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Summary. In a famous paper [8] Hammersley investigated the length Ln of 
the longest increasing subsequence of a random n-permutation. Implicit in that 
paper is a certain one-dimensional continuous-space interacting particle process. 
By studying a hydrodynamical limit for Hammersley's process we show by 
fairly "soft" arguments that lim n-UZELn = 2. This is a known result, but 
previous proofs [14, 11] relied on hard analysis of combinatorial asymptotics. 

Mathematics Subject Classification (1979)." 60C05, 60K35. 

1 Introduction 

An increasin9 subsequence il, i2, . . . ,  ik of a permutation i ---+ ~r(i) is a subse- 
quence such that 

i l  < i2 < " ' "  < ik ;  7r(il) < 7c(i2) < - - .  < 7 r ( i k ) .  

For instance, the permutation 

7 2 8  1 3 4  1 0 6 9 5  (1) 

(for which 7r(1)= 4, ~ ( 2 ) =  2, ~ ( 3 ) =  5 . . . .  ) has an increasing subsequence 

1 3 4 6 9  (2) 

of length 5, which is the longest possible for that permutation. Write L, for the 
length of the longest increasing subsequence of a uniform random permutation 
of { 1, 2, . . . ,  n}. Traditional motivation for studying Ln is given in [4, 5, 8], but 
the modem bottom line is that Ln provides an entry to a rich and diverse 
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circle of mathematical ideas (see [1]). Vershik and Kerov [14] and Logan and 
Shepp [11] relied on hard analysis of asymptotics of random Young tableaux 
to prove ELn ~ 2n 1/2. The purpose of this paper is to point out that this result 
follows from a hydrodynamical limit theorem for a certain interacting particle 
process which we name Hammersley's process. This is a continuous-space 
process, infomlally specified as follows. At each time there is a locally finite 
configuration of particles on R +. There is a space-time Poisson process of 
"events"; when an event occurs at position x, the nearest particle to the right 
of x is moved to position x. 

Sections 2.1 and 2.2 relate the limit constant c- l imnn-~/ZELn to a 
limit constant involving Hammersley's process (the ideas in these sections 
are implicit in Hammersley [8]). The main result, Theorem 5, is stated in 
Sect. 2.3, where we also give the heuristic hydrodynamical argument that 
c = 2, and outline the structure of the proof, which occupies the remain- 
der of Sect. 2. Our results for Hammersley's process are in many ways 
analogous to standard results for the (simple, completely asymmetric) ex- 
clusion process, due to Rost [12] and related in detail in Chap. 8 of 
Liggett [10]. 

In the original version of the paper we did not have a "process" proof 
of c < 2, instead presenting an unpublished proof of Vershik and Kerov 
which uses Young tableaux to show ELn < 2v/n for all n > 1. An anony- 
mous referee provided a proof of c < 2 using Hammersley's process, and 
we thank the referee for allowing us to use the proof (Sect. 2.5), and for 
other suggestions on improving the exposition, including a simplified proof of 
Lemma 12. 

Current knowledge of asymptotics of the distribution of L, is recorded in 
Sect. 3. 

2 Hammersley's process 

2.1 Superadditivity and the planar Poisson process representation 

The ideas in Sect. 2.1 are due to Hammersley [8], and were one of the 
motivations for the development of subadditive ergodic theory. They are now 
a textbook application of that theory (see [6] Sect. 6.7). 

Consider n points (xi, ti) in the rectangle [0,x] x [0, t] with all coordinates 
distinct. The set of points specifies a permutation n by: 

the point with ith smallest t-coordinate has the n(i)th smallest x-coordinate. 

(The set of points in Fig. 1 specifies the permutation (1).) The length I(n) of 
the longest increasing subsequence of n equals the maximal number of points 
on an up-right path from (0, 0) to (x, t), i.e. the maximal length l of a sequence 
( i j )  such that 

x i l  < xi2 < . . .  < x i l  , tq < ti2 < . . .  < t i l .  

Figure 1 shows the path through the points corresponding to the increasing 
subsequence (2). 
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Fig. 1. 

Now take a Poisson process A/" of  rate 1 in R 2 and for x, t > 0 let L ? ( x ,  t) 
be the maximal number of  points on an up-right path from (0,0) to (x,t).  
The number of  points in the rectangle [0,x] x [0,t], say M(x, t ) ,  has Poisson 
(xt) distribution, and the associated random permutation of  { 1, 2 . . . . .  M(x, t)} 
is uniform. Thus 

L / ( x ,  t) d = LM(x, t). (3) 

Define 
g(t) = EL-9(t, t ) .  (4) 

By considering paths from (0,0) to (t + s , t  + s )  via (t , t)  we see that g is 
superadditive: 

g ( t + s )  >= g ( t )+g(s ) ;  s , t > 0 .  (5) 

This implies that, defining c = l imsup g(t)/t, we have 

9(x)/x ~ c ,  (6) 

9(x) < cx; x > O. (7) 

Moreover ([6] Sect. 6.7) the subadditive ergodic theorem can be applied to 
L / ' ( t ,  t) to show 

t - l L ? ( t , t )  ~ c a.s. (8) 

and simple estimates show 1.59 < c < 2.49. 

Now (3) says that Ln is almost the same as LZ(nl/Z, nl/2), and elementary 
dePoissonization arguments show that (6) , (8)  imply 

n-1/2ELn ~ c, n-1/2Ln p c .  

2.2 Reformulation as an interactin9 particle process 

A configuration of  particles on R or R + may be identified with its counting 
process n (.), where n (0) is arbitrary and 

n (y)  - n (x) = number of  particles in [ x, y ) ,  

and where only finitely many particles are allowed in a finite interval. We use 
the phrase "particle configuration" instead of  "point process" to avoid confusion 
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with the space-time point process Y .  Give the space of  distributions on particle 
configurations the usual topology of  weak convergence for point processes. 

Consider, as in Fig. 1, a set o f  points (xi, ti) in the rectangle [0,x*] x [0, t*], 
and for (x, t) in that rectangle let I / ( x ,  t) be the maximal number of  points 
on an up-right path from (0,0)  to (x, t). For each t, the function x ~ I / ' (x , t )  
is the counting process associated with some particle configuration on [0,x*]. 
Ordering the points (xi, ti) so that 0 < tl < t2 < .... the particle configuration 
changes only at times ti. Fix ti and let the particles at time t i -  be at positions 

0 < r/1 < t/2 < . . .  < t/m < x *  

and suppose xi E (t b, tlj+l), where we interpret t/0 = 0 and t/m+l = x*. From 
the definition of  I / ' (x , t ) ,  the only values of  x for which l / ( x ,  ti) could differ 
from l/ '(x, ti - )  are those with x E [xi, qj+l), and for such x we have l / ( x ,  ti) - 
l / ( x ,  t / - ) =  1. So at time b the particle configuration becomes 

0 < 111 < . . .  < t~j < X i < q . j + 2  < . . .  

In words, at time ti the particle nearest to the right o f  xi is moved to position 
xi, and if no such particle exists then a new particle is created at xi. 

We can apply this deterministic correspondence in the random setting of  
Sect. 2.1, where L / ( x , t )  is the maximal number of  points of  the space-time 
Poisson process .At on an up-right path from (0,0) to (x, t). For fixed t the 
process x ~ L / ' ( x , t )  is the counting process associated with some random 
configuration of  particles on R +. I f  we fix x* and consider only the particles 
in [0,x*], their time-evolution can be described as follows. 

Rule 1 At  the times o f  a Poisson (rate x*) process in time, a point U is 
chosen uniformly on [0,x*], independent o f  the past, and the particle nearest 
to the right o f  U is moved to U, with a new particle created at U i f  no such 
particle exists in [0,x*]. 

What is really going on is that L / defines a particle process on R + whose 
time-evolution can be described informally as 

Rule 2 For each interval [x,x + dx] at time t, with probability d x d t  the 
nearest particle to the right o f  x is moved to x by time t § dt 

where x, t > 0. Rule 1 is the most elementary formalization of  Rule 2. 
Such processes are implicit in Hammersley [8], so a particle process evolv- 

ing by Rule 2 on some interval we call Hammersley's process. In the language 
of  interacting particle systems, a construction of  such a process via up-right 
paths is a graphical representation. In particular, L-~(x, t) is a graphical repre- 
sentation of  Hammers ley ' s  process on R + starting at time 0 with no particles. 
(From the viewpoint o f  Rule 2 it may seem surprising that one can start with 
no particles, but this is clear from the rigorous Rule 1.) Figure 2 shows the 
space-time trajectories of  particles of  this process. The points of  .At are at the 
L-shaped comers. In the sequel we will write N + for Hammers ley ' s  process 
on R + started from the empty configuration, when we are considering it as an 
interacting particle process: of  course N+(x, t) = L/"(x, t). 

Of  course we can start Hammers ley ' s  process on R + at time 0 with some 
arbitrary random configuration N( �9 , 0) o f  particles. In this case, by repeating 
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the argument above we see that the counting process x ~ N(x, t) at time t has 
the graphical representation 

N(x,t) = sup ( N ( z , O ) + L Z ( ( z , O ) , ( x , t ) ) ) ,  x, t > O, 
O<_z~x 

where L/"((z, 0), (x, t)) is the maximal number of points of ~/~ on an up-right 
path from (z, 0) to (x, t) ,  where JV" is taken independent of N(- , 0). 

Our arguments exploit both the "interacting particle" and the "up-right path" 
descriptions of Hammersley's process on R +. First note that invariance prop- 
erties of the underlying space-time Poisson process Y imply 

Lemma 3 (space-time interchange property) Write s L•(t,x). Then 

([(x, t); x, t > 0) d= (L/(x,  t); x, t > 0). 

Lemma 4 (sealing property) For f i xed  0 < ~: < cxz, 

(L/ (x , t ) ;  x, t  > 0) d(L/(~:x,t/~:); x , t  > 0) .  

In particular, the distribution of L/~(x, t) depends only on the product tx. 

2.3 The hydrodynamic heuristic, and outline o f  p roo f  

Recall that N+(x , t )=  LT(x,t)  denotes Hammersley's process on R + started 
with the empty configuration. The subadditive result (8) and the scaling prop- 
erty (Lemma 4) imply 

N+(x, t) p 
c as tx  --~ cx~. 
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The main result of  the paper is 

Theorem 5 (a) c = 2. 
(b) For f i xed  a > O, the random particle configuration with counting process 
(N+(at  + y, t) - N+(at ,  t), - oc < y < oc) converges in distribution, as t ---+ 
oc, to the Poisson process o f  rate a -U2. 

Of course (a) is already known via [14, 11], but our purpose is to give an 
independent "interacting particles" proof  which establishes (a) along with the 
new result (b). The proof  occupies the remainder of  Sect. 2, but let us first 
give a simple heuristic argument. Suppose the spatial process around position 
x at time t approximates a Poisson process of  some rate 2(x, t). Clearly 

d + 
~ E N  (x, t) = EDx,,, 

where Dx, t is the distance from x to the nearest particle to the left of  x. For a 
Poisson process, EDx, t would be 1/(spatial rate), so 

1 1 
EDx, t ~ 2(x, t) ~ (d/dx)EN+(x,  t) " 

In other words, w(x, t) = EN+(x,  t) satisfies approximately the PDE 

dw 1 
dt ( dw /dx ) '  w(O,x) = w(t ,0)  = 0 ,  (9) 

whose solution is w(x, t) = 2 v ~ .  (Note that "2" is not an arbitrary constant: no 
other constant will serve.) So c = 2, and then 2(x, t) = V / ~ ,  so that 2(at, t) = 
a -1/2, giving (b). 

"Hydrodynamics" refers to the idea that I lammers ley ' s  process should 
asymptotically be distributed locally like some Poisson process. This idea 
underlies the entire proof, but the actual proof  gives separate arguments for 
c < 2 and c > 2, and only at the end establishes the explicit hydrodynam- 
ical limit (b). Both parts of  the proof  rely on the fact (Sect. 2.4) that one 
can define Hammers ley ' s  process on the doubly-infinite line R, where it has 
Poisson processes as its stationary distributions. The upper bound (Sect. 2.5) 
is then a simple comparison argument between Hammers ley ' s  process on R + 
and on R, whereas the lower bound (Sect. 2.7) involves consideration of  local 
subsequential weak limits o f  Hammers ley ' s  process on R + and arguing, using 
uniqueness properties of  the stationary distribution on R, that weak limits can 
only be mixtures of  Poisson processes. As mentioned in the introduction, many 
of these arguments parallel those in Rost 's  theorem ([12]; [10] Sect. 8.5) for 
the non-equilibrium exclusion process. 

2.4 Hammersley 's  process on R 

By Hammers ley ' s  process on R, the doubly-infinite space line, we mean a 
particle configuration on R evolving according to Rule 2, where now - o o  < 
x < oo. More precisely (cf. Rule 1) we mean any process whose restriction to 
each space interval [x~,x~] evolves as 
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(i) there is some arbitrary set of  times at which the leftmost point ( if  any) 
in the interval is removed 

(ii) there is a Poisson process (rate x~ - x~) of  times at which a point U 
is picked uniformly on [x~,x~] and the nearest particle to the right o f  U is 
moved to U, creating a new particle if  necessary. 
It is not quite obvious that such processes exist (e.g. if  we tried to start with 
only a finite number of  particles, they would be instantly pulled to - o c ) ,  but 
we can use the graphical representation as a construction. 

L e m m a  6 Suppose an initial configuration of particles on R satisfies 

liminfN(x,O)/x > 0 a.s. (10) 
x---~ -- oo 

Then the process defined by 

N(x, t )  = sup (N(z,O)+L/((z,O),(x,t))), --0(3 < X  < 0<3, t ~ O ,  

(11) 
evolves accordin9 to Rule 2. 

Proof The only issue is to check that N(x , t )  is a.s. finite, and in view of  (10) 
it is enough to check 

L/((z,O),(x,t)) ---+ 0 a.s. as z ~ - ~ .  (12) 
- -Z  

By scaling and (6) we have EL/((z,O),(x, t))= 9 ( V / ~ + z ) ) ~  cv/Z~ as 
z -+ - ~ ,  and then by Markov 's  inequality the convergence in (12) holds as 
z runs through ( -n4 ) ,  and finally by monotonicity we have full convergence 
in (12). [] 

Call an initial distribution # (time)-invariant for Hammers ley ' s  process on R 
if the distribution at each time t > 0 remains #. Call # translation-invariant 
i f  it is invariant under the spatial shift map. Say # has finite intensity i f  
E]N(x,0)I  < ~ for all x. Write v;~ for the Poisson point process of  rate 2 
on R. 

L e m m a  7 A finite intensity distribution is invariant and translation-invariant 
for Hammersley's process on R iff it is a mixture of the (v~). 

This is analogous to the fact ([10] Theorem 8.3.9(a)) that the invariant and 
translation-invariant distributions for the exclusion process are precisely the 
mixtures of  Bernoulli processes. Since the proof  uses only standard ideas we 
shall merely outline it. 

Outline proof of Lemma 7. Consider the "finite" version of  Hammers ley ' s  
process in which a fixed number K of  particles occupy random positions on 
the circle of  circumference C, and where the time-dynamics are as Rule 2 with 
"nearest particle clockwise" in place of  "nearest particle to the right". This 
process is doubly-stochastic and so has uniform stationary distribution. Taking 
weak limits as C ---+ ~ with K/C ---+ 2 shows that v~ is indeed invariant for 
Hammers ley ' s  process on R. Conversely, suppose # is invariant and translation- 
invariant, and suppose also # is spatially ergodic with rate 2. Consider the 
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natural coupling between two versions of Hammersley's process, which at time 
0 are independent with distributions /~ and vx, and which evolve using the 
same space-time Poisson process ~A/'. Particles which become matched stay 
matched. The coupled processes at time t are trans!ation-invariant, so have 
some spatial rate d( t )  of unmatched particles, where d( t )  is non-increasing 
in t. Suppose d(t)--+ d > 0. Then by taking a subsequential weak limit of 
the coupled processes and using that as an initial joint distribution, we would 
get coupled processes with distributions # and v;~ such that d ( t ) =  d for all 
t > 0. But this is impossible, because for a finite space interval I containing 
an unmatched particle from each process, there is always some possible pattern 
of points of ~A/" in I x [0, 1] which would match the particles. Thus d( t )  --+ 0 
and so # = v;o. The non-ergodic case follows by conditioning on the spatial 
ergodic ~-field. 

[] 

2 1 1 

-3 

-4___ 1 

-5 ~ - - 
x 

Fig. 3. 

Figure 3 shows space-time trajectories of particles in Hammersley's process 
on R run with distribution Vl. 

The next lemma is a space-time interchange property for Hammersley's 
process on R (cf. Lemma 3). Given a version N(x, t) of Hammersley's process 
on R, the idea is to define I~ by interchanging space and time in the trajectory 
picture, i.e. by reflecting Fig. 3 about the 45 ~ diagonal. Precisely, define 

iN(x, t) = number of particles which exit 

the space interval (t, oc) during the time interval (0,x]. (13) 

Lemma 8 Let  N be Hammersley '  s process on R, with the invariant distribution 
v~, run for  time - o c  < t < oc. Define N as at (13). Then N is Hammersley 's  
process on R with the invariant distribution vl/;~. 
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Proof  As at (11), given N ( . , t 0 )  we can define Hammersley's process on R 
for t > to by the graphical representation 

N(x, t )  = sup (N(z, to )+L/~( (z ,  to ) , (x , t ) ) ) .  (14) 
--O0<Z~X 

Fixing xo and letting to -+ - ~ ,  it is easy to see that for x > Xo we have the 
alternate graphical representation 

N(x, t )  -- sup (N(xo, s) + L/~((Xo,S),(x, t ))) .  
- - o o  < $ < : l  

Interchanging space and time, this implies that 1~ satisfies (14) and so is a 
version of  Hammersley's process on R. Then rq inherits from N invariance and 
translation-invariance, so by Lemma 7 its marginal distribution is a mixture of  
Poissons. To identify the process x ---+ lq(x, 0) as vl/a it is enough to check that 
the process has rate 1/2 and that the conditional rate, given an event at x = 0, is 
also 1/2. Recall lq(x, 0) is the number of  particles which cross position 0 during 
time [0,x]. The unconditional rate is clearly E~I, where -31 is the position 
of  the nearest particle to the left of  0 at time 0, and ~ has exponential(2) 
distribution, so the rate is 1/2 as required. A straightforward calculation shows 
that, conditional on a particle crossing 0 at time 0, the position - ~  to which it 
goes is such that ~ also has exponential(2) distribution, and so the conditional 
rate is also 1/2. [] 

2. < The upper bound c < 2 

The referee observed that it is now rather simple to prove c < 2. The key idea 
is that Hammersley's  process on R + can be regarded as Hammersley's process 
on R whose initial configuration consists of  an infinite number of  particles just 
to left of  0. That is, if  we define 

N I ( x , 0 ) = 0 ,  x => 0 

= - - 0 0 ,  X < 0 

and then use the graphical representation (11) to define Nl(x , t )  for all t > 0, 
then the sup in (11) is attained a t z  = 0 and Nl (x , t )  =L/~(x , t )  for all x , t  > 0. 
Fix b > 0 and let N 2 be the stationary version of  Hammersley's process on R 
with distribution vb. Couple N 1 and N 2 by using the same space-time Poisson 
process X in the graphical representation. Then N 1 ( 0 , 0 ) =  N2(0,0) and the 
graphical representation (11) implies Nl(x, t) < N2(x,t)  for all x , t  > O. So 
for a l lx ,  t > 0 

E N l ( x , t )  <= EN2(x , t )  

= EN2(x, 0) + E(N2(x, t) - N2(x, 0)) 

= bx + E(N2(x, t) - N2(x, 0)) 

because N2( �9 , 0) is a Poisson(b) process 

= bx + t/b 



208 D. Aldous, P. Diaconis 

because the process N2(x, �9 ) counts the number of  particles entering ( - o c , x ] ,  
and by Lemma 8 this is a Poisson ( l /b )  process. 

Minimizing over b > 0 gives E N + ( x , t ) = E N l ( x , t ) < 2 v ~ ,  and so 
c _ < 2 .  

2.6 A coupling construction 

As a preliminary to the proof of  the lower bound, we develop another coupling 
construction. For random particle configurations t/l, q2, write g/l C /~2 if the set 
of  particles of  t/l is a subset of  the set of  particles of  t/2, and write r h c_st t/2 

t d I / if we can define t/i = t/i (i = 1, 2) such that r h C_ t/2. 

L e m m a  9 (a) N + ( . , t )  C_st N+( . , t  + to) for any t, to > O. 
(b) N + ( . ,  t) _Dst N+( �9 + z, t) for any t, z > O. 

Proof Given particle configurations N I ( . , 0 ) , N 2 ( - , 0 )  with N I ( . , 0 ) _  
N2( . ,  0), define Nl(x, t) and NZ(x, t) to be Hammersley's process on R +, started 
at time 0 with the given configurations, and run using the same space-time 
Poisson process ~42. It is easy to verify 

N l ( . , t )  C_ N z ( . , t ) ,  t > 0.  

X 

Fig. 4. 

See Fig. 4, where the trajectories of  the two unmatched particles are indi- 
cated by * * *. (In Fig. 4, N 2 initially has 2 particles in [0, 5] while N ~ initially 
has 0 particles in [0,5].) Part (a) now follows by taking N I ( . , 0 )  to be the 
empty configuration, and N2( �9 ,0)  to be N+( �9 ,to). 
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To prove (b), fix z > 0 and let N 3 be Hammersley's process on [-z ,  ec), 
and let N 4 be Hammersley's process on R +, both started with the empty con- 
figuration, and coupled by using the same space-time Poisson process Y .  It is 
again easy to verify 

N3( . , t )  c N 4 ( " , t )  o n R  +, t => 0. 

Since N3( . , t )  d= N+(.  + z,t), part (b) follows. [] 

Recall g(Q = EN+( t, t)  ~ ct, by (6). The next lemma uses the coupling to 
get a stronger, "local" convergence result. (This is somewhat analogous to the 
coupling proof of the renewal theorem.) 

Lemma 10 gl ( z ) --+ c as z -+ oo . 

P r o o f  Lemma 9(a) implies 

EN+(x + x0, t) - EN+(x, t) < EN+(x + x0, t + to) - EN+(x, t + to); 

t, t0, x, x0 >= 0. 

By scaling (Lemma 4) we have E N + ( x , t ) =  9(v/~),  and so the inequality 
above becomes 

x, xo, t, to > 0. 

Differentiating, we see 
d d  

~ g ( x / ~ )  >_ 0 
d x  

which, after a brief calculation, implies 

I II g ( z ) + z g  (z)  > O; z > O. 

This says that z ~ zg l ( z )  is increasing. So for any fixed zo, 

g ' ( z )  >= --,g'(z~176 z > zo . (15) 
Z 

We can now combine this with the superadditivity property. First consider an 
interval [zl ,z l  +z2]. By (5) g(zl + z 2 ) -  g(z~) > g(z2), so there exists zo C 
[zl ,zl  +z2] such that g~(zo) > g(z2)/z2. Then by (15), 

g'(zl  + z2) >-_ gl(z~176 >- g(z2)zl 
Z 1 ~-Z 2 -- Z2(Z 1 @Z2) 

Putting z2 = v/Z and Z I ~ -  Z - -  Z 2 ,  gives the lower bound lim infz gl(z)  > c. For 
the opposite bound, integrate (15) to get 

g ( z ) - g ( z o )  > zog' (zo) log(z /zo);  z > zo.  
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Use the fact (7) that g(z) < cz, set z = (1 + 8)z0 and rearrange to get 

g'(zo) <= c(1 + ~) - g(zo)/zo 
log(1 + 6) 

So 
c6 

l imsup g~(z) < 
z = log(1 + 6) 

and letting cS.L 0 establishes the lemma. [] 

L e m m a  11 For f i xed  - o o  < x, u < oo, 

1 
EN+( t  + x, t + u) - EN+(t ,  t) --+ ~c(x  + u) 

Proo f  

as t---, e c .  

E N + ( t  + - EN+(t ,  t) = g ( v / ( t  + u)(t - g ( t ) .  

But v/ ( t  + u)(t  + x )  - t ---+ �89 + u), so the result follows from Lemma 10. 
[] 

2.7 Proo f  o f  Theorem < 

We now combine ingredients to complete the proof  of  Theorem 5. For each 
t > 0 let #r be the distribution of  N+( �9 + t, t), considered as a particle con- 
figuration on R. Lemma 11 implies that (#t) is tight as t ~ oc, and that any 
subsequential limit is a finite intensity process. 

Lemma  12 I f  tj --+ oo and #lj --+ # for  some limit #, then # is translation- 
invariant and is an invariant distribution fo r  Hammers ley ' s  process on R. 

Proo f  Write N ( . ,  0) for a particle configuration with distribution #, and N(x, t) 
for Harnmersley 's  process on R started with initial distribution N ( - , 0 ) .  Fix 
t > 0. By Lemma 9(a), 

N+(t ;  + . , t j  + t) 2st N+(t j  + �9 , t ; )  

and so in the j ~ oo limit 

N ( . , t )  _Dst N ( .  , 0 ) .  (16) 

And by Lemma 11, both of  E(N+(t j  + x, tj + t) - N+(tj ,  tj + t ))  and E(N+(t j  + 
x, tj) - N+(tj ,  t j))  have the same limit ex/2, for any x, and so the two processes 
in (16) have the same mean number of  particles in finite intervals, implying 

N ( . , t )  L N ( . , 0 ) .  (17) 

Now fix z > 0 and repeat the argument, starting this time with Lemma 9(b), 
which gives 

N+(t ;  + �9 + z, tj + t) c_s, N+(O + . , t j  + t) .  (18)  

Taking the j ---+ oc limit, 

N( .  + z, t) c_s, N ( . ,  t) .  
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Again, this becomes the equality 

N ( .  § z , t ) d N ( . , t )  (19) 

by using Lemma 11 to show that E(N+(tj  + x + z, tj + t) - N+(tj  + z, tj + t))  
and E(N+(tj  + x, tj + t) - N+(tj, tj + t))  have the same limit. Combining (17) 
and (19), 

N( -  + z , t )  d = N ( . , 0 )  

for t, z > 0, and this also holds for z < 0 by reversing the inequality in (18). 
Thus the limit distribution # has the required time- and translation-invariance. 

E5 

Proof  o f  Theorem <. By Lemma 7, a subsequential limit # in Lemma 12 
must be a mixed Poisson process, i.e. a Poisson process of  some random rate 
A. Next, the space-time interchange property (Lemma 3) for Hammers ley ' s  
process on R +, and the fact that # is a subsequential limit taken along the 
diagonal {(t, t) �9 t > 0} in space-time, implies that when we run Hammers ley ' s  
process on R with distribution # we get a process which is invariant under 
interchanging space and time. But by Lemma 8 this implies Ad---A -1. Since A 
and A -1 are negatively correlated, 

1 = E A A  -1 <= (EA) (EA  - ] )  = (EA) 2 (20) 

and so EA > 1. For (tj) and # = dist N ( - , 0 )  as in Lemma 12, and' for any 
u > 0 ,  

2uEA = E(N(2u ,0 )  - N(0 ,0 ) )  

< lim.infE(N+(tj  + 2u, tj) - N+(tj,  tj)) 
a 

= cu by Lemma 11. 

So 

(Fatou's lemma) 

c >= 2EA (21) 

and since EA > 1 we have shown c > 2. But we already proved c _< 2, so we 
have c = 2. And now (21) and (20) imply EA = 1 and then P ( A  = 1) = 1. 
Thus every subsequential weak limit # in Lemma 12 must be v~, and then by 
tightness #t ~ vi. This is the "hydrodynamical limit" assertion of  Theorem 5(b) 
in the special case a = 1, and the general case follows from the scaling prop- 
erty, Lemma 4. [] 

3 Final remarks 

When presenting this material in talks we are invariably asked what is known 
about the asymptotic distribution of  Ln, beyond the fundamental fact that 
n-1/2Ln --+ 2 in L 1, so we end with some discussion of  current knowledge. 
It turns out that Theorem 5 can be combined with "soft" arguments to give 
several formally new, but not unexpected, results such as (23), (24). We may 
present the details elsewhere [1]. 
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(a) Concentration inequalities. There has been recent work using martingale 
concentration inequalities and more general "concentration of  measure" tech- 
niques to bound the spread of  Ln. The latest result, due to Talagrand [13] and 
improving on results of  Frieze [7] and Bollobfis-Brightwell [2], is 

Theorem 13 Let  mn be the median o f  Ln. Then for  u > 0 and all n > 1, 

P(L~ > m~ + u) __< 2exp 4(m~ + u )  ' 

P(Ln _-< r n ~ - u )  _-< 2exp - 

Theorem 13 implies varLn = O(nl/2), and in the other direction Bollob~.s and 
Janson [3] prove that varLn = ~2(n 1/8 log -3/4 n). It seems generally believed, by 
analogy with first passage percolation heuristics, that in fact varLn = O(n ~+~ 
for some 1/8 < c~ < 1/2. 

(b) Large deviations. There is an asymmetry in the large deviation behavior 
of  L~. One anticipates 

n-l/21ogP(Ln > c'n 1/2) --+ o:(c') E ( - o o ,  0), c' > 2.  (22) 

Indeed, the "Poissonized" version of  this assertion follows immediately from 
superadditivity and Theorem 13, though we have not attempted to write out 
details of  a dePoissonization argument. On the other hand we can show rigor- 
ously that 

n -1/2 logP(Ln < c'n 1/2) --+ - o o ,  c' < 2 .  (23) 

The argument is very similar to the corresponding result in first-passage per- 
colation (see [9] Theorem 4.3). 

(c) Sharper asymptotics o f  EL~. We can also use "soft" arguments to show 
that Theorem 5 implies 

2n 1/2 - EL~ ~ oo. (24) 

Note added in proof Zeitouni (personal communication) has shown that replacing n -1/2 by 
n 1 in (23) gives a quantity which is O(1) as n ~ oo. 
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