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Abstract

The breadth and complexity of natural behaviors inspires awe. Understanding how our 

perceptions, actions, and internal thoughts arise from evolved circuits in the brain has motivated 

neuroscientists for generations. Researchers have traditionally approached this question by 

focusing on stereotyped behaviors, either natural or trained, in a limited number of model 

species. This approach has allowed for the isolation and systematic study of specific brain 

operations, which has greatly advanced our understanding of the circuits involved. At the 

same time, the emphasis on experimental reductionism has left most aspects of the natural 

behaviors that have shaped the evolution of the brain largely unexplored. However, emerging 
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technologies and analytical tools make it possible to comprehensively link natural behaviors to 

neural activity across a broad range of ethological contexts and time scales, heralding new modes 

of neuroscience focused on natural behaviors. Here we describe a three-part roadmap that aims to 

leverage the wealth of behaviors in their naturally occurring distributions, linking their variance 

with that of underlying neural processes to understand how the brain is able to successfully 

navigate the everyday challenges of animals’ social and ecological landscapes. To achieve this 

aim, experimenters must harness one challenge faced by all neurobiological systems, namely 

variability, in order to gain new insights into the language of the brain.

In Brief:

Miller et al. argue that natural behavior can serve as a powerful lens into the full range of 

computations that brains perform by leveraging the dynamic covariance between behavior and 

neural activity.

Introduction.

Whereas the heart functions to pump blood through the circulatory system and the lungs to 

extract oxygen from the air around us, the nervous systems function to support an animal’s 

active participation in the world. Nervous systems have been shaped evolutionarily across 

species to successfully govern how individuals of a species navigate their unique ecological 

and social landscapes; a relationship elegantly articulated by Briscoe and Ragsdale1:“The 
evolution of vertebrate nervous systems is in large part the evolution of neural circuitry 
— whether through qualitative changes to circuit construction, increase or reduction of 
neuronal number at particular nodes, or through the reorganization of circuit components in 
space — with behavior as the target of selection, made manifest through neuronal activity”. 

Brains are not general-purpose machines: the cells, circuits, and areas of the brain have been 

collectively optimized to support behaviors in species’ repertoires.

Recent technological advances in the neurosciences have pushed the envelope in 

our understanding of the intricate relationship that exists between neural systems 

and behavior2,3. Technological development is necessary: without measuring specific 

dimensions of behavior or nervous system function, we are running blind. But an 

appreciation of these newly available data is tempered by the realization that tools alone 

will not illuminate the mysteries of the brain on their own4, no matter how ‘big’ the data. 

To meaningfully interpret such considerable datasets, integrating these diverse empirical 

observations into a higher-order understanding of complex systems mandates a solid 

theoretical foundation. If we are to understand brains as the dynamic biological systems 

they are, theory firmly rooted in behavior — the target of evolutionary selection — offers the 

most fertile ground for discovery of the brain’s computational principles, the generalizable 

neural dynamics that underlie if, when and how natural behaviors manifest across different 

contexts, including both the degree of plasticity and mechanistic constraints that shape the 

distributions of potential behavioral outcomes.

To address this considerable challenge, we propose a conceptual merger between two 

neuroscience sub-disciplines — systems neuroscience and neuroethology — that have 
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at times been viewed as at odds but that are in fact complementary, each with its 

own theoretical advantages5,6. These disciplines are distinguished in large part by their 

distinct perspectives on the role of behavior to elucidate facets of brain function. Systems 

neuroscience has tended towards reductionistic paradigms designed to control behavior 

through conditioning7–9. From this perspective, behavior is viewed as one of many available 

lenses through which to view how brains work, with neural processes taking primacy. 

In contrast, neuroethology has focused on naturally occurring behaviors in a species’ 

repertoire, biasing towards highly specialized behaviors that result from intense evolutionary 

selection, such as survival and mate attraction10–13. For neuroethologists, natural behaviors 

are typically the anchor point for inquiry into brain function. While both frameworks have 

been powerful engines of discovery for how brains work, each has in its own way skewed 

our understanding of neural systems by focusing on stereotyped behaviors that have as 

little variability as possible. This focus follows to generate the large numbers of identical 

or nearly identical trials or behavioral events to gain repeatability and statistical power for 

traditional forms of data analysis. Whether isolated behaviors of the type studied in the 

laboratory are representative ‘models’ of all behaviors and brain function is debatable14. In 

fact, such stereotyped behaviors reflect only a small fraction of the behavioral repertoire 

(Figure 1). In other words, even for the most well studied species, we know embarrassingly 

little about how brains support what animals are doing most of their day.

How can neuroscientists interested in natural modes of brain function gain traction in 

understanding behaviors that are not isolated and stereotyped? How can we study the neural 

mechanisms underlying dynamic, variable, and infrequent behaviors? One important factor 

is to reconsider what constitutes a good or valid neuroscience experiment. The academic 

view of the scientific method emphasizes the virtue of high statistical repeatability and 

restricted outcomes for the pursuit of well-formed hypotheses. While this formulaic mode 

of scientific investigation has great value for many problems, it is not the only path to 

scientific inquiry, and it may not be well suited for studying many elements of natural 

behavior. In neurobiology, mechanistic hypotheses about brain circuits are often constrained 

by the narrow potential outcomes of a particular experimental paradigm. However, the 

long-term value of pursuing such hypotheses must ultimately be linked to an animal’s 

natural behavioral repertoire, including when that animal is a human. Thus, the distinct 

challenges posed by studying brain activity in animals undertaking natural behaviors are at 

least partially offset by the knowledge that the brain is operating within its normal range; 

the motivations for behaviors to manifest when they do are centered in the challenges the 

brain evolved to solve, rather than the experimentally compelled motivations like satiating 

thirst or avoiding pain that typify traditional neuroscientific approaches. Given the influence 

of an animal’s state on neural processes and behaviors24–28, such differences in behavioral 

motivation are likely to have profound effects on brain activity.

We consider that while natural behaviors include the range of observable actions that 

manifest in the daily lives of animals, behavior is not limited to motor actions. Instead, 

we endorse a more holistic view of behavior comprising events and processes that occur 

between actions that include — but are not limited to — sleep, decision-making (including 

the decision to suppress a behavior), planning, and related internal states of the individual. 

This view emerges from an appreciation of the fact that natural behaviors occur along 
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overlapping short (millisecond, second) and long (circadian, lifecycle) time scales, each 

impacting neural computations and processes independently and collectively.

In this review, we present a three-part roadmap aimed at addressing the challenges of 

studying natural behaviors and brains. We champion using the full distribution of behavioral 

and neural data — rather than their central tendency — to evaluate the neuroscience 

of natural behaviors. The concept of distributions, or variance, as primary targets of 

experimental inquiry is a foundational tenet of our roadmap. We use the term variance 

broadly, to encompass different outcomes (behavioral output, neural activity, and so on) that 

occur within ostensibly similar conditions, such as repeated events, as well as across a range 

of contexts that often remain unexplored. We argue that keystone principles of brain function 

can only be discovered when animals execute dynamic behavioral sequences, whose details 

are subject to variation within a range of natural parameters. After all, variance is an inherent 

feature of all biological systems. Variability not only distinguishes biology from other 

sciences29, but it is one of the cornerstones of evolution by natural selection. Ultimately, the 

full mapping of covariance between the distributions of behaviors and brains is a key first 

step towards elucidating the core principles of neural computations that govern the breadth 

of behaviors in a repertoire.

Hence, rather than continue the tradition of neuroscience to curtail variability, our first 

challenge here is to embrace the distributions of the natural modes of behavior. Our second 

challenge addresses the experimental feasibility of an approach focused on dynamic, natural 

behaviors that we champion here. In this section, we describe how neural and behavioral 

recording advances have set the stage to optimize experimental designs that balance 

considerations of variance and control. The final challenge is one of interpretability. The 

recent step increase in the quality of data collection methods does not, by itself, guarantee a 

deeper understanding of brain function. New conceptual insights into the multi-dimensional 

relationship between complex brain signals and behaviors, and its bearing on core principles 

of brain function, require that scientists develop methods to harness the variance inherent 

to such rich datasets. For this, biological observations of behaviors and brains must be 

integrated into new theoretical frameworks that provide hitherto unseen perspectives on 

neural computations. Natural behaviors are not simply a useful source of variance. Natural 

behaviors encompass the map of possible neural computations that we seek to understand in 

neuroscience - how we interact with and navigate the world around us.

Importantly, here we distinguish between neural computations — processes in the brain 

itself, the representation and transformation of external and internal variables that govern 

behaviors — and computational methods — the analysis approaches that neuroscientists 

apply to characterize our observations and measurements of processes in the brain. Our 

ambition to develop theoretical principles from analysis approaches that fully capture neural 

computations within natural behavior remains the primary goal, but there are few, if any, 

convincing examples at present. A key motivation for the roadmap described here is to 

outline a path to that end.
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Challenge 1: embrace the diversity of natural behaviors

Every action taken by an animal is unique. The Greek philosopher Heraclitus captured this 

principle in his famous adage, “No man ever steps in the same river twice, for it is not the 

same river and he is not the same man”. Thus, the brain is designed to achieve its goals amid 

an ever-changing set of circumstances. Nonetheless, neuroscience has traditionally sought 

to recreate, as precisely as possible, actions and behavioral conditions for the benefit of 

precise repeatability. This understandable pursuit has resulted in our view of the brain being 

filtered through a ‘mean/median’ framework, in which we record an event multiple times, 

averaging neural activity across those ‘trials/events’ and consider the mean/mode/median as 

‘representative’. In fact, experimental approaches have often gone to great lengths to reduce 

the variance to focus the scope of inquiry to this central tendency outcome.

This traditional conceptual framework, which encapsulates many, though of course not all 

approaches to analyzing brain function, puts aside the important fact that variation in both 

the environmental context and the execution of a behavior is a core feature of brain function. 

Brains, however, must operate in a graded, analog fashion that continually adjusts actions 

and expectations with respect to the outside world. This natural variation should not be 

construed as noise against which the brain must contend, but rather the basic parameters 

of its operation. Harnessing the natural distribution of natural behaviors to study the brain 

in action — rather than focusing only on the mean/median — requires a tactical shift with 

new practical and theoretical considerations. This includes an appreciation of low-frequency 

neural or behavioral events as meaningful parts of the distribution, rather than as outliers 

that can be statistically ignored. Foremost is the capacity to measure and quantify the 

diverse modes of behavioral variance that mark natural experience across the full range that 

behaviors manifest.

Each instance of a given behavioral action is different because of changing environmental 

conditions30–32, ecological contexts (such as the presence or absence of particular 

conspecifics or predators12,33–36), internal cognitive states37–39, and a range of other 

factors40,41. One important source of variance stems from the observation that behaviors 

often occur within a continuous sequence, rather than as discrete events42. A lioness hunt 

is not only the attack, but a series of complementary actions including visually tracking, 

stalking, hiding and positioning, typically in coordination with group members43. Thus the 

significance of a given behavioral component, and the neural mechanisms supporting it, can 

depend on what came immediately before. This ubiquitous principle provides one avenue 

for dissecting contextual versus invariant neural contributions to a given behavior. It is 

exemplified in classic studies of human speech production, where the articulation of a word 

depends strongly on the preceding and subsequent syllables44,45(Figure 2).

The neural processes that generate natural behaviors must coordinate over both short and 

long time scales to accommodate sequential behavioral actions. Behavioral exchanges, and 

their underlying neural mechanisms, typically transpire over several seconds or longer. 

For example, the activity of frontal cortex neurons in marmosets prior to hearing a 

conspecific vocalization almost perfectly predicted whether the monkeys would engage in 

a conversational exchange, despite the fact that call response occurred up to 10 seconds 
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after hearing a conspecific vocalization46. In other words, variance in the state of the neural 

population at the time an ‘event’ occurred (conspecific vocalization was heard) was a key 

source of variance in the probability of the subsequent social behavior several seconds later. 

Although experimental conventions focus analyses to select time periods at the time of a key 

event, designing tasks that involve extended time windows — including different sequences 

that comprise the same behavior — and the variance that emerges in these epochs can 

be harnessed to illuminate facets of brain activity that can at times have profound effects 

on behavior47. An important challenge will be determining how to define the windows of 

analysis, from the millisecond timescale of spiking activity, up to seconds for individual 

actions, and hours or days for state variability.

In addition to the retrospective dependency emphasized above, certain events in a sequence 

can have prospective consequences. The inclusion of a particular event, such as a goal-

oriented decision, can be a key pivot point that marks a divergence of the subsequent 

sequence’s trajectory48. Decision-making illustrates this point as it is traditionally framed as 

the endpoint after weighing multiple options, a fact reflected in the various experimental 

paradigms conventionally used to address this issue9,49–52. Under natural conditions, 

however, decision-making more closely resembles a continuous, ongoing process. Decisions 

are made constantly, ranging from the choice to not walk into a wall to strategizing about 

climbing the social hierarchy. These types of decisions, and their effect on what follows, 

are not well captured in laboratory tests of decision-making that are most often discrete and 

dichotomous by nature53.

In natural behavior, choices are often expressed on a graded scale and at a chosen point 

in a continuous sequence. This principle is obvious in navigation, where local decisions 

in space and time often alter the course of what follows54. Moreover, each iteration of 

a certain kind of choice may have a different consequence. For example, a foraging bat, 

upon reaching a second feeding tree, may be more satiated and choose to socialize before 

consuming food. Thus, the way in which decision-making shapes the continuous flow of 

experience can provide natural experimental sources of variance for studying the neural 

principles underlying natural behavior.

Challenge 2: optimize experimental design for natural distributions.

From a practical perspective, addressing the points above requires significant changes in the 

acquisition, analysis, and conceptualization of data, particularly with respect to experimental 

design. Foremost is the continuous collection of behavioral and physiological data. 

Behavioral, neural, autonomic, and other signals must be acquired with sufficient temporal 

resolution to match the temporal dynamics of the behavioral motifs being investigated. At 

the same time, acquisition often needs to remain continuous over a period long enough to 

capture rare events and to study slower physiological processes. This contrast to trial-based 

paradigms reflects the desire to sample physiological activity during the broad distribution 

of natural behaviors. These requirements, combined with the desire to simultaneously 

sample a breadth of neural and other signals, place high demands on data recording, storage, 

and transmission. Fortunately, recent technological advances for data acquisition allow us 

to meet this challenge. For the quantification of behavior, machine learning approaches 
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allow quick and continuous assessment of myriad behavioral variables. For physiological 

recordings, large-scale electrophysiological arrays and multiscale neuroimaging approaches 

allow for the simultaneous monitoring of hundreds, and sometimes thousands, of neurons in 

real time.

Here we discuss the bearing that these advances are beginning to have on experimental 

design. Importantly, this does not just simply mean acquiring larger quantities of data, but 

matching experimental design to the distributions that are naturally relevant: for example, 

sensory stimuli that represent the range an animal experiences in the real world, behavioral 

tasks that allow the broad repertoire of actions an animal can take, and recordings that 

capture the full diversity of neural cell types, response properties, and dynamics that underlie 

each of these.

New types of data — behavior

Tapping into the full richness of behavior will be facilitated by incorporating several key 

factors that have been traditionally eliminated in behavioral paradigms. First, studying 

natural behaviors that lack traditionally stereotyped characteristics, such as being innate and 

highly repeatable, or learned and over-trained, will allow exploration of the full space of 

possible mapping between neural activity and behavior. Second, task designs that have a 

continuous readout of behavior, rather than a single decision point, will both capture the 

richness of true behavior, which rarely has an isolated decision, and greatly expand the 

volume of data that can be acquired in a single session, which is necessary for many recent 

‘data-hungry’ analysis methods. And last, natural behaviors take into account each species’ 

unique view of the world, its umwelt57, and what it is offered by that world, its affordances58 

— with an ethological correspondence between the task variables and behavioral output, 

ensuring that meaningful computations are being studied.

Whenever constraints on the behavior are released, new phenomena are likely to 

be observed. Although the benefits may seem apparent, a combination of technical 

limitations and sociological issues have historically hampered researchers from taking such 

unconstrained approaches to behavior. Nonetheless, pioneering studies showed the richness 

of sensory processing during natural behavior59,60. More recently, it was found that simply 

allowing a mouse to run in place on a treadmill, rather than constraining it to sit, results in 

striking changes in visual and auditory processing that have expanded our view of cortical 

function20,61,62. These examples also emphasize the importance of active sensing63–65: in 

the real world animals determine how they acquire sensory information, as opposed to 

laboratory paradigms where the experimenter is in charge. Allowing naturalistic, active 

sensing therefore has the potential to introduce tremendous variability in both the sensory 

input and motor output, with concordant technical challenges. This also reflects the domain 

in which sensory systems are optimized to function22 which includes ongoing movements 

and time-varying sensory stimuli.

While one potential approach to incorporating natural behavior is to move on entirely 

from current reductionist paradigms, releasing all constraints and allowing an animal to 

behave freely, there are also more step-wise, transitional approaches available. For example, 

studies of active vision can begin with free viewing within a head-fixed paradigm66, or two-
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alternative forced choice paradigms can be modified to include richer stimuli and naturalistic 

response actions. Likewise, the study of natural scene statistics itself provides context for 

understanding the types of coding schemes the visual scene may employ67, although the 

utility of the natural scenes approach in probing vision experimentally has been debated68,69. 

As a further step, closed-loop experimental paradigms, which determine the timing and 

occurrence of stimuli and/or rewards based on a subject’s ongoing behavior, offer a path to 

balancing experimental control with the continuous nature of ethological behaviors70. One 

notable concern with such step-wise approaches, however, is whether each iterative step 

away from traditional reductionistic paradigms will eventually lead to truly natural behavior, 

or whether distinct challenges will emerge at each step limiting progress to this eventual 

goal. Thus, both the transitional approach of incorporating ethological components into 

current paradigms and the direct approach of pursuing purely natural behaviors are certain to 

be informative and challenging71.

New types of data — recording brain signals

Measurements of neural activity offer a notably narrow window into brain function. With 

very few exceptions, a nearly infinitesimal subset of the brain’s neurons is recorded over 

a brief period of time in the animal’s life, generally minutes to hours. From these small 

subsamples, we hope to infer a general population code for brain function. Traditionally, 

the solution to this has been to narrow down the subject of inquiry and corresponding 

experimental paradigm to match this window with the neural activity. In restricting visual 

processing to motion of moving dots, for example, neural recordings are often then limited 

to areas associated with motion processing (such as visual area MT) during a two-alternative 

forced choice motion discrimination task, and further restricted by matching the specific 

stimulus parameters to a subset of neurons in that particular recording session. As discussed 

above, however, brains rarely operate in such an isolated regime, and therefore as we 

increase the complexity of the behavioral context, we must broaden this window so 

that the dimensionality of our neural data matches the dimensionality of the behavior or 

computations under investigation.

Increasing the throughput of recordings, in terms of number of simultaneous neurons as 

well as the neural populations — for example, cell types, circuits and brain regions — 

from which these neurons are sampled, ensures that there is a large and diverse enough 

population to represent the full behavioral or sensory repertoire being presented. Increasing 

the duration of recordings, whether over hours or days, not only increases the total data, but 

also allows sampling across multiple behavioral contexts and examination of variability over 

time (Figure 3). Some of these methods, such as two-photon calcium imaging, also allow 

estimation of coverage — the fraction of cells within a population that are responding in a 

given context — as opposed to methods such as single tungsten electrodes that will miss 

inactive neurons, leading to a ‘dark matter’ conundrum74.

One example of the insights that can be gained from such an approach is the elucidation of 

a ‘slow drift’ signal in macaque V4 and PFC73, which found that activity distributed across 

populations of neurons in these areas was modulated over the course of minutes and hours 

during performance of visual attention task (Figure 3C). The amplitude of this spontaneous 

Miller et al. Page 8

Curr Biol. Author manuscript; available in PMC 2023 May 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



modulation was up to five-times larger than the effect of attention that was the basis of 

the task design, and co-varied with behavioral performance, thus revealing a large-scale 

determinant of brain activity and behavior that would not be detected if averaging over trials 

or recording a single neuron at a time. Furthermore, this study in primates parallels findings 

on the effects of behavioral state, particularly locomotion and arousal, across a range of 

model species from flies to mice20,75–78.

Challenge 3: analyses to harness the variance.

In the section above, we have proposed dramatically expanding the distribution of 

experimental data across many dimensions — but how then do we extract interpretable 

findings? In addition to enabling the acquisition of more diverse data, recent advances 

will hopefully yield a richer understanding of the data, with data analysis methods and 

models that consider more than tuning curves or choice probabilities to allow a full mapping 

between neural activity and behavior. These analysis techniques offer powerful approaches 

that both distill the complexity of natural brain function into cogent models while still 

capturing the richness of these dynamic datasets. Ultimately, this delicate balance is key 

to harnessing the variance inherent to the natural brain and elucidating the fundamental 

principles that underlie how countless species successfully navigate the world. Given the 

need to account for the many sources of variance that act on different levels of the brain–

behavior interactions, answers to these questions in this framework need not resemble 

current descriptions of neural circuits that attempt to assign a specific computational role to 

individual neuron classes in highly constrained contexts.

Quantifying behavior

Over the past several years, machine-learning based approaches to quantifying behavior 

through video analysis, such as DeepLabCut, and LEAP79,80, and acoustic analysis81,82, 

have rapidly become pervasive in neuroscience. The tremendous strength of these 

approaches is that they allow easy quantification of many kinematic variables during an 

animal’s action. This contrasts with previous approaches, which required either reducing 

measurements down to one or a few task variables (binary choice, reaction time); laborious 

manual or semi-automated tracking of a small number of body points; or categorical, often 

qualitative, assessment into an ethogram. Hence, these new methods improve our ability to 

capture the true variance of natural behavior.

But this wealth of data raises the question of how to effectively make use of them 

for subsequent analysis. After all, although these behavioral quantification tools have 

dramatically increased our ability to annotate behavior, the path to translating these data 

into novel insight is not yet clear. One route might be to directly relate these measures 

to neural activity. However, raw kinematics are generally not the parameter space that is 

directly relevant for behavioral analysis. Instead, a number of methods have been developed 

that map raw kinematics into behavioral motifs or ethograms that are both more directly 

related to brain function and, ideally, more interpretable83–85 for researchers. In addition 

to providing labels for behaviors that can be correlated with neural activity, the transitions 
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between these states may provide a way to divide continuous behavior into ‘decision points’ 

that allow current analysis methods to be applied.

Is this high-throughput method of annotation just a way of avoiding the labor of manual 

tracking / ethogram coding or will there be fundamental new insights emerge? Achieving 

this may depend on incorporating this rich ‘annotation’ into models that will allow 

fundamental principles of behavior to be derived that might not result from more limited 

datasets, such as those that may arise from more classical ethological treatments. For 

example, Calhoun et al.37 used a combined GLM–HMM (Generalized Linear Model–

Hidden Markov Model) to determine latent states underlying shifts in Drosophila courtship 

song behavior. Depending on state, the same feedback cues from a conspecific elicit 

different distributions of behavioral output in terms of song production. Notably, this 

approach allowed identification of a specific cell type associated with one of the latent states 

rather than with the behavioral outputs. B-SOiD (Behavioral Segmentation of Open-field In 

DeepLabCut), likewise, provides a dimensionality reduction method for clustering behaviors 

and sequences of behaviors that might not be evident using more traditional ethological 

approaches86.

Importantly, these types of modeling are not the standard post hoc approaches often used to 

recapitulate experimental findings. Rather, in these approaches the model itself is an analysis 

tool that casts large-scale and complex data into interpretable terms, which can then be 

used to directly interrogate the system further through manipulation of the behavior or the 

brain. Translating these types of insight about specific behaviors into more broad theoretical 

frameworks that can provide a ‘first principles’ understanding of behavior is likely to remain 

a challenge for some time.

Analyzing neural activity

Current methods for recording neural activity during behavior generate a tremendous 

amount of data — countless individual spikes in many neurons across the duration of 

recording. As with behavioral data, the challenge is utilizing all these neural data87. What 

types of analyses are needed to extract the meaning from large-scale neural recordings? 

Traditional analyses often average across trials to obtain the mean response as a function 

of one or a few parameterized variables (stimulus orientation or frequency, task response). 

Similarly, in studying populations of neurons, traditional analyses often compute responses 

of neurons individually or after collapsing the data into pairwise interactions.

There are examples of classic studies that incorporate more sophisticated analyses, but 

a recent proliferation of advanced quantitative methods is now primed to make them 

more commonplace across systems neuroscience. Many of these approaches, such as 

PCA (Principal Components Analysis), non-linear manifold embedding and more generally 

data-driven statistical regularization techniques, involve dimensionality reduction: finding 

patterns in the raw high dimensional data that allows it to be represented by a much smaller 

number of variables87–90.

In contrast, other approaches, such as Canonical Component Analysis, directly interrogate 

the relationship between brain activity and behavior91. This has multiple potential 
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advantages, including facilitating single trial analysis because multiple neurons provide 

more robust signal than individual neurons, incorporating data over groups of correlated 

neurons rather than examining individuals, and potentially leading to a set of interpretable 

factors that can be related to aspects of behavior and brain state.

The power of dimensionality reduction approaches in revealing principles of neural coding 

range from rotational dynamics in motor cortex92 to the temporal evolution of olfactory 

coding93, and across species from worms94 to primates95. These approaches can also 

reveal primary determinants of neural activity that may not be directly task related, such 

as the ‘slow drift’ described above and the impact of spontaneous movement on cortical 

dynamics96,97. Finally, these approaches are likely to be essential in determining how 

downstream regions use this information, as demonstrated by studies of the ability to decode 

visual stimulus properties from large populations of V1 neurons98,99.

Analysis at the level of single trials, rather than averaged responses across multiple trials, is 

particularly valuable in the context of natural behavioral and variability, as the exact same 

behavior is never repeated twice. A number of methods have been developed to facilitate 

this approach100, including analysis of second-order statistics (such as power spectra) that 

can be combined even when individual time series cannot be aligned101, point process 

models of individual neurons102, and GLMs (Generalized Linear Models) and related 

techniques that allow incorporation of multiple variables into the responses of populations 

of neurons103,104. Single trial analysis thus allows accounting for the unique combination of 

stimulus parameters, contextual and state variables, and motor output on a given trial (Figure 

4). Furthermore, even in cases when the behavior itself is relatively reproducible, as in a 

two-alternative forced choice task, the underlying neural dynamics may have variability that 

is lost or even corrupted by focusing on the mean response. For example, while averaging 

activity of neurons across multiple trials of an information integration task shows gradual 

ramping activity, analysis at the level of single trials suggests that individual trials show 

discrete steps of activity at variable times, which then average out to a ramp over time105. 

Developing statistical approaches that allow rigorous assessment of rare or singular events 

that make up the long tail of variance in natural behavior remains a key challenge.

Conclusions

Ludwig Wittgenstein once wrote “If a lion could speak, we could not understand him”106. 

While this famous passage is often highlighted in discussions of communication and 

meaning in language, its connotations are directly relevant to our discussion here. Brains 

have many signals — spikes, oscillations, neuromodulators, and so on — that alone or 

together communicate an assemblage of information between cells, circuits and substrates 

across a range of different time scales and varying degrees of impact. Not unlike Willard 

Quine’s explorer who, upon hearing a local exclaim ‘Gavagai!’ in an unknown language, 

is left to ponder the meaning of the word — the indeterminacy of translation107–109 — 

we neuroscientists are tasked with both measuring various brain signals and interpreting 

their ‘meaning’. We are not, however, entirely without a Rosetta Stone. The computational 

principles that govern brains are routinely and elegantly illustrated in the natural behavioral 

repertoires of animals, amongst their dynamic, multidimensional distributions. In fact, 
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they are so clearly evident because it is these very dynamics that have been sculpted 

and optimized over evolution for the myriad biological timescales across which animals 

operate. The language of the brain is natural behavior: the observable orchestral outcome of 

many brain signals working in concert. The impetus to combine natural, variable behaviors, 

large-scale neural recording and computational analysis to elucidate brain functions has been 

pursued by several neuroscience pioneers in previous decades101,110,111. What is different at 

this point in our field, however, is that we now have the tools to translate and leverage this 

prodigious diversity — both within single behaviors and across repertoires — as a powerful 

engine of discovery unto itself.

The significance of behavioral distributions for elucidating the principles governing brain 

functions is evident not only during natural behaviors, but also in more traditional 

paradigms. Consider first the highly reductionist studies of motion perception in the primate 

brain112,113. Subjects fixate a central spot, view an ambiguous dynamic moving dot display 

in their visual periphery, and then communicate their decision about the net direction of 

dot motion by making a discrete motor response to one of two response targets. While 

early generations of this task used a fixed duration of visual motion114,115, this behavioral 

parameter was iteratively extended to allow subjects to make their response as soon as 

they had made up their mind116. This modest change effectively grants volitional control of 

viewing duration to the experimental subject, increasing the natural variance of the behavior 

and yielding new insights into each single decision event117. Theoretical frameworks 

developed to account for these data therefore needed to graduate to more dynamic GLM 

approaches that revealed the complex combinations of sensory, decision and motor signals 

involved even in this highly stereotyped behavior104.

The need for brains to support behavioral diversity is further highlighted by the increasing 

awareness that mixed selectivity is likely the rule rather than the exception for neural coding, 

at least in vertebrate brains118–122. There is no reason to assume that the response of a single 

neuron should have a simple interpretation in terms of single sensory or behavioral variables 

that we impose upon them. There are simply too few cells in brains and too many actions 

they support for the vast majority of single neurons to be highly selective. The participation 

of individual neurons in many seemingly unrelated operations should not come as a surprise. 

At the same time, studies of mixed selectivity have typically relied on more conventional 

behavioral paradigms with correspondingly low-dimensional task parameters that do not 

fully reflect the breadth of operations that these cells, circuits and brains perform. These 

same limitations, however, do not extend to natural behaviors and repertoires. By examining 

the responses of neurons across multiple behavioral variables and/or contexts — thereby 

increasing the scope of behavioral distributions tested within individual neurons — these 

pioneering experiments have laid the groundwork for genuinely new perspectives on the 

neural computations governing flexible, variable behaviors.

Ethological repertoires offer perhaps the most powerful opportunity for insight into core 

neural computations that support brains. This suite of behaviors illustrates not only the 

particular challenges each species faces, but the distinct manner in which they are solved. 

Brains are analog systems, reflective of the very world in which they were selected to 
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function over evolution. Information is not binned in nervous systems, but represented along 

covarying distributions in a multidimensional space.

The continued reliance on low-dimensional, stereotyped behaviors readily lends itself to 

testing binary hypotheses about cell types and circuits, but not necessarily to discovering 

the principles governing the full distribution of actions and processes that they support4. 

Ultimately, we do not record the activity of a single neuron in isolation, rather, we measure 

the perspective of a single neuron within a larger population. As the coding dynamics of that 

population change with respect to immediate behavioral and/or contextual challenges, it will 

be reflected in the distribution of a neuron’s activity covarying with behavioral distributions. 

As a result, neural responses to stimuli under more conventional conditions may not be 

representative of the putative natural analog because differences in behavioral context affect 

the animal’s perception of those signals in meaningful ways that are reflected in the patterns 

of neural activity123.

Similar to the challenge of indeterminacy in ascribing meaning to words in language108,109, 

one cannot identify the function of a brain cell, circuit, or substrate from limited contexts, 

but by embracing the myriad distributions of natural behaviors. For example, we have long 

measured sensory neuron responses to a battery of stimuli in order to determine the features 

that modulate activity: ‘sensory tuning’. Why not measure the covariance between neural 

activity and a large corpus of behaviors and/or sequences of behaviors that naturally occur 

within an animal’s repertoire? ‘Behavior tuning’ neurons in this way could yield unique 

insights into brains’ computational principles that generalize across events, as well as more 

idiosyncratic neural dynamics that emerge in response to distinct contextual challenges123 

(Figure 4).

Developing a true theory of the brain requires experiments that take advantage of the breadth 

of distributions that only natural behaviors can offer. Such comparisons may be the only way 

to account for the indeterminacy between brain activity and function. As for the significance 

of cross-species comparisons for identifying generalizable principles of neural functions at 

the synaptic and cellular levels2,13, comparing neural processes across behaviors may reveal 

generalizable principles of neural function that resolve the indeterminacy of translation for 

brain signals and computations.

As neuroscientists we have traditionally sought to simplify brains and attribute single 

functions to single neurons. However, the single neuron focus fails to account for how 

animals survive and flourish. The path to discovery towards understanding how animals 

perform the impressive breadth of behaviors evident in natural repertoires is through 

an appreciation of the multidimensional relationships that exist between distributions of 

brains and behaviors. We anticipate that answers will include a broader set of principles 

than equating single neural cell types with responses to a specific stimulus feature 

or behavioral motif. Answers will associate the context-dependent dynamics of neural 

populations with generalizable neural computations essential for interacting with the 

natural social and ecological environments. Armed with the impressive modern tools to 

characterize behaviors and environmental factors at timescales on par with brains, data 

sciences approaches to quantify and model these multi-dimensional relationships, along 

Miller et al. Page 13

Curr Biol. Author manuscript; available in PMC 2023 May 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



with impressive molecular technologies to dissect these substrates, neuroscience is poised to 

transform our understanding of how brains actually function in the real world.
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Figure 1. Animals have remarkably diverse behavioral repertoires.
The stereotyped conditioned and specialized behaviors that are typically studied in systems 

neuroscience and neuroethology are a small part of the range of behaviors they produce, 

many of which are shared across species (social interaction, predator avoidance, prey 

capture, and so on) but for which we know very little about the underlying neural 

mechanisms. For example, with the exception of spatial representations in the medial 

temporal lobe first pioneered by O’Keefe15–19, relatively few data are available that detail 

the effects of navigation and exploration on perceptual and cognitive functions20–22 despite 

the fact that the ability to move through space has both been a foundational pressure on brain 

evolution and routinely accounts for large portions of daily activity in all animals. Similarly, 

the neuroscience of the song learning behavior in oscines has been studied extensively 

generating unique insights into sequence motor learning but has taught us very little about 

brain mechanisms involved in natural vocal exchanges23. Spatial exploration and natural 

communication behaviors, however, are highly variable, making them difficult to study in 

conventional frameworks.
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Figure 2. Context-dependent variability of behavior, demonstrated by co-articulation of speech.
The formant frequency representation for single words (‘other’) can change dramatically 

in different sentences (A,B) and be distinct when spoken in isolation (C). This context 

dependence, and the contrast between natural context and repeated trials in isolation, is also 

mirrored in the sensory domain. For example, in vision an edge at a given orientation 

can appear in many different visual contexts, and such stimuli within natural scenes 

evoke different responses than the standard repeated presentation of a similar stimulus in 

isolation55,56.
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Figure 3. Behavioral and neural signatures of variability
. (A) Zebrafinches sing to conspecifics of the opposite sex (directed song) as well as in 

isolation (non-directed song). While only small acoustic differences are evident between 

these contexts, the underlying neural activity shows striking variability72. Adapted with 

permission from Hessler and Doupe72. (B) Head-fixed mice on a spherical treadmill 

spontaneously alternate between a stationary state and locomotion. Responses to identical 

visual stimuli result in approximately two-times greater response when the mouse is 

running. Without quantification of behavioral state, this would appear as unexplained 

variance20,72. Adapted with permission from Niell and Stryker20. (C) In recordings of 

monkeys performing a visual task over several hours, task performance and arousal (as 

measured by pupil diameter) vary slowly. This is accompanied by a slow drift in the first 

principal component of neural activity, evident at the population level73. Adapted with 

permission from Cowley et al.73.

Miller et al. Page 22

Curr Biol. Author manuscript; available in PMC 2023 May 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. Pathways from natural behaviors to neural computations.
Marmoset prey capture comprises several visual processes that have heretofore been 

studied in isolation, rather than as different components of a single integrative, visuo-

motor behavior. Employing complementary machine vision technologies to annotate the 

behavior of the animal and high-density neural recordings provides is a powerful strategy 

to identify behavioral components in different contexts through quantitative ethograms, 

while employing analytical approaches that reduce the dimensionality and identify critical 

covariance between brain and behavior. This approach is made possible by modern 

technologies for quantifying behaviors at time scales that mirror brain signals, longitudinal 

imaging and neural recordings and powerful modeling tools.
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