Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
Finding Nonoverlapping Dense Blocks of a Sparse Matrix

Permalink
https://escholarship.org/uc/item/2s3680h5

Authors

Vassilevska, Virginia
Pinar, Ali

Publication Date
2004-02-06

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/2s3680h5
https://escholarship.org
http://www.cdlib.org/

Finding Nonoverlapping Dense Blocks of a Sparse Matrix*

Virginia Vassilevska Ali Pinar
Computer Science Department Computational Research Division
Carnegie Mellon University =~ Lawrence Berkeley National Laboratory
virgi@cs.cmu.edu apinar@lbl.gov
Abstract

Many applications of scientific computing rely on computations on sparse matrices. The
design of efficient implementations of sparse matrix kernels is crucial for the overall efficiency
of these applications. Due to the high compute-to-memory ratio and irregular memory
access patterns, the performance of sparse matrix kernels is often far away from the peak
performance on a modern processor. Alternative data structures have been proposed, which
split the original matrix A into A; and Ay, so that A; contains all dense blocks of a specified
size in the matrix, and A; contains the remaining entries. This enables the use of dense
matrix kernels on the entries of A; producing better memory performance. In this work, we
study the problem of finding a maximum number of nonoverlapping dense blocks in a sparse
matrix, which is previously not studied in the sparse matrix community. We show that the
maximum nonoverlapping dense blocks problem is NP-complete by using a reduction from
the maximum independent set problem on cubic planar graphs. We also propose a 2/3-
approximation algorithm that runs in linear time in the number of nonzeros in the matrix.
This extended abstract focuses on our results for 2 x 2 dense blocks. However we show
that our results can be generalized to arbitrary sized dense blocks, and many other oriented
substructures, which can be exploited to improve the memory performance of sparse matrix
operations.

Keywords: memory performance, memory-efficient data structures, high-performance com-
puting, sparse matrices, independent sets, NP-completeness, approximation algorithms.

This paper is submitted as a regular paper.

*This work was supported by the Director, Office of Science, Division of Mathematical, Information, and
Computational Sciences of the U.S. Department of Energy under contract DE-AC03-765F00098.

1 Introduction

Sparse matrices lie in the hearts of many computation-intensive applications such as finite-
element simulations, decision support systems in management science, power systems analysis,
circuit simulations, and information retrieval. The performance of these applications directly
relies on the performance of the sparse matrix kernels. However, the performance of sparse
matrix operations on modern processors is limited due to the high compute-to-memory ratio,
and irregular memory-access patterns.

Conventional data structures for sparse matrices have two components: an array that stores
floating-point entries of the matrix, and arrays that store the nonzero structure (i.e., pointers
to the locations of the numerical entries). Exploiting sparsity invariably requires using pointers,
but pointers often lead to poor performance. One reason for the poor memory performance is
that pointers cause an irregular memory access pattern and thus poor spatial locality. Another
important reason, which is often overlooked, is the extra load operations. Fach operation on a
nonzero entry requires loading the location of that nonzero before loading the actual floating
point number. For instance, sparse matrix vector multiplication, which is one of the most
important kernels in numerical algorithms, requires three load operations for each nonzero in
the matrix. It has been observed that this overhead might be as costly as the floating point
operations [5].

Recent studies have investigated improving memory performance of sparse matrix operations
by reducing the number of extra load operations [5, 8, 9]. In [8], Pimnar and Heath proposed
exploiting dense blocks of a sparse matrix, along with reordering techniques to increase the sizes
of these blocks. Omne approach considered is splitting a matrix as A = Ay + Ay1, where Aqg
includes 1 X 2 blocks of the matrix (two nonzeros in consecutive positions on the same row),
and Ay covers the remaining nonzeros. Notice that it is suflicient to store a pointer for each
block in Ay5. Significant speedups in large experimental sets have been observed, which gives
motivation to search for larger blocks in the matrix for further improvements in performance.
One can split the matrix into A = Ay + A, where Ay contains all dense blocks, and A, contains
the remaining entries. Clearly, for a constant block size, having more entries in A, yields fewer
load operations, thus better memory performance. This calls for efficient algorithms to find a
maximum number of nonoverlapping blocks of a specified size in a sparse matrix. A greedy
algorithm is sufficient to find a maximum number of nonoverlapping m x n blocks when m =1
or n = 1. However, this problem is much harder when m,n > 2.

In this work, we study the problem of finding a maximum number of nonoverlapping m X n
dense blocks of a sparse matrix, which we call the mazimum nonoverlapping dense blocks prob-
lem. In the next section, we define the problem formally and investigate its relation to the
maximum independent set problem. We define a class of graphs where the independent set
problem is equivalent to the maximum nonoverlapping dense blocks problem. In Section 3,
we use this relation to prove that the maximum nonoverlapping dense block problem is NP-
complete. Qur proof uses a reduction from the maximum independent set problem on cubic
planar graphs and adopts orthogonal drawings of planar graphs. Section 4 presents an approxi-
mation algorithm for the problem. Since we are motivated by improving memory performance of
sparse matrix operations, we are interested in fast and effective heuristics for the preprocessing
cost to be amortized over the speedups in subsequent sparse matrix operations. Our algorithms
require only linear time and space, and generate solutions whose sizes are within 2/3 of the

optimal.

In this extended abstract, we only focus on finding 2 x 2 blocks due to space considerations
and clarity of presentation. However, our results can be generalized as we discuss in Section 5.
We prove that the problem is NP-complete for m x n blocks for m,n > 2. We also work on
alternative dense patterns to replace rectangular blocks, which might be employed to speedup
sparse matrix operations.

The problem of finding nonoverlapping dense blocks of a sparse matrix has not been studied
in the sparse-matrix community. We have been recently aware of the work by Berman et al. [2],
where a similar problem is discussed as the optimal tile salvage problem. In the optimal tile
salvage problem, we are given an v/ N x v/N region of the plane tiled with unit squares, some of
which have been removed. The task is to find a maximum number of functional nonoverlapping
m X n tiled rectangles. The difference between our problem and the optimal tile salvage problem
is that in the tile salvage problem the tiles are allowed to be in any orientation (m X n or n X m),
whereas in our case the orientation is fixed (only m x n). The two problems coincide in the
case of square dense blocks. Berman et al. proved the NP-completeness of the tile salvage
problem, however their proof exploits the flexibility in the orientation of the dense block, and
thus our proof is significantly different. Berman et al. also describe an (1 — €)-approximation
algorithm, which would work for square blocks, for ¢ = O(1/+/éTog M), where M is the optimal
solution value. Their algorithm is based on maximum planar H-matching which runs in O(N1+9)
steps for small § > 0. Baker [1] also has an algorithm for the case of square blocks, which
runs in O(8%N)-time and O(4*N) space and produces a (k — 1)/k-approximation. Both of
these algorithms however are complex and hard to implement. The greedy 2/3-approximation
algorithms we propose are very simple. It requires linear time and space, with very small
constant factors in the time and space bounds. Our algorithm requires only one pass through
the matrix, and thus is I/O -efficient.

2 Preliminaries

In this section we define the problems formally, and present definitions and some preliminary
results that will be used in the following sections.

2.1 Problem Definition

This work investigates the problem of finding a maximum number of nonoverlapping matrix
substructures of prescribed form and orientation.

Definition 2.1 An m X n pattern is a 0-1 m X n matriz 0. An oriented o-substructure of a
matriz A is an m x n submatrizc M in A so that M(i,7) # 0 if sigma(i,j)=1 for 1 < i < m,
and 1 < j < n. Two substructures M and N overlap if they share nonzero entry e in M with
coordinates (inr, jar) in M and (in, jn) in N and o(ipg, jar) = o(in, jn) = 1.

Given a particular pattern o, we define the mazimum nonoverlapping o-substructures (MNS)
problem as follows.

Definition 2.2 Mazimum Nonoverlapping o-Substructures (MNS) Problem
INSTANCE: An M X N matriz A, integer K.
QUESTION: Does A contain K disjoint o-substructures?

In this paper, we focus on dense blocks, due to their simplicity, and their effectiveness in speeding
up sparse matrix operations. A dense block of a matrix is a submatrix of specified size all of
whose entries are nonzero, i.e., it is a g-substructure where ¢ is the all 1s matrix. We identify a
dense block with its upper left corner. Two blocks overlap if they share a matrix entry. Formal
definitions follow.

Definition 2.3 Given an M x N matriz A = (a;;), we say b;; is an m x n dense block in A iff
ag # 0 for allk and l such that i <k <i+m < M and j<l<j+n<N. Twom Xn blocks
bi; and by overlap iff i <k <i+mandj <Il<j4+n,ork<i<k+mandl <j<l+n.

We specify the MNS problem for dense blocks as follows.

Definition 2.4 Mazimum Nonoverlapping Dense Blocks (MNDB) Problem
INSTANCE: An M x N matriz A, positive integers m and n that define the block size, and a
positive integer K.

QUESTION: Does A contain K disjoint m x n dense blocks?

In this paper, we will focus on 2 x 2 blocks for space considerations, and clarity of presentation,
although our results can be generalized to varying block sizes, and different substructures.

2.2 Intersection Graphs

It is easy to find all specified patterns in a matrix, however what we need is a subset with
nonoverlapping blocks. In this sense, the MNS problem is related to the maxzimum independent
set (MIS) problem, which is defined as finding a maximum cardinality subset of vertices I of a
graph G, such that no two vertices in I are adjacent. Below we define an intersection graph,
which reveals the relation between the independent set and the nonoverlapping blocks problems
more clearly.

Definition 2.5 A graph G is an intersection graph of the o-substructures of a matriz A if there
15 a bijection ¢ between the vertices of G and the substructures of A, such that there is an edge
in G between ¢(s1) and ¢(s3) if and only if s1 and sy overlap in A.

We will use G(A, m,n) to refer to the intersection graph of dense m x n blocks in matrix A.
A maximum independent set on G(A,m,n) gives a maximum number of nonoverlapping blocks
in A, thus the MNDB problem can be reduced to the maximum independent set problem, which
is known to be NP-complete [4]. However it is important to note that the block intersection
graphs have special structures, which can be exploited for efficient solutions. For instance, a
greedy algorithm is sufficient to find a maximum number of nonoverlapping 1 X n and m x 1
blocks, since these problems reduce to a family of disjoint maximum independent set problems
on interval graphs. In the remainder of this section, we define the class of graphs that constitute
block intersection graphs. An intersection graph of a set of 2 x 2 dense blocks is an induced
subgraph of the so called X-grid which consists of the usual 2 dimensional grid, and diagonals
for each grid square. In general, the intersection graph of a set of m x n dense blocks is an
induced subgraph of the X,,, grid. Below, we first define an X,,, grid, and then restrict the
definition to define the graph class X1',,, that represent graphs that can be an intersection
graph for a matrix.

Definition 2.6 An M x N X, grid is a graph with a vertex set V and an edge set F, so that
o V={v;:1<i<M-m;1<j<N-—n}
o F={(vij,on): 1 <i,k<M-m;1<jI<N—-n:li—kl<m|j—I<n}

In an X,,,, grid, vertex v;; corresponds to the block b;; in the matrix, and edges correspond to
all possible overlaps between blocks. Note that not all induced subgraphs of the X,,,,, grid are
intersection graphs of a matrix. We define a graph class X1T',,,,, in which each graph corresponds
to an intersection graph G(A,m,n) of the set of m X n dense blocks of a matrix A, and each
such intersection graph is in the class.

Definition 2.7 A graph G' = (V, F) is in the graph class X1, if and only if it is an induced
subgraph of an X,,,, grid and has the closure property so that v;; € V if

Vi<k<it+m,j<l<j+mn FJvg:s<k<s+mandt<I<t+n

The closure property enforces that there is a vertex in the graph for each block in the matrix.
Being an induced subgraph of an X grid guarantees that there is an edge for each overlap. The
graphs in this class are exactly the intersection graphs of the m x n blocks in a matrix, thus
finding a maximum independent set of a graph in this class is equivalent to solving the MNDB
problem of the corresponding dense matrix blocks. This claim is formalized by the following
lemma.

Lemma 2.1 An instance of the MNDB problem for finding K m X n nonoverlapping dense
blocks in a matriz A is polynomially equivalent to an instance of MIS for a graph in X1, .

Proof: As we discussed earlier, the MNDB problem can be reduced to the problem of find-
ing an independent set on its intersection graph. Here we show the one-to-one correspondence
between intersection graphs, and graphs in XT',,,,. Remember that each dense block b;; corre-
sponds to the vertex v;; in G(A,m,n). By definition of the class XT',,, G(A,m,n) € XTI,
thus any instance of an MNDB problem can be reduced to an independent set problem in a
graph in XT',,,,.

Given a graph G in XT,,, define A = (a;;), so that a;; is a nonzero iff £ <7 < k 4+ m and
[< j < I+ n for some vertex vy in . Observe that any dense block in A must be represented
by a vertex in GG due to the closure property. Also, for any two adjacent vertices in G, corre-
sponding blocks intersect in A, and no other blocks overlap, due to the definition of edges in
Xpn- Thus, a maximum-cardinality subset of nonoverlapping blocks in matrix A corresponds
to a maximum independent set in G € X1',,,,. |

In this paper we will use the graph class XT'y5 to prove the NP-completeness of the MNDB
problem for 2 x 2 blocks. OQur proof can be generalized to arbitrary sized blocks, showing the
NP-completeness of the MNDB problem for m x n blocks, and hence the NP-completeness of
the maximum independent set problem for graphs in class XT',,.

The following lemma shows that removing a subset of the vertices along with their neigh-
bors preserves the characteristics of the graph, providing the basis for greedy approximation
algorithms as will be presented in Section 4.

2 p 3.

mark
T 4

bend 7

Figure 1: Planar Orthogonal Drawing

Lemma 2.2 Let G = (V, F) be a graph in X1, S CV a subset of vertices, and N(S5) =
{w | (u,v) € E, veS, ug¢ S} be the neighborhood of S in G. Then the graph G’ induced by
VAN (SUN(S)) is still in XT',,,.

Proof: Let V/ = V \ (S U N(S5)). The lemma would not hold only if for some ¢, j with
1<i:1<M-mand1l<j <N -—n we have that for all k£, [such that + < k < ¢+ m and
J <1< j+nthere exist s,t with s <k <s+mandt <l <t+nand vy € V', yet v;; ¢ V.
First note that v;; ¢ 5. This is since if £ = 7 and [= j then the corresponding vy must be
adjacent to v;; since |k —s| < m and |l —¢| < n. Since vy ¢ (SUN(S)) in particular vy ¢ N(5),
and so v;; € N(5). Hence there is a vy, € 5 such that it is adjacent to v;;, i.e. |p—i| < m
and |¢ — j| < m. Then consider k = w and [= W Clearly, « < k < ¢t 4+ m,
j<l<j+nand p<k<p+m,q<!l<qg+mn. Consider the vy corresponding to this choice
for k and [. We have s <k <s+mand ¢t <! <t+n. Hence |[p—s| <m and |¢—t| < n, and
so vg € N(5), which is a contradiction since we must have vy € V. |

2.3 Planar Graphs and Orthogonal Drawings

A graph G is planar if and only if there exists an embedding of G on the sphere such that no
two edges have a point in common besides the vertices. G is cubic planar if every vertex has
degree 3.

An orthogonal drawing of a graph G is an embedding of G onto a 2-dimensional rectangular
grid such that every vertex is mapped to a grid point and every edge is mapped to a continuous
path of grid line segments connecting the end points of the edge. When G is planar, the edge
paths do not cross. An example of orthogonal embedding of a planar graph is illustrated in
Figure 1. As seen in this figure, we refer to a grid point where an edge path changes direction as
a bend. No two edges share a grid segment or a bend, and no edge path can go through a vertex
unless this vertex is an end point of the edge corresponding to the path and is an end point of
the path itself. A mark in an orthogonal drawing of a graph is a grid point that an edge passes
through,but not a vertex in the original graph. The following result has been reported by de
Fraysseix et al. [3], Kant [6], and Papakostas and Tollis [7].

Theorem 2.3 FEvery planar graph G with vertex degree at most 4 can be drawn orthogonally

with at most | 5| + 1 bends on an 5| x [5] grid in linear time.

In particular, this shows that every cubic planar graph G' = (V, £') can be embedded orthog-
onally in an O(|V|) x O(]V|) grid in polynomial time. The NP-completeness proof in the next

section uses a reduction from the maximum independent set (MIS) problem on cubic planar
graphs, and adopts orthogonal drawings.

3 Complexity

This section proves that the MNDB problem is NP-complete for 2 x 2 blocks. We use a reduction
from the independent set problem on cubic planar graphs, which we know is NP-complete [4].
Throughout this section, we let X' denote XT'35. The next lemma explains how we can retain
independent set characteristics of the problems after transformations.

Lemma 3.1 Let G = (V, FE) be a graph, and u,v be two adjacent vertices in G, so that all
neighbors of u besides v are also neighbors of v. Let G' = (V' E’) be the graph G after vertex v
1s removed. The size of the maximum independent set in G is equal to the size of the mazimum
independent set in G'.

Proof: If vertex v is in a maximum independent set I, then none of its neighbors are in [I.
Thus I’ = T U {v} \ {u} is an independent set in G and in G’ of the same size as I. |

Corollary 3.2 Let G € XT' contain the graph H in Figure 5(a) as an induced subgraph so that
all vertices except for possibly vi, vy and vs have all of their neighbors in H. Then any instance

(G, K) of MIS is equivalent to the instance (G', K) of MIS for the graph G' = G \ {wy, w2}.

Proof: By Lemma 3.1, we can remove wy from the graph since all neighbors of 21 are neigh-
bors of wy as well. The reduced graph is illustrated in Figure 5(b). Again using Lemma 3.1, we
can remove wsq since it covers all neighbors of 5. Note that we can apply the same transforma-
tion to add vertices wy and wy to the graph in Figure 5(c). |

The following lemma describes how edges of a graph can be replaced by paths, while pre-
serving independent set characteristics.

Lemma 3.3 Let G = (V, E) be a graph and e = (v;,v;) € E be an edge. Let Gy, be the graph
G with the edge e substituted by a simple path v;,wy, ws, ..., wo, v; where k € ZT and w; are
new vertices not in the original graph. Then there exists an independent set of size K in G if
and only if there exists an independent set of size K + k in G .

Proof: We present the proof for k£ = 1, and the result follows by induction.

Sufficiency: Let I be an independent set in (/, then either v; € I or v; ¢ I. Without loss
generality, assume v; € I, then I’ = I U {w;} is an independent set in G .

Necessity: Let I' be an independent set in G . If wy € I', then v; ¢ I’, thus I = I'\ {wy}
is an independent set in . Symmetrically, if wy € I’, then v; ¢ I’, thus [= I’ \ {wy} is an
independent set in G. If wy,wy & I', then I = I’ \ {vz} is an independent set in G. |

Theorem 3.4 Problem MNDB is NP-complete for 2 x 2 blocks.

Proof: As discussed in the previous section, the problem of finding maximum number of
nonoverlapping dense blocks in a sparse matrix can be reduced to the problem of finding a
maximum independent set in the intersection graph of the matrix, and thus is in NP. For the

Figure 2: Enlargement operation for K =1

.

O o—O0—
i Vin Vij+1

Figure 3: Bend transformation

NP-completeness proof we use reduction from the independent set problem on cubic planar
graphs, which is NP-complete [4]. We first use Theorem 2.3 to embed a cubic planar graph
onto a grid. Then we transform the embedded graph so that it is in XT'. Our transformations
preserve independent set characteristics so that an independent set in the transformed graph
can be translated to an independent set in the original graph. Finally, we use Lemma 2.1 to
relate the independent set problem on a graph in XT', to the MNDB problem, and conclude the
MNDB problem is NP-complete.

Our transformations are local, so we first enlarge the grid to make room for these trans-
formations. The enlargement operation inserts K new grid points between two grid points in
the original. An example is illustrated in Figure 3 for K = 1. After the enlargement, each
edge is now replaced by a path of K vertices (which we distinguish from the original vertices by
calling them marks). Two adjacent vertices in the original graph are now at a distance K + 1,
which generates a K x K area around each vertex for local transformations. In this proof, it is
sufficient to use K = 100.

We can break down our transformations into 2 steps. The first step guarantees that the
transformed graph is in XT'. For this purpose, we need to have an edge between all pairs of
vertices for which the corresponding blocks overlap so that the graph is in XT', and we need to
insert vertices into the graph if necessary so that the closure property is satisfied. The second
step makes sure that each edge in the original graph is replaced by an even-length path after
the orthogonal embedding and transformations. Then we have successfully transformed the
independent set problem on the cubic planar graph to an independent set problem on a graph
in XT', and we can conclude the NP-completeness of the MNDB problem using the result of
Lemma 2.1.

We need to consider two cases for the first step. One is a bend neighborhood as illustrated
in Figure 3, and the other is a 7T- junction. As illustrated in Figure 4 a T-junction is just a
neighborhood of a vertex in the original graph. Notice that the only remaining case is a path of

Figure 4:

| v,

. A
X4
% X6

V2
V1
(@) (b) (c)

Figure 5: Transformation to preserve closure properties.

vertices, which does not cause any problems. Consider a bend v;; connected to two other marks
v;—1; and v;;41. Note that v;; cannot be a vertex in the original graph, since the original graph
is cubic. In a graph in XT', there must be and an edge between v,;; and v;;1. We can remove
vy, and connect v;q; and v;;1 as in Figure 3.

Now consider a T-junction with vertex v;; at the center, as illustrated in Figure 4. The
neighborhood of v;; is composed of (up to a rotation) v;;_1, v;;41, and v;_ ;, none of which is a
vertex in the original graph. As in the case of a bend, the problem here is the absence of edges
between v;;_ and v;—y ;, and between v;_y; and v;;41, for which the associated blocks will
overlap. Also observe that v;; must be a vertex of the original graph, and cannot be eliminated.
We can make the transformation illustrated in Figure 4, yet the resulting graph is still not
in XT', since it has missing vertices, and does not satisfy the closure property. We can use
Corollary 3.2 to add vertices to the graph as depicted in Figure 5, so that the resulting graph
isin XT.

By Lemma 3.3, we need each path replacing an edge of the planar graph to be of even
length. For each edge going through an odd number of marks we know that there is a straight
line segment going through at least 7 marks, due to the initial enlargement. We can replace this
7 vertex segment with an 8 vertex segment, to guarantee that the path representing an edge is
of even length. This transformation is illustrated in Figure 6. After this step, we have a graph
in XT that replaces each edge in the original graph with an even length path.

Notice that all our transformations require polynomial time and space, thus the size of the
final embedded graph is polynomial in the size of the original graph.

Figure 6: odd-length to even-length transformation to preserve independent set characteristics.

This reduces the independent set problem for cubic planar graphs to an independent set
problem in a graph in class XI'. By the result of Lemma 2.1, we know the independent set
problem on a graph in X1 is equivalent to a MNDB problem in a matrix. Thus we reduced the
independent set problem for cubic planar graphs to the MNDB problem, which concludes our
proof. |

4 Approximation Algorithms

In this section, we present a 2/3-approximation algorithm for the MNDB problem for 2 x 2
blocks. Now that we know the problem is NP-complete, we have to resort to heuristics for
a fast and effective solution. Remember that our motivation for investigating this problem is
speeding up sparse matrix-vector multiplication. Our methods will be used in a preprocessing
phase, thus they must be fast, for their cost to be amortized by the speedup in subsequent
sparse matrix-vector multiplications.

Berman et al. [2], propose an approximation algorithm for square blocks, which uses the
Lipton-Tarjan planar separator algorithm to get a (1—¢)-approximation, where e = O(1/y/6logM)
in O(n'*®) time, for any § > 0, where M is the size of an optimal solution. Baker [1] gives an
(k — 1)/k-approximation, which uses O(8%n) time and O(4%n) space.

Below we propose a greedy approach for the 2 x 2 case, which in the 1/2-approximation
case is applicable to general m X n rectangular blocks. Unlike the two algorithms cited, due to
its greedy nature it is simple and very easy to implement. It is pass-efficient, and takes time
and space linear in the number of blocks of the matrix, with very small constant factors in the
bounds.

First note that an easy 1/2-approximation to the MNDB problem with 2 x 2, which runs in
linear time in the number of blocks, is achieved by finding the leftmost block in the topmost row,
adding it to the current independent set, and then repeating the same operation after removing
this vertex and all its neighbors. Note that at most two of the vertices can be independent among
those removed from the graph, thus we have a 1/2-approximation algorithm. In this section we
show how to improve this approximation result by looking at an extended neighborhood of the
leftmost vertex in the uppermost row. Our algorithm is based on choosing a set of vertices in
the neighborhood of the leftmost vertex in the uppermost row, so that the size of this set is no
less than 2/3 of a maximum independent set in the induced subgraph of those vertices removed

Figure 7: Decision tree for algorithm MNDB-APX. v corresponds to the leftmost vertex in the
uppermost row, and the neighboring vertices in the X-grid are marked in Figure 8. We take
the left branch if the label vertex is in V', and the right branch otherwise. We proceed until we
reach a leaf, which contains the set 5 that will be added in the independent set.

ViMoo Np o Vg o9

Figure 8: Vertex neighborhood considered for each call to BinTreeDecision. The positions v;
are used in the decision tree, while the positions u; are only used in the analysis.

from the graph. Clearly this generates a final solution that is 2/3 of the optimal, since all greedy
decisions are at least 2/3 of the local optimal. Note that the resulting graph after removing
a vertex along with all its neighbors still has the characteristics of the original as proven in
Lemma 2.2

Our decision process BinTreeDecision is depicted as a binary decision tree in Figure 7.
In this tree, internal nodes indicate conditions, and the leaves list the vertices added to the
independent set. We present the pseudocode of the algorithm below.

10

Algorithm MNDB-APX
I—0
while V # ()
v « leftmost vertex on the uppermost row
S — BinTreeDecision(v)
I—1TUS
remove 5 and its neighborhood from G
endwhile

return [/

Lemma 4.1 Algorithm MNDB-APX runs in linear time in the number of blocks in the matrix.

Proof: FEach iteration of the algorithm requires a traversal of the binary decision tree from
the root to a leaf, which takes at most 8 steps, thus O(1) time. Also at least one vertex is
removed from the graph at each iteration. Thus the time for the decision process is linear in the
number of vertices in the graph. The only other operation that affects the cost is finding the
leftmost vertex in the uppermost row. In a preprocessing step one can go through the matrix
in a left to right fashion and store pointers to the blocks so that v;; appears before vy iff ¢« < k
or ¢ = k and 5 < [. After this it takes constant time to find the current leftmost vertex on the

uppermost row. |

Lemma 4.2 The size of the maximal independent set returned by Algorithm MNDB-APX is
no smaller than 2/3 of the size of maximum independent set on the intersection graph.

Proof: The proof is based on case by case analysis. We show that BinTreeDecision(v)
of Figure 7 always returns an independent set S such that N(.9) contains no independent set
larger than 1.5 |S|, where N () denotes the neighborhood of 5, i.e., the set of vertices in S or
adjacent to a vertex in 5. Below we examine the binary search tree case by case:

11

vs € V .S = {v}, and v and its neighbors form a clique with MIS size 1.
vs €V

vy € V' By the closure property va € V, and we have the following:
ve € V .S = {v}, and v and its neighbors form a clique with MIS size 1.
vs €V
vg €V S ={v,v4}, and N(S) has MIS size at most 3.

va € V' By the closure property uy ¢ V. In this case, if one of vg or vg is not in
V', then S = {vs, v}, since their neighborhood has MIS size at most 3.
Otherwise, vg,vg € V:

vy ¢ V' This implies uy € V and:

vip € V.S = {us,vs} and N(S) has MIS size at most 3.

vig €V S = {v,vs,v9,v10}, and N(S) has MIS size at most 6.
vy €V

vg €V S ={v,vs}, and N(S) has MIS size at most 3.

vg €V S = {v,v7}, and N(S) has MIS size at most 3.

v eV
va €V S ={v,us}, and N(S) has MIS size at most 3.
ve & V' By the closure property vs ¢ V', and
vr €V S ={v1}, v; and its neighbors form a clique, and the MIS is of size 1.
vweV
vg €V S ={v,vsa}, and N(S) has MIS size at most 3.

va € V By the closure property uy € V', and if one of vg or vy is not in V|
then S = {v1,vs}, and N(S) has a MIS size at most 3. Otherwise if
vg,vg € V, then S = {v,v7,vs,v9}, and N(S) has MIS size at most 6.

Theorem 4.3 Algorithm MNDB-APX is a linear time, 2/3-approzimation algorithm.

Proof: Follows directly from Lemma 4.1 and Lemma 4.2.

5 Extensions and Further Research

We have so far limited our discussions to finding 2 x 2 blocks in a matrix due to space consider-

ations. However, our results can be generalized to larger blocks and alternative patterns, which

can replace dense blocks to speedup sparse matrix operations.

Our NP-completeness proof for 2 x 2 blocks in Section 3 can be easily extended to arbitrary

sized m X n blocks when m,n > 2.

Theorem 5.1 Problem MNDB is NP-complete for m,n > 2.

The essence of the proof remains the same. We first enlarge the graph (by a factor linear in m

and n), then transform the graph so that it is in X1',,,,, and then finally make sure each edge

is replaced by an even length path.

12

T T T r Z
r T x T T
T T T r Z
(a) (b) ()
r T T T
T r T x r T x
r Z T T

Figure 9: (a) the cross block (b)-(f) the diagonal versions of the cross block

Details of our proof can be found in http://www.cs.cmu.edu/~virgi/newm/paper.ps.

Since our proofs rely solely on the fact that the matrix patterns we consider are bounded
by an m X n rectangle, it does not matter whether the blocks are dense, or there are missing
entries in the interior. We have a corollary as follows:

Corollary 5.2 Let o be an oriented shape, the outer boundary of which is the boundary of an
m X n rectangular block. Then the MNS problem for this o is NP-complete

Another observation is that we need not restrict ourselves to viewing the vertical and hori-
zontal gridlines of the grid as corresponding to the columns and rows of the matrix. We can view
one or both of the gridlines to be (parallel) diagonals in the matrix. Moreover, rotating a shape
by a right angle (i.e. swapping the gridline directions) does not change the NP-completeness
results. Thus any composition of perpendicular rotation and changing gridline directions as
described above converts a shape with a known NP-complete MNS problem to a new one with
the same complexity. This technique is effective for a large variety of shapes. We were able
to derive NP-completeness results for many other simple oriented substructures such as the so
called cross block consisting of an entry (4,7), and its vertical and horizontal adjacent entries
(i—1,7), (¢ +1,7), (4,5 — 1), (4,7 + 1) (Fig. 9a), all of its rotations, cross blocks with vertex
subdivided legs, and many shapes with central symmetry.

We have presented an approach to improving the cache performance of sparse matrix op-
erations by searching for a maximum number of nonoverlapping oriented matrix substructures
which are to be included in a dense matrix component, leaving all other entries in the sparse
component, so that A = A;+ A4. Since many substructure patterns can be considered, a natural
extension of this idea is to split the matrix into several dense components, each for a different
shape. An alternative approach would be to pack all nonzero entries in a minimum number of
disjoint substructures by allowing some of the zero entries to be used as nonzeros. This problem
is likely to be hard, yet even a good approximation may prove to be useful as one would not
need to split the matrix into a sum.

13

References

[1] B. Baker, Approximation algorithms for NP-complete problems on planar graphs, Proc.
24th IEEFE Symp. on Foundations of Computer Science (1983), pages 265-273.

[2] F. Berman, D. Johnson, T. Leighton, P. Shor, L.Snyder, Generalized planar matching,
Journal of Algorithms 11, (1990), pages 153-184.

[3] H. de Fraysseix, J. Pach, R. Pollack, How to draw a planar graph on a grid, Combinatorica,
10 (1990), pages 41-51.

[4] M. Garey and D. Johnson, Computers and intractability: A guide to the theory of NP-
completeness, W.H. Freeman and Co., 1979.

[5] E. Im, K. Yelick, R. Vaduc, SPARSITY: An Optimization Framework for Sparse Matrix
Kernels, International Journal of High Performance Computing Applications, 18 (1), 2004,
to appear.

[6] G. Kant, Drawing planar graphs using the canonical ordering, Algorithmica, 16, (1996),
pages 4-32.

[7] A. Papakostas and I. Tollis, Algorithms for area-efficient orthogonal drawings. Computa-
tional Geometry 9 (1998), pages 83-110.

[8] A. Pinar, M. Heath, Improving performance of sparse matrix vector multiplication, Proc.
IFEE/ACM Conf. on Supercomputing 1999, Portland, OR, November (1999) .

[9] R. Vuduc, J. Demmel, K. Yelick, S. Kamil, R. Nishtala, B. Lee, Performance Optimizations
and Bounds for Sparse Matrix-Vector Multiply Proc. IEEE/ACM Conf. on Supercomputing
2002, Baltimore, MD, USA, November (2002).

14

