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Abstract

BACKGROUND: The diagnosis of failure to progress, the most common indication for 

intrapartum cesarean delivery, is based on the assessment of cervical dilation and station over 

time. Labor curves serve as references for expected changes in dilation and fetal descent. The 

labor curves of Friedman, Zhang et al, and others are based on time alone and derived from 

mothers with spontaneous labor onset. However, labor induction is now common, and clinicians 

also consider other factors when assessing labor progress. Labor curves that consider the use 

of labor induction and other factors that influence labor progress have the potential to be more 

accurate and closer to clinical decision-making.

OBJECTIVE: This study aimed to compare the prediction errors of labor curves based on a single 

factor (time) or multiple clinically relevant factors using two modeling methods: mixed-effects 

regression, a standard statistical method, and Gaussian processes, a machine learning method.

STUDY DESIGN: This was a longitudinal cohort study of changes in dilation and station based 

on data from 8022 births in nulliparous women with a live, singleton, vertex-presenting fetus 

≥35 weeks of gestation with a vaginal delivery. New labor curves of dilation and station were 

generated with 10-fold cross-validation. External validation was performed using a geographically 

independent group. Model variables included time from the first examination in the 20 hours 

before delivery; dilation, effacement, and station recorded at the previous examination; cumulative 

contraction counts; and use of epidural anesthesia and labor induction. To assess model accuracy, 

differences between each model’s predicted value and its corresponding observed value were 

calculated. These prediction errors were summarized using mean absolute error and root mean 

squared error statistics.

RESULTS: Dilation curves based on multiple parameters were more accurate than those derived 

from time alone. The mean absolute error of the multifactor methods was better (lower) than those 

of the single-factor methods (0.826 cm [95% confidence interval, 0.820–0.832] for the multifactor 

machine learning and 0.893 cm [95% confidence interval, 0.885–0.901] for the multifactor 

mixed-effects method and 2.122 cm [95% confidence interval, 2.108–2.136] for the single-factor 

methods; P<.0001 for both comparisons). The root mean squared errors of the multifactor methods 

were also better (lower) than those of the single-factor methods (1.126 cm [95% confidence 

interval, 1.118–1.133] for the machine learning [P<.0001] and 1.172 cm [95% confidence interval, 

1.164–1.181] for the mixed-effects methods and 2.504 cm [95% confidence interval, 2.487–2.521] 

for the single-factor [P<.0001 for both comparisons]). The multifactor machine learning dilation 

models showed small but statistically significant improvements in accuracy compared to the 

mixed-effects regression models (P<.0001). The multifactor machine learning method produced a 

curve of descent with a mean absolute error of 0.512 cm (95% confidence interval, 0.509–0.515) 

and a root mean squared error of 0.660 cm (95% confidence interval, 0.655–0.666). External 

validation using independent data produced similar findings.
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CONCLUSION: Cervical dilation models based on multiple clinically relevant parameters 

showed improved (lower) prediction errors compared to models based on time alone. The mean 

prediction errors were reduced by more than 50%. A more accurate assessment of departure from 

expected dilation and station may help clinicians optimize intrapartum management.

Keywords

artificial intelligence; cervical dilation; dystocia; epidural anesthesia; failure to progress in labor; 
fetal descent; multifactor; multivariable; labor disorders; labor progression; machine learning; 
mixed-effects; partogram; prediction error; rupture of membranes; station; Transparent Reporting 
of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD)

Introduction

The diagnosis of failure to progress in labor is the most common indication for intrapartum 

cesarean delivery (CD) and is based on the assessment of changes in cervical dilation and 

station over time.1–3 Labor curves serve as references for expected changes in dilation and 

fetal descent, and they have influenced the recommendations and guidelines of professional 

societies. The labor curves described by Friedman,4–7 Zhang et al,8–10 and others are 

based on time alone and were derived from mothers with spontaneous onset of labor.4–16 

Given that labor induction is now common in contemporary obstetrical practice and that it 

influences labor progress, its use should be considered when modeling labor progress.17–22 

Similarly, other factors, such as effacement, membrane status, and epidural anesthesia, have 

an effect on labor progress and have not been taken into account in the creation of these 

labor curves.4–16,23,24

The accuracy and precision of these models are important and are demonstrated by a 

hypothetical example. Suppose that, at a point in time, a model gives an average expected 

dilation of 7 cm with a range between 4 cm and 10 cm (95% prediction interval). Such 

a model would have limited clinical use for obstetricians and midwives because expected 

dilation covers nearly all possible dilations. Moreover, if the assessment of normal progress 

is difficult with this model, the diagnosis of abnormal labor progress can be expected to be 

much more problematic.

This study aimed to develop and assess the accuracy of labor curves based on either a single 

factor (time) or multiple factors using two kinds of modeling techniques: mixed-effects 

regression, a standard statistical method for longitudinal data collected from the same 

subjects, and Gaussian processes modeling, a machine learning method.25 Both approaches 

are data-driven modeling techniques, by contrast with hypothesis-driven techniques based on 

assumptions about the shape of the labor curve.

Material and Methods

Study design and clinical data

This was a longitudinal cohort study of changes in cervical dilation and station based on 

data from births in nulliparous women with a live, singleton, vertex-presenting fetus at 

≥35 weeks of gestation with a vaginal delivery. Data for modeling were collected from 
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all births between June 1, 2017, and June 30, 2021, with a live singleton fetus in vertex 

presentation and a gestational age of ≥35 weeks in a mix of 10 community or teaching US 

hospitals in Ohio. Additional inclusion criteria for modeling included nulli-parity, vaginal 

delivery, a 5-minute Apgar score of ≥7, use of electronic fetal monitoring with uterine 

activity recording, and more than one cervical examination recorded in the first stage of 

labor. We excluded data from births with maternal or neonatal admission to an intensive care 

unit, shoulder dystocia, or descending dilation. We used a standard technique called 10-fold 

cross-validation to develop and measure model accuracy. With this technique, accuracy 

statistics were based on validation data that were independent of the data used for model 

development. Recently, another dataset was collected for external independent validation to 

determine how a model created in one geographic region would perform when applied to 

data from a different region. These data came from consecutive deliveries between January 

1, 2021, and September 15, 2021, in a mix of six community or teaching hospitals in Oregon 

and Washington using the same selection or exclusion criteria.

All data were deidentified. The authors obtained permission to use the data for this project 

from the hospital systems that provided the data. This study was considered exempt by 

the Institutional Review Boards at Ohio-Health (state of Ohio), Wayne State University 

(Detroit, MI), and Legacy Health (states of Washington and Oregon). We have followed 

the Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or 

Diagnosis (TRIPOD) guidelines when describing model development and evaluation.26

Variables used for modeling

Time—All data were deidentified, and all times were converted to relative time. Relative 

time was measured in two ways: “negative-time” and “forward-time.” All labors had a 

recorded time of birth. Time can be measured backward (negative-time) from this point. 

The curves of Zhang et al8–10 and others used this approach where Time0 was the time 

when dilation reached 10 cm and the time of a cervical examination used for modeling was 

calculated backward (eg, 60 minutes before the complete dilation was −60 minutes).8–16 

After the labor curve models had been computed, the x-axis (time) was reverted to a positive 

value, that is, instead of being −12 →0 hours, it became 0 → 12 hours on the labor curve 

graphs. Although this approach can produce an idealized labor curve, it is not feasible to 

assess its accuracy prospectively because one does not know when full dilation will occur 

during labor. Notwithstanding this limitation, we created a basic model of dilation using 

negative-time to reproduce the approach used in the development of contemporary labor 

curves.

We chose to examine the 20 hours before delivery. Most published labor curves span 6 to 

14 hours, but induced nulliparous labors can be longer.4–16,22 Although some labors were 

longer than 20 hours, the numbers of women and cervical examinations at times more 

remote from delivery were too sparse for reliable modeling. As labor curves are meant 

to be used prospectively and clinicians do not know how many hours will be required to 

reach full dilation or birth, we used forward-time, where Time 0 was set to the time of 

the first recorded cervical examination within that 20-hour window. All subsequent pelvic 
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examination times were positive (ie, the number of hours moving forward from that first 

examination).

Other variables

Other variables included factors known to affect the rate of dilation, namely, contractions 

and the cervical dilation, effacement, and fetal station reached on the previous 

examination.2,3,23,24

Contractions were identified and counted, and their duration was measured using automated 

analysis of the digital electronic fetal monitoring records (Peri-Watch Cues; PeriGen, Cary, 

NC). We did not estimate contraction strength because we did not have access to the type of 

sensor in place for contraction monitoring, and the use of intrauterine pressure sensors was 

not routine. Clinical data were extracted from the electronic medical records (EMR) (Epic; 

Verona, WI). The relative times of each cervical examination, membrane rupture, epidural 

administration, and presence or absence of labor induction were included. Missing dilation, 

effacement, or station values were imputed using interpolation only when there was a valid 

value recorded in both the preceding and following examinations.

Modeling techniques

The cervical dilation labor curves described by Zhang et al8–10 and many others used 

regression modeling for repeated measures where the sole variable was negative-time.8–14,16 

Within this approach, they chose a high-order polynomial function of time to describe the 

course of dilation.8–14,16 This polynomial method provided the potential for their curves 

to have transitions (bends) delimiting labor phases, like the Friedman curves. However, no 

sharp bends delimiting labor phases were found. We used the same polynomial function of 

time (eighth order) to generate a curve of dilation based on time alone.9,10

The application of machine learning is becoming more common in clinical medicine.27,28 

Neural networks, a machine learning approach in widespread use across many domains, 

can approximate any mathematical function to characterize complex relationships between 

predictors and responses. We have chosen a specific type of machine learning called 

Gaussian processes for several reasons.29 This method provides a confidence interval (CI) at 

each prediction point that reflects model uncertainty at that state of dilation. Mixed-effects 

modeling produces a single and fixed CI across all dilations. A CI around the expected 

dilation at each examination point gives clinicians the capacity to take under consideration 

the range of reasonable expectations tailored to that point in labor. This characteristic 

seemed useful given that the time to transit 1 cm of dilation varies widely at low dilations 

and varies less at high dilations. In addition, this technique can model multiple processes 

that share common predictors that, in our case, allow us to develop separate curves for 

cervical dilation and fetal descent. Contractions cause both cervical dilation and fetal 

descent, and clinicians do consider both because high station can be a harbinger of an 

arrest disorder.30–34

The mixed-effects models with multiple variables were constructed using the Python 

package Statsmodel.25 The Gaussian processes models were created and tested using 

the GPFlow Python package. The optimization of the models was performed on central 
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processing units and graphics processing units using Python’s SciPy optimization package 

and TensorFlow’s Adams optimization algorithm.25 The details of the Gaussian processes 

modeling used in this study have been previously described.35 Supplementary Table S2 

contains the TRIPOD Checklist.

Each model was applied repeatedly in a single-step fashion. At each examination point 

in time, the model predicted the current dilation and station. This approach matches 

clinical behavior where clinicians make decisions based on available information and not 

on projections far into the future.

Assessing model performance

We assessed the model accuracy by measuring prediction errors, that is, the difference 

between every value produced by the model and the corresponding value observed and 

recorded by the clinician. Smaller prediction errors indicate better accuracy. We plotted 

the range of prediction errors across time to see how accuracy changed over the course of 

labor. In addition, we summarized the accuracy for each model overall using two standard 

statistics: mean absolute error (MAE) and root mean squared error (RMSE). Later, the final 

models were tested on a geographically independent dataset to assess external validation.

Results

Clinical characteristics

A total of 49,694 women delivered a live, singleton, vertex-presenting fetus at ≥35 weeks 

of gestation in the parent group. From this group, 8022 births that met the selection 

and exclusion criteria were used for modeling and cross-validation testing. Their clinical 

characteristics are shown in Table 1.

The clinical characteristics of the 5528 women who delivered a live, singleton, vertex-

presenting fetus at ≥35 weeks of gestation in the geographically independent dataset are 

presented in Table 2. Based on the study selection and exclusion criteria, 527 births were 

available for the external validation test.

Individual trajectories of dilation and station

Individual observed trajectories of cervical dilation and fetal station over time for a random 

sample of patients are displayed in Figure 1. The variability in these trajectories underscores 

the unpredictable nature of labor and the challenge of modeling this process. To facilitate 

the comparison of these figures and the subsequent figures with published average labor 

curves, we transformed the horizontal time axis to be relative to the time of delivery.4–15 

These trajectories illustrate the variability of labor progress, from a consistent and smooth 

progression to instances of abrupt change in dilation or fetal station and different labor 

durations and initial values of dilation and station. Although it is always possible to create a 

mathematical average curve of dilation or descent, the average would not represent the labor 

curve of many patients because there is no prominent clustering of trajectories close to it.
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Cervical dilation models based on a single factor

Results based on modeling with negative-time only are displayed in the Supplementary 

Materials section.

Cervical dilation models based on a single factor using forward-time

Results based on modeling with forward-time as the only variable are shown in Figure 

2. For display purposes only, and after the labor curve models were computed, the x-axis 

(forward-time) was reverted to a negative value (ie, instead of being 0 → 20 hours, it 

became 20 → 0 hours). The graphs in Figure 2 are drawn with the patients’ predictions 

realigned on time of birth so that the curves with forward-time can be viewed and compared 

to curves published by other authors.4–16

The top graphs show the median expected dilation curves (black lines) for the polynomial 

regression and machine learning methods. The pink band shows the range from the 5th 

percentile to the 95th percentile of the predicted dilations. The 75th and 25th percentiles are 

the dashed blue and green lines. The two methods produced very similar curves.

The middle graphs shown in Figure 2 illustrate the accuracy of the models over the course 

of the 20 hours of labor. The vertical axis is the prediction error in centimeters. The median 

prediction error over 20 hours is shown by the black line. The pink band shows the range 

of prediction errors from the 5th percentile to the 95th percentile. In other words, 90% of 

all prediction errors fell within this range. The 75th and 25th percentiles are shown by the 

dashed blue and green lines. Both modeling methods showed similar ranges of prediction 

errors across time, which were notably wide. Both methods overestimated expected dilation 

in early labor and underestimated it in late labor. With each method, the RMSE was 2.504 

cm (95% CI, 2.487–2.521), and the MAE was 2.122 cm (95% CI, 2.108–2.136). In short, 

when forward-time was the only variable, there was no advantage to using machine learning, 

and both methods showed very poor accuracy throughout labor.

Cervical dilation models based on multiple factors: 7 variables

We explored many combinations of variables and several parameters of contractility, such 

as the cumulative count of contractions from Time0, and the number and frequency 

of contractions in the most recent inter-examination interval. The cumulative count of 

contractions provided the best results. It is the contraction measure in all the multifactor 

models.

Figure 3 shows the results with a multifactor approach using seven explanatory variables: (1) 

forward-time at each cervical examination, (2) the cumulative count of contractions, (3) the 

presence or absence of epidural anesthesia, (4) the presence or absence of labor induction, 

and the recorded values at the previous examination for (5) dilation, (6) effacement, and (7) 

station. The median curve for the station and its associated measures of accuracy are shown 

in Figure 4.

The multifactor 7-variable approach gave several notable results. The mixed-effects and 

machine learning methods produced similar labor curves as shown in the top graphs of 

Figure 3. Both methods produced models that were substantially more accurate than the 
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single-factor models based on forward-time (P<.0001) as demonstrated by the median error 

that is closer to 0 in Figure 3 than in those in Figure 2. Moreover, the range of prediction 

errors was smaller, relatively stable, and centered around 0 across time. Compared to the 

single-factor forward-time models, the average prediction errors were improved (lowered) 

by more than half. This comparison is summarized numerically in Table 3. In summary, 

the multifactor approaches were much more accurate than the single-factor approaches, and 

their improved accuracy was more stable across time.

Using the same group of seven variables, the machine learning method showed small but 

significant improvements compared to the mixed-effects regression method. It exhibited a 

lower (better) RMSE of 1.126 cm (95% CI, 1.118–1.133) compared to 1.172 cm (95% CI, 

1.164–1.181) for the mixed-effects approach (P<.0001). In addition, the machine learning 

method produced a lower (better) MAE of 0.826 cm (95% CI, 0.820–0.832) compared to 

0.893 cm (95% CI, 0.885–0.901) for the mixed-effects method (P<.0001).

Variations on the multifactor 7-variable model using machine learning

The Supplementary Materials section includes the results of additional experiments on the 

effect of using different combinations of predictor variables. Adding time of membrane 

rupture to the machine learning model (multifactor 7 variables) did not result in a significant 

improvement in the average prediction error. Removing the examination time variable from 

the model did not result in a significant change in the average prediction error.

We compared the performance of the machine learning model (multifactor 7 variables) in 

patients who underwent labor induction and in those with spontaneous onset of labor. The 

non-induced group had a slightly lower RMSE and a lower MAE, as shown in Table 4. 

However, the absolute size of the difference was <1 mm, which is clinically imperceptible.

External validation

The developed models (single factor with forward-time, multifactor 7 variables, and 

multifactor without time) were tested on the external validation dataset. Despite somewhat 

different background rates of CD, labor induction, and epidural use (Table 2), the results 

were generally very consistent with those seen in the dataset used for modeling. The RMSE 

and MAE results from the external validation are shown in Figure 5. The single-factor 

models had the highest prediction errors. The multifactor models from either the mixed-

effects or machine learning method had prediction errors that were about one-half of those 

from the single-factor models.

When applying the multifactor 7-variable methods to these data, the machine learning 

method again showed a small but statistically significant improvement in the RMSE 

compared to the mixed-effects method (1.352 [95% CI, 1.351–1.353] vs 1.378 [95% CI, 

1.377–1.379]; P<.0001). The MAEs were better (lower) in the machine learning method 

than in the mixed-effects method (0.946 [95% CI, 0.942–0.946] vs 1.020 [95% CI, 1.020–

1.021]; P<.0001).
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The effect of removing time was slightly different from that observed in the cross-validation 

dataset. There was a small but statistically significant deterioration in RMSE and MAE 

when time was removed for both the mixed-effects and the machine learning methods.

A comparison of single factor vs multifactor models in examples of normal and abnormal 
labor

To place the findings in a clinical context, we illustrate the application of models in a patient 

who had a vaginal delivery in Figure 6 and in another patient who had a CD for arrest of 

dilation in Figure 7.

The observed dilations and stations are listed in the tables and indicated by dots in the 

graphical displays. The shaded bands are the prediction intervals (5th–95th percentiles) 

based on the model in use. Dilation or station is predicted to be within that range 90% of the 

time. The solid line within the shaded band is the 50th percentile.

The prediction interval (shown by the pink band) is wide for the model solely based on 

time (A), whereas the prediction interval for the multifactor 7-variable (B) model is much 

narrower. Observed dilations that fall below this band are among the slowest 5% of expected 

dilations after accounting for this individual’s condition concerning the seven factors in the 

model. In addition, the difference between an observed dilation and an expected dilation can 

be expressed as a percentile as shown in the table above the graphs.

Graph (C) shows the expected station based on the multifactor 7-variable model. The 

vertical axis is shown in the typical reversed order so that observed stations that are below 

the band represent better-than-expected descent.

These examples demonstrate how deviation from expected dilation can be illustrated 

graphically and quantified numerically and why a model with low accuracy and precision is 

a blunt assessment tool.

Comment

Principal findings of the study

First, cervical dilation models that incorporated seven factors demonstrated improved 

(lower) prediction errors compared to dilation models that were based on time alone. 

The mean prediction errors measured using the RMSE and the MAE were reduced by 

more than one-half when multiple factors were considered compared to the single-factor 

models based on forward-time only. Second, the machine learning method showed small 

improvements compared to the mixed-effects regression method. Third, testing with an 

external independent dataset validated the findings.

Results in the context of what is known

Reports from three continents have demonstrated remarkably similar average dilation curves 

for nulliparous women with spontaneous onset of labor using negative-time.8–16 We have 

confirmed this general relationship using multiple variables and forward-time. On average, 

the rate of dilation increases gradually over time with no sharp transitions.
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This study reported on machine learning techniques using multiple predictor variables, 

including forward-time to create labor curves of both cervical dilation and fetal descent for 

nulliparous labors and to measure their prediction errors. Furthermore, this study reported 

on labor curves that consider the use of labor induction and that span 20 hours. Models 

of dilation based on forward-time alone have low accuracy. Models that include multiple 

explanatory variables have substantially improved accuracy.

Clinical implications

A better method to assess labor progress is urgently needed. We now have information from 

two cluster randomized clinical trials on labor management guidelines based on the Zhang 

curves vs standard approaches in regions with different background CD rates ranging from 

6% to 24%. Both studies reported no effect on CD rates.36,37

In addition, clinician compliance with these guidelines based on the Zhang curves is 

strikingly low. One of the prospective cluster randomized studies on labor curves included 

an audit of compliance with intervention guidelines.37 The hospitals using the Zhang curve-

based guidelines received pretrial educational sessions, refresher sessions, and periodic 

feedback during the trial. Despite these interventions, only 31% of the CDs performed at 

dilation of ≥6 cm for dystocia-related reasons adhered to the guidelines.37 This number 

underestimates overall compliance because it does not include CDs performed before 6 

cm for dystocia, which, by definition, are non-adherent to these guidelines. In addition, 

retrospective studies report low rates of compliance with the current American College of 

Obstetricians and Gynecologists guidelines in CDs performed solely for a labor progress 

disorder.38–41 Low compliance suggests that clinicians consider other factors that affect 

dilation and descent that can lead to overriding the guidelines.

Past studies provide evidence that the arrest of dilation at ≥6 cm dilation shows almost no 

discrimination for other conditions, such as obstetrical hemorrhage or neonatal depression, 

and minimal discrimination for CD for fetal heart rate concerns.38,42 In short, it would seem 

that clinicians do not find the existing labor curves germane. Guidelines based on these 

curves do not lower CD rates or detect labors prone to complications.36–39 By contrast, 

percentile rankings from multifactor models similar to the ones presented here showed much 

better discrimination measures.38

The new approach allows the clinician to determine whether an individual patient’s course 

of labor progress conforms with or does not conform with the course of 95% of labors of 

women who delivered vaginally, taking many factors into account rather than considering 

only the passage of time. By considering more factors, these models are more accurate and 

likely to be more relevant for clinicians. Departures below the normal range of expected 

dilation and station shown by the multifactor models mean that the slow progress is unlikely 

to be explained by the patient’s state concerning those factors. We propose that this feature 

helps to discriminate slow progress because of dystocia from slow progress because of 

unfavorable conditions regarding the variables in the model, such as poor effacement or low 

contraction frequency.
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Practical implications

The computational capacity required to apply any of the multifactor models is minimal. 

Calculations at each examination take <1 second using a standard laptop. Acquiring the 

required information automatically is feasible. All major Electronic Medical Record (EMR) 

platforms can export the clinical data needed. In addition, contraction signals from the 

fetal monitors can be obtained from existing systems and networks that relay monitoring 

information to central stations. We have demonstrated that it is possible to run models, 

such as those described herein using software that receives data from and works alongside 

EMRs and fetal monitoring systems. Results can be sent back to the EMR or elsewhere, 

such as smartphones, central nursing stations, or remote centers. These technical aspects are 

operational today using a previously developed and Food and Drug Administration-cleared 

multifactor model.

Research implications

The research described herein represents an attempt to improve the assessment of labor 

progress by the development of more accurate labor curves, which use clinically relevant 

factors and state-of-the-art modeling techniques. The findings suggest that it is possible 

to reduce the magnitude of the prediction error of the models. Our findings have been 

validated internally through cross-validation and externally in an independent group of 

patients. Although our results seem biologically plausible—multiple factors improved the 

prediction error over that derived only from time—replication of our observations is 

desirable. However, our findings are consistent with previous observations reported by 

our group, indicating that models with multiple parameters are valuable in describing the 

expected progress of labor.38

Our study has not addressed the question of discrimination of labor that progresses toward 

a spontaneous vaginal delivery without complications vs those that are associated with 

adverse perinatal outcomes. Previous attempts to address this question suggest that there is 

great variability in the course of normal labor and that the change in cervical dilation over 

time by itself does not distinguish patients with normal outcomes and those with adverse 

outcomes.39

The current definitions of labor abnormalities (protracted active phase, arrest of dilatation, 

and descent) were derived by selecting thresholds of time using simple statistical methods, 

such as identifying slow labor progress as 2 standard deviations below the mean or as the 5th 

percentile. However, at this point, there is no evidence that such a cutoff alone represents the 

optimal criteria to identify the patients who may benefit from intervention.39

Strengths and limitations

The strengths of this study include the use of a large contemporary clinical dataset from 16 

hospitals, automated measurement of uterine activity, and access to the extensive computing 

infrastructure required to train complex machine learning models. Another strength is related 

to the measurement of time. The labor curves reported herein span 20 hours, which is 

longer than most labor curves reported to date, and are relevant to contemporary practice 

where labor induction is increasingly common and the labor of induced nulliparous women 
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generally exceeds the 6 hours depicted in the dilation curves that have been used in the 

guidelines of professional guidelines.2,3,10 Importantly, we have used forward-time rather 

than negative-time to build our labor curves. This is because clinicians do not know how 

many hours it will take for a given patient to reach full dilation. The use of forward-time and 

a long time span imposes substantial challenges to the modeling of labor progress. However, 

these issues are clinically relevant because obstetricians and midwives face these challenges 

in clinical practice.

The limitations of this study and all other studies that produce a labor curve relate to the 

challenges of data selection and measurement of the variables. All studies reporting labor 

curves are based on data from individuals who had a vaginal birth. In particular, they are 

based on a select group of patients. Given the widely different CD rates, a group of patients 

who deliver vaginally could represent 50% to 90% of women. The applicability of the 

models reported herein could be different if the anthropometric and medical characteristics 

of patients in other geographical regions differ. To provide perspective and context on these 

issues, we have reported the clinical characteristics and CD rates for the study groups. The 

rates of labor induction in our study groups were near the high end of the reported rates 

across the United States.19 Labor induction rates in low-risk mothers can vary 4-fold by 

state. However, an individual woman either has a labor induction or does not. This option 

affects labor and underlines the importance of having a model that adjusts well for the 

presence or absence of labor induction rather than assuming “one size fits all.”

The clinical determination of dilation, effacement, and station is inherently imprecise and is 

measured irregularly over time. The precise timing when a patient attains a specific dilation, 

effacement, or station is largely unknown. Despite these limitations, the MAE of the 

multifactor models was <1 cm, which is similar to that reported in studies of interclinician 

variation on dilation measurement.43,44

We did not examine the role of reported maternal race and ethnicity or maternal factors, 

such as body mass index (BMI). The amount of data needed for modeling grows steeply 

with the number of predictor variables under study to find sufficient examples of all factor 

combinations. The US Census Bureau tracks at least seven different race and ethnicity 

groups and notes that mixed backgrounds are increasing.45 BMI is a continuous variable, 

and even if it were categorized, a much larger dataset would be required to characterize its 

effect adequately.

The multifactor models required a simple count of contractions, which was obtained by an 

automated method. Theoretically, contraction counts could be derived from the contraction 

frequency as written in medical records. We did not verify if this was feasible or as useful.

Conclusions

Future machine learning modeling will be able to account for more explanatory factors, 

but the requirement for data for model training will be exceedingly large. Clinicians will 

always have to apply clinical judgment because no labor curve can account for every 

relevant factor in every labor. For example, an occiput posterior position or coexisting 
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complications, such as chorioamnionitis, will influence labor progress and inform clinical 

decisions. However, accounting for the 7 variables considered in these models reduces the 

ad hoc mental adjustments that clinicians must make when assessing labor and helps to 

standardize the assessment of labor progression. Moreover, the assessment can be expressed 

in quantitative terms, such as percentile rankings or graphical displays.

This objective quantification of labor progress can be informative during labor as a quality 

assessment tool or in research on the relationships between labor progress and obstetrical 

complications.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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AJOG at a Glance

Why was this study conducted?

The standard labor curves of dilation and station are solely based on the passage of time 

and were derived from births with spontaneous labor onset. These curves have limitations 

in characterizing expected labor progress because of the highly ariable course of normal 

labor. We propose that labor curves using multiple clinically relevant parameters and new 

modeling techniques (machine learning and mixed-effects regression) could improve the 

prediction of labor progress.

Key findings

Cervical dilation models based on multiple clinically relevant parameters showed 

improved (lower) prediction errors. Their mean prediction errors were reduced by more 

than 50% compared to models solely based on time. The dilation curves derived with the 

machine learning method had better prediction errors than those from the mixed-effects 

regression method. A new model of descent was presented along with its prediction 

errors.

What does this add to what is known?

Our study reports on dilation and descent curves based on multiple variables rather than 

time alone, using machine learning and mixed-effects regression methods. Moreover, our 

study provides a method to quantify departures from expected dilation and descent. The 

new curves allow for individualized assessment of labor progress.
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FIGURE 1. Individual trajectories over time for cervical dilation and fetal station
A, Cervical dilation. B, Fetal station.
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FIGURE 2. Characteristics of the dilation models based on forward-time only
The black line indicates the median. The pink band indicates the range from the 5th 

percentile to the 95th percentile. The dashed blue and green lines indicate the 75th and 

25th percentiles.
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FIGURE 3. Characteristics of the dilation models based on 7 variables, including forward-time
The black line indicates the median. The pink band indicates the range from the 5th 

percentile to the 95th percentile. The dashed blue and green lines indicate the 75th and 

25th percentiles.
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FIGURE 4. Characteristics of the station model based on 7 variables, including forward-time
The black line indicates the median. The pink band indicates the range from the 5th 

percentile to the 95th percentile. The dashed blue and green lines indicate the 75th and 

25th percentiles.
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FIGURE 5. Prediction errors with external validation data
The gray bars indicate the mixed-effects data, and the black bars indicate the machine 

learning data.
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FIGURE 6. Observations from a labor ending with vaginal delivery
The black circles indicate the observed values of dilation or station. The shaded bands 
indicate the prediction intervals (5th–95th percentiles) based on the model in use. The solid 
line within the shaded band indicates the 50th percentile. A, The model of expected dilation 

is based on forward-time only. B, The model of expected dilation is based on forward-time, 

contractions, dilation, effacement, and station at the previous examination, presence of 

epidural anesthesia, and use of labor induction. C, The model of expected station is based 

on forward-time, contractions, dilation, effacement, and station at the previous examination, 

presence of epidural anesthesia, and use of labor induction.
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FIGURE 7. Observations from a labor with cesarean delivery with arrest of dilation
The black circles indicate the observed values of dilation or station. The shaded bands 
indicate the prediction intervals (5th–95th percentiles) based on the model in use. A, The 

model of expected dilation is based on forward-time only. B, The model of expected dilation 

is based on forward-time, contractions, dilation, effacement, and station at the previous 

examination, presence of epidural anesthesia, and use of labor induction. C, The model of 

expected station is based on forward-time, contractions, dilation, effacement, and station at 

the previous examination, presence of epidural anesthesia, and use of labor induction.
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