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ABSTRACT OF THE DISSERTATION

Joint Visible Light Communication and Navigation via LEDs

by

Dongfang Zheng

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, December 2014

Dr. Jay A. Farrell , Chairperson

Visible light communications (VLC) based on illuminative LED lamps are attracting

increasing attentions due to its numerous advantages. Compared with conventional

lamps, LED illumination sources have long operational life, low power consumption,

and are mechanically robust. Therefore LEDs are expected to be the next generation of

lamps that will be widely installed to replace conventional lamps. Besides, LEDs can be

modulated at very high-speeds, which allows the possibility of simultaneously providing

communication while illuminating. The light modulation frequency is sufficiently high

that it is undetectable by the human eye, yet detectable by arrays of photodiodes.

Considering these facts, a system can be designed to receive (using a single photodiode

or a camera) and analyze LED signals. Furthermore, such a system should be able to

facilitate position estimation tasks either for people or vehicles.

Two kinds of sensors - single photo-detector and array photo-detector (camera

or linear array) C can be used to detect the LEDs. The single photo-detector approach is

used to detect the existence and the specific identity of an LED. The array photo-detector

approach measures the angle-of-arrival of the LED signal. A single photo detector

provides the simplest hardware approach and could communicate with LED’s at a very
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high data rate, but only offers the most basic level of positioning. Cameras provide much

more informative position measurements; however, there are challenges to achieving high

rate LED-to-camera data communications due to the current hardware architectures of

cameras. Alternatively, linear PD arrays allow high sample rates, high accuracy and

low cost. This dissertation will investigates the issues (observability, extrinsic parameter

calibration, and vehicle state initialization) related to implementation of a positioning

and communications system built on a linear optical sensor array.

The VLC based navigation methods require recovering the LED ID from a

sequence of photo-detector scans. This ID will help the data association in the navigation

system or the data communication in the VLC system. Recovering LED data (ID)

requires identifying each LED’s projection position and on-off status in each photo-

detector scan. Identifying the LED projection is challenging because: 1) Clutter and

noise corrupt the measurements; 2) The LED status will be “off” in some frames; 3) The

predicted projection location sequence depends on the estimated vehicle state trajectory,

which is uncertain. This dissertation presents two new methods determining the most

probable data and LED position sequences simultaneously, using Bayesian techniques

by maximizing posterior probabilities. The first method is based on Viterbi algorithm

and developed under the assumption that the frame rate of the array sensor is high

relative to the rover motion bandwidth. The second one is based on multiple hypothesis

tracking (MHT) techniques with no assumption assumed. Both the two methods are

analyzed theoretically and demonstrated by experimental results.
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Chapter 1

Introduction

1.1 Motivation

Visible light communications (VLC) based on illuminative LED lamps are at-

tracting increasing attentions due to its numerous advantages. Compared with con-

ventional lamps, LED illumination sources have long operational life, low power con-

sumption, and are mechanically robust. It is viewed as the next generation lamps in

the future. Fig. 1.1 shows the evolution of the illuminating lamps and their luminous

efficacy comparison. Besides, LEDs can be modulated at very high-speeds, which al-

lows the possibility of simultaneously providing communication while illuminating. The

light modulation frequency is sufficiently high that it is undetectable by the human

eye, yet detectable by arrays of photodiodes. For example, their fast switching rates

(> 300MHz) enables LED’s installed for illumination to also be used for communica-

tion and positioning [38]. Considering these facts, a system can be designed to receive

(using a photo-detector) and analyze LED signals. Furthermore, such a system should

be able to facilitate position estimation tasks either for people or vehicles. The multi-

1



Figure 1.1: The evolution of illuminating lamps.

purpose operations of LED alleviate installing specific infrastructures for each purpose.

There is a growing need for position and navigation solutions other than Global

Navigation Satellite System (GNSS), especially indoors or in urban environment where

GPS does not function well. The indoor navigation applications include automated

guided vehicles for office tasks, emergency guidance systems, equipment location deter-

mination, shopping assistance, and indoor navigation for the visually impaired [78]. The

outdoor applications like positioning systems based on street light or stop lights can be

a helpful compensate for GNSS. Besides, using LEDs as the detecting features could

fully take advantage of their unique IDs [61, 85]. Compared with other data association

algorithms such as Mahalanobis distance [53] and template matching [15], using the

unique ID will be much more precise and reliable. Imagining that all the illuminating

lamps indoors and outdoors are replaced by LEDs, the navigation and communication

system built based on it will require installation of no other additional infrastructures.

The visible light communication (VLC) requires line-of-sight (LOS) commu-

nication channel [39]. That is, only when the LED sources are in the sight of receiver

(photodiode or image sensor) that their signal has chances to be detected. Due to this
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fact, VLC becomes more difficult when the receiver is moving. Taking camera for ex-

ample, if it is installed on a vehicle that is traveling around, the LEDs’ positions in the

image are not fixed, then it is impossible to control the camera sampling a specific pixel

to recover the data. On the other hand, searching each whole image to firstly find the

LED’s position before extracting the signal would make the communication inefficient.

This difficulty in VLC encourages us the idea that combines the communication and

navigation together. The navigation system estimates the position of camera, and fur-

ther the LEDs’ coordinates in the image are predicted. The navigation system also gives

the error covariance of the predicted LED position. With this knowledge, the commu-

nication system could focus on a much smaller ellipse region in the image to find the

LED and extract the signal. Communication requires knowledge of which LED ID’s to

expect for efficiency of demodulation and knowledge of where each LED is expected to

be in the image for efficiency of image processing. Accurate navigation combined with

an LED map enables both aspects.

1.2 Problem Statement

Even though the LOS requirement somehow increases the communication dif-

ficulty, it could be greatly useful for navigation purpose. For navigation purpose, a

single photodiode provides the simplest hardware approach that could detect LED data

at rates exceeding 300MHz, but only offers the most basic level of positioning. The

use of image sensors (cameras) makes it possible to detect the accurate direction of the

incoming vector from a LED to the image sensor, but only samples at a low frame rate

(about 30Hz). A challenge in LED-based navigation system is how to improve the data

transmission rate and the image processing efficiency while maintaining the capability

3



for accurate navigation. The large number of pixels (usually several mega-pixels) in the

image sensor limits the frame rate. This dissertation investigates the ability of a linear

array to preserve the cameras precise position measurement and simultaneously achieve

high data rates.

Any kind of photo-detector based visible light communication and positioning

systems require recovering the LED ID from a sequence of photo-detector scans. This

ID will help the data association in the navigation system or the data communication in

the VLC system. Recovering the LED data from the photo-detector’s measurements is

not so straightforward because: 1) Clutter and noise corrupt the measurements; 2) The

LED status will be “off” in some frames; 3) The predicted projection location sequence

depends on the estimated vehicle state trajectory, which is uncertain. To make matters

worse, the LED projections in the sensor frame moves when the rover moves. The

challenges of recovering the LED data in the sensor frames will be discussed and the

potential solutions are also introduced.

1.3 Contributions

There are several contributions in the areas of Visible Light Communication,

Navigation, and Computer Vision:

• Discussed the characteristics of VLC-based navigation system. Compared it with

the other navigation method such as GPS, WiFi, radio and vision based methods.

• Proposed a new kind of sensor - linear array to overcome the shortcomings of

photodiode and camera. The linear array will improve the data transmission rate

and the image processing efficiency while maintaining the capability for accurate

navigation result when the rover moves in a 2D plane.
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• Described the basic physical structure of the linear array, and discussed its initial-

ization and calibration, and analyzed the observability of the navigation system

based on it.

• Analyzed the problems of the LED data recovery when using camera or linear

array, and reviewed the existing methods.

• Proposed and analyzed two new methods based on Viterbi algorithm and multiple

hypothesis tracking (MHT) algorithm, respectively. The Viterbi-based algorithm

tries to recover the most probable LED path when the rover is stationary or

the moving bandwidth is much smaller than the frame rate. The MHT-based

algorithm recovers several possible LED paths other than one.

• Applied these two algorithms in our rover platform and tested the results.

1.4 Organization

This dissertation is organized as follows:

Chapter 2 introduces the background and the related issues in the VLC-based

communication and navigation system. Chapter 3 proposes a new kinds of sensor - linear

array to overcome the shortcomings of photodiode and camera. The basic physical

structure will be described, and its initialization and calibration will be introduced,

and the observability of the navigation system based on it will be analyzed. Chapter

4 analyzes the problems met in the LED data recovery processes by the camera or

linear array. This chapter proposes a Viterbi-based algorithm to solve the data recovery

problem when the photo-detector is stationary or moving with a bandwidth much lower

than that of the frame rate. Chapter 5 further more proposes a more robust LED

5



data recovery algorithm which could be applied to the case that no matter the sensor is

stationary or moving. Chapter 6 gives the conclusions of all the topics in this dissertation

and discussed the future work.
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Chapter 2

Background

2.1 Visible Light Communication (VLC)

Using visible light for data transmission is not a new idea. People started using

smoke to send messages from thousands of years ago. The emperors in ancient China

used the beacon-fires to call in the troops around the country when their capital was

invaded. The fishermen in many places today are still using lighthouses to find their

destinations on the sea. Today, the bandwidth and application areas of the visible light

communication system are greatly expanded due to LED’s many useful characteristics.

Communication systems using photodiodes, cameras or linear arrays have been intro-

duced in [58, 51, 4, 84]. Their applications include indoor information broadcasting

system via ceiling lamps [44, 28], and communication systems between cars on road via

car headlights, and so on. Using visible light to transmit music has been demonstrated

in [48].

The number of LED lights in our surrounding is growing quickly as the prices

are declining, which can be seen from Fig. 2.1. Now the LEDs are used as stop lights,
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Figure 2.1: LED market revenue in 2011-2015

road lamps, and guiding lights in the airport, see Fig. 2.2 and 2.3. The indoor LED

illuminating lights are also used more and more widely. This fact provides the opportu-

nities for visible light communications to compensate or replace the radio-wave wireless

communications indoors and outdoors. Compared with the radio-wave communication,

the visible light part of the electromagnetic spectrum is still unlicensed and unregulated,

and the power consumption of LED is lower than other radio wave transmitters [31].

Besides, the visible light has inherent security due to the line-of-sight (LOS) requirement

of visible light communications. The light in room cannot be received outside because

it will be blocked by the wall. On the other hand, the LOS requirement limits the VLC

communication distance to 1 to 100 meters which is shorter than the radio-wave commu-

nication distance [32]. It also increases the complexities of receiving LED data when the

photo-detector is moving, since different LEDs come and leave the photo-detector’s field-

of-view (FOV) and their projections on the photo-detector are also moving. However,

the LOS property is useful for estimating the photo-detector’s position and attitude,
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which will be introduced in the following section.

(a) Stop lights. (b) Street lights and airport guiding lights.

Figure 2.2: LED stop lights and street lights.

Figure 2.3: Airport LED guiding lights.

2.2 Visible Light Positioning (VLP)

As we have briefly introduced in Chapter 1, the LOS property could provide

information of the photo-detector’s relative position and rotation with respect to each

detected LED. Once the global position of each LED transmitter is known, the photo-

detector’s global position will be able to be calculated. Such VLC-based navigation

systems have utility in a variety of environments, especially indoors or in urban envi-

9



ronments, where the current generation of GNSS technologies does not function well.

Indoor applications include emergency guidance systems, equipment location, personnel

location, indoor navigation for the visually impaired, and automated guided vehicles for

office tasks [78]. In the near future, it is even possible to help mobile users to obtain

their real-time position information by receiving the LED data using the camera on

smart-phone. For outdoor applications, the largest market would relate to a variety of

automotive applications including mobile collision avoidance system, automatic guided

vehicle, and so on. One most important advantage of VLC-based navigation systems is

that the unique ID of each LED transmitter could help solve the data association prob-

lem. Navigation systems using the communication between LEDs’ and photo-detectors

have been discussed in [85, 86, 84]. Fig. 2.4 illustrates the indoor visible light communi-

cation and positioning system used in smart-phone or shopping cart. Fig. 2.5 illustrates

the airport guidance system which determines the airplane’s position by the LED guid-

ing lights, and mobile collision avoidance system which is able to compute the relative

position of a vehicle with respect to its vicinities by detecting the LEDs installed on the

vehicles.

Fig. 2.6 gives the comparison between different navigation technologies. Here

we assume that VLC belongs to the vision based methods, which will be explained later.

From this figure, we will find that the VLC method will be much more accurate than

that of using cell phone signal, Wi-Fi, and GPS.

For navigation purpose, a single photodiode provides the simplest hardware

approach that could detect LED data at rates exceeding 300MHz [38], but only offers

the most basic level of positioning. This is basically a form of finger-printing [78, 27].
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(a) Indoor visible light localization and commu-

nication systems using smart-phones and com-

puters.

(b) Shopping assistant in the super markets.

Figure 2.4: Indoor applications.

(a) Airport guidance system using LED lamps. (b) Mobile collision avoidance system by detecting

the LEDs installed on the the vehicles.

Figure 2.5: Outdoor applications.
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Figure 2.6: Comparison between different navigation methods (Source: [79]).

Given a map of LED locations, when the photodiode through signaling knows that it

detects the i-th LED, it can look up that LEDs location, and know that it is in the

same vicinity. If multiple LEDs are detected, then the estimated location can be further

refined. This approach is rather binary. Either it knows its position, or not. A camera

provides a much more informative measurement for navigation purposes, by detecting

the LEDs’ positions in the image to form angle-of-arrival measurements. The camera

also spatially separates the LEDs’ signal so that they do not interfere. However, a

camera’s limited frame rate (up to thousands of frames per second) limits the rate of

high speed communication. Compared with a single photodiode and the camera, the

linear array could simultaneously provide high sampling rate and accurate estimation

results. A linear array is a set of photodiodes that form one or several straight lines

to receive the light signal. The number of pixels in a linear array is much smaller than

that in a camera, since the linear array could be viewed as a small part of the camera

sensor. The linear array preserves the sensitivity to angle-of-arrival relative to a single

axis, so it is useful when the sensor moves in a 2D plane. The comparisons between
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the photodiode, linear array, and camera are listed in Tab. 2.1. The analysis of the

navigation and communication using a linear array, as well as the simulation results will

be presented in Chapter 3. Due to the localization accuracy, we are more interested in

the navigation system using photo-detector arrays (camera or linear array).

(a) Photodiode (b) Linear array (c) Image sensor

Figure 2.7: Photo-detectors

2.3 LED Detection and Data Recovery

Generally, there are two data transmission methods using LEDs: pattern based

method and binary based method. The pattern based method uses an array of LEDs

as the transmitter. Each time the LEDs with status “on” together represent a symbol

which will be recognized by the photo-detector. The binary based method sends message

only using the transmitter’s “on” and “off” status, so that it could only send one bit

each time. By comparison, the pattern based method has more communication efficiency

but requires complex image processing technology to recognize the pattern. These two

methods are illustrated in Fig. 2.8, where the photo-detector is an image sensor.

In this dissertation, we mainly focus on the binary based method so that the
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Table 2.1: Comparison between photo-detectors

Photodiode Linear array Camera

>100MHz 100MHz per pixel 1KHz per frame

LED vicinity

Not linearizable

Lateral projection u

Linearly related to

yaw and position error

orthogonal to LOS vector

Lateral projection u, v

Linearly related to yaw,

pitch and position errors

orthogonal to LOS vector

Inexpensive (<$1) Inexpensive (∼$10) Expensive (>$10k)

No image processing No image processing Reqs. image processing

All LEDs utilize same PD
Laterally separated LEDs

use distinct PDs

Each LED uses a

separated pixel (PD)

X

Y

Z

{ }c

LED pattern

image plane

(a) Pattern based communication

X

Y

Z

{ }c

LED

image plane

data
sequ

ence

(b) Binary based communication

Figure 2.8: LED data transmission methods
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transmitters can be single LEDs. The LED data is modulated using as on-off keying

(OOK) scheme [40]. Recovering the LED data requires extracting the “on” and “off”

sequence of the LED from a record of consecutive scans. The turned on LEDs are point

light sources with their projections bright blobs in a two-dimensional image, or bright

segments in a linear array. The measured LEDs in a camera images and linear array are

illustrated in Fig. 2.9.

(a) LED projection in the image (b) LED projection in the linear array

Figure 2.9: The measured LEDs in the image and linear array.

For two-dimensional image measurements, various feature detectors and de-

scriptors, including corner and blob detectors, have been developed to find and describe

the features in the image. Both these existing corner and blob detectors can be used to

search candidate LED projections in the image. Other simpler techniques like searching

LEDs based on the pixel value or color can also be used, which are especially useful for

linear array measurements where the existing corner or blob detector cannot be used.

The LED detection methods mentioned above will extract all the features in the image

besides LED’s, so we cannot determine which ones are due to LEDs in a single image

without any projection location information. For typical vision-aided navigation sys-
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tems, in order to find the desired features (LEDs) in the image, their search regions

are predicted based on the navigation state to narrow the searching area and reject

unexpected measurements. The search region of each LED in the image is the inner of

an ellipse defined by the residual covariance. However, due to the clutter measurements

and noise, there still can be multiple potential measurements appearing in this search

region. This can be the case even when the LED is off.

2.4 Related Work

The Visible Light Communications Consortium (VLCC) has been in estab-

lished in 2003 aiming to publicize and standardize the visible light communication tech-

nology [59, 54]. The communication between the photodiode and a single white LED

has been introduced in [74, 75, 46, 44, 80, 1]. In [44], up to 300Mb/s data rate can be

realized using OOK modulation scheme, while a gross transmission rate of 513Mb/s is

achieved in [80]. The communication between the photodiode and a single LED has been

demonstrated by UC-Light lab. The music and video have been transmitted through

VLC in the demonstration, and even the internet link can be connected by VLC. Toy

cars equipped with LEDs exchange short messages is demonstrated in [16]. The commu-

nication between the photodiode and multiple LEDs are also discussed in [45, 49, 18].

Literature [49] uses on-off keying link to communicate with 16 LEDs simultaneously

achieving an overall bandwidth of 25MHz. An OFDM (orthogonal frequency division

multiplexing) modulation scheme is proposed for VLC in [1].

Using image sensor to communication with LEDs is another choice, which has

advantage of spatially separating different LED sources to prevent interferences. An

image sensor with an in-pixel demodulation function for detecting modulated LED light
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is proposed and demonstrated in [60]. The method that decodes the LED data from a

sequence of image is proposed in [64]. The random accessing characteristic of CMOS

image sensor provides the opportunity of visual-MIMO (multiple-input multiple-output)

where optical signal from multiple LEDs are received by multiple pixels in the CMOS

image, which is introduced in [6]. The visual-MIMO demo that employs a LED array

and a high speed camera is introduced in [76]. Another advantage of image sensor is

the ability to detect LED patterns. Literature [62, 50] discussed a LED pattern based

communication method by dividing the LED panel into regions to show different visual

patterns. Literatures [5, 4, 58] proposed a hierarchical coding scheme to modulate the

LED array and realized this method in the road-to-vehicle communication.

Even though the VLC based positioning research is still at a preliminary stage

[66], there have been various methods proposed and implemented in many literatures.

Due to its short range property (less than tens of meters), most proposed VLC based

positioning methods are used indoors. These indoor positioning methods can be found in

literatures [43, 83, 71, 29, 66, 65, 41, 42, 82, 87, 63]. Despite the difficulty, there are still

some literatures like [69, 7] developed VLC based outdoor positioning methods, both of

which detect the modulated automobile LED lightings to estimate the vehicle relative

positions. Methods in [69, 71, 43, 7, 82, 87, 63] all use photodiodes to detect LEDs. Since

the photodiode could not sensor the accurate angle-of-arrival of the LED signal, these

methods mainly focus on the measured light intensity, time difference of arrival (TDOA)

and phase difference of arrival (PDOA). The method in [69] modulates the automobile

LED lighting - either taillights or headlights - to send high rate repetitive on-off keying

pattern, then the phase difference from two LED lamps are detected, while methods in

[7, 63] try to detect the time difference of arrival from two LED lights. Once the TDOA

or PDOA is detected, the range difference from the receiver to the two LED lights can

17



be computed and further the position of the receiver can be determined. Methods in

[71, 41, 42, 82, 87] try to model the visible light channel and infer the range between

receiver and LED lights based on the measured light intensity, and then calculate the

receiver’s position by trilateration. A probabilistic positioning utilizing VLC is proposed

in [43]. The basic idea of the algorithm is to sample the signal strength for selected

orientations at each reference point during the off-line phase and combine a subset of

these values to histogram in the online phase, so that an orientation-specific signal

strength distribution can be computed and utilized to increase the accuracy of position

estimate. Positioning methods using image sensors are introduced in [29, 83, 66, 65], all

of which measure the LED coordinates in the image frame and calculate the receiver’s

position based on geometry methods. Most of the existing positioning method use

photo-detector alone, while method in [43] uses compass to improve the accuracy of

training data, and method in [71] uses 6-axes to help estimate azimuth and tilt angle.

All the methods introduced above use the LED ID to recognize each light source. Some

of them like [83, 66, 65] even modulate each LED’s own global position coordinates in

the signal, so that the receiver does not have to previous known each LED’s position.

All the visible light positioning methods mentioned above compute the re-

ceiver’s position merely by the latest photo-detector’s measurement, but the Markov

property of the photo-detector’s state is not considered. The inertial sensor and com-

pass in [71, 43] are only used to help estimate the pose of receiver instead of predicting

the receiver’s state at the next time step. For the image sensor based positioning meth-

ods above, either the image sensor is stationary or no LED tracking algorithm is applied

to extract the LED data. From the view of a vision aided navigation system [56], the

positioning result can be greatly improved by incorporating motion and LED measure-

ments together. One essential problem to combine vision aided navigation method with
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VLC together is to track the LED in the image to extract its data. To solve this problem,

the measurements in a sequence of images need to be considered jointly. The measure-

ments of the same object (LED) at multiple time instances should be matched together

to recover the data sequence.

As mentioned in Sec. 2.3, the existing corner detectors (Moravec [55], Forstner

[24], Harris [30], Shi-Tomasi [72], and FAST [70]) or blob detectors (SIFT [52], SURF

[12], and CENSURE [2]) can be used to match the projections of the same feature in

different two-dimensional images. These detectors keep the description of each feature

and these descriptions can be compared to determine whether multiple features are

originated from the same object. However, the projection can be wrongly matched,

especially when the sequence of images are long. Moreover, the existing feature descrip-

tors cannot be applied to the linear array measurement, so that they cannot be used to

match the measurements in different linear array scans.

For the global positioning system (GPS), the technology of receiver autonomous

integrity monitoring (RAIM) [35] is developed to detect the fault measurements of the

receiver. The RAIM technology performs consistency checks between all estimation so-

lutions, and provides an alert to the system if the consistency checks fail [36]. Another

outlier rejection method, named Least Soft-threshold Squares (LSS) [81], is newly devel-

oped. This method models the measurement error as the sum of Gaussian component

and Laplacian component. The LSS method is efficient and easy to implement. Both

of the two algorithms are designed to detect and reject the incorrect measurement, but

cannot deal with multiple measurements.
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Chapter 3

Navigation using Linear Photo

Detector Arrays

3.1 Introduction

There are three kinds of optical sensors suitable for detecting the LED signal:

single photo-detector (photodiode), two-dimensional photo-detector array (camera), and

linear photo-detector array. As we have mentioned in Sec. 2.2, a single PD could

communicate with LED’s at rates exceeding 300MHz, but only offers the most basic

level of positioning. The camera provides a much more precise measurement by detecting

the LEDs positions in the image to form angle-of-arrival measurements, but could only

work at low frame rate (30Hz). The low frame rate of camera will greatly restrict the

information sent from the LEDs to camera.

A challenge in LED-based navigation system is how to improve the data trans-

mission rate and the image processing efficiency while maintaining the capability for

accurate navigation. To extract the ID, a sequence of images are grabbed and processed

to find the on or off status of the LEDs. The frame rate fs has to be at least two times
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higher than the data rate f . Fig. 3.1 illustrates the data sequence of the LED sampled

by the camera image, where the camera frame rate is two times of the LED data rate.

Figure 3.1: Camera continuously takes images of a scene with an LED light [31].

The large number of pixels (usually several mega-pixels) in the image sensor

limits the frame rate. The frame rate of common commercial video camera is about

only 30fps (frames per second), which indicates that the LED blinking rate has to be

no higher than 15Hz which is too low. The frame rate of some special designed high-

speed cameras is higher, for example the EoSens CL camera produced by Mikrotron

GmbH could achieve 1800fps. The Eosens CL camera is shown in Fig. 3.2. Progress has

been demonstrated in our experiments, where the LED signal is modulated at 800bps

(bits per second) and the camera recovers the signal with a sampling rate of 1600fps

[85, 86]. To further improve the frame rate, a solution is proposed in our former paper

[85] that narrows the sampling area to a small portion of the whole image. To realize this

proposition, the camera should have the capability to sample an arbitrary selected area

in the image. The high-speed camera or the camera with small area sampling function

usually has very high cost (≥ 10k).
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Figure 3.2: EoSens CL camera

This chapter investigates the ability of a linear array to preserve the cameras

precise position measurement and simultaneously achieve high data rates. A linear array

is a set of photodiodes that form one or several straight lines to receive the light signal.

The number of pixels in a linear array is much smaller than that in a camera, since the

linear array could be viewed as a small part of camera sensor. The linear array preserves

the sensitivity to angle of arrival relative to a single axis. The advantages of linear array

are:

• Fast sampling frequency: The low frame rate of camera is mainly due to its large

number of pixels. In contrast, a linear array has only one or several rows of pixels.

• High accuracy: The measurement accuracy is mainly dependent on the number of

pixels. Although the total pixel number of linear array is much smaller than that

of camera, the pixel number in one direction could be much larger leading to a

higher resolution in that direction.
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• Low cost: The linear array has simple physical structure and small number of

pixels.

On the other hand, having only one-dimensional sensitivity of the linear array

also increases the difficulties of initialization, calibration and navigation since it cannot

sense angular rotation around the axis of the array or linear motion in the direction to

the plane defined by the sensitive axis and the LED array. A well-known result that

the camera pose is observable [73] and can be computed in closed-form [3] when four or

more known features are detected in each image will not apply to the linear array. In

this chapter we analyze the extrinsic parameter calibration process and the navigation

system state initialization for linear arrays.

Due to the one-dimensional sensitivity, navigation using the linear array is

especially useful when the carrier is constrained to move in a 2D plane. For example,

for cars equipped with linear arrays driving on roads, existing LED traffic lights are ideal

navigation features. For vehicles moving in 3D space, by employing two linear arrays

with their perpendicular sensitive directions, this problem can also be solved.

Currently, the linear array could be found in a variety of applications such as

photocopiers, barcode scanners, and line scan cameras. Their light spectrum sensitivity

ranges from short wave infrared to ultra violet, and the pixel number ranges from tens

to thousands. The pixel read-out speed is up to 100MHz. Taking the Melexis’s 3rd

generation linear optical array MLX75306 as an example, it is 7.1mm long with 142

pixels, and has 12MHz read-out speed.

Unfortunately, none of the applications mentioned above is specifically designed

for navigation and communication purposes. For this application we propose combining

a linear array and cylindrical lens. Its physical structure is illustrated in Fig. 3.3.
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Figure 3.3: Physical structure of linear photodiode array sensor.

The basic physical structure includes a linear array, a convex-cylindrical lens

and the shutter. The convex-cylindrical lens will focus the light that passes through

onto a line instead of a point. The linear array will be put that perpendicular to the line

which the lens focuses on. In the lateral plane, the elementary ray trace is similar with

that of convex lens. The ray trace is illustrated in the right of Fig. 3.4. In the vertical

plane, the cylindrical lens can be viewed as a flat glass plate which will not affect the

ray trace. It is illustrated in the left of Fig. 3.4.

This chapter is organized as follows: Section 3.2 describes the problem details

including the kinematic equation and measurement model of the system; Section 3.3

analyzes the nonlinear observability of this linear array based navigation system; Section

3.4 discusses the extrinsic calibration of the linear array and the initialization of the

linear array based navigation system; Section 3.5 gives all the experimental results.
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Figure 3.4: The side and top view of linear array.

3.2 Problem Description

In the following analysis, we firstly describe the general navigation system

structure as well as kinematic equations and measurement models. After introducing

the general model, we give descriptions of the specific navigation systems considered in

this chapter.

3.2.1 General Navigation System

The structure of a general aided navigation system is illustrated in Fig. 3.5.

The input of the system is the measurements of the high rate sensor and aiding sensors,

and the output is the system state estimate at each time step. The high rate sensors

include wheel encoders and IMU, which usually measure the velocity, acceleration and

angular rate of the platform. The aiding sensors include GPS receiver, magnetometer,

camera, thermometer and so on. In Fig. 3.5, the high rate part is colored by green,

while the low rate part is red. The general kinematic model and aiding sensor model

will be discussed in the following sections.
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Figure 3.5: Aided navigation system

3.2.1.1 State Propagation

The aiding sensor is assumed to be part of a rigid system with kinematic state

(i.e., position, velocity, attitude) denoted by x(t) ∈ Rn. We will refer to this rigid system

as a rover. The rover trajectory evolves over time according to

ẋ(t) = f (x(t),u(t)) , (3.1)

where f : Rn × Rm → Rn is a known nonlinear mapping and u(t) ∈ Rm is the system

input. In a navigation system, the input u represents the rover’s motion information,

which could be measured by an encoder or inertial measurement unit (IMU).

Throughout this article, we use symbol â to represent the estimate of variable

a. Given an initial condition x(0) ∼ N (x0,P0), the computer calculates an estimate x̂

of x according to

˙̂x(t) = f (x̂(t), û(t)) , (3.2)

where û is the estimate of u computed from its measurement ũ. In the simplest case, the

measurement is modeled as ũ = u+ ω, where the process noise ω has power spectrum

density (PSD) denoted by Q.
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Define δx = x − x̂ as the state error, then its propagation model can be ap-

proximated by subtracting eqn. (3.2) from (3.1) and linearizing the result along the

estimated trajectory:

δẋ(t) = F (t)δx(t) +G(t)ω(t), (3.3)

where

F (t) =
∂f

∂x
|x=x̂,u=û (3.4)

G(t) =
∂f

∂u
|x=x̂,u=û. (3.5)

If we are only concerned with the state estimates and their errors at the times

tk at which the aiding measurements happen, and use the subscript k as the shorthand

notation for tk, we can use the following error propagation model:

δx(k) = Φk−1δx(k − 1) + ωk−1, (3.6)

where x(k) is the short for x(tk), and ωk−1 ∼ N (0,Qk−1). Computation of the state

error transition matrix Φk−1 and process noise covariance Qk−1 are discussed in [22].

From (3.6), the state error covariance Pk evolves over time according to

Pk = Φk−1Pk−1Φ
⊤
k−1 +Qk−1. (3.7)

According to eqn. (3.7), the state error can be accumulated quickly because of

the process noise ωk Usually after only a few second, the estimation error could become

unacceptable, which is illustrated in Fig. 3.6. That is why we need aiding sensors to

correct the state estimation.

3.2.1.2 Aiding Sensor Model

The general aiding sensor measurement model is

z(k) = h (x(k)) + nk, (3.8)
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Figure 3.6: Growing of the state error covariance due to the process noise.

where z(k) ∈ Rp, and h : Rn → Rp is the measurement function, and nk ∼ N (0,Rk)

is the measurement noise. Given the state estimate at time step k, it is straightforward

to compute both the predicted measurement ẑ(k) according to

ẑ(k) = h(x̂(k)). (3.9)

The prediction error is defined as δz = z − ẑ, and its model can be approximated by

subtracting eqn. (3.9) from (3.8):

δz(k) = Hkδx(k) +Rk, (3.10)

where Hk ∈ Rp×n is the linearized measurement matrix obtained from

Hk =
∂h

∂x
|x=x̂(k). (3.11)

From eqn. (3.10), its error covariance S(k) is computed as

S(k) = HkPkH
⊤
k +Rk. (3.12)

The quantities ẑ(k) and S(k) define a prior distribution for the feature measurement.
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3.2.1.3 Sensor Fusion

As showed in Fig. 3.6, the state estimate error will accumulate if the state

estimate is calculated only by integrating the measurements from the motion sensor.

The extended Kalman filter (EKF) is frequently used to fuse the measurements from

motion sensor and aiding sensors. The state estimate propagates based on eqn. (3.2)

where û(t) is viewed as a constant between each time interval [tk−1, tk]. Integrating eqn.

(3.2), the state estimate propagates according to

x̂(k) = x̂(k − 1) +

∫ tk

tk−1

f (x̂(t), û(t)) dt (3.13)

The state error propagates according to eqn. (3.7).

The state computed from eqn. (3.13) and the error covariance propagated

from eqn. (3.7) are the prior state estimate covariance denoted by x̂−(k) and P−
k ,

respectively. When a measurement arrives at time tk, the state and its error covariance

are updated according to

Kk = P−
k H⊤

k (HkP
−
k H⊤

k +Rk)
−1

x̂+(k) = x̂−(k) +Kk(z(k)− h(x̂k))

P+
k = P−

k −KkHkP
−
k , (3.14)

where Kk is the EKF gain evaluated at time tk, and x̂+ and P+ are the posterior state

estimate and error covariance. Fig. 3.7 illustrates the how the state error ellipse evolves

over time when the aiding sensor measurements are added in the estimation process.

The state error decreases when the aiding measurement happens, so that state error

keeps in a tolerable range when the rover moves.
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Figure 3.7: The state error ellipse evolves over time when the aiding sensor measurements
are added.

3.2.2 Kinematic Equations

In this chapter, we consider a vehicle moving in a 2D plane where the vehicle is

equipped with a linear array. The vehicle also has linear and rotational velocity inputs

(µ and ω) which are measured via additional sensors like wheel encoders. The goal is

to estimate the vehicle position coordinates n (north), e (east) and heading ψ in the

world frame. The state vector is x = [n, e, ψ]⊤, and input is u = [µ, ω]⊤. The kinematic

equations are 
ṅ

ė

ψ̇

 =


cosψ

sinψ

0

µ+


0

0

1

ω. (3.15)
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The state estimate vector is written as x̂ =
[
n̂, ê, ψ̂

]⊤
, and it propagates discretely

according to eqn. (3.13). The state error vector is defined as δx = [δn, δe, δψ]⊤ and

δx = x− x̂ =


n− n̂

e− ê

ψ − ψ̂

 . (3.16)

The state error propagate equation is defined in (3.3), where the linearized matrix F

and G are

F =


0 0 − sinψ

0 0 cosψ

0 0 0

 ,G =


cosψ 0

sinψ 0

0 1

 . (3.17)

The state error covariance is propagated according to eqn. (3.7).

3.2.3 Measurement Equation

The linear array measurement, viewed as the lateral portion of a camera mea-

surement. So firstly we will describe the pinhole camera measurement model. Let

cpcL =

[
cX cY cZ

]⊤
(3.18)

denote the coordinates of an LED in camera frame. This vector is computed as

cpcL =

[
c
wR

cpcw

] wpwL

1

 (3.19)

c
wR = c

bR
b
wR

cpcw = c
bR

(
bpcb − b

wR
wpwb

)
, (3.20)

where bpcb and c
bR are the camera extrinsic calibration parameters, and wpwL is the

known LED location in navigation frame. Throughout this dissertation, the symbol baR
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denotes the rotation matrix transforming a vector from frame a to frame b. The symbol

cpab denotes the vector pointing from location a to location b represented in frame c.

The measurement yd =

[
ud vd

]⊤
accounting for camera distortion is mod-

eled as follows:

u =
cX
cZ

(3.21)

v =
cY
cZ

(3.22)

r2 = u2 + v2 (3.23)

cX ′ = u(1 + k1r
2 + k2r

4)

+2p1uv + p2(r
2 + 2u2) (3.24)

cY ′ = v(1 + k1r
2 + k2r

4)

+2p2uv + p1(r
2 + 2v2) (3.25)

ud = fx · cX ′ + cx (3.26)

vd = fy · cY ′ + cy (3.27)

where (fx, fy, cx, cy) are camera intrinsic parameters and (k1, k2, p1, p2) are the distor-

tion parameters. The intrinsic parameters and distortions are determined offline using

standard calibration methods in [14]. For convenience, we usually use the undistorted

camera measurements defined in eqn. (3.22). The undistorted camera measurements

can be computed from the distorted measurements if the camera intrinstic parameters

are known. Several approaches are introduced in linteratures [33].

From the introductions above, the linear array measurement without consid-

ering the distortions is modeled as

z = h(x) =
lx
lz
, (3.28)

where lplf =

[
lx ly lz

]⊤
is the feature position in the linear array frame which is
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similar to the definition of lplf . It is modeled as

lplf = l
bR

(
bpbf − bpbl

)
, (3.29)

bpbf = b
wR (wpwf − wpwb) , (3.30)

where the letter w and b in the above equations represent the world frame and body

frame, respectively.

From the eqns. (3.18–3.22), the linearized measurement matrix Hc for the

camera measurement model is

Hc =
∂h

∂cpcL

∂cpcL
∂x

= H1H2, (3.31)

where

H1 =

 1
cZ 0 − cX

(cZ)2

0 1
cZ − cY

(cZ)2

 (3.32)

has two rows as the vectors in the two directions orthogonal to cpcL. From equations

(3.19) and (3.20), we have

H2 =

[
−c
nR(:, 1 : 2) c

bRJψ
bpbL 03×2

]
, (3.33)

where

Jψ =


0 1 0

−1 0 0

0 0 0

 (3.34)

and c
nR(:, 1 : 2) is the first two columns of matrix c

nR.

The linearized measurement matrix Hl for the linear array measurement model

corresponds the first row of matrix Hc, and it can also be decomposed as

Hl = H1,lH2, (3.35)
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where H1,l corresponds the first row of H1. The measurement model of the camera and

linear array are illustrated in Fig. 3.8.

X

Y

Z

{ }c

image plane

LED

(a) Camera model.

X

Y

Z

{ }l

linear array

LED

(b) Linear array model.

Figure 3.8: Camera and linear array measurement model

3.3 Observability Analysis

In this section, we consider the observability of the vehicle state using the

measurements z of the linear array for the system of Eqn. (3.15) with inputs µ and ω.

We prove that the state x is fully observable when at least two horizontally separated

LED’s are measured simultaneously.

3.3.1 Nonlinear Observability

Consider the nonlinear system

ẋ = f0 (x) +

m∑
i=1

fi (x)ui, (3.36)

z = h (x) , (3.37)
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where x ∈ Rn, z ∈ Rp, fi : Rn → Rn, and u1, . . . , um are m scalar inputs. The

nonlinear system described by (3.36)-(3.37) is locally weakly observable over a region D

if its observability matrix has full rank on D [34]. The observability matrix is defined

as a matrix with rows:

O , {∇Lℓ
fi1 ···fiℓ

hk (x) | k = 1, . . . , p; ℓ ∈ N}, (3.38)

where Lℓ
fi1 ···fiℓ

is the Lie-derivative of order ℓ with respect to fi1 · · ·fiℓ , and hk(x)

is the kth element of h(x). For the system (3.15), we have m = 2, p = 1, f0 = 0

f1 =

[
cosψ sinψ 0

]⊤
, and f2 =

[
0 0 1

]⊤
.

3.3.2 Observability Analysis

Since the vehicle moves in the 2D plane, the height component of the vehicle

position in the world frame is fixed which is 0 in our frame definition. Using the following

standard notations

b
wR =


cosψ sinψ 0

− sinψ cosψ 0

0 0 1

 , (3.39)

wpwf =

[
xf yf zf

]⊤
, (3.40)

wpwb =

[
n e 0

]⊤
, (3.41)

to reorganize matrix H2 in (3.33), we have

H2 =
l
bR


− cosψ − sinψ a1

sinψ − cosψ a2

0 0 0

 (3.42)
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where

a1 = − (xf − n) sinψ + (yf − e) cosψ,

a2 = − (xf − n) cosψ − (yf − e) sinψ.

From Eqn. (3.42)-(3.43), if we use hi to represent the ith column of Hl, we have

h3 = − (yf − e)h1 + (xf − n)h2. (3.43)

For the system (3.15), if three rows (columns) in the observability matrix O

are found to be linearly independent, the state x will be fully observable. Obviously,

the first row of O is the linearized measurement matrix H. Before discussing the rank

of O, we firstly state the following lemma:

Lemma 1 For the system defined in (3.15), let G : R3 → Rp be a function defined on

the state space. Suppose equation

∂G

∂ψ
= − (yf − e)

∂G

∂n
+ (xf − n)

∂G

∂e
(3.44)

holds for G, then (3.44) still holds when we replace G by LfiG, i = 1, 2.

Proof. Firstly, let fi = f1, then

Lf1G =
∂G

∂n
cosψ +

∂G

∂e
sinψ. (3.45)

Then

∂Lf1G

∂n
=

∂2G

∂n2
cosψ +

∂2G

∂n∂e
sinψ (3.46)

∂Lf1G

∂e
=

∂2G

∂e∂n
cosψ +

∂2G

∂2e
sinψ (3.47)

∂Lf1G

∂ψ
=

∂2G

∂ψ∂n
cosψ +

∂2G

∂ψ∂e
sinψ

−∂G
∂n

sinψ +
∂G

∂e
cosψ. (3.48)
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Take the partial derivative with respect to n for the both left and right hand sides of

eqn. (3.44), we have

∂2G

∂ψ∂n
=

∂2G

∂n∂ψ
=

∂

∂n

(
∂G

∂ψ

)
= − (yL − e)

∂2G

∂n2
+ (xL − n)

∂2G

∂n∂e
− ∂G

∂e
. (3.49)

Substitute eqn. (3.49) into the right hand side of eqn. (3.48) and reorganize it, we have

∂Lf1G

∂ψ
= − (yL − e)

(
∂2G

∂n2
cosψ +

∂2G

∂e∂n
sinψ

)
+(xL − n)

(
∂2G

∂n∂e
cosψ +

∂2G

∂e2
sinψ

)
= − (yL − e)

∂Lf1G

∂n
+ (xL − n)

∂Lf1G

∂e
. (3.50)

Secondly, following the similar analysis above, let fi = f2.

Lf2G =
∂G

∂ψ
. (3.51)

Then

∂Lf2G

∂n
=

∂2G

∂ψ∂n
(3.52)

∂Lf2G

∂e
=

∂2G

∂ψ∂e
(3.53)

∂Lf2G

∂ψ
=

∂2G

∂ψ2
. (3.54)

Take the partial derivative with respect to ψ for the both left and right hand sides of

eqn. (3.44), we have

∂2G

∂ψ2
=

∂

∂ψ

(
− (yf − e)

∂G

∂n
+ (xf − n)

∂G

∂e

)
= − (yL − e)

∂2G

∂n∂ψ
+ (xL − n)

∂2G

∂e∂ψ
. (3.55)

Substitute eqn. (3.55) into the right hand side of eqn. (3.54), we have

∂Lf2G

∂ψ
= − (yL − e)

∂2G

∂n∂ψ
+ (xL − n)

∂2G

∂e∂ψ

= − (yL − e)
∂Lf2G

∂n
+ (xL − n)

∂Lf2G

∂e
. (3.56)
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Then the proof is finished.

From the lemma, when property (3.44) holds for a function, it also holds for

its Lie-derivative, and of course its Lie-derivative of any order.

Theorem 2 The observability matrix defined in (3.38), for a single LED, does not have

full rank for the system in (3.15).

Proof. Eqn. (3.43) indicates that the measurement function h(x) has property

(3.44). Then from Lemma 1, Lℓ
fi1 ...fiℓ

h (fi1 . . .fiℓ = 1, 2.) satisfies (3.44) for any ℓ ∈ N,

so that each column in the observability matrix satisfies eqn. (3.44). This means the

third column of the observability matrix in (3.38) is always the linear combination of its

first two columns, so it does not have full rank.

Next, we are going to prove that the observability matrix has exactly rank 2

when only one LED is measured. Since Theorem 2 says rank(O) ≤ 2, we only need to

show rank(O) ≥ 2 in the following analysis.

Considering the row ∇Lf1h in O, we have

Lf1h = Hlf1 = −r11
lz

+
r31

lx
lz2

(3.57)

∇Lf1h =

[
r31
lz2

0
r11
lz2

− 2r31
lx

lz3

]
H2

=
r31
lz

H +

[
0 0

r11
lz2

− r31
lx

lz3

]
H2, (3.58)

where rij is the element of matrix l
bR at ith row and jth column. Then rank(O) ≥

2 is true when ∇Lf1h is linearly independent of H, since ∇Lf1h and O are two

different rows in the observability matrix. Eqn. (3.58) shows that ∇Lf1h is the linear

combination of H and the third row of H2, which indicates that ∇Lf1h is linearly

independent of H if and only if the third row of H2 is linearly independent of H. From

Eqn. (3.31), (3.32) and (3.35), H itself is the linear combination of the first and third
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rows of H2, then H is linearly independent on the third row of H2 if and only if the first

and third rows of H2 are linearly independent. From Eqn. (3.42), the independency of

the first and third rows in H2 requires the first and third rows of lbR are independent.

Moreover, since the third row of the matrix in the right hand side of (3.42) is 0, then the

independency of the first and third rows in H2 only requires that the following matrix r11 r12

r31 r32

 (3.59)

is nonsingular. This matrix is dependent on the pose of the linear array on the carrier.

If more than one LED’s are measured, and not all of the LED’s have the same

xf and yf coordinates, then the observability matrix O will have full rank since Eqn.

(3.43) is no longer true. To estimate state x, at least two horizontally separated LED’s

should be observed simultaneously.

3.4 Calibration and Initialization

The calibration of the extrinsic parameters of linear array is a little more

difficult than that of the standard camera because of its one-dimensional sensitivity.

The well-known result that the camera pose is observable [73] and can be computed

in closed-form [3] when four or more known features are detected in each image will

not apply to the linear array. In this section, we are going to estimate the extrinsic

parameters using the nonlinear optimization method, initialized with approximate prior

knowledge of these parameters. The initialization method follows the method in [86].

3.4.1 Extrinsic Parameter Calibration

Being different from the extrinsic calibration of camera, the extrinsic parame-

ters of linear array cannot be estimated only by its measurement without prior knowl-
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edge. Taking the computation of bpbl for example, even though when all the other

parameters except bpbl in Eqn. (3.28)-(3.29) are perfectly known, the vector bpbl still

could not be obtained. Assume there are m LEDs are measured with measurement set

{z1, z2, . . . , zm} and their corresponding coordinates in the body frame are

bpbfi =

[
fi,1, fi,2, fi,3

]⊤
, for i = 1, . . . ,m. (3.60)

Use pi and rij to represent the elements in bpbl and
bRbl, respectively. Now we can

construct the equation set with the pi as the unknown parameters.

(z1r31 − r11)(p1 − f1,1) + (z1r32 − r12)(p2 − f1,2) + (z1r33 − r13)(p3 − f1,3) = 0

...

(zmr31 − r11)(p1 − fm,1) + (zmr32 − r12)(p2 − fm,2) + (zmr33 − r13)(p3 − fm,3) = 0

The coefficient matrix is
z1r31 − r11 z1r32 − r12 z1r33 − r13

...
. . .

...

zmr31 − r11 zmr32 − r12 zmr33 − r13

 , (3.61)

which is not full rank since each row in this matrix is the linear combination of the first

and third rows of matrix bRbl. This fact indicates that there will be no unique solution

no matter how many LED’s are measured simultaneously.

The prior values of lbR and bpbl can be measured roughly by a tape. The vehicle’s

pose is accurately known by putting the vehicle at a well measured position. Nonlinear

optimization methods could be employed to obtain the accurate extrinsic parameter

estimation. Some nonlinear optimization methods such as Gradient Descent, Newton

method and Gauss-Newton method are introduced in Appendix A.

Using lq̄b to denote the quarternion of lbR, and defining xe =

[
lq̄b

bpbl

]⊤
,
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the estimation of the extrinsic parameters is calculated according to

x̂k+1
e = x̂ke + δx̂ke (3.62)

δx̂ke =
(
H⊤
g R

−1
g Hg

)−1
H⊤
g R

−1
g

(
z − h(x̂ke)

)
(3.63)

Pe =
(
H⊤
g R

−1
g Hg

)−1
, (3.64)

whereRg and Hg are constructed in Sec. 3.5.1, x̂ke is the estimation of xe at the kth

iteration.

3.4.2 Initialization

We firstly introduce the initialization method using the camera measurements,

then the similar method using linear array measurements will be derived. According to

the definition of u and v in Eqn. (3.22), using (3.18) and (3.19), we have

cZ


u

v

1

 = cpcL =

[
c
nR

cpcn

] npnL

1

 (3.65)

Reorganizing Eqn. (3.65), we have

b
cR


cZ u

cZ v

cZ

 =

[
b
nR

bpcb − b
nR

npnb

] npnL

1

 , (3.66)

where (u, v), cZ, bcR, bpcb and
npnL are all known, bnR and npnb are

b
nR =


cosψ sinψ 0

− sinψ cosψ 0

0 0 1

 (3.67)

npnb =

[
n e 0

]⊤
. (3.68)
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Define matrix P =

[
b
nR

bpcb − b
nR

npnb

]
. By (3.67) and (3.68), P = [pij ] is


cosψ sinψ 0 bxcb − n cosψ − e sinψ

− sinψ cosψ 0 bycb + n sinψ − e cosψ

0 0 1 bzcb

 . (3.69)

From (3.69), only elements [p11, p12, p14, p24] are unknown. Using the following notation

a =


a1

a2

a3

 = npnL (3.70)

b =


b1

b2

b3

 = b
cR


u

v

1

 (3.71)

to reorganize Eqn. (3.66), we have
a1p11 + a2p12 + p14 =

b1
b3
(a3 + p34)

a2p11 − a1p12 + p24 =
b2
b3
(a3 + p34)

(3.72)

Notice that this equation array has two linear equations and four unknown variables

(p11, p12, p14, p24). In order to solve (3.72), at least two LEDs should be measured

simultaneously. The solution is found by the standard least square (LS). A deeper

insight of eqn. (3.72) will find that at least two laterally separated (different a1 and a2)

LEDs required to solve this equation set. Fig. 3.9 illustrates the situation that the two

vehicle positions can not be distinguished by merely measuring these two LEDs.

An additional known constraint is that the unknown variables in (3.72) should

strictly satisfy

p211 + p212 = 1. (3.73)
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Figure 3.9: Two LEDs not laterally separated.

Due to its nonlinearity, we didn’t mention this equation when calculating the unknown

variables using the linear model (3.72). When this constraint is incorporated, it becomes

a nonlinear nonconvex optimization problem that can be initialized with the estimate

of (n, e, ψ) computed by the solution of (3.72). Results will be discussed in Section 3.5

and our former paper [86].

After some modifications, the initialization method still works when the camera

is replaced by the linear array. Here the initialization process requires at least 4 LED’s

measurements due to its one-dimensional sensitivity, compared with two LEDs needed

for the camera measurements. Similar to eqn. (3.66), the linear array measurement

equation could be written as lzmum

lzm

 = J lbR

[
b
wR

bplb − b
wR

wpwb

] wpwf

1

 (3.74)

where

J =

 1 0 0

0 0 1

 , (3.75)
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and um denotes the mth measurement. Reorganizing (3.74), we have

(r11a1m + r12a2m)p11 + (r11a2m − r12a1m)p12

+r11p14 + r12p24 − um
lzm = −r13(a3m + bzlb) (3.76)

(r31a1m + r32a2m)p11 + (r31a2m − r32a1m)p12

+r31p14 + r32p24 − lzm = −r33(a3m + bzlb) (3.77)

where the definition of rij , ai and pij are same with that in eqn. (3.61) and (3.72).

For each LED measurement, we obtain two linear equations. Since lzm varies for dif-

ferent LED’s, to solve the linear equation set, at least 4 LED’s should be measured

simultaneously. Similarly, these 4 LEDs can not simultaneously have the same x and y

coordinates.

3.5 Results

The matrix He is the linearized matrix that evaluated at x̂ke .

He = H1H3 (3.78)

H3 =

[
∂lplf
∂lq̄b

∂lplf
∂bpbl

]
∂lplf
∂lq̄b

= Ψ
(
lq̄b,

bpbf − bpbl

)
∂lplf
∂bpbl

= −l
bR. (3.79)

If several lED’s are measured simultaneously, He is constructed by stacking the He

calculated above together.
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3.5.1 Extrinsic Parameters Calibration

Let φ represent the rotation from the computed frame l̂ to the true frame l.

l̂
lR = I +

sinφ

φ
[φ×] +

1− cosφ

φ2
[φ×][φ×]

≈ I + [φ×]. (3.80)

Then we have l
bR = l

l̂
Rl̂
bR ≈ (I − [φ×])l̂bR. If we define δxe =

[
δbpbl φ

]⊤
, then

H3 =

[
−l
bR̂ [lp̂lf×]

]
.

Assuming N LED’s are measured by the linear array, and the initial covariance

of the extrinsic parameters is Pe0 ∈ R6×6, the Gauss-Newton correction is computed as

δx̂e =
(
H⊤
g R

−1
g Hg

)−1
H⊤
g R

−1
g re, (3.81)

where

Hg =

[
H⊤
e1 · · · H⊤

eN I6×6

]⊤
(3.82)

Rg = diag{
[
R⊤

1 · · · R⊤
N Pe0

]
} (3.83)

re =

[
z̃1 − ẑ1 · · · z̃N − ẑN xe0 − x̂e

]⊤
(3.84)
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(b) Estimated lpbl(2).
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Figure 3.10: Estimated translation lpbl.

The first three figures show the calibration results of lpbl. The red and green

lines represent the standard deviation of the initial guess and calibration results, re-

spectively. To generate the result, 8 LED’s are measured by the linear array. The
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experiment is repeated for 100 trials. In each trial, we randomly choose the initial guess

value according to its true value and covariance Pe0. In the figures, lpbl(3) representing

the height of linear array in the body frame is unchanged after the calibration process,

which is due to the pose of the linear array and its one-dimensional sensitivity.
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(b) Estimated pitch.
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(c) Estimated yaw.

Figure 3.11: Estimated Euler angles.

3.5.2 Initialization

We firstly test the initialization result using camera measurements. The vehicle

was placed at n = −0.575m, e = −2.046m and ψ ≈ 0.401 deg, which is known to an

accuracy of 0.002 m, 0.006 m and 0.002 deg, respectively. In this section, these coordinate

will be referred to as ‘correct.’ The vehicle is stationary at the stated location throughout

the results reported in this section. There are 8 LEDs in front of the vehicle (camera).

The LED navigation frame position vectors are listed in Table 3.1.

The initialization algorithm is firstly tested using different two-LED measure-

ment combinations to compute the state of the vehicle. The computed coordinates and

yaw angle computed using eqn. (3.72, 3.73) and their error standard deviation as com-

puted using eqn. (3.64) are given in Table 3.2, along with the LED identifiers. The

initialization state works well for all combinations with the exception of LED combi-

nations: (1,2), (3,4),(6,8). For each of the three combinations, both LED’s have the

46



Table 3.1: LED coordinates in meters in the NED frame.

LED ID n e d

1 2.797 -1.500 -1.500

2 2.797 -1.500 -2.000

3 2.797 -0.500 -2.000

4 2.797 -0.500 -1.500

5 2.797 -4.250 -2.000

6 2.797 -3.500 -2.000

7 2.797 -2.500 -2.000

8 2.797 -3.500 -1.500

same n and e coordinates differing only in their d coordinate. In this case, the line

that connects the two LED’s is parallel to the vehicle frame z-axis and the NED frame

d-axes. Such LED combinations cause the equations in (3.72) being linear dependent.

Due to this, the vehicle’s state can not be uniquely determined.

There are many combinations of three or more LED’s. Representative initial-

ization results using three and all eight LEDs are shown in Table. 3.3. The data in

these Tables confirms that the accuracy of initialization result depends on the number

and spatial distribution of the LEDs that are used.

Fig. 3.12 contains scatter plots of the computed vehicle coordinates (red dots)

for the 2 (top) and 3 (bottom) LED combinations. The blue asterisk (‘*’) marks the

coordinates considered to be correct. The positions computed using 3 LED’s are more

concentrated.

Next, we will show the initialization results using linear array measurements.

The correct vehicle state is approximately

[
−2.5 0 −45

]⊤
. The state is firstly
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LED n e ψ σn σe σψ

1,2 NaN NaN NaN 3.7e+4 7.3e+3 1.2e+7

1,3 -0.432 -2.248 3.610 0.092 0.150 2.789

1,4 -0.416 -2.237 3.511 0.096 0.150 2.795

1,5 -0.565 -1.992 -1.325 0.055 0.114 1.756

1,6 -0.562 -2.002 -1.146 0.046 0.150 2.387

1,7 -0.558 -1.990 -1.328 0.033 0.261 4.362

1,8 -0.544 -1.872 -3.221 0.055 0.166 2.672

2,3 -0.513 -2.150 1.599 0.056 0.124 2.151

2,4 -0.517 -2.135 1.340 0.056 0.132 2.247

2,5 -0.568 -2.014 -1.052 0.030 0.069 1.034

2,6 -0.563 -2.030 -0.753 0.026 0.096 1.508

2,7 -0.558 -2.033 -0.664 0.025 0.185 3.096

2,8 -0.566 -1.976 -1.628 0.028 0.109 1.712

3,4 NaN NaN NaN 0.000 7.5e+17 0.000

3,5 -0.593 -2.031 -0.641 0.016 0.066 0.852

3,6 -0.584 -2.049 -0.329 0.016 0.075 1.064

3,7 -0.569 -2.077 0.160 0.030 0.090 1.434

3,8 -0.599 -1.965 -1.560 0.018 0.100 1.414

4,5 -0.600 -2.077 -0.061 0.020 0.092 1.190

4,6 -0.584 -2.082 0.119 0.017 0.093 1.324

4,7 -0.567 -2.091 0.361 0.030 0.099 1.565

4,8 -0.596 -1.969 -1.519 0.019 0.148 2.098

5,6 -0.465 -1.945 -2.750 0.084 0.122 2.165

5,7 -0.535 -1.990 -1.619 0.047 0.075 1.276

5,8 -0.419 -1.922 -3.447 0.113 0.135 2.569

6,7 -0.542 -2.017 -1.118 0.054 0.143 2.438

6,8 NaN NaN NaN 7.5e+11 0.000 0.000

7,8 -0.535 -1.964 -2.016 0.056 0.150 2.537

Table 3.2: initialization results using 2 LEDs
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LED n e ψ σn σe σψ

1,2,3 -0.503 -2.164 1.873 0.050 0.107 1.889

1,2,4 -0.506 -2.146 1.573 0.050 0.113 1.962

1,3,5 -0.588 -2.014 -0.866 0.016 0.047 0.647

1,3,7 -0.564 -2.072 0.116 0.027 0.078 1.279

1,4,5 -0.588 -2.017 -0.843 0.019 0.056 0.781

1,4,8 -0.590 -1.988 -1.264 0.018 0.078 1.162

1,5,8 -0.583 -2.041 -0.612 0.038 0.085 1.328

2,3,4 -0.508 -2.136 1.453 0.055 0.116 1.999

2,3,8 -0.588 -2.014 -0.894 0.016 0.066 0.979

2,4,6 -0.578 -2.055 -0.271 0.016 0.065 0.960

2,5,7 -0.561 -2.004 -1.216 0.024 0.052 0.813

3,5,7 -0.590 -2.039 -0.550 0.014 0.042 0.590

3,5,8 -0.595 -2.059 -0.300 0.014 0.053 0.722

5,6,7 -0.524 -1.984 -1.767 0.042 0.070 1.208

6,7,8 -0.536 -2.007 -1.354 0.054 0.134 2.271

8LEDs -0.586 -2.036 -0.591 0.010 0.032 0.465

Table 3.3: Initialization results using 3 and 8 LEDs
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(a) Initialization results using 2 LEDs.
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(b) Initialization results using 3 LEDs.

Figure 3.12: Initialization results. The blue asterisk marks the location that is considered
to be correct.
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computed according to the linear equations (3.76) and (3.77). The estimation results

are further refined by minimizing the residual using nonlinear optimization methods.

In these figures, the results are optimized using Gauss-Newton method. The error

covariance of the estimation result is also computed based on the covariance of the

linear array measurement noise.
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Figure 3.13: Initialization results.
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Chapter 4

Data Recovery in a Stationary

Sensor

4.1 Introduction

LED’s are bright point light sources, the pixels that they project onto have

high intensity values. The LED projections are bright blobs and segmentations in the

image sensor and linear array, which are shown in Fig. 4.1. As the linear array platform

moves, the LED projection moves along the one-dimensional pixel array.

In the linear array-LED navigation system discussed in Chapter 3, each LED’s

ID was used to assist data association. Extracting the LED ID is equivalent to recovering

the LED’s on-off data pattern from a sequence of linear array measurements. The LED’s

on-off status can be recovered only after its position in each scan is found. Finding the

LED projection is not straightforward since: 1) There be multiple pixels measuring high

intensity (e.g., LED’s, clutter, and noise). The incorrect measurements are referred to as

false detections. 2) The position of a turned-off LED in the image can not be extracted
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(a) Camera continuously takes images of a scene

with an LED light [31].

Time

(b) Linear array continuously scans a scene with

an LED light.

Figure 4.1: LED data in a sequence of photo-detector scans

by evaluating the intensity value of each pixel.

LED status recovery is a process that first identifies which measurement is

from each LED in each time step. A simple approach is, in each scan, to choose the

measurement that is closest to the predicted measurement position in a Mahalanobis

sense. This fails because the LED is off in some scans. Another method that avoids this

problem might use the probabilistic data association filter [10]. At each scan, it would

compute the probability of each association hypothesis (which one is from the LED or

none is from LED) and choose the most probable one. Though this method works,

there is a very low probability to obtain a correct ID, because correctly extracting an

ID requires that the data association in each time step of a scan sequence is correct,

which could be extremely hard especially when the ID is long.

To solve this problem, the measurements in a sequence of images need to be

considered jointly. The measurements of the same object (LED) at multiple time in-

stances should be matched together to recover the data sequence. However, the existing

descriptors for image features can not be applied to the linear array measurement, so

that they can not be used to match the measurements in different linear array scans.
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More sophistic methods could be constructed within the framework of multiple hypothe-

ses tracking (MHT) [67, 9, 47]. MHT takes a deferred-decision approach in which they

maintain the complete set of possible data associations within a sliding window, putting

off hard decisions as long as possible [25]. The ultimate decision is made by evaluating

the probability of each sequence of data association hypothesis. Because the number

of possible sequences increases exponentially, this approach is expensive to implement,

especially for a system having fast frame rate.

To accurately and efficiently recover the LED status, we proposed a method

based on Viterbi algorithm [23, 77]. The Viterbi algorithm is a dynamic programming

algorithm that can be adapted to generate the most likely state path given a sequence

of observations. In this chapter, we focus on the typical case where the frame rate of the

linear array sensor is high relative to the array motion bandwidth. This implies that the

pixel projection changes smoothly from one frame to the next. With this assumption,

the LED projection on the linear array at current time step is highly dependent on

that in the former time step. This yields a Markov model representation. The Markov

property leaves opportunity to break the LED status recovery problem down into simpler

subproblems.

This chapter is organized as follows: Section 4.2 defines the state and linear

array measurement, and formulates the problem mathematically. Section 4.3.1 briefly

reviews the Viterbi algorithm. Section 4.3.2 and Section 4.4.2 analyze the state transi-

tion and measurement model, respectively. Section 4.4 shows the experimental results.
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4.2 Problem Formulation

In this chapter, we use symbol χ instead of x to represent the kinematic state

of the rover. The new definition of symbol x in this chapter will be introduced in Sec.

4.2.3. The rover’s kinematic state χ evolves over time according to eqn. (3.1). The l-th

LED location Fl is put explicitly into the measurement model defined in (3.8), so the

LED’s projection is

z(t) = h(χ(t),Fl). (4.1)

Each LED is switching its “on” or “off” status to communicate information to the rover.

Given a time interval λ ∈ [ts, t], each projected LED position z(λ) defines a

trajectory across the linear array. Detection of the projected LED position depends

on the LED “on” or “off” status, as well as environmental conditions and interference

from other light sources. The accuracy of each LED’s recovered on-off status is highly

dependent on the accuracy of our knowledge of this LED trajectory. Therefore, the data

recovery and trajectory estimation problems are coupled. Improvement in the solution

of either problem enhances the solution of the other.

The purpose of this chapter is to develop an algorithm that simultaneously esti-

mates the most likely LED trajectory and data sequence for each time interval λ ∈ [ts, t].

The algorithm that we develop is general and independent of vehicle motion assump-

tions. To simplify algorithm implementation, we make the following assumption which

simplifies the pixel state transition model. Assume that the change in the projected

LED position is less that ϵ pixels per frame:

ż(λ) ≤ FIϵ, ∀λ ∈ [ts, t], (4.2)
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where FI is the frame rate. This is equivalent to

∂h

∂χ
χ̇ ≤ FIϵ,∀λ ∈ [ts, t], (4.3)

which will allow derivation of a diagonally dominant transition matrix in Section 4.4.2.

4.2.1 Linear Array Measurement

In the former chapters, we have discussed the linear array measurement model.

Here we will introduce more details of the light intensity measurement for each pixel in

the linear array. A linear array measures the light intensity

Y (t) , {yi(t)}Ni=1

received by each of N pixels. Throughout this chapter, we use the counter i to indicate

the value associated with the i-th pixel. Pixels at the LED projection location have

higher intensity values when the LED is on. In this chapter, we threshold the intensity

values

ζi(t) =


1 if yi ≥ τ

0 otherwise,

(4.4)

to generate a set of candidate LED pixel positions:

Z(t) , {zj(t)}mtj=1, (4.5)

where mt is the total number of pixels whose intensity values are greater than the

threshold τ at time t, and zj(t) is the index of the jth “on” pixel. Note zj(t) ∈ [1, N ]

is an integer.

The pixel index zj represents a position in the linear array. A pixel in the

set Z(t) may be the projection of an “on” LED or a false detection due to noise or
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Figure 4.2: Linear array measurement

clutter. The other pixels (i /∈ Z(t)) may each be the projection of an “off” LED, a

missed detection, or a pixel onto which no LED projects.

Fig. 4.2 illustrates an original linear array scan (blue) and the processed mea-

surements (black). The threshold τ is graphed as the constant red curve. For the

processed measurements, each black dot is an element of the set Z defined in eqn. (4.5).

The value of black dots are set as 10 to be highlighted.

For theoretical convenience, an LED is assumed to project on only one pixel.

We also assume that other lights sources (clutter) and noise project independently to

each pixel. For example, a bright segment that is composed of n connected pixels will

be viewed as n independent measurements. Fig. 4.2 illustrates that these simplifying

assumptions are not strictly valid. Section 4.3.3 proves that the final result is insensitive

to the assumptions.
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4.2.2 LED Measurement Prior

Our approach assumes a navigation system [22, 84, 85, 86] that maintains an

estimate χ̂(t) of the system state χ(t) in realtime. This system state estimate enables

prediction of the trajectory of each LED across the linear array. For example, the l-th

LED at location Fl, is expected to project to ẑ(t) = h(χ̂(t),Fl) at time t. The covariance

of the projected LED position is Sl(t) = HPH⊤ +R where H is the Jacobean of h,

P is the prior covariance of χ̂(t), and R is the measurement noise covariance matrix.

Each of these quantities is computed by the navigation system for each LED.

Given time interval λ ∈ [ts, t], it is straightforward to compute both ẑ(λ) and

Sl(λ). These quantities define the prior distribution for the LED trajectory that can

focus the algorithm. In the following presentation, we define ts = 0 and λ ∈ [0,K],

without loss of generality. We also will only consider a single LED; therefore, we drop

the l subscript.

4.2.3 LED State Definition

In the first linear array scan (i.e., t = 0), the predicted LED position ẑ0

and its error covariance S0 are known. Define the detection range to be the inter-

val
[
⌊ẑ0 − ρ

√
S0⌋, ⌈ẑ0 + ρ

√
S0⌉

]
where ⌊a⌋ and ⌈a⌉ represent the largest integer smaller

than a and the smallest integer larger than a, respectively. The parameter ρ determines

the probability that the actual LED projection is in the specified segment. For example,

setting ρ ≥ 3 yields the probability being greater than 0.997.

Given the assumption in eqn. (4.3), the sequence of detection intervals

[
⌊ẑλ − ρ

√
Sλ⌋, ⌈ẑλ + ρ

√
Sλ⌉

]
changes very little. Therefore, to find the most likely LED trajectory, it is sufficient to
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focus on this smaller array segment, instead of the whole linear array. Effectively, this

decreases the search space and the computational requirements of the algorithm.

Assume there are N pixels in the detection range, and they are indexed from

left to right. The LED state space is

X(λ) ∈ X, where X , {1, 2, 3, . . . , N}. (4.6)

LED state X(λ) = i means that the LED projects onto the i-th linear array pixel at

step λ. Fig. 4.3 illustrates the detection range and LED state.

Detection range

1 … ... j … ... N

state

… ...… ...

Linear array

Figure 4.3: LED state definition.

4.2.4 Problem Statement

Given a sequence of linear array thresholded measurement sets for λ ∈ [0,K]:

ZK = {Z(λ)}Kλ=1,

where Z(λ) is defined in eqn. (4.5), find the optimal state sequence XK = {X(λ)}Kλ=1

such that

X∗ = argmax
XK

p
(
XK | ZK

)
, (4.7)
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where p
(
XK | ZK

)
is the posterior probability mass function (PMF) of XK . Once X∗

is available, it is straightforward to extract the LED data sequence and to correct the

rover vehicle trajectory χ(λ).

4.3 Method

This section proposes a method to solve the problem defined in Sec. 4.2. This

method is based on the Viterbi algorithm [23, 77], which is a dynamic programming

algorithm that can be adapted to generate the most likely state trajectory (i.e., path)

given a sequence of observations. Sec. 4.3.1 reviews the Viterbi algorithm. Sec. 4.4.2

and Sec. 4.3.2 discuss the transition matrix and measurement model, respectively. Sec.

4.3.3 analyzes the influence of optical distortion that affects the width of the LED

projection and presents the path recovery algorithm.

4.3.1 Viterbi Algorithm

The Viterbi algorithm is described in Table 4.1. A brief review derivation is as

follows.

The probability of a state sequence Xt given the first t observation sets Zt is

p(Xt | Zt)

=
1

c
p(Xt, z(t) | Zt−1) (4.8)

=
1

c
p(z(t) | Xt,Zt−1)p(Xt | Zt−1) (4.9)

=
1

c
p(z(t) | x(t))p(x(t) | x(t− 1))p(Xt−1 | Zt−1) (4.10)

where c = p(z(t) | Zt−1). The derivation of eqn. (4.10) is possible due to two facts.

First, p(z(t) | Xt,Zt−1) = p(z(t) | x(t)) because the measurement depends only on the
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Table 4.1: Viterbi algorithm

Input: observation sequence Zt

state prior probability p0

Output: the most probable state sequence Xt

1. Initialize V1,j

V1,j = p(z(1) | j) · p0(j)

2. Compute Vt,j from Vt−1,i, transition matrix A(t− 1) and z(t)

Vt,j = p(z(t) | j)maxi{aij(t− 1) · Vt−1,i}

3. Compute the t-th column of matrix Ptr. The value of Ptr(j, t) is state i that used to

compute Vt,j .

4. Retrieve the most likely state sequence

xt = argmaxj∈X(Vt,j)

xt−1 = Ptr(xt, t)

current state. Second, p(Xt | Zt−1) = p(x(t) | x(t − 1))p(Xt−1 | Zt−1) because the

state is a Markov process.

Let Vt,j be the probability of the most probable state sequence that has j as

its final state, given the first t observation sets. From eqn. (4.10), we have

Vt,j = max
Xt−1

{p(z(t) | j)p(j | x(t− 1))p(Xt−1 | Zt−1)}

= p(z(t) | j)max
i

{p(j | x(t− 1) = i) · Vt−1,i}

= p(z(t) | j)max
i

{aij(t− 1) · Vt−1,i}, (4.11)

where aij(t−1) = p(j | x(t−1) = i) represents the probability of the transition of state

from i at time t− 1 to j at time t.

Given that the state space is discrete with maximum number of states N , this
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state transition can be represented by the matrix

A(t) = [aij(t)] ∈ RN×N . (4.12)

Note that since the state at each time step t must go someplace at t + 1, we have the

constraint that
∑N

l=1 ail(t) = 1. In this chapter, we ignore the case that the LED leaves

the field of view; however, this case can be accomodated by augmenting the matrix with

an additional row and column.

Eqn. (4.11) shows the scheme of computing Vt,j recursively. It is initialized by

equation V1,j = p(z(1) | j) · p0(j) where p0(j) is the prior probability of state j. To

recover the state path, define the pointer matrix

Ptr = [Ptr(j, t)] ∈ RN×K . (4.13)

Its total number of rows and columns represent the state space and the time steps,

respectively. The value of an entry in Ptr at j-th row and t-th column represents the

the state value at time step t−1 that belongs to the most probable state sequence ended

in state j at time step t. This can be shown using the following equation

Ptr(j, t) = argmax
i

{aij(t− 1) · Vt−1,i}. (4.14)

After constructing this matrix iteratively until time step K according to eqn. (4.11) and

(4.14) Then the most probable state path through time step t can be retrieved by

xt = argmax
j∈X

(Vt,j) and xt−1 = Ptr(xt, t). (4.15)

4.3.2 Probabilistic Model

The measurement set Z(t) contains two types of information: the total number

of pixels mt that are above threshold and their positions Z(t). That is:

Z(t) = {Z(t),mt}.
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The probability of a measurement set Z(t) conditioned on the state x(t) = j can be

decomposed as

p (Z(t) | x(t) = j)

= p (Z(t),mt | x(t) = j)

= p (Z(t) | mt,x(t) = j)p (mt | x(t) = j) . (4.16)

The second term in eqn. (4.16) is the probability of there being mt detections in Z(t),

which does not depend on the LED pixel position j. Due to this fact, this term will not

affect the results achieved by the Viterbi algorithm, so only the first term need to be

considered when evaluating the measurement probability.

To compute the first term in eqn. (4.16), let the symbol θi(t) represent the

hypothesis that zi(t) is the measurement of the LED for i = 1, · · · ,mt and the symbol

θ0(t) represent the hypothesis that the LED is not detected. Using the total probability

theorem, the first term in the right hand side of eqn. (4.16) is decomposed as

p (Z(t) | mt, j) =

mt∑
i=0

p (Z(t), θi(t) | mt, j) . (4.17)

For each term in the right hand side of eqn. (4.17), when i ̸= 0 and j ̸= zi(t) this

(physically) means that the LED is projected on pixel j, but that the measured LED

position is not pixel j; due to this contradiction, this probability has value 0. Eqn.

(4.17) can therefore be simplified to

p (Z(t) | mt, j) =


p(Z(t), θ0(t) | mt, j), j /∈ Z(t)∑

l∈{0,i}
p(Z(t), θl(t) | mt, j), j = zi(t)

(4.18)

The notation j /∈ Z(t) represents that there is no element in the measurement set Z(t)

equaling j.
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The right hand side of eqn. (4.18) is further decomposed as

p (Z(t), θi(t) | mt, j) = p (Z(t) | θi(t),mt, j)p (θi(t) | mt, j) . (4.19)

The first term is the probability of the measurement position distribution given the

hypothesis θi(t), state and number of measurements. It is reasonable to assume the

positions of measurements due to clutter or noise in set Z(t) are independently and

uniformly distributed in the detection space. When i = 0 in the first term of eqn. (4.19),

none of the measurements in set Z(t) is originated from the LED, so it is computed

according to

p (Z(t) | θ0(t),mt, j) =

mt∏
j=1

1

N
=

1

Nmt
. (4.20)

When i ̸= 0, one measurement say it zi(t) in the set Z(t) is originated from the LED

and the others are due to the noise, so it is decomposed as

p (Z(t) | θi(t),mt, j) =

∏
j ̸=i

1

N

 · p (zi(t) | θi(t),mt, j) =
1

Nmt−1
. (4.21)

Combine these two cases together, the first term in eqn. (4.19) is computed by

p (Z(t) | θi(t),mt, j) =


1

Nmt , i = 0

1
Nmt−1 , i ̸= 0, j = zi(t)

(4.22)

The second term in eqn. (4.19) is the prior hypothesis probability given the

number of measurements and LED projection position are known. When i = 0, this

means the LED is not detected, so the LED must be “off”. When i ̸= 0, this means the

LED is detected, so the LED must be “on”. The second term can be analyzed as

p (θi(t) | mt, j) =
p (θi(t),mt | j)

p (mt | j)

=


1
c′ (1− Pon)µF (mt), i = 0

1
c′

1
mt
PonµF (mt − 1). i ̸= 0

(4.23)

63



where normalized factor c′ = p (mt | j) is independent of the state j, Pon is the probabil-

ity that the LED is on, and µF (m) is the PMF of the number of clutter measurements.

Here we assume µF is a diffuse pmf [11], that is, all number of clutter measurements are

equally likely.

Substituting eqn. (4.17)-(4.23) into eqn. (4.16), after combining all constants

into c′ and significant simplification, the final expression is

p (Z(t) | j) =


1
c′

1−Pon
N , j /∈ Z(t)

1
c′

(
1−Pon
N + Pon

mt

)
. j ∈ Z(t)

(4.24)

4.3.3 Effect of LED Image Width

Due to optical distortion and the non-zero LED size, both the LED and clut-

ter measurements may occupy more than one pixel. Actual LED projections will be

composed of several connected pixels whose intensity values may be greater than the

threshold. The elements in the measurement set Z(t) are no longer independent, since

some of them may belong to a same measurement. The assumptions made to derive

eqns. (4.22) and (4.23) are no longer valid. For example, the measurement set shown in

Fig. 4.2 is

Z(t) = {44 . . . 48, 231 . . . 235, 241 . . . 243}, (4.25)

where there are three measurement clusters that contain a total of 13 pixels. The

measurements in each cluster are not independent. It is important to consider how the

violation of these assumptions affects the performance of the algorithm.

In Sec. 4.2.3, the state is defined as the true LED projection location on the

linear array, which causes no ambiguity when the LED occupies only one pixel. When

considering the nonzero LED intensity measurement width, the state is redefined to be

the center position of the LED projection on the linear array. This definition will not
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contradict with the one in Sec. 4.2.3 when the optics are perfect. This new definition

does not influence the state transition matrix, to be defined in eqn. (4.29).

The measurement set Z(t) still has the definition as in eqn. (4.5). Its elements

are the pixel locations that have above threshold intensity values. Suppose that the mt

pixel locations in Z(t) form m′
t clusters with the jth cluster containing nt,j pixels, so

that
∑m′

t
j=1 nt,j = mt. For a cluster composed of several pixels, each pixel of the cluster

can be viewed as the center of the LED projection. The definition of hypothesis θi(t) in

Sec. 4.3.2 is extended to be zi(t) is the center of the LED projection.

In eqn. (4.22), since the total number of measurements is m′
t, there will be

only m′
t independent terms. Eqn. (4.22) is modified as

p (Z(t) | θi(t),mt, j) =


1

Nm′
t
, i = 0

1

Nm′
t−1

, i ̸= 0, j = zi(t).

(4.26)

Similarly, eqn. (4.23) is modified as

p (θi(t) | mt, j) =


1
c′′ (1− Pon)µF (m

′
t), i = 0,

1
c′′

1
mt
PonµF (m

′
t − 1), i ̸= 0.

(4.27)

Notice that the term 1/mt in the eqn. (4.27) is not replaced by 1/m′
t when i ̸= 0 The

reason is there are still mt (not m
′
t) candidates for the center of an LED that is “on”.

Combining all the constants into c′′, eqn. (4.24) becomes

p (Z(t) | j) =


1
c′′

1−Pon
N , j /∈ Z(t),

1
c′′

(
1−Pon
N + Pon

mt

)
, j ∈ Z(t).

(4.28)

Notice that the only difference between eqn. (4.28) and eqn. (4.24) is the constant

term, which does not influence the most likely path final result. Table 4.2 summarizes

the LED path recovery algorithm.
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Table 4.2: LED path recovery algorithm

Input: linear array measurements for t ∈ [0,K]

state prior probability p0 = N (x0,S0)

Output: the most probable state sequence XT

1. Find the detection range defined by the state prior p0[
⌊x0 − ρ ∗

√
S0⌋, ⌈x0 + ρ ∗

√
S0⌉

]
2. Extract the measurement sets defined in eqn. (4.5) for t ∈ [0,K]

3. Initialize V1,j in eqn. (4.11)

V1,j = p(z(1) | j) · p0(j)

4. Compute Vt,j using the transition matrix A(t− 1) and measurement model

defined in eqns. (4.29) and (4.16)

Vt,j = p(z(t) | j)max
i

{aij(t− 1) · Vt−1,i}

5. Assign values to the elements in the t-th column of matrix Ptr. The value

of Ptr(j, t) is the state i that used to compute Vt,j .

Ptr(j, t) = argmax
i

{aij(t− 1) · Vt−1,i}

6. Retrieve the most likely state sequence

xt = argmax
j∈X

(Vt,j)

xt−1 = Ptr(xt, t)
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4.4 Results

4.4.1 Experimental Setup

The experiments reported in this section produce linear array measurements

by reading a single row of pixel data from an EoSens CL camera modified to with a

cylindrical lens, see Fig. 4.4. The maximum frame rate when sampling one row is

120KHz. In the following experiments, the LED’s data rate is modulated as 800Hz,

and the linear array frame is read at 1600Hz.

(a) EoSens CL camera. (b) Cylindrical lens.

Figure 4.4: EoSens CL camera and cylindrical lens.

4.4.2 State Transition Model

The state transition model p(x(t) = j | x(t − 1) = i) in eqn. (4.11) depends

on the motion u(t− 1), rover state χ(t− 1), LED position Fl, and LED projected state

x(t− 1). The full nonlinear analysis would be very complicated, resulting in very hard

implementation. The assumption in eqn. (4.3) that the frame rate is high relative to

the rover’s motion bandwidth can be trnslated into a model of the state transition by
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assuming that the LED state has probability α ∈ (0, 1) of staying in its current state

and probability (1−α) of moving to an adjacent state in each sample instant. Ignoring

the issue of LED’s leaving the field-of-view, this means that the state transition matrix

of eqn. (4.12) is tri-diagonal:

A =



α 1− α 0 · · · 0 0

1−α
2 α 1−α

2 · · · 0 0

0 1−α
2 α · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · α 1−α
2

0 0 0 · · · 1− α α



. (4.29)

This matrix representation also assumes that the LED has identical probability moving

to either side. The state transition process defined by matrix A is illustrated by Fig.

4.5. The algorithm extends directly to state transition matrices that represent more

general motion models. In this implementation, the state transition probability α is set

as 1/3.

1 2 … ... j … ... N

a

1

2

a-

1 … ... j … ... Nj-1 j+1

1

2

a-step t-1

step t

Figure 4.5: State transition process defined in matrix A (4.29).
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4.4.3 Stationary

The left image of Fig. 4.6 shows a series of stationary linear array measurements

as a single image. The linear array of greyscale pixel readings from any one time instant

is represented as a column of the image. This figure is formed by stacking a sequence

of linear array measurements together each as one column. The time sequence of array

measurements forms a matrix, shown as an image, with time increasing to the right along

the horizontal axis. Because the linear array is stationary, the communicating LED

always projects to essentially the same pixel array elements. The number of columns in

the image matrix is 300, corresponding to a time interval of 0.1875s. The right image

in Fig. 4.6 shows the binary image after thresholding. Notice the on-off alternation of

the LED and the noise in the figure.

Time step

P
ix
e
l
in
d
e
x

Figure 4.6: Stationary platform sequence of raw (left) and thresholded (right) linear
array measurement data represented as an image.

The Viterbi algorithm in Table 4.2 is implemented using the thresholded data

to calculate the probability of the most likely LED path ending at each pixel. The

results Vt,j are shown in the colored map at left image of Fig. 4.7, where brightness
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(e.g., black is unlikely, yellow is likely) increases for higher values of Vt,j . In the last

(rightmost) scan, the pixel with largest probability is chosen as the end position of the

most likely LED path. The most likely path is recovered backwards through time using

eqn. (4.15). The most likely path is graphed as the green line in the right image of Fig.

4.7. The fact that this path passes through the LED measurement path at each time

step demonstrates the accuracy of extracted path.

Time step
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e
l
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e
x

Figure 4.7: Stationary probability image and recovered LED path (green line).

4.4.4 Moving

When the linear array is moving, the LED projection changes its pixel location

from one time to the next as shown in the upper left image of Fig. 4.8. The same pixel

thresholding process is shown by the two upper images of Fig. 4.8. The results Vt,j and

the recovered LED path are shown by the two bottom images. Even thought the LED’s

location in the linear is not fixed during the data recovery process, the true LED path

is accurately recovered.
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Figure 4.8: Moving platform experimental results.
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The LED signal is modulated to send a data sequence. The data sequence was

extracted without error after the path was recovered. The following Fig. 4.9 illustrates

the recovered data after the LED path is found.

Time step

P
ix
e
l
in
d
e
x

Figure 4.9: The LED data based on the recovered LED path.
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Chapter 5

LED Data Recovery in a Moving

Sensor

5.1 Introduction

Chapter 4 introduces a Viterbi-based algorithm to recover the LED data in

the linear array when the linear array is stationary or moving with a bandwidth that

is low relative to the imaging rate. This algorithm evaluates the probability of LED

projections in a sequence of linear array measurements, and keeps the most probable

projection sequence ended in each pixel. Based on these kept projection sequences, the

most probable LED projection positions in the linear array sequence can be recovered

backwards. A problem of this algorithm is that it is hard to be applied to the two-

dimensional photo-detector such as camera. The enumeration and connection between

the pixels in the two-dimensional image is much more complicated than that in the linear

array, so the state transition matrix for the two-dimensional measurements may not be

diagonal any more and hard to define. Another problem of this Viterbi-based algorithm

is the moving bandwidth requirement. Even though the LED switching frequency can
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be modulated up to hundreds of megahertz, sometimes we still prefer to utilize a low

rate sensor (i.e., 30Hz) such as a webcam or a cellphone camera to receive the data

using undersampling methods [68]. In such a case, the assumption for the algorithm in

Chapter 4 is no longer valid. Due to the above facts, more general and robust algorithm

should be developed to recover the LED data in the photo-detector.

To solve this problem, we follow the idea in Chapter 4 to consider the mea-

surements in a sequence of images jointly. The measurements of the same object (LED)

at multiple time instances should be matched together to recover the data sequence.

For image measurements, the features in different images can be tried matched by com-

paring their descriptors. Multiple existing corner detectors (Moravec [55], Forstner [24],

Harris [30], Shi-Tomasi [72], and FAST [70]) or blob detectors (SIFT [52], SURF [12],

and CENSURE [2]) can be used to match the projections of the same feature in differ-

ent two-dimensional images. These detectors keep the description of each feature and

these descriptions can be compared to determine whether multiple features are origi-

nated from the same object. However, there is still probabilities that incorrect pairs are

matched or multiple measurements in the same image are matched to the same feature.

This incorrect matches happen more frequently when measurements in a relative long

sequence of images (hundreds of images) are to be matched instead of only two images,

like the case of recovering LED data. In typical vision aided navigation systems, usually

only measurements in two consecutive image are to be matched. If multiple measure-

ments in another image are matched to one measurement in the current image, these

measurements would be ignored to prevent incorrect matches. If we follow the same

strategy to extract the LED data, there would be a low probability to obtain a correct

data sequence, so that both the navigation and communication will become unreliable.

Moreover, the existing feature descriptors can not be applied to the linear array mea-
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surement, so that they can not be used to match the measurements in different linear

array scans. All the analysis above indicate that accurately and reliably recovering the

LED data sequence merely by the image processing techniques is not enough.

5.1.1 Multiple Hypothesis Data Association

Multiple detections existing within the search area results in a multiple hy-

pothesis data association problem [21]. This data association problem could be solved

by choosing the measurement that is closest to the predicted measurement position in

Mahalanobis sense, see [53]. Among other issues, this method does not work in this

application, as it fails in the presence of noise or clutter when the LED is off. Another

method that accounts for the null hypothesis (the LED is off) can be implemented using

the probabilistic data association filter, as in [10]. Though this method works in theory,

there is a very low probability to obtain a correct data sequence when it is long.

More sophistic methods can be developed using MHT methods, see [67, 9, 47].

MHT uses a deferred-decision approach in which they maintain the complete set of pos-

sible data associations within a sliding window, putting off hard decisions as long as

possible, see [26]. Decisions are made by evaluating the probabilities of each sequence of

data association hypotheses. Since the number of possible sequences increases exponen-

tially, it is expensive to keep all of them. It is also inefficient to compute the probabilities

of all possible sequences and then discarding most of them. To solve these problems, an

efficient Hypothesis Oriented MHT (HOMHT) was firstly proposed in [17]. The basic

idea of this method is to keep only the q best sequences, discarding the other sequences

that have low probability.

All the above data recovery techniques require the information from the nav-

igation system. The motion measurements provide additional constraints for matching
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objects at different time instances. Accurate navigation enables both efficiency of which

LED ID’s to expect for and where each LED is expected to be in the image. For both

the camera and linear array, the LED’s unique ID would facilitate the task of feature

association, which is a limiting factor to the use of more generic non-LED features. Mea-

surement confirmation is straightforward using the extracted and expected ID. From all

the analysis above, we can again conclude that the communication and navigation ap-

plications are synergistic.

5.2 Problem Formulation

As discussed in Sec. 4.2, given a time interval λ ∈ [ts, t], the projected position

of the l-th LED zl(λ) defines a trajectory across the photo-detector. Detection of the

projected LED position depends on the LED “on” or “off” status, as well as environ-

mental conditions and interference from other light sources. The accuracy of each LED’s

recovered on-off status is highly dependent on the accuracy of the data association at

each time step. Therefore, the data recovery and trajectory estimation problems are

coupled. Improvement in the solution of either problem enhances the solution of the

other.

The purpose of this chapter is to develop an algorithm that simultaneously

estimates the most likely data association sequences and rover state over each time

interval λ ∈ [ts, t]. Without loss of generality, we define ts = 0, and the pixel array

is sampled at times tk = kT ∈ [ts, t] for k = 0, 1, · · · ,K. After the data association

step, and the validity of the LED data and therefore the association is established, the

validated sequence of measurements z̃l(tk) will be referred to aiding measurements and

used to correct the estimated state trajectory.
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5.2.1 Predicted Measurement Region

Given the state estimate at time step k, it is straightforward to compute both

the predicted measurement position of the l-th LED ẑl(k) and its error covariance Sl(k)

according to eqn. (3.9) and (3.12). The quantities ẑl(k) and Sl(k) define a prior distribu-

tion for the LED trajectory that can focus the algorithm. A region in the measurement

space for the l-th LED can be defined as

Vl,γ(k) , {z : (z − ẑl(k))
⊤S−1

l (k)(z − ẑl(k)) ≤ γ}

= {z : rl(k)
⊤S−1

l (k)rl(k) ≤ γ}, (5.1)

where rl(k) = z(k) − ẑl(k) is the residual and γ is a parameter that determines the

probability that the real measurement falls in Vl,γ(k). For the camera measurement,

the region Vl,γ(k) represents the interior of an ellipse at each time k. For the linear

array measurement, the region Vl,γ(k) represents the interior of a segment at each time

k, respectively. In the following, without loss of generality, we only consider a single

LED in its predicted region Vl,γ ; therefore, we drop the l subscript. The parameter γ is

selected using a χ2-distribution table.

5.2.2 Data Association Hypothesis

Let mk ≥ 0 denote the number of detected LED like features in the predicted

region Vγ(k) at time k, where zj(k) for j ∈ [0,mk] denotes projected location of the j-th

measurement hypothesis. Define the measurement set at time step k as

Z(k) , {zj(k)}mkj=1. (5.2)

Note that at most one of them originated from the LED. The others are false detections

due to noise, interference, or clutter. Since each or none of the measurements in this
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set could be originated from the LED, the number of data association hypotheses is

(mk + 1).

Suppose there are total of K time steps, the state estimates {x̂(k)}Kk=1 and

their error covariance matrices {Pk}Kk=1 are calculated using eqns. (3.2) and (3.7).

Then the predicted region at each time step is calculated by eqns. (3.9, 3.12, 5.1), and

the measurements that fall into Vγ are extracted. Define

Zk , {Z(l)}kl=1andU
k , {u(l)}kl=1 (5.3)

as the set of measurements and inputs up to time step k, respectively. Since there are

a total of K time steps, the number of joint data association hypotheses is

LK =

K∏
k=1

(mk + 1). (5.4)

Each data association sequence defines a LED trajectory across the detector, which in

turn decodes a sequence of detection and nondetection events into a bit sequence con-

taining an ID, checksum, data, etc. The total number of time steps K in the algorithm

is a parameter selected by the designer. It choice depends on the length (number of

bits) of each LED data package and the sampling rate of photo-detector. If the length

of LED data package is ld and the sampling rate is ns times of the data rate, the total

number of time steps K is at least (ns ld). Only after the LED status is recovered at

each time instant in the sequence of K measurements, can the LED data be extracted.

Fig. 4.1(b) a sequence of linear array measurements. Both the variation of the LED

projected position due to rover motion and the on-off status of the LED due to the data

sequence can be clearly seen.

Let θk,ℓ represent a specific list of joint data association hypotheses up to time

step k. The superscript ℓ ∈ [1, Lk] is the numeration index for the hypothesis sequence.
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Each hypothesis θk,ℓ has the form

θk,ℓ = {j1, j2, · · · , ji, · · · , jk}, (5.5)

where ji ∈ [0,mi]. When θk,ℓ(i) = j > 0, it represents that at time step i the j-th

measurement originated from the LED. When θk,ℓ(i) = 0 it represents that at time step

i none of the measurements has originated from the LED. We say the joint hypothesis

θk,ℓ is an extension of θk−1,s, if

θk,ℓ = {θk−1,s, jk},

where θk,ℓ(k) = jk ∈ [0,mk]. In this nomenclature, θk−1,s is the parent hypothesis of θk,ℓ.

Herein, the indices ℓ and s in the superscript of θ are not necessarily identical, since the

two hypotheses are enumerated independently at different time steps. Note that each

joint data association hypothesis corresponds to a potentially distinct posterior vehicle

trajectory.

5.2.3 Technical Problem Statement

Given the measurement set ZK , we would like to find the most probable joint

data association hypotheses (i.e. q-best hypotheses {θK,ℓ}qℓ=1). After these hypotheses

are found, their corresponding ID sequences are straightforward to recover. By compar-

ing each of the recovered ID’s with the predicted ID, the most probable data association

hypothesis with correct ID is found and used both for data extraction and the navigation

state update. The advantage of finding the q-best hypotheses instead of only the most

probable one is that having several candidate hypotheses yields a higher probability to

recover the correct ID.

The problem is stated as: Given measurements ZK and navigation system

inputs UK , find the q-best joint data association hypotheses {θK,ℓ}qℓ=1 among the total
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number of LK hypotheses, where q-best means the q hypotheses that maximize the

hypothesis posterior probability.

5.3 MHT-based LED Data Recovery Method

This section evaluates the posterior probability mass function (PMF) of a joint

data association hypothesis up to time step k. The analysis follows the method in [67]

while adding details to clarify the measurement quantity information. Here we make

an assumption that the measurements due to clutter are uniformly distributed in the

predicted region Vγ .

5.3.1 Hypothesis Probability

The joint probability of an association hypothesis up to time step k ∈ [1,K]

can be decomposed as

p
(
θk,ℓ | Zk,Uk−1

)
(5.6)

=
1

c
p(Z(k) | θk,ℓ,Zk−1,Uk−1) p(θk,ℓ | Zk−1,Uk−1)

where the normalization factor c = p
(
Z(k) | Zk−1,Uk−1

)
is independent of the data

association hypothesis θk,ℓ. The decomposition on the right hand side of eqn. (5.6) is

based on Bayes Rule. The last term on the right hand side can be further simplified by

application of the general multiplication rule of conditional probability

(i.e., p(A,B) = p(A | B)p(B)):

p(θk,ℓ | Zk−1,Uk−1)

= p(θk,ℓ(k), θk−1,s | Zk−1,Uk−1)

= p(θk,ℓ(k) | θk−1,s,Zk−1,Uk−1)p(θk−1,s | Zk−1,Uk−1).

Combining the last equation above with eqn. (5.6) yields the final desired result:

p
(
θk,ℓ | Zk,Uk−1

)
=

1

c
p(Z(k) | θk,ℓ,Zk−1,Uk−1) (5.7)
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p(θk,ℓ(k) | θk−1,s,Zk−1,Uk−1)p
(
θk−1,s | Zk−1,Uk−2

)

When analyzing this joint probability, we have to take notice of the measure-

ment quantity information mk = {mi}ki=1 which is not explicitly represented in eqn.

(5.7). In [8], this quantity information mk is considered to be part of the measurement

set Zk, while in [67] it is viewed to be in the hypothesis set θk,ℓ. The results given by

the two approaches are identical except for a scale factor p
(
mk

)
that is independent of

θk,ℓ, which can be seen from

p
(
θk,ℓ,mk | Zk,Uk−1

)
= p

(
θk,ℓ | Zk,mk,Uk−1

)
p
(
mk

)
.

We use the later approach in the following analysis, so that Zk and Z(k) will only

contain the measurement position information.

The first term in the right hand side of eqn. (5.7) is the joint prior probability of

the current position measurements given the data association hypotheses, measurements

and inputs of all the previous time steps. The measurements in Z(k) are independent

because they come from different sources, potentially one from the LED and the others

from clutter, etc. Because the different measurements in set Z(k) are independent, this

term decomposes as

p(Z(k) | θk,ℓ, Zk−1, Uk−1)

=

mk∏
j=1

p(zj(k) | θk,ℓ, Zk−1, Uk−1) =

mk∏
j=1

f(j). (5.8)

Note that the measurement quantity mk is considerred to be known when evaluating the

probability of measurement set Z(k) in eqn. (5.8). The measurements due to clutter or

false alarms are assumed to be uniformly distributed in the predicted region, while the
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one from the LED is assumed to be corrupted by Gaussian noise. Therefore, we have

f(j) =


1
Vk

for clutter,

N (zj(k); ẑ
s(k), Ss(k)) for the LED,

(5.9)

where Vk is the volume (area) of the predicted region Vγ(k), and N (zj(k); ẑ
s(k), Ss(k))

is the Gaussian distribution evaluated at zj(k) with expectation ẑs(k) and covariance

Ss(k).

Because θk,ℓ is an extension of θk,ℓ−1 as defined by eqn. (5.2.2), the conditioning

variables allow the distributions in eqn. (5.8) to be written as

mk∏
j=1

p(zj(k) | θk−1,s, jk, Z
k−1, Uk−1).

The variable jk and the index j determine the form of fj as defined in eqn. (5.9). The

variables θk−1,s, Zk−1, Uk−1 are the prior information used to compute x̂s(k − 1), ẑs(k)

and Ss(k), where the superscript s indicates its corresponding hypothesis θk−1,s, which

are computed based on eqns. (3.2)-(3.12) with measurement updates implemented by

an optimal estimator (e.g., Kalman filter). More details of computing ẑs(k) and Ss(k)

for a specific example are discussed in Sec. 5.4.

Substituting eqn. (5.9) into (5.8), the first term of (5.7) is

p(Z(k) | θk,ℓ, Zk−1, Uk−1)

=


1

V
mk
k

for θk,ℓ(k) = 0

N (zj(k);ẑ
s(k),Ss(k))

V
mk−1

k

for θk,ℓ(k) ̸= 0

(5.10)

The second term of eqn. (5.7) is the prior probability of the current association
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hypothesis θk,ℓ(k) conditioned on θk−1,s, Zk−1, and Uk−1. This term is computed as

p(θk,ℓ(k) | θk−1,s, Zk−1, Uk−1)

=



(1− Pon)µλVk(mk) for θk,ℓ(k) = 0,

1
mk
PonµλVk(mk − 1) for θk,ℓ(k) = 1 · · ·mk,

(5.11)

where Pon is the probability that the LED is on, and µF is the PMF of the number of

false measurements due to clutter or noise. The existence of term µλVk is due to the

measurement quantity information mk in θk,ℓ(k). When θk,ℓ(k) = 0, all the measure-

ments in the predicted region are not from the LED, so the LED is off. We do not

consider the case of the missing detections. When θk,ℓ(k) ̸= 0, the hypothesis is that

the LED is on and that it is associated with a specific measurement in the predicted

region. Because the distribution is not conditioned on the current position measurement

Z(k), when evaluating this prior probability, each measurement has equal probability

(i.e., 1/mk) to be the correct one.

The number of measurements due to clutter and false alarms is modeled as a

Poisson process [67, 9], so its distribution function µF at time step k is

µλVk(ϕ) = exp−λVk (λVk)
ϕ

ϕ! . (5.12)

The parameter λ represents the spatial density of noise measurements. The term λVk is

the expected number of noise measurements in the predicted region (i.e., E⟨mk⟩ = λVk).

In some applications, the parameter λ is unknown. A common solution [9] is to use the

true number of measurements mk to replace its expected value, λVk, in eqn. (5.12).

This results in the nonparametric model of µmk . Note that in this special case it can

be shown that µmk(mk) = µmk(mk − 1).

Let βk,ℓ = p(θk,ℓ | Zk,Uk−1) denote the posterior PMF of θk,ℓ in eqn. (5.7).

83



Substituting eqn. (5.10) - (5.12) into eqn. (5.7) and combining the constants into c′,

the probability is

βk,ℓ =



1
c′λ(1− Pon)β

k−1,s for θ(k) = 0

1
c′N

k−1,s(zj(k))Ponβ
k−1,s for θ(k) = j ̸= 0,

(5.13)

where N k−1,s(zj(k)) = N (zj(k); ẑ
s(k),Ss(k)), and c′ = c · eλVk ·mk! · λ1−mk . If using

the nonparametric model of µF , the probability is

βk,ℓ =



1
c′′
mk
Vk

(1− Pon)β
k−1,s for θ(k) = 0

1
c′′N

k−1,s(zj(k))Ponβ
k−1,s for θ(k) = j ̸= 0,

(5.14)

where c′′ = c · V mk−1
k ·mk. Eqn. (5.13) or (5.14) shows how to compute the probability

of joint data association incrementally.

From eqn. (5.13), the marginal likelihood function for the hypothesis that the

j-th measurement at time step k has originated from the LED is

Ls,j(k) = N k−1,s(zj(k))Pon, (5.15)

and the marginal likelihood function for the hypothesis that no measurement at time

step k is from the LED is

Ls,0(k) = λ(1− Pon). (5.16)

Therefore, the probability that hypothesis θ(k) = j is the extension of joint hypothesis

θk−1,s is

p(θ(k) = j | Zk, θk−1,s,Uk−1) =
Ls,j(k)∑mk
i=0 Ls,i(k)

. (5.17)
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5.3.2 Hypothesis for Multiple LEDs

When there are Nk (Nk > 1) LEDs predicted in the image or linear array at

time step k, the data association hypothesis at this single step θ(k) becomes a Nk tuple.

Assuming the number of measurements at the i-th LED’s predicted region is mi,k, the

number of hypothesis at a single step will be

ℓk =

Nk∏
i=1

(mi,k + 1) . (5.18)

For total of K time steps, the number of joint data association hypotheses LK becomes

LK =

K∏
k=1

ℓk. (5.19)

Comparing eqn. (5.19) with (5.4), the total number of hypothesis is greatly increased for

multiple LEDs measurements. The measurement set Z(k) at step k contains Nk subsets,

and the i-th subset is denoted by symbol Zi(k). Their relations can be explained by the

following equations:

Z(k) , {IDi(k),Zi(k)}Nki=1 (5.20)

Zi(k) , {zi,j(k)}
mi,k
j=1 , (5.21)

where IDi(k) represents the ID index of subset Zi(k). The definition in eqn. (5.21) is

similar to that in eqn. (5.2) where the subscript i is omitted due to single LED.

After redefining the hypothesis and measurement set, the probability of the

hypothesis could be analyzed identical to eqn. (5.7). However, the calculation of the

first and second terms in eqn. (5.7) are different due to multiple LEDs. Different from
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eqn. (5.8), the first term is decomposed as

p(Z(k) | θk,ℓ,Zk−1,Uk−1) =

Nk∏
i=1

p(Zi(k) | θk,ℓ,Zk−1,Uk−1)

=

Nk∏
i=1

mi,k∏
j=1

p(zi,j(k) | θk,ℓ,Zk−1,Uk−1)

=

Nk∏
i=1

mi,k∏
j=1

f(i, j). (5.22)

Similar to eqn. (5.9), the function f(i, j) is calculated by

f(i, j) =


1
Vi,k

for clutter,

N (zi,j(k); ẑ
s
i (k),S

s
i (k)) for i-th the LED,

(5.23)

where Vi,k is the volume of the i-th LED’s predicted region at time step k, and ẑsi (k) and

Ssi (k)) are the i-th LED’s predicted position and error covariance matrix. Substituting

(5.23) into (5.22), the first term is computed by

p(Z(k) | θk,ℓ,Zk−1,Uk−1)

=
Vi1,k · · ·Vir,k

V
m1,k

1,k · · ·V mNk,k
Nk,k

r∏
h=1

N (zθih (k)
(k); ẑsih(k),S

s
ih
(k)) (5.24)

where θih(k) ̸= 0 for h = 1 . . . r. The second term in eqn. (5.7) is computed as

p(θ(k) | θk−1,s,Zk−1,Uk−1)

=
1

mi1,k · · ·mir,k
P ron(1− Pon)

Nk−rµF (mk − r). (5.25)

5.3.3 q-best Hypotheses

From eqn. (5.4), the total number of possible hypotheses grows exponentilly

with the time step K, while only one of them is correct. Computing the probability of

all possible hypotheses and then discarding most of them is inefficient. To over come

this problem, it is preferable to only compute those hypotheses having relatively high

probability. This is reasonable since the correct hypothesis (LED path) should be always
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among the most probable hypotheses. An efficient method to implement this approach

was first introduced in [17]. The basic idea of this method is, at each time step, to only

keep the q-best hypotheses, discarding the hypotheses that have lower probability. This

method employs Murty’s algorithm [57] to find the j-th best hypothesis solution.

Given the q-best hypotheses {θk−1,i}qi=1 and their corresponding probabilities

{βk−1,i}qi=1 up to the former step k−1, and measurement set Z(k) at current time step k,

the new q-best hypotheses {θk,i}qi=1 up to the current time step will be generated. Define

θk−1,i to be the parent hypothesis of θk,j , if the latter is the extension of the former.

Choosing the single hypothesis jk at time step k, θk,∗ = {θk−1,i, jk} is one possible

extension of θk−1,i, where ‘*’ is replaced by an integer to enumerate the extensions. The

best extension of θk−1,i is

θk,i1 = {θk−1,i, jk} where jk = argmax
j

Li,j(k). (5.26)

The notation i1 in the superscript of θk,i1 means that this hypothesis is the most probable

extension of θk−1,i. The best extension corresponds to the hypothesis having maximum

marginal likelihood.

The following text describes the implementation details of the approach in [17].

To generate the q-best joint hypotheses up to current time step k, the first step is for

each hypothesis θk−1,i to generate its best extension according to eqns. (5.15–5.16) and

(5.26). These new joint hypotheses are ordered according to their probabilities and

stored in the ordered list HYP-LIST. Their probabilities are calculated according to

eqn. (5.13) and stored in PROB-LIST. The second step is for each hypothesis in HYP-

LIST to use its parent hypothesis to generate the j-th (j = 2, 3, · · · ) best extension. If

the probability of this extension is higher than the lowest probability in PROB-LIST,

add it to HYP-LIST and the corresponding probability to PROB-LIST, and delete the
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hypothesis with lowest probability from HYP-LIST and its corresponding probability

from PROB-LIST. If the probability of this extension is lower than the lowest probability

in PROB-LIST, stop generating new extensions by its parent hypothesis. After these

processes conclude, the algorithm has produced the q-best hypotheses up to current

time step. The algorithm is described in Table 5.1.

Note the factor N k−1,s(zj(k)) in eqn. (5.13) is the Gaussian distribution eval-

uated at zj(k) with expectation ẑs(k) and covariance Ss(k). The process of computing

the two parameters ẑs(k) and Ss(k) is discussed in Section 5.3.4.

5.3.4 Hypothesis: Computed Quantities

As we mentioned in Sec. 5.2, the rover state estimation and the LED path

recovery are coupled. When computing the probability of each LED path hypothesis

from eqn. (5.13), the algorithm also computes various other useful items as illustrated

in (5.27): 

x̂s+(k − 1)

P s+k−1

⇒



x̂s−(k)

P s−k

⇒



ẑs(k)

Ss(k)

(5.27)

At time step k− 1, we have the posterior state estimate x̂s+(k− 1) and error covariance

matrix P s+k−1 of each hypothesis θk−1,s where s = 1, · · · , q. The ‘+’ in the superscript

indicates a posterior estimate. The ‘−’ in the superscript indicates a prior estimate. The

first arrow in (5.27) represents the state and covariance temporal propagation processes

generating the prior quantities at time k for hypethesis s. The state and error covariance

are temporally propagated using eqns. (3.2) and (3.6). The second arrow in (5.27)

represents the (prior) measurement prediction process using eqns. (3.9) and (3.12).
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Table 5.1: q-best hypotheses algorithm

Input: q-best hypotheses up to former time step {θk−1,i}qi=1

the corresponding probabilities {βk−1,i}qi=1

the corresponding state estimate {x̂i}qi=1

current measurement set Z(k)

Output: q-best hypotheses up to current time step {θk,i}qi=1

and their corresponding probabilities {βk,i}qi=1

1. Initialize HYP-LIST and PROB-LIST

HYP-LIST, {θk,i1}qi=1

θk,i1 , {θi,1(k), θk−1,i}

θi,1(k) = argmax
θ(k)

p(θ(k) | Zk, θk−1,s, Uk−1)

2. Sort the hypotheses in HYP-LIST according to their probabilities

3. for i = 1 : q

If the j-th best new hypothesis generated by θk−1,i is still in

HYP-LIST, then generate its (j + 1)-th best new hypothesis.

If the probability of the new hypothesis is higher than the lowest

probability in PROB-LIST, then add it into the list and delete

the hypothesis with the lowest probability.

If not, break.

end
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Here these processes are repeated for each hypothesis in set {θk−1,s}qs=1.

The probability of new hypothesis {θk−1,s, j} can be evaluated after computing

N k−1,s(zj(k)). Using the algorithm presented in Sec. 5.3.3, the new q-best hypotheses

up to current time step k are selected. Given each new hypothesis, for which j ̸= 0, its

posterior state estimate is updated according to the standard EKF measurement update

process:

x̂+(k) = x̂−(k) + P−
k H

⊤
k S

−1(zj(k)− ẑ(k)) (5.28)

P+
k = P−

k − P−
k H

⊤
k S

−1HkP
−
k (5.29)

If j = 0, there is no measurement due to LED at current time step k; therefore, the

posterior state estimate will be identical to the prior.

5.4 Vehicle Trajectory Recovery

This section derives the specific details of the presented approach for a land

vehicle example that will be fully developed with application results presented in the

next section.

5.4.1 Motion Sensor Model

For a land vehicle moving on a 2D plane (i.e., building floor), the rover nav-

igation state vector can be defined as x =

[
n e ψ

]⊤
, where {n, e} represent the

2D position coordinates in the navigation frame, and ψ represents the rover’s yaw angle

(heading). The (Dubbin’s vehicle [20]) kinematic model is

ṅ = cos(ψ)u, ė = sin(ψ)u, ψ̇ = ω. (5.30)
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The linear velocity u and angular rate ω can be computed as

û = 1
2(R̂Lϕ̇L + R̂Rϕ̇R), ω̂ = 1

L(R̂Lϕ̇L − R̂Rϕ̇R), (5.31)

where ϕ̇L and ϕ̇R denote the radian angular rates of rotation of each wheel and R̂ are the

wheel radii estimates. The quanitities ϕ̇L and ϕ̇R can be accurately computed based on

encoder measurements so that eqn. (5.30) can be accurately computed in discrete-time,

see Chapter 9 in [22].

The wheel radii errors are modeled as Gauss-Markov processes:

δṘL = −λLδRL + ωL, δṘR = −λRδRR + ωR, (5.32)

where the choice of time constant 1/λL and PSD of ωL are discussed in Sec. 9.2 in

[22]. The augmented state vector is x = [n, e, ψ,RL, RR]
⊤. With the error state vector

defined as

δx = [δn, δe, δψ, δRL, δRR]
⊤ , (5.33)
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the error model is

δẋ = F δx+Gν where (5.34)

F =



0 0 − sin(ψ)u
˜̇
ϕL cos(ψ)

2

˜̇
ϕR cos(ψ)

2

0 0 cos(ψ)u
˜̇
ϕL sin(ψ)

2

˜̇
ϕR sin(ψ)

2

0 0 0 1
L
˜̇
ϕL − 1

L
˜̇
ϕR

0 0 0 −λL 0

0 0 0 0 −λR



G =



RL cos(ψ)
2

RR cos(ψ)
2 0 0

RL sin(ψ)
2

RR sin(ψ)
2 0 0

1
LRL − 1

LRR 0 0

0 0 1 0

0 0 0 1


ν =

[
ωϕ̇L ωϕ̇R ωL ωR

]⊤
. (5.35)

The derivation of matrices F and G with encoder measurements can be found in Ap-

pendix B. The encoder measurement noises are ωϕ̇L and ωϕ̇R .

When the rover moves freely in 3D space, its motion information can be mea-

sured by inertial sensors such as IMU (inertial measurement unit). The IMU measures

the rover’s acceleration a and angular velocity ω in three directions of the body frame.

The state vector can be defined as x =
[
np⊤, nv⊤, bnq̄

⊤, b⊤a , b
⊤
g

]⊤
to represent the po-

sition, velocity, rotation, and biases of acceleration and angular rate. The kinematic

model using the measurements from IMU can be described by

nṗ = nv, nv̇ = na, b
n
˙̄q = 1

2Ω(ω)bnq̄

ḃa = ωba , ḃg = ωbg
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The IMU measurements are modeled as

ã = Rq̄(
na− ng + 2⌊ωn×⌋nv + ⌊ωn×⌋2np) + ba + ωa (5.36)

ω̃ = ω +R(bnq̄)ωn + bg + ωg, (5.37)

where R(·) denotes the rotation matrix, and ωn is the rotation vector of the navigation

frame with respect to the Earth centered inertial frame (ECI), and ng is the gravity

represented in the navigation frame, and ωa and ωg are the measurement noise.

The state estimate propagates according to

n˙̂p = nv̂ (5.38)

n ˙̂v = R⊤
ˆ̄q â− 2⌊ωn×⌋nv̂ − ⌊ωn×⌋2np̂+ ng (5.39)

b
n
˙̄̂q = 1

2Ω(ω̂)bnˆ̄q,
˙̂
ba = 0,

˙̂
bg = 0 (5.40)

where â = ã − b̂a and ω̂ = ω̃ − R(bn̂q̄)ωn − b̂g. The error state is defined as x =[
δnp⊤, δnv⊤, δθ⊤, δb⊤a , δb

⊤
g

]⊤
, where δθ represent the rotation from the computed frame

b̂ to the true frame b. Its model has the same structure as (3.3) with the following matrix

format.

F =



03×3 I3 03×3 03×3 03×3

−⌊ωn×⌋2−2⌊ωn×⌋ −R⊤
ˆ̄q
⌊â×⌋ −R⊤

ˆ̄q
03×3

03×3 03×3 −⌊(ω̂ +R ˆ̄qωn)×⌋03×3 −I3

03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3


(5.41)

G =



03×3 03×3 03×3 03×3

−R⊤
ˆ̄q

03×3 03×3 03×3

03×3 −I3 03×3 03×3

03×3 03×3 I3 03×3

03×3 03×3 03×3 I3


, ν =



ωa

ωg

ωba

ωbg


.
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The derivation of matrices F and G with IMU measurements can be found in Appendix

C.

5.4.2 Photo-Detector Model

When using a camera to measure the LEDs, each LED projection in the image

is a bright blob. The camera measurement model is described by eqn. (3.21) and (3.22)

in Chapter 3. The camera measurement error model is defined in Sec. 3.2.3 of Chapter

3 with linearized measurement matrix derived in eqn. (3.31). The camera measurement

error model is

δz = Hδx+ n

= −J c
nR̂ δnp+ J c

bR ⌊bp̂bL×⌋ δθ + n (5.42)

where

J =
1
ĉz

 1 0 − cx̂
cẑ

0 1 −
cŷ
cẑ

 , (5.43)

where δnp is the position error vector of which the only nonzero components are δn and

δe. The symbol δθ represents the attitude error vector for which the only nonzero term

is δψ. Therefore, with the IMU error state as defined in eqn. (5.33), the camera aiding

H matrix is

H = J

[
−c
nR̂(:, 1 : 2) c

bRJψ
bp̂bL 03×2

]
(5.44)

Jψ =


0 1 0

−1 0 0

0 0 0

 . (5.45)

The linear array measurement contains only half of the information in camera

measurement, effectively only providing the ũ measurement defined in (5.44). Therefore,
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its measurement model is

z̃ = cx/cz + n, (5.46)

where cx and cz have the same meaning with that in (3.21).

5.5 Results

In the experiment, we use a rover equipped with wheel encoders and a camera

to test and demonstrate the algorithm. Encoder based navigation is discussed in Chapter

9 of [22]. The rover implements a trajectory tracking controller which is a (nonadaptive)

version of the command filtered backstepping approach described in the example section

of [19]. The rover moves in a 5m×5m area with eleven LEDs mounted on the four walls

at known locations. The position of the rover in the navigation frame is represented by

the vector np = (n, e, d) where d = 0. Encoders attached to each rear wheel measure

the wheel rotation, which allows computation of the rover speed u and angular rate w.

The origin of the body frame is the center of the axle connecting the two rear wheels.

The camera’s position bpbl and pose cbR relative to the body frame are calibrated off-line.

The parameter γ in eqn. (5.1) is selected such that the probability that the residual

falls within Vl,γ is 0.997.

5.5.1 Stationary

This section considers the case that the rover is stationary while the camera or

linear array is detecting the LEDs. The rover is put close to position np = (−0.5, 0, 0)

with rotation angle ψ = 0o, so the prior estimate of the rover state is x̂0 = [−0.5, 0, 0]⊤.
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5.5.1.1 Camera

Since the inputs from encoders are zero, the estimate of the vehicle state re-

mains unchanged prior to incorporating the camera measurements. At any time instant,

for the current vehicle pose, only some of the LEDs will be within the field-of-view of

the camera. An example of the predicted LED positions with error covariance ellipse

projected onto the image plane is illustrate in Fig. 5.1. The resolution of the image is

640 × 512. We can see that only two LEDs are predicted to be in the image for the

current rover state.

A time sequence of camera measurements is illustrated in Fig. 5.2. These

measurements are extracted by thresholding the pixel intensities within each LED’s

predicted region. The green stars are the predicted LED positions at each time step

based on the rover state estimate. The magenta crosses are the detected measurements.

We can see from this figure that multiple measurement candidates exist in both of the

predicted LED regions.

At the k-th measurement time step, the detected potential LED projection

locations that fall into the detection region are enumerated and stored in the mea-

surement set Z(k) defined in eqn (5.3) of Section 5.2.2. The detection region is the

minimum rectangle containing the predicted ellipse. The upper left image of Fig. 5.3

shows the detected and predicted measurements along with the prior uncertainty ellipse

at time t = 0. Since there are two detected measurements in the detection region of

LED 1 and no measurement in the detection region for LED 0, accounting for the null

hypotheses, three data association hypotheses will be generated. Using each data asso-

ciation hypothesis to update the state estimate and then repredict the LED projection
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Figure 5.1: Predicted LEDs’ positions in the image plane based on the prior information
of the rover state: Predicted positions (green stars), 3-σ error ellipse regions (red)

location based on each hypothesis, the results are shown in the upper right image of

Fig. 5.3. The blue “∗” symbol represents the predicted LED projection location after

updating the state by a hypothesis, and the corresponding blue ellipse represents shows

its uncertainty. Note that the two null hypotheses have left the state estimate and its

uncertainty unchanged, so they are identical to the prior and each other. The single

measurement hypothesis has corrected the state according to its hypothesis and reduced

the uncertainty. The bottom right image of Fig. 5.3 shows the predicted LED projection

locations at the second measurement time t = 0.05s with two detected measurements

for LED 0 and four detected measurements for LED 1. At each time step, only the first

q = 10 most probable hypotheses are kept and shown in the bottom left image by their

corresponding posterior predicted LED locations and error ellipses.

The final navigation state estimation results for each hypothesis are shown in
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Figure 5.2: Camera measurements of LED 0 and LED 1 in the first few seconds: Pre-
dicted LED positions (green stars), 3-σ error regions (red), LED measurements (magenta
“+”).
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Figure 5.3: The measurements and hypotheses at the first two steps.
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Fig. 5.4. The estimation results for the q = 10 different hypotheses are shown in different

colors. Fig. 5.5 is revised version of Fig. 5.2 where we have changed the coloring of the

measurements that have been selected as the most probable hypothesis sequence from

magenta to blue.

The q = 10 data sequences shown below are recovered for LED 0 whose true

ID is {00000000}. When sending the ID, each LED will add a 4-bit header {1010}

in the front and another 4-bit checksum in the back. For the correct data sequence,

the checksum is {1010}. In this experiment, the camera works at a frame rate twice

of the LED data rate, which means that each bit is recovered from two consecutive

sampled images. The symbols “∗” in the sequences indicates that this bit could not

be determined due to different recovered statuses in the corresponding two consecutive

steps. The numbers to the right of each sequence are the normalized probabilities. From

these sequences, we will find the second one is the most probable correct data sequence.

{∗0000000001010101000000000101010}, p = 0.24,

{10000000001010101000000000101010}, p = 0.16,

{10000000001010101000000000101010}, p = 0.13,

{∗0000000001010101000000000101010}, p = 0.08,

{00000000001010101000000000101010}, p = 0.07,

{∗000000000 ∗ 010101000000000101010}, p = 0.06,

{∗0000000001010 ∗ 01000000000101010}, p = 0.06,

{∗000000000101010 ∗ 000000000101010}, p = 0.06,

{∗000000000101010100000000010 ∗ 010}, p = 0.06,

{∗0000000001010101000000000 ∗ 01010}, p = 0.06,
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Figure 5.4: Estimation results associated with each hypothesis sequence.
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Figure 5.5: Camera measurements with the most probable selection of the measurements
at each time step.
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5.5.1.2 Linear Array

The predicted LED position and error covariance in the linear array are il-

lustrate in Fig. 5.6. The green stars are the predicted LED positions and the red

parentheses are its uncertainty interval.

0 100 200 300 400 500 600

LED 0LED 1

u(pixel)

Linear array

Figure 5.6: Predicted LEDs’ positions and their uncertainty intervals in the linear array.

Similar to the process of camera measurements in Fig. 5.3, the process to

generate new hypotheses by linear array measurements is illustrated in Fig. 5.7.
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LED 0LED 1
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LED 0LED 1

Figure 5.7: The linear array measurements and the new hypotheses.

The estimation result of each hypothesis using linear array measurements is

shown in Fig. 5.8. The estimation result of each hypothesis is more disperse than the

result of camera due to less informative measurements.

Fig. 5.9 shows the linear array measurements at each time step and the ones

103



0 0.5 1 1.5 2 2.5 3

−0.55

−0.5

−0.45

−0.4

n 
(m

)

0 0.5 1 1.5 2 2.5 3
−0.1

−0.05

0

0.05

0.1

e 
(m

)

0 0.5 1 1.5 2 2.5 3
−3

−2

−1

0

1

2

3

ψ
 (

de
gr

ee
)

time (sec)

Figure 5.8: Estimation results associated with each hypothesis sequence using linear
array measurements.
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(blue “+”) selected by the most probable hypothesis.
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Figure 5.9: Linear array measurements with the most probable selection of the mea-
surements at each time step.

5.5.2 Moving

5.5.2.1 Camera

When the vehicle is moving, the outputs from motion sensors (i.e. encoders)

help to maintain an accurate state estimate for navigation and which enables accurate

prediction of the LED projection locations in the image. Since the encoder measurements

do not perfectly reproduce the rover speed and angular rate, the state error covariance of

the prior state as well as the residual covariance both grow with time. An example set of

actual and predicted LED location measurements at each time step are illustrated in Fig.

5.10. After applying the data recovery algorithm, the most probable data sequence with

the correct ID is illustrated at blue “+”. The process of generating the new hypotheses

at one time step is illustrated in Fig. 5.12. The left and right images illustrate the

predicted LED positions and their error covariances based on the prior and posterior

state estimate, respectively. In this figure, all the measurements are not selected by
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these most probable hypotheses. The prior and posterior state estimates associate with

each hypothesis are shown in Fig. 5.11.
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Figure 5.10: Coordinates of LED 0 and LED 1 in the image plane: Predicted LED
positions (green stars), 3-σ error regions (red), LED measurements (blue “+”), noise
and clutter measurements (magenta “+”).

The following are the recovered data sequences of LED 0 for each hypothesis

when the rover is moving. The second one is the most probable and correct data

sequence. Note that several data sequences are identical, which doesn’t not mean their

hypothesis sequences are same since different choices may result in the same recovered
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Figure 5.11: Estimation results associated with each hypothesis: State estimates only
by motion sensors (green), standard deviation (red), and posterior state estimates of
each hypothesis (other colors).
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Figure 5.12: Prior prediction (left) and posterior prediction of each hypothesis (right).

data.

{∗0101010000000001010101000000000}, p = 0.23,

{10101010000000001010101000000000}, p = 0.21,

{∗01010100000000010 ∗ 0101000000000}, p = 0.12,

{∗010101000000000101010 ∗ 000000000}, p = 0.10,

{∗0101010000000001010101000000000}, p = 0.06,

{∗0101010000000001010101000000000}, p = 0.06,

{10101010000000001010101000000000}, p = 0.06,

{∗0101010000000001010101000000000}, p = 0.05,

{10101010000000001010101000000000}, p = 0.05,

{10101010000000001010101000000000}, p = 0.05,

5.5.2.2 Linear Array

The estimation result when the rover is moving is shown in Fig. 5.14. Compare

with Fig. 5.8, the estimation results are very close, which also proved accuracy of
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estimating 2D state using linear array measurements. Fig. 5.13 shows the linear array

measurements at each time step and the ones (blue “+”) selected by the most probable

hypothesis.
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Figure 5.13: Linear array measurements with the most probable selection of the mea-
surements at each time step when the rover is moving.
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Figure 5.14: Estimation results associated with each hypothesis sequence using linear
array measurements when the rover is moving.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

Many personnel, equipment, and vehicular applications would have enhanced

performance given more accurate knowledge of their location. LED light and signaling

is in its infancy, offering unique dual use opportunities. Due to their high switching

rates, which enables communication of unique ID’s, compared with other vision-based

navigation method, the detection and feature association sub-problems are more easily

and reliably solved for LED features.

This dissertation has discussed various aspects of the communication and nav-

igation using LED features. For the camera sensor, we demonstrate that the vehicle

confined to move in the 2D-plane can be initialized by measuring at least two LEDs, as

long as the vector joining the two LED’s is not parallel to the world frame D-axis. With

the initialization algorithm, no prior knowledge is required about the vehicle state and

the EKF can be robustly and accurately initialized. When this rover is equipped with

wheel encoders, the observability analysis shows that at least two LEDs are enough to

ensure the observable of the navigation state.
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To overcome the problem of low frame rate of normal camera, a new sensor is

proposed that could simultaneously receive signals from LED’s at a high rate and enable

accurate navigation. This sensor combines a linear array, a convex-cylindrical lens and

the shutter together to form a one-dimension photo-detector. The convex-cylindrical

lens will focus the light that passes through onto a line instead of a point, so that the

linear array preserves the sensitivity to angle of arrival relative to a single axis. Its

one-dimension sensitivity increases the difficulty of the extrinsic parameter calibration

and state initialization. An offline calibration method is proposed in this dissertation.

The state initialization method is also analyzed. We also analyzed the observability of

the navigation system and proved that at least two LED’s with different xf and yf must

be measured to have full observability of the vehicle state.

When using the photo-detector array (camera or linear array) to communicate

with blinking LEDs, it is necessary to track the LED status in the sensor to extract

the data. Two methods have been developed in this dissertation to solve the problem

of accurately and efficiently extracting a data sequence. The first one is applicable to

the situation when the data communication rate is high relative to the bandwidth of

the moving platform so that the LED pixel projection changes little from one frame to

the next. This approach is based on the Viterbi algorithm. The presentation included

analysis and discussion of the necessary probability models, transition matrix, and mea-

surement model. We also proved that the LED projection image size does not influence

the final result. The results in Sec. 4.4 show the performance of this algorithm.

When the rover motion bandwidth is significant relative to the frame rate, the

position of LED in the linear array can change significantly from one frame to the next.

The assumption for the Viterbi-based algorithm is no longer valid. Another problem of

this algorithm is that it is hard to be applied to the two-dimensional photo-detector such
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as camera. The enumeration and connection between the pixels in the two-dimensional

image is much more complicated than that in the linear array, so the state transition

matrix for the two-dimensional measurements may not be diagonal anymore and hard to

define. A second method is developed to overcome the above problems. This method is

based on multiple hypothesis tracking, which tries to find the most probable candidate

measurements at each time step instead of recover the LED positions in the sensor.

The presentation included analysis and discussion of the hypothesis probability model

and measurement model, and the experimental results both for camera and linear array

measurements.

6.2 Future work

LED-based navigation and optical communication offer future synergistic per-

formance improvement opportunities. In Chapter 3, we proposed a new sensor by com-

bining a linear array and a cylindrical lens. DSP (digital signal processing) hardware

will also be designed to sampling and process the data collected by the linear array to

further improve the sampling and processing efficiency. The observability of the nav-

igation equipped with a linear array and wheel encoders are analyzed when the rover

moves in the 2D plane. Future research will consider the case that the rover can move

freely in the 3D space. The wheel encoders could be replaced by the inertial measure-

ment unit (IMU) to measure the acceleration and rotation. Lots of more issues should be

considered for this linear array-IMU system including its observability and initialization.

Chapter 4 has focused on processing of a single thresholded LED. Future work

will consider the approaches suitable for either multiple LED projections or multiple

simultaneous hypotheses. Algorithms incorporating the measured intensity could also
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be of interest. Finally, knowledge of the most likely LED image path provides useful

information for correcting the rover trajectory over the corresponding time window.

Chapter 5 gives a more accurate data recovery algorithm based on MHT. The

situation when a measurement can fall into multiple LEDs’ uncertainty ellipse is not

considered. This is illustrated in Fig. 6.1 for linear array measurements. Future work

will consider the approach that associates the measurements to multiple LEDs’ jointly.

When multiple LED’s data associations are jointly considered, each LED’s data associa-

tion hypothesis at a time step not only depends on its own former association hypotheses,

but also other LEDs’ association hypotheses. This could greatly increase the complex-

ity of the assignment of the measurements to the LED’s. This could be addressed by

efficient assignment algorithms such as Auction [13] and JVC algorithm [37].

Figure 6.1: Linear array with one candidate measurement (yellow) falls into both the
predicted region of two LEDs.

Another problem that should be considered in the future is the missing de-

tection of LEDs. The proposed LED data recovery algorithm in this paper focuses on
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solving the problem of LED false detections. As we mentioned in Sec. 5.3, the case

of missing detection of LEDs is not considered. However, due to various reasons, both

the camera and linear array may not detect the LEDs in the predicted region when

the LED is “on”. When the missing detection happens but not considered properly,

inaccurate data will be recovered. Future work should also consider the LED passing

in and out of the field of view. Chapter 4 and 5 both use the prior state estimate to

calculate the measurement uncertainty region. This uncertainty region is considered to

be fully contained in the image or linear array, which is not always true in practice. If

this happens, some noise measurements or the LED measurement itself may be lost by

merely processing the part of the predicted region that falls into the image or linear

array. This is even more complicated than the case of missing detection.

Both the LED data recovery algorithms introduced in this dissertation requires

extracting the whole ID data sequence firstly in order to judge them later based on the

expected ID sequence later. In practice, it is not necessary to obtain the whole length of

ID to determine whether it is valid. For example, assume that the frame rate is two time

of the LED data rate, then the recovered status sequences are wrong if their “on” or

“off” do not appear in pairs. This fact could greatly help delete the incorrect hypothesis

sequences, so that computation will not be wasted on these incorrect ones. Future work

should consider how to take advantage of these hypothesis pruning methods.

Besides the algorithms introduced in this dissertation, random sample consen-

sus (RANSAC) is another choice for solving this data recovery algorithm. The advantage

of using RANSAC is that more accurate data recovery as well as the rover state estimate

may be obtained. The reason is that RANSAC estimates the parameters (rover states)

simultaneously by all the measurements in the consensus set, which is similar to the

update process of smoothing algorithms. The set of observations is ZK . The consensus
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set should be modified to contain at most one measurement at each time step for each

LED. Instead of fitting a trajectory that has as many as inliers, the objective should be

modified to search for the most probable trajectory.

Data transmission using multiple colors [31] provides other methods to separate

the LEDs from clutter or noise. LEDs can change their colors easily by modulating the

driving signal. When the data is sent by LED’s colored light, extracting the LED data

will be very different from the algorithms in this dissertation. Data transmission using

patterns should also be considered in the future work. Higher data rate can be achieved

when transmitting patterns, but more complicated image processing technique is also

required to accurately extract the pattern in the image.
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Appendix A

Nonlinear Optimization Methods

The general nonlinear convex optimization problem could be modeled as

x̂opt = arg min
x∈Rn

r(x), (A.1)

where x ∈ Rn, and r(x) : Rn → R is a nonlinear convex function of x. Lots of algorithms

have been proposed to find x to minimize Eqn. (A.1): Gauss-Newton, Gradient Descent

and Powell’s Dog-Leg method. The commonality between these methods is that they

all compute x̂ iteratively based on a initial value x̂0. In iteration l, they try to compute

a correction δxl to obtain a better estimation x̂l+1 = x̂l + δxl.

In iteration l, the value of objective function r(x) in the neighborhood of x̂l

could be approximated as

r(x) ≈ r(x̂l) +∇r⊤(x̂l)δxl, (A.2)

where δxl = x − x̂l and ∇r(x̂l) ∈ Rn×1 is the gradient vector of r(x) at x̂l. In

the following text, we will introduce the nonlinear optimization methods of Gradient

Descent, Newton and Gauss-Newton.
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A.1 Gradient Descent Method

Within the neighborhood of current point x̂l, the objective function decreases

fastest opposite to the direction of its gradient ∇r at x̂l. Based on this fact, the next

better point x̂l+1 could be computed by

x̂l+1 = x̂l − γl∇r(x̂l), (A.3)

where γl > 0 is the length of this step. To choose the step length γl that makes the

objective function r(x) decrease most, we can take the derivative of r(x̂l − γl∇r(x̂l))

with respect to γl and set it be zero:

∇r⊤(x̂l+1)∇r(x̂l) = 0. (A.4)

Eqn. (A.4) indicates that the step length γl is chosen such that the gradients of r at

point x̂l and x̂l+1 are perpendicular to each other.

A.2 Newton Method

The Newton method approximates the function r at at the neighborhood of

x̂l as its second order Taylor expansion:

r(x) ≈ r(x̂l) +∇r⊤(x̂l)δxl +
1

2
δxl⊤∆r(x̂l)δxl, (A.5)

where ∆r(x̂l) ∈ Rn×n is the Hessian matrix of r at x̂l. Taking the derivative of eqn.

(A.5) with respect to δxl and setting it to zero, we have

∇r⊤(x̂l) + δxl⊤∆r(x̂l) = 0. (A.6)

Using eqn. (A.6), the step vector at iteration l is

δxl = −∆r(x̂l)−1∇r(x̂l). (A.7)
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A.3 Gauss-Newton Method

Gauss-Newton method is a modification of Newton method to solve nonlinear

least square (NLS) problems. Nonlinear least square problem is a special case of the

nonlinear optimization problem defined in (A.1), where the objective function r(x) is

the sum of squares. Nonlinear least square problem could be modeled as

x̂opt = arg min
x∈Rn

∥ v(x) ∥22, (A.8)

where v(x) : Rn → Rm is a vector function of x.

In the neighborhood of x̂l, the function v(x) is approximated as

v(x) ≈ v(x̂l) + J(x̂l)δxl, (A.9)

where J(x̂l) ∈ Rm×n is the Jacobian matrix of v at x̂l. To compute the Gauss-Newton

step, substitute Eqn. (A.9) into (A.8), take derivative of (A.8) with respect to δxl and

set it equal to zero. We have

J⊤Jδxlgn = −J⊤v ⇒ δxlgn = −(J⊤J)−1J⊤v, (A.10)

where we simplify the notation by using J and v instead of J(x̂l) and v(x̂l), respectively.

We also use δxlgn to emphasize the solution is Gauss-Newton step.
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Appendix B

Deirvation of Encoder Model

B.1 Compute Velocity and Angular Rate From Encoder

Measurements

Let ẽL and ẽR denote the outputs of the left and right encoders. They are

discrete and quantized from the continuous valued encoder signal eL and eR. Assuming

C is the encoder scale factor in units of counts per revolution and (ϕL(t), ϕR(t)) are

the radian angular rotation from time t0 to t. Then, the continuous encoder signal and

angular rotation of the two wheels have the relation that

eL(t) =
C

2π
ϕL(t)

eR(t) =
C

2π
ϕR(t). (B.1)

The true outputs of encoder are the integer remainder resulting from dividing continuous

valued encoder signal by scale factor C.

Let RL and RR denote the radius of left and right wheels, sL(t) and sR(t)
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denote the length that they have traveled up to time t. Then

ϕL(t) =
1

RL
sL(t)

ϕR(t) =
1

RR
sR(t). (B.2)

Substitute Eqn. (B.2) into Eqn. (B.1) and take the derivation with respect to t, then

we have

ėL(t) =
C

2πRL
ṡL(t) =

C

2πRL
uL

ėR(t) =
C

2πRR
ṡR(t) =

C

2πRR
uR, (B.3)

where we use the speed of the two wheels uL(t) and uR(t) to replace ṡL(t) and ṡL(t),

respectively.

Since the vehicle’s body frame is centered at the middle of the axle that con-

nects the two wheels and the heading is perpendicular to it, the velocity of the vehicle

u and rotation rate ω have the following relations with uL and uR.

u =
1

2
(uL + uR)

ω =
1

L
(uL − uR) , (B.4)

where L is the length of the axle. From Eqn. (B.3) and Ean. (B.4), the velocity and

rotation rate of vehicle and the outputs of encoder are related by

u =
π

C
(RLėL +RRėR)

ω =
2π

CL
(RLėL −RRėR) . (B.5)
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B.2 State Transition Matrix

In 2D frame, the kinematic model is

ṅ = cos(ψ)
π

C
(RLėL +RRėR)

ė = sin(ψ)
π

C
(RLėL +RRėR)

ψ̇ =
2π

CL
(RLėL −RRėR) . (B.6)

The error propagation model is

δẋ = F δx+Gν, (B.7)

where δx =

[
δṅ, δė, δψ̇, δṘL, δṘR

]T
, the matrix F is

F =



0 0 − π
C

(
R̂L ˙̂eL + R̂R ˙̂eR

)
sin(ψ̂) cos(ψ̂) π

C
˙̂eL cos(ψ̂) π

C
˙̂eR

0 0 π
C

(
R̂L ˙̂eL + R̂R ˙̂eR

)
cos(ψ̂) sin(ψ̂) π

C
˙̂eL sin(ψ̂) π

C
˙̂eR

0 0 0 2π
CL

˙̂eL − 2π
CL

˙̂eR

0 0 0 λ 0

0 0 0 0 λ


,

the matrix G is 

cos(ψ̂) πC R̂L cos(ψ̂) πC R̂R 0 0

sin(ψ̂) πC R̂L sin(ψ̂) πC R̂R 0 0

2π
CLR̂L − 2π

CLR̂R 0 0

0 0 1 0

0 0 0 1


, (B.8)

and ν = [δėL, δėR, νL, νR]
T . The radius errors are added into the state vector, and they

are modeled as scalar Gauss-Markov processes

δṘL = −λδRL + νL

δṘR = −λδRR + νR, (B.9)
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where λ > 0, E[δRL(0)] = E[δRL(0)] = 0. The discrete error propagation model is

δxk+1 = Φδxk + ωk, (B.10)

where T is the time interval, Φ = eFT and ωk =
∫ (k+1)T
kT eF tGνdt.
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Appendix C

Derivation of IMU Error Model

The IMUmeasures the acceleration ã and angular rate ω̃, and they are modeled

as

ã = C(IGq̄)
(
Ga− Gg + 2⌊ωG×⌋GvI + ⌊ωG×⌋2 GpI

)
+ ba + na (C.1)

ω̃ = ω +C(IGq̄)ωG + bg + ng (C.2)

where I
Gq̄ is the quaternion that represents the rotation from global frame to inertial

frame, and C(IGq̄) represents its corresponding rotation matrix. The angular rate of

Earth Centered Earth Fixed (ECEF) frame rotation with respect to the inertial frame

is represented by ωG.

The Kinematics model is

GṗI =
GpI ,

Gv̇I =
GaI ,

I
G
˙̄q =

1

2
Ω(ω)IGq̄, ḃa = nωa , ḃg = nωg , (C.3)

where

Ω(ω) =

 −⌊ω×⌋ ω

−ω⊤ 0

 , ⌊ω×⌋ =


0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 . (C.4)
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The state estimate propagates according to

G˙̂pI =
Gv̂I ,

G˙̂vI =
GâI ,

I
G
˙̄̂q =

1

2
Ω(ω̂)IGˆ̄q,

˙̂
ba = 0,

˙̂
bg = 0, (C.5)

where

GâI = C(GI ˆ̄q)(ã− b̂a) +
Gg − 2⌊ωG×⌋Gv̂I − ⌊ωG×⌋2 Gp̂I , (C.6)

ω̂ = ω̃ −C(IGˆ̄q)ωG − b̂g (C.7)

Define the state error vector as

δx =

[
δGpI δGvI δθ δba δbg

]⊤
∈ R15×1, (C.8)

where δθ ∈ R3×1 represents the rotation from the estimated inertial frame to the true

inertial frame. We also have

I
Î
q̄ = I

Gq̄ ⊗ G
I
ˆ̄q =

 1
2δθ

1

 , C(I
Î
q̄) = I + ⌊δθ×⌋ (C.9)

The state error model is obtained from eqn. (C.5) and (C.3):

δGṗI = GṗI − Gˆ̇pI =
GvI − Gv̂I = δGvI (C.10)

δGv̇I = Gv̇I − G˙̂vI =
GaI − GâI

= C(GI q̄) (ã− ba − na) +
Gg − 2⌊ωG×⌋GvI − ⌊ωG×⌋2 GpI

−
[
C(GI ˆ̄q)(ã− b̂a) +

Gg − 2⌊ωG×⌋Gv̂I − ⌊ωG×⌋2 Gp̂I

]
= C(GI ˆ̄q)C(I

Î
q̄) (ã− ba − na)−C(GI ˆ̄q)(ã− b̂a)

−2⌊ωG×⌋δGvI − ⌊ωG×⌋2δGpI

= C(GI ˆ̄q)(I + ⌊δθ×⌋) (ã− ba − na)−C(GI ˆ̄q)(ã− b̂a)

−2⌊ωG×⌋δGvI − ⌊ωG×⌋2δGpI
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= −C(GI ˆ̄q)δba −C(GI ˆ̄q)na −C(GI ˆ̄q)⌊δθ×⌋(b̂a + δba)

+C(GI ˆ̄q)⌊δθ×⌋ã− 2⌊ωG×⌋δGvI − ⌊ωG×⌋2δGpI

= −⌊ωG×⌋2δGpI − 2⌊ωG×⌋δGvI −C(GI ˆ̄q)⌊(ã− b̂a)×⌋δθ

−C(GI ˆ̄q)δba −C(GI ˆ̄q)na. (C.11)

To compute the rotation error model, we firstly evaluate the derivative of quaternion.

From eqn. (C.9), we have

I
Î
˙̄q = I

G
˙̄q ⊗ G

I
ˆ̄q + I

Gq̄ ⊗ G
I
˙̄̂q

=
1

2
Ω(ω)IGq̄ ⊗ G

I
ˆ̄q + I

Gq̄ ⊗ G
I
ˆ̄q ⊗

−1

2

 ω̂

0




=
1

2

 ω

0

⊗ I
Î
ˆ̄q − 1

2
I
Î
ˆ̄q ⊗

 ω̂

0



=
1

2

 −⌊ω×⌋ ω

−ω⊤ 0

 I
Î
ˆ̄q − 1

2

 ⌊ω̂×⌋ ω̂

−ω̂⊤ 0

 I
Î
ˆ̄q

=
1

2

 −⌊ω×⌋ − ⌊ω̂×⌋ ω − ω̂

−(ω − ω̂)⊤ 0

 I
Î
ˆ̄q

=
1

2

 −⌊ω×⌋ − ⌊ω̂×⌋ ω − ω̂

−(ω − ω̂)⊤ 0


 1

2δθ

1

 . (C.12)

That is  1
2δθ̇

0

 =
1

2

 −⌊ω×⌋ − ⌊ω̂×⌋ ω − ω̂

−(ω − ω̂)⊤ 0


 1

2δθ

1

 , (C.13)
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so the rotation error evolves over time according to

δθ̇ =
1

2
(−⌊ω×⌋ − ⌊ω̂×⌋) δθ + ω − ω̂

=
1

2
(−⌊(ω − ω̂ + ω̂)×⌋ − ⌊ω̂×⌋) δθ + ω̃ −C(IGq̄)ωG − bg − ng

−
(
ω̃ −C(IGˆ̄q)ωG − b̂g

)
= −

(
⌊ω̂×⌋+ ⌊C(IG ˆ̄q)ωG×⌋

)
δθ − δbg − ng (C.14)

The acceleration and angular rate measurement bias errors evolve over time according

to

δḃa = ḃa − ˙̂
ba = nωa (C.15)

δḃg = ḃg − ˙̂
bg = nωg . (C.16)

The IMU state error can be written in the form

δẋ = F δx+Gn, (C.17)

where from the above analysis, the matrices and vector have the forms:

F =



03×3 I3×3 03×3 03×3 03×3

−⌊ωG×⌋2 −2⌊ωG×⌋ −C(GI ˆ̄q)⌊(ã− b̂a)×⌋ −C(GI ˆ̄q) 03×3

03×3 03×3 ⌊(ω̂ +C(IGˆ̄q)ωG)×⌋ 03×3 −I3×3

03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3


(C.18)

G =



03×3 03×3 03×3 03×3

−C(GI ˆ̄q) 03×3 03×3 03×3

03×3 −I3×3 03×3 03×3

03×3 03×3 I3×3 03×3

03×3 03×3 03×3 I3×3


, n =



na

ng

nba

nbg


. (C.19)
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Appendix D

Camera Linearized Measurement

Matrix

The camera measurement is modeled as

z = h(x) + n


cx
cz

cy
cz

+ n, cpcf =


cx

cy

cz

 (D.1)

where cpcf is modeled as

cpcf = c
IR

(
IpIf − IpIc

)
= c

IR
(
I
GR

(
Gpf − GpI

)
− IpIc

)
. (D.2)

The camera measurement residual error is modeled as

δz = Hδx+R. (D.3)

The linearized measurement matrix can be computed by

H = H1H2, (D.4)
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where

H1 =
∂h

∂cpcf
=

 1
cz 0 − cx

cz2

0 1
cz −

cy
cz2

 . (D.5)

To compute H2, we first evaluate the cpcf error:

δcpcf = cpcf − cp̂cf

= c
IR

[
I
GR

(
Gpf − GpI

)
− IpIc

]
− c
IR

[
I
GR̂

(
Gpf − Gp̂I

)
− IpIc

]
= c

IR
[
I
Î
R I

GR̂
(
Gpf − GpI

)
− I
GR̂

(
Gpf − Gp̂I

)]
= c

IR
[
(I − ⌊δθ×⌋) IGR̂

(
Gpf − GpI

)
− I
GR̂

(
Gpf − Gp̂I

)]
= c

IR
[
−I
GR̂ δGpI − ⌊δθ×⌋IGR̂

(
Gpf − Gp̂I

)]
= −c

GR̂ δGpI +
c
IR⌊IGR̂

(
Gpf − Gp̂I

)
×⌋δθ. (D.6)

The matrix H2 is

H2 =

[
−c
GR̂ 03×3

c
IR⌊IGR̂

(
Gpf − Gp̂I

)
×⌋ 03×3 03×3

]
. (D.7)
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