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Abstract: In this chapter, we investigate the structure and composition

of hot neutron star matter and proto-neutron stars. Such objects are made

of baryonic matter that is several times denser than atomic nuclei and tens

of thousands times hotter than the matter in the core of our Sun. The rel-

ativistic finite-temperature Green function formalism is used to formulate

the expressions that determine the properties of such matter in the frame-

work of the density-dependent mean field approach. Three different sets of

nuclear parametrizations are used to solve the many-body equations and to

determine the models for the equation of state of ultra-hot and dense stellar

matter. The meson-baryon coupling scheme and the role of the ∆(1232)

baryon in proto-neutron star matter are investigated in great detail. In

addition, using the non-local three-flavor Nambu—Jona-Lasinio model to

describe quark matter, the hadron-quark composition of dense baryonic

matter at zero temperature is discussed briefly. General relativistic models

of non-rotating as well as rotating proto-neutron stars are presented in part

two of our study.



November 12, 2021 19:32 ws-book9x6 Book Title ch5˙arXiv page 3

Contents

1. Hot Neutron Star Matter and Proto Neutron Stars 1

Delaney Farrell et al.

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Modeling Hot and Dense Neutron Star Matter . . . . . . . 8

1.2.1 The Non-Linear Nuclear Lagrangian . . . . . . . . 8

1.2.2 Baryonic Field Theory at Finite Density and Tem-

perature . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Composition and EOS of Hot and Dense (Proto-) Neutron

Star Matter . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3.1 Leptons and Neutrinos . . . . . . . . . . . . . . . 16

1.3.2 Chemical Equilibrium and Electric Charge Neutrality 16

1.3.3 Composition of Hot and Dense Matter . . . . . . 19

1.4 The Hadron-Quark Phase Transition . . . . . . . . . . . . 25

1.5 The Parameters of the Hadronic Theory . . . . . . . . . . 30

1.5.1 The Meson-Hyperon Coupling Space . . . . . . . . 32

1.5.2 ∆(1232) Isobars . . . . . . . . . . . . . . . . . . . 33

1.5.3 The Meson-∆(1232) Coupling Spaces . . . . . . . 36

1.6 General Relativistic Stellar Structure Equations . . . . . . 42

1.6.1 Non-rotating Proto-Neutron Stars . . . . . . . . . 43

1.6.2 Rotating Proto-Neutron Stars . . . . . . . . . . . 45

1.6.3 The Moment of Inertia . . . . . . . . . . . . . . . 49

1.7 Future Directions of Research . . . . . . . . . . . . . . . . 52

Bibliography 55

3



November 12, 2021 19:32 ws-book9x6 Book Title ch5˙arXiv page 4

4 Book Title

1.1 Introduction

Within a few million years after a massive star (& 8M⊙) is born, its core

undergoes nuclear fusion reactions that will result in a dense, heavy iron

center. Up until the formation of an iron core, the massive star has been

supported from collapsing by the energy released from fusing lighter ele-

ments into iron and electron degeneracy pressure (Mezzacappa, 2005; Janka,

2012; Foglizzo, 2016; Burrows and Vartanyan, 2021). When an iron core

is formed, the fusion processes and subsequent energy cease; at this point,

the star can no longer support its mass against the force of gravity and

will begin to rapidly collapse in the span of just a few milliseconds. At this

moment, the core’s temperature skyrockets and the density surpasses the

point of electron degeneracy, sparking the formation of neutrons through

electron capture,

p+ e− → n0 + νe , (1.1)

where p, a proton, and e−, an electron, combine to form a neutron, n0,

and an electron neutrino, νe. These neutrinos are released carrying large

quantities of energy, contracting the core further. The density of the core

increases until it reaches nuclear density (baryon number density of around

0.16 fm−3, mass density of or 2.65×1014 g/cm
3
), where nucleon degeneracy

pressure halts the collapse. Parts of the core surpassing nuclear density, like

the inner most part of the core, will rebound to create a shock wave as the

exterior core layers are expelled. Over the next tens of seconds, the shock

wave reverses the inward trajectory of the collapsing stellar material as it

moves through the stellar envelope, partially cooling the extreme tempera-

ture and contracting the material it passes through. The shock wave alone

does not possess enough energy to pass through the entire stellar envelope

and complete the supernova explosion; the shock wave is revived by the

massive quantities of neutrinos created alongside neutrons. While most

neutrinos are expelled, some remain trapped behind the shock wave, in-

creasing the pressure and pushing the wave outward (Camelio et al., 2017).

This portion of the star’s collapse is referred to as the Kelvin-Helmholtz

phase, and the contracting core during this phase is called a proto-neutron

star (PNS) (Prakash et al., 1997; Pons et al., 1999; Strobel et al., 1999;

Camelio et al., 2017). Depending on the final mass of the core after the

short-lived life of a PNS, a black hole or neutron star (NS) is left behind.

This chapter will focus on the structure and evolution of the compact stellar

objects (proto-neutron stars) produced by the collapse of massive (8M⊙ to

around 20M⊙) stars.
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The macroscopic evolution of the PNS during the Kelvin-Helmholtz

phase, where a hot, lepton-rich PNS turns into a cold, deleptonized neutron

star (Weber, 1999, 2005; Sedrakian, 2007; Becker, 2009; Glendenning, 2012;

Rezzolla et al., 2019; Orsaria et al., 2019), is dependent on the microphysical

ingredients of the star, the equation of state (EOS) of the dense matter

comprising the core, and neutrino opacity (Pons et al., 1999). Immediately

(in a matter of 0.1 to 0.5 seconds) following the core bounce during a

massive star’s collapse and just prior to the Kelvin-Helmholtz phase, the

PNS radius rapidly decreases from over 150 km to less than 20 km as

pressure decreases as a result of neutrinos being released from the outer

envelope of the star (Pons et al., 1999). While the star’s original matter

rapidly compresses, the supernova’s shock causes accretion which results in

a substantial increase in mass and total neutrino emission. These conditions

make it so the copious amount of neutrinos cannot escape freely, and instead

diffuse over the course of about a minute (the deleptonization stage) while

a large fraction of the gravitational binding energy is released during the

contraction of the stellar envelope (Foglizzo, 2016). After this minute-long

period, neutrinos can escape freely, and the PNS enters a cooling stage

where the entropy steadily decreases (Pons et al., 1999). The completion

of the deleptonization and cooling stages signifying the end of the Kelvin-

Helmholtz phase and the beginning of the life of a neutron star.

The different stages in the evolution of hot proto-neutron stars to cold

neutron stars, as described above, is schematically illustrated in Fig. 1.1.

Proto-neutron stars are the compact remnants produced at the end of the

evolution of intermediate-mass stars with masses of M & 10M⊙ (see Mari-

ani (2020), and references therein). Their structure and composition passes

through different physical stages within just a few seconds (see, for exam-

ple, Prakash et al. (1997); Pons et al. (1999)). Stars with M & 10M⊙ are

known to evolve in a complex fashion via nuclear burning. At the end of

their lives, when most of the nuclear fuel has been consumed and massive

cores of Fe (or O-Ne/Mg) have been built up, gravitational collapse occurs.

During this phase (stage “1” in Fig. 1.1) a rebound of the outer mantle of

the star occurs. The core is surrounded by a mantle characterized by low

density but high entropy of the matter. The mantle extends for around

200 km and is stable until it explodes due to the aforementioned rebound.

At this point, two different evolutionary tracks of the star are possible,

which essentially depend on how powerful the explosion was. If the ex-

plosion was not strong enough to deleptonize the outer mantle, continued

accretion of matter onto the star would give way to the formation of a



November 12, 2021 19:32 ws-book9x6 Book Title ch5˙arXiv page 6

6 Book Title

Fig. 1.1 Schematic illustration of different temporal stages in the evolution of proto-
neutron stars to neutron stars [Prakash et al. (1997)]. They are characterized by different
values of entropy (s) and lepton number (YL). The formation of black holes (solid
black spheres) is possible during different evolutionary stages, depending on the interplay
between gravity and pressure. The transition of a hot PNS to a cold NS takes less than a
minute. During the first few hundred years NSs cool quickly via neutrino emission from
the core. Photon emission becomes the dominant cooling mechanism thereafter [Page
et al. (2006)].

black hole. The other alternative is that the star explodes successfully as a

supernova (i.e., the mantle collapses and accretion of matter becomes less

important), giving birth to a hot PNS where neutrinos are trapped in the

stellar core (stage “2” in Fig. 1.1). During the next stage of evolution, the

star begins to rapidly lose neutrinos. This leads to a reduction of the pres-

sure due to deleptonization, which would be followed by the formation of

a black hole if the gravitational pull on the matter overcomes the pressure

provided by the matter. If this does not happen, the star will continue to

deleptonize itself as it is being heated-up by the Joule effect of the escaping

neutrinos (stage “3” in Fig. 1.1). It is assumed that the maximum heat-

ing of the star occurs immediately after the neutrinos have left the star.

Continued cooling via neutrino emission from the stellar core (stage “4” in
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Fig. 1.1) [Malfatti (2020)] quickly reduces the star’s temperature to just a

few MeV or less [Page et al. (2006)]. At such temperatures the matter in

the core can be described by a cold nuclear EOS and the corresponding

star is referred to as a NS.

Understanding the physics behind a core collapse supernova and the

subsequent formation of a PNS has been of interest in the particle and as-

trophysics communities for decades (see Mezzacappa (2005); Janka (2012);

Burrows and Vartanyan (2021), and references therein). The well docu-

mented explosion of a type II supernova in the Large Magellanic Cloud in

1987 (SN1987a) was the first supernova event of this kind that could be

studied in detail. Nineteen neutrinos have been detected from this event,

which may be too few to provide a significant constraint on our under-

standing of the particle composition and physics of the supernova, but do

provide an important milestone for these types of events. Since then, physi-

cists have made great strides using numerical models to simulate supernova

explosions (Camelio et al., 2017). More difficult to describe through nu-

merical codes is the lifespan of a PNS, but recent efforts as in (Hüdepohl

et al., 2010; Fischer et al., 2010; Camelio et al., 2017) have been able to

more accurately describe the quasi-stationary evolution of a PNS.

In this book chapter we investigate the structure and composition of

(hot) proto-neutron stars. In part one of the paper, we introduce the field-

theoretic lagrangian that is used to compute models for the EOS of the mat-

ter in the cores of such stars. The relativistic mean field approach is used

to describe the interactions among nucleons mediated by scalar, vector and

iso-vector mesons. In our calculations, we focus on the density-dependent

SWL, DD2, and GM1L nuclear models (Typel et al., 2010; Spinella, 2017;

Malfatti et al., 2019; Spinella and Weber, 2020). All three models account

for the presence of hyperons as well as of ∆ baryons in hot and dense mat-

ter. The possible existence of deconfined quarks in such matter will be

briefly discussed in this paper too. Investigations of this topic have also

been carried out by (Steiner et al., 2000; Shao, 2011; Mariani et al., 2017;

Malfatti et al., 2019).

The relativistic finite-temperature Green function formalism is used to

derive the equations that characterize ultra-hot and dense stellar matter

(Weber, 1999). In part two of our study, the properties of non-rotating as

well as rotating proto-neutron stars are studied by solving Einstein’s field

equation using the models for the EOS derived in part one of the paper. The

rotating stellar models are computed fully self-consistently, as required by

the general relativistic expression for the Kepler (mass shedding) frequency.
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1.2 Modeling Hot and Dense Neutron Star Matter

1.2.1 The Non-Linear Nuclear Lagrangian

While a NS does get its namesake from the large quantities of neutrons

created in the core during its birth, a more accurate depiction of interior

composition a mixture of neutrons and protons whose electric charge is bal-

anced by leptons (L = e−, µ−). Other particles may also exist in the core

like hyperons (B = [n, p, Λ, Σ±, Σ0, Ξ0, Ξ−] (Glendenning, 1985) and the

electrically charged states of the ∆ isobar (Pandharipande, 1971; Sawyer,

1972; Boguta, 1982). The existence of these particles is made possible only

if their Fermi energies become large enough that existing baryon popula-

tions need to be rearranged so that a lower energy state can be reached

(Glendenning, 1985). To understand how the baryons within the core in-

teract, we shall make use of the non-linear density-dependent relativistic

mean-field (DDRMF) theory. This theory describes the interactions be-

tween baryons in terms of meson exchange. These mesons include a scalar

meson (σ) which describes attraction between baryons, a vector meson (ω)

which describes repulsion, and an isovector meson (ρ) which is important

to describe the baryon-baryon interactions in isospin asymmetric matter

such as NS matter (Glendenning, 1985; Spinella, 2017). Due to the pion’s

odd parity, this particle does not contribute at the mean-field description

of dense matter. The nuclear lagrangian of the theory is therefore given by

(see also Weber (1999); Glendenning (2012); Spinella and Weber (2020);

Sedrakian et al. (2022))

L =
∑

B

ψ̄B
[

γµ(i∂
µ − gωBω

µ − gρBτ · ρµ)− (mB − gσBσ)
]

ψB

+
1

2
(∂µσ∂

µσ −m2
σσ

2)− 1

3
b̃σmN (gσNσ)

3 − 1

4
c̃σ(gσNσ)

4 (1.2)

−1

4
ωµνω

µν +
1

2
m2
ωωµω

µ +
1

2
m2
ρρ µ · ρ µ − 1

4
ρ µν · ρ µν ,

where ψB stands for the various baryon fields, gσB, gωB and gρB are (den-

sity dependent) meson-baryon coupling constants, and b̃σ and c̃σ denote

two additional coupling parameters associated with non-linear (cubic and

quartic) self-interactions introduced by Boguta and Bodmer (1977). The

density dependent coupling constants are given by Typel (2018)

giB(n) = giB(n0)ai
[

1 + bi(n/n0 + di)
2
] [

1 + ci(n/n0 + di)
2
]−1

, (1.3)

for σ and ω mesons (i = σ, ω), and by

gρB(n) = gρB(n0) exp [−aρ (n/n0 − 1) ] , (1.4)
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for ρ mesons. Here the choice of parameters ai, bi, ci, and di account

for nuclear medium effects, and are fixed by the binding energies, charge,

and diffraction radii, spin-orbit splittings, and the neutron skin thickness

of finite nuclei.

The quantities mB, mσ, mω, mρ in Eq. (1.2) denote the masses

of baryons and mesons and mN is the nucleon mass. The quantity

τ = (τ1, τ2, τ3) are the Pauli isospin matrices. The quantities ωµν and

ρ
µν denote meson field tensors, where ωµν = ∂µων − ∂νωµ and ρ

µν =

∂µρ ν − ∂νρ µ. The field equations of the baryon and meson fields are ob-

tained by evaluating the Euler-Lagrange equations for the fields in Eq. (1.2).

This leads for the baryon fields to

(iγµ∂µ −mB)ψB =
(

gωBγ
µωµ + 1

2gρBγ
µ
τ · ρµ − gσBσ

)

ψB . (1.5)

The field equation of the scalar σ-meson is given by
(

∂µ∂µ +m2
σ

)

σ =
∑

B

gσBψ̄BψB − bσmngσN (gσNσ)
2 − cσgσN (gσNσ)

3
,

(1.6)

and the field equations of the vector mesons have the form

∂µωµν +m2
ωων =

∑

B

gωBψ̄BγνψB , (1.7)

∂µρµν +m2
ρρν =

∑

B

gρBψ̄BτγνψB . (1.8)

In relativistic mean-field approximation, the field equations (1.5) through

(1.8) become

m2
σσ̄ =

∑

B

gσBn
s
B − b̃σmN gσN (gσN σ̄)

2 − c̃σ gσN (gσN σ̄)
3 , (1.9)

m2
ωω̄ =

∑

B

gωBnB , (1.10)

m2
ρρ̄ =

∑

B

gρBI3BnB , (1.11)

where I3B is the 3-component of isospin and nsB and nB are the scalar and

particle number densities for each baryon B. The latter are given by

nB = 〈ψ†
B(x)ψB(x)〉 , (1.12)

nsB = 〈ψ̄B(x)ψB(x)〉 , (1.13)

respectively, where ψ†
B denotes the conjugate Dirac spinor and ψ̄ ≡ ψ†

Bγ
0

stands for the adjoint Dirac spinor. To keep the notation to a minimum,

we use the definition x ≡ (x0,x).
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1.2.2 Baryonic Field Theory at Finite Density and Tem-

perature

To calculate the densities (1.12) and (1.13) for NS matter at finite tempera-

ture, we use the finite-temperature Green function formalism. The starting

point is the spectral function representation of the two-point Green function

given by (Dolan and Jackiw, 1974; Weber, 1999)

gB(p0,p) =

∫

dω
aB(ω,p)

ω − (p0 − µB)(1 + iη)
(1.14)

−2iπ sign(p0 − µB)
1

exp(|p0 − µB|/T ) + 1
aB(p0 − µB,p) ,

where µB denotes the chemical potential of a baryon of type B and aB

stands for the spectral function of that baryon (η > 0 and infinitesimally

small). The spin and isospin dependences of gB and aB are not shown

explicitly. The spectral function is obtained by evaluating

aB(ω,p) =
1

2iπ

(

g̃B(ω + iη,p)− g̃B(ω − iη,p)
)

. (1.15)

Here g̃B denotes the analytically continued two-point Green function, which

obeys the analytically continued Dyson equation,
(

γ0(z + µB)− γ · p−mB − Σ̃B(z,p)
)

g̃B(z,p) = −1 . (1.16)

The spectral function has a scalar, vector and a time-like contribution

generally written as (Weber, 1999)

aB(p) = aBS (p) + γ · p̂ aBV (p) + γ0aB0 (p) , (1.17)

where aBS (p) = m∗
B/(2E

∗
B(p)), a

B
V (p) = −|p|/(2E∗

B(p)), and a
B
0 (p) = 1/2.

For thermally excited anti-baryon states one has

āB(p) = āBS (p) + γ · p̂ āBV (p) + γ0āB0 (p) , (1.18)

where āBS (p) = −m∗
B/(2E

∗
B(p)), ā

B
V (p) = |p|/(2E∗

B(p)), and a
B
0 (p) = 1/2.

The effective single-baryon energy, E∗
B and effective baryon mass, m∗

B, are

given by

E∗
B(p) =

√

p2 +m∗
B
2 (1.19)

and

m∗
B = mB − gσB σ̄ , (1.20)

respectively.
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In terms of the two-point Green function, the expression for the baryon

number density (1.12) becomes

nB = i Tr γ0
∫

d3x
(

gB(x, x+) + gB(x, x−)
)

, (1.21)

where x± = (x0 ± η,x). The trace is to be taken over the spin and isospin

matrix indices. Transformation of Eq. (1.21) to momentum space leads to

nB = i Tr γ0
∫

d4p

(2π)4

(

eiηp
0

+ e−iηp
0
)

gB(p) . (1.22)

Next we note that
∫

d4p

(2π)4
eiηp

0

p0gB(p0,p) = −i
∫

d3p

(2π)3
aB(p)ωB(p)fB−(p) , (1.23)

and
∫

d4p

(2π)4
e−iηp

0

p0gB(p0,p) = i

∫

d3p

(2π)3
āB(p)ω̄B(p)fB+(p) , (1.24)

which leads for Eq. (1.22) to

nB = γB

∫

d3p

(2π)3
(fB−(p)− fB+(p)) , (1.25)

where γB ≡ (2JB + 1) accounts for the spin-degeneracy. The quantities

fB± in Eq. (1.25) denote Fermi-Dirac distribution functions given by

fB−(p) =
1

e(E
∗
B
(p)−µ∗

B
)/T + 1

, (1.26)

and

fB+(p) =
1

e(−Ē
∗
B
(p)+µ∗

B
)/T + 1

. (1.27)

The quantity µ∗
B in Eqs. (1.26) and (1.27), given by

µ∗
B = µB − gωBω̄ − gρB ρ̄I3B − R̃ , (1.28)

defines the effective baryon chemical potential in terms of the standard

chemical potential and the mean-fields of σ and ρ mesons. The quantity R̃

is the rearrangement term given by (Fuchs et al., 1995; Spinella and Weber,

2020)

R̃ =
∑

B

(

∂gωB(n)

∂n
nBω̄ +

∂gρB(n)

∂n
I3BnB ρ̄

∂gσB(n)

∂n
nsBσ̄

)

. (1.29)

This term is mandatory for thermodynamic consistency, proven with the

Hugenholtz-van Hove theorem that relates the total baryonic pressure
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(which contains the rearrangement term) of a particle to its chemical poten-

tial (Hofmann et al., 2001). The expression of the total baryonic pressure

of the standard non-linear relativistic mean-field theory therefore contains

the additional term nR̃ (see Eq. (1.54)).

The single-baryon energies, ωB(p), are given in terms of these meson

fields plus the effective single-baryon energies, E∗
B , according to the relation

ωB(p) = gωBω̄ + gρBI3B ρ̄+ E∗
B(p) . (1.30)

Similarly, the single-particle energies of thermally excited anti-baryon

states, ω̄B(p), are given by

ω̄B(p) = gωBω̄ + gρBI3B ρ̄− E∗
B(p) . (1.31)

From the above relations, one sees that for baryons

ωB(p)− µB = E∗
B(p)− µ∗

B , (1.32)

and for states outside the Fermi sea of anti-particles

− ω̄B(p) + µB = E∗
B(p) + µ∗

B . (1.33)

With these definitions, the traces in Eq. (1.22) and in the expressions for

the energy density and pressure to be discussed below can be calculated.

In particular, one obtains

Tr aB = γBm
∗
B/E

∗
B , Tr āB = −γBm∗

B/E
∗
B , (1.34)

Tr γ0aB = γB , Tr γ0āB = −γB . (1.35)

Next we turn to the scalar density, nsB, defined in Eq. (1.13). Expressed

in terms of the two-point Green function, Eq. (1.13) reads

nsB = i Tr

∫

d3x
(

gB(x, x+) + gB(x, x−)
)

. (1.36)

Transforming this expression to momentum space gives

nsB = i Tr

∫

d4p

(2π)4

(

eiηp
0

+ e−iηp
0
)

gB(p) . (1.37)

By making use of Eq. (1.24), the integration of p0 can be carried out an-

alytically. The Green functions then get replaced by the baryon spectral

functions and the Fermi-Dirac distribution functions, leading to the final

result for the scalar density given by

nsB = γB

∫

d3p

(2π)3
m∗
B

E∗
B(p)

(fB−(p)− fB+(p)) . (1.38)
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1.3 Composition and EOS of Hot and Dense (Proto-) Neu-

tron Star Matter

The total energy density and pressure of the stellar matter are calculated

from the energy-momentum tensor

Tµν(x) = gµν L(x) +
∑

B

∂L(x)
∂ ∂µψB(x)

∂νψB(x) , (1.39)

with the lagrangian L given by Eq. (1.2). The energy density and pres-

sure are given by ǫ = 〈T 00〉 and P = 1
3

∑

k〈T kk〉, respectively. Using the

Green function formalism, the expression for the energy density is given by

(Weber, 1999)

ǫ = i
∑

B

Tr

∫

d4p

(2π)4

(

eiηp
0

+ e−iηp
0
)

×
(

p0γ0 − 1

2

(

gσBσ̄ + γ0 (gωBω̄ + gρBI3B ρ̄)
)

)

gB(p)

−1

6
b̃σmN

(

gσNσ
)3 − 1

4
c̃σ
(

gσNσ
)4
. (1.40)

The integration over p0 in Eq. (1.40) can be carried out analytically via

contour integration, which leads to
∫

d4p

(2π)4
eiηp

0

gB(p0,p) = −i
∫

d3p

(2π)3
aB(p)fB−(p) (1.41)

and
∫

d4p

(2π)4
e−iηp

0

gB(p0,p) = i

∫

d3p

(2π)3
āB(p)fB+(p) . (1.42)

The energy density is then given as a momentum integral over single-baryon

energies, baryon spectral functions, and Fermi-Dirac distribution functions,

as shown below:

ǫ =
∑

B

Tr

∫

d3p

(2π)3

(

ωB(p)γ0aB(p)fB−(p)− ω̄B(p)γ0āB(p)fB+(p)
)

−1

2

∑

B

Tr

∫

d3p

(2π)3

(

(

−gσBσ̄ + γ0 (gωBω̄ + gρBI3B ρ̄)
)

aB(p)fB−(p)

−
(

−gσBσ̄ + γ0 (gωBω̄ + gρBI3B ρ̄)
)

āB(p)fB+(p)
)

−1

6
b̃σmN

(

gσNσ
)3 − 1

4
c̃σ
(

gσNσ
)4
. (1.43)
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By making use of Eqs. (1.31), (1.34) and (1.35), this expression can be

written as

ǫ =
∑

B

γB

∫

d3p

(2π)3
E∗
B(p) (fB−(p) + fB+(p))

+
∑

B

γB

∫

d3p

(2π)3
(gωBω̄ + gρBI3B ρ̄) (fB−(p)− fB+(p))

− 1

2

∑

B

γB

∫

d3p

(2π)3

(

− m∗
B

E∗
B(p)

gσBσ̄ + γ0 (gωBω̄ + gρBI3B ρ̄)
)

× (fB−(p)− fB+(p))

− 1

6
b̃σmN

(

gσNσ
)3 − 1

4
c̃σ
(

gσNσ
)4
.

(1.44)

It is customary to express Eq. (1.44) in a more compact way. This is

accomplished by noticing that, according to Eq. (1.38), the integral over

the first term in the third line above can be written as

∑

B

γB

∫

d3p

(2π)3
m∗
B

E∗
B(p)

gσB σ̄ (fB−(p) + fB+(p)) =
∑

B

gσBn
s
Bσ̄ . (1.45)

Making use of the σ-meson field equation (1.9) to replace
∑

B gσBn
s
B in

Eq. (1.45) leads after some algebra to the final result for the energy density

given by (Weber, 1999)

ǫ =
∑

B

γB

∫

d3p

(2π)3
E∗
B(p) (fB−(p) + fB+(p)) +

1

2
m2
σσ̄

2 +
1

2
m2
ωω̄

2

+
1

2
m2
ρρ̄

2 +
1

3
b̃σmN

(

gσNσ
)3

+
1

4
c̃σ
(

gσNσ
)4
.

(1.46)

The expression for the pressure of hot NS matter has the form (Weber,

1999)

P = i
∑

B

Tr

∫

d4p

(2π)4

(

eiηp
0

+ e−iηp
0
)

×
(1

3
γ · p̂+

1

2

(

−gσBσ̄ + γ0 (gωBω̄ + gρBI3B ρ̄)
)

)

gB(p)

+
1

6
b̃σmN

(

gσNσ
)3

+
1

4
c̃σ
(

gσNσ
)4
. (1.47)

As for the energy density, the integration of p0 can be carried out analyt-

ically using the mathematical relations shown in Eqs. (1.41) and (1.42).
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This leads to

P =
1

3

∑

B

Tr

∫

d3p

(2π)3

(

γ · p̂ aB(p)fB−(p)− γ · p̂ āB(p)fB+(p)
)

+
1

2

∑

B

Tr

∫

d3p

(2π)3

(

(

−gσBσ̄ + γ0 (gωBω̄ + gρBI3B ρ̄)
)

aB(p)fB−(p)

−
(

−gσBσ̄ + γ0 (gωBω̄ + gρBI3B ρ̄)
)

āB(p)fB+(p)
)

+
1

6
b̃σmN

(

gσNσ
)3

+
1

4
c̃σ
(

gσNσ
)4
. (1.48)

With the help of Eqs. (1.17) and (1.18) for the spectral functions and

Eqs. (1.34) and (1.35) for the traces, expression Eq. (1.48) can be writ-

ten as

P =
1

3

∑

B

γB

∫

d3p

(2π)3
p
2

E∗
B(p)

(fB−(p) + fB+(p))

+
1

2

∑

B

γB

∫

d3p

(2π)3

(

− m∗
B

E∗
B(p)

gσB σ̄ + gωBω̄ + gρBI3B ρ̄
)

× (fB−(p)− fB+(p))

+
1

6
b̃σmN

(

gσNσ
)3

+
1

4
c̃σ
(

gσNσ
)4
. (1.49)

The second line in this equation can be written in terms of the scalar and

baryon number densities. To see this we begin with Eq. (1.38), from which

it follows that
∑

B

γB

∫

d3p

(2π)3
m∗
B

E∗
B(p)

gσB σ̄ (fB−(p)− fB+(p)) =
∑

B

gσBn
s
Bσ̄ . (1.50)

On the other hand, it is known from the σ-meson field equation (1.9) that
∑

B

gσBn
s
Bσ̄ = m2

σσ̄
2 + b̃σmN

(

gσNσ
)3

+ c̃σ
(

gσNσ
)4
. (1.51)

Similarly, for the ω-meson dependent term in Eq. (1.49) we have

∑

B

γB

∫

d3p

(2π)3
gωBω̄ (fB−(p)− fB+(p)) =

∑

B

gωBnBω̄ ,

= m2
ωω̄

2 , (1.52)

and for the ρ-meson dependent term

∑

B

γB

∫

d3p

(2π)3
gρBI3B ρ̄ (fB−(p)− fB+(p)) =

∑

B

gρBI3Bn
B ρ̄ ,

= m2
ρρ̄

2 (1.53)
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Substituting Eqs. (1.50) through (1.53) into Eq. (1.49) leads for the pressure

of NS matter to (Weber, 1999)

P =
1

3

∑

B

γB

∫

d3p

(2π)3
p
2

E∗
B(p)

(fB−(p) + fB+(p))− 1

2
m2
σσ̄

2 +
1

2
m2
ωω̄

2

+
1

2
m2
ρρ̄

2 − 1

3
b̃σmN

(

gσNσ
)3 − 1

4
c̃σ
(

gσNσ
)4

+ nR̃ . (1.54)

1.3.1 Leptons and Neutrinos

Leptons are treated as free Fermi gases with the grand canonical potential

given by (Weber, 1999; Malfatti et al., 2019)

ΩL = −
∑

L

γL
3

∫

d3p

(2π)3
p
2

EL(p)
(fL−(p) + fL+(p)) , (1.55)

where γL = (2JL + 1) is the lepton degeneracy factor. The sum over L in

Eq. (1.55) runs over e− and µ−, with masses mL, and massless neutrinos,

νe, in the case they are trapped in a PNS (see 1.3.2, 1.3.3). The lepton

distribution function is given by

fL∓(p) =
1

e(EL(p)∓µL)/T + 1
, (1.56)

where EL(p) =
√

p2 +m2
L denotes the energy-momentum relation of free

leptons.

1.3.2 Chemical Equilibrium and Electric Charge Neutrality

Three important constraints must be taken into account when determining

the EOS of PNS matter: electric charge neutrality, baryon number con-

servation, and chemical equilibrium. Neutron star matter must be charge

neutral, satisfying (Glendenning, 1985; Weber, 1999; Malfatti et al., 2019)
∑

B

qB nB +
∑

L

qL nL = 0 , (1.57)

where qB and qL are baryon and lepton electric charge, respectively. Baryon

number must also be conserved, which leads to
∑

B

nB − n = 0 , (1.58)

Finally, the constraint of chemical equilibrium for hadronic matter can be

defined as (Prakash et al., 1997)

µB = µn + qB(µe − µνe) , (1.59)
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Fig. 1.2 Pressure as a function of energy density for the DD2 parameter set.
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Fig. 1.3 Pressure as a function of energy density for the GM1L parameter set.

where µn, µe and µνe are the neutron, electron and neutrino chemical

potentials, respectively. The chemical potential of the latter follows from

the equilibrium reaction

e− ↔ µ− + νe + ν̄µ , (1.60)

which leads for the corresponding chemical potentials to the condition

µe = µµ + µνe + µν̄µ . (1.61)
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Fig. 1.4 Pressure as a function of baryon number density for the DD2 parameter set.

0.0 0.2 0.4 0.6 0.8 1.0
n (fm−3)

0

50

100

150

200

250

300

350

400

P 
(M

eV
 fm

−3
)

GM1L

 
YL =0.4; s=1
YL =0.2; s=2
Yνe=0.0; s=2

Fig. 1.5 Same as Fig. 1.4, but for the GM1L parameter set.

Neutrinos are trapped inside of a proto-neutron star immediately after its

formation. Mathematically this is expressed as (Prakash et al., 1997; Mal-
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fatti et al., 2019)

YLe
=
ne + nνe

n
, (1.62)

YLµ
=
nµ + nνµ

n
= 0 , (1.63)

where ne, nµ, nνe , and nνµ denote the number densities of electrons, muons,

electron neutrinos, and muon neutrinos, respectively. During this very early

stellar phase, the matter is opaque to neutrinos and the composition of the

matter is characterized by three independent chemical potentials, namely

µn, µe, and µνe . The condition YLµ
= 0 expressed in Eq. (1.63) reflects the

fact that only very few muons are present in PNS matter right after core

bounce, when neutrinos are still trapped. The value of YLe
(. 0.4) depends

on the efficiency of electron capture reactions during the initial state of the

formation of proto-neutron stars (Prakash et al., 1997). The quantity YL,

defined as

YL = Ye + Yνe , (1.64)

is used in the figures to show the relative fractions of electrons and neutrinos

for which the respective curves have been computed.

In Figs. 1.2 and 1.3 we show how pressure varies as a function of en-

ergy density for the DD2 and GM1L parameter sets. Figures 1.4 and 1.5

show the pressure as a function baryon number density for DD2 and GM1L.

Details of these parameter sets including the coupling values used to com-

pute the DD2 and GM1L EOSs will be discussed in Sec. 1.5. The EOSs are

shown for different lepton fractions, YL, and entropies (per baryon), s which

correspond to the main characteristic stages in the life of a proto-neutron

star (briefly summarized at the beginning of Sec. 1.3.3). The EOSs (as

well as all other dense-matter properties presented in this chapter) shown

in Figs. 1.2 and 1.3 have been computed for B = n, p,Λ,Σ±,Σ0,Ξ0,Ξ−, all

electrically charged states of the ∆(1232) baryon, and L = e, µ, νe.

The values of the baryon–hyperon coupling constants will be discussed

in detail in Sec. 1.5.1. The values chosen for the ∆–hyperon couplings are

xσ∆ = xω∆ = 1.1 and xρ∆ = 1.0 as described in Sec. 1.5.2. A general

investigation of the ∆(1232) coupling spaces is provided in Sec. 1.5.3.

1.3.3 Composition of Hot and Dense Matter

In this section we show the composition of hot and dense matter as it

exists in the cores of proto-neutron stars. Following the core bounce post
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Fig. 1.6 Composition of dense stellar matter computed for DD2 parametrization and a
temperature of T = 1 MeV.
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Fig. 1.7 Same as Fig. 1.6, but for a stellar temperature of T = 10 MeV.

supernova explosion, PNSs experience a deleptonization stage where hot,

lepton-rich matter becomes lepton-poor over the course of about a minute.

During this time, the entropy per baryon and lepton fraction of the dense

matter within the PNS core change quickly. These values start at around

s = 1 and YL = 0.4, change to s = 2 and YL = 0.2 after around 0.5 to 1
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Fig. 1.8 Same as Fig. 1.6, but for a stellar temperature of T = 25 MeV.
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Fig. 1.9 Same as Fig. 1.6, but for a stellar temperature of T = 50 MeV.

seconds, and take values of s = 2 and Yνe = 0 about 15 to 30 seconds after

the birth of a proto-neutron star (Prakash et al., 1997; Strobel et al., 1999;

Malfatti et al., 2019). As neutrinos and photons diffuse from the object

the stellar temperature drops to less than 1 MeV and a hot PNS becomes

a cold NS.
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Fig. 1.10 Baryon-lepton composition of PNS matter obtained for DD2 model with s = 1
and YL = 0.4 (Malfatti et al., 2019).
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Fig. 1.11 Baryon-lepton composition of PNS matter obtained for GM1L model with
s = 1 and YL = 0.4 (Malfatti et al., 2019).

Figures 1.6 through 1.9 illustrate how drastically the particle composi-

tion in the core of a neutron star changes with temperature. In fact, as

can be seen by comparing the compositions shown in Figs. 1.6 and 1.8 with

each other, the particle composition at a temperature of 25 MeV no longer



November 12, 2021 19:32 ws-book9x6 Book Title ch5˙arXiv page 23

Contents 23

0.0 0.2 0.4 0.6 0.8 1.0 1.2
n (fm−3)

10−4

10−3

10−2

10−1

100

Y i

n
p

e−

νe Λ

Σ+

Σ0
Σ−

Ξ0
Ξ−

Δ++

Δ+

Δ0

Δ−

s =2Δ
YL=0.2

 

Fig. 1.12 Baryon-lepton composition of PNS matter obtained for DD2 model with s = 2
and YL = 0.2 (Malfatti et al., 2019).
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Fig. 1.13 Baryon-lepton composition of PNS matter obtained for GM1L model with
s = 2 and YL = 0.2 (Malfatti et al., 2019).

resembles the zero-temperature (i.e., 1 MeV) composition at all. Moreover,

in matter at even higher temperatures the threshold densities of all the

baryons have changed so much that all baryonic particle states taken into

account in our calculations are present at all densities, as shown in Fig. 1.9.
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Fig. 1.14 Baryon-lepton composition of PNS matter obtained for DD2 model with s = 2
and Yνe = 0 (Malfatti et al., 2019).

The next set of figures show the composition of proto-neutron star mat-

ter for different combinations of entropy and lepton number, which charac-

terize several different stages in the evolution of a hot, newly formed PNS

to a cold NS. Proto-neutron stars in their earliest phases of evolution have

s = 1 and YL = 0.4 followed by s = 2 and YL = 0.2. The particle composi-

tions of such matter are shown in Figs. 1.10 through 1.13 for the DD2 and

GM1L parametrizations. The matter in proto-neutron stars with s = 2 and

YL = 0.2 undergoes deleptonization and becomes lepton poor. Such matter

is characterized by s = 2 and Yνe = 0 (neutrinos are no longer present)

and its compositions are shown in Figs. 1.14 and 1.15 for DD2 and GM1L,

respectively. Finally, after several minutes stars with s = 2 and Yνe = 0

have cooled down to just ∼ 1 MeV, containing core compositions similar to

the one shown in Fig. 1.6.

One sees from Figs. 1.6 through 1.15 that both nuclear models, GM1L

and DD2, predict the same overall particle compositions in hot and dense

(proto-) neutron stars, despite the fact that the coupling constants of the

models are treated quite differently. We recall that for the DD2 model the

coupling constants of all (σ, ω, ρ) mesons are density dependent, while for

the GM1L model this is only the case for the coupling constant of the ρ

meson. A noteworthy difference, however, concerns the particle threshold

densities which tend to be somewhat lower for the DD2 model.
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Fig. 1.15 Baryon-lepton composition of PNS matter obtained for GM1L model with
s = 2 and Yνe = 0 (Malfatti et al., 2019).

The temperature of PNS matter is shown in Figs. 1.16 and 1.17 for dif-

ferent combinations of entropy and lepton number. For a constant entropy

density of s = 1 the temperature varies between around 15 and 18 MeV

over most of the density ranges. The temperatures is more than twice as

high for PNS matter with s = 2. Temperatures significantly higher than

40 MeV are not reached in PNS matter. The increase in temperature shown

in these figures explains the ever more complex particle compositions shown

in Figs. 1.10 through 1.15.

1.4 The Hadron-Quark Phase Transition

In this chapter, we briefly turn to the study of quark matter in compact

stars. The possible existence of such matter in compact stars was already

discussed in the 1960s by Ivanenko and Kurdgelaidze (1965) and in the

1970s by Itoh (1970); Fritzsch et al. (1973); Baym and Chin (1976); Keister

and Kisslinger (1976); Chapline and Nauenberg (1977); Fechner and Joss

(1978). Since then, a large number of scientific papers have been published

describing the possible existence of quark matter in neutron stars with in-

creasingly improved theoretical models (see, for instance, Page and Reddy

(2006); Alford et al. (2008); Burgio and Plumari (2008); Bonanno, Luca

and Sedrakian, Armen (2012); Orsaria et al. (2013, 2014); Baym, et al.
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Fig. 1.16 Temperature as a function of energy density of PNS matter obtained for the
DD2 model.

(2018); Blaschke and Chamel (2018); Tolos and Fabbietti (2020), and refer-

ences therein). In the following we concentrate on the hadron-quark phase

transition as described by the Nambu–Jona-Lasinio (NJL) model [Klevan-

sky (1992); Hatsuda and Kunihiro (1994); Buballa (2005); Fukushima and

Hatsuda (2011); Fukushima and Sasaki (2013)]. We shall use a non-local

variant of the NJL model, denoted 3nPNJL, which includes vector interac-

tions as well as the Polyakov loop. The lagrangian of this model is given

by [Malfatti et al. (2019)]

L = ψ̄(−iγνDν + m̂)ψ +
GV
2
jµa j

µ
a − GS

2

[

jsa j
s
a + jpa j

p
a

]

− H

4
Aabc

[

jsa j
s
b j

s
c − 3 jsa j

p
b j

p
c

]

+ U [A ] , (1.65)

where U [A] accounts for the Polyakov loop dynamics and the H-dependent

term is the ’t Hooft term responsible for quark flavor mixing. The quark

fields are described by ψ ≡ (u, d, s)T and m̂ = diag(mu,md,ms) is the

current quark mass matrix. The quantities jµa , j
s
a, and j

p
a denote scalar (s),

pseudo-scalar (p), and vector (µ) interaction currents, respectively, and GS
and GV are the scalar and vector coupling constants. It is customary to

express GV in multiples of GS and to write their ratio as ζv ≡ GV /GS .

The covariant derivative is given by Dν ≡ ∂ν − igAaνt
a, where Aaν are the

gluon fields and ta = λa/2 the generators of SU(3) (for more details, see
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Fig. 1.17 Same as Fig. 1.16, but for the GM1L model.

Malfatti et al. (2019)).

To model the phase equilibrium between hadronic matter and quark

matter in a neutron star, we assume here that this equilibrium is of first

order and Maxwell-like, that is, the pressure in the mixed hadron-quark

phase is constant. Theoretically the transitions could be Gibbs-like as well,

depending on the surface tension at the hadron-quark interface. The value

of the surface tension is however only poorly known. Lattice gauge calcu-

lations, for instance, predict surface tension values in the range of 0− 100

MeV fm−2 [Kajantie et al. (1991)]. Using different theoretical models for

quark matter, a range of values for the hadron-quark surface tension have

been obtained in the literature (see, for example, Refs. [Alford et al. (2001);

Lugones et al. (2013); Ke and Liu (2014)], and references therein). Accord-

ing to theoretical studies, surface tensions above around 70 MeV fm−2 fa-

vor the occurrence of a sharp (Maxwell-like) hadron-quark phase transition

rather than a softer Gibbs-like transition [Sotani et al. (2011); Yasutake

et al. (2014)].

The EOS of both the hadronic phase and the quark phase is obtained

from the Gibbs relation

ǫ = −P + TS +
∑

i

µi ni , (1.66)

where pressure, entropy, and the particle number densities are given by P =
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Fig. 1.18 Pressure as a function of the energy density for different values of the vector
coupling constant ζv (see text) (Malfatti et al., 2019). The black line represents the
hadronic DD2 EOS and the dash-dotted and dashed lines are the EOSs of the quark
(3nPNJL) phase for different ζv values. The horizontal lines mark the hadron-quark
phase transitions.

−Ω, S = ∂P
∂T , and ni =

∂P
∂µi

, respectively. To construct the hadron-quark

phase transition we adopt the Gibbs condition for equilibrium between both

phases, expressed as

GH(P, T ) = GQ(P, T ) , (1.67)

where GH and GQ are the Gibbs free energies per baryon of the hadronic

(H) and the quark (Q) phase, respectively, to be determined at a given

pressure and transition temperature. The crossing of GH and GQ in the

G − P plane then determines the pressure and density at which the phase

transition occurs for a given transition temperature. The expressions of

GH and GQ are given by

Gi(P, T ) =
∑

j

nj
n
µj , (1.68)

where i = H or Q and the sum over j is over all the particles present in each

phase. For the hadron-quark phase transition, the particle chemical poten-

tials in each phase are different, so that is becomes necessary to calculate



November 12, 2021 19:32 ws-book9x6 Book Title ch5˙arXiv page 29

Contents 29

0 300 600 900 1200 1500 1800
0

100

200

300

400

500

600
 GM1L
 v = 0.331
 v = 0.371

 

 

P
 ( 

M
eV

 fm
-3
 ) 

 ( MeV fm-3 ) 

Fig. 1.19 Same as Fig. 1.18, but for the hadronic GM1L EOS (Malfatti et al., 2019).

the Gibbs free energy as a function of pressure to construct the phase transi-

tion. Results for the hadron-quark phase transitions are shown in Fig. 1.18

for the DD2 nuclear model and in Fig. 1.19 for the GM1L nuclear model.

Two phase transitions are visible in each figure, depending on the value of

the vector coupling constant, ζv (= GV /GS). The solid black and gray lines

in these figures represent the hadronic DD2 and GM1L EOSs, respectively,

and the dash-dotted and dashed lines are the EOSs of the quark phase com-

puted for the 3nPNJL model. The horizontal lines indicate the locations of

the hadron-quark phase transitions where GH(P, T = 0) = GQ(P, T = 0)

according to Eq. (1.67). The hadronic and the quark matter EOS are very

similar at pressures where GH(P, T = 0) ≈ GQ(P, T = 0) [Malfatti et al.

(2019)]). This makes it difficult to distinguish between the two phases in

the relevant pressure regions, P ∼ 100 − 400 MeV/fm3. This can be in-

terpreted as a masquerading behavior of dense matter, different from pure

deconfined quark matter (see Malfatti et al. (2019), and references therein

for details).

The 2M⊙ constraint of PSR J1614-2230 and PSR J0348+0432 [Demor-

est et al. (2010); Lynch et al. (2013); Antoniadis et al. (2013); Arzoumanian

et al. (2018)] and the assumption that quark matter exists in the cores of

neutron stars have been used to determine the range of the vector coupling
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Fig. 1.20 Particle population of stellar quark matter at zero temperature as a function
of baryon number density (Malfatti et al., 2019). The gray area indicates the density
regime where matter described by the hadronic DD2 model exists. The hadron phase
ends abruptly at the vertical line slightly above 0.6 fm−3. The population of muons
is increased by a factor of 100 to make it visible. The strength of the vector repulsion
among quarks is ζv = 0.328.

constant ζv in the quark matter phase. This leads to 0.331 < ζv < 0.371

for GM1L, and 0.328 < ζv < 0.385 for DD2, where the lower bounds are

determined by the 2M⊙ mass constraint and the upper bounds by the

requirement that quark matter exists in the cores of neutron stars. In

Figs. 1.20 and 1.21 we show the quark compositions of cold neutron stars

computed for GM1L in combination with 3nPNJL and DD2 in combination

with 3nPNJL, respectively.

1.5 The Parameters of the Hadronic Theory

For this study, we will consider three popular nuclear parametrization sets

which are denoted SWL, GM1L and DD2 (Spinella, 2017; Spinella et al.,

2018; Typel et al., 2010). The parameter values of these sets are shown in

Table 1.1 and the corresponding saturation properties of symmetric nuclear

matter are shown in Table 1.2 (Malfatti et al., 2019). These are the nuclear
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Fig. 1.21 Same as Fig. 1.20, but for a vector repulsion among quarks of ζv = 0.331
(Malfatti et al., 2019).

saturation density n0, energy per nucleon E0, nuclear compressibility K0,

effective nucleon mass m∗
N/mN , asymmetry energy J , asymmetry energy

slope L0, and the value of the nucleon potential UN . The values of L0 listed

in Table 1.2 are in agreement with the value of the slope of the symmetry

energy deduced from nuclear experiments and astrophysical observations

[Oertel et al. (2017)]. The DD2 parametrization is designed such that it

eliminates the need for the nonlinear self-interactions of the σ meson shown

in Eqs. (1.2) and (1.6) (Malfatti et al., 2019). The nonlinear terms are

therefore only considered for the GM1L model. As already mentioned in

Sec. 1.2.1, the baryons considered in this study to populate NS matter

include all states of the spin- 12 baryon octet comprised of the nucleons

(n, p) and hyperons (Λ,Σ+,Σ0,Σ−,Ξ0,Ξ−). In addition, all states of the

spin- 32 delta isobar ∆(1232) (∆++,∆+,∆0,∆−) are taken into account as

well.
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Table 1.1 Parameters of the SWL and GM1L (Spinella, 2017;
Spinella et al., 2018) and DD2 (Typel et al., 2010) parametriza-
tions used in this work.

Parameters Units SWL GM1L DD2

mσ GeV 0.550 0.550 0.5462
mω GeV 0.783 0.783 0.783
mρ GeV 0.763 0.7700 0.7630
gσN − 9.7744 9.5722 10.6870
gωN − 10.746 10.6180 13.3420
gρN − 7.8764 8.1983 3.6269

b̃σ − 0.003798 0.0029 0
c̃σ − −0.003197 −0.0011 0
aσ − 0 0 1.3576
bσ − 0 0 0.6344
cσ − 0 0 1.0054
dσ − 0 0 0.5758
aω − 0 0 1.3697
bω − 0 0 0.4965
cω − 0 0 0.8177
dω − 0 0 0.6384
aρ − 0.3796 0.3898 0.5189

1.5.1 The Meson-Hyperon Coupling Space

A detailed discussion of the meson-hyperon coupling constants giH (where

i = σ, ω, ρ) can be found in (Spinella, 2017; Malfatti et al., 2019, 2020;

Spinella and Weber, 2020). As usual we express the values of the meson-

hyperon coupling constant, giH , in terms of the meson-nucleon coupling

strength, giN , that is, xiH = giH/giN . The meson-hyperon couplings are

not well constrained experimentally compared to those of the nucleons.

However, the scalar meson-hyperon couplings (xσH) can be constrained by

the available experimental data on hypernuclei, but their calculation first

requires the determination of the vector meson-hyperon couplings (xωH).

The coupling scheme used in our study is based on the Nijmegen extended-

soft-core (ESC08) model (Rijken et al., 2010). The scalar meson-hyperon

coupling constants (xσH) can be fit to the hyperon potential depths, UH at

nuclear saturation density, n0. Our parameters sets are fitted to potential

depths of UΛ = −28 MeV, UΞ = −18 MeV, and UΣ = +30 MeV (see

Schaffner-Bielich and Gal (2000); Spinella and Weber (2020); Tolos and

Fabbietti (2020); Friedman and Gal (2021), and references cited therein).

The values of the isovector meson-hyperon coupling constants are chosen

as xρH = 2|I3H | (Weissenborn et al., 2012; Miyatsu et al., 2013; Maslov
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Table 1.2 Properties of symmetric nuclear matter at saturation density
for the SWL and GM1L (Spinella, 2017; Spinella et al., 2018) and DD2
(Typel et al., 2010) parametrizations.

Saturation property Units SWL GM1L DD2

n0 fm−3 0.150 0.153 0.149
E0 MeV −16.0 −16.3 −16.02
K0 MeV 260.0 300.0 242.7

m∗
N/mN − 0.70 0.70 0.56
J MeV 31.0 32.5 32.8
L0 MeV 55.0 55.0 55.3
UN MeV −64.6 −65.5 −75.2

et al., 2016).

1.5.2 ∆(1232) Isobars

The potential presence of the delta isobar ∆(1232) in neutron star matter

(Pandharipande, 1971; Sawyer, 1972; Boguta, 1982; Huber et al., 1998) has

been relatively ignored, especially when compared to the attention that

hyperons have received in the literature. It is reasonable to assume ∆s

would not be favored in NS matter for a number of reasons. First, their

rest mass is greater than both the Λ and Σ hyperons. Second, negatively

charged baryons are generally favored as their presence reduces the high

Fermi momenta of the leptons, but the ∆− has triple the negative isospin

of the neutron (I3∆− = −3/2), and thus its presence should be accompanied

by a substantial increase in the isospin asymmetry of the system. However,

these arguments now appear to be largely invalid since recent many-body

calculations paint a different picture (Dexheimer and Schramm, 2008; Chen

et al., 2009; Schürhoff et al., 2010; Lavagno, 2010; Drago et al., 2014; Cai

et al., 2015; Zhu et al., 2016; Spinella, 2017; Li et al., 2018; Malfatti et al.,

2020).

Recent theoretical works have suggested conflicting constraints on the

saturation potential of the ∆s in symmetric nuclear matter given by

U∆(n0) = xω∆gωN ω̄ − xσ∆gσN σ̄ + R̃ , (1.69)

where R̃ denotes the rearrangement term of Eq. (1.29). Drago et al. (2014)

incorporated a number of experimental and theoretical results to deduce

the following range for U∆ at n0,

− 30MeV+ UN (n0) . U∆(n0) . UN (n0) , (1.70)
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indicating a slightly more attractive potential than that of the nucleons.

Included in these analyses was an analysis of the photo-excitation of nu-

cleons to ∆s that suggested the following relation between the scalar and

vector couplings,

0 < xσ∆ − xω∆ < 0.2 . (1.71)

Kolomeitsev et al. (2017) cited numerous studies of ∆ production in

heavy ion collisions to suggest a less attractive potential in the range

UN (n0) . U∆(n0) . 2
3UN (n0), finally settling on U∆(n0) ≈ −50 MeV

as a best estimate (Riek et al., 2009). However, it is worth noting that

constraining the potential does not directly constrain xσ∆ or xω∆, rather

the relationship between the two.

The meson-∆ coupling space will be systematically investigated in Sec-

tion 1.5.3, but first the particle number densities in the presence of both

hyperons and ∆s will be examined with the following set of couplings,

xσ∆ = xω∆ = 1.1, xρ∆ = 1.0 . (1.72)

These lead to saturation potentials more attractive than that of the nucle-

ons as shown in Table 1.3. The scalar and isovector meson-hyperon coupling

constants will continue to be determined as described in Sec. 1.5.1 and the

vector meson-hyperon couplings will be given by the SU(3) ESC08 model.

The properties of maximum mass NSs made of hyperonic matter with

and without the ∆ states are shown in Table 1.4. The properties include

the stellar mass M , the radius R, and the baryon number density nc at the

center of the stars. Also shown are the radii R1.4 of neutron stars with a

canonical mass of 1.4M⊙. As can be seen, including the ∆ baryon actually

leads to equal or marginally greater maximum masses in both cases. While

the maximum masses are very similar, the mass-radius curves differ slightly

due to the low density appearance of the ∆− that causes a bend toward

lower radii reducing the radius of the canonical 1.4M⊙ NS. We also note

that specifying the vector meson-hyperon couplings with the SU(3) ESC08

Table 1.3 Saturation potentials of nucleons
and ∆s in symmetric nuclear matter with
xσ∆ = xω∆ = 1.1 and xρ∆ = 1.0 (Spinella,
2017).

Potential SWL GM1L DD2
UN (n0) (MeV) -64.6 -65.5 -75.2
U∆(n0) (MeV) -71.1 -72.1 -86.0
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Table 1.4 Properties of maximum mass NSs with ∆s and hyperons with vector
meson-hyperon coupling constants given in SU(3) symmetry with the ESC08 model
(Spinella, 2017).

Hyperons Hyperons plus ∆s

EOS M R nc R1.4 M R nc R1.4

(M⊙) (km) (1/fm3) (km) (M⊙) (km) (1/fm3) (km)

SWL 2.01 11.5 0.98 12.80 2.02 11.4 1.00 12.85
GM1L 2.04 11.6 0.95 12.82 2.04 11.5 0.97 12.90
DD2 2.09 12.1 0.89 13.45 2.11 11.9 0.92 13.28

model rather than SU(6) is necessary in order to satisfy the ∼ 2M⊙ mass

constraint with the GM1L and DD2 parametrizations (Spinella, 2017).

The relative particle number densities for the SU(3) coupling scheme

are presented in Fig. 1.22 for the GM1L and DD2 parametrizations. For

GM1L the ∆− is the first additional baryon to be populated at ∼ 2.3n0 and

reaches nearly the same number density as the proton before it starts being

replaced by the Ξ− at around 4n0. In DD2 the ∆− again precedes the onset

of hyperonization but appears at an extremely low baryon number density

of around 1.8n0 and again reaches densities comparable to that of the pro-

Fig. 1.22 The relative number density of particles in cold NS matter as a function of
baryon number density (in units of the saturation density) (Spinella, 2017). The meson-∆
coupling constants are xσ∆ = xω∆ = 1.1, and xρ∆ = 1.0, and the vector meson-hyperon
coupling constants are given by the SU(3) ESC08 model. The gray shading indicates
baryon number densities beyond the maximum for the given parametrization.
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ton before beginning to decline due to the population of the Ξ− at around

4n0. At low densities the Σ− and Ξ− may be disfavored in comparison to

the ∆− due to a repulsive potential and significantly higher rest mass re-

spectively. However, the low ∆− critical density in DD2 is primarily due to

the density dependence of the isovector meson-baryon coupling that greatly

reduces the isovector contribution to the ∆ chemical potential compared

to standard relativistic mean-field calculations. The early appearance of

the ∆− is directly related to the slope of the asymmetry energy, L0, as

discussed by Drago et al. (2014). The extreme low density appearance of

the ∆− has important consequences for the mass-radius curve of a NS,

since it bends toward smaller radii much more substantially compared to

EOSs where ∆s are absent. The effect is the most drastic for the DD2

parametrization, where the presence of ∆s reduces the canonical NS radius

by about a kilometer compared to the nucleonic and hyperonic EOSs.

Figure 1.22 shows that the isospin neutral Λ is the first hyperon to

appear at around 3n0, reducing the high Fermi momentum of the neutron.

The isospin negative Ξ− (I3Ξ− = −1/2) follows at around 4n0 as stated,

replacing the more isospin negative ∆− (I3∆− = −3/2), reducing isospin

asymmetry. The isospin positive Ξ0 (I3Ξ0 = +1/2) is populated at around

6n0 in GM1L and 5.5n0 in DD2, contributing to the replacement of the

isospin negative neutron further reducing isospin asymmetry. Finally, the

presence of the ∆− excludes the previous appearance of the Σ− in DD2.

1.5.3 The Meson-∆(1232) Coupling Spaces

Little empirical data exists that can unambiguously constrain the meson-∆

coupling constants. As a result, in order to study the presence of ∆s in NS

matter and their consequent effect on NS properties most studies choose

just a few sets of coupling constants to analyze, typically in the vicinity

of universal coupling (xσ∆ = xω∆ = xσ∆ = 1). In this section we seek to

explore a large portion of the meson-∆ coupling space to more thoroughly

investigate ∆s in cold as well as hot (proto-) neutron star matter and their

effect on stellar properties (Spinella, 2017; Malfatti et al., 2020).

1.5.3.1 The σω∆ Coupling Space

The exploration of the σω∆ coupling space begins with a heatmap for the ∆

saturation potential U∆(n0) in symmetric nuclear matter given in Fig. 1.23.

First, it is important to note that including the ∆ baryon can result in a
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rapid increase of the scalar field (σ̄) causing a correspondingly rapid de-

crease in the effective baryon masses (see Eq. (1.20)), some becoming neg-

ative before the maximum central density is reached. This invalidates the

EOS and the associated couplings; as a result, much of the σω∆ coupling

space is not accessible with a given EOS model and parametrization. These

areas are identified in Fig. 1.23 and the heatmaps to follow as empty (white)

pixels. Further, ∆s do not populate for a significant region of the coupling

space due to the presence of hyperons, and these couplings are identified by

the gray pixels. In particular, we find that for the chosen parametrizations

∆s are largely absent when xσ∆ − xω∆ . −0.1, and do not populate at all

Fig. 1.23 Nuclear saturation potential (in MeV) of ∆s in symmetric nuclear matter in
the σω∆ coupling space (Spinella, 2017). Hyperons were included with the vector meson-
hyperon given by the SU(3) ESC08 model. The star marker indicates the location of
xσ∆ = xω∆ = 1.1 and xρ∆ = 1.0. Dashed contours are lines of constant potential
as labeled and represent possible constraints. Gray pixels indicate that no ∆s were
populated for the given set of couplings. White pixels indicate couplings for which
the effective mass of at least one baryon became negative before the maximum baryon
number density of the NS was reached.

when xσ∆ − xω∆ < −0.2. A study by Zhu et al. (2016) investigated ∆s in

the density-dependent relativistic Hartree-Fock (DDRHF) approach, and

much of the analysis therein was conducted with xσ∆ = 0.8 and xω∆ = 1.0.

However, they did not account for hyperonization and our results suggest

that ∆s may not even appear with the given choice of couplings, illustrating
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the importance of simultaneously considering hyperons. Finally, our inves-

tigation of the coupling range spanning −0.25 . xσ∆−xω∆ . 0.25 appears

sufficient, as outside this range ∆s either do not populate or their presence

results in an EOS that is erroneous due to either a negative effective baryon

mass or a pressure that is not monotonically increasing. Thus, if ∆s are to

appear in NS matter, xσ∆ and xω∆ are likely relatively close in value.

Figure 1.23 indicates that an increase in either xσ∆ or xσ∆ − xω∆ re-

sults in a decrease in U∆, the potential becoming more attractive. The

region between the top two contours is consistent with the potential con-

straint suggested by Drago et al. (2014) given in Eq. (1.70). Satisfaction

of this constraint requires that 1.0 . xσ∆ . 1.7 in SWL and DD2, and

0.9 . xσ∆ . 1.6 in GM1L. Requiring that Eq. (1.71) be simultaneously

satisfied completely excludes the bottom half of the coupling space and

leaves only a limited region in the top-middle that is consistent with the

constraints, this region including the previously employed couplings indi-

cated by the star marker and given in Eq. (1.72). The region between

the bottom two contours is consistent with the potential constraint sug-

gested in Kolomeitsev et al. (2017). However, if we simultaneously require

the satisfaction of Eq. (1.71) here the SWL and DD2 parametrizations are

completely excluded, and the ∆ couplings are limited to a very small range

in the GM1L parametrization.

The maximum mass of NSs in the σω∆ coupling space is shown in

Fig. 1.24. The maximum mass constraint is satisfied by the majority of

the meson-∆ coupling space in all parametrizations, with large regions pro-

ducing a maximum mass greater than that of the purely hyperonic EOS

with ESC08 vector couplings indicated by the solid contours. Consequently

the maximum mass constraint alone does not serve to constrain xσ∆ and

xω∆ significantly. The highest maximum masses appear where both the

∆ saturation potential is the most attractive and the difference between

the scalar and vector meson-∆ couplings is the greatest. Satisfaction of

both Eq. (1.71) and the mass constraint requires xσ∆ > 1.0 for SWL,

xσ∆ > 0.9 for GM1L, and xσ∆ > 0.975 for DD2. Kolomeitsev et al. (2017)

concluded that the most likely value for U∆(n0) ≈ −50MeV, and we find

that the maximum mass constraint can only be satisfied with this potential

provided xω∆ > xσ∆, violating Eq. (1.71) (Riek et al., 2009; Kolomeitsev

et al., 2017).

The total number N∆ of delta isobars present in a given NS model can
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Fig. 1.24 Maximum mass (in solar mass units M⊙) in the σω∆ coupling space (Spinella,
2017). Hyperons were included with the vector meson-hyperon coupling constants given
by the SU(3) ESC08 model. Solid lines are maximum mass contours for the associated
hyperonic EOS (no ∆s) in the ESC08 model. Colorbar tick marks represent the maxi-
mum mass constraints set by PSR J0348+0432 (1.97−2.05M⊙ at 1σ, and 1.90−2.18M⊙

at 3σ). Markers, contours, and pixels are as described for Fig. 1.23.

be calculated from
dN∆

dr
=

4πr2
√

1− 2m(r)/r

∑

∆

n∆(r) , (1.73)

which is to be solved in combination with the TOV equation that will

be introduced in Sec. 1.6. N∆ is given in Fig. 1.25 as a fraction of the

total baryon number, f∆ = N∆/NB. The ∆ fraction varies considerably

in the range 2% . f∆ . 18% when the σω∆ couplings are consistent

with the constraints given in Eq. (1.70) and Eq. (1.71). However, a quick

examination of the same region in Fig. 1.24 reveals that this variance in

f∆ has little to no effect on the maximum stellar mass. It appears that

there is a f∆ hot-spot that is centered in a region of the σω∆ coupling

space inaccessible to the GM1L and DD2 EOS models, but the predictable

result is that f∆ increases with an increase in xσ∆ − xω∆ when xσ∆ & 0.8.

The DD2 parametrization presents with the highest f∆ for the smallest

difference xσ∆ − xω∆, followed by SWL and then GM1L.

The critical density ncr for the appearance of ∆s is shown in Fig. 1.26 for

the σω∆ coupling space. As long as Eq. (1.71) is satisfied, ∆s appear prior

to the onset of hyperonization, and nSWL
cr . 2.3n0, n

GM1L
cr . 2.3n0, and
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Fig. 1.25 Delta isobar fraction (percentage) of the maximum mass NS in the σω∆
coupling space (Spinella, 2017). Hyperons were included with the vector meson-hyperon
coupling constants given by the SU(3) ESC08 model. Markers, contours, and pixels
are as described for Fig. 1.23. The ∆ fractions for xσ∆ = xω∆ = 1.1 are as follows:
fSWL

∆
= 8.41%, fGM1L

∆
= 6.31%, and fDD2

∆
= 10.2%.

nDD2
cr . 1.9n0. If we also enforce simultaneous satisfaction of Eq. (1.70)

the critical densities could be as low as nSWL
cr ≈ 2n0, n

GM1L
cr ≈ 1.9n0, and

nDD2
cr ≈ 1.6n0. Increasing xσ∆ leads to a gradual decrease in ncr when

xσ∆ − xω∆ & −0.1, and a gradual increase in ncr when xσ∆ − xω∆ . −0.1,

the increase in the repulsive vector coupling overcoming the increasingly

attractive potential in the latter case. However, increasing xσ∆−xω∆ leads

to an obvious and rapid decrease in nc for the entire σω∆ coupling space,

and if Eq. (1.71) is simultaneously satisfied an increase in xσ∆ − xω∆ also

leads to a significant reduction in the radius of the canonical 1.4M⊙ NS as

shown in Fig. 1.27. For example, the DD2 parametrization with nucleons

(and hyperons) produces a 13.5 km radius for the canonical 1.4M⊙ NS and

thus fails to satisfy the 13.2 km upper-radial constraint from Lattimer and

Steiner (2014), but if ∆s are included and xσ∆ > xω∆ the radius is reduced

sufficiently to satisfy the constraint. If we allow Eq. (1.70) to be violated

resulting in a very attractive U∆, the inclusion of ∆s makes it possible for

all three parametrizations to satisfy at least part of the 2σ upper limit on

the radial constraints from Steiner et al. (2010).
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Fig. 1.26 Critical baryon number density (in units of n0) for the appearance of ∆s
in the σω∆ coupling space (Spinella, 2017). Hyperons were included with the vector
meson-hyperon coupling constants given by the SU(3) ESC08 model. Markers, contours,
and pixels are as described for Figure 1.23.

1.5.3.2 The xρ∆ Coupling

To examine the dependence of the NS mass, the ∆ critical density ncr, and

the ∆ fraction f∆ on the isovector meson-∆ coupling xρ∆ we set xσ∆ =

xω∆ = 1.1 and varied xρ∆ in the range 0.5 < xρ∆ < 2.5 (Spinella, 2017).

(Note that the saturation potential of the ∆ is determined in symmetric

nuclear matter and is therefore independent of xρ∆.) The NS maximum

mass was found to not be terribly sensitive to xρ∆, decreasing over the entire

range by less than 1% for the GM1L and DD2 parametrizations. However,

ncr and f∆ turned out to be much more sensitive to changes in xρ∆ for the

GM1L parametrization due to the fact that the isovector contribution to

the chemical potential is much higher than for DD2. The critical density

for GM1L increases from ∼ 2n0 to ∼ 3n0 across the entire xρ∆ range, with

a corresponding drop in f∆ of ∼ 8−9% as this EOS reverts back to a nearly

purely hyperonic EOS. The ncr of the DD2 parametrization increases very

little from around 1.7n0 to 1.9n0, but with an accompanying drop in f∆ of

almost 3% down to about 8%. Overall, lower values of xρ∆ lead to a lower

critical density, resulting in higher fractions of ∆s to replace hyperons and

lower the strangeness fraction, increasing the NS maximum mass.
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Fig. 1.27 Radius (in km) of the canonical 1.4M⊙ NS in the σω∆ coupling space
(Spinella, 2017). Hyperons were included with the vector meson-hyperon coupling con-
stants given by the SU(3) ESC08 model. The solid contour in the bottom (DD2) panel
represents the 13.2 km upper limit of the radial constraint from Lattimer and Steiner
(2014) represented as L90% on the colorbar. The 1σ and 2σ upper limits from Steiner
et al. (2010) are represented on the colorbar as S1σ and S2σ respectively. Markers,
dashed contours, and pixels are as described for Fig. 1.23.

1.6 General Relativistic Stellar Structure Equations

Neutron stars are objects of highly compressed matter so that the geom-

etry of surrounding space-time is changed considerably from flat space.

Einstein’s theory of general relativity is therefore to be used when mod-

eling the properties of NSs rather than Newtonian mechanics. Einstein’s

field equation is given by (we use units where the gravitational constant

and the speed of light are G = c = 1)

Rµν − 1

2
gµνR = 8πT µν , (1.74)

where Rµν is the Ricci tensor, gµν the metric tensor, R the scalar curvature,

and T µν the energy-momentum tensor of matter. The latter is given by

T µν = (ǫ+ P (ǫ)) uµuν + gµνP (ǫ) . (1.75)

Models for the EOS, P (ǫ), which are input quantities in the energy-

momentum tensor equation, have been derived in Sec. 1.2. These models

will be used in this section to study the properties of NSs.



November 12, 2021 19:32 ws-book9x6 Book Title ch5˙arXiv page 43

Contents 43

1.6.1 Non-rotating Proto-Neutron Stars

We begin with non-rotating, spherically symmetric NSs. They are relatively

easy to study since the metric of such objects depends only on the radial

coordinate. The line element ds2 in this case is given by the Schwarzschild

metric (Schwarzschild, 1916; Misner et al., 1973; Shapiro and Teukolsky,

2008)

ds2 = −e2Φ(r)dt2 + e2Λ(r)dr2 + r2 (dθ2 + sin2θ dφ2) , (1.76)

where Φ(r) and Λ(r) denote unknown metric functions whose mathematical

form is determined by Einstein’s field equation Eq. (1.74) and the conser-

vation of energy-momentum, ∇µT
µν = 0, and have the form

e2Λ(r) =

(

1− 2m(r)

r

)−1

(inside and outside of star) , (1.77)

e2Φ(r) =

(

1− 2m(r)

r

)

(only outside of star) . (1.78)

The solution of Φ(r) for the stellar interior is given by

dΦ(r)

dr
= − 1

ǫ+ P (ǫ)

dP (r)

dr
, (1.79)

where the pressure gradient is given by the Tolman-Oppenheimer-Volkoff

(TOV) equation (Oppenheimer and Volkoff, 1939; Tolman, 1939; Misner

et al., 1973),

dP

dr
= − (ǫ(r) + P (r))

(

m(r) + 4πr3P (r)
)

r2 (1− 2m(r)/r)
. (1.80)

The quantitym(r) in Eq. (1.80) denotes the gravitational stellar mass given

by

m(r) = 4π

∫ r

0

dr r2 ǫ(r) . (1.81)

The boundary condition associated with Eq. (1.80) specifies the pressure at

the stellar center, P (r = 0). Equation (1.80) is integrated, for a given EOS,

outward to a radial distance where the pressure vanishes (turns negative).

This defines the radius, R, of the stellar model and the star’s total gravita-

tional mass is then given by M ≡ m(R). Figures 1.28 and 1.29 show M as

a function of R of proto-neutron stars computed for the DD2 and GM1L

models for the nuclear EOS. The most massive stars of our sample are those

with an entropy per baryon of s = 1 and a lepton fraction of YL = 0.4, since

the matter in their cores provides the most pressure (see Figs. 1.2 and 1.3)
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Fig. 1.28 Mass-radius relationships of PNS computed for the DD2 parametrization.
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Fig. 1.29 Same as Fig. 1.28, but computed for the GM1L nuclear parametrization.

of all the entropy–lepton number combinations investigated in this work.

The EOS computed for s = 2 and Yνe = 0 provides the least amount of

pressure (i.e., is the softest EOS of our collection) and therefore leads to the

least massive stars. We note that the mass-radius curves of all stars lighter
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than ∼ 1M⊙ are not reliable since temperature effects on the matter of the

stellar crust have not been taken into account in our calculations.

1.6.2 Rotating Proto-Neutron Stars

The properties of rotating compact objects are much more complicated to

study than those of non-rotating compact objects. This has its origin in

the fact that due to rotation the stars are deformed (so that the metric

functions depend on the polar angle θ) as well as the dragging of the local

inertial frames, which is caused by rotating systems in the general the-

ory of relativity. The line element accounting for these effects is given by

(Butterworth and Ipser, 1976; Friedman et al., 1986)

ds2 = − e2 ν(r,θ,Ω) dt2 + e2ψ(r,θ,Ω) (dφ− ω(r,Ω) dt)2 + e2µ(r,θ,Ω) dθ2

+ e2λ(r,θ,Ω) dr2 . (1.82)

Here, ω is the angular frequency of the local inertial frames which depends

on the radial coordinate, r, and on the star’s rotational frequency Ω. We

take Ω to be constant throughout the star’s fluid (rigid-body rotation).

Of particular interest in the discussion of rotating compact objects is the

effective angular frequency ω̄ ≡ Ω − ω, which is the angular frequency of

the stellar fluid relative to the local inertial frames.

1.6.2.1 The General Relativistic Kepler Frequency

No simple stability criteria are known for rotating star configurations in

general relativity. An absolute upper limit on rapid rotation, is however set

by the Kepler frequency ΩK, at which mass shedding from a star’s equator

sets in. The expression of the general relativistic Kepler frequency is derived

from the line element shown in Eq. (1.82), evaluated at the equator of a

compact stellar object. Since dr = 0 and dθ = 0 for a mass element

rotating at the equator, one obtains from Eq. (1.82) for the proper time

dτ2 (= −ds2) the relation

dτ =
(

e2 ν(r,θ,Ω) − e2ψ(r,θ,Ω) (Ω− ω(r, θ,Ω))2
)1/2

dt . (1.83)

The equatorial orbit, which is the circular path with the maximum pos-

sible distance from the center of a gravitating body, is obtained from

Eq. (1.83) by determining the extremum of the functional J(r) associated

with Eq. (1.83), that is,

J(r) ≡
∫

dt
(

e2 ν(r,θ,Ω) − e2ψ(r,θ,Ω) (Ω− ω(r, θ,Ω))2
)1/2

. (1.84)



November 12, 2021 19:32 ws-book9x6 Book Title ch5˙arXiv page 46

46 Book Title

Applying the extremal condition δJ(r) = 0 to this functional leads to

δ

∫

dt
(

e2 ν(r,θ,Ω) − e2ψ(r,θ,Ω) (Ω− ω(r, θ,Ω))2
)1/2

= 0 , (1.85)

from which it follows that (Weber, 1999)
∫

dt δr
ν,r e

2 ν − (ψ,r (Ω− ω)− ω,r) (Ω− ω) e2ψ

(

e2 ν − e2ψ(Ω− ω)2
)1/2

= 0 . (1.86)

For the sake of brevity, we suppress all arguments here and in the following.

The subscripts ,r on the metric functions and the frame dragging frequency

in Eq. (1.86) denote partial derivatives with respect to the radial coordinate,

r. Next, we introduce the orbital velocity V of a co-moving observer at the

star’s equator relative to a locally non-rotating observer with zero angular

momentum in the φ-direction. This velocity is given by

V = eψ−ν (Ω− ω) . (1.87)

This relation is suggested by the expression of the time-like component ut

of the four-velocity of a mass element rotating in the equatorial plane,

ut =
dt

dτ
= e−ν

(

1− V 2
)−1/2

, (1.88)

where V is given by Eq. (1.90). Substituting Eq. (1.87) into Eq. (1.86) then

leads to

ψ,r e
2 ν V 2 − ω,r e

ν+ψ V − ν,r e
2 ν = 0 , (1.89)

which guarantees that the integrand in Eq. (1.86) vanishes identically for

arbitrary variations δr. Equation (1.89) represents a quadratic equation for

the velocity V . The solutions are given by (Friedman et al., 1986)

V =
ω,r
2ψ,r

eψ−ν ±
(

ν,r
ψ,r

+

(

ω,r
2ψ,r

e2(ψ−ν)
)2)1/2

. (1.90)

The general relativistic Kepler frequency, ΩK, is then obtained from (cf.

Eq. (1.87)) as

ΩK = eν−ψ V + ω . (1.91)

We note that Eqs. (1.90) and (1.91) need to be computed self-consistently

together with Einstein’s field equations, which determined the metric func-

tions ν and ψ and the frame dragging frequency ω at an (initially un-

known) equatorial distance. The result of classical Newtonian mechanics

for the Kepler frequency and the velocity of a particle in a circular orbit,

ΩK =
√

M/R3 and V = RΩ respectively, are recovered from Eqs. (1.90)
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Fig. 1.30 Gravitational mass of PNSs as a function of central energy density in units of
the energy density of ordinary nuclear matter (ǫ0 = 140 MeV/fm3) computed for GM1L.

and (1.91) by neglecting the curvature of space-time geometry, the rota-

tional deformation of a rotating star, and the dragging effect of the local

inertial frames.

Figure 1.30 shows the impact of rapid rotation on the gravitational

masses of proto-neutron stars. The solid lines in this figure show the masses

of non-rotating (i.e., TOV) stars. The dashed lines reveal by how much

these masses increase if the stars are rotating at the highest possible spin

rate, which is the Kepler frequency given by (1.91). The increase in mass

of cold NSs is typically at the 20% level, depending on the EOS (Friedman

et al., 1986). The same is the case for the gravitational masses of proto-

neutron stars, as can be inferred from Fig. 1.30. We also note that the

stars’ central energy density, ǫc, decreases with rotation speed, because of

the additional rotational pressure in the radial outward direction created

by rotation.

As mentioned just above, to find the Kepler frequency ΩK (Kepler pe-

riod, P = 2π/ΩK) of a compact star, Eqs. (1.90) and (1.91) and are to be

computed self-consistently in combination with the differential equations

for the metric and frame-dragging functions in Eq. (1.82), which follow

from Einstein’s field equation (1.74). The entire set of coupled equations is

to be evaluated at the equator of the rotating star (Friedman et al., 1986;
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Weber and Glendenning, 1992), which is not known at the beginning of

the computational procedure. Here, the results of stars rotating at the

Kepler period are computed in the framework of Hartle’s perturbative ro-

tation formalism (Weber and Glendenning, 1992). The latter constitute a

perturbative approach to Einstein’s field equations, that leads to results

that are in very good agreement with those obtained by numerically exact

treatments of Einstein’s field equations. This is particularly the case for the

mass increase due to fast rotation and the value of the Kepler frequency.

Figure 1.31 shows that the maximum possible rotational (Kepler) speed

at the equator of PNSs is around 0.7 c. This value depends only mildly on

the actual stellar composition. One also sees that the hottest of the three

stellar families (green line) terminates (solid black dot) at an equatorial

speed that is smaller than the speed of the other two sequences. This

has its origin in the fact that s = 2 and Yνe = 0 PNSs have the highest

temperatures of all three configurations and thus the biggest radii, so that

mass-shedding from the equator sets in first in these stars.

The Kepler periods of the rotating PNSs of Figs. 1.30 through 1.31

are displayed in Fig. 1.32. Based on the results shown in this figure, we

conclude that PNSs posses about the same Kepler periods as cold neutron

stars.

1.6.2.2 Gravitational Radiation-Reaction Driven Instabilities

Besides the absolute upper limit on rapid rotation set by the Kepler

frequency, there are other instabilities that have been shown to set in at a

lower rotational frequency, and which therefore set more stringent limits on

stable rotation (Lindblom, 1986; Owen et al., 1998; Andersson et al., 1999;

Andersson and Kokkotas, 2001; Lin et al., 2021). They typically originate

from counter-rotating surface vibrational modes, which at sufficiently high

rotational star frequencies are dragged forward. In this case, gravitational

radiation which inevitably accompanies the aspherical transport of matter

does not damp the modes, but rather drives them (Chandrasekhar, 1970;

Friedman, 1983b,a). Bulk and shear viscosity play the important role of

damping such gravitational-wave radiation-reaction instabilities at a suffi-

ciently reduced rotational frequency such that the viscous damping rates

and power in gravity waves are comparable (Lindblom and Detweiler, 1977;

Andersson and Kokkotas, 2001). Theoretical studies suggest that either the

f -modes or the r-modes determine the maximum rotation frequency of neu-

tron stars.
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Fig. 1.31 Gravitational mass of rotating PNSs versus equatorial speed for GM1L EOS.
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Fig. 1.32 Kepler periods of rotating PNs versus gravitational mass for the GM1L EOS.

1.6.3 The Moment of Inertia

Another very important stellar quantity, which will be discussed in this

section, is the moment of inertia, I. This quantity is given by [Hartle
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(1973)]

I(Ω) =
1

Ω

∫

A

dr dθ dφ Tφ
t(r, θ, φ; Ω) (−g(r, θ, φ; Ω))1/2 , (1.92)

where A denotes the region inside of a compact stellar object rotating at

a uniform angular velocity, Ω. The quantity g denotes the determinant of

the metric tensor gµν , whose components can be read off from Eq. (1.82).

One obtains (Weber, 1999)
√−g = eλ+µ+ν+ψ . (1.93)

The energy-momentum tensor component Tφ
t is given by (see Eq. (1.75))

Tφ
t = (ǫ + P ) uφ u

t , (1.94)

with the four-velocities uφ and ut given by

ut =
e−ν

(1− (ω − Ω)2 e2ψ−2ν)
1/2

, (1.95)

uφ = (Ω− ω) e2ψ ut . (1.96)

Substituting Eqs. (1.95) and (1.96) into Eq. (1.94) leads for Tφ
t to

Tφ
t =

(ǫ+ P ) (Ω− ω) e2ψ

e2 ν − (ω − Ω)2 e2ψ
. (1.97)

Substituting the expression given in Eq. (1.93) and Eq. (1.97) into Eq. (1.92)

leads for the moment of inertia of a rotationally deformed compact stellar

object to (Weber, 1999)

I(Ω) = 2π

∫ π

0

dθ

∫ R(θ)

0

dr eλ+µ+ν+ψ
ǫ + P (ǫ)

e2ν−2ψ − (ω − Ω)2
Ω− ω

Ω
. (1.98)

In Figs. 1.33 and 1.34 we show the results for the moment of inertia com-

puted for the DD2 and GM1L nuclear parametrizations. As can be seen,

massive PNSs with s = 1 and YL = 0.4 posses the largest moments of in-

ertia, followed by PNS with s = 2 and YL = 0.2, and s = 2 and Yνe = 0.0.

This trend is consistent with the stiffness of the PNS equations of state

shown in Figs. 1.2 through 1.5, the associated mass-radius relationships

shown in Figs. 1.28 and 1.29, and the mass-central density curves shown

Fig. 1.30. Figures 1.33 and 1.34 show that 2M⊙ PNSs, for instance, pos-

sess moments of inertia of around 270 km3. It is interesting to compare this

value with the moment of inertia of a spherical uniform mass distribution

in Newtonian physics, which is given by I = 2
5MR2 = 3

5 (
M
M⊙

)( Rkm)2 km3.

This gives values for I for the 2M⊙ PNSs in Figs. 1.28 and 1.29 which
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Fig. 1.33 Moment of inertia versus gravitational mass, for the DD2 parameter set.
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Fig. 1.34 Same as Fig. 1.33, but for the GM1L parameter set.

are between 175 km3 and 235 km3. These values are on the same order of

magnitude as the general relativistic results, but differ significantly quanti-

tatively. Sudden changes ∆I in the moments of inertia of (proto-) neutron

stars are expected to lead to sudden changes ∆Ω in the spin frequencies

of such objects. Assuming angular momentum conservation during such
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episodes, the change in spin frequency may be estimated as

∆Ω

Ω
= − ∆I

I +∆I
, (1.99)

where Ω is the frequency of the star before the change in the moment of

inertia. Observed changes in the spin frequencies of rotating neutron stars

(pulsars) range from 10−6 to 10−9 and have been suggested to originate

from sudden decreases in the moments of inertia of such objects (Lyne,

1992; Fuentes, J. R. et al., 2017; Manchester, 2017; Montoli et al., 2022).

Similar arguments have been used by Garcia and Ranea-Sandoval (2015)

and Mastrano et al. (2015) to explain the anti-glitch observed for the mag-

netar AXP 1E 2259+586 [Archibald et al. (2013)]. Equation (1.99) indi-

cates that already |∆I| ∼ 10−6 km3 to 10−9 km3 could suffice to cause

such changes. This is also the reason why the nuclear crust on hypothetical

strange quark stars could explain the observed pulsar glitches [Glendenning

and Weber (1992)].

1.7 Future Directions of Research

It is often stressed that there has never been a more exciting time in

the overlapping areas of nuclear physics, particle physics, relativistic as-

trophysics and astronomy than today. This interest is stimulated by in-

vestments made in international nuclear physics facilities such as FAIR,

FRIB, NICA, CERN, BNL, J-Park and multiple new instruments for sky

surveys that have become operational in recent years, such as FAST,

eROSITA, NICER and the gravitational-wave detectors LIGO, VIRGO,

KAGRA. In particular, the observation of the first binary neutron star

merger, GW170817, using LIGO and VIRGO (Abbott, 2017) have led the

scientific community into the new era named multi-messenger astronomy

with gravitational waves.

Depending on the combined masses of two merging NSs, there are in

principle four possible outcomes to a merger (Chirenti et al., 2019): 1)

prompt formation of a black hole, 2) formation of a hypermassive NS

(HMNS) (Baumgarte et al., 2000; Shapiro, 2000), 3) formation of a supra-

massive rotating NS (Falcke and Rezzolla , 2014), or 4) the formation of

a stable NS. Numerical relativity simulations have shown that the thresh-

old masses related to these scenarios depend strongly on the properties

and the EOS of hot and dense NS matter. (For a comprehensive review

of the physics of NS mergers, see Baiotti and Rezzolla (2017), and refer-

ences therein.) The same is true for the lifetime of HMNSs, which depends
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strongly on the total mass of the binary system and, thus, on the nuclear

EOS. The post-merger emissions are typically characterized by two distinct

frequency peaks, one at high and the other at lower frequencies. The EOS

dependent high-frequency peak is believed to be associated with the oscil-

lations of the HMNS produced in a merger, while the low-frequency peak is

understood to be related to the merger process and to the total compact-

ness (i.e., mass-radius ratio) of the merging objects (Takami et al., 2015),

which is inexorably linked to the EOS of dense nuclear matter.

The EOS of cold and dense nuclear matter is sufficient to describe NS

matter prior to a NS merger. After contact, however, large shocks develop

which considerably increase the internal energy of the colliding NSs. Nu-

merical simulations have shown that overall matter in NS collisions reaches

densities that are several times higher than the nuclear saturation density

and temperatures that are roughly as high as 50 MeV (Baiotti and Rez-

zolla, 2017; Hanauske et al., 2019a; Perego, Albino et al., 2019). As shown

in this chapter, such extreme conditions of density and pressure modify

the EOS and in particular the baryon-lepton composition of the matter

tremendously.

Very recently, is has been shown that a strong first-order phase transi-

tion in NS mergers may register itself in the gravitational-wave frequency,

fpeak, and the stellar tidal deformability, Λ [Bauswein et al. (2019)]. Since

both the tidal deformability during inspiral and the oscillation frequen-

cies of the post-merger remnant can be determined very reliably [Faber

and Rasio (2012); Baiotti and Rezzolla (2017); Paschalidis and Stergioulas

(2017); Friedman (2018); Duez and Zlochower (2018)], this finding relates

NS merger simulations to the general science question whether or not phase

transitions occur in dense nuclear matter. Signatures of possible hadron-

quark phase transitions in NS mergers have also been studied by Most et al.

(2019). This study shows that changes in the pressure of the quark phase

can produce a decisive signature in the post-merger gravitational-wave sig-

nal and spectrum. It was also shown that a hadron-quark phase transition

may lead to a hot and dense quark core which could produce a ring-down

signal different from what is expected for a pure hadronic core. The pos-

sibility of detecting the hadron-quark phase transition with gravitational

waves has been discussed recently by Hanauske et al. (2019b).

A great deal of experimental, theoretical as well as computational work

will need to be carried out over the coming years to determine a compre-

hensive class of state-of-the-art models for the EOS of ultra-hot and dense

nuclear matter for use in binary NS merger simulations and PNS simu-
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lations (Shen et al., 2011; Rezzolla and Olindo, 2013; Banik et al., 2014;

Hanauske et al., 2019b).
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Detecting the hadron-quark phase transition with gravitational waves, Uni-
verse 5, 6.

Hanauske, M., Steinheimer, J., Motornenko, A., Vovchenko, V., Bovard, L., Most,
E. R., Papenfort, L. J., Schramm, S., and Stöcker, H. (2019b). Neutron
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