
)                                                             (1)

where ϕm  is the matrix porosity (i.e., pore volume per unit volume of the matrix), Cr (x , t)

is the spatially-varying relative concentration scaled by constant concentration  C0  (i.e.,  an

unchanging solubility limit of dsCO2),  t  is the time, x i  is the coordinates ( ¿ x , y , z  in

3D), and D  is the molecular diffusion coefficient in the porous matrix (i.e., the product of
tortuosity and diffusion coefficient of dsCO2 in brine). Without loss of generality, it is assumed
that  the  matrix  block  is  saturated  with  brine  and  initially  free  of  dsCO2,  and  the  fractures
surrounding the block  are saturated with aqueous phase and have  a constant concentration of

C0 that is fixed with time as a boundary condition. It is also assumed that the matrix porosity

and diffusion coefficient are constant in space and time. 
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To account for fracture-matrix transfer, we further define Ct  to be the average concentration

in the block at time t, and Cd  to be the relative average concentration in the block. If M t

denotes  the  total  amount  of  diffusing  dsCO2 that  has  entered  the  block  from  its  bounding

fractures at time  t, and  M ∞  denotes the corresponding quantity after infinite time, we can

define a dimensionless mass of dsCO2 as
 

M d=M t /M ∞=C t /C0=Cd                                                          (2a)

where M ∞=ϕm V C0 , where V is the volume of the block. M d  can be written in terms of

dimensionless time defined by

T d=Dt / l2                                                       (2b)

where  l  is the  half-width of a slab, or the minimum half-fracture spacing of a rectangular
column or parallelepiped, or the radius of a cylinder or a sphere. 

2.2. Approximate Solutions for Isotropic Matrix Blocks 

We are interested in unified-form, approximate solutions to diffusive transfer between a matrix
block and surrounding fractures.  The exact  solutions for  spherical,  cylindrical,  and slab-like
blocks are available in Crank [1975], and are rewritten in Eqs. (3a), (3b), and (3c) respectively:

M d=1−6∑
n=1

∞
1

n2 π2 exp  (−n2 π2 T d)                                                   (3a)

M d=1−4∑
n=1

∞
1
βn

2 exp  (−βn
2 T d)                                                   (3b)

M d=1−2∑
n=1

∞
4

(2n−1)
2 π2 exp  (−(2n−1 )

2
π2T d /4) ,          (3c)

where βn  are the positive roots of the Bessel function of the first kind of order zero. Equation

(3a-c) can be written in a general form for any isotropic blocks

M d=1−∑
n=1

N

b1n exp (−b2nT d )− ∑
n=N+1

∞

b1nexp  (−b2n Td) , (3d)
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where  b1n  are the capacity ratios,  b2n  are the mass-transfer rate  coefficients scaled by

D / l2 , and ∑
n=1

∞

b1n=1  [Haggerty and Gorelick, 1995]. Figure 1a shows the solutions with

truncation of various numbers ( N ) of the exponential terms for spherical and slab-like blocks,
indicating that the solutions can be accurate for early-time behavior by keeping a large number of

the terms in the infinite series of Eq. (3). For example, N=1000  is needed for T d=10−7 .

For truncation with N=1, 10,25, 50 , and 100, we also mark the ( M dN , T dN ) point as a

symbol in Figure 1a to indicate for each  N value that the additional contributions from faster

diffusion with higher rate coefficients, ∑
n=N+1

∞

b1nexp  (−b2nT d) , are negligible in the solutions

beyond the time T d ≥T dN . For example, for a slab-like block, we have T dN=0.213, 0.0030 ,

0.00052 , 0.00017 ,  or 0.000044  for  N=1, 10,25, 50 ,  or  100.  Note  that  all

contributions from these faster-diffusion terms are already considered as a part of M d  by their

capacity ratios and equilibrium concentrations.

The  corresponding  solutions  for  small  times  are  available  in  Crank [1975]  and  rewritten
respectively for a spherical, cylindrical, and slab-like block, respectively:

M d=
6

√π
√Td+12√T d∑

1

∞

ierfc (n/√T d)−3T d                              (4a)

M d=
4

√π
√Td−T d−

1
3√π

(T d)
3/2

+…                                      (4b)

M d=
2

√π
√Td+4 √T d∑

1

∞

(−1 )
n
ierfc (n /√T d) ,   (4c)

where ierfc() is the integral complementary error function.

Based on the exact solutions in Eq. (3) and the solutions for small times in Eq. (4), we develop
approximate solutions by keeping only the leading term ( N=1 ) in the infinite series of the

exact solutions for large times, and by keeping the first three terms written in terms of √Td

for small times. We introduce the switchover dimensionless time ( T d 0 ) between the early and

late times so that the solutions are continuous in the time domain. The developed approximate
solutions for a spherical, cylindrical, and slab-like block have the unified form:  
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M d={
a1 √T d+a2T d+a3(T d)

3/2T d ≤T d 0(5a)

¿1−∑
j=1

N

b1 j exp [−b2 j Td ] ,T d>T d0(5b)
 

where a1 , a2 , a3 , b1 j , b2 j  are coefficients with different values for the different

shapes of blocks, and N  is the number of leading exponential terms in the exact solutions. All

the coefficients for the three shapes of an isotropic block are listed in Table 1,  where  β1  (

¿2.4048255577 ) is the first root of the Bessel function of the first kind of order zero.

To determine  T d 0  for each block shape, we calculate the relative errors for 402 T d  data

points between 0 and 0.4, with an increment of 0.001. As shown in Figure 1b, the first relative
error is between the exact solutions in Eq. (3) using N=1000  and the approximate solution in
Eq. (5a), while the second relative error is between Eq. (3) and Eq. (5b), both relative to the

exact solutions for all T d  data points. The first relative error increases with T d , while the

second one decreases. By comparing these two relative errors, we determine the optimal T d0

at which the two relative errors are equal, minimizing the maximum relative error over the entire

time domain. Note that a-priori T d0  is not needed in the determination of T d0 . As a result,

the faster-diffusion terms with higher rate coefficients have negligible time-dependent impact on

the late-time solutions as their contributions are already considered in  M d  during the early

times. 

The relative errors in percentage of the exact solutions are less than 0.15% and 0.03% for a slab
and  sphere,  respectively.  For  a  cylindrical  block, the  highest  relative  error  is  0.47%  at

T d0=0.123  when using a2=−1  and a3=1/(3√π )  from Eq. (4b); to reduce the relative

error, we fit a2  and a3  against the exact solutions at 109 logarithmically-spaced points of

T d  in the range [ 10−5 ,0.2 ], while keeping a1=4 /√π . The obtained values of a2  and

a3  are listed in Table 1, with the maximum relative error reduced to less than 0.1%.

The obtained values of T d 0  for the three shapes of an isotropic block are also listed in Table 1,

along with the maximum relative errors ( εmax ) of the approximate solutions, the dimensionless

mass,  
T d 0

M d 0=M d ¿
),  at  T d 0 ,  and  the  dimensionless  area-to-volume  ratio  ( R=Al /V )

scaled by l, where A is the fracture-matrix interface area for a block.

As shown in Figure 1c,  the approximate solutions are in excellent agreement with the exact
solutions (calculated using finite  N = 1000 for spheres and slabs or  N=150  for cylinders)

over the range of  T d=[10−5 , 10]  for spherical,  cylindrical,  and slab-like blocks.  It  is also
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shown that the leading-term solutions are  sufficiently accurate  for the late-time behavior for
T d>T d0 . 

T d 0  is relatively large, between 0.157 and 0.213, and is far longer than the arrival times of

concentration fronts at the block center, as shown by  Cr (x , t)  in Figure 1d. At  T d0 , the

relative concentration at the block center is 0.25 and 0.58, and the dimensionless mass is 0.52
and  0.87  for  a  slab  and  sphere,  respectively.  This  indicates  that  the  early-time  behavior  of
diffusion accounts for more than 50% dsCO2 mass storage in fractured rock and is accurately

modeled by the three-term polynomial functions in terms of  √Td  in Eq. (5a). After  T d 0 ,

the dimensionless mass follows the exponential function with a decreased flow rate with time for

additional storage. The dimensionless time, T de , needed to reach equilibrium (defined here by

M d ≥0.99 )  is  1.91,  0.76,  and  0.44  for  a  slab-like,  cylindrical,  and  spherical  block,

respectively. 

2.3. Approximate Solutions for Anisotropic Matrix Blocks  

A slab block can be formed by one set of two parallel fractures with fracture spacing of 2l .

Two orthogonal sets of parallel fractures with fracture spacing of 2 lx  and 2 l y  can form a

rectangular-column block and three orthogonal sets of parallel fractures with fracture spacing of
2l x ,  2l y ,  and  2l z  can  form a  rectangular-parallelepiped  block.  Here  we  introduce

l=l x ≤l y  or l=l x ≤l y ≤ lz ,  and the aspect ratios Rli=l / li , i= y , z , where x , y , z  are the

local coordinates and may not be the same as the global ones. 

For a block of a rectangular column, the analytical solution for M d  can be derived by taking

the product of the dimensionless solution for a slab-like block in Eq. (3c) [Carslaw and Jaeger,
1959; Crank, 1975; Holman, 1990; Lim and Aziz, 1995], and is rewritten here in terms of aspect

ratio Rly :

M d=1−( 8

π2 )
2

∑
n x=1

∞

∑
ny=1

∞
1

(2nx−1 )
2
(2n y−1)2 exp[−( (2nx−1 )

2
+( 2n y−1 )

2
R ly

2 )
π2

4
T d] .   (6)

There are no analytical solutions for early- and late-time regimes available in the literature. We
assume  that  the  solution  form  in  Eq.  (5a)  remains  valid  for  the  early-time  solutions  of  a

rectangular-column block. Coefficient a1  solely depends on the dimensionless area-to-volume

ratio;  when  scaling/dividing  by  R,  the  very-early-time  solutions  (e.g.,  T d ≤10−4  with  a

penetration depth of 0.04 l  with 0.5% concentration) in Eq. (5a) are independent of block
geometry [Carrera et al., 1998], as shown in Table 1. 
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To determine coefficients a2  and a3 , we select 11 values of aspect ratio Rly  in the range

[0, 1] with an increment of 0.1. For each  Rly  value, we calculate the exact solution at 201

points  of  T d  that  are  logarithmically-spaced between  10−7  and  10  using  Eq.  (6)  and

N x × N y=2000× 2000 . The first 159 data points (up to T d=0.21 ) are used to fit the three

coefficients ( a1 , a2 , a3 ) simultaneously. The goodness of each fit is 1.0, indicating that Eq.

(5a) has the exact form of solutions, with the coefficients estimated accurately. It is found that
a1  and a2  are linearly corrected with Rly , while a3  is negligible, for the 11 datasets.

The initial fitting of each dataset is refined by fixing a1=2(1+R ly)/√π  and a3=0  and by

only  fitting  a2 ;  the  sum  of  the  square  of  residual  difference  between  the  exact  and

approximate solutions is less than 5 ×10−7 . The obtained values of coefficient a2  are then

perfectly fitted as a linear function of Rly  (see Figure 2b). Note that the fitting of coefficient

a2  is not sensitive to T d0  as long as it is between 0.21 and 0.23. 

For the late-time approximate solutions, the leading-term approximation may not be sufficiently

accurate. If the degree of anisotropy increases and Rly  decreases, a few additional exponential

terms in Eq. (6) are needed. Therefore, the coefficients for both early- and late-time approximate
solutions in Eq. (5) for rectangular columns are written  

a1=2(1+R ly)/√π ,  a2=−1.2735 Rly , a3=0 , (7a)

b1 j=( 8
π2 )

2

/ ((2nxj−1)2
(2 nyj−1)2 ) , (7b)

b2 j=
π2

4
c j ; c j=(2nxj−1 )

2
+(2nyj−1 )

2 Rly
2 (7c)

and  the  number  of  exponential  terms  ( j=1, N )  needed  in  Eq.  (5b)  can  be  determined
practically by
 

c j ≤11  with b1 jexp (−b2 jT d0 )>tol , (7d)

where tol  is a cutoff, depending on the degree of anisotropy. tol=5× 10−4  for Rly>0.1 ,

while  tol=1×10−4  is needed for  Rly ≤ 0.1  to  control the relative error below 0.5% for

Rly=0 .  This  means  all  the  N  terms  kept  for  late-time  calculations  have  small  rate

coefficients  and  high  accuracy.  N  depends  on  the  aspect  ratio  Rly  (see  Figure  2b).

N ≤2  is  sufficient  for  Rly ≥ 0.6 ,  while  3 ≤ N ≤ 6  is  needed  for  0.2≤ Rly<0.6 .

N=17  is needed for Rly=0.05  because of the slow convergence of the exact solution in
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Eq. (6). Note that 
8
π2 ∑

n y=1

∞
1

(2ny−1)
2 =1  and N=32  when Rly=0 . Practically, all terms

meeting  Eq.  (7d)  when  using  N x × N y=100× 100  in  Eq.  (6)  are  used  for  late-time

calculations. 

As shown in Figure 2a, the approximate solutions for the early- and late-time regimes are in

excellent agreement with the exact solutions obtained with N x × N y=2000× 2000  in Eq. (6)

for the range 0 ≤ R ly ≤1 . It is also shown that the linear effect of the aspect ratio Rly  on the

solutions is significant and cannot be neglected for an anisotropic rectangular-column block.
 
Similarly, for a block of a rectangular parallelepiped, the following exact solutions can be written
[Lim and Aziz, 1995]:

M d=1−( 8
π2 )

3

∑
n x=1

∞

∑
ny=1

∞

∑
nz=1

∞
1

( 2nx−1 )
2
(2 ny−1)2 (2 nz−1 )

2

exp[−((2 nx−1 )
2
+(2 ny−1 )

2
Rly

2
+ (2 nz−1 )

2
Rlz

2 )
π2

4
T d] .           (8)

In the case of an anisotropic rectangular parallelepiped with lx ≠l y ≠l z , it is assumed that Eq.

(5a) is still valid for the early-time approximate solutions and Eq. (5b) is valid for the late-time

approximate  solutions.  Again,  coefficient  a1  is  determined  by  the  dimensionless  area-to-

volume ratio (see Table 1).  To determine coefficients  a2  and  a3 ,  we first  calculate the

exact solutions using Eq. (8) for a number of ( Rly , Rlz ) pairs, with an increment of 0.1 and

0≤ R ly ≤1  and  0≤ R lz ≤ R ly .  The  exact  solutions  are  calculated  using

N x × N y × N z=1000 ×1000 ×1000  for the 201 logarithmically-spaced points of  T d  over

[10−7 ,10] . We then fit the first 159 data points to the early-time solution in Eq. (5a) with

assumed T d0=0.21  for each ( Rly , Rlz ) pair to estimate these coefficients; the goodness

of these 66 fits is all higher than 0.9999, indicating that the solution form in (5a) works exactly

as assumed. We finally fit the 66 values of coefficients a2  and a3  (see Figure 3a and 3b)

and obtain their relationships with the aspect ratios Rly  and Rlz  in Eqs. (9b) and (9c). As

shown in Figure 3c,  the maximum relative errors of the early-time approximate solutions at
T d 0=0.22  for the 66 cases are all small, less than 0.12%.

For the late-time approximate solutions, the leading term is less than 0.1% higher than the exact

solution at T d 0=0.22  for the isotropic case with Rly=Rlz=1 , while it is 33% higher for the

highly anisotropic case with Rly=Rlz=0 . Different tol  values are used for different degree

of block anisotropy: tol=5× 10−4   is used for Rly ≥ R lz ≥ 0.2 , while tol=1×10−5  is used
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for Rly ≥ R lz=0 . As a result, the number of exponential terms ( N ) needed depends on the

aspect ratios Rly  and Rlz  (see Figure 3d). In this way, the maximum relative error of the

late-time approximate solutions is less than 0.2% for all the 66 cases. 

The solution coefficients in Eq. (5) for a rectangular parallelepiped are written:

a1=2(1+R ly+Rlz)/√π (9a)

a2=−1.2735 Rly−1.2645 R lz−1.2791 Rly Rlz (9b)

a3=1.4232Rly Rlz (9c)

b1 j=( 8

π2 )
3

/ ((2nxj−1)2(2 nyj−1)2(2 nzj−1)2 ) (9d)

b2 j=
π2

4
c j ; c j=((2nxj−1)2

+(2nyj−1 )
2 R ly

2
+(2nzj−1 )

2 R lz
2 )  (9e)

and N  is determined by Eqs. (7d) and (9e). 

Figure 2c shows excellent agreement between the exact solutions in Eq. (8) and the approximate

solutions in Eq. (5) with solution coefficients in Eq. (9) for the 66 ( Rly ,  Rlz ) pairs of a

rectangular-parallelepiped block. The excellent agreement indicates that we have correct solution
forms in Eq. (5a) for the early-time regime and Eq. (5b) for the late-time regime. The effect of

aspect ratios Rly  and Rlz  is significant for the transitions from 1D diffusion in a slab-like

block to  2D diffusion  in  a  rectangular-column block then  to  3D diffusion  in  a  rectangular-
parallelepiped block.

For a block of an isotropic rectangular column (i.e., square column) and an isotropic rectangular
parallelepiped (i.e., cube), we employ the exact solutions in Eqs. (6) and (8), respectively, and

the approximate solutions in Eq. (5) with N=1 , and derive coefficients a2  and a3  in

the same procedures presented above. The derived coefficients for cubical and square-column
blocks are listed in Table 1. Note that the coefficients for a cube (or a square column) in Table 1

are consistent with the values calculated using Eq. (9b-c) with Rly=Rlz=1  (or Eq. (7a) with

Rly=1 ).

The  determination  of  exact  T d 0  for  square  columns  or  cubes  follows  the  same  method

presented for the isotropic blocks with 1D diffusion, and is shown in Figure 1b. T d 0=0.229  is
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obtained for cubes and T d0=0.215  for square columns, which are close to T d0=0.213  for

slabs.  Note that  a-priori T d 0  (=0.21) is used in the fitting of  ( a2 , a3 ),  but not used in

determining  T d0 .  However,  the slight difference between the exact and  a-priori T d0  is

found to have no effect on the estimated ( a2 , a3 ) values. As shown in Figure 2, the solution

for an anisotropic rectangular column with any Rly  is between those of a square column and a

slab. The approximation error by the N-term truncation is less than 0.06% based on Eqs. (6) and

(7c-d). For the 11 Rly  values, the relative error at T d 0=0.22  varies from 0.073% to 0.164%

for the early-time solutions, and varies from 0.046% to 0.115% for the late-time solutions (see

Figure 1b). For an anisotropic rectangular parallelepiped, the solution with any Rly  and Rlz

is between those of a cube and a slab, and the approximation error by the N-term truncation is

less than 0.06% based on Eqs. (7d), (8), and (9e). Similarly, for the 66 ( Rly , Rlz¿  values, the

relative error at T d 0=0.22  is also very small for the early-time and late-time solutions. As a

result, T d 0=0.22  is used for any anisotropic rectangular columns or parallelepipeds, with the

maximum relative error less than 0.2% (see Table 1).

For all isotropic blocks (e.g., spherical, cylindrical, slab-like, square-column, and cubical), the
unified form of approximate solutions in Eq. (5) with their coefficients in Table 1 can be used for
modeling  diffusive  fracture-matrix  transfer.  As  shown  in  Figure  2d,  the  difference  between
spherical and cubical solutions and between cylindrical and square-column solutions is small and

can be attributed to the small difference in their coefficients a2 , a3 , b1 and b2 . We suggest

using the correct block shape for modeling, in particular for fractured rocks. For an isotropic
slab,  it  is more computationally  efficient to  use Eq. (5) with slab coefficients than using an

anisotropic rectangular-column block with Rly=0  or an anisotropic rectangular-parallelepiped

block with Rly=¿  Rlz=0 . For the latter, a larger number of additional exponential terms

are needed to achieve the same accuracy as the leading term only in the former because the

convergence of 
8
π2 ∑

n=1

∞
1

(2n−1)2 =1  is slow (see Figure 3d).

2.4. Fracture-Matrix Transfer Flux

As discussed above, by neglecting the higher-order terms in Eq. (5a) at very early times, we have

M d=2 R√Td /√π ,Td ≤ T d1  (10)

where T d 1  is the very-early dimensionless time cutoff, below which the √Td -behavior of

the dimensionless mass remains valid.  T d 1  can be 0.001 for high-accuracy modeling, while

T d 1=0.01  is sufficiently good in some cases. In the case T d ≤T d1 , the dimensionless mass

depends only on the dimensionless area-to-volume ratio, and is independent of the block shape.
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Later on, the dimensionless mass is affected by the geometry and volume of the block because
dsCO2  migration  and  distribution  depend on  the  no-flow condition  at  the  block  center.  For
example,  Carrera  et  al. [1998]  used  this  very-early-time  solution.  They  also  defined  an

asymptotic solution for very late times, T d ≥T de , in which the matrix is at equilibrium with the

surrounding  fractures.  In  this  case,  the  effect  of  the  rock  matrix  is  considered  by  using  a
retardation factor (i.e., the ratio of matrix to fracture porosity) [Malozewski and Zuber, 1985].

In  summary,  four flow regimes can be defined using the three dimensionless times,  T d 1 ,

T d0 , and T de : (1) the very-early-time √Td -behavior regime, (2) the early-time √Td

P¿
)-

behavior regime, where P  is the three-term polynomial function in Eq. (5a), (3) the late-time

exp( T d )-behavior regime shown in Eq. (5b), and (4) the equilibrium regime. Mathematically,

the first two regimes can be represented by the early-time solutions in Eq. (5a), and the last two
regimes can be represented by the late-time solutions in Eq. (5b).

For a given block  i  of known shape and characteristic size  li , the fracture-matrix mass

flowrate,  f i , for a unit concentration and brine density in fractures per unit volume of the

block, can be written
  

f i=
d M di

dt
=

D

li
2

d M di

dT di

, (11a)

with the derivative for block i  expressed using the approximate solutions in Eq. (5):

d M di

dT di

={a1/ (2√Tdi )+a2+
3
2

a3 √T di ,T di≤ T d0 i

¿∑
j=1

N

b1 ji b2 ji exp (−b2 ji T di) , T di>T d0 i

(11b)

Let us examine the fracture-matrix mass flowrate,  F , per unit volume of fractured media,

with volume fractions ϕ f  and 1−ϕf  for the fractures and the rock matrix, respectively. It is

assumed that the unit-volume fractured medium consists of  K blocks of different shapes and

different sizes, with a characteristic half-width li  and volume fraction w i , i=1, K , as well

as different intrinsic matrix porosity ϕmi . The total mass of dsCO2 stored in these blocks per

unit volume of fractured media at time t is
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W (t )=(1−ϕf ) ρbC0∑
i=1

K

ϕmi wi M di ; T di=Dt / li
2 , (12)

where ρb  is the brine density. The mass flux between surrounding fractures and these blocks

per unit volume of fractured media is
 

F (t )=
dW
dt

=(1−ϕ f ) ρb C0∑
i=1

K

ϕmiw i f i , (13)

2.5. Comparison to Single-Rate First-Order Dual-Porosity Models

The mass transfer flux for the first-order dual-porosity model for fractured rocks can be written

in  terms  of  the  relative  average  concentration  ( Cd )  in  a  block  and  the  relative  fracture

concentration 
¿1
C f ¿

 in our constant-concentration demonstration case):

f =−α (Cd−C f )=d Cd/dt , (14a)

where  α  is the first-order rate coefficient. For an isotropic block of a given shape listed in
Table 1, using Eq. (11) for the late-time solution with N=1 , we have
 

α=b2 D / l2  (14b)

Using the initial condition Cd=M d=0   at t=T d=0 , we have from Eq. (14a)

Cd=M d=1−exp (−αt )=1−exp (−b2T d ) (14c)

Note that the first-order dual-porosity model in Eq. (14c) has a single rate coefficient  b2

(normalized by  D / l2 ) and a full capacity ratio ( b1=1 ) acting in the entire time domain.

This is different from the late-time approximate solutions in Eq. (5b) in which coefficient b1  (

¿1 ) represents the capacity ratio for the rate coefficient  b2 , as shown by  Haggerty and

Gorelick [1995]. In our late-time approximate solutions,  1−b1  corresponds to faster mass-

transfer rates and equilibrium behavior whose effects are already included through the early-time

solutions on  M d . Moreover, the first-order model is not accurate for the early-time regime

because  it  has  T d -behavior,  rather  than  the  correct  √Td -behavior  at  very  early  times.

Therefore, the first-order dual-porosity model is accurate only in the equilibrium regime when

the b1  effect disappears.
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For a moderately anisotropic rectangular column or parallelepiped, Eq. (14) works for the first-
order models, as long as only the leading term is needed ( N=1 ) for the late-time approximate
solutions.  For  a  highly  anisotropic  block,  N>1  and  a  multi-rate  first-order  model  with

α j=b2 j D / l2  may be needed to account for the effect of strong anisotropy, as has done for the

effect of varying sizes of isotropic blocks [Haggerty and Gorelick, 1995; Haggerty et al., 2001;
Willmann et al., 2008; Silva et al., 2009].

Figure 4 shows the comparison between the conventional first-order dual-porosity models with
the optimal α  values in Eq. (14b) and our approximate solutions for a slab-like block and a
cubical block .  To show the effect of the different single-rate  α  values or shape-factor
values that have been used in petroleum engineering [Warren and Root, 1963;  Kazemi et al.,

1976; Coats, 1989; Lim and Aziz, 1995], we include a case with geometry-based α=RD / l2  in

the first-order dual-porosity model. The dual-porosity models significantly underestimate M d

at both early and late times. The dual-porosity model with optimal α  only accurately predicts
the time needed to reach the equilibrium, while the dual-porosity model with the geometry-based

α  predicts a much longer equilibrium time. For petroleum engineering, the shape factor ( σ

)  is  related  to  the  dimensionless  area-to-volume  ratio  via  σ=R .  Numerically,  the  mass
transfer flux can be written using the nodal distance, d , from fractures:

f =
DA
V

Cd−C f

d
=DR

Cd−C f

ld
, and 

R
¿
b2

¿
d=¿

(14d)

For an isotropic slab-like, square-column, or cubical block, 

4
¿
π2

¿¿ l
¿

d=¿

, shorter than the half-width

from the fracture to the block center. For a spherical block, 

3
¿
π2

¿¿ l
¿

d=¿

. These d values are useful to

guide numerical discretization to represent the gradients of dsCO2 concentration. 
 
Different improvements have been made for conventional dual-porosity models, including the
multiple  interacting  continuum (MINC) model  by  further  dividing  a  block  into  nested  sub-
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elements [Pruess and Narasimhan, 1985], and nonlinear fracture-matrix transfer equations using
specific  analytical  solutions  [e.g.,  Dykhuizen,  1990;  Zimmerman  et  al.,  1993].  Macroscopic
models based on the Continuous Time Random Walk (CTRW) framework were developed to
characterize the interaction between the fractured and porous rock domains using a probability
distribution function of residence times [Cortis and Birkholzer, 2008; Geiger et al., 2010]. The
best improvement is the multi-rate first-order mass transfer models that are compatible with the
conventional  dual-porosity  model  concept.  These  models  have  been  implemented  in  some
existing advection-dispersion transport simulators [Haggerty and Gorelick, 1995; Carrera et al.,
1998; Haggerty et al., 2001; Willmann et al., 2008; Silva and Carrera, 2008; Silva et al., 2009].
The approximate solutions developed here can be used as building blocks within the framework
of the existing multi-rate mass transfer or multi-rate diffusion models. The demonstration of this
coupling is beyond this short technical report of methods.

3.  Application  Examples  of  Storage  of  Dissolved  CO2 in
Fractured Reservoirs

Estimating mass transfer between matrix blocks and fractures (or high-permeability zones) is
important for GCS in fractured reservoirs, e.g., fractured carbonate reservoirs, in coal beds, or in
cap rocks with fractures. For demonstration of the new solutions, we present here mass transfer
calculations  related to  supercritical  CO2 (scCO2)  injection  into  fractured reservoirs  with low
matrix  permeability,  high  matrix  entry  capillary  pressure,  and  high  matrix  porosity.  In  this
scenario, injected scCO2 migrates through the fracture network, and dissolves at the interfaces
between fractures and matrix blocks. There is no scCO2 in the rock matrix blocks because of
their  high  gas-entry  (capillary)  pressure  and  low  permeability.  The  low  fracture  porosity
produces a large CO2 plume in the fracture network and thus large interfacial  areas between
fractures and the rock matrix that is available for diffusive mass flux of dsCO2 into the matrix. In
the matrix blocks, only diffusion of dsCO2 occurs. The storage capacity of fractured reservoirs
can be large and the storage efficiency can approach with time a mass-fraction solubility that
ranges from 2% to 6% depending on the salinity of resident brine and pressure and temperature
[Spycher et al., 2003;  Spycher and Pruess, 2005]. This mass storage efficiency is similar to or
higher than the value for porous sandstone reservoirs at  a regional scale where the effect of
various scCO2 efficiency factors and pressure buildup constraints apply [USDOE, 2008; Zhou et
al., 2008, 2009, 2010;  Birkholzer et al., 2015]. The key question we address here is the time
scale needed to reach solubility limits in the rock matrix for various block shapes and sizes or
fracture spacing in the three dimensions.

For the fractured rock system in the scenario of interest, there is no scCO2 or dsCO2 initially in
the system. Injected scCO2 migrates through the fractures and simultaneously dissolves into the
aqueous  phase  at  the  fracture-matrix  interfaces.  It  is  assumed that  the  scCO2 dissolution  is
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instantaneous  at  these  interfaces  with  a  concentration  at  the  solubility  limit  under  the  local
conditions of pressure, temperature, and salinity. It is also assumed that the concentration at these
interfaces can be maintained at the solubility limit during continuous scCO2 injection because of
high fracture flow rate of injected scCO2.  Once scCO2 migrates to a given matrix block, the
diffusion  of  dsCO2 from  its  surrounding  fractures  to  this  block  will  continue  until  a  full
equilibrium concentration of dsCO2 is achieved. Two examples are employed to demonstrate the
application of the developed approximate solutions to modeling diffusive fracture-matrix transfer
of dsCO2 for solubility trapping in a fractured reservoir system. 

3.1. Example 1 for Block-Scale Modeling

In the first  example,  we are interested in local diffusion processes in a unit  pore volume of
fractured matrix  that  consists  of  blocks  of  single  shape  and size  or  a  mixture  of  blocks  of
different sizes. Three cases of single-size blocks are considered, including (1) slabs, (2) cubes, or

(3) rectangular parallelepipeds with  Rly=0.5  and  Rlz=0.2 . In the last case, four cubical

blocks with half-fracture spacing of l, 2l, 3l, and 6l and their volumetric fractions of 0.42, 0.24,
0.17 and 0.17 respectively are  considered [Haggerty  and Gorelick,  1995].  In  each case,  the
characteristic  minimum  half-fracture  spacing  varies  from  0.01  m  to  3.0  m  and  the  matrix

diffusion coefficient is assumed to be D=2 ×10−10  m2/s. We use the developed approximate

solutions to calculate the dimensionless mass from 0 to 100 years. 

Figure 5a-c shows the contours of dimensionless mass as functions of minimum half-fracture
spacing and the time for the three cases of single-size blocks. It can be seen that for a given l,
cubical blocks are more effective than the rectangular-parallelepiped blocks that are in turn more
effective than the slab-like blocks for storage of dsCO2. For l=1  m, the dimensionless mass is
0.63, 0.77, and 0.95 for the cases of slabs, rectangular parallelepipeds, and cubes at 50 years,
while it is 0.83, 0.92, and 0.995 at 100 years, respectively. This means that for densely fractured
reservoirs with the minimum half-fracture spacing less than 1.0 m, the time scale needed to reach
the solubility limit in the rock matrix is comparable with or less than the lifetime of a GCS
project, and the storage of dsCO2 in fractured reservoirs is effective, with a storage efficiency of
2-6% mass fraction. Figure 5d shows the comparison of the time-dependent dimensionless mass
for the  multi-block case  and single-block cases  of  cubes and rectangular  parallelepipeds  for

l=0.25, 0.5,1.0  m. The multi-block case shows a more gradual increase in M d  with time

because of the effects of blocks of large half-spacing.

3.2. Example 2 for Reservoir-Scale Modeling

In  this  example,  we  are  interested  in  the  storage  of  dsCO2 in  a  fractured  reservoir  that  is
B=20  m thick. The in situ reservoir pressure is 152 bar, the temperature is 59 °C, the salt

mass fraction is 0.093 with mole fraction of 1.75 molal, and the brine density is ρb=¿ 1053

kg/m3. The fracture porosity is ϕf =0.5  and fracture permeability is high so that the pressure
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effect  on  fluid  densities  is  small.  The  intrinsic  matrix  porosity  is  ϕm=0.20  and  matrix

permeability is very small so that no scCO2 is in the rock matrix. The scCO2 density under the

injection conditions is  ρCO 2=¿ 623 kg/m3 and the solubility limit of dsCO2 mass fraction in

brine is calculated to be C0=¿ 0.032. For simplicity, we assume scCO2 flow in the reservoir is

1D radial flow with a piston front of scCO2. Diffusion of dsCO2 from fracture-matrix interfaces
into matrix blocks is considered as the sink for scCO2 in fractures. 

The mass balance equation for injection time t  can be written

∫
0

t

Qdτ=∫
0

R (t )

2π ϕf ρCO 2 rBdr+ ∫
0

R (t )

2 π ( 1−ϕf ) ϕm ρbC0 M d (r , t )rBdr (15)

where R(t)  is the radius of the scCO2 plume from the injection well, and Q  is the total

scCO2 injection rate. To simplify the calculation, we use a constant injection rate of 16  kg/s to
maintain the scCO2 plume in fractures, i.e., the first term on the right-hand side of Eq. (15). We
add the time-dependent injection rate to account for the mass of dsCO2 stored in the rock matrix,
i.e., the second term in Eq. (15). The total injection rate is the combination of the constant rate of
16 kg/m3 for scCO2 storage in fractures and the time-dependent rate for dsCO2 storage in the rock
matrix. We use the constant injection rate to track the scCO2 front and to determine the start time

of dsCO2 diffusion into the rock matrix at the scCO2 front. The dimensionless mass ( M d ) in

this case is relevant to the dsCO2 mass stored in the rock matrix that is in contact with scCO2 in
fractures. The time-step size for the calculation is 0.02 year and is uniform over a total of 100
years of injection, leading to 5000 time steps.

Three cases for the rock matrix are considered: (1) single-size cubes, (2) a mixture of four cubes

of  different  sizes,  and  (3)  single-size  rectangular  parallelepipeds  with  Rly=0.5  and

Rlz=0.2 .  All  parameters of these blocks are  the same as in  Example 1.  Computationally,

T de=4.0  for the third case which cuts off the regions with equilibrium dsCO2 mass fraction so

that no calculation is needed for them. 

Figure 6a-c shows the  profiles  of  dsCO2 dimensionless  mass  in  the  rock matrix at  different
injection  times  for  the  three  cases  of  matrix  blocks,  each  with  three  scenarios  of

l=0.25,0 .50,1.0  m. For the single-size-cube rock matrix, it only takes 6 years for a block to

reach equilibrium ( M d>0.99 ) in the scenario of l=0.25  m. For a long-term injection, the

majority of the volume of the rock matrix in contact with scCO2 in fractures is at the solubility
limit, as shown by the fronts of dimensionless mass at later times. In the scenario of l=1.0  m,
the rock matrix close to the injection well starts to reach equilibrium at 100 years. For the single-
size-parallelepiped rock matrix, we can see the strong effect of anisotropy at early time and for
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larger l  values when comparing with the single-size-cube matrix case. For the four-size-cube
rock matrix, the profiles are very different from those with single isotropic and anisotropic block
cases because of slower diffusion with smaller rate coefficients for larger blocks of size  3 l

and 6 l . Even for l=0.25  m, there are no regions at equilibrium for the representative rock
mass of the four blocks at 100 years of injection.

Figure 6d shows the relative effectiveness of dsCO2 storage in the rock matrix in comparison
with scCO2 storage in fractures in fractured reservoirs. With time, the dominant scCO2 storage in
fractures is transitioned to the dominant dsCO2 storage in the rock matrix when the minimum
half-fracture  spacing is  relatively small.  The  ultimate  ratio  between dsCO2 and scCO2 mass
stored in the fractured reservoirs depends on fracture and matrix porosity, the density of scCO2

and brine, and dsCO2 solubility in brine as shown in Eq. (15). It can also be seen that the dual-
porosity model with the optimal rate coefficient underestimates the dsCO2 storage over the 100
years because this model is only accurate for equilibrium conditions. Therefore, the numerical
simulations with a dual-porosity model conducted by  Carneiro [2009] may underestimate the
significance of dsCO2 storage in fractured reservoirs.

As demonstrated by the above two examples, it is important to take into account the anisotropy
of matrix blocks because fracture spacing may be very different in three dimensions. It is also
important to account for the multiple block sizes because fracture density varies significantly in
the  field.  For  large-scale  GCS  problems,  early-time  and  late-time  transfer  regimes
simultaneously occur in the different regions of the scCO2 plume. This is very different from
contamination and remediation problems where late-time behavior has been the focus of multi-
rate  diffusion  and  mass-transfer  modeling.  The  developed  approximate  solutions  can  easily
handle all these issues, and extend our modeling capabilities to include the anisotropy effect, the
multi-rate effect, and the early- and late-time regimes.

4. Conclusions

Existing  analytical  and semi-analytical  modeling  of  hydraulic,  solute,  and thermal  diffusion
processes in the subsurface have been focused on (1) isotropic matrix blocks and zones of low
permeability with immobile fluid phases, and (2) truncation of sets of infinite series of exact
analytical solutions by neglecting the early-time transfer regime. Following the exact solution

forms  of  dimensionless  mass,  M d ,  for  small  times  for  isotropic  blocks  available  in  the

literature,  we  develop  unified-form  early-  and  late-time  approximate  solutions  for  various
isotropic  blocks  (e.g.,  cylinders,  spheres,  slabs,  square  columns,  and cubes)  and anisotropic
blocks  (e.g.,  rectangular  columns and parallelepipeds).  The early-time solutions  consist  of  a

three-term polynomial function in terms of  √Td . The first coefficient depends only on the

dimensionless area-to-volume ratio that is scaled by the minimum half-width or radius of blocks.
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The last two coefficients are determined analytically for 1D diffusion in isotropic blocks, and are
obtained by fitting the exact solutions of 2D and 3D diffusion and solely depend on the aspect
ratios for anisotropic rectangular blocks. For the late-time solutions, only the leading exponential
term is needed for isotropic blocks,  while a few additional exponential terms are needed for

highly anisotropic rectangular blocks. The optimal switchover T d  between the early- and late-

time approximate solutions is determined to be between 0.157 and 0.229 for all blocks, with its
highest relative approximation error less than 0.2%. For mass transfer by diffusion, it is found
that (1) the early-time transfer regime is dominant, accounting for 50% to 88% cumulative mass
gain/loss relative to the equilibrium ones, and (2) the degree of anisotropy in terms of aspect
ratios has a significant impact on the fracture-matrix transfer.

Comparing our approximate solutions with conventional first-order dual-porosity and mobile-
immobile fluid flow models indicates that the latter are inaccurate for both early- and late-time
transfer regimes. The latter assumes a single matrix continuum with a capacity ratio of unity
while the former honors the contribution of fast mass transfer occurring during the early-time
regime to the late-time solutions and have a capacity ratio less than 1 determined analytically.
The dual-porosity model with optimal rate coefficient can only accurately predict the diffusion
timescale  to  reach equilibrium,  while  that  with  geometry-based rate  coefficient  produces  an
erroneous diffusion timescale. 

The application of the developed approximate solutions to  storage of  dsCO2 in  an idealized
fractured reservoir shows that the storage of dsCO2 in the rock matrix is effective as long as the
half-fracture spacing is less than 1 m for slab-like, cubical, and rectangular-parallelepiped matrix
blocks at local scale. Calculations are performed for scCO2 injection into a fractured reservoir
with  a  1D  radial  scCO2 flow  coupled  with  diffusive  sinks  of  dsCO2 from  instantaneous
dissolution at fracture-matrix interfaces. It is found that the ratio of the dsCO2 mass stored in the
rock matrix to the scCO2 mass stored in the fractures can be as high as 2.2 when the minimum
half-fracture spacing is relatively small in our considered cases. The ultimate value of this ratio
depends on fracture and matrix porosity, the densities of scCO2 and brine, and dsCO2 solubility.
It is also found that the effects of anisotropy and varying sizes of the matrix blocks are strong
and cannot be neglected. The developed approximate solutions can easily extend our modeling
capabilities to include the anisotropy effect, the multi-rate effect, and the early- and late-time
regimes.
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Table 1. Solution coefficients, the switchover dimensionless time, the maximum relative error (
εmax )  at  T d 0 ,  the  dimensionless  mass  at  T d 0 ,  N for  late-time  solutions,  and  the

dimensionless area-to-volume ratio (R) for the approximate solutions for different shapes of a
matrix block.

Block
Shape

Sphere Cylinder Slab Square
Column

Cube Rectang
.

Column

Rectang
. Box

a1 6/√ π 4 /√π 2/√π 4 /√π 6/√ π 2R /√π 2R /√π
a2 -3 -0.9608 0 -1.2735 -3.8171 Eq. (7a) Eq. (9b)
a3 0 -0.3832 0 0 1.4232 0 Eq. (9c)
b1 6/ π2 4 / β1

2 8/ π2 8
¿
π 2

¿¿
¿
¿
¿

8
¿
π 2

¿¿
¿
¿
¿

Eq. (7b) Eq. (9d)

b2 π 2 β1
2 π 2

/4 2 π2
/ 4 3 π2

/ 4 Eq. (7c) Eq. (9e)

N 1 1 1 1 1 1-39 1-59
T d 0 0.157 0.192 0.213 0.215 0.229 0.22 0.22
εmax

(%)
0.034 0.100 0.153 0.083 0.040 0.073-

0.164
0.001-
0.123

M d0 0.871 0.772 0.521 0.772 0.902 0.50-
0.75

0.50-
0.88

R 3 2 1 2 3 1+Rly
❑ 1+Rly+Rlz
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Figure 1. (a) Solutions of time-dependent dimensionless mass with finite terms (N = 1, 10, 25,
50, 100, 1000) in the infinite series solutions in Eq. (3), with symbols denoting the solutions (

M dN ,  T dN ) beyond whose  T d  faster-diffusion terms are negligible,  (b) relative errors

(%) of the solutions with Eq. (5), Eq. (5a), and Eq. (5b) in comparison to their exact solutions,

with black symbols denoting T d 0  points, (c) comparison of the approximate solutions, Eq. (5),

with their corresponding exact solutions (with N = 1000 or 150 finite terms) and their leading-
term solutions (N = 1), with large symbols denoting the switchover dimensionless time, and (d)
exact  solution  of  relative  concentration  as  a  function  of  distance  from the  block center,  for
spherical (black solid lines) and slab-like (red dashed lines) blocks, with labels for dimensionless
time.

Figure 2. (a) Comparison between the approximate solutions (in symbols) and the exact solutions

(in solid lines) and (b) coefficient a2  and N for a rectangular-column block, as a function of

the aspect ratio Rly , and (c) comparison between the approximate solutions (in black symbols)

and the exact solutions (in black solid lines) for a rectangular-parallelepiped block, as a function

of the aspect ratios Rly  and Rlz . Also shown is the comparison (in red symbols and solid

lines)  for  isotropic  slab-like,  square-column,  and  cubical  blocks.  (d)  Comparison  of  the
approximate solutions for an isotropic block of slab-like, cylindrical, spherical, square-column,
or cubical shapes.

Figure 3. (a) Coefficient a2  and (b) a3  of the early-time approximate solutions, and (c) the

relative error between the early-time approximate and exact solutions at  T d 0 ,  and (d) the

number of exponential terms (N) needed in the late-time approximate solutions, as functions of

aspect  ratios  Rly  and  Rlz ,  for  a  rectangular-parallelepiped block.  Symbols  denote  data

points of ( Rly , Rlz ) pairs for the contours.

Figure 4. Comparison of the approximate solutions to two first-order dual-porosity models with
geometric-based and optimal rate coefficients for a slab-like and cubical block.

Figure 5. Contours of the dimensionless mass as functions of time and half-fracture spacing for 
(a) slabs, (b) cubes, and (c) anisotropic rectangular parallelepipeds with Rly=0.5  and

Rlz=0.2 , and (d) comparison of the time-dependent dimensionless mass for single- and 
multiple-size cubes and single-size anisotropic rectangular parallelepipeds with l=0.25, 0.5,1
m.

Figure 6. Profiles of dsCO2 dimensionless mass at 5, 25, 50, 75 and 100 years in the rock matrix
with  (a)  single-size  cubes,  (b)  four-size  cubes,  and  (c)  single-size  anisotropic  rectangular

parallelepipeds with  Rly=0.5  and  Rlz=0.2 ,  with the minimum half-fracture spacing of

0.25, 0.50, and 1.0 m, and (d) comparison of the time-dependent ratio between the dsCO2 mass
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stored in the rock matrix and the scCO2 mass stored in the fractures for all the nine scenarios, as
well  as  the  dual-porosity  model  with  optimal  rate  coefficient  for  the  multi-cube  case  with

l=1.0  m.
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