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Equilateral Triangles: A Challenge for
Connectionist Vision

Subutai Ahmad' and Stephen Omohundro
International Computer Science Institute, Berkeley, CA.
ahmad@icsi.berkeley.edu, om@icsi.berkeley.edu

ABSTRACT

In this paper we explore the problem of dynamically computing visual relations in a connectionist system.
The task of detecting equilateral triangles from clusters of points is used to test our architecture. We argue
that this is a difficult task for traditional feed-forward architectures although it is a simple task for people.
Our solution implements a biologically inspired network which uses an efficient focus of attention mecha-
nism and cluster detectors to sequentially extract the locations of the vertices.

INTRODUCTION

Consider the visual task of determining whether a set of three point clusters form an equilateral triangle.
People are very good at solving this kind of problem, but a connectionist implementation is not obvious.
The difficulties posed by this problem are common to a wide variety of visual tasks and so we have used it
as a touchstone against which to test visual neural architectures. In this paper we describe some of the fun-
damental operations it seems to require, biologically plausible neural implementations of those operations,
and a computer simulation which combines them into a complete system.

The most straightforward visual neural representations assign a distinct unit to each visual pattern that must
be classified. Unfortunately, the space of possible triangles is much too large for this kind of approach to be
biologically possible. The optic nerve consists of about a million fibers from each eye, and so we consider
square images which are a thousand pixels on a side. Since each of the three vertices can occupy any of these

pixels, the total number of possible triangles in such an image is about 1000°=1018, A brute force represen-
tation would require about a million times as many neurons as we have in our entire brain for just this one

task. Just restricting the units to represent the set of equilateral triangles would still require about 10'2 units.

If coarse coded representations are used, these numbers can be reduced somewhat, but many more examples
will still be needed to learn to properly classify equilateral triangles than is biologically possible. The spatial
relationships which define equilateralness will have to be discovered for each position, scale, and orientation
of the triangle. Techniques have been proposed for introducing translation and rotational invariance into net-
works (Giles et. al., 1987) which eliminate the need to include feature detectors at every location. Unfortu-
nately these methods require that every unit have a large (quadratic) number of connections with
complicated weight linkages between them. Furthermore, positional information is lost in these representa-
tions - one cannot retrieve the location and orientation of the objects in the image.

These difficulties would disappear if we could represent a triangle directly by the real valued coordinates of
its vertices, say in the activations of 6 units. In this representation it is easy to construct units which compute
the distance between a pair of points. With this setup, the network would only need to learn a classification
function based on distances between points. This is a significantly easier task - the kind of task that simple
backpropagation networks have been successful at. The main difficulty, of course, is to transform the repre-

1. The first author is also a graduate student in the Department of Computer Science at the University of I1li-
nois at Urbana-Champaign.
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sentation from a set of pixel values to a set of vertex coordinates.

Ullman (1987) has argued that many high-level visual tasks may be implemented as “visual routines”. The
idea is that a high-level system solves a visual task by choosing and combining a set of primitive visual op-
erations. We will see that this framework is well-suited to our task, but that a plausible connectionist imple-
mentation is non-trivial. Later sections describe our solution to the equilateral triangle task with primitives
for detecting and remembering the locations of clusters of points based on a focus of attention mechanism.

EVIDENCE FOR SEQUENTIAL VISUAL PROCESSING IN THE BRAIN

There is a large body of psychology literature which supports Ullman'’s idea of sequential visual processes.
One of the best examples is the work by Treisman and her collcagues (Treisman & Gormican, 1988). Their
work suggests that certain simple visual tasks are performed by people in parallel (response time is inde-
pendent of the number of objects in the image) whereas other tasks require serial processing (responsc time
is linear in the number of objects). Jolicoeur et al. (1986) have provided further evidence that people usc
sequential processes for certain visual tasks. They find that the time to report whether two stimuli lie on the
same curve increases linearly with the distance between them along the curve. The presentation time is 100
short for saccadic eye movements.

There have also been recent neurophysiological results suggesting that neurons can dynamically change
their response properties. Moran & Desimone (1985) report evidence that the sizes and locations of the re-
ceptive fields of certain neurons in the monkey visual cortex (Area V4) change with the task that the animal
is trying to accomplish. This kind of behavior is suggestive of selective attention mechanisms which allow
the processing of a high level system to be devoted to different regions of sensory input at different times.

NEURALLY PLAUSIBLE MECHANISMS FOR SEQUENTIAL VISUAL PROCESSING

Both of these lines of evidence suggest that serial processes play an important role in visual processing.
(Ullman, 1984) suggests some specific processes which might be useful. Among them are primitives for de-
ciding which portions of the image are relevant, selecting out these sections, and storing their locations for
later processing. Given these primitives, a possible solution to our triangle problem is a system which se-
quentially selects and stores the location of each of the three clusters. Once the coordinates of the triangle
are directly available, the distance between vertices can be explicitly computed. With this information the
learning becomes trivial the network just has to leamn the equality function with three inputs. In the next
few sections we will describe a connectionist implementation of a fast focus of attention mechanism as well
as mechanisms for detecting and storing cluster locations.

Locally Tuned Receptive Fields

In this section we describe a mechanism by which linear threshold units can give a localized response in a

feature space. The following fact is exploited: if one maps the points in ®*~! onto the paraboloid defined
n—-1

byz= ) x2, then the intersection of a hyperplane in ®”* with this paraboloid projects onto a sphere in %1,
i=1

Thus there is a mapping between planes in ®” and spheres in %"~ !. To select a set of points which lie within

a sphere in some space one just has to project the points onto the paraboloid and slice it with the plane cor-

responding to the sphere. Points which lie “‘beneath” the plane are within the sphere. Figure 1(a) illustrates

this for %2. Notice that the computation of a threshold unit is exactly that of deciding on which side of a

hyperplane an input point lies. To encode circular receptive fields with threshold units, you just need to in-
clude an extra input: the sum of the squares of all the other inputs. An equation of the form:

—(Zwix‘.+2xi2+const) >0 (1)
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Threshold Unit

circle
(a)

Figure 1(a) The plane intersects the paraboloid in a curve which projects to a circle. (b) Architecture of threshold unit
computing the intersection shown in (a).The x;'s and a;'s are inputs to the system. The ¢’s are weights denoting the
stretch along each axis.

will be positive if x lies within a spherical volume determined by the weights and constant.

The above method creates circular receptive fields with hard boundaries. A smooth boundary with a flat top

may be obtained by using a sigmoid instead of a threshold function. The steepness of the sigmoid (its gain)

will then control the steepness of the receptive field boundary. Non-circular receptive fields are also possible

by changing the nature of the non-linearity. Elliptical receptive fields may be obtained by using the parabo-
n—1

loidz = ) c‘.x‘.2 where ¢; denotes the amount of stretching along each axis. In principle arbitrary shapes can
i=1

be obtained by appropriately choosing the non-linearity.

Dynamic Receptive Fields

In addition to being able to select a portion of the input space, we need the ability to shift the location and
size of the receptive field around quickly in response to changing demands. In our model there are basically
two ways of doing this. The first method involves changing the slope of the hyperplane. In Figure 1(a) note
that as the slope increases the center of the projected circle will shift to the right. For any sphere it is possible
to compute the coefficients of the hyperplane which produces that sphere. In a threshold unit, changing the
slope of the hyperplane corresponds to changing the weights of the inputs. One of these units could eventu-
ally learn the correct position of its receptive field. However the time scale for weight changes is (oo slow
for dynamic computation.

n-—1
Another way to alter the sphere is 10 shift the paraboloid itself, by computing z = Y ¢;(x;,—4,)2+ r. This
i=1
moves the paraboloid a distance @, along dimension i (changing the location of sphere) and a distance -
along the z-axis (changing the radius of the sphere). If the ¢, ’s and r are available as input then the receptive
field can be changed an arbitrary amount in one time step. Figure 1(b) shows how such a unit would be con-
figured. For each input dimension there is a sub-unit which computes the square. ((Suarez & Koch, 1989)
present a neurally plausible mechanism for computing a quadratic.) The outputs of these units are fed into
athreshold (or sigmoid) unit. The net effect is that the threshold unit will respond only when the input vector
x lies within the spherical receptive field determined by a and -.

Focus Of Attention With Value Coded Units

So far we have assumed an n-dimensional input space that is encoded as n analog signals. In our triangle
task however, we have to implement a circular patch in a 2-dimensional retina. The units in this representa-
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Figure 2 Examples of the system behavior for two different 64x64 images. In both displays the lower left quadrant shows the
image; the upper left quadrant shows the output of the gate units. The error vectors are displayed on the upper right and the

outputs of various units are shown in the lower right. (a) shows a snapshot of the system with the focus of attention near one
of the vertices. (b) shows the dynamic scaling behavior as the focus tries tofit the cluster of points within it.

tion are laid out on a flat sheet, with each unit explicitly encoding a point in the space.

To create dynamic receptive fields here, we construct a gating layer, with one “gate unit’” per input unit. Each
gate unit receives three global inputs: A,, Ay, and A, representing the parameters of the focus of attention.
The gate units are basically the same as the localized units described above with one small modification: x,
and x; are fixed for each gate unit. To encode this we have two separate connections from the input unit to
the gate unit. The weights of these connections are fixed as x; and x,. If the input unit fires, the threshold
unit will fire only when its input unit is within the circle determined by A, A, and A The effect is a layer
of units which filters the input image according to a global control signal. The system can select any circular
portion of the image in one time step. This is quite different from Mozer’s implementation (Mozer, 1988)
where the network has to iteratively settle on a solution, or Chapman’s implementation (Chapman, 1990)
which takes logarithmic time per selection. The hardware required to implement this is minimal: 8 extra
connections per input unit. It is also fairly easy to extend our mechanism to allow foci of different shapes
once the parameters are available.

Figure 2 shows the graphical output of our simulator. In each display, the lower left quadrant displays the
current input image (3 point clusters). The upper left quadrant shows the output of the gate units. The circle
shows the focus of attention represented by the 3 parameters. In Figure 2 (a) note that only the activity within
the focus is allowed to propagate.

Deciding Where To Focus ... And How To Get There.

We need a mechanism (o cause the focus of attention to sequentially fixate on the interesting portions of the
image. There are two different cases to consider: 1) there is already a cluster within the focus of attention,
and 2) the clusters are outside the focus. In the first case our system fixates on the center of mass of the clus-
ter of points and wraps the focus of attention around the cluster. Once this is accomplished, the parameters
of the focus of attention provide an accurate estimate of the location and size of the cluster. To deal with the
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second case we have a system which receives input directly from the image and provides a rough estimate
of the location of the next cluster to visit. These two mechanisms are described in the following sections.

Clusters Within The Focus Of Attention
The center of mass of a cluster, (C,, C)), is the average of the x and y coordinates of the active points:

YX(i)a > Y(i)a,
C, =4 and C, = - 2)

o I
YU 24
i i

where X (i) and Y (i) denote the x and y coordinates of the i’th unit and 4; denotes its activity. 3 a; can be
computed by a unit which receives input from all gate units with a weight of 1. To compute 3 X (i) ; and
Y Y (i) a; we include two units with links to every gate unit. The weights from the i’th unit to each of these
two units are X (i) and Y (i), respectively. A weighted sum of the incoming activity computes the appropri-
ate value. The sums are divided by ) 4; to calculate C, and C, as the values of two units. These values are
fed into two other units which compute the difference between the cluster center and the attention parame-
ters: (C,-A, C, —A)) . Units representing A,and A, receive as input this difference as well as their own out-
put. By computing the sum of all their inputs, these units keep the field of attention continually centered on
the cluster of points within the focus.

To get an estimate of the size of the cluster we include a scaling unit which continually adjusts the size of
the focus of attention to match the size of the set of points within it. The rule is that as long as ) q, remains
constant, the scaling unit decreases A, by a small amount. If the sum decreases, indicating that the scale has
become too small, the unit increases A, slightly and stops.

Figure 2 (b) shows the focus of attention changing to adjust to the cluster within it. The dotted circle repre-
sents the initial location. The set of concentric bands show successive steps as the focus of attention decreas-
es and shifts its location to fit the cluster inside.

Clusters Outside The Focus Of Attention

The mechanism described above continually fine tunes 4, A,, and A, to match the cluster of points within
the focus but does not give us a way to fixate on clusters outside the focus. To do this we include a coarse
grid of units which receives input directly from a circular patch in the image. At each grid location there are
three outputs to consider. The first two outputs encode the difference between center of mass of the cluster
of points within their receptive fields and the point (4,,A)) . The third output is simply the number of active
points within its receptive field, passed through a sigmoid. Thus each grid location encodes an “‘error’” vector
for adjusting the focus of attention, and a confidence value from O to 1 indicating the importance of the clus-
ter. These error vectors are continually updated to compensate for changes in 4, and 4. This error vector
representation was inspired by the mechanism in the monkey superior colliculus for controlling eye sac-
cades as reported by (Sparks, 1986).

The upper right quadrant of Figure 2 (a) and (b) shows the outputs of the error units. Each arrow represents
the error vector at that location. The shaded square represents the confidence value - the darker the square
the higher the confidence. (Only those locations whose confidence value is higher than 0.2 is displayed.)

To sequentially process each cluster in the image the system has to repeatedly select the largest confidence
value, inhibit the corresponding unit, and send the error vector to the system controlling A, and A . We are
currently investigating several mechanisms for choosing the largest value. One could construct a winner-
take-all network with competing confidence units such that the system settles into a state where only one
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Figure 3. Basic system architecture. The module “Attention Control” continually tries to fit the focus of
attention to the points within it. The *Sequencer” updates the focus of attention to visit all the clusters in
sequence and also sends the control signals to the binding network to store the successive locations.

S1IUN UBPPIH

L
uun inding

OoOoono

unit is active. However these networks can take a relatively long time to settle. It is also quite ditlicult to
find the correct set of inhibitory weights to create a robust winner-take-all network. Another alternative is
to construct a log-depth network of threshold units to explicitly compute the maximum, however this is
equally unappealing. We currently assume a max finding unit but are studying a temporal representation
which makes this computation biologically plausible.

Storing Locations

As the network visits each vertex it should store the valuesof 4, A , and A, whenever the focus of attention
stabilizes. We accomplish this with small recurrent networks (3 units) for each value that needs to be stored.
Each of these networks continually tracks a particular unit (one of A_, A, and A,) until a control signal is
sent, whereupon it freezes the output to be the current value of the unit. This is done by including a hidden
unit which receives a strong inhibitory link from its control unit. When the control is off, it computes the
difference between the value of the assigned unit and the current output and sends it to the output unit. An
excitatory link from the control unit to itself ensures that once the control unit has fired, it stays on, prevent-
ing further adjustments. Three of these “binding networks™ are used for each set of parameters that are
stored.

SIMULATION

Figure 3 shows a schematic of the whole architecture. The module which controls the attention field is an
autonomous network that continually attempts to wrap the focus around the points within its field of view.
The sequencer waits until the focus of attention has stabilized and then does two things: it transmits a control
signal to the binding networks to store the current parameters and updates the focus of attention to the loca-
tion of the next cluster.

Assuming that the system starts with a focus of attention covering the entire image plane, the network first
wraps the focus around the triangle and then sequentially visits and stores the locations of the three vertices.
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Figure 4. The result after parsing the two images shown in Figure 2.

Once this is done, the first set of bindings encode the position and scale of the triangle. The other nine bind-
ings encode the positions and scales of the three vertices in the order that they were processed. A set of dis-
tance units then explicitly computes the six possible distances between the four stored locations. A standard
feedforward network with one layer of hidden units is used to compute the final output. Space limitations
prevent a more detailed explanation of the control structure. It is worth noting however that every aspect of
it is implemented with units computing simple functions (except for the max function as described above).
Details on the exact set up can be found in (Ahmad & Omohundro, 1990).

For the simulations in this paper we used images with 64x64 pixels. We generated a training set consisting
of random triangles (approximately 50% of which were equilateral) with Gaussian noise added around each
vertex. For each triangle the focus of attention was initialized to cover the entire image plane. The system
was allowed to run until 4 control signals were generated. The outputs of the distance units were then used
[y = L] + |l = 45| +]4y =4
L+l,+1y
the length of the i’th side. This is a function which is 1 for equilateral triangles and degrades gradually to 0
as the triangles deviate from equilateralness. With a training set of 100 triangles the network score was con-
sistently greater than 0.9 for equilateral triangles. The specifics of the leaming are not crucial to this paper,
however note that the number of training examples needed would not increase if we increased the image
S1ZE.

3|

as inputs to train the backprop network. The teacher signal used was 1 - ,where i, is

Figures 4 (a) and (b) show the state of the network after parsing the two triangles in Figure 2. The system
correctly classified the left triangle as being equilateral and the right one as not being equilateral. The out-
puts of the binding networks show the vertex coordinates (in pixels) that were discovered by the network.
The current implementation requires about 50 seconds on a Sun 4 to extract the coordinates of one triangle.

By far the majority of this time is taken up by the scaling process.l This is because in our simulation we
decrease the scale by a small constant at each time step. Starting off with a large focus of attention, a large
number of steps may be necessary before the scale matches the cluster. We are investigating an implemen-

1. We don’t actually need the scaling part for the triangle task however a general purpose cluster detector
should have the ability to extract cluster sizes.
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tation in which the scale shrinks continuously at a time scale faster than the interspike interval time of indi-
vidual neurons.

DISCUSSION

It is interesting to speculate as to how mechanisms like the ones we have described would fit into a general
purpose vision system. The library of primitives must be expanded to handle more features of realistic im-
ages. We will need primitives for intelligent processing of curves, regions, and shapes. Another issuc is the
large number of different representations that are formed in parallcl in the brain. A mechanism for integrat-
ing the information available in these representations will be necessary. Since the focus of attention mech-
anism we described can be implemented in any topological space, in principle it should provide a good way
of isolating exactly the subscts that are relevant.

Another major issuc that we have not addressed is how to compile these visual primitives to accomplish a
dynamically specified task. Such a system would presumably nced a language for specifying the tasks. To
translate the specification of the task into the appropriate primitives requires that the intermediate represen-
tations of the visual primitives and the descriptive language should be very similar. (Feldman ez. al., 1990)
discusses some of these issues in the context of a novel approach to language acquisition.

In conclusion, the main point of this paper has been to demonstrate neurally plausible mechanisms for per-
forming sequential visual computations. There is evidence from psychology and necurophysiology that bio-
logical organisms actually implement such routines at an early processing level. We have described an
efficient implementation of various primitives within a connectionist framework, and have used them to cx-
tract image properties that arc otherwise extremely inefficient to represent.

REFERENCES

Ahmad, S., & Omohundro, S. (1990). A Connectionist System for Extracting the Locations of Point Clus-
ters. Technical Report TR-90-011, International Computer Science Institute, Berkeley, CA.

Chapman, D. (1990). Instruction Use in Situated Activity. Ph.D. Thesis, Massachusetts Institute of Technol-
ogy.

Feldman, J.A., Lakoff, G., Stolcke, A., & Weber, S.H. (1990). Miniature Language Acquisition: A Touch-
stone for Cognitive Science. Submitted to the 12th Annual Conference of the Cognitive Science So-
ciety, MIT, July 1990.

Giles, C.L., Griffin, R.D., & Maxwell, T. (1987). Encoding Geometric Invariances in Higher Order Ncural
Networks. In ““Advances in Neural Information Processing”, David Tourctzky, Ed. Morgan Kauf-
mann.

Jolicoeur, P, Ullman, S., & Mackay, M. (1986). Curve tracing: A possible basic operation in the perception
of spatial relations. Memory and Cognition, 14 (2), 129-140.

Minsky, M. & Papert, S. (1969). Perceptrons: An Introduction to Computational Geomerry. MIT Press,
Cambridge, MA.

Moran, J. & Desimone, R. (1985). Selective Attention Gates Visual Processing in the Extrastriate Cortex.
Science, 229, March 1985.

Mozer, M. (1988). A Connectionist Model of Selective Attention in Visual Perception. University of Tor-
onto Technical Report CRG-TR-88-4

Sparks, D. L. (1986). Translation of Sensory Signals into Commands for Control of Saccadic Eye Move-
ments: Role of Primate Superior Colliculus, Physiological Reviews, 66 (1).

Suarez, H., & Koch, C. (1989). Linking Linear Threshold Units with Quadratic Models of Motion Percep-
tion. Neural Computation, 1 (3), pp 318-320.

Treisman, A., & Gormican, S. (1988). Feature Analysis in Early Vision: Evidence From Search Asymme-
tries. Psychological Review, 95 (1), pp 15-48.

Ullman, S. (1984) Visual Routines. Cognition, 18, pp 97-159.

636



	cogsci_1990_629-636



