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Distinct single-cell signaling characteristics are conferred by the 
MyD88 and TRIF pathways during TLR4 activation

Zhang Cheng1,2,*, Brooks Taylor1,2,*, Diana R. Ourthiague2, Alexander Hoffmann1,2,†

1Institute for Quantitative and Computational Biosciences and Department of Microbiology, 
Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 
90025, USA

2San Diego Center for Systems Biology and Department of Chemistry and Biochemistry, 
University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA

Abstract

Toll-like receptors (TLRs) recognize specific pathogen–associated molecular patterns and initiate 

innate immune responses through signaling pathways that depend on the adaptor proteins MyD88 

(myeloid differentiation marker 88) or TRIF (TIR domain–containing adaptor protein–inducing 

interferon-β). TLR4, in particular, uses both adaptor proteins to activate the transcription factor 

nuclear factor κB (nF-κB); however, the specificity and redundancy of these two pathways remain 

to be elucidated. We developed a mathematical model to show how each pathway encodes distinct 

dynamical features of NF-κB activity and makes distinct contributions to the high variability 

observed in single-cell measurements. The assembly of a macromolecular signaling platform 

around MyD88 associated with receptors at the cell surface determined the timing of initial 

responses to generate a reliable, digital NF-κB signal. In contrast, ligand-induced receptor 

internalization into endosomes produced noisy, delayed, yet sustained NF-κB signals through 

TRIF. With iterative mathematical model development, we predicted the molecular mechanisms by 

which the MyD88- and TRIF-mediated pathways provide ligand concentration–dependent 

signaling dynamics that transmit information about the pathogen threat.

INTRODUCTION

Toll-like receptor (TLR) signaling involves a complex network of at least 12 different TLRs 

that engage in physical and functional interactions with various signal transduction proteins 

(1). Two particular adaptor proteins interact with the TLRs through a shared Toll/
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interleukin-1 (IL-1) receptor (TIR) homology domain, serving to transduce TLR activation 

downstream. This shared sequence (and function) was identified first in the adaptor myeloid 

differentiation marker 88 (MyD88) (2, 3) and later in the adaptor TIR domain–containing 

adaptor protein-inducing interferon-p (TRIF) (4). Because all TLR family members signal 

through pathways mediated by these two adaptors to activate specific gene expression 

responses, this overall structure forms a “bow tie” motif common in cellular signaling 

networks (1, 5). Among the TLRs, TLR4 was the first described in mammals (6), and it is 

the only one that uses both adaptor pathways to stimulate inflammation and innate immune 

responses (7).

With the help of its co-receptor MD2 (8), TLR4 recognizes bacterial lipo-polysaccharide 

(LPS), a component of the outer membrane of Gram-negative bacteria, and activates the 

pleiotropic transcription factors nuclear factor κB (NF-κB) and interferon response factor 3 

(IRF3). Upon binding to LPS and undergoing dimerization, TLR4 recruits MyD88 at the 

plasma membrane to stimulate the initial activation of the NF-κB–controlling kinase IKK 

[inhibitor of κB (IκB) kinase] (7). TLR4 also undergoes dynamin-dependent endocytosis 

and traffics to the early endosome (9), where it interacts with TRIF and its adaptor molecule 

(TRAM) to initiate the TRIF-dependent pathway that leads to IRF3 activation and a second 

wave of IKK activity (7).

The temporal profiles of NF-κB activity are stimulus-specific (10, 11) and are thought to 

represent a signaling code that determines downstream cellular responses (12). For example, 

whereas NF-κB activity is oscillatory in response to the proinflammatory cytokine tumor 

necrosis factor (TNF), its activity is steady in fibroblasts responding to LPS, as a result of 

autocrine feedback by TNF (10, 13, 14). However, in macrophages, TNF does not contribute 

substantially to LPS signaling (15, 16), and studies of the population average (4, 15, 17, 18) 

suggest that MyD88 may be responsible for an early peak in NF-κB activity (17) and that 

TRIF is required for a later phase (4). However, how NF-κB dynamics at the single-cell 

level are encoded in macrophages that respond to TLR ligands remains an open and 

important question.

There remains a fundamental disconnect between the robust signaling and gene expression 

patterns that are observed at a population level and the variability that characterizes 

individual cell responses (19, 20). This variability limits the capacity for reliable 

biochemical information transduction (21, 22), a characteristic required for mounting 

appropriate physiological responses to diverse external signals. We require, then, a better 

understanding of the origins, control, and consequences of the noise in the molecular 

network that determines variable NF-κB responses. Previous modeling efforts accounted for 

experimentally measured distributions of binary cell fates (23) or identified potential sources 

of noise in the reaction network relevant to NF-κB signaling, particularly in the expression 

of genes subjected to NF-κB–mediated feedback (24–26); however, this variability has not 

been contextualized with noise sources in receptor-proximal signaling modules, and 

signaling model simulation work has not defined or used criteria in matching the measured 

variability in single-cell signaling (27).
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Molecular mechanisms not only determine the dynamics of signaling, but also harbor 

potential noise sources that determine cell-to-cell variability. Broadly, variability in cellular 

responses arises from the following: (i) thermodynamic stochasticity in the reactions that 

directly control signaling, especially if small numbers of molecules are involved, and (ii) 

cell-to-cell differences in the abundance of network components or enzyme-catalyzed 

reactions naturally arise even between genetically identical cells as a result of 

thermodynamic stochasticity in gene expression and protein turnover processes that are 

extrinsic to the reactions considered within the model (28). A study of NF-κB dynamics 

revealed much less variability in cells that had recently divided from the same parent cell 

(“sibling analysis”), which suggests that extrinsic noise is likely a primary contributor to the 

observed variability (29); however, the sources of extrinsic noise have not yet been defined.

In the TLR4 network, TRIF signaling occurs from the endosome, which is dependent to 

unknown degrees on endosomal trafficking (30), whereas MyD88 signaling is initiated from 

the plasma membrane; thus, these signaling branches are both temporally and spatially 

separated (9, 31). MyD88 additionally contains a death domain (DD), which mediates 

homotypic interactions to form a macromolecular complex (termed the “Myddosome”) (32). 

These mechanisms, although identified, have not yet been integrated into a full reaction 

network to understand their role in TLR4 signaling. Here, we report the iterative 

development of a mathematical model of the TLR4–to–NF-κB signaling network in 

macrophages in the context of quantitative biochemical and live-cell imaging experimental 

studies. We reveal how specific molecular mechanisms within the MyD88 and TRIF 

pathways control dynamical features of the NF-κB response, as well as associated cell-to-

cell variability, which together determine the capacity to transmit information about the 

nature and magnitude of an invading pathogen threat.

RESULTS

A mathematical model of TLR4 signaling predicts specific roles for MyD88 and TRIF

Within the TLR4 signaling network, three modules may be distinguished (Fig. 1A): a TLR4 

module, which transduces the presence of LPS into downstream kinase activities (IKK and 

TBK1) through the MyD88- and TRIF-dependent pathways; an IRF module, which 

transduces TBK1 activity to the production of phosphorylated nuclear IRF3; and an NF-κB 

module, which determines the activity of NF-κB in the nucleus as a function of input IKK 

and IκB activities. We have previously established mathematical models for the NF-κB 

module (33, 34); thus, we focused here on establishing the topology, parameters, and 

behavior of the TLR4-proximal signaling module in macrophages, which are the primary 

pathogen sensors and the effectors of the innate immune response.

With populations of bone marrow–derived macrophages (BMDMs) derived from wild-type, 

MyD88-deficient (Myd88−/−), and TRIF-deficient (Trif−/−) mice, we first measured IKK 

activation dynamics in response to different concentrations of LPS (1 and 100 ng/ml) 

through an established in vitro kinase assay with immunoprecipitated IKK. In Trif−/− 

BMDMs, IKK activity was induced early and transiently, reaching maximal activation at 

least 15 min earlier than that in Myd88−/− cells (Fig. 1B and fig. S1A). In contrast, the more 

slowly activated Myd88T−/− BMDMs showed more persistent signaling, well past the hour-
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long window of activation that was observed in Trif−/− cells. The dynamics of IKK activity 

in wild-type cells showed both early activation and long duration, which are characteristics 

of the sum of the activities of MyD88 and TRIF. We similarly quantified the dynamics of the 

downstream transcription factors NF-κB, as measured by electrophoretic mobility shift 

assays (EMSA), and IRF3, as determined by measurement of IRF3 phosphorylation by 

Western blotting analysis (Fig. 1, C and D, and fig. S1, B and C).

By parameterizing ordinary differential equation (ODE) models of the TLR4 and IRF3 

modules with these data (fig. S2, table S1, and Supplementary text), we were unable to 

obtain a good fit with the EMSA-measured NF-κB activity profiles, although the dynamics 

of IKK and IRF3 activation were re-capitulated for all genotypes and LPS concentrations 

(Fig. 1, B to D, and fig. S1, D and E). Note that this model did not include autocrine 

cytokine mechanisms, because these play little role in macrophages responding to LPS (fig. 

S3) (15, 16). The key discrepancy lies in the propensity of the model to produce oscillations, 

which are supported by the delayed negative feedback loop mediated by IκBα (Fig. 1D and 

fig. S1E, bottom). That the measurements at the level of the cell population did not reveal 

oscillations suggested the possibility that single-cell dynamics were obscured by a high 

degree of cell-to-cell variability. To resolve this discrepancy, we performed live-cell imaging 

(Fig. 1E) of RAW264.7 cells (a mouse macrophage cell line) stably transduced with a 

lentivirus expressing the NF-κB subunit p65 fused to enhanced yellow fluorescent protein 

(EYFP-p65), which was under the control of the Rela promoter. After the cells were 

stimulated with a range of concentrations of LPS (500 pg/ml to 5 βg/ml), we tracked the 

nuclear translocation of NF-κB at the single-cell level. Responses were first evident in 

response to LPS (1 ng/ml) (fig. S4), and increasing concentrations of LPS resulted in 

oscillatory translocation patterns (Fig. 1F), in agreement with model simulations. Oscillatory 

dynamics in NF-κB signaling were previously reported in response to TNF (35, 36), whose 

signal is mediated by a different receptor module, but by the same IκB signaling mechanism 

that transmits signals by LPS. Thus, our results with LPS-TLR4 suggest that NF-κB 

oscillations are an intrinsic feature in the NF-κB-IκB signaling module.

With this model, we explored the pathway-specific roles in encoding NF-κB dynamics in 

response to a range of LPS concentrations (Fig. 1G, dark to bright lines). As expected, NF-

κB activated solely by MyD88 (that is, in Trif−/− cells) showed no second-phase activity. 

Whereas the late-phase dynamics remained intact in cells expressing only TRIF, they 

showed a slowed and reduced first phase. The time of initial maximal activity in wild-type or 

Trif−/− cells was ~20 min earlier than that in Myd88−/− cells (Fig. 1H). In contrast, control of 

the duration of NF-κB activity was entirely TRIF-dependent, with the MyD88 pathway 

producing only transient NF-κB responses (Fig. 1I). Together, our results illustrated that the 

two TLR4-responsive path-ways encoded specific aspects of NF-κB dynamics: early, 

transient activation of IKK by MyD88 determined the initial timing of the response, whereas 

slower, persistent activation of IKK by TRIF encoded a longer duration of NF-κB activity. 

This analysis provides a framework for studies of how the underlying molecular mechanisms 

in the activation of MyD88 and TRIF determine NF-κB dose responsiveness, dynamics, and 

cell-to-cell variability.

Cheng et al. Page 4

Sci Signal. Author manuscript; available in PMC 2019 September 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Signalosome formation determines MyD88-dependent signaling

MyD88 signaling is thought to involve the formation of a signaling complex, the 

Myddosome, which is composed of six molecules of MyD88, four molecules of IL-1 

receptor–associated kinase 4 (IRAK4), and four molecules of IRAK1 (32, 37), which 

prompted us to examine its implicit signaling characteristics. We modeled Myddosome 

formation in accordance with a sequential binding proposal (32) in which the LPS-TLR4 

complex (C) functions as a seed that may attract two MyD88 monomers (M), forming CM2, 

which in turn functions as a building block to form C2M4 and C3M6. The C3M6 complex 

constitutes a molecular platform that forms the macromolecular Myddosome by 

incorporating IRAK4 and IRAK1 (Fig. 2A and Supplementary text). As previously 

hypothesized (37), we found that the process was inherently co-operative, leading us to 

approximate the reaction scheme by Hill kinetics (fig. S5). Assuming MyD88 subunit 

interaction ratios (kf/kb from Fig. 2A) in a range of 0.1 to 10 resulted in a range of fitted Hill 

coefficients between 1.8 and 3.1 (Fig. 2B).

We then used our TLR4 model to study the ramifications of the range of predicted Hill 

coefficients (Fig. 2, C and D). Whereas the Myd88−/− model predicted a slowly saturating 

peak response to increasing concentrations of LPS, maximal NF-κB activation in the Trif−/− 

model showed a faster switch from off to on, depending on the strength of MyD88 

oligomerization. We measured the amplitude of the first peak of NF-κB activation in the 

single-cell responses of RAW264.7 cells (Fig. 2, E and F), and we observed an increase from 

minimal to almost saturated peak NF-κB activation over a range of concentrations of LPS 

from 1 to 10 ng/ml. These values were used to tune the effective half-maximal concentration 

(EC50) and Hill coefficient of the model (see Supplementary text) to provide a best-fit Hill 

coefficient of 3, which corresponds to a kf/kb ratio of 6.1 (Fig. 2, B to D, red line).

A second prediction of cooperative signalosome formation related to the duration of NF-κB 

signaling. Given a set of dose-dependent transient inputs (that is, upstream TLR activation at 

the plasma membrane, which was quickly turned off by receptor endocytosis), higher levels 

of cooperativity caused robust termination behavior that saturated not only the peak 

amplitude but also the total amount of active IKK over time (Fig. 2G). In a highly 

cooperative system (Hill coefficient of 3 in the Trif−/− model; Fig. 2G, bottom left), outputs 

above the activation threshold are nearly indistinguishable from one another, which results in 

a saturated dose-response curve for integrated IKK activity (Fig. 2G, bottom right). 

Integrating measured IKK activity in Myd88−/− and Trif−/− BMDMs (Fig. 2H and fig. S6) 

showed that the total MyD88-stimulated IKK activity saturated more quickly than did TRIF-

stimulated IKK activity, which supports this prediction.

In summary, MyD88 provided for robust on-or-off control of NF-κB activity. This behavior 

was predicted by the mathematical model, which revealed inherent cooperativity in the 

pathway (Fig. 2B), and was measured by peak NF-κB translocation (Fig. 2E). Once the on 

state is reached, greater amounts of LPS do not further increase MyD88-mediated signaling 

(Fig. 2G). This dynamic behavior is partially explained by cooperative Myddosome 

formation, but additionally requires a robust post-induction deactivation mechanism, which 

may be mediated by the rapid internalization of TLR4 into endosomes, a process that limits 
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the duration of MyD88 signaling. Thus, we turned to studying further the roles of endosome 

trafficking in determining the balance between the MyD88- and TRIF-dependent pathways.

Endosomal translocation and maturation shape the characteristics of both MyD88 and 
TRIF signaling

Ligand-bound TLR4 first induces MyD88 signaling from the plasma membrane, and then it 

is thought to be endocytosed to induce TRIF signaling from the early endosome (9); 

however, unbound TLR4 also traffics together with recycled plasma membrane to 

endosomes as part of normal constitutive processes (30), where it could encounter free LPS 

or endocytosed CD14-LPS complexes in the endosome. We sought to delineate the relative 

contributions of constitutive and ligand-induced endocytosis of TLR4 to NF-κB signaling 

(Fig. 3A).

We decomposed endosomal signaling by computational flux analysis in our mathematical 

model (see Supplementary text for details), comparing the transfer over time of the receptor-

ligand complex from the plasma membrane to the endosome (activation through ligand-

induced transport), to the amount of LPS binding to endosomal TLR4 (activation through 

constitutive shuttling). Overall, the ligand-induced transport of TLR4 proved to be dominant 

at all concentrations of LPS tested (Fig. 3, B and C). Indeed, apart from very high 

concentrations and early time points (Fig. 3C), constitutive TLR4 shuttling generally played 

a negative role in NF-κB activation. These model-derived conclusions were robust to a high 

degree of parameter perturbation (fig. S7).

We then examined—in computational simulations—whether only ligand-induced TLR4 

transport, but not constitutive TLR4 shuttling, could support NF-κB activation. 

Unexpectedly, when either trafficking mechanism was removed from the model, the total 

TLR-mediated activation of NF-κB was enhanced (Fig. 3D compared to Fig. 1F). When 

TLR4 transport (by either mechanism) away from the plasma membrane was decreased, 

TRIF signaling was indeed reduced (and was almost eliminated in the constitutive shuttling-

only model); however, MyD88 signaling was greatly enhanced in both cases because more 

TLR4 persisted at the plasma membrane at an amount greater than that required for the 

threshold of activation of the Myddosome (Fig. 3D). Thus, whereas ligand-induced receptor 

transport was essential for TRIF activation, both trafficking modalities were critical for 

enforcing the transience of MyD88 activation.

Whereas TLR4 transport to endosomes both limited MyD88 activity and enhanced TRIF 

activity, the maturation of early endosomes into late endosomes is associated with the 

termination of the TRIF-mediated response through degradation of TLR4 (38, 39). We 

measured single-phagosome maturation in RAW264.7 cells using Escherichia coli 
conjugated to the pH-responsive dye pHrodo Red (Fig. 4A). The fluorescence intensity of 

endosome-localized pHrodo increased over the pH ranges associated with the progress of 

endosomes through early to late stages before eventually plateauing after about 10 to 12 

hours (fig. S8). We associated segmented pHrodo-containing endosome spots with single 

cells, and measured the increase in fluorescence in these single-cell spots over time, 

normalized to their final state, which was measured at 17.5 hours (Fig. 4B). We then 

computed the time taken for each cell to cross given specific maturation thresholds; 
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depending on the threshold applied, a range of maturation times was generated, which 

resembled a normal distribution with a mean ranging from 4 to 10 hours and an SD of 1 to 2 

hours (Fig. 4C). These times suggested a distribution of delays, after which endosomal 

ligand-TLR4 complexes underwent rapid degradation.

To determine the endosomal maturation threshold that functionally inhibited TRIF signaling 

(Fig. 4D), we measured the timing of final NF-κB inhibition in single cells (Fig. 4E), which 

revealed a distribution of “off” (signal termination) times that was centered at about 6.5 to 7 

hours (Fig. 4F). In our model, distributed TRIF and NF-κB signaling termination times (Fig. 

4G) were closely correlated, and the effective delay between them was ~2 to 3 hours (Fig. 

4H). The best-fit maturation time, then, was estimated to match a normal distribution of 4.4 

± 1.2 hours, which corresponded to an endosomal brightness threshold of 20% of the fully 

mature state (Fig. 4D). These results reveal an intricate relationship between constitutive and 

ligand-induced trafficking of TLR4 to the endosome, as well as a role for endosomal 

maturation in determining the transience or duration of NF-κB signaling, and they suggest 

that the measured cell-to-cell variability in these processes may directly contribute to the 

cell-to-cell variability observed in single-cell NF-κB signaling studies.

The complexity of endosomal maturation may preclude the identification of a single source 

of cell-to-cell variability in the process, although the maturation process is thought to be 

independent of the TLR signaling cascade (40). Single-cell gene expression analyses have 

implicated secreted interferon-β (IFN-β) in inhibiting the TLR4-dependent inflammatory 

response in dendritic cells (41), and we thus asked whether type I IFN receptor (IFNAR)–

dependent signaling stimulated by IFN-β might accelerate endosomal maturation to inhibit 

TRIF signaling. However, BMDMs from IFNAR-deficient (Ifnar1−/−) mice showed identical 

phagosome acidification to that of wild-type cells, and spatial analysis confirmed that cells 

that were close to each other (that is, those cells that were exposed to similar 

microenvironments) were not more likely to show similar delays in endosomal maturation 

(fig. S9).

Extrinsic noise sources may account for the cell-to-cell variability in NF-κB dynamics

Previous work sought to explain the variability in NF-κB dynamics that occurs through 

intrinsic noise arising from the small number of molecules that are involved in initiating 

transcription of the gene encoding IκBα (42); however, in several other systems, preexisting 

cell-to-cell differences (extrinsic noise) were found to be the dominant determinant of 

variability in cellular responses and decisions (22, 43), and a sibling analysis of single-cell 

NF-κB dynamics supported the notion that extrinsic noise sources are also primary 

contributors to the variability in NF-κB dynamics (29). Similarly, we observed wide 

distributions in peak timing, amplitude, and duration at all concentrations of LPS tested (Fig. 

5A), and we extended our modeling work to match these behaviors by focusing on extrinsic 

noise that affected the rates of reactions (44). Because extrinsic variation is understood to be 

both independent of activation and stable relative to its characteristic timescale (45), we used 

a distributed, deterministic model of cell-to-cell variation.

In addition to the measured distribution of endosomal maturation delays, τmature, we 

identified three key receptor-proximal processes in the signal transduction cascade that 
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might be subject to cell-to-cell differences: TLR4 synthesis, TRIF activation, and MyD88 

activation (Fig. 5B). We introduced extrinsic variability into these processes by applying a 

zero-mean, log-normally distributed multiplier into corresponding reaction rates (Fig. 5B, 

bottom). These processes were considered to be representative, with log-normal distributions 

being the result of multiplicative combinations of multiple distributed protein species. We 

also considered downstream processes, such as cellular RelA abundance, but found that 

variability in the amount of RelA only weakly correlated with the overall dynamics of NF-

κB signaling (fig. S10) (46).

A model variant that lacked endosomal maturation distribution but incorporated the three 

protein distributions predicted variance in the total activity of NF-κB by amplitude scaling 

only; knowing the amplitude of the second peak, for example, enables nearly perfect 

prediction of the total activity of NF-κB (r = 0.98; fig. S11A). By contrast, a model 

incorporating only a variable τmature predicted modulation of signal duration only; for most 

cells, there was no correlation between the amplitude of the second phase of NF-κB activity 

and its total activity (fig. S11B). The measured correlation in single-cell data between these 

two quantities was positive but weak, indicating combined modulation of both signal 

duration and amplitude (r = 0.65; fig. S11D), and the full model with varied protein and 

degradation delays provided a good match for this observed relationship (fig. S11C).

The full-variation model was fit to the full range of measured single-cell responses to a 

range of LPS concentrations (from 0.5 ng/ml to 5 μg/ml) (Fig. 5A and fig. S4). Our earlier 

parameterization provided us with the mean amounts of each of our distributed proteins, 

enabling us to fit noise levels (that is, the σ value of each log-normal distribution). To do so, 

we used metrics (first and second peak amplitudes, as well as total activity) to compress a 

large set of dynamic trajectories into univariate distributions. Model results were then 

optimized to fit to measured trajectories by comparing the distributions of both simulated 

and measured metrics, minimizing the Kolmogorov-Smirnov distance between these at all 

concentrations of ligand (fig. S12).

The resultant single-cell simulations qualitatively matched experimentally observed 

responses (Fig. 5, C and D). In response to a low concentration of LPS (5 ng/ml), almost all 

cells showed a first peak of NF-κB activity, with a smaller subset of cells exhibiting a 

second peak of NF-κB activity (Fig. 5C). At a higher concentration of LPS (5 ng/ml), almost 

all of the cells showed a secondary peak of NF-κB activity, with some cells continuing to 

exhibit oscillations in NF-κB localization for up to 8 to 9 hours (Fig. 5D). (In both cases, the 

values sampled from each distribution for all of the four varied parameters are shown next to 

the resultant simulation trajectory.) Histograms of overlaid experimental and simulation 

distributions of dynamical metrics showed good agreement across the full range of tested 

concentrations of LPS (Fig. 5E). Finally, Fourier analysis of single-cell dynamics revealed 

the emergence of a distinct harmonic signature, corresponding to a 2-hour periodic activity 

(Fig. 5F). Identical analyses performed on 500 iterations of the varied single-cell model 

showed a similar frequency distribution: trajectories were dominated by low-frequency 

information, but higher ligand concentrations gave rise to a consistent, distinct harmonic 

peak at roughly 0.5/hour. We note that the period encoded in these responses appears to be 
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characteristic of the NF-κB delayed negative feedback system; similar periods have been 

reported in response to other stimuli (29, 47).

Variabilities in aspects of the NF-κB response are specific to either the MyD88 or TRIF 
pathways

The single-cell model of extrinsic noise recapitulated many aspects of the observed behavior, 

and could then be used to examine the individual contributions of introduced sources of 

noise. Simulated and measured NF-κB dynamics showed high amounts of overall activation 

variability, particularly at late time points (Fig. 6, A and B). We ranked both quantified and 

simulated dynamics by the extent of the total response and then applied the same ordering to 

the generated parameter values for each simulation (Fig. 6C). We showed that parameters 

determining TRIF activation and inactivation made the largest contributions to the response 

strength [correlation, r, between log(ka_TRIF) and ranking = 0.61, and correlation between 

τmature and ranking = 0.64], whereas ligand-TLR4 and MyD88 activation played weaker 

roles (r = 0.30 and 0.18, respectively).

To examine how each noise source affected specific dynamical features of the NF-κB 

response, we repeated the simulations with univariate distributions (Fig. 6D, example 

trajectories shown on top). Variation in MyD88 activation caused modulation of the timing 

and amplitude of the first peak of NF-κB activity, but failed to modulate the total activity as 

strongly as did variations in either the activation or the inactivation of TRIF (Fig. 6D). In 

addition, we note that variation in MyD88 activation led to an about twofold difference in 

the amplitude of the first peak of NF-κB activity, which was less than the eightfold 

difference in the amplitude of the second peak that was caused by equivalent modulation of 

TRIF activation, and less than the fivefold difference in signaling duration (nuclear [NF-κB] 

> 0.015 μM) induced by the range of delays in endosomal maturation.

Our analysis suggests that the variability in the dynamics of NF-κB signaling in 

macrophages is largely dependent on variability in TRIF signaling. To better isolate the 

effects of this variability, we examined the dynamics of IRF3 activation, which, unlike that 

of NF-κB, is dependent solely on the TRIF pathway and is therefore a more direct readout 

of the variability in TRIF signaling. Indeed, simulating IRF3 activity in our full-variation 

model predicted a broadly distributed range of IRF3 responses (Fig. 7A), with a high 

proportion of cells showing little to no response (relative to NF-κB activity at the same 

concentration; compare to fig. S4; ~30% versus 5%). To test this prediction, we generated a 

RAW264.7 cell line expressing mVenus-IRF3, in which the nuclear translocation of IRF3 

was signal-dependent. Single-cell experimental data also revealed a range of responses that 

were similarly distributed (Fig. 7A). We also noted unexpected oscillatory characteristics 

that warrant future study. The lack of a robust “on” state means that signal transduction 

through the TRIF pathway inherently involves information loss: no matter the magnitude of 

the input applied, some cells acted indistinguishably from nonactivated cells.

To quantify this phenomenon, we applied information theory formalism (22) to quantify the 

capacities of the MyD88 and TRIF pathways to transduce information contained in stimulus 

inputs to the activity of transcription factor outputs. We calculated the channel capacity, a 

measure of the maximal fidelity of a noisy system in input-to-output information 
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transmission (21). Specifically, we compared the output response distributions to two inputs: 

an “off” concentration of LPS (0.5 ng/ml) and an “on” concentration (1, 5, 50, or 500 ng/ml) 

(Fig. 7B). A channel capacity of 1 bit would indicate perfect “off” versus “on” encoding, 

enabling perfect distinction of two input conditions.

As expected, the ability to distinguish between the off and on states was improved by 

increasing the “on” concentration of LPS; however, our model predicted that the MyD88 

pathway was less noisy than its TRIF counterpart. The NF-κB responses of both Trif−/− cells 

and wild-type cells showed a sharp increase in information transmission capacity when 

stimulated with LPS at concentrations between 1 and 5 ng/ml, or at our hypothesized 

“switch point” for MyD88 activation (Fig. 7B). Better information transmission was 

achieved for all LPS concentrations in the MyD88 pathway than when Myd88−/− cells were 

examined for either NF-κB or IRF3 responses, where activity was solely controlled by TRIF 

(Fig. 7B). Our measured data sets (1, 5, 50, and 500 ng/ml LPS for NF-κB, and 50 and 500 

ng/ml LPS for IRF3) confirmed this prediction: even at high concentrations of LPS, cell-to-

cell variability led to unreliable stimulus encoding of IRF3 activity (Fig. 7B, filled bars).

DISCUSSION

Here, we pursued an iterative approach of computational modeling and experimentation to 

develop a predictive understanding of how TLR4-responsive NF-κB dynamics in single cells 

are encoded by the MyD88 and TRIF pathways. We distinguished between several dynamic 

features and mapped these to underlying regulatory network topologies and molecular 

biochemical characteristics. In turn, these mechanisms determined the variability of single-

cell responses in the population. Having achieved a base parameterization of the model, we 

added extrinsic noise to match the variability observed in the single-cell data. Specifically, 

we first experimentally measured one potential source of noise: endosomal maturation in 

single cells. We then fitted three others, related to receptor-proximal protein species, by 

comparing the distributions of relevant single-dimension metrics. Although this metric-

match methodology could be applied to other systems, we were aided in this case by the 

temporal separation of our two pathways. As a result, aspects of wild-type responses 

mapped uniquely to the TRIF or the MyD88 pathways.

Many studies of NF-κB that address cell-to-cell variability have focused on intrinsic noise as 

a primary contributor (42); however, quantification in other systems (22, 28, 43, 45), and in 

the NF-κB system in particular (29), has suggested that the observed cell-to-cell variation 

originates from processes outside the TLR activation network. This extrinsic noise can be 

readily modeled through a distributed deterministic process, and our distributions, although 

constrained to four quantities, still generated a good match to the observed distributions of 

activity. However, we recognize that, particularly in the case of processes involving small 

numbers of molecules (for example, transcription or receptor activation with low amounts of 

ligand), intrinsic noise may also play a role in cell-to-cell variability. As we have seen here 

for MyD88 and TRIF, the degree to which extrinsic noise contributed to the variability of 

NF-κB dynamics was pathway-specific, and thus the relative contribution of intrinsic noise 

may also be pathway-specific. In turn, whether the appropriate modeling formalism is 
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deterministic or stochastic will depend on the pathway under study and the question to be 

addressed.

We found that LPS-responsive NF-κB signaling dynamics in macrophages were oscillatory, 

contrary to previous observations from experiments with mouse embryonic fibroblasts (10, 

13, 14). This finding was first predicted by a model of the TLR4 signaling module, which 

was parameterized on the basis of published quantitative data and measurements of IKK 

activity. It was then confirmed in single-cell experiments, which also revealed substantial 

cell-to-cell variability that explained why such oscillatory dynamics were not evident in 

previous measurements at the population level. Thus, oscillatory dynamics may be a more 

profound and conserved feature of NF-κB signaling than was previously thought, and they 

may be independent of the stimulus and solely a property of IκB feedback, which was 

previously derived theoretically (47).

Structural characterization of MyD88 (37) revealed that it oligomerizes into a large signaling 

molecular complex or signalosome. This oligomerization was hypothesized to generate 

positive cooperativity (48, 49), and similar signalosome-based cooperativity is thought to 

generate bistability in the decision-making process for apoptosis (50). However, although 

signalosome-forming adaptor proteins provide high specificity by selectively recruiting 

substrates (51), their effects on the dynamics of signal transduction remain unclear (37, 52). 

Our study suggests that MyD88 signalosome–mediated cooperativity, modeled by and fitted 

to a Hill equation, is sufficient to explain a concentration threshold in both IKK activity and 

NF-κB translocation. This cooperativity ensured not only the reliability of MyD88 signaling 

but also its transience (Fig. 2G, together with the translocation module, and Fig. 3) while 

reducing its scalability in response to different ligand concentrations (Fig. 2H). Several other 

signal transmission systems upstream of NF-κB exhibit similar thresholding behavior 

(which is mediated by either cooperativity or positive feedback), including in the TNF 

receptor 1–IKK signal transduction axis (53) as well as in B cell receptor (BCR) signaling 

(54), in which the scaffold protein CARMA1 mediates IKK-dependent positive feedback. 

Note that the positive feedback motif in BCR signaling does not ensure the transience, but 

rather the prolongation, of NF-κB signaling dynamics.

Receptor endocytosis provides temporal separation between NF-κB activation by the 

MyD88 and TRIF pathways. Although this delay is small relative to the oscillatory period 

caused by IκB-dependent feedback, it is sufficiently long to ensure that the timing of the 

first peak of NF-κB activity is largely driven by MyD88 signaling, which thereby determines 

the oscillatory phase of the cell. Because LPS, CD14, MD2, and TLR4 form stable 

complexes (55), and because LPS itself is stable, receptor trafficking serves to determine the 

duration of MyD88 signaling, and endosomal maturation serves to determine the duration of 

TRIF signaling. Our work suggests that the process of deactivation of TLR4 through 

endosome maturation plays a role in determining the total duration of signaling. Single-cell 

measurements of this process showed high variability, adding another source of noise in 

encoding late-phase NF-κB activity. Inflammatory gene expression programs induced by 

TLR4 signaling reach their maximal induction at different times (56, 57) and may 

differentially depend on NF-κB signaling dynamics. Our study suggests that genes 

dependent on the first peak of NF-κB activity for their expression may show less cell-to-cell 
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variability than those dependent on late-phase NF-κB activity. Consistent with this 

suggestion, a single-cell study of gene expression noted subsets of genes that were 

unimodally, universally expressed early in dendritic cells that were exposed to LPS, which 

was followed by a multimodal, highly variable distribution of inflammatory gene expression 

at later times (41).

Innate immune responses must ensure both the high sensitivity and tight control that provide 

appropriate responses that minimize the potentially destructive consequences to surrounding 

tissues (58). The integration of two pathways with distinct signaling topologies and system 

characteristics may enable the TLR4 network to accomplish these competing tasks. Our 

results suggest that in the face of high extrinsic noise associated with macrophage and 

microenvironment heterogeneity, the MyD88 pathway is still able to provide a reliable first 

signaling response because of signalosome topology (Fig. 7C, left); however, this is limited 

in duration and not scalable with ligand concentration, thus minimizing the risk of 

inflammatory damage. In contrast, the TRIF pathway exploits cell-to-cell variability to 

provide a prolonged response only in a fraction of cells, and this response is scalable with 

ligand concentration (Fig. 7C, right). We speculate that by limiting the number of cells that 

can produce cytokines at amounts sufficient to potentially act systemically, the network 

behavior also reduces the risk of inflammatory shock while providing for scalability in 

systemic immune activation. Work delineating the control of expression and functions of 

TNF is consistent with this view. Whereas local autocrine functions of TNF only require 

MyD88-mediated signaling events, TRIF-mediated signaling mechanisms are required for 

the full production of TNF and its (nonlocal) paracrine functions (16).

By combining the two pathway responses (Fig. 7C, bottom middle), every cell in a 

population is able to mount a minimal response to LPS to provide a digital and reliable local 

response, and this response is able to scale (in subsets of cells) with the extent of the threat, 

tuning systemic immune functions appropriately. Our study thus reveals how distinct 

topologies of innate immune signaling pathways either mitigate or exploit molecular 

network noise to provide appropriate responses at the cell, tissue, or organism level that are 

appropriate to the pathogen threat while carefully controlling the risk of endotoxic shock.

MATERIALS AND METHODS

Mathematical model

Three modules constitute the model: the TLR4 module, the IRF3 module, and the NF-κB 

module (Fig. 1A). The details of the model, which is modeled as chemical reaction networks 

(see also table S1), are shown in fig. S2. The IKK and NF-κB modules (parameters labeled 

by green numbers in fig. S2) are adapted from our previous studies (33, 34). All of the 

components of the TLR4 and IRF3 modules were newly formalized by ODEs based on mass 

action, except for the case of MyD88 activation, for which the Hill equation was used to 

represent Myddosome formation. We parameterized the ligand-receptor binding and 

shuttling parts of the model with data from the published literature (parameters labeled 1 to 

15 in fig. S2 and Supplementary text). The model is numerically implemented in MATLAB 

R2014a (MathWorks), and the remaining parameters are fitted with lsqnonlin, a constrained 

minimization algorithm from the MATLAB Optimization Toolbox (MathWorks), using the 
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quantified BMDM IKK and IRF3 data. The final parameter values, together with the 

chemical reactions, are shown in table S1.

Simulating single-cell trajectories in RAW264.7 cells

To parameterize the model to single-cell data, we first accounted for sensitivity differences 

between BMDMs and RAW264.7 cells by multiplying the abundances of MyD88 and TRIF 

in BMDMs by 0.33 and 0.34, respectively. Next, we added preexisting cell-to-cell variability 

(extrinsic noise, μ = 0 and fitted σ for each log-normal distribution) at discrete points in the 

model: upstream (TLR4 synthesis), the MyD88 branch (activation), and the TRIF branch 

(activation). Finally, we explicitly modeled variable termination of TLR4 signaling as a 

result of endosomal maturation, which was parameterized by single-cell measurements that 

revealed timing differences in the initiation of maturation (Fig. 4). These distributions were 

used to guide a normally distributed delay parameter (τmature), after which endosomal 

TLR4-LPS was rapidly degraded (with a rate constant of 2 min−1). The simulated single-cell 

trajectories in Fig. 5, C and D, were selected based on minimizing the Gaussian distance 

between the simulation and experimental trajectories.

Cell culture and biochemical assays

Wild-type, Myd88−/−, and Trif−/− C57BL/6 mice were housed at the University of 

California, San Diego, in accordance with protocols authorized by the Institutional Animal 

Care and Use Committee. BMDMs were generated by culturing 6 × 106 bone marrow cells 

from mouse femurs in suspension in L929-conditioned Dulbecco’s modified Eagle’s 

medium (DMEM) on 15-cm plates 7 days before replating them for experiments to be 

performed on day 8. LPS was sourced from Sigma (B5:055). Antibodies against RelA p65 

(sc-372) were from Santa Cruz Biotechnology. EMSA and kinase assays were performed as 

previously described (59, 60). RAW264.7 cells (ATCC TIB-71) were sequentially 

transduced with two lentiviral vectors encoding EYFP-RelA (under the control of the 3.5-kb 

sequence upstream of native RelA) and H2B-mCheny. Double-stable lines were made by 

successive selection and then were further purified by fluorescence-activated cell sorting. 

Only cells from passages 16 to 20 were used for imaging experiments. RAW264.7 cells were 

maintained in DMEM (CellGro 10-013) supplemented with 10% fetal bovine serum, 20 mM 

Hepes, and 1× penicillin streptomycin. Twenty hours before starting the experiments, the 

cells were replated in eight-well μ-slides (ibidi) at a density of 50,000 cells/cm2. Two hours 

before the experiment began, one-third of the total volume of medium was drawn off and 

mixed with the appropriate stimulus, which was then injected into the chamber precisely at 

the start of the experiment.

Imaging

Cells, plated on eight-well μ-slides (ibidi), were incubated at 5% CO2 and 37°C and imaged 

every 5 min with a Zeiss AxioObserver fitted with a 40× oil immersion objective, LED 

(light-emitting diode) fluorescence excitation, and CoolSnap HQ2 camera. We collected 

differential interference contrast, mCheny, and YFP images over 18.5 hours at 12 stage 

positions per experimental condition, and then exported raw images to MATLAB for 

automated analysis, which was performed as previously described (22).
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Fig. 1. Computational modeling of MyD88- and TRIF-dependent activation of the IKK–NF-κB 
pathway in response to TLR4 stimulation.
(A) The LPS-stimulated TLR4 signaling network is depicted as three regulatory modules: 

the TLR4 module activates the kinases IKK and TBK1 through the MyD88- and TRIF-

dependent pathways; the NF-κB module (33, 34) produces nuclear NF-κB activity as a 

function of control of the degradation and synthesis of IκB; and the IRF3 module produces 

nuclear IRF activity as a function of import and export mechanisms that are controlled by 

TBK1. (B) BMDMs from wild-type (wt, purple), Trif−/− (red), and Myd88−/− (blue) mice 
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were stimulated with LPS (100 ng/ml), and a time course of activation of IKK was 

measured. Circles, quantified IKK kinase activity associated with coimmunoprecipitates of 

NEMO (fig. S1A). Lines, data from model simulations. (C) BMDMs from wt mice were 

treated with LPS (100 ng/ml), and the relative abundance of nuclear pIRF3 protein was 

measured over time. Circles, quantification of the relative amounts of nuclear pIRF3 protein 

as assessed by Western blotting analysis (fig. S1B). Line, data from model simulations. (D) 

Wt BMDMs were treated with LPS (100 ng/ml) for the indicated times. Circles, 

quantification of the relative amounts of nuclear NF-κB as assessed by EMSA with an NF-

κB–specific double-stranded oligonucleotide probe (fig. S1C). Line, data from model 

simulations. (E) Sample time lapse images, taken at the indicated times, of live RAW264.7 

macrophages expressing EYFP-p65 treated with LPS (500 ng/ml). (F) Measured nuclear 

NF-κB responses to LPS of five single cells that were randomly selected from the 376 total 

cells tracked in the experiment shown in (E). (G) Simulation of NF-κB dynamics in wt, Trif
−/− (MyD88-only), and Myd88−/− (TRIF-only) cells in response to LPS (0.1 ng/ml to 1 

μg/ml, dark to bright line colors). (H) Model-predicted times of the first maximal (peak) 

accumulation of nuclear NF-κB with respect to LPS concentration in wt, MyD88-only, or 

TRIF-only cells. Dashed line indicates weak peaks (<10% of the maximum peak observed). 

(I) Model-predicted durations of the total activity of nuclear NF-κB ([NF-κBn] > 0.03 μM) 

with respect to LPS concentration in wt, MyD88-only, or TRIF-only cells. All experimental 

data shown in this figure are representative of three independent experiments.
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Fig. 2. Signalosome formation shapes the dose response of IKK and NF-κB activation.
(A) The seven-step Myddosome assembly model (see Supplementary text for details). Green 

numbers indicate reaction steps. kf and kb represent the forward and reverse reaction rates, 

respectively. (B) Fitted Hill coefficients for the different ratios of kf/kb from the Myddosome 

model. The red line indicates the fitted Hill coefficient value used in the full TLR4 model. 

(C and D) Dose responsiveness of the maximal (peak) activities of (C) IKK and (D) nuclear 

NF-κB as predicted by the full TLR4 model for the indicated Hill coefficients (from the 

Myddosome assembly model, and corresponding to different kf/kb ratios) in Trif−/− cells 

(gray gradient lines) and Myd88−/− cells (purple line). The control (ctrl) indicates the case in 

which the Hill coefficient = 1. (E) Violin plots of the amplitudes of the first peak NF-κB 

activity in single cells with respect to the concentration of LPS. The shapes of the plots show 

the distributions of total responses (normalized to the same area), whereas the points show 
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the median responses. a.u., arbitrary unit. (F) Fraction of cells showing NF-κB activation 

above a given peak amplitude threshold (>0.55 a.u.) with respect to LPS concentration. (G) 

Simulated total IKK responses to different concentrations of LPS with Hill coefficients (n) 

of 1 (no cooperativity, top two panels) or 3 (bottom two panels). Left: Time courses of 

responses in the Trif−/− model. Right: Integrated IKK responses with respect to LPS 

concentration in the MyD88−/− and Trif−/− models. (H) Integrated IKK responses (area 

under the curve) in BMDMs from MyD88−/− and Trif−/− mice that were treated with the 

indicated concentrations of LPS and then were subjected to quantified kinase assays (fig. 

S6). The responses in (G) and (H) were normalized to total observed range. Single-cell data 

in (E) and (F) include all tracked cells (between 376 and 501 cells) in each condition, and 

each condition is representative of at least two independent experiments. Biochemical data 

in (H) are representative of three independent experiments.
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Fig. 3. Ligand-induced endosomal transport of TLR4 mediates the transition from MyD88-
dependent to TRIF-dependent signaling.
(A) The two proposed modes of generating activated TLR4 in endosomes: constitutive 

shuttling of receptors, which is followed by ligand binding in the endosome; and ligand-

induced transport, in which endocytosis occurs after ligand binding. (B) Predicted 

mechanism-specific fluxes of the endosomal ligand-TLR4 complex in response to LPS (10 

ng/ml and 1 μg/ml). “Constitutive” flux is the term given to the sum of LPS-TLR4 binding 

and unbinding in the early endosome, whereas “ligand-induced” flux is the sum of the 
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endocytosis and exocytosis of ligand-TLR4 complexes. The net flux is the sum of both 

constitutive and ligand-induced flux, as well as the degradation of the ligand-bound TLR4 

complex in the early endosome. (C) Model-predicted integrated flux over the short term (0 

to 3 min) and the long term (0 to 4 hours) in response to the indicated concentrations of LPS. 

(D) Simulated nuclear NF-κB responses to the indicated concentrations of LPS (1 ng/ml to 1 

μg/ml; dark to bright lines) in in silico knockout conditions in which the simulated cells can 

internalize TLR4 through constitutive means only (left) or through ligand-induced shuttling 

only (right).
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Fig. 4. Variable endosomal maturation shapes the termination of TRIF signaling.
(A) Example image (at t = 16 hours) of RAW264.7 cells stimulated with pHrodo-conjugated 

E. coli (20 μg/ml) showing mature endosomes. A total of 185 cells in this condition were 

analyzed. (B) Assessment of endosomal development at the single-cell level as determined 

by measuring the increase in median spot (endosome) intensity over time, which was 

normalized to the maximum intensities reached in that cell. (C) Single-cell endosomal 

maturation histograms showing the time taken to cross a threshold (as a function of 

threshold), which was applied to the endosomal development curves shown in (B). (D) 

Histograms for thresholds of 20 to 30% [that is, the first three columns of (C)] with 

corresponding Gaussian fits. Selected distribution is shown in red. (E) Measuring the time 

point of post-induction attenuation of NF-κB signaling (“off” time) of 6 randomly selected 

cells (from a total of 376 cells) exposed to LPS (500 ng/ml). The “off” time (determined 

algorithmically, not manually) for each cell is highlighted by a red circle in each trajectory. 

(F) Full histogram of the computed off times for all 376 measured cells treated with LPS 

(500 ng/ml). (G) Six randomly selected single-cell simulations of active TRIF and nuclear 

NF-κB trajectories in response to LPS (500 ng/ml) after introducing a cell-specific delay in 

endosomal maturation picked from the Gaussian distribution described in (D). (H) Predicted 

NF-κB signaling termination times as a function of endosomal maturation time from 200 

single cells simulated as in (G). Delays of 2 hours (lower line) and 3 hours (upper) between 

the NF-κB signaling termination time and endosomal maturation time are indicated by red 

lines. All single-cell data in (A) to (F) are representative of three independent experiments.
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Fig. 5. The distributed, oscillatory nuclear translocation of NF-κB in response to LPS can be 
fitted to an extrinsic noise model.
(A) Heatmaps of measured single-cell NF-κB responses to LPS at concentrations of 5 ng/ml 

(left; n = 430 cells) and 5 μg/ml (right; n = 501 cells). Each row indicates the response of 

one cell, and the rows are ordered according to the extent of total activation. (B) The 

locations of reactions (indicated by number and color in the top panel) in the model topology 

that varied within cell population with the indicated rate distributions (bottom); these 

distributions represent cell-to-cell variability due to extrinsic noise: the synthesis rates of 
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TLR4, the activation rates of TRIF and MyD88, and the endosomal maturation delay time 

were varied. (C and D) Five NF-κB trajectories sampled from the responses shown in (A): 

arrow-heads in (A) indicate the trajectories of the cells shown in (C) and (D). Beside each 

sample trajectory, the best-fit single-cell simulations (minimum Euclidean distance) and the 

sampled parameter values (shown as a line indicating the specific value of the parameter 

relative to its parent distribution) are shown. (E) Metrics (time and amplitude of the first 

peak of NF-κB activity, time of the second peak, and integrated activity) were used to 

characterize the distributions of NF-κB responses in RAW264.7 cells (solid colors) and the 

best-fit simulations (gray outlines) for each of five different concentrations of LPS (500 

pg/ml, 5, 50, and 500 ng/ml, and 5 μg/ml). The limits of the x and y axes were kept constant 

for each metric at all concentrations of LPS. (F) Fourier transformations of NF-κB dynamics 

for the indicated concentrations of LPS. (Left) RAW264.7 cell trajectories are shown as thin 

black lines, and the root mean square (RMS) of all measured responses is shown in purple. 

(Right) Simulations: RMS magnitude is shown in purple. Error bars show the SD from 500 

simulations. All single-cell data in (A), (C), (D), and (E) are representative of three 

independent experiments and contain all tracked cells (n = 376 to 501 cells) in the indicated 

conditions.
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Fig. 6. Isolating the effects of variability in specific signaling processes on the dynamics of NF-κB 
and IRF3.
(A) All single-cell NF-κB responses (n = 376 cells) treated with LPS (500 ng/ml) in a single 

representative experiment. Each row is the trajectory of one cell, and rows are ordered 

according to the strength of the overall response. (B) 500 single-cell model simulations of 

NF-κB activity, ordered according to the extent of total activity in (A), using the fully 

distributed parameter set (parameters were sampled from distributions in Fig. 5B). (C) The 

value of each of the four parameters used to generate each simulation result in rows in (B) is 

shown alongside that row. Each sample has been normalized to the maximum and minimum 

sampled values for that parameter and, except in the case of endosomal maturation, has 

undergone log transformation. The Spearman correlation coefficients between the sets of 

normalized parameter values, as well as the extent of the total NF-κB response, are shown at 

the top. (D) Top: Randomly generated NF-κB trajectories over time resulting from single-

parameter variation models in response to LPS (500 ng/ml). Bottom: Metrics for integrated 

activity, amplitude and time of the first peak, amplitude of the second peak, and total 

duration (where [NF-κB]nucleus > 15 nM) are plotted as a function of individually varied 

parameters.
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Fig. 7. The MyD88 and TRIF pathways encode distinct dynamics and cell-to-cell variability of 
NF-κB responses.
(A) Heatmap of modeled (left) and measured (right) IRF3 trajectories in 499 cells in 

response to LPS (50 ng/ml). Each row shows the trajectory of one cell. (B) Calculated 

channel capacity between outputs to a 0.5 ng/ml input (that is, no visible activation or “off”) 

and a varied “on” concentration of LPS. One bit indicates a perfect distinction between the 

“on” and “off” states in all measured single cells. Top: Simulated NF-κB dynamics in 

MyD88−/− and Trif−/− cells. Middle: Simulated NF-κB and IRF3 dynamics in wt cells. 
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Bottom: NF-κB and IRF3 responses in RAW264.7 cells treated with the indicated 

concentrations of LPS. For IRF3 measurements, only the two highest concentrations of LPS 

were used. Data in (A) and (B) are representative of three independent experiments in each 

condition. (C) MyD88 and TRIF serve non-overlapping roles in encoding stimulus 

information. Given three different inputs (low, medium, and high), differential single-cell 

sensitivities lead to a range of encodings. Although the switch-like behavior in MyD88 

activation leads to transient “all or none” responses that reliably distinguish between low and 

medium inputs, they fail to distinguish between medium and high. Meanwhile, TRIF 

encoding is highly variable, but scales upward over the three input doses. By summing the 

input of MyD88 and TRIF, NF-κB shows reliable levels of early activation and scalable 

activity afterwards.
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