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Abstract 

Probing Luttinger Liquid Plasmons in Single Walled Carbon Nanotubes 

By 

Sheng Wang 

Doctor of Philosophy in Physics 

University of California, Berkeley 

Professor Feng Wang, Chair 

 

Single walled carbon nanotubes (SWNTs) are one-dimensional (1D) rolled-up hollow 
cylinders composed of graphene sheets.  Since their discovery about three decades ago, they have 
been one of the most fascinating and unique nanoscale structures. There have been tremendous 
and still ongoing research on SWNTs for both fundamental science as well as technological 
devices. SWNTs have been a good platform to study electron-electron interaction in solid state 
systems, including Coulomb blockage effect and Luttinger liquid formulism. SWNTs exhibit 
unique electrical, mechanical and thermal properties, making them potentially useful in a variety 
of applications including nano-electronics, optics, energy storage, and nanomedicine. Notably, 
carbon nanotube field-effect transistor-based digital circuits may be a viable route for next-
generation beyond-silicon electronic systems for post-Moore’s Law era. Recent major advance 
includes a 16-bit computer built entirely from carbon nanotube transistors.   

Despite the intense established research, SWNTs have never ceased to surprise researchers 
with their emerging properties and potential applications. During the past decade, advances in the 
synthesis and processing have enabled the controlled growth of high quality ultralong SWNTs on 
different substrates even with desirable chirality. On the other hand, developments in powerful 
surface science characterization tools provide a viable route to probe the electronic and optical 
properties of individual SWNTs. We take advantage of these advances mainly in two ways. First, 
we grow ultraclean and very long SWNTs on hexagonal boron nitride (h-BN) flakes and fabricate 
them into field-effect transistor (FET) devices to tune their carrier density. Second, we optimize 
the performance of recently developed infrared scanning near-field microscopy (IR-SNOM) to 
achieve measurements of plasmonic excitations of individual SWNTs even at low electron 
densities.  

In the first chapter of the dissertation, I will introduce the fundamental properties of SWNTs. 
I will also discuss the Luttinger liquid formulism in 1D systems and the emerging nonlinear 
Luttinger liquid theory accounting for the effects of nonlinear band dispersion on the electron 
excitations. IR-SNOM, the main experiment tool we employ to probe the Luttinger liquid 
plasmons, will also be introduced.  

In the following chapters, I will discuss our findings and understandings achieved by infrared 
nanoimaging of SWNT FET devices supplemented with electronic transport. We experimentally 
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demonstrate the logarithm diameter scaling and carrier density independence of Luttinger liquid 
plasmons in metallic SWNTs. The unusual behaviors are signatures of the Luttinger liquid and 
stand in sharp contrast with conventional plasmons in metallic nanoshells.  We further correlate 
infrared nano-imaging measurements and electrical tunneling at a cross junction between two 
metallic SWNTs, providing a parameter free test of the Luttinger liquid theory in SWNTs. While 
metallic SWNTs with linear band dispersion are perfect realizations of the linear Luttinger liquid, 
semiconducting SWNTs featuring hyperbolic band dispersion deviates from the paradigm. We 
demonstrate that electric-field tunable plasmonic excitations in semiconducting SWNTs behave 
consistently with the nonlinear Luttinger liquid theory, providing a platform to study non-
conventional one-dimensional electron dynamics and realize integrated nanophotonic devices. We 
further fabricate individual SWNT nanocavities of controllable length by scanning probe 
nanolithography. We resolve the plasmon resonance of individual nanotube cavities by spectrally 
resolved infrared nanoimaging. These findings and understandings reveal the unusual 1D electron 
dynamics in metallic and semiconducting SWNTs and lay the foundation for carbon nanotube 
plasmonics. 
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Chapter 1 – Introduction 

1.1 Background and Motivation 

Single walled carbon nanotubes (SWNTs) can be viewed as seamless hollow cylinders rolled 
up from graphene sheets. They have been pursued aggressively as an exceptional nanomaterial 
over the last three decades[1-6]. SWNTs offer a versatile platform for various aspects of studies 
in condensed matter physics. Electronic transport in SWNTs reveals intriguing physical 
phenomena in the 1D system including conductance quantum, Coulomb blockade, Luttinger liquid 
physics, spin-valley physics[7, 8]. Rich exciton physics, Raman spectroscopy and nonlinear optics 
are among extensive optical studies of SWNTs[1, 2, 9]. With the remarkable combination of 
ultrastrong strength, unique electrical and optical properties, vast applications based on SWNTs 
have been proposed and investigated. The applications include realistic ones such as 
nanoelectronics and bio/molecular nanosensors to fanciful ones including carbon nanotube-based 
space elevator[4, 6, 10-12]. 

 
The excitements about SWNTs have diminished in the last decade. More research has been 

directed to emerging materials such as graphene and other 2D materials. Some unfinished work 
and unanswered questions remain in the field of SWNTs. Recent progress in controlled synthesis 
of SWNTs and advanced characterization tools enable a revisit to problems previously beyond 
reach[13-15]. Some notable examples are the observation of electronic Wigner crystal in SWNTs 
by an ultrasensitive scanning probe down to single electron level and a 16-bit computer built 
entirely from carbon nanotube transistors[16, 17]. We seem to have gone past the “Trough of 
Disillusionment” and are moving towards the “Slope of Enlightenment” in the Gartner Hype Cycle 
curve[18]. 

 
In this thesis, I present my research on probing Luttinger liquid plasmons in SWNTs standing 

upon the latest advances in growth of ultraclean SWNTs on h-BN and developments in infrared 
nanoimaging techniques[19-22]. We established experimentally the unusual phenomenology that 
plasmon excitation in 1D metallic SWNTs can be completely independent of charge carrier and 
provided an experimental determination of the Luttinger liquid parameter and its logarithm scaling 
with the nanotube diameter. We combined electrical tunneling and infrared nano-imaging 
measurement in a SWNT tunneling junction to provide the first definitive parameter-free test of 
the Luttinger liquid phenomena in SWNTs. We achieved electric-field tuning of nonlinear 
Luttinger liquid plasmons in semiconducting SWNTs which provides experimental demonstration 
of 1D electron dynamics beyond the conventional linear Luttinger liquid paradigm. We establish 
semiconducting SWNTs as a great platform to study nonconventional 1D electron excitations and 
dynamics and realize integrated nanophotonic devices. Plasmonic resonance of individual metallic 
SWNT nanocavities was resolved by spectrally resolved infrared nano-imaging. These new 
understanding and findings serve as a small renewed step among the giant resurgent research on 
SWNTs to unlock their potential as a wonder nanomaterial for numerous futuristic applications.  
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1.2 Outline of Thesis 

Chapter 2 introduces the basics of SWNTs, the Luttinger liquid physics in one dimension and 
infrared scanning near-field optical microscopy (IR-SNOM).  

 
Chapter 3 discusses the peculiar signatures of Luttinger liquid plasmons in SWNTs visualized 

by IR-SNOM, including the intriguing logarithm diameter scaling and counterintuitive carrier 
density independence. These peculiar plasmon signatures agree excellently with the Luttinger 
liquid theory and stand in stark contrast to plasmons in conventional metal nanostructures.  

Reference: Sheng Wang, et al. Logarithm Diameter Scaling and Carrier Density 
Independence of One-Dimensional Luttinger Liquid Plasmon. Nano Letters, 19(4), 2360-2365 
(2019). 

 
Chapter 4 demonstrates a parameter-free test of the Luttinger liquid theory by correlating two 

completely distinct physical properties i.e. electron tunneling and plasmon propagation in the same 
Luttinger liquid system, which are controlled by the same Luttinger liquid parameter. This is 
achieved by a direct combination of electrical transport and optical nanoscopy on the same metallic 
SWNT cross junctions, which provides independent experimental determination of Luttinger 
parameters through the power-law electron tunneling and the renormalized plasmon propagation 
velocity, respectively. 

Reference: Sihan Zhao, Sheng Wang, et al. Correlation of Electron Tunneling and Plasmon 
Propagation in a Luttinger Liquid. Physical Review Letters, 121(4), 047702 (2018). 

 
Chapter 5 discusses nonlinear Luttinger liquid plasmons in semiconducting SWNTs. The 

infrared nanoimaging of gate tunable plasmons in semiconducting SWNTs reveals that the lifetime 
of plasmonic excitations in semiconducting SWNTs is found to strongly depend on the carrier 
density, which is well captured by the nonlinear Luttinger liquid theory. The findings establish 
semiconducting SWNTs as a model system to study non-conventional one-dimensional electron 
dynamics and realize integrated nanophotonic devices. 

Reference: Sheng Wang, et al. Nonlinear Luttinger liquid plasmons in semiconducting single-
walled carbon nanotubes. Nature Materials, 1-6 (2020).  

 
Chapter 6 presents the study of probing plasmon resonance of individual plasmonic carbon 

nanotube nanocavity. We demonstrate that metallic SWNT nanocavities serve as one of the most 
compact nanoplasmonic elements with exceptional tunability and low loss. For a broad spectrum 
from near-infrared to terahertz light, SWNT plasmonic nanocavities could serve in a role 
analogous to that of metallic nanostructures for visible frequencies, which paves the way for 
various nanophotonic applications based on plasmons in SWNTs.  

References: Sheng Wang, et al. Metallic Carbon Nanotube Nanocavities as Ultracompact and 
Low-loss Fabry–Perot Plasmonic Resonators. Nano Letters, 20(4), 2695-2702 (2020).  
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Chapter 2 – Introduction to SWNTs, Luttinger 
liquid, IR-SNOM  

2.1 Basics of SWNTs 

Graphene is a plane layer of carbon atoms bonded together in honeycomb lattice as shown in 
Figure 2.1a[23-25]. SWNTs can be viewed as rolled-up versions of graphene sheets. To understand 
the fundamental properties of SWNTs, we can start with the band structures of graphene. Figure 
2.1b shows the Bravais lattice of graphene with primitive lattice vectors 𝒂𝒂𝟏𝟏 and 𝒂𝒂𝟐𝟐. The carbon-
carbon bond length is a = 0.142 nm. The reciprocal lattice vectors  𝐛𝐛𝟏𝟏 and 𝐛𝐛𝟐𝟐 are defined by 𝒂𝒂𝒊𝒊 ∙
𝒃𝒃𝒋𝒋 = 2𝜋𝜋𝛿𝛿𝑖𝑖𝑖𝑖. The first Brillouin zone of the graphene reciprocal lattice is shown in Figure 2.1b in 
the form of a hexagon with an edge length of 4π/3a.  

 
Figure 2.1 Relation between nanotube and graphene through the chiral vector 𝑪𝑪ℎ. (a) A nanotube with chiral 
index (𝑛𝑛,𝑚𝑚) corresponds to a chiral vector 𝑪𝑪ℎ = 𝑛𝑛𝒂𝒂1 + 𝑚𝑚𝒂𝒂2, and is formed by rolling up the chiral vector 
into a closed circle. The 1D translational vector 𝑻𝑻 is parallel to the nanotube axis and normal to 𝑪𝑪ℎ. (b) 
Primitive lattice of graphene with lattice vectors 𝒂𝒂𝟏𝟏 and 𝒂𝒂𝟐𝟐 and its corresponding reciprocal lattice with 
vectors  𝐛𝐛𝟏𝟏 and 𝐛𝐛𝟐𝟐. 
 

Graphene is known to host relativistic Dirac electrons in the proximity at K/K’ points in the 
reciprocal lattice. The Hamiltonian of graphene can be written in the form 𝐻𝐻� = ℏ𝑣𝑣0𝝈𝝈 ∙ 𝒌𝒌, where 
𝝈𝝈 = (𝜎𝜎𝑥𝑥,𝜎𝜎𝑦𝑦) and 𝒌𝒌 = (𝑘𝑘𝑥𝑥,𝑘𝑘𝑦𝑦) are respectively the Pauli operator and wavevector in 2D, 𝑣𝑣0 is the 
graphene Fermi velocity. The eigenvalues of the Hamilton are 𝐸𝐸(𝑘𝑘) = 𝑠𝑠ℏ𝑣𝑣𝐹𝐹|𝑘𝑘|, where 𝑠𝑠 = ±1 , 
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corresponding to conduction and valence bands. The corresponding eigenvector, i.e., the electron 
wavefunction is |𝑠𝑠𝑘𝑘⟩ = 1

√2
� 1
𝑠𝑠𝑒𝑒𝑖𝑖𝜃𝜃𝑘𝑘�𝑒𝑒

𝑖𝑖𝒌𝒌∙𝒓𝒓, where 𝜃𝜃𝑘𝑘 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛�𝑘𝑘𝑦𝑦/𝑘𝑘𝑥𝑥� is the polar angle. 

 
An essential aspect of SWNTs is its chirality describing the how the graphene is wrapped up. 

The chirality of a SWNT can be specified by the chiral vector 𝑪𝑪ℎ = 𝑛𝑛𝒂𝒂1 + 𝑚𝑚𝒂𝒂2, where n, m are 
integers 0 ≤ 𝑚𝑚 ≤ 𝑛𝑛 and (n, m) is the chiral index. SWNTs have very large aspect ratios (104-to5) 
and the two ends of a nanotube in the form of fullerene caps can be neglected. For a first step, we 
can further neglect the curvature effects due to the rolling up. The band structure of a SWNT will 
be directly associated with that of graphene and is uniquely determined by the chiral index. 
Armchair nanotubes have an index (n, n) with n = m and zigzag nanotubes have an index (n, 0) 
with m = 0. Both armchair and zigzag nanotubes are achiral nanotubes because they have a mirror 
image that is identical to its original structure. All other nanotubes are chiral ones. The chiral vector 
𝑪𝑪ℎ forms the circumference of the cylinder and the diameter of a nanotube is thus 𝑑𝑑 = |𝑪𝑪ℎ|/𝜋𝜋 =
|𝑛𝑛𝒂𝒂1 + 𝑚𝑚𝒂𝒂2|/𝜋𝜋 = √3𝑎𝑎√𝑛𝑛2 + 𝑚𝑚2 + 𝑚𝑚𝑛𝑛/𝜋𝜋. Depending on the ratio between 𝑛𝑛 and 𝑚𝑚, there will 
be an angle 𝜃𝜃 between 𝑪𝑪ℎ and 𝒂𝒂1, given by 𝜃𝜃 = tan−1 √3𝑚𝑚

2𝑛𝑛+𝑚𝑚
. 𝜃𝜃 is referred to as the chiral angle of 

a nanotube with values in the range of 0 to 30 degrees due to the hexagonal symmetry of the 
honeycomb lattice.  

 
We can further determine the unit vector of a given nanotube along the axis by searching for 

the shortest lattice vector 𝑻𝑻 of graphene that is normal to 𝑪𝑪ℎ. A general form of the unit vector 𝑻𝑻 
can be expressed as 𝑻𝑻 = (𝑎𝑎1𝒂𝒂1 + 𝑎𝑎2𝒂𝒂2) where  𝒕𝒕𝟏𝟏 = (𝑛𝑛+2𝑚𝑚)

𝑑𝑑𝑅𝑅
, 𝑎𝑎2 = (2𝑛𝑛+𝑚𝑚)

𝑑𝑑𝑅𝑅
,  𝑑𝑑𝑅𝑅 = gcd (𝑛𝑛 +

2𝑚𝑚, 2𝑛𝑛 + 𝑚𝑚) is the greatest common divisor of (𝑛𝑛 + 2𝑚𝑚) and (2𝑛𝑛 + 𝑚𝑚). The unit cell of the 1D 
SWNT is the rectangle defined by the vectors 𝑪𝑪ℎ and 𝑻𝑻. In SWNTs, the two ends of 𝑪𝑪ℎ  are 
connected so that the electron wavefunction should satisfy 𝜓𝜓(𝒓𝒓) = 𝜓𝜓(𝒓𝒓 + 𝑪𝑪ℎ). This periodic 
boundary condition leads to the quantization of wavevector in the circumferential direction 
whereas the wavevector along the nanotube axis remains continuous for nanotube of infinite length. 
Due to the wavevector constraints imposed by the quantization, the band structure of a 1D SWNT 
is represented  be by a set of 1D energy dispersion relations which are described by discrete cutting 
lines separated by Δ𝒌𝒌𝜇𝜇 = 2𝜋𝜋/𝐶𝐶ℎ in 2D graphene band structure. These cutting lines are labeled by 
an integer 𝜇𝜇. If for a nanotube with chiral index (n, m), the cutting line passes through a K point of 
the 2D graphene Brillouin zone (Figure 2.1b), the 1D energy band will be a linear Dirac band with 
a constant density of states below the second energy subband. These nanotubes are thus metallic. 
For other nanotubes with chiral index such that the cutting lines don’t pass through a K point of 
the 2D graphene Brillouin zone, the nanotube is expected to exhibit semiconducting behaviors 
with a finite bandgap. The condition for metallic nanotubes is that the wavevector at K point 
satisfies the quantization condition, or equivalently,  𝑪𝑪ℎ ∙ 𝒌𝒌(𝐾𝐾) = 2𝜋𝜋𝜇𝜇, where 𝑪𝑪ℎ = 𝑛𝑛𝒂𝒂1 + 𝑚𝑚𝒂𝒂2 
is the chiral vector, 𝒌𝒌(𝐾𝐾) = 2/3𝐛𝐛𝟏𝟏 + 1/3 𝐛𝐛𝟐𝟐  is the wavevector at K point and 𝜇𝜇 is an integer. 
Using 𝒂𝒂𝒊𝒊 ∙ 𝒃𝒃𝒋𝒋 = 2𝜋𝜋𝛿𝛿𝑖𝑖𝑖𝑖, the condition is reduced to (2n + m)/3 = 2𝜋𝜋𝜇𝜇 or equivalently (n – m) is a 
multiple of 3. Note that armchair nanotubes with chiral index (n, n) are always metallic, whereas 
zigzag nanotubes with chiral index (n, 0) are metallic only when n is a multiple of 3.  
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Figure 2.2 Band structures of metallic and semiconducting nanotubes. (a) Metallic nanotubes, with a chiral 
index (10, 10) as an example, have a linear Dirac band. (b) Semiconducting nanotubes, with a chiral index 
(11, 9) as an example, have a hyperbolic band with a finite bandgap Eg. Nanotubes (10, 10) and (11, 9) have 
completely different electronic properties though they have similar diameters.  
 

Figures 2.2a and 2.2b show the respective band structures of metallic and semiconducting 
SWNTs. Metallic nanotubes, for instance with a chiral index (10, 10), have a linear Dirac 
band, 𝐸𝐸 = ℏ𝑣𝑣0𝑘𝑘𝐹𝐹 , where ℏ is the reduced Planck’s constant, 𝑣𝑣0 ~ 0.8 × 106 𝑚𝑚/𝑠𝑠 is the Fermi 
velocity in graphene, and 𝑘𝑘𝐹𝐹 is the Fermi wavevector. In contrast, semiconducting nanotubes, for 
instance with a chiral index (11, 9), have a hyperbolic band with a finite bandgap 𝐸𝐸𝑔𝑔 , 𝐸𝐸2 =
(𝐸𝐸𝑔𝑔 2⁄ )2 + (ℏ𝑣𝑣0𝑘𝑘𝐹𝐹)2.  Nanotubes (10, 10) and (11, 9) have similar diameters but completely 
different electronic properties. The bang gap 𝐸𝐸𝑔𝑔  is determined by the cutting line closet to the K 
point. The closest distance between this cutting line to K point can be determined to be ∆𝑘𝑘 = 2𝜋𝜋

3𝐶𝐶ℎ
, 

where 𝐶𝐶ℎ = 𝜋𝜋𝑑𝑑 is the circumference of the nanotube cylinder. The band gap of the semiconducting 
nanotube is then 𝐸𝐸𝑔𝑔 =  2ℏ𝑣𝑣0∆𝑘𝑘 = 4ℏ𝑣𝑣0

3𝑑𝑑
. The band gap of a semiconducting nanotube is inversely 

proportional to the nanotube diameter d as 𝐸𝐸𝑔𝑔 = 0.75𝑒𝑒𝑒𝑒/𝑑𝑑 (𝑛𝑛𝑚𝑚). 
 
Note that the discussion above has neglected curvature effects, which are known to have 

profound effects on the band dispersion, especially for nanotubes with small diameters. 
Considering the curvature effects, armchair nanotubes remain metallic owing to symmetry. Other 
metallic nanotubes will have a small gap inversely proportional to 1/d2 and are referred to as 
semimetallic nanotubes. In some extreme cases, the curvature induced hybridization of 𝜎𝜎 and 
𝜋𝜋 electrons can turn a semiconducting nanotube into a metallic one[26-28].  

 
SWNTs with their unique electrical, optical and mechanical properties have been intensively 

studied for fundamental science as well as technological nanodevices. Transistors based on 
semiconducting SWNTs have been proposed to replace silicon transistors with their high on-off 
ratio and larger current density[29]. Steady progress has been made along this way including a 
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recent breakthrough, a 16-bit computer that is built entirely from carbon-nanotube transistors[16]. 
Metallic SWNTs and films have been proposed as transparent conductors. Electron-electron 
interaction is also greatly enhanced in one dimension and can greatly alter the electron behaviors. 
Coulomb blockade effects and Luttinger liquid behaviors have been reported. Electronic Wigner 
crystal in SWNTs is also observed thanks to an ultrasensitive scanning probe down to single 
electron level[17]. The strong Coulomb interactions also lead to strongly bound electron-hole pairs, 
called excitons, with a binding energy on the order of 300 to 500 meV[2, 30, 31]. The unique 
optical properties and the abundance of various nanotubes also promise carbon nanotube-based 
optoelectronic devices. SWNTs have also been widely explored as ultrasensitive bio/chemical 
nanosensors[32]. They also find applications in biomedicine as a nanochannel to deliver tiny 
chemicals to cells[33].  

 

 
Figure 2.3 A Scanning electron microscope (SEM) image of high quality SWNTs grown directly on h-BN 
flakes by chemical vapor deposition.  
 

A major challenge in the nanotube community is the controlled synthesis of SWNTs in a 
scalable and environmental way[18]. Chirality control in nanotube synthesis is still under intense 
investigation through the combination of experimental analysis and theoretical modeling. Intense 
research directed to 2D materials including graphene has brought new insight to the field of 
SWNTs.  Lessons and experiences from the 2D community can provide some novel guidance to 
the synthesis, characterization and modeling of SWNTs. Recent progress in controlled synthesis 
of SWNTs and advanced characterization tools with nanoscale resolution enable further 
interrogation of SWNTs at their intrinsic level.  

 
One big advance towards ultraclean SWNTs in our set of experiments is the usage of 

hexagonal boron nitride (h-BN) flakes as the substrates for SWNTs. H-BN flakes have been well 
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established in the 2D community to be ideal substrates for nanomaterials because they are 
atomically flat and contain very few impurities compared to more conventional substrates such as 
SiO2/Si substrates. Nanomaterials with properties easily susceptible to environmental 
surroundings can thus remain pristine when placed on h-BN flakes. Figure 2.3 displays a scanning 
electron microscope (SEM) image of high quality SWNTs grown directly on h-BN flakes by 
chemical vapor deposition (CVD). The CVD method is as follows: Ferritin solution (0.1 mmol L–

1) is drop-casted onto SiO2/Si substrates (SiO2, 285 nm). The substrates are incubated at room 
temperature for 10 min. The substrates are then rinsed with isopropyl alcohol and are subsequently 
blow-dried. The substrates are annealed in air at 900 °C for 30 min to convert ferritin to Fe2O3 
nanoparticles. Then h-BN flakes are mechanically exfoliated onto the SiO2/Si substrates with 
Fe2O3 nanoparticles. High-quality SWNTs are then directly grown on the substrates by CVD. We 
use an ambient-pressure CVD system equipped with a one-inch quartz tube. The system is first 
purged with hydrogen gas for 10 min to get rid of the air. After that, the temperature is raised to 
900 °C in 15 min under 300 sccm of hydrogen flow. When the temperature reaches 900 °C, 
110 sccm of argon is introduced through a bubbler with ethanol, which works as the carbon 
precursor, while 300 sccm of hydrogen flow is maintained to reduce iron compound nanoparticles 
to iron nanoparticles, which act as catalysts for SWNT growth. The temperature is kept at 900 °C 
for 15 min, followed by naturally cooling to room temperature under a hydrogen flow of 300 sccm.  

 
Figure 2.4 Optical image of SWNTs in FET nanodevices. (a) An SWNT FET nanodevice with two 
electrodes for electronic transport. (b) An SWNT FET device with one electrode for infrared nanoimaging. 
By applying a gate voltage between the electrode and the conductive Si layer, we can continuously tune the 
carrier density in the SWNT while in situ performing infrared nanoimaging.  
 

SWNTs with different species can be grown by this method. The nanotubes are also very long 
on h-BN substrates and can be readily fabricated into field-effect transistor (FET) nanodevices for 
electronic transport measurements. Electrical contacts on the SWNTs are fabricated using standard 
e-beam lithography or shadow masks. E-beam lithography is used to define two electrodes for 
electronic transport measurements. For individual nanotube transport measurement, SWNTs on 
SiO2 are thoroughly eliminated by an oxygen plasma, with the nanotube between the electrodes 
left for transport measurement. Figure 2.4a displays an as-fabricated SWNT FET nanodevice with 
a channel length of 4 µm. Shadow masks are used to define one contact for back gating to avoid 
polymer contamination and to keep the nanotubes ultraclean for gate-controlled infrared nano-
imaging. An optical image of an-fabricated SWNT FET nanodevice is shown in Figure 2.4b. By 
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applying a gate voltage between the electrode and Si layer, we can continuously tune the carrier 
density in the SWNT while in situ performing infrared nanoimaging. Our combined infrared 
nanoimaging and electronic transports indicate the SWNTs on h-BN have a remarkable mean free 
path and carrier relaxation life, which is comparable to SWNTs of the highest quality reported in 
literature. These ultraclean SWNTs in FET configuration allow interrogation of intrinsic properties 
of SWNTs even at low carrier concentration. 

 

2.2 Luttinger Liquid in SWNTs 

Electrons in three- and two-dimensional metals are described by quasiparticles as in the Fermi 
liquid theory[34]. Despite the electron-electron interactions in a Fermi liquid, electrons interact 
with the surrounding in such a way that the net effect of the interactions is to make the fermions 
behave as dressed quasiparticles. Electrons in the interacting Fermi liquid system thus have an 
ono-to-one correspondence to fermions in a noninteracting Fermi gas system. The quasiparticles 
carry the same spin, charge and momentum as the original particles but with renormalized dynamic 
properties such as effective mass and magnetic momentum. This picture breaks down in one 
dimension due to enhanced electron-electron correlation.  

 
The reason for relatively weak correlation between electrons in 3D and 2D metals is that they 

are free to propagate in any direction, limiting the time over which they are close to each other and 
may interact strongly[35]. In 1D, however, electrons with the same energy propagating in the same 
direction will have the same Fermi velocity. As a result, they can remain close to each other for a 
long time and interact strongly during the propagation. This can also be understood in the scattering 
cross section in the momentum space. For 3D and 2D metals, the Fermi surfaces respectively 
consist of a sphere and a circle. Coulomb interactions cause scattering among electrons near the 
Fermi surface. Due to the constraints imposed by Pauli’s exclusion principle and 
energy/momentum conservation, the phase space volume of possible states after scattering is 
limited[36]. The scattering rate for electrons with energy E near Fermi energy EF is 
1
𝜏𝜏𝑒𝑒𝑒𝑒

~ � 1
𝜏𝜏0
� � 𝐸𝐸

𝐸𝐸𝐹𝐹
�
2
, where 1

𝜏𝜏0
 is the classical scattering rate. As the energy E becomes small, the 

scattering rate becomes negligible compared to its energy, which ensures well-defined 
quasiparticles near the Fermi surface. In 1D however, energy and momentum have a one-to-one 
correspondence because energy is locally linear in k. In the scattering process, momentum is 
simultaneously conserved when energy conservation is satisfied. The scattering rate becomes 
1
𝜏𝜏𝑒𝑒𝑒𝑒

~ � 1
𝜏𝜏0
� 𝐸𝐸
𝐸𝐸𝐹𝐹

, on the order of its energy. The energy corresponding to this scattering rate ℏ 1
𝜏𝜏𝑒𝑒𝑒𝑒

  thus 
cannot be neglected even when the energy is small. As a result, the concept of free quasiparticles 
with well-defined energy breaks down in 1D. The fundamental excitations in 1D systems are 
collective in nature and should be described by the Luttinger liquid theory instead of the Fermi 
liquid theory[37-39].  

 
Metallic SWNTs with its linear band dispersion provide an attractive realization of a Luttinger 

liquid[40]. As discussed in Chapter 2.1, the free particle Hamiltonian without Coulomb interaction 
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can be written as H0 = ∑ ∫𝑑𝑑𝑑𝑑𝑣𝑣0[𝜓𝜓𝑅𝑅𝑅𝑅𝑅𝑅
† 𝑖𝑖𝜕𝜕𝑥𝑥𝜓𝜓𝑅𝑅𝑅𝑅𝑅𝑅 − 𝜓𝜓𝐿𝐿𝑅𝑅𝑅𝑅

† 𝑖𝑖𝜕𝜕𝑥𝑥𝜓𝜓𝐿𝐿𝑅𝑅𝑅𝑅]𝑅𝑅𝑅𝑅 , where R, L represent right 
and left moving particles, 𝛼𝛼 and 𝛽𝛽 are spin and valley indices respectively, 𝑣𝑣0 is the Fermi velocity. 
Through Bosonization 𝜓𝜓𝑅𝑅/𝐿𝐿𝑅𝑅𝑅𝑅 = 𝑒𝑒𝑖𝑖(𝜙𝜙𝛼𝛼𝛼𝛼±𝜃𝜃𝛼𝛼𝛼𝛼), the free particle Hamiltonian takes the form H0 =
∑ ℋ0(𝜃𝜃𝑅𝑅𝑅𝑅,𝜙𝜙𝑅𝑅𝑅𝑅)𝑅𝑅𝑅𝑅  and ℋ0(𝜃𝜃,𝜙𝜙) = ∫𝑑𝑑𝑑𝑑 ℏ𝑣𝑣0

2𝜋𝜋
[(𝜕𝜕𝑥𝑥𝜃𝜃)2 + (𝜕𝜕𝑥𝑥𝜙𝜙)2] , where electron density in a 

given channel given by 𝜌𝜌𝑅𝑅𝑅𝑅 = (𝜕𝜕𝑥𝑥𝜃𝜃𝑅𝑅𝑅𝑅/𝜋𝜋). The Coulomb interaction can be introduced by the 
charging energy to the nanotube. For an individual suspended SWNT of radius R screened by a 
concentric metal shell of radius 𝑅𝑅𝑠𝑠, the energy it takes to charge a unit length of a nanotube is 
ℋ𝑖𝑖𝑛𝑛𝑖𝑖 = 𝑒𝑒2

4𝜋𝜋𝜀𝜀𝑒𝑒𝑒𝑒𝑒𝑒
𝜌𝜌2ln (𝑅𝑅𝑠𝑠/𝑅𝑅), where  𝜌𝜌 = ∑ (𝜕𝜕𝑥𝑥𝜃𝜃𝑅𝑅𝑅𝑅/𝜋𝜋)𝑅𝑅𝑅𝑅  is the total charge density.  

 

The interaction Hamiltonian ℋ𝑖𝑖𝑛𝑛𝑖𝑖 involves only 𝜌𝜌  and we can rewrite the four channels as 
𝜃𝜃𝜌𝜌 = 1/(√4)(𝜃𝜃𝑅𝑅1𝑅𝑅1 + 𝜃𝜃𝑅𝑅1𝑅𝑅2 + 𝜃𝜃𝑅𝑅2𝑅𝑅1 + 𝜃𝜃𝑅𝑅2𝑅𝑅2), 𝜃𝜃𝑠𝑠 = 1/(√4)(𝜃𝜃𝑅𝑅1𝑅𝑅1 + 𝜃𝜃𝑅𝑅1𝑅𝑅2 − 𝜃𝜃𝑅𝑅2𝑅𝑅1 − 𝜃𝜃𝑅𝑅2𝑅𝑅2), 
𝜃𝜃𝑉𝑉1 = 1/(√4)(𝜃𝜃𝑅𝑅1𝑅𝑅1 − 𝜃𝜃𝑅𝑅1𝑅𝑅2 + 𝜃𝜃𝑅𝑅2𝑅𝑅1 − 𝜃𝜃𝑅𝑅2𝑅𝑅2),  𝜃𝜃𝑉𝑉2 = 1/(√4)(−𝜃𝜃𝑅𝑅1𝑅𝑅1 + 𝜃𝜃𝑅𝑅1𝑅𝑅2 − 𝜃𝜃𝑅𝑅2𝑅𝑅1 +
𝜃𝜃𝑅𝑅2𝑅𝑅2), where 𝛼𝛼1,2 are spin up/down states, 𝛽𝛽1,2 are two valley states. The Hamiltonian ℋ0 +
ℋ𝑖𝑖𝑛𝑛𝑖𝑖 is now composed of four separate channels with 𝜃𝜃𝜌𝜌 as the charge channel and 𝜃𝜃𝑠𝑠 as the spin 
channel. For the spin mode, the Hamiltonian takes the form ℋ𝑠𝑠 = ∫𝑑𝑑𝑑𝑑 ℏ𝑣𝑣0

2𝜋𝜋
[(𝜕𝜕𝑥𝑥𝜃𝜃𝑠𝑠)2 + (𝜕𝜕𝑥𝑥𝜙𝜙𝑠𝑠)2]. 

The eigenstate is a collective spin wave with a propagating velocity of 𝑣𝑣0, usually referred to as 
spinon. For the charge mode, the Hamiltonian becomes ℋ𝜌𝜌 = ∫𝑑𝑑𝑑𝑑 ℏ𝑣𝑣0

2𝜋𝜋
�(1 + 8𝑒𝑒2

4𝜋𝜋𝜀𝜀𝑒𝑒𝑒𝑒𝑒𝑒
𝜌𝜌2ln (𝑅𝑅𝑠𝑠/

𝑅𝑅))(𝜕𝜕𝑥𝑥𝜃𝜃𝜌𝜌)2 + (𝜕𝜕𝑥𝑥𝜙𝜙𝜌𝜌)2�. The collective charge wave, i.e. plasmon wave, has an renormalized 

velocity as 𝑣𝑣𝑝𝑝
𝑣𝑣0

= 1
𝑔𝑔

= �1 + 8𝑒𝑒2

4𝜋𝜋𝜀𝜀𝑒𝑒𝑒𝑒𝑒𝑒𝜋𝜋ℏ𝑣𝑣0
In(𝑅𝑅𝑠𝑠

𝑅𝑅
), where 𝑔𝑔 is the Luttinger liquid parameter describing 

the interaction strength.  This leads to the remarkable phenomenon of spin-charge separation. The 
concept of free quasiparticles carrying both charge and spin breaks down. The collective 
excitations, i.e. spinon and plasmon, become two separate entities moving independently with 
different velocities. In the spectral function, we no longer see single sharp quasiparticle peak of 
the Fermi liquid. Instead, there will be two sharp features characterizing the collective spin and 
charge excitations. 

 
Luttinger liquid has intriguing implications for physical properties of SWNTs. In the Fermi 

liquid picture without interaction, the 1D density of states of metallic SWNTs with a linear band 
is a constant. When the interaction is considered, the electron tunneling into 1D SWNTs is 
suppressed at low energies because there is no available quasiparticle state in the system and the 
tunneling electron must excite the collective excitations. By evaluating the electron’s Green’s 
function, one can find that the tunneling density of state exhibit a power law dependence on energy 
as 𝜌𝜌(𝐸𝐸) ∝ 𝐸𝐸𝑅𝑅, where E is the energy way from the Fermi energy, and the power index 𝛼𝛼 depends 
on the interaction parameter g as 𝛼𝛼 = (𝑔𝑔 + 𝑔𝑔−1 − 2)/8. These signatures of Luttinger liquid in 
SWNTs have been well explored in various experiments. Electron tunneling measurements 
through a metal contact or a STM tip to SWNTs have confirmed the power-law suppression of 
tunneling density of states[41-44]. Spin-charge separation in the spectral function was also 
observed in angle-resolved photoemission spectroscopy (ARPES)[45].  
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In general 1D systems, the band dispersion is not linear anymore. The nonlinearity can 

qualitatively modify the nature of electron excitations[46, 47]. In a linear Luttinger liquid, where 
the low-energy electronic dispersion is assumed to be linear, the resulting plasmonic excitations 
are non-interacting. Instead, a Luttinger liquid in 1D materials with nonlinear electronic bands is 
expected to show strong plasmon-plasmon interactions, resulting in a strong reduction of plasmon 
lifetime. Semiconducting SWNTs with hyperbolic band dispersion provide a great platform to 
probe the nature of electron excitations in 1D systems with nonlinear dispersion.  For 
semiconducting SWNTs with a band gap 𝐸𝐸𝑔𝑔  and a hyperbolic dispersion 𝐸𝐸2 = (𝐸𝐸𝑔𝑔 2⁄ )2 +
(ℏ𝑣𝑣0𝑘𝑘𝐹𝐹)2, where 𝑣𝑣0 is the Fermi velocity in metallic nanotubes, 𝑘𝑘𝐹𝐹 is the Fermi wavevector, the 
Fermi velocity is given by  

𝑣𝑣𝐹𝐹 =
𝜕𝜕𝐸𝐸
ℏ𝜕𝜕𝑘𝑘𝐹𝐹

=
ℏ𝑣𝑣02𝑘𝑘𝐹𝐹

�(𝐸𝐸𝑔𝑔 2⁄ )2 + (ℏ𝑣𝑣0𝑘𝑘𝐹𝐹)2
 

The Fermi velocity is a constant 𝑣𝑣0 in metallic nanotubes with linear dispersion whereas it depends 
on carrier density and is thus gate tunable in semiconducting nanotubes. For an individual 
suspended SWNT of radius R screened by a concentric metal shell of radius 𝑅𝑅𝑠𝑠, the linear Luttinger 
liquid theory predicts the Luttinger liquid interaction parameter g to be 

1
𝑔𝑔

=
𝑣𝑣𝑝𝑝
𝑣𝑣𝐹𝐹

= �1 +
8𝑒𝑒2

4𝜋𝜋𝜋𝜋𝑒𝑒𝑒𝑒𝑒𝑒𝜋𝜋ℏ𝑣𝑣𝐹𝐹
In(

𝑅𝑅𝑠𝑠
𝑅𝑅

) 

where 𝑣𝑣𝑝𝑝 is the velocity of the collective charge excitation, i.e. plasmon velocity, 𝑣𝑣𝐹𝐹 is the Fermi 
velocity and 𝜋𝜋𝑒𝑒𝑒𝑒𝑒𝑒  is the effective dielectric constant due to substrate screening. From infrared 
nano-imaging measurements on metallic SWNTs, the Luttinger liquid parameter is determined to 
be 𝑔𝑔 = 𝑣𝑣0 𝑣𝑣𝑝𝑝⁄ ~ 0.31, which indicates strong coulomb repulsion between electrons in metallic 
SWNTs (see Chapter 3 for details). For semiconducting SWNTs, g becomes even smaller. As a 
result, the electron-electron interaction energy is always dominant in semiconducting SWNTs. 
From Eq. 2.2, the plasmon velocity can be approximated with  

𝑣𝑣𝑝𝑝 = �𝑣𝑣𝐹𝐹
8𝑒𝑒2

4𝜋𝜋𝜋𝜋𝑒𝑒𝑒𝑒𝑒𝑒𝜋𝜋ℏ
In(

𝑅𝑅𝑠𝑠
𝑅𝑅

) = �𝛼𝛼𝑣𝑣𝐹𝐹 

where 𝛼𝛼 = 8𝑒𝑒2

4𝜋𝜋𝜀𝜀𝑒𝑒𝑒𝑒𝑒𝑒𝜋𝜋ℏ
In(𝑅𝑅𝑠𝑠

𝑅𝑅
) is a constant related to the capacitance of the system under a certain 

dielectric environment. The Luttinger parameter can be expressed as 

𝑔𝑔 ≈ 1/�1 + 𝛼𝛼 𝑣𝑣𝐹𝐹⁄  

We experimentally measured the Luttinger liquid parameter in metallic SWNTs to be 𝑔𝑔𝑚𝑚 ≈
1

�1+𝑅𝑅 𝑣𝑣0⁄
≈ 0.31 and with that we can estimate 𝛼𝛼 ≈ 9𝑣𝑣0 . Combining Eq. 2.1 and Eq. 2.3, the 

plasmon wavelength is determined to be proportional to the square root of Fermi velocity 𝑣𝑣𝐹𝐹 and 
is described as    

 (2.5) 

 (2.2) 

 (2.4) 

 (2.3) 

 (2.1) 
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𝜆𝜆𝑝𝑝 = 𝜆𝜆𝑝𝑝0�
𝑣𝑣𝐹𝐹
𝑣𝑣0

= 𝜆𝜆𝑝𝑝0�
ℏ𝑣𝑣0𝑘𝑘𝐹𝐹

�(𝐸𝐸𝑔𝑔 2⁄ )2 + (ℏ𝑣𝑣0𝑘𝑘𝐹𝐹)2
 

where 𝜆𝜆𝑝𝑝0 and 𝑣𝑣0 are the plasmon wavelength and Fermi velocity in metallic nanotubes for a given 
frequency. With increasing carrier density 𝑛𝑛 and wavevector 𝑘𝑘𝐹𝐹 = 𝜋𝜋

4
𝑛𝑛, plasmon wavelength in 

semiconducting nanotubes will increase and progressively approach that in metallic ones. 
 

Apart from the tunable plasmon wavelength, the nonzero curvature of the band dispersion 
will also modify the plasmon lifetime by inducing plasmon-plasmon interaction. This is reflected 
in the dynamic structure factor (DSF), which is defined as the probability per unit time to excite a 
density fluctuation by an external source coupled to charge density. In metallic nanotubes with a 
linear dispersion, the DSF takes the form S(q,ω) = 2𝑔𝑔|𝑞𝑞|δ(𝜔𝜔 − 𝑣𝑣𝑝𝑝𝑞𝑞) , which suggests the 
absence of intrinsic relaxation. The behavior is within the realm of the linear Luttinger liquid. In 
semiconducting nanotubes with a hyperbolic band dispersion, when considering the leading 
quadratic correction to the plasmon spectrum, the DSF is given by 

S(q,ω) = 2
𝑚𝑚�𝑔𝑔
|𝑞𝑞| θ(

𝑞𝑞2

2𝑚𝑚�
− �𝜔𝜔 − 𝑣𝑣𝑝𝑝𝑞𝑞�) 

with an effective mass 𝑚𝑚� . The effective mass 𝑚𝑚�  depends on electron-electron interactions and it 
can be expressed as 

1
𝑚𝑚�

=
𝑣𝑣𝑝𝑝
2𝑔𝑔

𝜕𝜕
𝜕𝜕𝐸𝐸𝐹𝐹

(𝑣𝑣𝑝𝑝�𝑔𝑔) 

The upper and lower bounds of the plasmon spectrum can be described as  

𝜔𝜔±(𝑞𝑞) = 𝑣𝑣𝑝𝑝𝑞𝑞 ±
𝑞𝑞2

2𝑚𝑚�
 

and the width of the plasmon spectrum is  

δ𝜔𝜔(𝑞𝑞) = 𝑞𝑞2/𝑚𝑚�  

The broadening δ𝜔𝜔(𝑞𝑞) 𝜔𝜔(𝑞𝑞)⁄  in the spectrum is a manifestation of the finite lifetime of the 
plasmon excitation. Combining Eq. 2.3, Eq. 2.4, Eq. 2.7 and Eq. 2.9, this broadening can be 
expressed as 

δ𝜔𝜔(𝑞𝑞)
𝜔𝜔(𝑞𝑞) =

3
4
𝑣𝑣𝑝𝑝
2𝑔𝑔

𝛼𝛼1 4⁄ 𝑣𝑣𝐹𝐹−1 4⁄ 𝜕𝜕𝑣𝑣𝐹𝐹
𝜕𝜕𝐸𝐸𝐹𝐹

 

The Fermi velocity 𝑣𝑣𝐹𝐹  and Fermi energy 𝐸𝐸𝐹𝐹  depend on the Fermi wavevector 𝑘𝑘𝐹𝐹 . The 
dependences are described by energy dispersion and Eq. 2.1, respectively. We can then determine 

𝜕𝜕𝑣𝑣𝐹𝐹
𝜕𝜕𝐸𝐸𝐹𝐹

=
𝜕𝜕𝑣𝑣𝐹𝐹/𝜕𝜕𝑘𝑘𝐹𝐹
𝜕𝜕𝐸𝐸𝐹𝐹/𝜕𝜕𝑘𝑘𝐹𝐹

=
1
ℏ𝑘𝑘𝐹𝐹

(𝐸𝐸𝑔𝑔 2⁄ )2

(𝐸𝐸𝑔𝑔 2⁄ )2 + (ℏ𝑣𝑣0𝑘𝑘𝐹𝐹)2
 

Combining Eq. 2.10 and Eq. 2.11, δ𝜔𝜔(𝑞𝑞) 𝜔𝜔(𝑞𝑞)⁄  is further determined to be 

 (2.6) 

 (2.7) 

 (2.8) 

 (2.9) 

 (2.10) 

 (2.11) 

 (2.12) 
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δ𝜔𝜔(𝑞𝑞)
𝜔𝜔(𝑞𝑞) =
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8
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𝛼𝛼
𝑣𝑣𝐹𝐹

)1 4⁄ (𝐸𝐸𝑔𝑔 2⁄ )2
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𝜔𝜔

𝑣𝑣𝐹𝐹𝑘𝑘𝐹𝐹
 

Under our experimental environment conditions, 𝛼𝛼 ≈ 9𝑣𝑣0 has been estimated from the plasmon 
measurements in metallic nanotubes. Therefore, for semiconducting nanotubes with a band gap of 
𝐸𝐸𝑔𝑔 and at an excitation energy 𝜔𝜔, δ𝜔𝜔(𝑞𝑞) 𝜔𝜔(𝑞𝑞)⁄  is a function of 𝑘𝑘𝐹𝐹 as 

 
 
In summary, electron-electron interaction qualitatively alters the electron excitations in 1D 

SWNTs.  In metallic SWNTs, plasmons are expected to be long lived with lifetime limited by 
electron-phonon coupling in the system. The plasmon velocity is greatly enhanced compared to 
Fermi velocity which is directly controlled by the Luttinger liquid parameter g. In addition, there 
is suppression of electron tunneling into the 1D system in the form of a power-law dependence 
with the power index governed by the same Luttinger liquid parameter g. In strong contrast, 
plasmon lifetime in semiconducting SWNTs is expected to depend sensitively on the nonzero band 
curvature. For semiconducting nanotubes with a band gap 𝐸𝐸𝑔𝑔 and at an excitation energy 𝜔𝜔, both 
the plasmon wavelength 𝜆𝜆𝑝𝑝 and plasmon quality factor 𝑄𝑄 = 𝜔𝜔(𝑞𝑞) δ𝜔𝜔(𝑞𝑞)⁄  depend sensitively on 
the Fermi wavevector 𝑘𝑘𝐹𝐹 . Under our experimental conditions, the dependence on 𝑘𝑘𝐹𝐹  can be 
expressed as: 

 

 
The signatures of the Luttinger liquid in both metallic and semiconducting SWNTs described by 
the picture can be tested with a combined interrogation of infrared nanoimaging and electronic 
transport. The experimental results and the comparison with theoretical model will be discussed 
in detail in Chapters 3, 4, 5.  
 

2.3 Infrared Scanning Near-field Optical Microscope 

Conventional far-field spectroscopy is a versatile and powerful tool to investigate a wealth of 
properties of matter through light-matter interaction at different energy, length and time scales.  
However, the achievable resolution of this far-field technique is usually around half of the 
excitation wavelength owing to the Abbe’s diffraction limit. Evanescent field near the surface of 
objects drops off rapidly away from the surface and carries the high frequency spatial information. 

δ𝜔𝜔(𝑞𝑞)
𝜔𝜔(𝑞𝑞) =

3√3
8

(
�(𝐸𝐸𝑔𝑔 2⁄ )2 + (ℏ𝑣𝑣0𝑘𝑘𝐹𝐹)2
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)
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4
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𝜔𝜔
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 (2.13) 

 (2.14) 

 (2.15) 
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Utilizing this near field can potentially leads to an optical probe beyond the diffraction limit.  A 
realistic implementation of this idea yields scanning near-field optical microscope (SNOM). 
Progress in SNOM techniques has led to the developments of different instrumental configurations 
to interrogate and image materials with nanoscale resolution, good signal to noise ratio and a broad 
spectrum from visible to teraHertz[15, 48]. The modality we employ to probe plasmons in SWNTs 
is a scattering-type SNOM working at infrared frequencies (IR-SNOM).  

 
Figure 2.5 Schematic of scattering-type infrared scanning near-field optical microscope.  

 

Figure 2.5 illustrates the schematic of the scattering-type IR-SNOM. The infrared 
nanoimaging technique is based on a tapping mode atomic force microscope (AFM). For infrared 
nanoimaging, an infrared beam is focused onto the apex of the metallic AFM tip by an aspherical 
ZnSe lens or a gold-coated parabolic mirror. The infrared source can be a CO2 laser with 
wavelength 10.6 μm for a single wavelength measurement or a quantum cascade laser with tunable 
wavelength from 11.1 to 9.5 μm for a spectrally resolved measurement. The light elastically 
scattered from the tip apex is captured by a mercury cadmium telluride (MCT) detector in the far 
field. The total scattered signal measured by the detector is I𝑑𝑑𝑒𝑒𝑖𝑖 ∝ �𝐸𝐸𝑛𝑛𝑒𝑒 + 𝐸𝐸𝑏𝑏𝑔𝑔��𝐸𝐸𝑛𝑛𝑒𝑒∗ + 𝐸𝐸𝑏𝑏𝑔𝑔∗� =
𝐸𝐸𝑛𝑛𝑒𝑒2 + 𝐸𝐸𝑏𝑏𝑔𝑔2 + 2�𝐸𝐸𝑛𝑛𝑒𝑒��𝐸𝐸𝑏𝑏𝑔𝑔�cos (∆∅) , where 𝐸𝐸𝑛𝑛𝑒𝑒  is the local near-field signal, 𝐸𝐸𝑏𝑏𝑔𝑔 is the 
background signal and ∆∅ is the phase difference between the two electric field. In many cases, 
�𝐸𝐸𝑛𝑛𝑒𝑒� ≪ �𝐸𝐸𝑏𝑏𝑔𝑔� and the background signal dominates over near field signal. To extract the near-
field information, the AFM tip is tapped at a frequency of Ω ∼ 240 kHz and an amplitude ∼80 nm, 
respectively. The near-field signal decreases significantly when tip is retracted a short distance of 
~ 80 nm but the background change very little. The detector signal is demodulated at a frequency 
3Ω by a lock-in amplifier to suppress the background scattering from the tip shaft and sample. The 
demodulated signal becomes I𝑑𝑑𝑒𝑒𝑚𝑚𝑑𝑑 ∝ �𝐸𝐸𝑛𝑛𝑒𝑒��𝐸𝐸𝑏𝑏𝑔𝑔�cos (∆∅), because 𝐸𝐸𝑛𝑛𝑒𝑒2 is negligibly small and 
𝐸𝐸𝑏𝑏𝑔𝑔2 is not modulated. By recording the demodulated signal while scanning the sample, near-field 
images are obtained simultaneously with the topography. The demodulated signal contains the 
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local near field but still includes a constant component of background scattering as interference, 
resulting in a convolution of near-field amplitude and phase. This scheme is commonly referred to 
as self-homodyne detection. To extract both the phase and amplitude of near field, a pseudo-
heterodyne detection is required. This scheme utilizes a Michelson interferometer, with the sample 
positioned in one arm and a vibrating mirror placed in the other arm as shown in Figure 2.5. A 
combination of demodulation and varying phase of the reference beam from the vibrating mirror 
allows extraction of both near-field amplitude and phase. However, mirror instability or drift in a 
pseudo-heterodyne scheme may contribute to larger noise and lower signal-to-noise ratios 
compared to a self-homodyne scheme. 

 
Figure 2.6 Spectrally resolved infrared nano-imaging of a long metallic carbon nanotube. (a) Topography 
of a representative metallic carbon nanotube. (b) to (r) Corresponding near-field response images at 
excitation wavelengths from 11.1 to 9.5 µm. Plasmon wavelength equal to twice the oscillation period 
shortens as excitation wavelength is decreased from 11.1 to 9.5 µm. 

 

Figure 2.6 shows a spectrally resolved infrared nanoimaging of a representative metallic 
SWNT. In the topography image (Figure 2.6a), there is no variation along the SWNT whereas 
there are prominent oscillations along the SWNT in the near-field images (Figures 2.6b to 2.6r). 
These oscillations correspond to the interference of tip-launched and end-reflected plasmon waves. 
To achieve best signal-to-noise near-field signal from the tiny SWNTs, we utilize the self-
homodyne scheme. 
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Figure 2.7 Line profiles of near-field images in Figure 2.6 and plasmon analysis. (a) Near-field response 
line profiles and extraction of plasmon wavelength λp and quality factor Q. Solid lines represent the near-
field profiles taken along SWNTs between the two white bars in the near-field images in Figure 2.6 at 
excitation wavelengths 11.1, 10.7, 10.3, 9.9, 9.5 µm. Plasmon wavelength equal to twice the oscillation 
period in the near-field images is marked by the black double arrow. We can extract both the plasmon 
wavelength λP and quality factor Q as a function of wavelength by fitting the line profiles with a damped 
oscillator form e−2πx (Q⋅λP)⁄ sin�(4πx) λp⁄ � from the nanotube end. The fitting curves for each wavelength 
are shown in dashed lines. (b) Extracted plasmon wavelength and quality factor as a function of excitation 
wavelength from 11.1 to 9.5 µm. 

 

Figure 2.7 shows plasmon analysis for the measured wavelength range from 11.1 to 9.5 µm. 
Solid lines in Figure 2.7a represent the near-field profiles taken along SWNTs between the two 
white bars in the near-field images in Figure 2.6 at excitation wavelengths 11.1, 10.7, 10.3, 9.9, 
9.5 µm. Plasmon wavelength equal to twice the oscillation period in the near-field images is 
marked by the black double arrow. The line profiles in Figure 2.6a reveal how the plasmon wave 
is damped as it propagates. We can extract both the plasmon wavelength λP and quality factor Q 
as a function of wavelength by fitting the line profiles with a damped oscillator form 
e−2πx (Q⋅λP)⁄ sin�(4πx) λp⁄ � from the nanotube end. The fitting curves for each wavelength are 
shown in dashed lines. Figure 2.7b shows the extracted plasmon wavelength and quality factor as 
a function of excitation wavelength from 11.1 to 9.5 µm. The plasmon wavelength shortens almost 
in a linear fashion as excitation wavelength is decreased from 11.1 to 9.5 µm, which is 
characteristic of 1D plasmons. The plasmon quality factor also depends on excitation wavelength, 
which may be associated with wavelength-dependent dielectric constants of the h-BN substrate.  
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Chapter 3 – Logarithm Diameter Scaling and Carrier 
Density Independence of One-dimensional 
Luttinger Liquid Plasmon 

3.1 Introduction and Background 

Interacting electrons in three- and two-dimensional metals are well described by quasi-
particles within the Fermi liquid theory. In one dimension (1D), however, Coulomb interactions 
qualitatively alter the electron behaviors and lead to a new type of correlated electron system — 
the Luttinger liquid. Many novel phenomena can emerge in the Luttinger liquid, such as charge-
spin separation, where the collective charge excitation (plasmon) and collective spin excitation 
(spinon) propagate independently at different velocities. Metallic single walled carbon nanotubes 
(SWNTs) provide an ideal model system to study the Luttinger liquid behavior due to the strong 
electron quantum confinement in the lateral dimensions and the presence of different metallic 
nanotubes of varying chiralities and diameters. It has been predicted that the electron-electron 
interaction strength, and therefore the Luttinger liquid plasmon excitation, has a logarithm 
dependence on the nanotube diameter[37-40]. In addition, the electron density in SWNTs can be 
controlled conveniently through electrostatic gating in a field-effect transistor device configuration. 
In spite of intense interests in the Luttinger liquid physics in SWNTs, the dependence of Luttinger 
liquid behavior on the nanotube diameter and the carrier density has never been explored 
experimentally. The abundance of ultraclean and long SWNTs on hexagonal boron nitride (h-BN) 
flakes (Chapter 2.1) and the improved performance of scattering-type IR-SNOM (Chapter 2.3) 
enable the visualization of plasmons in individual SWNTs with great signal to noise ratio, which 
makes possible the quantitative analysis of its behaviors.  

 

3.2 Logarithm Diameter  Scaling of Plasmons in Metallic SWNTs 

Ultraclean SWNTs were directly grown on exfoliated h-BN flakes on silicon substrate with 
285 nm oxide layers by chemical vapor deposition (CVD). Different species of SWNTs on h-BN 
substrates can be grown by such CVD processes. Atomic force microscopy (AFM) 
characterization of the SWNTs shows that SWNTs with diameters ranging from 0.7 nm to 2.0 nm 
exist in our samples. Plasmons in these nanotubes were probed by means of IR-SNOM at an 
excitation wavelength of 10.6 μm.  
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Figure 3.1 Correlation of near-field optical response and nanotube size in various metallic SWNTs. (a) to 
(d) Near-field images of representative metallic SWNTs with varying diameters. Prominent oscillation 
peaks persist in various metallic SWNTs. (e) to (h) Corresponding topography images of the metallic 
SWNTs. Insets are height profiles across SWNTs taken along the white dashed lines. Diameters are 
determined to be 0.7 nm, 1.0 nm, 1.4 nm, 1.8 nm, respectively. Note that all images share the same scale 
bar as shown in (a) for direct comparison. 

 

Figures 3.1a-d display infrared nano-imaging results of representative metallic SWNTs with 
varying diameters. It’s evident that prominent oscillations persist in these different metallic 
SWNTs. The oscillation peaks in the near-field images correspond to the constructive interference 
between the plasmon wave excited by the tip and that reflected by the end of the nanotube. The 
plasmon wavelength 𝜆𝜆𝑝𝑝 thus can be simply determined as twice the separation between adjacent 
peaks in the near-field images. Plasmon velocity can then be readily acquired as 𝑣𝑣𝑝𝑝 = 𝜆𝜆𝑝𝑝𝑓𝑓 where 
f ~ 28.3 THz is the frequency of the excitation light. The diameters of the SWNTs can be 
determined from the topography images, which are obtained simultaneously with near-field 
images during the scanning. Figures 3.1e-h show the topography images corresponding to the near-
field images Figures 3.1a-d. Insets are the line profiles across SWNTs taken along the white dashed 
lines. From the height profiles, diameters of SWNTs in Figures 3.1e-h are determined to be 0.7 
nm, 1.0 nm, 1.4 nm, 1.8 nm, respectively. Correlation of the near-field optical response and the 
structural property enables a systematic revelation of the size dependence of the plasmon velocity. 

 
To better present the measured data, we plot in Figure 3.2a (solid lines) the near-field response 

profiles taken along the nanotubes between two white bars in the near-field images Figures 3.1a-
d. Plasmon wavelength equal to twice the oscillation period is marked by the black double arrow. 
From the near-field response profiles, it’s clearly seen that the plasmon wavelength decreases as 
diameter increases[49, 50]. This trend is in sharp contrast to conventional 1D metal nanoshells 
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with electrons described by the Drude model. Plasmon wavelength in a 1D metal nanoshell under 
the Drude model has been theoretically predicted to increase almost in a linear fashion as diameter 
increases. Experimentally, plasmon wavelength in 1D metallic nanowires has been observed to 
increase dramatically with increasing diameter[51]. The different trend highlights the unique 
quantum nature of 1D plasmons in metallic SWNTs. 

Figure 3.2 Logarithmic diameter dependence of the plasmon velocity. (a) Near-field response line profiles 
and extraction of plasmon wavelength. Solid lines represent the near-field profiles taken along SWNTs 
between two white bars in the near-field images Figures 3.1a-d. Plasmon wavelength equal to twice the 
oscillation period in the near-field images is marked by the black double arrow. We can extract both the 
plasmon wavelength λP and quality factor Q as a function of diameter by fitting the line profiles with a 
damped oscillator form e−2πx (Q⋅λP)⁄ sin�(4πx) λp⁄ � from the nanotube end. The fitting curves for each 
diameter are shown in dashed lines. (b) The experimental data (black squares) agree excellently with a 
logarithmic diameter dependence (red curve). Horizontal errors bars reflect the precision with which 
diameter can be determined from the AFM topography measurements. Vertical error bars indicate a 95% 
confidence interval determined from the curve fitting of the near-field profiles with a damped oscillator 
form. 

 

Near-field line profiles along the nanotubes represented by the solid lines in Figure 3.2a reveal 
how the plasmon wave gets damped as it propagates. For a quantitative study, we can extract both 
the plasmon wavelength λP and quality factor Q as a function of diameter by fitting the line profiles 
with a damped oscillator form e−2πx (Q⋅λP)⁄ sin�(4πx) λp⁄ � from the nanotube end. The fitting 
curves for each diameter are shown in dashed lines in Figure 3.2a. In our measured diameter range 
from 0.7 nm to 1.8 nm, plasmon wavelength 𝜆𝜆𝑝𝑝 is determined to be from 95.4 nm to 81.5 nm with 
a 95% confidence interval of ~ 2.0 nm from the fitting. Plasmon velocity are then easily calculated 
as 𝑣𝑣𝑝𝑝 = 𝜆𝜆𝑝𝑝𝑓𝑓 ~ 2.7 × 106 𝑚𝑚/𝑠𝑠  to 2.3 × 106 𝑚𝑚/𝑠𝑠  where f ~ 28.3 THz is the frequency of the 
excitation light. In metallic SWNTs, 𝑣𝑣𝐹𝐹 ~ 0.8 × 106 𝑚𝑚/𝑠𝑠  is the Fermi velocity. Figure 3.2b 
summarizes the dependence of plasmon velocity in terms of 𝑣𝑣𝑝𝑝 𝑣𝑣𝐹𝐹⁄   on diameter for metallic 
SWNTs with an ample range of diameters including those shown in Figure 3.1. Horizontal error 
bars reflect the precision with which diameter can be determined from the AFM topography 
measurement. Vertical error bars indicate the uncertainty from the fitting. These data points can 
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be explicitly compared with predictions by the Luttinger liquid theory. For an individual SWNT 
of diameter d residing on a substrate, the Luttinger liquid theory predicts the Luttinger liquid 
interaction parameter g to be 

                                                         1
𝑔𝑔

= 𝑣𝑣𝑝𝑝
𝑣𝑣𝐹𝐹

= �1 + 8𝑒𝑒2

4𝜋𝜋𝜀𝜀𝑒𝑒𝑒𝑒𝑒𝑒𝜋𝜋ℏ𝑣𝑣𝐹𝐹
In(𝜆𝜆𝑝𝑝

𝜋𝜋𝑑𝑑
)                                         (3.1) 

where 𝑣𝑣𝑝𝑝 is the velocity of the collective charge mode, i.e. plasmon velocity, 𝑣𝑣𝐹𝐹 ~ 0.8 × 106 𝑚𝑚/𝑠𝑠 
is the Fermi velocity, 𝜋𝜋𝑒𝑒𝑒𝑒𝑒𝑒 is the effective dielectric constant due to substrate screening and the 
plasmon wavelength 𝜆𝜆𝑝𝑝 determines the cutoff length of the Coulomb interactions and acts as the 
screening length. The second term arises from the long-range Coulomb interaction which goes as 
𝑞𝑞2 2𝐶𝐶⁄ , where 𝐶𝐶~ 2𝜋𝜋𝜋𝜋𝑒𝑒𝑒𝑒𝑒𝑒 𝐼𝐼𝑛𝑛(𝜆𝜆𝑝𝑝

𝜋𝜋𝑑𝑑
)�  is the capacitance per unit length. Therefore, the electron-

electron interaction in the Luttinger liquid exhibits a logarithm scaling with the nanotube diameter. 
In our measured diameter range from 0.7 nm to 1.8 nm, plasmon velocity 𝑣𝑣𝑝𝑝 has been obtained to 
be from 2.7 × 106 𝑚𝑚/𝑠𝑠  to 2.3 × 106 𝑚𝑚/𝑠𝑠 . The Luttinger liquid parameter g describing the 
interaction in SWNTs can then also be determined to be 𝑔𝑔 = 𝑣𝑣𝐹𝐹 𝑣𝑣𝑝𝑝⁄ ~ 0.29  to 0.34, which 
indicates strong Coulomb repulsion between electrons in all studied metallic SWNTs. Because 
interaction energy dominates in studied metallic SWNTs, we can safely neglect the first term in 

equation (3.1). The plasmon velocity thus becomes 𝑣𝑣𝑝𝑝 = � 8𝑒𝑒2𝑣𝑣𝐹𝐹
4𝜋𝜋𝜀𝜀𝑒𝑒𝑒𝑒𝑒𝑒𝜋𝜋ℏ

In(𝜆𝜆𝑝𝑝
𝜋𝜋𝑑𝑑

) ∝ �In(𝜆𝜆𝑝𝑝
𝜋𝜋𝑑𝑑

). Note that 

plasmon wavelength 𝜆𝜆𝑝𝑝  also varies with diameter but the change (~ 16%) is much smaller 
compared to the change in diameter (more than 100%). This predicted logarithmic dependence on 
the diameter is depicted in Figure 3.2b by the red curve, which shows excellent agreement with 
the experimental results represented by the black squares.  
 

3.3 Carrier Density Independence of Plasmons in Metallic 
SWNTs 

We next systematically investigate the dependence of plasmon behaviors on carrier density 
in metallic SWNTs. Figure 3.3a illustrates the schematic of infrared nano-imaging of SWNTs with 
carrier density controlled by applying a back gate voltage Vg. In order to observe the prominent 
Luttinger liquid plasmon oscillations by our infrared nano-imaging technique, we utilize the 
nanotube end as a well-defined reflector to create the standing plasmon wave. The metallic 
nanotubes are sitting on h-BN substrates and their charge neutral points tend to be close to a zero 
gate voltage. When gate voltage Vg is varied from -20 to 30 V, the carrier type in carbon nanotubes 
changes from hole doping to charge neutrality and then to electron doping. The near-field optical 
responses at these different gate voltages are shown in Figures 3.3c-h. It's evident that prominent 
plasmons are excited at different gate voltages or carrier densities. Figure 3.4 displays the line 
profiles along the carbon nanotube in the near-field images Figures 3.3c-h. Vertical dashed lines 
serve as guide to the eye. When the gate voltage is varied from -20 V to 30 V, the period of plasmon 
standing wave remains unchanged. There are small changes in the exact amplitude of the near-
field signal, which may arise from the slightly different AFM scanning condition due to the 
presence of the back gate voltage. In contrast, differences in the plasmon oscillation periods are 
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clearly observable after several cycles in the nanotube diameter dependence as shown in Figure 
3.2a. 

 
Figure 3.3 Infrared nano-imaging of an electrostatically gated metallic nanotube. (a) Schematic of infrared 
nano-imaging of a nanotube with carrier density controlled by applying a back gate voltage Vg. (b) 
Illustrative band diagram of metallic SWNTs. With this linear dispersion and 1D nature, the Fermi velocity 
as well as the density of state remains a constant independent on the Fermi energy. (c) to (h) Near-field 
responses of a metallic SWNT at different gate voltages. From (c) to (h), the gate voltage is varied from -
20 to 30 V and the nanotube changes from hole doping to charge neutrality and then to electron doping. 
Plasmon wavelength determined as twice the oscillation period and plasmon amplitude reflected in the 
near-field intensity are largely independent on gate voltages. 
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Figure 3.4 Line profiles along the carbon nanotube in the near-field images Figures 3.3c-h. Vertical dashed 
lines serve as guide to the eye. When the gate voltage is varied from -20 to 30 V, the period of plasmon 
standing wave remains exactly the same. There are small changes in the exact amplitude of the near-field 
signal, which may arise from the slightly different AFM scanning condition due to the presence of the back 
gate voltage. In contrast, differences in the plasmon oscillation periods are clearly observable after several 
cycles in the nanotube diameter dependence as shown in Figure 3.2a. 

 
Note that even at around charge neutrality (Figures 3.3d-e, Figure 3.4), the plasmon 

oscillations still exist and behave the same way as the highly doped ones (Figure 3.3h, Figure 3.4). 
This counter-intuitive carrier density independent plasmon behavior in metallic nanotubes stands 
in striking contrast to conventional plasmons. In conventional 2D or 3D systems, plasmon 
wavelength and amplitude are closely associated with the carrier density for a given frequency. 
For instance, plasmons in graphene have been demonstrated to be continuously tuned by changing 
gate voltages[52-54]. This peculiar plasmon behavior in metallic SWNTs arises from its unique 
1D massless Dirac electrons. Figure 3.3b illustrates the band diagram of a metallic SWNT which 
features a linear dispersion. With this linear dispersion and 1D nature, the Fermi velocity as well 
as the density of state remains a constant independent on the Fermi energy. Quantum excitations 
including the plasmons of an electron liquid close to the Fermi energy are determined by the Fermi 
velocity and density of state rather than the total carrier concentration. The plasmon excitation in 
metallic SWNTs therefore shows no dependence on carrier density. The peculiar behavior is also 
explicitly evident in the prediction by the Luttinger liquid theory as shown in equation (3.1). It’s 
clear from the prediction that plasmon wavelength is a function of only the Fermi velocity for a 
given nanotube under certain dielectric environment. Because Fermi velocity is a constant in 
metallic SWNTs with linear dispersion, the plasmon behaviors will remain exactly the same 
regardless of carrier density.  
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3.4 Summary and Discussion 

In summary, we report the observation of peculiar Luttinger liquid plasmon signatures in 
metallic SWNTs, including an intriguing logarithmic dependence of plasmon wavelength on 
diameter and a counter-intuitive independence on carrier density. These signatures stand in stark 
contrast to conventional plasmons and are prime examples of quantum size effects in nanoscale 
plasmonic systems. Our findings not only provide fundamental insight into Luttinger liquid 
physics in 1D systems but also pave the way for promising nanophotonic applications based on 
SWNTs.  
 

We would like to remark that Random phase approximation (RPA) theory will predict the 
same plasmon dispersion behaviors as those obtained by the Luttinger liquid theory[55]. Therefore, 
the measurement of plasmons cannot provide a definitive proof of the Luttinger liquid by itself. 
To unambiguously demonstrate the Luttinger liquid behavior, one can combine the study of 
nanotube plasmon (which can determine the Luttinger liquid parameter g) with electrical tunneling 
study that has a power low scaling with index determined by g. This correlative study will be 
discussed in Chapter 4. Our study in this chapter serves to further test the specific predictions of 
the Luttinger liquid theory, including the logarithmic dependence of plasmon velocity and the 
independence of carrier concentration. Our study establishes experimentally the unusual 
phenomenology that plasmon excitation in 1D quantum systems can be completely independent 
on charge carrier, and it provides an experimental determination of the Luttinger liquid parameter 
g and its scaling with the nanotube diameter.   
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Chapter 4 – Correlation of Electron Tunneling and 
Plasmon Propagation in a Luttinger Liquid 

4.1 Introduction and Background 

In Chapter 3, we have demonstrated that infrared nanoimaging of plasmons in metallic 
SWNTs provides an experimental determination of the Luttinger liquid parameter g and its 
logarithm scaling with the nanotube diameter. Both the power index of the correlation function 
and the velocity ratio between charge and spin modes are uniquely defined by a single Luttinger 
liquid interaction parameter g. To unambiguously demonstrate the Luttinger liquid behavior, one 
can combine the study of nanotube plasmon (which can determine the Luttinger liquid parameter 
g) with electrical tunneling study that has a power low scaling with index determined by g.  
Because the massless Dirac electrons exhibit linear energy dispersion up to 1 eV, the Luttinger 
liquid behavior in metallic SWNTs is rigorous for temperatures up to thousands of Kevin. 
Previously, Luttinger liquid behavior in SWNTs has been mostly studied through electrical 
tunneling measurements in nanotubes and their ropes, which shows power-law like tunneling 
probability[41-43, 56, 57]. However, that interpretation is plagued by the unknown structure of 
the SWNT-metal contact tunnel junction, and the unknown Luttinger parameter of nanotube ropes. 
Two crossed metallic SWNTs provide an attractive realization of Luttinger liquid tunnel 
junction[56, 58].  Here we investigate SWNT cross junctions with high quality that are directly 
grown on hexagonal boron nitride (hBN) flakes as shown in Figure 4.1.  

 
Figure 4.1 AFM topography image of a representative SWNT cross junction sample on h-BN. The SWNT 
cross junction is composed of two individual SWNTs with a point contact (indicated by the arrow). 

 
The SWNT cross junction compare favorably with SWNT/metal junction in two ways. On 

one hand, the complicated mechanism at the tunneling process from SWNT to metal can be 
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circumvented when tunneling between SWNTs dominate. On the other hand, the suppression of 
tunneling density of states exist in both SWNTs, resulting in a larger power index for the power-
law suppression of the tunneling conductance. As discussed in Chapter 2.2, the tunneling density 
of state of a Luttinger liquid is suppressed as a power-law function of energy, 𝜌𝜌(𝐸𝐸) ∝ 𝐸𝐸𝑅𝑅, where 
E is the energy way from the Fermi energy, and the power index 𝛼𝛼 depends on the interaction 
parameter g as 𝛼𝛼 = (𝑔𝑔 + 𝑔𝑔−1 − 2)/8. By applying a bias between two Luttinger liquids with 
respective Luttinger parameter g1 and g2 and corresponding power index 𝛼𝛼1 and 𝛼𝛼2, the tunneling 
current I between the two Luttinger liquids at a bias V is given by 

𝐼𝐼 ∝  � (𝑑𝑑)𝑅𝑅1(𝑒𝑒 − 𝑑𝑑)𝑅𝑅2𝑑𝑑𝑑𝑑 =
Γ(𝛼𝛼1 + 1)Γ(𝛼𝛼2 + 1)
Γ(𝛼𝛼1 + 𝛼𝛼2 + 1)

𝑉𝑉

0
𝑒𝑒𝑅𝑅1+𝑅𝑅2+1 

The differential tunneling conductance dI/dV should vary with the bias as d𝐼𝐼/d𝑒𝑒 ∝ 𝑒𝑒𝑅𝑅1+𝑅𝑅2, where 
𝛼𝛼1(2) = (𝑔𝑔1(2) + 𝑔𝑔1, (2)−1 − 2)/8. For a SWNT cross junction, Luttinger parameter g for both 
SWNTs can be determined from plasmon propagation. If both SWNTs have the same Luttinger 
liquid parameter g, then the power index 𝛼𝛼 = 𝛼𝛼1 + 𝛼𝛼2 = (𝑔𝑔 + 𝑔𝑔−1 − 2)/4. The power index can 
be obtained through the differential conductance measurement.  
 

4.2 Distinguish Metallic and Semiconducting SWNTs by Infrared 
Nanoimaging  

 
Figure 4.2. Near-field optical nanoscopy characterizations on SWNTs on h-BN. (a) Near-field optical 
nanoscopy image of an individual metallic SWNT with a diameter of ~ 1 nm.  Inset shows the corresponding 
topography image that is simultaneously recorded. (b) Experimental intensity profile (in black) of Luttinger 
liquid plamon oscillations and the corresponding theoretical fitting (in red) with the damped oscillator form 
e−2πx (Q⋅λP)⁄ sin�(4πx) λp⁄ �  along the tube axis between two bars in (a), where λp  is the plasmon 
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wavelength and Q is the quality factor. Luttinger parameter g ~ 0.31 (shown in (a)) is directly obtained 
from the measured plasmon wavelength λp. (c) AFM topography image of an individual metallic SWNT 
(tube A) and an individual semiconducting SWNT (tube B) on hBN with similar diameters ~ 0.8 nm. (d) 
The corresponding near-field optical nanoscopy image of (c). The metallic SWNT (tube A) exhibits 
prominent Luttinger liquid plasmon oscillations, whereas the semiconducting SWNT (tube B) barely shows 
any near-field optical response.  

 

Infrared nanoimaging of SWNTs on h-BN flakes provides unambiguous distinguishment 
between metallic and semiconducting SWNTs, and directly yields an experimental determination 
of Luttinger parameter g of the SWNT. We observe well-defined Luttinger liquid plasmon 
oscillations with high quality factor in individual metallic SWNTs on h-BN as shown in Figure 
4.2a. The inset of Figure 4.2a is an AFM topography image of the same nanotube (diameter ~ 1 
nm) which is simultaneously recorded. Oscillation peaks in Figure 4.2a correspond to the 
constructive interference between the excited plasmons under the tip and the reflected plasmon 
waves by the tube end. Therefore, the plasmon wavelength λp is simply two times the oscillation 
period of the near-field signal. We determine λp and quality factor Q by fitting the experimental 
plasmon oscillation profile in Figure 4.2a (between two white bars) with the damped oscillator 
form e−2πx (Q⋅λP)⁄ sin�(4πx) λp⁄ � . The results are presented in Figure 4.2b. The fitting can 
reproduce the experimental data very well, which yields λp = 90 nm  and Q = 25 . Very 
importantly, the observation of high quality Luttinger liquid plasmons by near-field optical 
nanoscopy enables us to directly measure the Luttinger parameter g without relying on other 
parameters. With known λp, the plasmon velocity vp is determined to be vp ~ 2.55 × 106 m/s by 
using vp = c × λp λ0⁄ , where c is the speed of light and λ0 is the wavelength of the infrared probe 
light (10.6 μm). We can then directly obtain the Luttinger parameter g ~ 0.31 for this metallic 
SWNT by using 1 g⁄ = vp vF⁄  with Fermi velocity vF ~ 8 × 105 m/s . Note that we observe 
consistent Luttinger liquid plasmon oscillations and Luttinger parameters in all of our investigated 
individual metallic SWNT samples on h-BN. 

 
Luttinger liquid behaviors in metallic SWNTs and semiconducting SWNTs are predicted to 

be very different[47]. We employ near-field optical nanoscopy to identify metallic SWNTs from 
semiconducting species in order to find SWNT cross junctions composed of two metallic SWNTs. 
We observe dramatically distinct near-field optical response between individual metallic and 
semiconducting SWNTs. As an example, Figures 4.2c and 4.2d present the topography image and 
the corresponding near-field optical nanoscopy image of two individual SWNTs on h-BN, 
respectively; the two nanotubes (labeled as A and B) have similar diameters ~ 0.8 nm. Nanotube 
A in Figure 4.2d exhibits prominent Luttinger liquid plasmon oscillations that are similar to those 
in Figure 4.2a, whereas nanotube B barely shows any near-field optical contrast. Nanotube A that 
exhibits Luttinger liquid plasmon oscillations corresponds to a metallic SWNT with zero band gap, 
and nanotube B which is dark is a semiconducting SWNT with a finite band gap that is much larger 
than the infrared laser excitation energy. A detailed study of plasmons in semiconducting SWNTs 
will be discussed in Chapter 5. We further confirm this by complementary electrical transport 
measurements as shown in Figure 4.3. Tube A and B respectively exhibit a weak (on/off < 5) and 
strong gate dependence (on/off > 1000) in conductance at room temperature, characteristics of 
metallic and semiconducting nanotubes.  
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Figure 4.3 Transport data on individual metallic and semiconducting SWNTs characterized by near-field 
optical nanoscopy. (a) Transport data of an individual metallic SWNT (tube A in Figure 4.2c) with weak 
dependence on backgate voltage (on/off < 5). (b) Transport data of an individual semiconducting SWNT 
(tube B in Figure 4.2c) with strong dependence on backgate voltage (on/off > 1000). Measurements in (a) 
and (b) are carried out at room temperature in vacuum by standard lock-in technique. 

 

4.3 Correlation of Electron Tunneling and Plasmon Propagation 
at a SWNT Junction  

Two metallic SWNT cross junctions (i.e. crossed Luttinger liquid junctions) characterized by 
near-field optical nanoscopy are shown in Figure 4.4 and Figure 4.5. Clear observation of Luttinger 
liquid plasmons in each of the constituent SWNTs provides an unambiguous identification of 
metallic SWNTs in these junctions. In the following, we will turn our focus to the experimental 
determination of Luttinger parameters g that are independently measured from two different 
physical properties, i.e. electron tunneling density of states and plasmon velocity in crossed 
Luttinger liquid junctions. 
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Figure 4.4 Correlation of electron tunneling and plasmon propagation in Luttinger liquid. (a) Near-field 
optical nanoscopy characterization on a metallic SWNT cross junction. Luttinger parameters are determined 
to be g ~ 0.32 (tube 1-3) and g ~ 0.31 (tube 2-4) for each of two nanotubes from the measured Luttinger 
liquid plamons. Metal contacts are denoted by numbers. (b) dI dV⁄  measurement of the electron tunneling 
probability across the Luttinger liquid junction as a function of electrical bias (Vsd) at 15 K (through contacts 
1 and 4). The SWNT junction dominates the total resistance and a two probe measurement is carried out. 
A power function fitting (blue line) yields the power index α ~ 0.43 which corresponds to g ~ 0.29 by using 
𝛼𝛼 = (𝑔𝑔 + 𝑔𝑔−1 − 2)/4. (c) Power-law scaling behavior on electrical bias at 15 K at a different backgate 
voltage with respect to (b), which yields g ~ 0.33. (d) The corresponding temperature-dependent electron 
tunneling data (zero Vsd) with the same backgate voltage as in (b), which yields g ~ 0.29.  (e) Scaled 
conductance (dI dV⁄ )/𝑇𝑇𝑅𝑅  as a function of eV/kBT at different temperatures, where α is the power 
component with bias scaling at each temperature. All data collapse onto a single curve reasonably well, 
which provides an independent verification of Luttinger liquid behavior. 

 

Our near-field optical nanoscopy characterization in Figure 4.4a directly yields Luttinger 
parameters of the two metallic tubes, g ~ 0.32 (tube 1-3 between the electrical contacts 1 and 3) 
and g ~ 0.31 (tube 2-4 between the electrical contacts 2 and 4), respectively by the same analysis 
demonstrated in Figure 4.2. We then independently obtain Luttinger parameter g on the same 
SWNT cross junction through measuring the electron tunneling probability across two Luttinger 
liquids by the electrical transport measurements. The results are presented in Figures 4.4a to 4.4d. 
The resistance of the two individual SWNT devices (1-3 and 2-4) both are ~ 50 kΩ at room 
temperature which is about 10 times smaller than that of the junction (e.g. 1-4). Since the junction 
dominates the total resistance, we measure the electron tunneling process across the junction in a 
two probe configuration between contacts 1 and 4 with contacts 2 and 3 floating. Figure 4.4b shows 
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the measured dI⁄dV as a function of electrical bias Vsd in a double-logarithmic scale across the 
Luttinger tunneling junction (through contacts 1 and 4) at 15 K. The electron tunneling density of 
states in Luttinger liquid is characterized by a power-law decay of correlation functions with the 
decrease of excitation energy (this case is the applied bias) in which the measured dI⁄dV should 
scale with bias V as dI dV⁄  ∝ Vα, where 𝛼𝛼 = (𝑔𝑔 + 𝑔𝑔−1 − 2)/4 for electron tunneling from one 
Luttinger liquid to another as discussed in Chapter 4.1.                    

                                                                        
Indeed, the experimentally observed dI⁄dV across the Luttinger liquid junction (red crosses in 

Figure 4.4b exhibits a well-defined power-law scaling (experimental fitting by blue line in Figure 
4.4b), which yields α ~ 0.43 and the corresponding g ~ 0.29. The power-law index shows a 
universal behavior, which remains a constant (within the experimental uncertainty) for electrical 
bias dependence at different backgate voltages and for temperature dependence. Figure 4.4c shows 
the electrical bias scaling behavior (through contacts 1 and 4) at a different backgate voltage at 15 
K; experimental fitting by a power function (blue line) yields g ~ 0.33. The same power-law scaling 
behavior as in Figure 4.4b (with the same backgate voltage) is observed in its corresponding 
temperature-dependent tunneling data as presented in Figure 4.4d (G ∝ Tα with zero Vsd), which 
yields g ~ 0.29. This is consistent with Luttinger liquid prediction for metallic SWNTs with linear 
band dispersion with a constant tunneling barrier. We also directly measure the dI dV⁄  at different 
temperatures, which provides an additional verification of Luttinger liquid behavior for electron 
tunneling across the SWNT junction. To see this, by following previous reports, we present our 
dI⁄dV results at different temperatures (15 K, 40 K and 80 K) in Figure 4.4e, where the measured 
dI dV⁄  is scaled by 𝑇𝑇𝑅𝑅  and the bias voltage is called by the thermal energy 𝑘𝑘𝐵𝐵𝑇𝑇. If the experimental 
results agree with Luttinger liquid theory, all data at different temperatures should be able to 
collapse onto a single universal curve. As can be seen in the Figure 4.4e, our data at different 
temperatures indeed collapse onto a single curve reasonably well. The quantitative agreement of 
Luttinger parameters, that is, g close to ~ 0.30, independently measured from electron tunneling 
density of states and plasmon propagation velocity in the same well-defined Luttinger liquid 
system provides an unambiguous demonstration of Luttinger liquid behaviors in SWNTs. This is 
the first experimental correlation of different interaction-determined Luttinger liquid physical 
properties in the same carbon nanotube. 
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Figure 4.5 Correlation of electron tunneling and plasmon propagation in Luttinger liquid with a low-
resistance tunneling junction. (a) Near-field optical nanoscopy characterization on a metallic SWNT cross 
junction. Luttinger parameters are determined to be g ~ 0.30 (tube 1-3) and g ~ 0.31 (tube 2-4), respectively. 
Metal contacts are denoted by numbers. (b) Differential conductance (dIx dVx⁄ ) measurement of the 
electron tunneling probability across the Luttinger liquid junction as a function of voltage drop across the 
junction (Vx) at 15 K. Measurements are carried out in a four probe configuration where the electrical 
current is forced to flow through contacts 1 and 2 and voltage drop is measured through contacts 3 and 4. 
A power function fitting (blue line) yields g ~ 0.24 by using 𝛼𝛼 = (𝑔𝑔 + 𝑔𝑔−1 − 2)/4. (c) dIx dVx⁄  at 15 K at 
a different backgate voltage with respect to (b), which yields g ~ 0.33. (d) The corresponding temperature-
dependent electron tunneling data (zero Vx) with the same backgate voltage as in (b), which yields a best 
fit of g ~ 0.26.   

 

Correlation of electron tunneling and plasmon propagation in another SWNT cross junction 
is shown in Figure 4.5. The Luttinger parameters for the two constituent metallic SWNTs are 
determined to be g ~ 0.30 (tube 1-3) and g ~ 0.31 (tube 2-4) as presented in Figure 4.5a based on 
the near-field optical nanoscopy characterizations. The resistance for tube 1-3 and tube 2-4 is ~ 50 
kΩ and ~ 60 kΩ at room temperature, and that the resistance for the SWNT junction is ~ 80 kΩ by 
a four probe measurement. Compared to the tunneling junction in Figure 4.4, this SWNT cross 
junction is highly conductive, and thus a four-probe measurement is carried out to investigate the 
electron tunneling across two Luttinger liquids. The four-probe tunneling measurement is achieved 
by forcing current to flow through contacts 1 and 2 and using contacts 3 and 4 as voltage probes. 
We first measure the electron tunneling density of states dIx dVx⁄  as a function of voltage drop Vx 
across the junction at 15 K. The data is plotted in Figure 4.5b with a double-logarithmic scale. An 
apparent power-law scaling of tunneling conductance dIx dVx⁄  ∝ (Vx)α  across the Luttinger 
liquid tunneling junction is observed. Experimental fitting by a power function (blue line) yields 
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an effective g value of ~ 0.24. This g value shows a small deviation from the Luttinger parameters 
(g close to ~ 0.30) obtained from the plasmon velocity measurements on the same Luttinger liquid 
(Figure 4.5a). The corresponding temperature-dependent data exhibits a g value close to ~ 0.26 
(Figure 4.5d), while the electrical bias scaling behavior at a different backgate voltage yields a best 
fit value of g ~ 0.33 (Figure 4.5c). Presumably this apparent g value variation from 0.24 ~ 0.33 is 
due to a small change of the tunneling coefficient as a function of the electrical bias and/or 
temperature that is caused by nanotube deformations under bias conditions. At present, we do not 
understand the microscopic origin of the small g variation observed in Figure 4.5. It does show 
that one should be careful with the interpretation of Luttinger parameters g observed solely from 
electrical tunneling measurements. 

 

4.4 Summary and Discussion 

In summary, we directly correlate two completely distinct physical properties, i.e., the 
electron tunneling density of states and the plasmon propagation velocity in the same SWNT cross 
junctions, to obtain the first definitive parameter-free test of the Luttinger liquid phenomena in 
carbon nanotubes. We demonstrate a very good agreement to the Luttinger liquid behavior in 
Luttinger liquid tunneling junction.  

 
Figure 4.6 Power-law scaling with electrical bias in individual metallic SWNTs. (a) dI⁄dV results for the 
constituent metallic SWNT (tube 1-3 in Figure 4.4a) at 15 K with the same backgate voltage as used in 
Figure 4.4b. The power index from our best fitting is α ~ 0.11, which corresponds to g ~ 0.70. (b) dI⁄dV 
results for another isolated metallic SWNT measured at 20 K. The power index from our best fitting is α ~ 
0.23, which corresponds to g ~ 0.52.  

 
dI⁄dV measurements on the constituent individual metallic SWNT (tubes in Figure 4.4) are 

performed for comparison. The differential conductance of each SWNT exhibits an apparent 
power-law scaling with bias, which is similar to that reported in previous studies[41-43]. The 
power index α is related to g as α = (1 g⁄ − 1) 4⁄  for electron tunneling between metal contacts 
and SWNTs underneath them. Fitting the experimental data by a power function yields α ~ 0.11 
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and g ~ 0.70, which deviates significantly from the measured g ~ 0.32 by the near-field optical 
nanoscopy (Figure 4.4a). Measurements on other isolated individual metallic SWNTs show that 
the power scaling index varies significantly in different SWNTs, although the optically determined 
Luttinger parameter remains the same. We attribute this variation to the complicated and unknown 
nature of SWNT-metal contacts, which can modify the electron tunneling process in an 
uncontrolled fashion and mask the underlying Luttinger liquid behavior. It highlights the 
importance of a combined electrical and optical studies for quantitative understanding of Luttinger 
liquid physics in 1D systems.    
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Chapter 5 – Nonlinear Luttinger Liquid Plasmons in 
Semiconducting Single Walled Carbon Nanotubes 

5.1 Introduction and Background 

Electrons in three- and two-dimensional metals are well represented by weakly interacting 
quasi-particles within Fermi liquid theory. However, this theory breaks down in one dimension 
(1D) where Coulomb interactions become dominant and can qualitatively alter the electronic 
behaviors. Luttinger liquid theory, which is based on the linearization of the dispersion relation of 
the particles constituting the fluid, can successfully describe many exotic phenomena in 1D metals 
such as spin-charge separation and power-law dependence of spectral functions near the Fermi 
level[37-39, 42, 43, 59-61]. However, the electronic band dispersion in most 1D systems is often 
not strictly linear and the linearization taken in Luttinger liquid theory limits its validity to low-
energy electron behaviors. In order to describe high-energy quasi-particle excitations and 
dynamics, novel theoretical approaches have been employed to replace the linear dispersion with 
a generic one, which is known as nonlinear Luttinger liquid theory[46, 47, 62-68]. This nonlinear 
theory predicts many intriguing electron behaviors beyond the linear Luttinger liquid paradigm. 
For instance, the collective electron excitations (i.e. plasmons) in a linear Luttinger liquid are 
expected to be extremely long-lived due to the absence of an intrinsic relaxation mechanism. We 
have shown in Chapters 3 and 4 that metallic SWNTs with the linear dispersion are ideal 
realizations of a linear Luttinger liquid. Long-lived plasmons are observed in metallic SWNTs 
with peculiar signatures well reproduced by the linear Luttinger liquid formulism. However, in a 
nonlinear Luttinger liquid, the nonlinearity of the band dispersion can strongly mix different 
plasmon excitations, resulting in a drastic reduction of plasmon lifetime. Such unusual excited 
state dynamics of a nonlinear Luttinger liquid have rarely been experimentally explored previously.  

 
As discussed in Chapter 2.1, semiconducting SWNTs have a hyperbolic dispersion, providing 

an attractive realization of a nonlinear Luttinger liquid. There is large nonlinearity at the bottom 
of the band and this band curvature decreases as the band progressively becomes linear with higher 
Fermi energy. By tuning the carrier density in SWNTs while in situ performing infrared 
nanoimaging, we can investigate how nonzero band curvature affects the plasmonic excitations in 
the system. The experimental results will serve to test the nonlinear Luttinger liquid theory in 
semiconducting SWNTs.  
 

5.2 Gate Dependent Infrared Nanoimaging of Metallic and 
Semiconducting SWNTs 

Metallic and semiconducting SWNTs with diameter ranging from 0.7 to 2.0 nm are directly 
grown on hexagonal boron nitride (h-BN) flakes exfoliated on SiO2 (285 nm)/Si substrates by 
chemical vapor deposition (CVD). SWNTs on h-BN flakes are ultraclean and very long and can 
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be readily integrated into field-effect transistor (FET) devices. We probe the plasmons in gated 
nanotube devices at different carrier densities using infrared scanning near-field optical 
microscopy (SNOM) as illustrated in Figure 5.1a. This infrared nano-imaging technique is based 
on a tapping mode atomic force microscopy (AFM). Infrared (IR) light with wavelength 10.6 μm 
is focused onto the apex of a gold coated AFM tip. The sharp tip with its large momentum 
simultaneously enables the excitation of the plasmons and scattering of this plasmon field to the 
far field. The back scattered signal contains essential information about the plasmons and is 
captured by a mercury cadmium telluride (MCT) detector. The excited plasmon wave propagates 
along the nanotubes and gets reflected by the nanotube ends or other scatters. The interference 
between the tip-launched plasmon field and the reflected plasmon field produces a periodic electric 
field distribution. We probe this periodic electric field by scanning the tip along the nanotube, 
which enables the real-space visualization of the plasmons.  
 

 
Figure 5.1 Schematic of SNOM of SWNTs with carrier density controlled by electrostatic gating. (a), 
Schematic of infrared nano-imaging of a nanotube FET device. SWNTs are directly grown on hexagonal 
boron nitride (h-BN) flakes exfoliated on SiO2 (285 nm)/Si substrates by chemical vapor deposition (CVD). 
A back gate voltage Vg is applied between the metal electrode (Au/Pd) contacting the SWNT and the Si 
substrate to tune the carrier concentration in the SWNT. For infrared (IR) nano-imaging, IR light with 
wavelength 10.6 μm is focused onto the apex of a gold coated AFM tip. The sharp tip with its large 
momentum enables the excitation of the plasmons. The excited plasmon wave propagates along the 
nanotubes and gets reflected by the nanotube ends or other scatters. The interference between the tip-
launched plasmon field and the reflected plasmon field produces a periodic electric field distribution 
schematically illustrated by the interference fringes in the SWNT. Probing of the electric field by scanning 
the tip along the nanotubes enables the direct visualization of the plasmons. (b), Band structure of metallic 
SWNTs. Metallic SWNTs feature a gapless linear energy-momentum (E-k) dispersion schematically shown 
as the red curve. (c), Band structure of semiconducting SWNTs. Semiconducting SWNTs feature a 
hyperbolic E-k dispersion (schematically shown as the red curve) with a finite band gap Eg. The diagonal 
black dashed lines indicate the linear band structure of metallic SWNTs for comparison with the hyperbolic 
band structure of semiconducting SWNTs. When a back gate voltage Vg is applied in a relative to the 
charge neutral point Vcnp, the Fermi level EF indicated by the horizontal dashed blue lines in metallic and 
semiconducting SWNTs can be continuously tuned.  



34 

 

 

The electronic band structures of SWNTs have been discussed in Chapter 2.1. The band 
structures of metallic and semiconducting SWNTs are illustrated in Figures 5.1b and 1c, 
respectively. Metallic nanotubes feature a gapless linear band dispersion, 𝐸𝐸 = ℏ𝑣𝑣0𝑘𝑘𝐹𝐹, where ℏ is 
the reduced Planck’s constant, 𝑣𝑣0 ~ 0.8 × 106 𝑚𝑚/𝑠𝑠 is the Fermi Velocity in graphene, and 𝑘𝑘𝐹𝐹 is 
the Fermi wavevector. Their 1D linear bands provide an ideal realization of the linear Luttinger 
liquid. Semiconducting nanotubes, in contrast, have a finite band gap Eg and feature a hyperbolic 
dispersion, 𝐸𝐸2 = (𝐸𝐸𝑔𝑔 2⁄ )2 + (ℏ𝑣𝑣0𝑘𝑘𝐹𝐹)2 , where Eg is inversely proportional to the nanotube 
diameter d as 𝐸𝐸𝑔𝑔 = 0.75𝑒𝑒𝑒𝑒/𝑑𝑑 (𝑛𝑛𝑚𝑚). When a back gate voltage Vg is applied (Figure 5.1a) relative 
to the charge neutral point Vcnp, the Fermi level EF in both metallic and semiconducting SWNTs 
can be continuously tuned from hole doping to charge neutrality and to electron doping as 
illustrated in Figures 5.1b and 5.1c. The charge neutral point Vcnp is the gate voltage needed to 
offset the unintentional doping usually coming from the substrate. 

 
In Figure 5.2, we systematically investigate the dependence of plasmon behaviors on carrier 

density in semiconducting SWNTs and compare that with plasmon behaviors in doped metallic 
SWNTs. When gate voltage 𝑒𝑒𝑔𝑔 is varied from -20 to 20 V, the carrier type in SWNTs changes from 
hole doping to charge neutrality and then to electron doping. The near-field optical responses at 
these different gate voltages are shown in Figures 5.2a to 5.2f. The topography recorded 
simultaneously is shown in the top right inset in Figure 5.2a. In the near-field images, nanotubes 
labeled as M1 and M2 in Figure 5.2a exhibit prominent oscillation peaks at all gate voltages 
(Figures 5.2a to 5.2f). These are gapless metallic SWNTs with linear dispersion. The peaks in the 
near-field images correspond to the constructive interference between the plasmon wave launched 
by the tip and that reflected by the nanotube end. Plasmon wavelength can be simply determined 
as twice the oscillation period. By fitting the line profiles along the nanotubes in the near-field 
images at different gate voltages with a damped oscillator form e−2πx (Q⋅λP)⁄ sin�(4πx) λp⁄ �, we 
can determine the plasmon wavelength 𝜆𝜆𝑝𝑝 to be ~ 90 nm and the quality factor Q to be ~ 22 and 
observe that they are largely unchanged at different gate voltages. Plasmon velocity can be 
determined from 𝑣𝑣𝑝𝑝 = 𝜆𝜆𝑝𝑝𝑓𝑓 ~ 2.5 × 106 𝑚𝑚/𝑠𝑠 where f ~ 28.3 THz is the frequency of the excitation 
light. The Luttinger liquid parameter g, describing the interaction in SWNTs, can then also be 
determined to be 𝑔𝑔 = 𝑣𝑣0 𝑣𝑣𝑝𝑝⁄ ~ 0.31, which indicates strong coulomb repulsion between electrons 
in metallic SWNTs. In marked comparison, near-field optical responses in nanotubes labeled as 
S1 and S2 in Figure 5.2a depend sensitively on gate voltages. These two nanotubes correspond to 
semiconducting SWNTs with hyperbolic dispersion. When the carrier density is near charge 
neutrality (Figure 5.2c), the near-field response is dramatically depleted and we observe weak 
contrast against the substrate. At substantial doping, well-defined plasmon features emerge and 
evolve with the gate voltage in both semiconducting nanotubes. The distinctly different plasmon 
behaviors highlight the critical role of nonlinear band dispersion in semiconducting SWNTs which 
goes beyond the conventional linear Luttinger liquid paradigm in metallic SWNTs. 
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Figure 5.2 Infrared nano-imaging of metallic and semiconducting SWNTs at different gate voltages. From 
(a) to (f), the gate voltage is varied from -20 to 20V. The carrier density changes from hole doping to charge 
neutrality and then to electron doping. The plasmon features in metallic nanotubes labeled as M1 and M2 
in a are largely unchanged. In marked comparison, near-field optical responses in semiconducting 
nanotubes labeled as S1 and S2 in a depend sensitively on gate voltages. The line profiles along the 
nanotube (indicated by the white dashed line in (a)) reveal how the plasmon wave in metallic nanotube M1 
gets damped as it propagates. The profiles for different gate voltages ((a) to (f)) are plotted in Figure 5.4. 
The inset in (a) shows the topography recorded simultaneously with the near-field images.  

 

Next we examine comprehensively the plasmon behaviors in semiconducting nanotubes and 
their dependence on carrier density. Figure 5.3a shows the topography of a semiconducting 
nanotube and the inset blue curve shows the height profile along the white dashed line across the 
nanotube. The diameter is determined to be 2 nm from the height profile and the nanotube thus has 
a band gap of ~ 0.37 eV. The near-field responses of the nanotube at different gate voltages from 
-20 to 24 V are presented in Figures 5.3b to 5.3l. The near-field response evolves in a systematic 
manner, which is consistent with the semiconducting SWNTs in Figure 5.2. At 𝑒𝑒𝑔𝑔 = −5𝑒𝑒 (Figure 
5.3e), the response is almost completely depleted, which corresponds to the charge neutral point. 
When carrier density is increased to either hole-doped side (Figures 5.3b to 5.3d) or electron-doped 
side (Figures 5.3f to 5.3l), there is an increase in the near-field optical response and well-defined 
plasmons emerge at substantial doping as manifested by the oscillation peaks near the nanotube 
end. Line profiles along the dashed line in Figures 5.3b reveal how the plasmon wave is damped 
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as it propagates (Figure 5.4). By fitting the line profiles with a damped oscillator form, we can 
extract both the plasmon wavelength and quality factor as a function of gate voltage.  

 
Figure 5.4 displays the line profiles of near-field images and plasmon analysis. Plasmon 

analysis for metallic SWNTs at different gate voltages is shown in Figure 5.4a. The line profiles 
(solid lines) along the white dashed line indicated in Figure 5.2a in the main text at three gate 
voltages are shown. Fitting of the profiles by a damped oscillator form (dashed lines) yields a 
plasmon wavelength ~ 90 nm and a quality factor ~ 22 for all gate voltages. Plasmon analysis for 
semiconducting SWNTs at different gate voltages is shown in Figure 5.4b. Line profiles (solid 
lines) along the white dashed line indicated in Figure 5.3b in the main text at different gate voltages 
are shown. Fitting of the profiles by a damped oscillator form (dashed lines) yields gate-dependent 
plasmon wavelength and quality factor. The results are summarized in Figures 5.5b and 5.5d. It is 
evident that plasmons in the semiconducting SWNT can be continuously tuned by means of 
electrostatic gating. With increasing gate voltage and thus higher Fermi level, the plasmon 
wavelength increases and the quality factor also shows concomitant growth. Below a critical 
carrier density indicated by the dashed line in Figure 5.5b, the damping is too large to support well-
defined plasmons.   

 
Figure 5.3 Gate-tunable plasmons in semiconducting SWNTs. (a), AFM topography of a semiconducting 
nanotube. The inset blue curve is the height profile along the white dashed line across the nanotube and the 
diameter is determined to be 2 nm from the profile. (b) to (l), Near-field responses of the semiconducting 
nanotube at different gate voltages from -20 to 24V. Plasmons in the semiconducting SWNT can be 
continuously tuned by means of electrostatic gating. With increasing gate voltage and thus higher Fermi 
level, the plasmon wavelength increases and the quality factor also shows concomitant growth. The figures 
share the same color scale (to give a direct comparison of the infrared responses at different gate voltages) 
except for (c) and (f), where the scales shown in insets are intentionally made smaller to offer better contrast 
between the nanotube and the substrate. The line profiles along the nanotube (indicated by the white dashed 



37 

 

line in b) reveal how the plasmon wave in the semiconducting nanotube gets damped as it propagates. The 
profiles for different gate voltages ((h) to (i)) are plotted in Figure 5.4b. 

 
Figure 5.4 Line profiles of near-field images and plasmon analysis. (a), Plasmon analysis for metallic 
SWNTs at different gate voltages. The line profiles (solid lines) along the white dashed line indicated in 
Figure 5.2a in the main text at three gate voltages are shown. Fitting of the profiles by a damped oscillator 
form (dashed lines) yields a plasmon wavelength ~ 90 nm and a quality factor ~ 22 for all gate voltages. 
(b), Plasmon analysis for semiconducting SWNTs at different gate voltages. Line profiles (solid lines) along 
the white dashed line indicated in Figure 5.3b in the main text at different gate voltages are shown. Fitting 
of the profiles by a damped oscillator form (dashed lines) yields gate-dependent plasmon wavelength and 
quality factor. 

 

As observed in Figure 5.2, the gate-independent plasmon behavior in metallic SWNTs is well 
described by linear Luttinger liquid theory. For an individual suspended carbon nanotube of radius 
R screened by a concentric metal shell of radius 𝑅𝑅𝑠𝑠, the linear Luttinger liquid theory predicts the 
Luttinger liquid interaction parameter g to be 

1
𝑔𝑔

=
𝑣𝑣𝑝𝑝
𝑣𝑣𝐹𝐹

= �1 +
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In(

𝑅𝑅𝑠𝑠
𝑅𝑅
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where 𝑣𝑣𝑝𝑝  is the velocity of the collective charge mode, i.e. plasmon velocity, 𝑣𝑣𝐹𝐹  is the Fermi 
velocity and 𝜋𝜋𝑒𝑒𝑒𝑒𝑒𝑒 is the effective dielectric constant due to substrate screening. This parameter g 
describes the interaction type and strength in a Luttinger liquid and is only a function of Fermi 
velocity and the ratio Rs/R for a nanotube under given dielectric environment. The plasmon 
wavelength 𝜆𝜆𝑝𝑝 for a given frequency f is related to g as 𝜆𝜆𝑝𝑝 = 𝑣𝑣𝑝𝑝 𝑓𝑓 = 𝑣𝑣𝐹𝐹 (𝑔𝑔𝑓𝑓)⁄⁄ . Because the Fermi 
velocity is a constant in metallic SWNTs, all the Luttinger liquid phenomena related to g, including 
the plasmon excitations, will remain the same regardless of carrier density. 
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5.3 Gate Tunable Nonlinear Luttinger liquid Plasmons in 
Semiconducting SWNTs 

In contrast, the gate-tunable plasmon wavelength in semiconducting nanotubes stems from 
the hyperbolic band dispersion, where the Fermi velocity 𝑣𝑣𝐹𝐹  depends on carrier density. As 
illustrated in Figure 5.5a, the Fermi velocity indicated by the slope of the black tangent line 
increases with higher Fermi energy. Due to the dominant strong repulsive interaction in SWNTs, 
plasmon velocity 𝑣𝑣𝑝𝑝  is approximately proportional to √𝑣𝑣𝐹𝐹  and plasmon wavelength in 
semiconducting nanotubes with band gap 𝐸𝐸𝑔𝑔 depend on Fermi wavevector 𝑘𝑘𝐹𝐹 as: 

𝜆𝜆𝑝𝑝 = 𝜆𝜆𝑝𝑝0�
𝑣𝑣𝐹𝐹
𝑣𝑣0

= 𝜆𝜆𝑝𝑝0�
ℏ𝑣𝑣0𝑘𝑘𝐹𝐹

�(𝐸𝐸𝑔𝑔 2⁄ )2 + (ℏ𝑣𝑣0𝑘𝑘𝐹𝐹)2
 

where 𝜆𝜆𝑝𝑝0 and 𝑣𝑣0 are the plasmon wavelength and Fermi velocity in metallic nanotubes for a given 
frequency. The dependence has been discussed in detail in Chapter 2.2. Thus, one can expect that 
the plasmon wavelength in semiconducting nanotubes will increase and progressively approach 
that in metallic ones with larger kF. The experimentally observed tunable plasmon wavelength at 
substantially high doping in semiconducting nanotubes (Figures 5.3h to 5.3l) is well reproduced 
by the theoretical model (Figure 5b). In this fitting we have used 𝑘𝑘𝐹𝐹 = 𝜋𝜋

4
𝑛𝑛 = 𝜋𝜋

4
𝛽𝛽𝐶𝐶𝑔𝑔�𝑒𝑒𝑔𝑔 − 𝑒𝑒𝑐𝑐𝑛𝑛𝑝𝑝�, 

where n is the carrier density, 𝐶𝐶𝑔𝑔 is the geometric capacitance, β is a fitting parameter and indicates 
the overall gate efficiency.   

 
Figure 5.5 Nonlinear Luttinger liquid model and comparison with experimental results. (a), Illustrative 
hyperbolic energy-momentum (E-k) dispersion (red curve) and Fermi energy (filled yellow region) of a 
semiconducting SWNT with a band gap Eg. The Fermi velocity indicated by the slope of the black tangent 
line increases with higher Fermi energy. (b), Dependence of plasmon wavelength on gate voltage agrees 
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well with the theoretical model. Below a critical doping indicated by the dashed line (shaded blue area), the 
plasmon quality factor Q is not large enough for well-defined plasmons to exist. (c), Isd-Vg (source drain 
current-gate voltage) curve for a 2 nm diameter semiconducting nanotube at a bias 𝑒𝑒𝑠𝑠𝑑𝑑 = 6 𝑚𝑚𝑒𝑒. The inset 
is an optical image of the device with a channel length of ~ 4 μm. (d), The nonlinear theory (black line) can 
well reproduce the experimental dependence of quality factor on gate voltage (black symbols). On the other 
hand, the plasmon quality factor will be very high and exhibit a completely different gate dependence (red 
line and right scale) if the damping rate is the same as the electron scattering rate inferred from DC transport 
measurements. (e), Illustration of the plasmon dispersion within the RPA. Here the plasmon excitation, 
ω(q), indicated by the orange dashed line always lies outside the electron-hole continuum indicated by the 
blue shaded area and is thus free from Landau damping. f, Illustrative diagram of DSF from the universal 
nonlinear Luttinger liquid theory. In a nonlinear Luttinger liquid, the plasmon mode indicated by the gray 
shaded area is not an exact eigenstate 𝜔𝜔(q) = 𝑣𝑣𝑝𝑝𝑞𝑞  but is broadened with upper and lower bound 𝜔𝜔±(q) =
𝑣𝑣𝑝𝑝𝑞𝑞 ± 𝑞𝑞2 2𝑚𝑚�⁄ . Error bars in b and d indicate a 95% confidence interval determined from the curve fitting 
of the line profiles along the nanotube in Figure 5.3 with a damped oscillator form. 

 

Apart from the tunable plasmon wavelength, the quality factor also depends sensitively on 
gate voltage as shown in Figure 5.5d. The tunable damping behaviors are reminiscent of those in 
graphene plasmons, which can be captured by Landau damping within the random-phase 
approximation (RPA). The gate-dependent plasmon damping behavior in semiconducting 
nanotubes shown in Figures 5.3h to 5.3l, however, cannot be explained by this simple picture. No 
interband damping can exist in a semiconducting nanotube due to its large band gap (~ 0.37 eV) 
compared to the excitation energy (~ 0.10 eV). It has also been shown that 1D plasmons will not 
decay to a single electron-hole pair through intraband scattering within the RPA[69]. As illustrated 
in Figure 5.5e, within the RPA theory, the plasmon excitation, ω(q), indicated by the orange dashed 
line, always lies outside the electron-hole continuum indicated by the blue shaded area, and thus 
is free from Landau damping.  

 
We can rule out defect and/or acoustic phonon scattering as a main contribution to the 

plasmon damping by comparing the infrared near-field nanoscopy results with the electronic 
transport in semiconducting SWNTs with the same diameter and growth conditions. Figure 5.5c 
displays the gate-dependent DC transport data of a representative SWNT with a diameter of 2 nm 
and a channel length L of 4 μm by recording the source drain current Isd for different gate voltages 
at a bias of 𝑒𝑒𝑠𝑠𝑑𝑑 = 6 𝑚𝑚𝑒𝑒. The optical image of the SWNT device is shown in the inset. From the 
measured gate-dependent 1D channel resistance R, we can estimate the mean free path 𝐿𝐿𝑚𝑚 =

𝐿𝐿
𝑅𝑅4𝑒𝑒2 ℎ⁄ −1

 and scattering time 𝜏𝜏 = 𝐿𝐿𝑚𝑚/𝑣𝑣𝐹𝐹  at different gate voltages. The scattering of electrons 
close to the Fermi surface, which dominates the electronic transport, is mainly due to defects and 
acoustic phonons in semiconducting SWNTs at room temperature[6, 70]. We obtain an electron 
scattering time longer than 300 fs, corresponding to a scattering rate of ~ 3ps-1, for carrier density 
approaching the saturation region for the semiconducting nanotube, which is consistent with 
previous findings in electronic transport studies of high-quality semiconducting SWNTs[6, 71]. 
This electron scattering rate is over an order of magnitude smaller than the observed plasmon 
damping rate. If we assume plasmon damping to have similar origins as the DC transport (i.e. 
dominated by defect and acoustic phonon scattering), the quality factor determined by ωτ will be 
very high and exhibit a completely different gate dependence (red line and right scale in Figure 
5.5d) compared with the plasmon behavior. Our experimental data cannot be accounted for by 
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emission of optical phonons either, because the optical phonon scattering should have a weaker 
dependence on the doping concentration. 

 
The observed unusual gate-dependent plasmon damping in semiconducting nanotubes, on the 

other hand, can be naturally understood as a consequence of the strong plasmon-plasmon coupling 
in a nonlinear Luttinger liquid: in metallic nanotubes with prefect linear dispersion, the plasmon 
excitations are free long-lived bosons without an intrinsic relaxation mechanism within the linear 
Luttinger liquid theory paradigm. The nonlinear band dispersion in semiconducting nanotubes, 
however, can enable extremely strong coupling between different plasmon modes because they all 
propagate at the same speed. As a result, a high-energy plasmon can efficiently decay into multiple 
low-energy plasmons in semiconducting nanotubes. 

 
A universal description of the dynamic response function in a nonlinear Luttinger liquid has 

been theorized previously[46, 47]. As discussed in Chapter 2.2, the dynamic excitation of 
plasmons in a 1D system is determined by the dynamic structure factor (DSF). For a linear 
Luttinger liquid as in metallic SWNTs, the DSF takes the form S(q,ω) = 2𝑔𝑔|𝑞𝑞|δ(𝜔𝜔 − 𝑣𝑣𝑝𝑝𝑞𝑞). This 
suggests that the plasmon mode features a linear dispersion 𝜔𝜔(q) = 𝑣𝑣𝑝𝑝𝑞𝑞 indicated by the dashed 
orange line in Figure 5.5f and is free of intrinsic relaxation. For a nonlinear Luttinger liquid as in 
gated semiconducting SWNTs, the DSF is given by 

S(q,ω) = 2
𝑚𝑚�𝑔𝑔
|𝑞𝑞| θ(

𝑞𝑞2

2𝑚𝑚�
− �𝜔𝜔 − 𝑣𝑣𝑝𝑝𝑞𝑞�) 

with an effective mass 𝑚𝑚�  . The effective mass 𝑚𝑚�  depends on electron-electron interactions and it 
can be expressed as 1

𝑚𝑚�
= 𝑣𝑣𝑝𝑝

2𝑔𝑔
𝜕𝜕
𝜕𝜕𝐸𝐸𝐹𝐹

(𝑣𝑣𝑝𝑝�𝑔𝑔). The plasmon mode is thus not an exact eigenstate but is 
broadened with upper and lower bound𝜔𝜔±(q) = 𝑣𝑣𝑝𝑝𝑞𝑞 ± 𝑞𝑞2 2𝑚𝑚�⁄ , as indicated by the red lines in 
Figure 5.5f. The width of the broadening is δ𝜔𝜔(𝑞𝑞) = 𝑞𝑞2/𝑚𝑚� . For a given frequency, a set of 
plamson modes with different momenta can be excited in the shaded gray area where DSF differs 
from zero. This broadening reflects the finite lifetime and damping of the plasmons. Below a 
critical Fermi energy for a given frequency, indicated by the horizontal dashed line 𝑎𝑎𝑐𝑐 in Figure 
5.5f, the damping will be so large that no well-defined plasmons exist. This critical line 
corresponds to the dashed line in Figure 5.5b, below which no well-defined plasmons are observed 
experimentally. As the Fermi energy 𝐸𝐸𝐹𝐹  increases compared to the excitation energy ω, the 
broadening becomes less severe and well-defined plasmons begin to emerge in agreement with 
experimental observations. 
 

This dissipation reflected in the broadening of the DSF can be further quantitatively 
characterized as δω/ω = 𝜔𝜔 𝑚𝑚�𝑣𝑣𝑝𝑝2⁄ . In semiconducting nanotubes with hyperbolic dispersion, this 
broadening depends on Fermi wavevector 𝑘𝑘𝐹𝐹 as 
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The plasmon quality factor determined by this nonlinear dispersion can be described as ω/δω and 
its dependence on gate voltage is depicted in Figure 5.5d. The nonlinear theory (black line) can 
well reproduce the experimental results (black symbols). With increasing carrier density and Fermi 
energy, the band structure gradually approaches linear dispersion. This decrease in the nonlinearity 
of dispersion leads to the increase of plasmon lifetime and a higher quality factor observed in the 
experiments. The small discrepancy might indicate that other damping mechanisms also play a 
role, but nevertheless, are not dominant in our experiment. We conclude that in doped 
semiconducting nanotubes with hyperbolic dispersion, at the high-energy regime where excitation 
energy is comparable to Fermi energy, the system should be described as a nonlinear Luttinger 
liquid and the plasmon damping mechanism is dominated intrinsically by the nonzero curvature 
of the band dispersion. Note that if we probe at the low-energy regime where excitation energy is 
much smaller than Fermi energy, δω ω⁄  will be vanishingly small and the system will reproduce 
the linear Luttinger liquid regime. The intriguing gate dependent nonlinear Luttinger liquid 
plasmon behaviors offer the alluring capability of active electrical switching and tuning of 
plasmons in semiconducting nanotubes. The highly confined and tunable plasmons and their 
compatibility with FET devices hold great promise for novel nanophotonic application[72, 73]. 

 

5.4 Summary and Outlook 

Studying and understanding how electrons interact in many-body systems at a fundamental 
level is the core in condensed matter physics. The Luttinger liquid formalism provides a general 
framework for characterizing low-energy physics of interacting electrons in one dimension (1D), 
where the electronic dispersion is assumed to be strictly linear. But the electronic band dispersion 
in real 1D systems is often not strictly linear and the linearization taken in the Luttinger liquid 
theory limits its validity to low-energy electron behaviors. In order to describe high-energy quasi-
particle excitation and dynamics, novel theoretical approaches have been employed to replace the 
linear dispersion with a generic one, which is known as the nonlinear Luttinger liquid theory. 
Despite a large body of theoretic work, there are precious few experiments addressing the nature 
of quantum excitations in 1D quantum fluids.  

 
In this Chapter, we probe nonlinear Luttinger liquid plasmonic excitations using gated 

semiconducting single walled carbon nanotubes (SWNTs) as a model system, and compare the 
behavior to that of a linear Luttinger liquid in metallic SWNTs. We combine infrared nano-
imaging and electronic transport to systematically investigate behaviors of nonlinear Luttinger 
liquid plasmons in semiconducting SWNTs with carrier density controlled by electrostatic gating. 
We show that both the propagation velocity and the dynamic damping of the plasmons can be 
tuned continuously in semiconducting SWNTs, which is well captured by the nonlinear Luttinger 
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liquid theory. These behaviors are in striking contrast to the gate-independent plasmons in metallic 
nanotubes described by the linear Luttinger liquid theory. 

 
Our findings provide fundamental insight into 1D systems beyond the conventional linear 

Luttinger liquid paradigm. It can open up new avenues to quantitatively understand the nature of 
excitations in different interacting 1D systems. The highly confined and gate-tunable plasmons 
demonstrated in our SWNTs field-effect transistor devices may also enable novel nanophotonic 
applications, including SWNTs-based chip integrated plasmonic circuits, quantum plasmonics and 
ultra-compact plasmonic sensing. 
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Chapter 6 – Metallic Carbon Nanotube 
Nanocavities as Ultracompact and Low-loss Fabry-
Perot Plasmonic Resonators 

6.1 Introduction and Background 

We have discussed highly confined low-loss linear Luttinger plasmons in metallic SWNTs in 
Chapter 3 and gate tunable nonlinear Luttinger liquid plasmons in Chapters 5. Plasmons in metallic 
SWNTs at infrared frequencies exhibit the combination of low dispersion, deep subwavelength 
confinement (mode volume <10-8 𝜆𝜆0

3) and high quality factor (Q > 10). Plasmonic resonators may 
take advantage of these unique capabilities and enable manipulation of light matter interaction at 
the nanoscale[74-77]. Plasmonic resonators based on noble metallic nanostructures have long been 
studied, but they typically operate in the visible and near-infrared range and are hindered by a 
trade-off between optical field confinement and losses imposed by Landau damping. Alternatives 
such as phonon polaritons in polar crystals are constrained to the Reststrahlen bands and cannot 
achieve broadband response[78-80].  

 
Figure 6.1 Helium ion microscopy (HIM) and nanopatterning of SWNTs. (a) Topography and near-field 
image of an as-grown SWNT S1. This metallic nanotube is ultraclean and exhibits prominent plasmon 
oscillations. (b) Topography and near-field images of tube S1 after helium ion nanopatterning. The white 
arrow indicates where line nanopatterning is performed. Tube S1 after helium ion nanopatterning features 
less pronounced plasmon oscillations and exhibits multiple plasmon scattering centers potentially due to 
random defects induced by helium ion implantation.  

 

Long SWNTs can be fabricated into plasmonic nanocavities for control of light at the 
nanoscale. Nanolithography based on electron or focused ion beam has long been used to fabricate 
plasmonic nanostructures. Figure 6.1 shows infrared nanoimaging of a metallic nanotube before 
and after helium ion nanopatterning. Tube S1 after helium ion nanopatterning features less 
pronounced plasmon oscillations and exhibits multiple plasmon scattering centers potentially due 
to random defects induced by helium ion implantation. A clean nanofabrication method with 
resolution down to nanometers is required so that the quality of as-fabricated nanocavities is not 
compromised.  
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6.2 Electrode Free Scanning Probe Nanolithography of SWNTs 

 
Figure 6.2 Infrared nano-imaging and scanning probe lithography of SWNTs. (a) Schematic of infrared 
nano-imaging of SWNTs. In brief, a gold-coated AFM tip is illuminated with a quantum cascade laser 
(QCL) with tunable wavelength from 11.1 to 9.5 µm. The backscattered signal from the tip-sample system 
carries essential plasmon information of the sample. By scanning the tip along the nanotubes, plasmon 
modes in the nanotubes can be visualized in real space. (b) Schematic of advanced scanning probe 
lithography. A high-frequency AC voltage is applied between the tip and the conductive Si layer of the 
substrate. Nanotube can be etched away due to oxidation of carbon by the oxygen-containing radicals 
generated between the tip and the nanotube. (c) Topography image of representative SWNTs. Tube M is a 
metallic SWNT whereas tube S is a semiconducting one. The white arrow labeled as sliding position 
indicates the nanoeteching position. (d) Corresponding near-field image to (c). Metallic nanotube M 
exhibits prominent plasmon oscillations whereas semiconducting nanotube S shows little near-field 
response. (e) Topography of SWNTs after nanolithography. The nanolithography results in a SWNT 
nanocavity with length ~ 100 nm. (f) Corresponding near-field image to (e). Plasmon modes in the 
nanocavity and the remaining long nanotube are visualized in real space. The excitation wavelength is 10.6 
µm for the infrared nano-imaging.  (c) to (f) share the same scale bar as shown in (c). 

 

Electrode free scanning probe nanolithography (SPL) is used to trim the long metallic 
nanotubes into nanocavities[81-83]. The process is schematically shown in Figure 6.2b. While the 
tip is engaged at the desired location and brought across the nanotube, a high-frequency (~ 40 kHz) 
alternating voltage is applied between the AFM tip and the conductive Si layer of the substrate.  
This voltage generates a high-frequency AC current which penetrates the SiO2 layer via capacitive 
coupling effect. As a result, a localized strong electric field can form between the tip and the 
nanotube, which attracts polar H2O molecules from air and also decomposes them into oxygen-
containing radicals (e.g., OH– and O2–). Nanotubes can then be etched away due to oxidation of 
carbon by these oxygen-containing radicals. Notably, this SPL technique does not require 
prefabricated contact microelectrodes which are needed in conventional SPL to conduct DC 
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current between the tip and the sample. As a result, the nanotube nanocavities can remain 
ultraclean whereas conventional nanolithography techniques such as those based on electron or 
focused ion beams (Figure 6.1) can easily introduce defects or contaminants, compromising the 
quality of the nanocavities. Figure 6.2e shows a nanotube nanocavity cut at the position indicated 
by the white arrow in Figure 6.2c. The resulting cavity length is ~ 100 nm. Its plasmon mode, 
featuring two prominent symmetric peaks, is revealed by infrared nano-imaging (Figure 6.2f). The 
remaining larger nanotube with a newly defined end (Figure 6.2f) has a nearly identical infrared 
near-field response to the original uncut nanotube (Figure 6.2d), which points the cleanness of the 
nanoetching method. 

 
Main factors affecting the effectiveness of the electrode free SPL are surrounding humidity, 

AC voltage amplitude and frequency, and suitable contact between tip and nanotube. For 
successful nanolithography of SWNTs, AFM works in a contact-lift mode: during forward 
scanning, AFM works under the normal tapping mode, where the feedback is on for tracking the 
topography information; during backward scanning, the metallic AFM tip is lifted down by ~ 100 
nm. During the nanoetching process, we apply an AC voltage with an amplitude of 15 V and a 
frequency of 40 kHz. Humidity should be maintained at higher than 45% for sufficient H2O 
molecules to form a water bridge between the tip and the nanotube for the oxidation. The tip sliding 
velocity should be less than 5 µm/s to allow sufficient interaction time with the nanotube. The 
accuracy of the cavity length achievable by this top-down nanolithography method is limited by 
the radius of the tip apex, which is ~ 20 nm in our experiment.  

 

6.3 Visualization of Fabry-Perot Plasmon modes in SWNT 
Nanocavities of Different Length 

 
Figure 6.3 Infrared nano-imaging of SWNT nanocavities of different length. (a) to (h) Topography and 
corresponding near-field images for nanocavities with length ranging from 30 to 370 nm. In (a), the shortest 
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cavity ~ 30 nm cannot support even a single standing wave mode and the near-field response has on defined 
maximum at the cavity’s center. With increasing cavity length from 55 to 370 nm as shown in (b) to (h), 
we clearly observe an increasing number l of near-field signal maxima from 1 to 8 along the nanotube, 
corresponding to the antinodes of the (l+1) th resonance order standing plasmon wave. The excitation 
wavelength is 10.6 µm for the infrared nano-imaging. 

 

We employ this electrode-free SPL to tailor SWNTs into ultraclean nanocavities with 
controllable length ranging from 30 to 370 nm. The two nanocavities closest in length differ by 20 
nm. Figures 6.3a-h show the topography images of different nanocavities and their corresponding 
near-field responses at a set excitation wavelength of 10.6 µm. Evidently, the plasmon modes 
depend dramatically on the length of the cavities. The nanotube nanocavities act as Fabry-Perot 
resonators for surface plasmons bouncing back and forth between the two ends of the cavity. The 
longitudinal cavity modes of the surface plasmon can be described by 2𝑘𝑘𝑝𝑝𝐿𝐿 + 2∅𝑅𝑅 = 2𝜋𝜋𝜋𝜋, where 
𝑘𝑘𝑝𝑝 = 2𝜋𝜋/𝜆𝜆𝑝𝑝 is the plasmon wavevector, L is the length of the cavity, ∅𝑅𝑅 is the effective reflection 
phase by the ends and 𝜋𝜋 is the resonance order. The shortest cavity ~ 30 nm cannot support even a 
single standing wave mode (Figure 6.3a) and the near-field response has no defined maximum at 
the cavity’s center. With increasing cavity length from 55 to 370 nm (Figure 6.3b-h), we clearly 
observe an increasing number 𝜋𝜋  of near-field signal maxima from 1 to 8 along the nanotube, 
corresponding to the antinodes of the (𝜋𝜋 + 1)th resonance order standing plasmon wave. The 
separation between adjacent maxima corresponds to half of the plasmon wavelength and remains 
unchanged.  
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Figure 6.4 Resonance order 𝜋𝜋 as a function of 𝑘𝑘𝑝𝑝 𝐿𝐿 𝜋𝜋⁄ . Effective reflection phase ∅𝑅𝑅 can be extracted to be 
0.70𝜋𝜋. 

 

The longitudinal cavity modes of the surface plasmon can be further described by  ∅𝑅𝑅 𝜋𝜋⁄ +
𝑘𝑘𝑝𝑝𝐿𝐿/𝜋𝜋 = 𝜋𝜋. By plotting the resonance order number 𝜋𝜋 against 𝑘𝑘𝑝𝑝 𝐿𝐿 𝜋𝜋⁄ , we can extract an effective 
reflection phase ∅𝑅𝑅 ~ 0.70𝜋𝜋 from the intercept.  
 

6.4 Spectrally Resolved Plasmon Resonance of Individual SWNT 
Nanocavities 

 
Figure 6.5 Spectral near-field responses of two SWNT nanocavities differing in length by about a quarter 
wavelength. (a) Topography and near-field images of nanotube cavity A with length ~ 165 nm at excitation 
wavelength from 11.1 to 9.5 µm. (b) Topography and near-field images of nanotube cavity B with length 
~ 190 nm at excitation wavelength from 11.1 to 9.5 µm. 

 

We further investigate the plasmon resonances in specific nanocavities by sweeping the 
wavelength of the excitation light 𝜆𝜆0, which sets the plasmon frequency ω and wavelength 𝜆𝜆𝑝𝑝. The 
infrared nano-imaging results and analysis for a representative long metallic nanotube for the 
whole wavelength range starting from 11.1 and decreasing to 9.5 µm are shown in Figures 2.6 and 
2.7 in Chapter 2.3. Plasmons in a long nanotube don’t have cavity effects. The near-field responses 
of nanotube nanocavities for each wavelength are then normalized in amplitude by the responses 
of the long nanotube to reveal the cavity effects. As the excitation wavelength 𝜆𝜆0 is decreased from 
11.1 to 9.5 µm, the plasmon wavelength 𝜆𝜆𝑝𝑝 shortens almost in a linear fashion from 98 to 76 nm. 
We then measure the wavelength-dependent plasmon modes in the nanocavities. Figures 6.5a and 
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6.5b show the near-field images of two different nanotube cavities, denoted as cavity A and B, 
respectively. The near-field responses for each wavelength are normalized in amplitude by the 
responses of the long nanotube at the same wavelength to reveal the cavity effects. Figure 6.5a 
displays the topography image of cavity A with length ~ 165 nm and the evolution of its near-field 
plasmon modes with the excitation wavelength. At 11.1 and 9.5 µm, the near-field images feature 
three and four crisp equally spaced maxima, respectively. Near 10.4 µm, however, a transition 
from three to four maxima occurs accompanied by a weakening and broadening of the center peak. 
In addition, Figure 6.5b shows cavity B with length ~ 190 nm along with its spectral near-field 
responses. While the length difference between cavity A and B is miniscule at about a quarter 
plasmon wavelength (~ 25 nm), this leads to strikingly different responses. Cavity B features 4 
maxima in a well-defined sinusoidal wave pattern at around 10.4 µm while the transition to three 
and five maxima happens at 11.1 and 9.8 µm respectively. These behaviors can be qualitatively 
understood based on the plasmon cavity modes. The l = 4 and l = 5 plasmon cavity mode in A are 
resonantly excited at 11.1 and 9.5 µm laser wavelengths, respectively, while the l = 5 cavity mode 
in B is resonantly excited at 10.4 µm. The resonant modes exhibit a sinusoidal standing wave with 
well-defined nodes and antinodes. When the mode transition happens in cavity A at around 10.4 
µm and in Cavity B at around 11.1 and 9.8 µm, the cavity resonance condition is not satisfied, and 
a well-defined resonance mode cannot fit nicely within the cavity. The overall response profile 
deviates from the simple sinusoidal wave form with less pronounced nodes and antinodes.  

 
To further examine the spectrally resolved plasmon interference patterns in detail, we plot in 

Figures 6.6b and 6.6d the line profiles of near-field responses along cavity A (Figure 6.5a) and B 
(Figure 6.5b). The evolution with excitation wavelength can be modeled by a Fabry-Perot 
resonator model of a plasmon nanowaveguide terminated by highly reflective ends. As 
schematically shown in Figure 6.6a, we assume that a plasmon wave of constant amplitude is 
locally excited at studied positions along the nanocavities. The wave will propagate in both 
directions and be reflected back and forth by the two ends and add together to produce a collective 
response. By repeating the summation process at different positions along the cavities, we can 
record the amplitude profiles as a function of position. The loss is characterized by the quality 
factor Q when the plasmon wave propagates in a damped oscillator form as 
e−2πx (Q⋅λP)⁄ sin�(4πx) λp⁄ �. The reflection at the ends features an amplitude approximated as 
unity with a certain effective reflection phase ∅𝑅𝑅. The near-unity reflection amplitude originates 
from the large mode mismatch between the highly confined plasmon wave and the free space 
wave[54]. By adjusting the plasmon wavelength and quality factor obtained from infrared nano-
imaging results for long metallic nanotubes (Figures 2.6 and 2.7 in Chapter 2.3), we acquire the 
simulated amplitude profiles for different excitation wavelengths from 11.1 to 9.5 µm. 
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Figure 6.6 Comparison of experimental and simulated responses. (a) We assume that a plasmon wave of 
constant amplitude is locally excited at studied positions along the nanocavities. The wave will propagate 
in both directions and be reflected back and forth by the two ends and add together to produce a collective 
response. By repeating the summation process at different positions along the cavities, we can record the 
amplitude profiles as a function of position. (b) Experimental line profiles of near-field images of nanotube 
cavity A with length ~ 165 nm from 11.1 to 9.5 µm. (c) Simulated line profiles of nanotube cavity A by a 
lossy Fabry-Perot resonator model. (d) Experimental line profiles of near-field images of nanotube cavity 
B with length ~ 190 nm from 11.1 to 9.5 µm. (e) Simulated line profiles of nanotube cavity B by a lossy 
Fabry-Perot resonator model. The evolution of the experimental profiles with wavelength in the middle 
region of the cavity can be well captured by the model. (f) Experimental dependences of oscillation 
amplitude on excitation wavelength for cavity A and B. 

 

The simulated profiles are shown in Figures 6.6c and 6.6e for comparison with experimental 
near-field responses shown in Figures 6.6b and 6.6d. The experimental antinodes near the ends of 
the cavities are noticeably stronger for all wavelengths. In addition, a relatively weak bright spot 
just outside the nanotube ends is also present in the experimental near-field images. Presumably, 
the phenomena arise from rather complicated coupling between the tip and the evanescent wave 
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at the nanotube end. When the nanotube plasmon wave meets its ends, the guided plasmon wave 
experiences a diffraction due to discontinuity in conductivity. The diffraction leads to a 
nonpropagating near-field evanescent wave near the ends in addition to the reflected propagating 
plasmon wave. The presence of the evanescent wave results in a stronger field of the antinodes 
near nanotube ends and a relatively weak field just outside the ends. The modified field distribution 
is captured by infrared nano-imaging. Similar phenomena have been reported in edge reflections 
of graphene plasmons. A detailed study of the phenomena in end reflections of nanotube plasmons 
is outside of the scope of this paper and will be reported elsewhere. Our model here accounts for 
the effects of the propagating wave and captures the evolution in the middle region. At 11.1 µm, 
cavity A is resonantly excited at order 𝜋𝜋 = 4 and the plasmon mode shows a prominent sinusoidal 
wave form. The resonance condition increasingly deviates from 𝜋𝜋 = 4  when the excitation 
wavelength is decreased from 11.1 to 10.4 µm, resulting in a systematic broadening and weakening 
of the center maxima. When the excitation wavelength is further decreased from the transition 
point (10.4 µm) to 9.5 µm, there is a gradual approach towards the resonance condition 𝜋𝜋 = 5. 
Consequently, we see an increasing response amplitude in a better-defined sinusoidal wave form. 
Cavity B is longer than cavity A by about a quarter plasmon wavelength. At 10.4 µm excitation, 
we observe a prominent sinusoidal wave form corresponding to resonance order 𝜋𝜋 = 5. Away from 
this resonance condition, there is a larger deviation from the sinusoidal wave with less pronounced 
nodes and antinodes. The experimental dependences of oscillation amplitude on excitation 
wavelength for cavity A and B are plotted in Figure 6.6f, exhibiting inverse trends. Cavity B has 
a well-defined plasmon resonance peak for our wavelength range. Assuming a constant quality 
factor Q within the wavelength range, we estimate Q of cavity B to be 𝜆𝜆𝑟𝑟

∆𝜆𝜆𝑟𝑟
 ~ 11.6 , where 

𝜆𝜆𝑟𝑟 ~ 10.4 𝜇𝜇𝑚𝑚  is the resonance wavelength for cavity B and ∆𝜆𝜆 𝑟𝑟 ~ 0.9 𝜇𝜇𝑚𝑚 is the width of the 
resonance peak. This estimated Q is within the range of those extracted from the imaging 
measurements in Figures 2.6 and 2.7 in Chapter 2.2. The dramatic dependence of the plasmon 
resonances on cavity length highlights the high quality and tunability of these resonators. This can 
have intriguing implications for wavelength selective applications such as plasmon filtering and 
sensing. For example, by finely controlling the cavity length and the corresponding resonance 
frequency, we can match the cavity resonance mode to the vibrational fingerprints of certain 
molecules, achieving strong resonant coupling and therefore higher sensitivity. 
 

6.5 Summary and Outlook 

In summary, advanced SPL is employed to tailor SWNTs into ultraclean nanocavities of 
controllable sizes. We then perform systematic spectrally resolved infrared nano-imaging of the 
plasmon resonances in these individual nanocavities. Assisted by theoretical modeling, the 
resonance behaviors can be well interpreted by a Fabry-Perot resonator model of a plasmon 
nanowaveguide terminated by highly reflective ends. We demonstrate that metallic SWNT 
nanocavities serve as one of the most compact nano-plasmonic elements with exceptional 
tunability and low loss.  

 
We would like to remark that various metallic nanostructures, notably silver nanowires, have 

been proposed as plasmonic Fabry-Perot resonators in the visible and near-infrared range[84-86]. 
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The plasmon spatial confinement characterized as λ0/λp is typically around a few, which is much 
smaller than ~ 100 for SWNT cavities. The 1D plasmons in SWNTs with diameter ~ 1 nm feature 
even stronger transverse confinement ~ 1 nm, and the total mode volume is  Vp < 10-8 𝜆𝜆0

3.  In 
addition, SWNT cavities have relatively lower dissipation during propagation and are also almost 
free from radiation damping upon reflection at cavity ends, which is evidenced by their near-unity 
reflection amplitude due to the large mode mismatch with free space wave. SWNT cavity-based 
plasmonic resonators also compare favorably to those based on graphene ribbon nanostructures, 
offering a higher field confinement and lower loss. Particularly, SWNT cavities do not have edges, 
thus avoiding additional loss mechanisms whereas the structural imperfections and contaminations 
at the edges of graphene nanostructures after lithography or etching can severely degrade the 
quality factor[87-89]. The combination of high quality factor (Q > 10) and ultra-small mode 
volume Vp  < 10-8 𝜆𝜆0

3  has interesting implications for enhanced light-matter interaction, for 
instance, in terms of Purcell factor, which describes spontaneous emission modified by the 
coupling to an optical cavity. A quantum emitter near the SWNT nanocavity should experience a 
Purcell enhancement factor 𝐹𝐹𝑝𝑝 = 3

4𝜋𝜋2
(𝜆𝜆0

3)( 𝑄𝑄
Vp

)  exceeding 108. This is at least one order of 

magnitude larger than that reported so far with graphene nanoresonators or h-BN nanostructures 
and approaches the ultimate plasmon confinement limit[90, 91]. In addition, the coupling 
efficiency of an emitter to the SWNT plasmons (i.e., the fraction of decay into plasmons) has also 
been suggested to reach values nearing 100% over a very broad range of emitter-SWNT distances 
and emitter/plasmon frequencies[92]. The strong and efficient coupling between emitters and 
SWNT plasmons can in turn greatly affect the plasmon resonances of SWNT cavities. Therefore, 
SWNT cavities can act as ultracompact and ultrasensitive nanosensors by monitoring the changes 
in their plasmon responses.  

 
For a broad spectrum from near-infrared to terahertz light, SWNT plasmonic nanocavities 

could serve in a role analogous to that of metallic nanostructures for visible frequencies. They can 
be further integrated, for instance, as nanoscale interconnects in nanophotonic circuits to facilitate 
plasmon coupling and detection. Plasmonic resonators based on metallic SWNTs nanocavities 
offer a viable route towards exceedingly strong and efficient light-matter interaction regime and 
show great promises in various appealing applications such as nanoscale lasers and amplifiers, 
quantum nano-optics, nonlinear nano-optics and ultra-sensitive plasmonic nanosensors potentially 
down to single molecules[92-96].  
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