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Capillary rise in nesting cylinders

Victor Brady∗, Paul Concus†, and Robert Finn‡

Abstract

We investigate computationally recent results concerning the ques-
tion of whether liquid necessarily rises higher in a capillary tube of
smaller section, when tubes are placed vertically in an infinite reser-
voir. The numerical results corroborate for a particular example a
striking discontinuous behavior that was predicted mathematically.

1 Introduction

For capillary tubes of circular section, it is generally known that a narrower

tube when dipped vertically into an infinite reservoir raises a wetting liquid

higher than does a wider tube, the rise height at the axis being essentially

inversely proportional to tube radius [5], [3, Sec. 2.2]; see Fig. 1. In fact, it

turns out that the surface height in the narrower tube is greater than the

surface height in the wider tube at each point of the narrower tube’s section.

This is so even if the sections are not concentric [6] [3, Theorem 5.10]; see

Fig. 2.

About thirty years ago M. Miranda posed informally the question of

whether such a result might hold for tubes of general section: Does liquid
∗Lawrence Berkeley National Laboratory, Berkeley, CA 94720
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Figure 1: Narrower circular capillary tube raises liquid higher at its axis
than does the wider tube at its axis.

(a)(a)

(b)(b)

Figure 2: At each point of the narrower circular tube liquid rises higher than
it does in the wider circular tube over the same section (dashed subdomain),
even if the sections are not concentric.

in Ωα always rise higher than does liquid raised by Ωβ ⊃ Ωα over the same

section Ωα (Fig. 3)? A number of criteria for a positive answer were estab-

lished in [6] and in [3, Sec. 5.3]. In contrast, [2] and [3, Sec. 5.4] distinguished

special cases in which negative answers occur. Thus, the tube with larger

section may indeed lift liquid higher over Ωα for some configurations.

More recently it was shown in [4] that even for sections of simple form the

larger tube can lift liquid higher in low-gravity configurations. Furthermore,

the height differences can become arbitrarily large as the gravity decreases

to zero. Most strikingly, a discontinuous change in behavior can occur for

infinitesimal changes in section. In the present paper we investigate this
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Ωβ
Ωα

Figure 3: General tubes with nesting sections. Liquid need not rise higher
in Ωα than in Ωβ over the same section (dashed subdomain).

behavior computationally for a particular family of sections given in [4].

2 Governing Equations

The governing equations for an equilibrium liquid-vapor interface in a ver-

tical tube of section Ω in a downward-acting gravity field (B > 0) are

div Tu = Bu in Ω, Tu =
∇u

√
1 + |∇u|2

, (1)

ν · Tu = cos γ on Σ. (2)

The equations have been written in dimensionless form with u being the

ratio of the rise height above the surface level at infinity, to a characteristic

length a; B = ρga2/σ is the Bond number, with ρ the density difference

across the liquid-vapor interface, σ the interfacial surface tension, and g the

acceleration due to gravity; Σ is the boundary of Ω, and ν is the outward

unit normal on Σ; γ denotes the contact angle between the liquid and the

wall of the tube, with 0 ≤ γ < π
2 (wetting liquid).
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1− t
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Figure 4: Sections for example problem. (a) unit disk Ω0, (b) circumscribing
rounded squares Ωt (0 < t < 1) showing Ω0 as dashed subdomain, and (c)
2 × 2 square Ω1 showing Ω0 and Ωt as dashed subdomains.

The sections Ω, presented in [4], for which we compute solutions of (1),(2)

are depicted in Fig. 4. In dimensionless form Ω0 is the unit disk, and Ω1 is

its circumscribing 2×2 square. These are the bounding members of a family

of domains Ωt obtained by smoothing the corners of Ω1 with circular arcs

of radius (1 − t), 0 ≤ t ≤ 1. The domains Ωt with 0 < t < 1, intermediate

between the disk and the circumscribing square, are given the name disq

domains in [4]; we adopt here the same terminology. Questions of existence

and boundedness as B → 0 are discussed in [4].

The following properties (i)–(iv) of solutions of (1),(2) are proved in [4]

to hold whenever γ ≥ π/4. These form the basis for our computational

study.

(i) For each of the disq domains Ωt, if B is small enough, a capillary

tube with square section Ω1 will raise liquid to a higher level over all
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of Ωt than will Ωt itself. Furthermore, for each fixed t the difference

in heights will tend to infinity like 1/B as B → 0.

Thus, in a comparison for small enough B between the square and any

disq, one has that the larger domain (the square) lifts liquid higher than the

smaller one, arbitrarily higher as B → 0.

In contrast there holds:

(ii) For any B > 0 the height in the inscribed disk Ω0 exceeds at each

point of Ω0 the height for the square and thus, ipso facto, the height

for any of the intermediate Ωt domains.

Thus, in a comparison between the disk Ω0 and any of the other domains,

disq or square, one has that the smaller domain (the disk) lifts liquid higher

than the larger one, arbitrarily higher in the case of a disq. This is the

situation no matter how close the disq is to being the disk Ω0.

One thus finds that, having chosen any B small enough so that (i) holds

for a given disq domain Ωt (square lifts liquid higher than disq does), the

height inequality will nevertheless reverse if, for that fixed B, the disq Ωt

approaches the disk Ω0. That happens no matter how small B is initially

chosen.

In [4] these contrasting results are considered from the point of view of

the two limiting behaviors: (a) as t → 0 (domains changing from square to

disk) for fixed B, and (b) as B → 0 for fixed domain (t fixed). When both

limits are taken the height inequality reversal transforms into a discontinu-
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ous dependence on the parameter t. Specifically, let ut denote the solution

of (1),(2) in Ωt. One obtains for the limits of the height difference between

the square and the other domains that

lim
B→0

lim
t→0

(u1 − ut) = C, C < 0,

but that

lim
t→0

lim
B→0

(u1 − ut) = +∞.

(The negative constant C is the height difference between the B = 0 (spher-

ical) solutions for the square and for the disk, discussed in Secs. 3 and 4.)

Thus, despite the apparently smooth domain transition from Ωt to Ω0,

the limiting procedures cannot be interchanged. Summarizing the substance

of this seemingly anomalous behavior, we have from [4]:

(iii) Although the surface height at a given point is continuous in t at

t = 0 for each fixed B > 0, its limiting behavior as B → 0 changes

discontinuously in t at B = 0.

We shall corroborate these properties by the computations presented in

Sec. 4. The computations illustrate also another result of [4]:

(iv) Any modification of one of the disq domains that decreases its

area to that of the disk (and preserves the existence of solutions of

(1),(2)) will reverse the conclusion of (ii) that the disk Ω0 lifts liquid

higher than the disqs Ωt. The shrunken disq domain will not only lift
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liquid higher for small enough B, but the height differences become

unboundedly large for decreasing B.

3 Computational Procedure

We are interested in solving (1),(2) for values of B that may be very small

and for which surface heights, which can grow like 1/B, may be very large.

To control the magnitude of quantities being computed and the correspond-

ing possible loss of significance from subtracting nearly equal large numbers,

we make a shift of origin as follows.

Integrating (1) by parts over Ω and using (2), one obtains that ū, the

average height of u, is

ū =
|Σ| cos γ

B|Ω| . (3)

Here |Ω| denotes the area of Ω, and |Σ| denotes its perimeter. We shift u by

its average height to define the new variable w,

w = u − |Σ| cos γ

B|Ω| . (4)

Then, as equations for w, (1),(2) become

div Tw = Bw +
|Σ| cos γ

|Ω| in Ω, Tw =
∇w

√
1 + |∇w|2

, (5)

ν · Tw = cos γ on Σ. (6)

One calculates that the average value w̄ of w is

w̄ = 0.
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Hence, in connection with the result of D. Siegel [7] for smooth domains,

that u has asymptotic behavior as B → 0

u =
|Σ| cos γ

B|Ω| + w + O(B),

one can expect that using w as independent variable will be favorable for

computation for small B. This view is consistent with upper and lower

bounds on w that are given in [4].

We shall have use below for solutions of (5),(6) for the limiting case

of B = 0 for the disk Ω0 and the square domain Ω1. For both domains,

|Σ|/|Ω| = 2. The solutions are portions of the lower hemisphere

w = const. −
√

sec2γ − r2, (7)

where r is the radial coordinate measured from the center of the domains.

For γ = 60◦, the contact angle used in our numerical examples, the values

of the constant corresponding to w̄ = 0 are 2
3(8 − 3

√
3) ≈ 1.869 for Ω0 and

approximately 1.822 for Ω1. A closed-form expression for the difference of

the constants for more general γ is given in [4].

For all the domains in our study we will need the values of |Σ|/|Ω|. A

straightforward calculation gives

|Σ|/|Ω| = 2
π + t(4 − π)

π + t(2 − t)(4 − π)
. (8)

This quantity is depicted in Fig. 5 as a function of t. Note that it achieves

its largest value 2 for the disk (t = 0) and the square (t = 1) but is less for
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Figure 5: |Σ|/|Ω| vs. t.

the disqs (0 < t < 1). Even though differences in |Σ|/|Ω| may be small for

different domains, the differences in mean height (3) can become large as

B → 0. The results described in Sec. 2 can be seen to correlate with this

behavior of the mean heights. The behavior is central to the mathematical

approach in [4].

We used the software package pltmg for obtaining numerical solutions

of (5),(6). pltmg is a general-purpose package for finite-element solution of

certain second-order linear or nonlinear elliptic-partial-differential-equation

boundary-value problems. It has numerous features including automatic

refinement of the approximating triangular mesh, automatic error estima-

tion, and, of particular use for our problem, spectral information on the

underlying Jacobian matrices [1].
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4 Results for Example Problem

Equilibrium free-surface configurations were calculated for domains Ωt with

t = 0, 0.1, 0.2, . . . , 1.0, for four values of Bond number B = 100, 1, 0.01,

0.0001, and for contact angle γ = 60◦. In general, the a posteriori error

estimates for w on the mesh used for most domains (approximately 4,000

vertices) indicated an accuracy in the solution of at least two or three decimal

places.

4.1 Ill Conditioning

For the smallest Bond number B = 0.0001, and to some extent for B =

0.01, special considerations were required because of the problem’s near-

singularity. For B = 0 a solution is determined only up to an additive con-

stant. Correspondingly the Jacobian matrix (positive-definite symmetric)

of the discrete problem is near-singular for B = 0.0001 with the near-zero

smallest eigenvalue corresponding to the constant eigenvector (a multiple

of the vector of all ones). This feature manifested itself most significantly

for the curved domains, for which discretization errors associated with the

curved boundaries resulted in a substantial component of the nearby null

space being introduced into the solution. The following discussion indicates

this phenomenon.

The numerical solution was obtained for Bond number B = 0.0001 for

the disk (t = 0) and for the square (t = 1) for γ = 60◦. As discussed in [4]

the zero Bond-number solution of a spherical cap is the asymptotic solution
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correct to O(B) for the disk [6]. This holds also for the square domain, as

proved in [4] and as indicated in Table 1.

In Table 1 solutions for w obtained by straightforward use of pltmg for

meshes with three different numbers of vertices are tabulated at 11 equally-

spaced points along a diagonal of the square domain Ω1 and along a radius of

the disk domain Ω0. The asymptotic (B=0) solutions are tabulated (wS for

the square and wD for the disk), as well as the difference with the calculated

B = 0.0001 solution for each mesh size. One sees that the values for the

square appear to be in accord with the asymptotic solution wS , differing

from it by more or less O(B). Dependence of error on mesh size suggests

that the discretization error is adequately small for the comparison to be

made.

However, for the unit disk, the average values of the computed solutions

are significantly distant from approximating the value of zero, the average

height w̄ of a solution to the continuous problem. The table indicates that

the computed solutions differ from the asymptotic wD by an additive con-

stant; the near-spherical shapes are evidently computed satisfactorily, but

are displaced upward. This displacement effect was observed to be substan-

tially less for B = 0.01 and for larger values of B.

pltmg provides the option of displaying the lowest frequency eigenvector

of the Jacobian matrix at the computed solution, in this case the constant

vector, in accordance with the continuous problem. As there are discretiza-

tion and quadrature errors in pltmg at a curved boundary that are not
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Table 1: Comparison of B = 0 spherical solutions for 2× 2 square (wS) and
for unit disk (wD) with computed solutions w for B = 0.0001, for several
mesh sizes.

2 × 2 Square

1995 vertices 3995 vertices 5981 vertices
r wS w w − wS w w − wS w w − wS

0.0000 -0.1781 -0.1785 -0.0005 -0.1785 -0.0004 -0.1782 -0.0001
0.1414 -0.1731 -0.1729 0.0001 -0.1731 0.0000 -0.1731 0.0000
0.2828 -0.1580 -0.1580 0.0000 -0.1579 0.0001 -0.1579 0.0000
0.4243 -0.1326 -0.1326 0.0000 -0.1325 0.0001 -0.1325 0.0000
0.5657 -0.0964 -0.0963 0.0001 -0.0964 0.0000 -0.0964 0.0000
0.7071 -0.0489 -0.0493 -0.0004 -0.0490 -0.0001 -0.0490 -0.0001
0.8485 0.0109 0.0111 0.0003 0.0108 -0.0001 0.0108 0.0000
0.9899 0.0841 0.0838 -0.0003 0.0841 0.0000 0.0840 -0.0001
1.1314 0.1727 0.1724 -0.0003 0.1727 0.0000 0.1726 -0.0001
1.2728 0.2792 0.2787 -0.0005 0.2790 -0.0002 0.2791 -0.0001
1.4142 0.4077 0.4062 -0.0015 0.4065 -0.0012 0.4073 -0.0005

Unit Disk

2002 vertices 4000 vertices 5933 vertices
r wD w w − wD w w − wD w w − wD

0.0000 -0.1308 2.2461 2.3769 0.8340 0.9648 0.4810 0.6118
0.1000 -0.1283 2.2489 2.3772 0.8366 0.9651 0.4836 0.6119
0.2000 -0.1207 2.2564 2.3772 0.8441 0.9651 0.4911 0.6119
0.3000 -0.1081 2.2689 2.3770 0.8567 0.9651 0.5037 0.6118
0.4000 -0.0904 2.2869 2.3772 0.8745 0.9651 0.5215 0.6119
0.5000 -0.0673 2.3098 2.3771 0.8976 0.9651 0.5446 0.6118
0.6000 -0.0386 2.3385 2.3771 0.9262 0.9651 0.5732 0.6118
0.7000 -0.0043 2.3729 2.3772 0.9607 0.9652 0.6076 0.6118
0.8000 0.0362 2.4134 2.3772 1.0011 0.9651 0.6481 0.6119
0.9000 0.0832 2.4605 2.3773 1.0481 0.9652 0.6951 0.6119
1.0000 0.1372 2.5146 2.3774 1.1022 0.9652 0.7491 0.6119
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present at a straight boundary, the evidence was that for the disk the poor

conditioning of the matrix resulted in a considerable amount of constant

vector contamination in the solutions. The discretization error approximat-

ing the curved boundary is greater the coarser the mesh, which is reflected

in the corresponding contaminations shown for the unit disk in the table.

To correct for this behavior, we used the built-in features of pltmg to

subtract from the computed solution an appropriate multiple of the constant

vector to yield an average height of zero, as required for a solution of the

continuous problem (5),(6). This was done for all domains and for all Bond

numbers, although the effect of the procedure was discernible just for the

domain with curved boundaries and for the smallest Bond numbers. Once

the corrected w is calculated, the actual height u is obtained from (4).

4.2 Numerical Results

The numerical results for the test problems are illustrated in Figs. 6 and

7. In Fig. 6 the liquid surface height difference between Ω1 and Ωt at their

center, denoted by u1(0) − ut(0), is shown for each of the values of t and

B. The tabular values are connected with piecewise cubic splines. The

ordinate is plotted on a logarithmic scale, to take account of the greatly

changing behavior that occurs among the values of B, and to bring out

the singular nature of the transition to the inscribed disk. The indicated

increment upward by 0.1 allows the negative values of u1(0)−ut(0) at t = 0

to be displayed conveniently on the graph.
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Figure 6: Surface height differences between Ω1 and Ωt at their center vs.
rounding parameter t for several values of Bond number B.

In accordance with properties (i)–(iii) the square lifts liquid higher at its

center than do the disq domains for small enough B, but does not lift liquid

higher than the disk (note the negative values at t = 0). As B decreases,

the height differences get very large. The large slopes at end points when

B is small suggests the discontinuous limiting behavior at t = 0. A similar

behavior in slope occurs near t = 1, indicating there also the effect as |Σ|/|Ω|

departs from the value 2.

Fig. 7 depicts the height differences from the center to the boundary as

a function of distance s along a symmetry diagonal of Ωt, for the indicated
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Bond numbers. The first column gives the height difference between the

square and the disq with rounding radius 1/2, u1(s)−u 1
2
(s). The positivity

for small-enough B, in this case for the values other than B = 100, and the

very large values for the smallest B are in accord with property (i) of Sec.

2. The second column gives u0(s) − u 1
2
(s). These values are all positive in

accordance with property (ii), and again become very large for the small-

est B. Note that the difference of ordinates between the first and second

columns approach the asymptotic value for B = 0 of the difference of the

values of the constants in (7) of approximately 1.822−1.869 = −0.047. The

third column of Fig. 7 gives the computed values of u0(s) − û 1
2
(s), where

û 1
2
(s) is the solution of (1),(2) in the domain Ω̂ 1

2
obtained by shrinking Ω 1

2

until its area equals that of Ω0. These curves should be compared directly

with the corresponding ones for u0(s)−u 1
2
(s) in the second column. As pre-

dicted (property (iv)) the height inequalities become very large in opposite

directions as B → 0.

Acknowledgments

We wish to thank R. E. Bank for advising us on the use of his pltmg software

package, in particular for suggesting how to take advantage of the built-in

features of pltmg to correct for contamination with the constant vector in

the ill-conditioned case. Part of this work was supported by the National

Science Foundation under Grants DMS-0103954 and DMS-0103937 and was

carried out with computing facilities supported by the Office of Science of

15



0 0.5 1
-0.04

-0.02

0

0.02

s

u 1(s
)-

u
1/

2(s
)

B=100

0 0.5 1
0

0.02

0.04

0.06

0.08

s

u 1(s
)-

u
1/

2(s
)

B=1

0 0.5 1
5.6

5.65

5.7

5.75

s

u 1(s
)-

u
1/

2(s
)

B=.01

0 0.5 1
-0.02

0

0.02

0.04

0.06

s

u 0(s
)-

u
1/

2(s
)

B=100

0 0.5 1
0.05

0.1

0.15

s

u 0(s
)-

u
1/

2(s
)

B=1

0 0.5 1

5.68

5.7

5.72

s

u 0(s
)-

u
1/

2(s
)

B=.01

0 0.5 1

0

0.02

0.04

s

u 0(s
)-

û
1/

2(s
)

B=100

0 0.5 1
-0.04

-0.02

0

s

u 0(s
)-

û
1/

2(s
)

B=1

0 0.5 1
-3.545

-3.54

-3.535

-3.53

s

u 0(s
)-

û
1/

2(s
)

B=.01

0 0.5 1
-354.625

-354.62

-354.615

-354.61

s

u 0(s
)-

û
1/

2(s
)

B=.0001

0 0.5 1

566.9

566.92

566.94

566.96

566.98

s

u 0(s
)-

u
1/

2(s
)

B=.0001

0 0.5 1

566.9

566.92

566.94

566.96

566.98

s

u 1(s
)-

u
1/

2(s
)

B=.0001

Figure 7: Surface height differences for: Ω1 and Ω1/2 (first column), Ω0 and
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