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2.Department of Chemistry and Biochemistry, and Department of Biological Chemistry, University 
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Abstract

Analysis of proteins and complexes under native mass spectrometric (MS) and solution conditions 

was typically performed using the time-of-flight analyzers, due to their routine high m/z 
transmission and detection capabilities. However, over recent years, the ability of Orbitrap-based 

mass spectrometers to transmit and detect a range of high molecular weight species is well 

documented. Herein, we describe how a 15 Tesla Fourier transform ion cyclotron resonance (15 

Tesla FT-ICR) instrument is more than capable of analyzing a wide range of ions in the high m/z 
scale (>5000), in both positive and negative instrument polarities, ranging from the inorganic 

ceasium iodide salt clusters; a humanized IgG1k monoclonal antibody (mAb; 148.2 kDa); a IgG1-

mertansine mAb drug conjugate (148.5 kDa, drug-to-antibody ratio, DAR 2.26); a siRNA-IgG1 

mAb conjugate (159.1 kDa; ribonucleic acid to antibody ratio, RAR 1); the membrane protein 

aquaporin-Z (97.2 kDa) liberated from a C8E4 detergent micelle; the empty MSP1D1-nanodisc 

(142.5 kDa) and the tetradecameric chaperone protein complex GroEL (806.2 kDa; GroEL dimer 

at 1.6 MDa). We also investigate different regions of the FT-ICR which impact ion transmission 

and desolvation. Finally, we demonstrate how the transmission of these species and resultant 

spectra are highly consistent with those previously generated on both quadrupole time-of-flight 

(Q-ToF) and Orbitrap instrumentation. This report serves as an impactful example of how FT-ICR 

mass analyzers are competitive to Q-ToFs and Orbitraps for high mass detection at high m/z.
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TOC

The TOC briefly summarizes the diverse samples that can be analyzed on a commercial 15 Tesla 

FT-ICR MS instrument
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Introduction

Since the initial nano-electrospray ionization (nESI) mass spectrometric (MS) experiments 

demonstrating the preservation and transmission of biomolecular complexes from solution 

into the gas-phase, under native conditions over two decades ago [1–4], native-MS has 

become an increasingly important research tool in both industry [5–8] and academia [9–11]. 

As an analytical technique, native-MS lends its self particularly well to accurate protein 

complex molecular weight (MW) [10, 12] and subunit stoichiometry determination [13, 14]; 

protein-ligand stoichiometry and associated binding constant determinations [15]; gas-phase 

protein conformation measurements [14, 16] and gas phase stability assessment [17, 18]. 

Most recently, significant progress has been made characterizing membrane proteins, 

nanodiscs and associated complexes [19–22].

Incremental instrument improvements to MS performance, in the form of restricting ion 

source pumping [3, 23, 24]; source ion guide sleeves [25]; gas-bleed valves in to the source 

hexapole ion optics [24]; the use of more massive, mono and polyatomic collision gases 

[26–29]; low frequency quadrupoles [24] and lower frequency time-of-flight (ToF) pusher 

optics [24]. All of in the above modifications led to improved high m/z transmission, 

detection (> m/z 5000) and spectral quality, in terms of ion transmission and protein 
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complex desolvation [30, 31] as well as preservation of multimeric protein stoichiometries 

[29, 30], some of which are in the MDa range [32–34].

Since the early 2000s, all of the aforementioned instrumental improvements were 

implemented exclusively on ToF [23] or quadrupole-ToF (Q-ToF [4, 24–27, 35]) 

instrumentation. During the subsequent decade of native-MS applications research and 

development, very little improvement to the ion source and ion optics were realized, 

specifically addressing charge state peak width, as a function of efficient ion desolvation; the 

charge states remained broadly adducted (much wider than the theoretical peak width; [30]). 

Previous native-MS experiments performed on the Q-ToF instrument, improved ion 

desolvation and cooling occurred in the ion source [3, 24, 27] and in the hexapole [25] or 

travelling wave [29] collision cell, using large monoatomic (xenon, Xe) or polyatomic 

(sulpurhexafluoride, SF6) collision gases. The ions were still far from fully desolvated, 

adding approximately 0.5% to 1.0% to the MW [30].

Only recently has the study of proteins and complexes under native-MS and solution 

conditions been transferred to trapping-based instruments such as the Orbitrap [8, 21, 31, 

36–38] and the benefits been realized. In 2012 and 2013, Rose [36] and Kelleher [37] 

respectively, demonstrated a paradigm shift in native-MS protein spectral quality. Close to 

theoretical peak width distributions for GroEL [36] and pyruvate kinase [37] charge sates 

and base-line separation of sequential additions of nucleotide and sugar ligands, respectively, 

were achieved on the Orbitrap-EMR instrument. This level of spectral quality implied a 

superior level of ion desolvation, assumed to be occurring in the instrument source and HCD 

cell. Similar spectral quality was also achieved for monoclonal antibodies (mAbs) [36]. It 

must be noted however that Heck, in 2004, documented native-MS data acquisitions of 

vanillyl-alcohol oxidase on a modified linear ion trap [39] (LCQ-Deca) reporting well 

resolved charge states at m/z values 10,000 to 12,000. It is not absolutely clear which 

regions of the Orbitrap instrument are critical for the observed superior ion desolvation 

currently being described within the literature, as Rose [36] and Gault [31] have 

demonstrated that the HCD collision gas and HCD cell voltage, respectively, are important 

factors that should be considered for improved native protein desolvation and transmission. 

Further insights into the superior spectral quality can also be ascertained from Lange [40] 

where m/z data is displayed as combined absorption and magnitude mode spectrum from an 

apodised transient, therefore an improvement in spectral baseline noise levels and resolution 

are achieved by signal processing, however this is beyond the scope of this brief discussion 

and will be described in detail in a subsequent publication. A less frequently used instrument 

for native-MS analysis is the Fourier transform ion cyclotron (FT-ICR) and multiple groups 

have demonstrated its utility for mAbs, nanodiscs, membrane proteins and large multimeric 

complexes [7, 21, 41–44].

Herein, we present the use of a 15 Tesla FT-ICR instrument to acquire extended m/z range 

data of the humanized NIST IgG1k mAb; caesium iodide (CsI) clusters; the detergent 

encapsulated membrane protein aquaporin (AqpZ); an IgG1-siRNA conjugate, an IgG1-

mertansine drug (DM1) conjugate; an empty MSP1D1-nanodisc (MSP1D1-Nd); and the 

tetradecameric chaperone protein complex GroEL, all under native-MS and solution 

conditions on an unmodified instrument. We have also investigated the regions within the 
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FT-ICR instrument which may afford improved levels of mAb desolvation such as the source 

ion transfer capillary temperature, source skimmer voltage, collision cell voltage, collision 

cell and ICR-cell trapping times and monoatomic versus polyatomic collision gases. Finally, 

we highlight the spectral quality is highly comparable to that obtained on the Q-ToF and 

Orbitrap instruments, for similar protein complexes.

Material and Methods

Humanized IgG1k mAb was acquired from NIST (RM-8671[45]) at a stock concentration of 

10 μg/μL. CsI was acquired from Sigma-Aldrich and a MS-working solution of 50 μg/μL in 

50% (v/v) acetonitrile was used (no formic acid). AqpZ was purified and prepared using a 

previously described method [22]. The antibody drug conjugate (ADC) is an IgG1 

covalently modified (via native lysine residues) with DM1 [46]. The siRNA-IgG1 SEFL2 

[47] conjugate was prepared and purified as previously described [48]. Briefly, the IgG1 

(SELF2 format) was conjugated with duplex siRNA (7.5 kDa) via an engineered cysteine. 

The empty MSP1D1-Nd was assembled and purified as described previously [21]. GroEL 

was purchased from Sigma-Aldrich and prepared as previously described [29]. All protein 

samples were chromatographed through an 5/150 GL Superdex column (GE Healthcare; 25 

mM Tris, 100 mM NaCl) as a final purification step and re-concentrated to a low volume, 

high concentration stock. Immediately prior to native-MS, samples were buffer exchanged 

into 200mM ammonium acetate (0.5 % v/v C8E4, 2 x CMC, for AqpZ) using a BioRad P6 

spin column. All working native-MS solutions were approximately 5 μM.

Mass Spectrometry

All data were acquired on a Bruker SolariX 15T FT-ICR MS system (Bruker Daltonics, 

Germany) operated in positive nESI mode over the m/z range 153 to 20,000 at 512 k (and 

negative nESI mode for the siRNA-IgG1 conjugate) equating to a resolution value of 4100 

FWHM at m/z 6108.3 ([Cs23I23]Cs+). Argon (Ar) or Sulphurhexafluoride (SF6) were used 

as the collision gas. All samples were infused into the MS system using gold-coated glass 

capillaries (Waters narrow thin-walled M956232AD1-S) using the Bruker nESI source. 

Typical instrument voltage and pressures are noted in either the discussion or the figure 

legends. All data were acquired in magnitude mode and the free induction decay (FID) 

transients were processed using a symmetrical Hann (F = 0.5) function. Additionally, the 

effect of FID transient apodization is demonstrated in Figure S1 (Supporting Information). 

Detailed instrument parameters are documented in the Supporting Information.

Results and Discussion

High m/z and Mass Optimization on the 15 Tesla FT-ICR Instrument

There are a number of different instrument parameters which can influence the level of ion 

desolvation and transmission, such as the ion transfer glass capillary temperature, applied 

source skimmer and collision cell voltage, collision cell storage and ICR residence times 

(Figure 1a), all of which were systematically investigated using the NIST IgG1k mAb 

standard.
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The effect of the Source Temperature, Source Skimmer and Collision Cell 
Voltage: The NIST IgIk mAb [49] (Figure 1b) is represented by five well resolved 

glycoforms, G0F/G0F, G0F/G1F, G1F/G1F, G1F/G2F and G2F/G2F for each charge state 

(Figure 1e). Figures 1c to 1e display the effect of the ion source transfer capillary gas 

temperature (30 °C, 60 °C and 100 °C) on glycoform desolvation and transmission for 

charge state z = 27+. Increased ion transfer capillary temperature results in reduced levels of 

adducting. This reduction in charge state adducting and therefore desolvation can also be 

achieved by increasing Skimmer 1 (Figures 1f to 1h) and the collision cell voltage (Figure 1i 

to 1k). Improved ion transmission is also observed in all cases; the ion current is spread over 

less channels/adducts. Skimmer 1 voltage is less efficient at removing adducts. For example, 

100V applied to the skimmer (CID set to 0 V) is required for efficient adduct removal and 

transmission (Figure 1h) as opposed to 30 V applied to the collision cell (Figure 1k; 

skimmer set to 50 V) where increased transmission is observed. These changes in levels of 

charge state adducting as a function of ion activation are consistent with those previously 

reported on different MS instruments [30, 31, 36] where higher activation voltages were 

required for improved transmission, desolvation and MW determination of large protein 

complex ions. Additionally, Figure S2 (Supporting Information) graphically demonstrates 

the improvement in ion desolvation (and peak width FWHM).

General Source Considerations: Increasing the source backing pressure and 

subsequent improved high m/z ion transmission by increasing both radial and axial 

collisional cooling was previously documented [23–25]. Typically the source backing 

pressure of the Z-Spray ion source (Waters Corporation) is increased from the standard 

operating pressure of 1.5–2.0 mbar to 6.0 mbar, with dramatic effects [23, 30]. For efficient 

high m/z transmission on the FT-ICR described herein (Figures 1b–k and 2a–f) the source 

pressure was not adjusted (held constant at an indicated pressure of 2 mbar). This indicates 

that a significant amount of ion cooling occurs in the heated ion transfer capillary and the 

region of the source immediately prior to entry into the first ion funnel. It is also conceivable 

that the ion funnels are very efficient at focusing and transmitting ions of high m/z value. 

The pressure in the ion transfer capillary is not measured on the commercial 15 T SolariX 

instrument. However, it is assumed that the pressure is significantly higher than the ion 

funnel region which is held at an indicated 2.0 mbar.

Monoatomic versus a polyatomic collision gases: Historically, larger more 

massive, monoatomic collision gases (Ar, Kr, Xe) were used for small molecule ion trap 

CID experiments [50]. More recently, monoatomic and polyatomic collision gases (Xe, N2, 

SF6) were reported to improve collisional focusing, cooling and transmission of large 

monomeric and multimeric protein complexes on Q-ToF instruments, in both MS and 

tandem-MS modes of operation [25] [26, 28, 29, 51]. In 2012, Rose demonstrated that Xe 

could be used in the HCD cell of the Orbitrap EMR instrument [36]. The larger, polyatomic 

collision gas SF6 as opposed to Ar, was selected to test transmission gains on the FT-ICR 

described herein. The results demonstrated a modest improvement in ion transmission 

(~10%; Figures S3a–c, Supporting Information) for the NIST IgG1k mAb. However, the 

signal improvement for CsI cluster transmission was dramatic (Figures S3d–f; Supporting 

Information). One important point to note is that the SolariX quadrupole has an effective 
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upper selection limit of m/z 6000, making it impossible to test the effects of lager 

polyatomic collision gases in protein complex tandem-MS experiments [28].

Collision Cell and ICR trapping times: There were a number of gas-phase trapping 

experiments performed on proteins and their structural evolution was measured. The early 

work of Clemmer [52] demonstrates the gas-phase structural transition of ubiquitin was 

measured as a function of trapping time (10 ms to 30 s) prior to ion mobility. In addition the 

work of McLafferty [53] demonstrates trapping cytochrome-c in a 7 Tesla ICR from 

picoseconds to minutes and probing the structure by electron capture dissociation. There are 

two specific regions within the 15 Tesla SolariX where ions are trapped and accumulated 

prior to release or detection, the collision cell and the ICR cell. It was hypothesized that 

trapping times within different regions of the 15 Tesla FT-ICR may have an impact on the 

levels of ion desolvation. The increased residence time within the ICR cell was achieved by 

setting a delay prior to ion detection at 512 kW. Additionally, a low level of declustering 

potential was induced by raising the source skimmer to 75 V (CID was set to 0 V) only to 

allow for observable glycoform separation. Figures S4 (Supporting Information) 

demonstrate the effects of increasing trapping times and residence times within the trap 

hexapole and the ICR cell respectively. In all cases, increasing the times from 0.0 sec to 5.0 

sec had no measurable effect on the level of adducting/declustering of the detected charge 

states. Due to lack of improvement over 0.0 to 5.0 sec, longer trapping times were not 

investigated.

High Mass Analysis

Figures 2a–f demonstrate the high mass and high m/z transmission capabilities of an 

unmodified commercial 15 Tesla SolariX FT-ICR MS instrument. CsI represents a sample 

which displays multiple ion clusters and charge states (z = 1+ to 5+ [29]) over a wide m/z 
range 500 to 20,000. The peak series labelled [Cs29I29]Cs+, [Cs33I33]Cs+, [Cs49I49]Cs+, 

[Cs62I62]Cs+ and [Cs74I74]Cs+ represent the stable cubic clusters (magic-numbers [54, 55]). 

They also display signal enhancement due to constructive overlap [29, 55], with 

corresponding m/z values 7667.5, 8706.8, 12,863.9, 16,241.8 and 19,359.8. This spectrum is 

highly consistent with those previously reported on Q-ToF [24, 29, 55] and Orbitrap [36] 

systems and historically, on a 3 Tesla ICR instrument [56]. However, ions above m/z 20,000, 

as previously reported by Lebrilla [57] are not observed. Since the instrument described 

herein (15 T SolariX FT-ICR) is commercial, it is possible enhancements may be required to 

improve ultra-high m/z transmission, such as increased source pressure for improved 

collisional cooling and ion transmission of the larger CsI clusters. It is also interesting to 

note that the level of CsI cluster detection between m/z values 13,000 to 20,000 is sparse 

compared to data previously described [24, 29, 55]. Only the larger stable clusters are 

detected (m/z 16,241.8 and 19.359.8, as less stable clusters may not survive the transmission 

and subsequent detection within this instrument.

Over the past fifteen years the Q-ToF instrument was the instrument of choice for native 

membrane protein analysis [58, 59]. Only since 2015, was the Orbitrap used for membrane 

protein and nanodisc analysis [31, 60]. However, the FT-ICR is more than capable of 

analyzing membrane proteins liberated from a detergent micelle [21, 61]. Figure 2b shows 
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the tetrameric water channel AqpZ liberated from the detergent C8E4, as a function of 

skimmer and collision cell voltage (50 V and 30 V respectively). Between m/z 5500 to 7000, 

a series of well resolved charge states (z = 12+ to 18+) correspond to a tetrameric MW of 

97.2 kDa, consistent with previously reported data in C8E4 [62]. Each charge state consists 

of an additional superposition of peaks corresponding to multiple N-terminal formylation 

modifications [61] (Figure S5, Supporting Information).

Two therapeutically relevant mAb conjugates were chosen: a siRNA conjugate [48] and a 

DM1 [46] conjugate, analysed in negative and positive nESI modes, respectively. The 

position of the charge states in the m/z scale differ from negative to positive modes of 

operation: m/z 7,000–9,000 (charge states z = 24- to 19-) for the siRNA-IgG1 conjugate and 

m/z range 5000–7000 (charge states z = 28+ to 22+) for the mAb-DM1 conjugate. The 

IgG1-siRNA conjugate is in the ribonucleic acid-to-antibody ratio of 1 (RAR1). Since the 

siRNA duplex is highly negatively charged, it was decided to measure and display this 

molecule in negative nESI mode. This siRNA-IgG1 conjugate was demonstrated to ionize 

equally well in positive nESI mode [63]. The IgG1-DM1 conjugate displays up to 8 DM1 

covalent additions (Figure 2d), all of which are baseline separated. The calculated DAR for 

this native nESI FT-ICR data is 2.26, compared to a previously calculated DAR value 3.1 to 

3.3 [46]. The differences between native-MS and denaturing-MS derived DAR values have 

previously been addressed [7, 64]. In both cases, mild voltages are used to induce efficient 

ion desolvation (Skimmer 1 50V; collision cell 30V).

Figure 1e represents the empty MSP1D1 nanodisc (MW 142.5 kDa) and was described 

elsewhere, using different data processing parameters [21, 42]. Briefly, a highly polydisperse 

spectrum is displayed over the m/z range 6000–8000, representing charge states in the range 

of z = 21+ to 24+ (Figure S6, Supporting Information). The use of a symmetric Hann 

apodization function (F = 0.5) improves the spectral quality over that previously described 

[21, 42].

The chaperone protein GroEL (Figure 2f) represents the largest molecule analyzed within 

this study (806.2 kDa) with charge states ranging from z = 79+ to 70+ detected between m/z 
10,000 and 12,000. The GroEL dimer is also observed in the m/z range 13,500 to 15,000 

(Figure S7, Supporting Information). The individual tetradecamer charge states are fully 

baseline resolved. However, the resolution, or more precisely, the peak width, previously 

reported on the Orbitrap-EMR [36, 37], is not observed here. There may be several reasons 

for this. First, the GroEL sample analysed here displayed multiple N-terminal methionine 

oxidations (Figures S8a–d, Supporting Information), which leads to sample micro-

heterogeneity, therefore broader individual charge state peak width. It is also possible that 

the Orbitrap source and HCD cell are more efficient at ion desolvation. Furthermore, the 

GroEL construct and purification procedure were most likely different. Figure S9 

(Supporting Information) displays GroEL analysed at increasing levels of instrument 

resolution (32 kW to 4 MW). In the context of the aforementioned results, it is important to 

note that the Orbitrap data are displayed as a function of mixed absorption and magnitude 

modes [40] resulting in increased spectral resolution (approximately 1.7 times [65, 66]). 

Figures S10 and S11 (Supporting Information) display zoom-in m/z regions and FID 

transients for all spectra discussed above.
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Conclusions

The 15 Tesla SolariX FT-ICR MS is more than capable of transmitting and detecting high 

m/z ions and high MW species efficiently, and importantly, on an unmodified commercial 

instrument. The data presented herein are highly consistent with historical data acquired on 

Q-ToF and more recently Orbitrap-EMR and UHMR instruments. Additioally, there is an 

increased level of therapeutic biomolecule MS characterization required from regulatory 

agencies [67] [68] [69] [70] therefore, the data presented herein further demonstrates that the 

15 Tesla SolariX is a bona fide platform for membrane protein, protein complex and 

pharmaceutically relevant protein (under native-MS and solution conditions) and high MW 

analysis.

The highest detected and assigned ion was CsI, m/z 19,359.8, [Cs74I74]Cs+. The highest 

MW detected was the GroEL dimer measured at 1.61 MDa, consistent with calculated 

trapping limit mcritical = 1.20607×107zB2a2/Vtrapα [44, 71]. Additionally, Li recently 

demonstrated electron transfer dissociation charge reduced generated ions of m/z values 

40,000 detected on a 15 Tesla magnet [44]. However, one must note that GroEL can also be 

detected on a smaller 7 Tesla magnet (Figure S12). The NIST IgG1k mAb and the IgG1-

DM1 conjugate demonstrated baseline resolved glycoforms and DM1 covalent 

modifications, respectively, at m/z values of 5000–6500. The empty MSP1D1-Nd spectrum 

is highly polydisperse and consistent with previously published data. The membrane protein 

AqpZ liberated from the C8E4-micelle can be efficiently transmitted and detected as an 

intact tetrameric complex. All the aforementioned species were measured under nESI 

positive instrument polarity. The siRNA-mAb conjugate was measured effectively under 

negative instrument polarity. Data quality, in terms of charge state peak widths are 

significantly improved when the FID transients are apodized using a symmetric Hann 

function (F = 0.5).

To achieve efficient protein complex and high charge state transmission, specifically 

desolvation for reduced levels of charge state adducting, instrument parameter optimizations 

were minimal. The most effective optimizations were increasing the source Skimmer 1 

voltage (up to 100 V) in combination with mild collisional activation (collision cell; up to 30 

V). Operating the source ion transfer capillary to 100 °C resulted in maximum charge state 

desolvation. Using SF6, as opposed to Ar, led to (species dependent) improvements in high 

m/z and high MW transmission. Increasing ion residence times within the hexapole trap and 

the ICR cell, made no measurable difference to levels of native charge state desolvation.

Finally, we wish to clarify that care should be taken when referring to native-MS data as 

high resolution. High resolution implies obtaining isotopic resolution and observing isotopic 

fine structure. To date, most, if not all Orbitrap-EMR (and UHMR) native protein data lack 

evidence of isotopic fine structure. These are typically acquired at a spectral resolution 

ranging from 3200 FWHM (12 Hz) to 25,000 FWHM (1.5 Hz) at m/z 6000 [36], where 

many of the charge states are detected; this is far from high resolution data. We therefore 

suggest using the terms “highly desolvated” or “superior spectral quality” to describe the 

native-MS protein data currently published and acquired on both Orbitrap and FT-ICR 

instruments.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The 15 Tesla SolariX instrument schematics and measured effect of highlighted instrument 

regions on NIST mAb glycoform desolvation and transmission: a) The specific regions 

tested and optimized for high MW and high m/z transmission are highlighted in red. Heated 

ion transfer capillary (30 to 100 °C); source Skimmer 1 activation (25 to 100 V); collision 

cell activation (0 to 30 V); collision gas (Ar or SF6 indicated pressures 1.5 to 5.2e−6 mbar); 

collision cell accumulation time (0 to 5 s) and ICR detection delay time (0 to 5 s). Image 

courtesy of Bruker Daltonics, Billerica, MA, USA; b) native-MS spectrum of the NIST IgGk 
mAb; c-e) the effect of the ion transfer capillary temperature (CID and Skimmer1 held 

constant at 30 V and 50 V, respectively); f-h) the effect of source Skimmer 1 voltage (CID 

and capillary temperature held constant at 0 V and 100 °C, respectively); i-k) and the effect 

of collision cell voltage (Skimmer 1 and capillary temperature held constant at 50 V and 100 

°C, respectively) on desolvation, separation and transmission of the NIST IgG1k ion series 

m/z 5470–5520 z = 27+, glycoforms G0F/G0F, G0F/G1F, G1F/G1F, G1F/G2F and G2F/

G2F. All data normalized to an ion count of 8.0e9. Zoom-ins are included for low intensity 

spectra. All data displayed in magnitude mode (512 kW) using the Hann windowing 

function of F = 0.5.
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Figure 2. 
A selection of proteins and complexes displaying charge states over a wide m/z range, 

acquired under standard instrument voltages and pressures. All data displayed in magnitude 

mode using the Hann windowing function of F = 0.5. a) CsI, 50 μg/uL; b) the tetrameric 

AqpZ complex liberated from a C8E4-micelle, 10 μM (1RC2, downloaded from 

www.rcsb.org); c) a siRNA-IgG1 conjugate, 5 μM (displaying a single cysteamine 

modification); d) an IgG1-DM1 conjugate, 5 μM; e) the empty MSP1D1 nanodisc, 10 μM 

and e) the tetradecameric chaperone complex GroEL, 5 μM (4V43, downloaded from 

www.rcsb.org). All data acquired over the m/z range 153–20,000 (m/z 1000 to 25,000 for 

CsI). Transient times ranged from 0.04 s (128 kW) to 0.17 s (512 kW). All spectral zoom-ins 

and FIDs are displayed in Figures S10 and S11 (Supporting Information).
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