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Modeling Problem-Solving Strategies as the Deliberate Retrieval of Actions and
Goals

Christopher R. Waterson (WATERSON @EECS.UMICH.EDU)
Randolph M. Jones (RIONES@EECS.UMICH.EDU)
Artificial Intelligence Laboratory
University of Michigan
1101 Beal Avenue
Ann Arbor, M1 48109-2110

Past research with learning problem solvers has typically
addressed action selection and goal selection as distinct mech-
anisms. Usually, significant effort is devoted to learning when
1o select particular actions from a known set of operators
during reasoning (e.g., Minton, 1988; Mitchell, Utgoff, &
Banerji, 1983). The learned action-selection strategies usu-
ally depend on descriptive features of intermediate problem
states and the initial goals of the problem. If the reasoning
system is capable of creating subgoals during reasoning, there
is often a fixed mechanism for determining what the subgoals
should be. For example, in means-ends analysis (Fikes, &
Nilsson, 1971; Minton, 1988; Newell & Simon, 1972), new
subgoals are fixed as the unmatched preconditions of selected
operators.

Our research focuses on the advantages of viewing both
action selection and subgoal creation as two instances of the
same process: the deliberate retrieval of internal features from
memory. When a reasoning system is presented with a prob-
lem, the problem is represented as a set of features describ-
ing an initial state and some goal conditions. These features
serve as input to a memory model, which returns a new set
of features retrieved from an experiential memory. The re-
trieved features can be viewed as symbols indicating which
action should next be taken, or they can be symbols that sim-
ply remain in memory to feed back in to the next cycle of re-
trieval. The former type of symbols correspond to action se-
lections, and the latter have the effect of subgoals.

This view is advantageous because it provides a purely
functional purpose to subgoals: they serve strictly to focus
the retrieval of new subgoals and actions. However, another
strength of this uniform view is that both action selection and
subgoal creation can arise from the same experiential learn-
ing mechanism, because they have similar representations and
functions. A reasoning system that can learn both about ac-
tion selection and subgoal creation can exhibit seemingly rigid
reasoning strategies like means-ends analysis, but they have
the flexibility to mix goal-driven and opportunistic reasoning
when their experience indicates it is appropriate.

Jones and VanLehn (1994) investigated the application of
a uniform learning model to action selection and subgoal re-
trieval, and successfully used such a system to model strategy
acquisition in children learning to add. However, this system
only took a first step at uniformly representing the retrieval

of subgoals and actions. Our current research focuses on de-
veloping a truly integrated model of retrieval and learning for
problem solving, within the Soar (Newell, 1990) architecture.
This research implements retrieval as the result of an asso-
ciative learning mechanism. Features describing the current
state of a problem combine with symbols representing current
goals and subgoals, to recall potential actions to use for the
next reasoning step. If an action cannot immediately execute,
symbols representing the action combine with problem fea-
tures to recall new internal features (subgoals) that lead in turn
to the retrieval of new actions or subgoals. Retrieval of both
actions and subgoals adapts with experience and feedback.
The current model uses a symbolic feature association
mechanism, called SCA (Miller & Laird, 1997), that has
been developed within the constraints of the Soar architecture.
SCA is a successful model of human category learning, and
therefore provides an interesting candidate for use as the re-
trieval mechanism governing human problem solving.

References
Fikes, R. E., & Nilsson, N. J. (1971). STRIPS: A new ap-
proach to the application of theorem proving ro problem
solving. Artificial Intelligence, 2, 189-208.

Jones, R. M., & VanLehn, K. (1994). Acquisition of
children’s addition strategies: A model of impasse-free,
knowledge-level learning. Machine Learning, 6, 11-36.

Miller, C. S., & Laird, J. E. (1997). Accounting for graded
performance within a discrete search framework. Cognirive
Science, 20, 499-537.

Minton, S. (1988). Learning effective search control knowl-
edge: An explanation-based approach. Boston: Kluwer
Academic.

Mitchell, T. M., Utgoff, P. E., & Banerji, R. (1983). Learn-
ing by experimentation: Acquiring and refining problem-
solving heuristics. In R. S. Michalski, J. G. Carbonell, &
T. M. Mitchell (Eds.), Machine learning: An artificial in-
telligence approach. Los Altos, CA: Morgan Kaufmann.

Newell, A. (1990). Unified theories of cognition. Cambridge,
MA: Harvard University Press.

Newell, A., & Simon, H. A. (1972). Human problem solving.
Englewood Cliffs, NJ: Prentice-Hall.

1084


mailto:waterson@eecs.umich.edu
mailto:RJONES@EECS.UMiCH.EDU

	cogsci_1997_1084



