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Finding Nonoverlapping Dense Blo
ks of a Sparse Matrix�Virginia Vassilevska Ali P�narComputer S
ien
e Department Computational Resear
h DivisionCarnegie Mellon University Lawren
e Berkeley National Laboratoryvirgi�
s.
mu.edu apinar�lbl.govAbstra
tMany appli
ations of s
ienti�
 
omputing rely on 
omputations on sparse matri
es. Thedesign of eÆ
ient implementations of sparse matrix kernels is 
ru
ial for the overall eÆ
ien
yof these appli
ations. Due to the high 
ompute-to-memory ratio and irregular memorya

ess patterns, the performan
e of sparse matrix kernels is often far away from the peakperforman
e on a modern pro
essor. Alternative data stru
tures have been proposed, whi
hsplit the original matrix A into Ad and As, so that Ad 
ontains all dense blo
ks of a spe
i�edsize in the matrix, and As 
ontains the remaining entries. This enables the use of densematrix kernels on the entries of Ad produ
ing better memory performan
e. In this work, westudy the problem of �nding a maximumnumber of nonoverlapping dense blo
ks in a sparsematrix, whi
h is previously not studied in the sparse matrix 
ommunity. We show that themaximum nonoverlapping dense blo
ks problem is NP-
omplete by using a redu
tion fromthe maximum independent set problem on 
ubi
 planar graphs. We also propose a 2=3-approximation algorithm that runs in linear time in the number of nonzeros in the matrix.This extended abstra
t fo
uses on our results for 2 � 2 dense blo
ks. However we showthat our results 
an be generalized to arbitrary sized dense blo
ks, and many other orientedsubstru
tures, whi
h 
an be exploited to improve the memory performan
e of sparse matrixoperations.Keywords: memory performan
e, memory-eÆ
ient data stru
tures, high-performan
e 
om-puting, sparse matri
es, independent sets, NP-
ompleteness, approximation algorithms.
This paper is submitted as a regular paper.�This work was supported by the Dire
tor, OÆ
e of S
ien
e, Division of Mathemati
al, Information, andComputational S
ien
es of the U.S. Department of Energy under 
ontra
t DE-AC03-76SF00098.



1 Introdu
tionSparse matri
es lie in the hearts of many 
omputation-intensive appli
ations su
h as �nite-element simulations, de
ision support systems in management s
ien
e, power systems analysis,
ir
uit simulations, and information retrieval. The performan
e of these appli
ations dire
tlyrelies on the performan
e of the sparse matrix kernels. However, the performan
e of sparsematrix operations on modern pro
essors is limited due to the high 
ompute-to-memory ratio,and irregular memory-a

ess patterns.Conventional data stru
tures for sparse matri
es have two 
omponents: an array that stores
oating-point entries of the matrix, and arrays that store the nonzero stru
ture (i.e., pointersto the lo
ations of the numeri
al entries). Exploiting sparsity invariably requires using pointers,but pointers often lead to poor performan
e. One reason for the poor memory performan
e isthat pointers 
ause an irregular memory a

ess pattern and thus poor spatial lo
ality. Anotherimportant reason, whi
h is often overlooked, is the extra load operations. Ea
h operation on anonzero entry requires loading the lo
ation of that nonzero before loading the a
tual 
oatingpoint number. For instan
e, sparse matrix ve
tor multipli
ation, whi
h is one of the mostimportant kernels in numeri
al algorithms, requires three load operations for ea
h nonzero inthe matrix. It has been observed that this overhead might be as 
ostly as the 
oating pointoperations [5℄.Re
ent studies have investigated improving memory performan
e of sparse matrix operationsby redu
ing the number of extra load operations [5, 8, 9℄. In [8℄, P�nar and Heath proposedexploiting dense blo
ks of a sparse matrix, along with reordering te
hniques to in
rease the sizesof these blo
ks. One approa
h 
onsidered is splitting a matrix as A = A12 + A11, where A12in
ludes 1 � 2 blo
ks of the matrix (two nonzeros in 
onse
utive positions on the same row),and A11 
overs the remaining nonzeros. Noti
e that it is suÆ
ient to store a pointer for ea
hblo
k in A12. Signi�
ant speedups in large experimental sets have been observed, whi
h givesmotivation to sear
h for larger blo
ks in the matrix for further improvements in performan
e.One 
an split the matrix into A = Ad+As, where Ad 
ontains all dense blo
ks, and As 
ontainsthe remaining entries. Clearly, for a 
onstant blo
k size, having more entries in Ad yields fewerload operations, thus better memory performan
e. This 
alls for eÆ
ient algorithms to �nd amaximum number of nonoverlapping blo
ks of a spe
i�ed size in a sparse matrix. A greedyalgorithm is suÆ
ient to �nd a maximum number of nonoverlapping m� n blo
ks when m = 1or n = 1. However, this problem is mu
h harder when m;n � 2.In this work, we study the problem of �nding a maximum number of nonoverlapping m� ndense blo
ks of a sparse matrix, whi
h we 
all the maximum nonoverlapping dense blo
ks prob-lem. In the next se
tion, we de�ne the problem formally and investigate its relation to themaximum independent set problem. We de�ne a 
lass of graphs where the independent setproblem is equivalent to the maximum nonoverlapping dense blo
ks problem. In Se
tion 3,we use this relation to prove that the maximum nonoverlapping dense blo
k problem is NP-
omplete. Our proof uses a redu
tion from the maximum independent set problem on 
ubi
planar graphs and adopts orthogonal drawings of planar graphs. Se
tion 4 presents an approxi-mation algorithm for the problem. Sin
e we are motivated by improving memory performan
e ofsparse matrix operations, we are interested in fast and e�e
tive heuristi
s for the prepro
essing
ost to be amortized over the speedups in subsequent sparse matrix operations. Our algorithmsrequire only linear time and spa
e, and generate solutions whose sizes are within 2=3 of the1



optimal.In this extended abstra
t, we only fo
us on �nding 2� 2 blo
ks due to spa
e 
onsiderationsand 
larity of presentation. However, our results 
an be generalized as we dis
uss in Se
tion 5.We prove that the problem is NP-
omplete for m � n blo
ks for m;n � 2. We also work onalternative dense patterns to repla
e re
tangular blo
ks, whi
h might be employed to speedupsparse matrix operations.The problem of �nding nonoverlapping dense blo
ks of a sparse matrix has not been studiedin the sparse-matrix 
ommunity. We have been re
ently aware of the work by Berman et al. [2℄,where a similar problem is dis
ussed as the optimal tile salvage problem. In the optimal tilesalvage problem, we are given an pN �pN region of the plane tiled with unit squares, some ofwhi
h have been removed. The task is to �nd a maximum number of fun
tional nonoverlappingm�n tiled re
tangles. The di�eren
e between our problem and the optimal tile salvage problemis that in the tile salvage problem the tiles are allowed to be in any orientation (m�n or n�m),whereas in our 
ase the orientation is �xed (only m � n). The two problems 
oin
ide in the
ase of square dense blo
ks. Berman et al. proved the NP-
ompleteness of the tile salvageproblem, however their proof exploits the 
exibility in the orientation of the dense blo
k, andthus our proof is signi�
antly di�erent. Berman et al. also des
ribe an (1 � �)-approximationalgorithm, whi
h would work for square blo
ks, for � = O(1=pÆ logM), where M is the optimalsolution value. Their algorithm is based on maximum planarH-mat
hing whi
h runs in O(N1+Æ)steps for small Æ > 0. Baker [1℄ also has an algorithm for the 
ase of square blo
ks, whi
hruns in O(8kN)-time and O(4kN) spa
e and produ
es a (k � 1)=k-approximation. Both ofthese algorithms however are 
omplex and hard to implement. The greedy 2=3-approximationalgorithms we propose are very simple. It requires linear time and spa
e, with very small
onstant fa
tors in the time and spa
e bounds. Our algorithm requires only one pass throughthe matrix, and thus is I/O -eÆ
ient.2 PreliminariesIn this se
tion we de�ne the problems formally, and present de�nitions and some preliminaryresults that will be used in the following se
tions.2.1 Problem De�nitionThis work investigates the problem of �nding a maximum number of nonoverlapping matrixsubstru
tures of pres
ribed form and orientation.De�nition 2.1 An m� n pattern is a 0-1 m � n matrix �. An oriented �-substru
ture of amatrix A is an m � n submatrix M in A so that M(i; j) 6= 0 if sigma(i; j) = 1 for 1 � i � m,and 1 � j � n. Two substru
tures M and N overlap if they share nonzero entry e in M with
oordinates (iM ; jM) in M and (iN ; jN) in N and �(iM ; jM) = �(iN ; jN) = 1.Given a parti
ular pattern �, we de�ne the maximum nonoverlapping �-substru
tures (MNS)problem as follows.De�nition 2.2 Maximum Nonoverlapping �-Substru
tures (MNS) ProblemINSTANCE: An M �N matrix A, integer K.QUESTION: Does A 
ontain K disjoint �-substru
tures?2



In this paper, we fo
us on dense blo
ks, due to their simpli
ity, and their e�e
tiveness in speedingup sparse matrix operations. A dense blo
k of a matrix is a submatrix of spe
i�ed size all ofwhose entries are nonzero, i.e., it is a �-substru
ture where � is the all 1s matrix. We identify adense blo
k with its upper left 
orner. Two blo
ks overlap if they share a matrix entry. Formalde�nitions follow.De�nition 2.3 Given an M �N matrix A = (aij), we say bij is an m� n dense blo
k in A i�akl 6= 0 for all k and l su
h that i � k < i+m �M and j � l < j + n � N . Two m� n blo
ksbij and bkl overlap i� i � k < i+m and j � l < j + n, or k � i < k +m and l � j < l+ n.We spe
ify the MNS problem for dense blo
ks as follows.De�nition 2.4 Maximum Nonoverlapping Dense Blo
ks (MNDB) ProblemINSTANCE: An M � N matrix A, positive integers m and n that de�ne the blo
k size, and apositive integer K.QUESTION: Does A 
ontain K disjoint m� n dense blo
ks?In this paper, we will fo
us on 2� 2 blo
ks for spa
e 
onsiderations, and 
larity of presentation,although our results 
an be generalized to varying blo
k sizes, and di�erent substru
tures.2.2 Interse
tion GraphsIt is easy to �nd all spe
i�ed patterns in a matrix, however what we need is a subset withnonoverlapping blo
ks. In this sense, the MNS problem is related to the maximum independentset (MIS) problem, whi
h is de�ned as �nding a maximum 
ardinality subset of verti
es I of agraph G, su
h that no two verti
es in I are adja
ent. Below we de�ne an interse
tion graph,whi
h reveals the relation between the independent set and the nonoverlapping blo
ks problemsmore 
learly.De�nition 2.5 A graph G is an interse
tion graph of the �-substru
tures of a matrix A if thereis a bije
tion � between the verti
es of G and the substru
tures of A, su
h that there is an edgein G between �(s1) and �(s2) if and only if s1 and s2 overlap in A.We will use G(A;m; n) to refer to the interse
tion graph of dense m�n blo
ks in matrix A.A maximum independent set on G(A;m; n) gives a maximum number of nonoverlapping blo
ksin A, thus the MNDB problem 
an be redu
ed to the maximum independent set problem, whi
his known to be NP-
omplete [4℄. However it is important to note that the blo
k interse
tiongraphs have spe
ial stru
tures, whi
h 
an be exploited for eÆ
ient solutions. For instan
e, agreedy algorithm is suÆ
ient to �nd a maximum number of nonoverlapping 1 � n and m � 1blo
ks, sin
e these problems redu
e to a family of disjoint maximum independent set problemson interval graphs. In the remainder of this se
tion, we de�ne the 
lass of graphs that 
onstituteblo
k interse
tion graphs. An interse
tion graph of a set of 2 � 2 dense blo
ks is an indu
edsubgraph of the so 
alled X-grid whi
h 
onsists of the usual 2 dimensional grid, and diagonalsfor ea
h grid square. In general, the interse
tion graph of a set of m � n dense blo
ks is anindu
ed subgraph of the Xmn grid. Below, we �rst de�ne an Xmn grid, and then restri
t thede�nition to de�ne the graph 
lass X�mn that represent graphs that 
an be an interse
tiongraph for a matrix. 3



De�nition 2.6 An M �N Xmn grid is a graph with a vertex set V and an edge set E, so that� V = fvij : 1 � i �M �m; 1 � j � N � ng� E = f(vij; vkl) : 1 � i; k �M �m; 1 � j; l � N � n : ji� kj < m; jj � lj < ngIn an Xmn grid, vertex vij 
orresponds to the blo
k bij in the matrix, and edges 
orrespond toall possible overlaps between blo
ks. Note that not all indu
ed subgraphs of the Xmn grid areinterse
tion graphs of a matrix. We de�ne a graph 
lass X�mn in whi
h ea
h graph 
orrespondsto an interse
tion graph G(A;m; n) of the set of m � n dense blo
ks of a matrix A, and ea
hsu
h interse
tion graph is in the 
lass.De�nition 2.7 A graph G = (V;E) is in the graph 
lass X�mn if and only if it is an indu
edsubgraph of an Xmn grid and has the 
losure property so that vij 2 V if8i � k < i+m; j � l < j + n; 9vst : s � k < s+m and t � l < t+ nThe 
losure property enfor
es that there is a vertex in the graph for ea
h blo
k in the matrix.Being an indu
ed subgraph of an X grid guarantees that there is an edge for ea
h overlap. Thegraphs in this 
lass are exa
tly the interse
tion graphs of the m � n blo
ks in a matrix, thus�nding a maximum independent set of a graph in this 
lass is equivalent to solving the MNDBproblem of the 
orresponding dense matrix blo
ks. This 
laim is formalized by the followinglemma.Lemma 2.1 An instan
e of the MNDB problem for �nding K m � n nonoverlapping denseblo
ks in a matrix A is polynomially equivalent to an instan
e of MIS for a graph in X�mn.Proof: As we dis
ussed earlier, the MNDB problem 
an be redu
ed to the problem of �nd-ing an independent set on its interse
tion graph. Here we show the one-to-one 
orresponden
ebetween interse
tion graphs, and graphs in X�mn. Remember that ea
h dense blo
k bij 
orre-sponds to the vertex vij in G(A;m; n). By de�nition of the 
lass X�mn, G(A;m; n) 2 X�mn,thus any instan
e of an MNDB problem 
an be redu
ed to an independent set problem in agraph in X�mn.Given a graph G in X�mn, de�ne A = (aij), so that aij is a nonzero i� k � i < k +m andl � j < l+ n for some vertex vkl in G. Observe that any dense blo
k in A must be representedby a vertex in G due to the 
losure property. Also, for any two adja
ent verti
es in G, 
orre-sponding blo
ks interse
t in A, and no other blo
ks overlap, due to the de�nition of edges inXmn. Thus, a maximum-
ardinality subset of nonoverlapping blo
ks in matrix A 
orrespondsto a maximum independent set in G 2 X�mn.In this paper we will use the graph 
lass X�22 to prove the NP-
ompleteness of the MNDBproblem for 2� 2 blo
ks. Our proof 
an be generalized to arbitrary sized blo
ks, showing theNP-
ompleteness of the MNDB problem for m � n blo
ks, and hen
e the NP-
ompleteness ofthe maximum independent set problem for graphs in 
lass X�mn.The following lemma shows that removing a subset of the verti
es along with their neigh-bors preserves the 
hara
teristi
s of the graph, providing the basis for greedy approximationalgorithms as will be presented in Se
tion 4. 4
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2 Figure 1: Planar Orthogonal DrawingLemma 2.2 Let G = (V;E) be a graph in X�mn, S � V a subset of verti
es, and N(S) =fu j (u; v) 2 E; v 2 S; u =2 Sg be the neighborhood of S in G. Then the graph G0 indu
ed byV n (S [N(S)) is still in X�mn.Proof: Let V 0 = V n (S [ N(S)). The lemma would not hold only if for some i; j with1 � i � M � m and 1 � j � N � n we have that for all k; l su
h that i � k < i +m andj � l < j + n there exist s; t with s � k < s +m and t � l < t + n and vst 2 V 0, yet vij =2 V 0.First note that vij =2 S. This is sin
e if k = i and l = j then the 
orresponding vst must beadja
ent to vij sin
e jk�sj < m and jl� tj < n. Sin
e vst =2 (S[N(S)) in parti
ular vst =2 N(S),and so vij 2 N(S). Hen
e there is a vpq 2 S su
h that it is adja
ent to vij , i.e. jp � ij < mand jq � jj < n. Then 
onsider k = (p+i)+jp�ij2 and l = (q+j)+jq�jj2 . Clearly, i � k < i + m,j � l < j + n and p � k < p+m, q � l < q + n. Consider the vst 
orresponding to this 
hoi
efor k and l. We have s � k < s +m and t � l < t + n. Hen
e jp� sj < m and jq � tj < n, andso vst 2 N(S), whi
h is a 
ontradi
tion sin
e we must have vst 2 V 0.2.3 Planar Graphs and Orthogonal DrawingsA graph G is planar if and only if there exists an embedding of G on the sphere su
h that notwo edges have a point in 
ommon besides the verti
es. G is 
ubi
 planar if every vertex hasdegree 3.An orthogonal drawing of a graph G is an embedding of G onto a 2-dimensional re
tangulargrid su
h that every vertex is mapped to a grid point and every edge is mapped to a 
ontinuouspath of grid line segments 
onne
ting the end points of the edge. When G is planar, the edgepaths do not 
ross. An example of orthogonal embedding of a planar graph is illustrated inFigure 1. As seen in this �gure, we refer to a grid point where an edge path 
hanges dire
tion asa bend. No two edges share a grid segment or a bend, and no edge path 
an go through a vertexunless this vertex is an end point of the edge 
orresponding to the path and is an end point ofthe path itself. A mark in an orthogonal drawing of a graph is a grid point that an edge passesthrough,but not a vertex in the original graph. The following result has been reported by deFraysseix et al. [3℄, Kant [6℄, and Papakostas and Tollis [7℄.Theorem 2.3 Every planar graph G with vertex degree at most 4 
an be drawn orthogonallywith at most bn2 
 + 1 bends on an bn2 
 � bn2 
 grid in linear time.In parti
ular, this shows that every 
ubi
 planar graph G = (V;E) 
an be embedded orthog-onally in an O(jV j)� O(jV j) grid in polynomial time. The NP-
ompleteness proof in the next5



se
tion uses a redu
tion from the maximum independent set (MIS) problem on 
ubi
 planargraphs, and adopts orthogonal drawings.3 ComplexityThis se
tion proves that the MNDB problem is NP-
omplete for 2�2 blo
ks. We use a redu
tionfrom the independent set problem on 
ubi
 planar graphs, whi
h we know is NP-
omplete [4℄.Throughout this se
tion, we let X� denote X�22. The next lemma explains how we 
an retainindependent set 
hara
teristi
s of the problems after transformations.Lemma 3.1 Let G = (V;E) be a graph, and u; v be two adja
ent verti
es in G, so that allneighbors of u besides v are also neighbors of v. Let G0 = (V 0; E 0) be the graph G after vertex vis removed. The size of the maximum independent set in G is equal to the size of the maximumindependent set in G0.Proof: If vertex v is in a maximum independent set I , then none of its neighbors are in I .Thus I 0 = I [ fvg n fug is an independent set in G and in G0 of the same size as I .Corollary 3.2 Let G 2 X� 
ontain the graph H in Figure 5(a) as an indu
ed subgraph so thatall verti
es ex
ept for possibly v1; v2 and v3 have all of their neighbors in H. Then any instan
e(G, K) of MIS is equivalent to the instan
e (G0, K) of MIS for the graph G0 = G n fw1; w2g.Proof: By Lemma 3.1, we 
an remove w1 from the graph sin
e all neighbors of x1 are neigh-bors of w1 as well. The redu
ed graph is illustrated in Figure 5(b). Again using Lemma 3.1, we
an remove w2 sin
e it 
overs all neighbors of x2. Note that we 
an apply the same transforma-tion to add verti
es w1 and w2 to the graph in Figure 5(
).The following lemma des
ribes how edges of a graph 
an be repla
ed by paths, while pre-serving independent set 
hara
teristi
s.Lemma 3.3 Let G = (V;E) be a graph and e = (vi; vj) 2 E be an edge. Let Ge;k be the graphG with the edge e substituted by a simple path vi; w1; w2; : : : ; w2k; vj where k 2 Z+ and wi arenew verti
es not in the original graph. Then there exists an independent set of size K in G ifand only if there exists an independent set of size K + k in Ge;k.Proof: We present the proof for k = 1, and the result follows by indu
tion.SuÆ
ien
y: Let I be an independent set in G, then either vi 62 I or vj 62 I . Without lossgenerality, assume vi 62 I , then I 0 = I [ fw1g is an independent set in Ge;k .Ne
essity: Let I 0 be an independent set in Ge;k. If w1 2 I 0, then vi 62 I 0, thus I = I 0 n fw1gis an independent set in G. Symmetri
ally, if w2 2 I 0, then vj 62 I 0, thus I = I 0 n fw2g is anindependent set in G. If w1; w2 62 I 0, then I = I 0 n fv2g is an independent set in G.Theorem 3.4 Problem MNDB is NP-
omplete for 2� 2 blo
ks.Proof: As dis
ussed in the previous se
tion, the problem of �nding maximum number ofnonoverlapping dense blo
ks in a sparse matrix 
an be redu
ed to the problem of �nding amaximum independent set in the interse
tion graph of the matrix, and thus is in NP. For the6



Figure 2: Enlargement operation for K = 1
vij vij+1

vi−1j vi−1j

vij+1Figure 3: Bend transformationNP-
ompleteness proof we use redu
tion from the independent set problem on 
ubi
 planargraphs, whi
h is NP-
omplete [4℄. We �rst use Theorem 2.3 to embed a 
ubi
 planar graphonto a grid. Then we transform the embedded graph so that it is in X�. Our transformationspreserve independent set 
hara
teristi
s so that an independent set in the transformed graph
an be translated to an independent set in the original graph. Finally, we use Lemma 2.1 torelate the independent set problem on a graph in X�, to the MNDB problem, and 
on
lude theMNDB problem is NP-
omplete.Our transformations are lo
al, so we �rst enlarge the grid to make room for these trans-formations. The enlargement operation inserts K new grid points between two grid points inthe original. An example is illustrated in Figure 3 for K = 1. After the enlargement, ea
hedge is now repla
ed by a path of K verti
es (whi
h we distinguish from the original verti
es by
alling them marks). Two adja
ent verti
es in the original graph are now at a distan
e K + 1,whi
h generates a K �K area around ea
h vertex for lo
al transformations. In this proof, it issuÆ
ient to use K = 100.We 
an break down our transformations into 2 steps. The �rst step guarantees that thetransformed graph is in X�. For this purpose, we need to have an edge between all pairs ofverti
es for whi
h the 
orresponding blo
ks overlap so that the graph is in X�, and we need toinsert verti
es into the graph if ne
essary so that the 
losure property is satis�ed. The se
ondstep makes sure that ea
h edge in the original graph is repla
ed by an even-length path afterthe orthogonal embedding and transformations. Then we have su

essfully transformed theindependent set problem on the 
ubi
 planar graph to an independent set problem on a graphin X�, and we 
an 
on
lude the NP-
ompleteness of the MNDB problem using the result ofLemma 2.1.We need to 
onsider two 
ases for the �rst step. One is a bend neighborhood as illustratedin Figure 3, and the other is a T- jun
tion. As illustrated in Figure 4 a T-jun
tion is just aneighborhood of a vertex in the original graph. Noti
e that the only remaining 
ase is a path of7



Figure 4: T-jun
tion transformation
(a) (b) (c)
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x 1

x2

x4 

x5 

x6

x3

w1Figure 5: Transformation to preserve 
losure properties.verti
es, whi
h does not 
ause any problems. Consider a bend vij 
onne
ted to two other marksvi�1j and vij+1. Note that vij 
annot be a vertex in the original graph, sin
e the original graphis 
ubi
. In a graph in X�, there must be and an edge between vi�1j and vij+1. We 
an removevij , and 
onne
t vi�1j and vij+1 as in Figure 3.Now 
onsider a T-jun
tion with vertex vij at the 
enter, as illustrated in Figure 4. Theneighborhood of vij is 
omposed of (up to a rotation) vij�1, vij+1, and vi�1 j , none of whi
h is avertex in the original graph. As in the 
ase of a bend, the problem here is the absen
e of edgesbetween vij�1 and vi�1 j , and between vi�1 j and vij+1, for whi
h the asso
iated blo
ks willoverlap. Also observe that vij must be a vertex of the original graph, and 
annot be eliminated.We 
an make the transformation illustrated in Figure 4, yet the resulting graph is still notin X�, sin
e it has missing verti
es, and does not satisfy the 
losure property. We 
an useCorollary 3.2 to add verti
es to the graph as depi
ted in Figure 5, so that the resulting graphis in X�.By Lemma 3.3, we need ea
h path repla
ing an edge of the planar graph to be of evenlength. For ea
h edge going through an odd number of marks we know that there is a straightline segment going through at least 7 marks, due to the initial enlargement. We 
an repla
e this7 vertex segment with an 8 vertex segment, to guarantee that the path representing an edge isof even length. This transformation is illustrated in Figure 6. After this step, we have a graphin X� that repla
es ea
h edge in the original graph with an even length path.Noti
e that all our transformations require polynomial time and spa
e, thus the size of the�nal embedded graph is polynomial in the size of the original graph.8



Figure 6: odd-length to even-length transformation to preserve independent set 
hara
teristi
s.This redu
es the independent set problem for 
ubi
 planar graphs to an independent setproblem in a graph in 
lass X�. By the result of Lemma 2.1, we know the independent setproblem on a graph in X� is equivalent to a MNDB problem in a matrix. Thus we redu
ed theindependent set problem for 
ubi
 planar graphs to the MNDB problem, whi
h 
on
ludes ourproof.4 Approximation AlgorithmsIn this se
tion, we present a 2=3-approximation algorithm for the MNDB problem for 2 � 2blo
ks. Now that we know the problem is NP-
omplete, we have to resort to heuristi
s fora fast and e�e
tive solution. Remember that our motivation for investigating this problem isspeeding up sparse matrix-ve
tor multipli
ation. Our methods will be used in a prepro
essingphase, thus they must be fast, for their 
ost to be amortized by the speedup in subsequentsparse matrix-ve
tor multipli
ations.Berman et al. [2℄, propose an approximation algorithm for square blo
ks, whi
h uses theLipton-Tarjan planar separator algorithm to get a (1��)-approximation, where � = O(1=pÆlogM)in O(n1+Æ) time, for any Æ > 0, where M is the size of an optimal solution. Baker [1℄ gives an(k � 1)=k-approximation, whi
h uses O(8kn) time and O(4kn) spa
e.Below we propose a greedy approa
h for the 2 � 2 
ase, whi
h in the 1=2-approximation
ase is appli
able to general m� n re
tangular blo
ks. Unlike the two algorithms 
ited, due toits greedy nature it is simple and very easy to implement. It is pass-eÆ
ient, and takes timeand spa
e linear in the number of blo
ks of the matrix, with very small 
onstant fa
tors in thebounds.First note that an easy 1=2-approximation to the MNDB problem with 2� 2, whi
h runs inlinear time in the number of blo
ks, is a
hieved by �nding the leftmost blo
k in the topmost row,adding it to the 
urrent independent set, and then repeating the same operation after removingthis vertex and all its neighbors. Note that at most two of the verti
es 
an be independent amongthose removed from the graph, thus we have a 1=2-approximation algorithm. In this se
tion weshow how to improve this approximation result by looking at an extended neighborhood of theleftmost vertex in the uppermost row. Our algorithm is based on 
hoosing a set of verti
es inthe neighborhood of the leftmost vertex in the uppermost row, so that the size of this set is noless than 2=3 of a maximum independent set in the indu
ed subgraph of those verti
es removed9
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ision tree for algorithm MNDB-APX. v 
orresponds to the leftmost vertex in theuppermost row, and the neighboring verti
es in the X-grid are marked in Figure 8. We takethe left bran
h if the label vertex is in V , and the right bran
h otherwise. We pro
eed until werea
h a leaf, whi
h 
ontains the set S that will be added in the independent set.
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?Figure 8: Vertex neighborhood 
onsidered for ea
h 
all to BinTreeDe
ision. The positions viare used in the de
ision tree, while the positions ui are only used in the analysis.from the graph. Clearly this generates a �nal solution that is 2=3 of the optimal, sin
e all greedyde
isions are at least 2=3 of the lo
al optimal. Note that the resulting graph after removinga vertex along with all its neighbors still has the 
hara
teristi
s of the original as proven inLemma 2.2Our de
ision pro
ess BinTreeDe
ision is depi
ted as a binary de
ision tree in Figure 7.In this tree, internal nodes indi
ate 
onditions, and the leaves list the verti
es added to theindependent set. We present the pseudo
ode of the algorithm below.
10



Algorithm MNDB-APXI  ;while V 6= ;v  leftmost vertex on the uppermost rowS  BinTreeDe
ision(v)I  I [ Sremove S and its neighborhood from Gendwhilereturn ILemma 4.1 Algorithm MNDB-APX runs in linear time in the number of blo
ks in the matrix.Proof: Ea
h iteration of the algorithm requires a traversal of the binary de
ision tree fromthe root to a leaf, whi
h takes at most 8 steps, thus O(1) time. Also at least one vertex isremoved from the graph at ea
h iteration. Thus the time for the de
ision pro
ess is linear in thenumber of verti
es in the graph. The only other operation that a�e
ts the 
ost is �nding theleftmost vertex in the uppermost row. In a prepro
essing step one 
an go through the matrixin a left to right fashion and store pointers to the blo
ks so that vij appears before vkl i� i < kor i = k and j < l. After this it takes 
onstant time to �nd the 
urrent leftmost vertex on theuppermost row.Lemma 4.2 The size of the maximal independent set returned by Algorithm MNDB-APX isno smaller than 2=3 of the size of maximum independent set on the interse
tion graph.Proof: The proof is based on 
ase by 
ase analysis. We show that BinTreeDe
ision(v)of Figure 7 always returns an independent set S su
h that N(S) 
ontains no independent setlarger than 1:5 jSj, where N(S) denotes the neighborhood of S, i.e., the set of verti
es in S oradja
ent to a vertex in S. Below we examine the binary sear
h tree 
ase by 
ase:
11



v5 62 V S = fvg, and v and its neighbors form a 
lique with MIS size 1.v5 2 Vv1 62 V By the 
losure property v2 62 V , and we have the following:v6 62 V S = fvg, and v and its neighbors form a 
lique with MIS size 1.v6 2 Vv4 2 V S = fv; v4g, and N (S) has MIS size at most 3.v4 62 V By the 
losure property u1 62 V . In this 
ase, if one of v9 or v8 is not inV , then S = fv5; v6g, sin
e their neighborhood has MIS size at most 3.Otherwise, v8; v9 2 V :v7 62 V This implies u2 62 V and:v10 62 V S = fv5; v6g and N (S) has MIS size at most 3.v10 2 V S = fv; v8; v9; v10g, and N (S) has MIS size at most 6.v7 2 Vv3 2 V S = fv; v3g, and N (S) has MIS size at most 3.v3 62 V S = fv; v7g, and N (S) has MIS size at most 3.v1 2 Vv2 2 V S = fv; v2g, and N (S) has MIS size at most 3.v2 62 V By the 
losure property v3 =2 V , andv7 62 V S = fv1g, v1 and its neighbors form a 
lique, and the MIS is of size 1.v7 2 Vv4 2 V S = fv; v4g, and N (S) has MIS size at most 3.v4 62 V By the 
losure property u1 62 V , and if one of v8 or v9 is not in V ,then S = fv1; v5g, and N (S) has a MIS size at most 3. Otherwise ifv8; v9 2 V , then S = fv; v7; v8; v9g, and N (S) has MIS size at most 6.Theorem 4.3 Algorithm MNDB-APX is a linear time, 2=3-approximation algorithm.Proof: Follows dire
tly from Lemma 4.1 and Lemma 4.2.5 Extensions and Further Resear
hWe have so far limited our dis
ussions to �nding 2� 2 blo
ks in a matrix due to spa
e 
onsider-ations. However, our results 
an be generalized to larger blo
ks and alternative patterns, whi
h
an repla
e dense blo
ks to speedup sparse matrix operations.Our NP-
ompleteness proof for 2� 2 blo
ks in Se
tion 3 
an be easily extended to arbitrarysized m� n blo
ks when m;n � 2.Theorem 5.1 Problem MNDB is NP-
omplete for m;n � 2.The essen
e of the proof remains the same. We �rst enlarge the graph (by a fa
tor linear in mand n), then transform the graph so that it is in X�mn, and then �nally make sure ea
h edgeis repla
ed by an even length path. 12



0B� xx x xx 1CA 0B� x xxx x 1CA 0B� x xxx x 1CA(a) (b) (
)0B� x xxx x 1CA 0B� xx x xx 1CA 0B� xx x xx 1CA(d) (e) (f)Figure 9: (a) the 
ross blo
k (b)-(f) the diagonal versions of the 
ross blo
kDetails of our proof 
an be found in http://www.
s.
mu.edu/�virgi/newm/paper.ps.Sin
e our proofs rely solely on the fa
t that the matrix patterns we 
onsider are boundedby an m � n re
tangle, it does not matter whether the blo
ks are dense, or there are missingentries in the interior. We have a 
orollary as follows:Corollary 5.2 Let � be an oriented shape, the outer boundary of whi
h is the boundary of anm� n re
tangular blo
k. Then the MNS problem for this � is NP-
ompleteAnother observation is that we need not restri
t ourselves to viewing the verti
al and hori-zontal gridlines of the grid as 
orresponding to the 
olumns and rows of the matrix. We 
an viewone or both of the gridlines to be (parallel) diagonals in the matrix. Moreover, rotating a shapeby a right angle (i.e. swapping the gridline dire
tions) does not 
hange the NP-
ompletenessresults. Thus any 
omposition of perpendi
ular rotation and 
hanging gridline dire
tions asdes
ribed above 
onverts a shape with a known NP-
omplete MNS problem to a new one withthe same 
omplexity. This te
hnique is e�e
tive for a large variety of shapes. We were ableto derive NP-
ompleteness results for many other simple oriented substru
tures su
h as the so
alled 
ross blo
k 
onsisting of an entry (i; j), and its verti
al and horizontal adja
ent entries(i � 1; j), (i + 1; j), (i; j � 1), (i; j + 1) (Fig. 9a), all of its rotations, 
ross blo
ks with vertexsubdivided legs, and many shapes with 
entral symmetry.We have presented an approa
h to improving the 
a
he performan
e of sparse matrix op-erations by sear
hing for a maximum number of nonoverlapping oriented matrix substru
tureswhi
h are to be in
luded in a dense matrix 
omponent, leaving all other entries in the sparse
omponent, so that A = As+Ad. Sin
e many substru
ture patterns 
an be 
onsidered, a naturalextension of this idea is to split the matrix into several dense 
omponents, ea
h for a di�erentshape. An alternative approa
h would be to pa
k all nonzero entries in a minimum number ofdisjoint substru
tures by allowing some of the zero entries to be used as nonzeros. This problemis likely to be hard, yet even a good approximation may prove to be useful as one would notneed to split the matrix into a sum. 13
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