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Abstract Transportation-related energy consumption and air quality problems
have continued to attract public attentions. A variety of emerging technologies have
been proposed and/or developed to address these issues. In recent years, electric
vehicles (EVs) are deemed to be very promising in reducing traffic related fuel
consumption and pollutant emissions, due to the use of electric batteries as the only
energy source. On the other hand, recent research shows that additional energy
savings can be achieved with the aid of Eco-driving system in a connected vehicle
environment (e.g., Eco-approach at signalized intersections). However, most of the
existing eco-driving research is only focused on the internal combustion engine
(ICE) vehicles thus far. There is still lack of convincing evidence (especially with
real-world implementation) of how these connected eco-driving technologies
impacts the energy efficiency of EVs. To fill this gap, this chapter provides a
real-world example of quantifying the energy synergy of combining vehicle con-
nectivity, vehicle automation and vehicle electrification, by designing, imple-
menting and testing an eco-approach and departure (EAD) system for EVs with
real-world driving data.
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1 Introduction

In recent years, a significant amount of transportation-related fossil fuel con-
sumption and greenhouse gas emissions have created an increasing amount of
public concern. Tailpipe emissions from vehicles are the single largest human-made
source of carbon dioxide, nitrogen oxides, and methane in transportation related
activities. Vehicles that are stationary, idling, and traveling in a stop-and-go pattern
due to congestion in urban areas emit more pollutant emissions and greenhouse
gases (GHGs) than those traveling in free-flow conditions. The resulted air quality
degradation is very serious in some major cities of U.S. as well as other developing
countries (e.g., China).

In addition to improving air quality, reducing transportation-related energy
consumption and greenhouse gas (GHG) emissions has been a common goal of
public agencies and research institutes for many years. In 2014, the total energy
consumed by the transportation sector in the United States was as high as 23.70
Quadrillion BTU which is 28% share of the total energy (U.S. Energy Information
Administration 2015) (see Figs. 1 and 2). The U.S. Environmental Protection
Agency (EPA) reported that nearly 26% of GHG emissions resulted from fossil fuel
combustion for transportation activities in 2014 (U.S. Environmental Protection
Agency (EPA) 1990) (see Fig. 1a, b).

Altogether, the transportation-related impacts on air quality, climate change, and
energy consumption have motivated researchers from different technical back-
grounds to develop different ways to reduce vehicle emissions and energy con-
sumption. In recent years, with the rapid development of vehicle related
technologies, such as connected vehicle (CV) technology as well as automation
technology, there is now a common vision for future vehicles that will be

a) Energy Consumption 2014 [1] b) Total U.S. Greenhouse Gas Emissions 2014 [2] 

Fig. 1 Total U.S. energy consumption and greenhouse gas emissions by economic sectors
a Energy Consumption 2014 (U.S. Energy Information Administration 2015). b Total U.S.
greenhouse gas emissions 2014 (U.S. Environmental Protection Agency (EPA) 1990)
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automated, connected, electrified and shared. As can be seen in Fig. 2, for each of
those features, multiple benefits can be identified (as listed in the figure) in terms of
safety, mobility and environmental impact. However, reducing energy consumption
and emissions are the only benefits that can be achieved in all four of these features.
This is explained in more detail below:

1. Automated: Vehicle automation including automated vehicle dynamics control
(i.e., adaptive cruise control (ACC)) and automated powertrain operations (i.e.,
power-split control for PHEVs), can be used to improve vehicle energy effi-
ciency and reduce emissions. For example, eco-friendly adaptive cruise control
(Eco-ACC) is designed to automatically control the vehicle speed profile when
following a preceding vehicle smoothly to reduce unnecessary accelerations so
that energy efficiency can be improved.

2. Connected: The recent development of Connected vehicle (CV) technology has
brought a new revolution for the modern intelligent transportation system. In a
CV environment, the V2V, V2I communications enables unlimited potential
applications. For example, connected ecodriving technology is designed in a CV
environment to encourage more energy efficient driving, such as reducing traffic
congestion and unnecessary stop-and-go maneuvers at signalized intersections.

3. Electrified: In recent years, cleaner alternative energy sources are used to
replace fossil fuels for vehicles, such as electricity from renewable resources
(e.g., solar, wind) and hydrogen. With these alternative fuels, plug-in electric
vehicles (PEVs) and fuel cell vehicles are designed. Transportation electrifica-
tion is one of the more promising ways to reduce transportation related fossil
fuel consumption and emissions; however, the massive adoption of PEVs is
currently impeded by the limited charging infrastructure and the perceived
limited driving range per charge (i.e., the so-called “range anxiety”) (Zhang and
Yao 2015). There is still large room for improving PEV energy efficiency.

4. Shared: Vehicle Systems have emerged in the last two decades provide a
variety of shared mobility options. Shared vehicle systems have had this
tremendous growth due to advances in electronic and wireless technologies that

Fig. 2 Key features of future vehicles
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made sharing assets easier and more efficient. The main benefits of shared
vehicle systems is to reduce vehicle miles travelled (VMT), thereby reducing
vehicle energy consumption and tailpipe emissions.

As previously described, the adoption of electric-drive vehicles has the potential
to play a significant role in addressing both energy and environmental impacts
brought by on by today’s transportation systems. Using electricity as a trans-
portation fuel has a number of benefits. Electricity has a strong potential for GHG
reduction, as long as it is generated from renewable sources such as solar and wind.
Electric vehicles themselves have zero direct emissions, although generating the
electricity to power the vehicle often results in indirect emissions at the power
plants. If electricity is generated from the current U.S. average generation mix, EVs
can reduce GHG emissions by about 33%, compared to today’s ICE powered
vehicles (US DOT 2010). If we assume 56% light-duty vehicle (LDV) penetration
by 2050, this could provide a total reduction in transportation emissions of 26–30%
(US DOT 2010). The huge potential benefits of EVs have already attracted sig-
nificant interest and investment in EV technology. Since late 2010, more than 20
automakers have introduced BEVs or PHEVs. Within the United States, the gov-
ernment has allocated considerable stimulus funding to promote the use of alter-
native fuels (Skerlos and Winebrake 2010). The American Recovery and
Reinvestment Act (ARRA) of 2009 provided over $2 billion for electric vehicle and
battery technologies, geared toward achieving a goal of one million electric vehicles
on U.S. roads by 2018 (Canis 2011). Many states also have committed themselves
to promoting EVs. For example, California has taken a number of legislative and
regulatory steps to promote electric vehicle deployment and adoption, such as the
Zero Emission Vehicle and Low Carbon Fuel Standard regulatory programs and
rebates for purchasing electric vehicles (Elkind 2012). With this momentum, it is
not difficult to see that in the near future EVs may gain significant market pene-
tration, particularly in densely populated urban areas with systemic air quality
problems.

This chapter is aimed at investigating the synergy energy benefits of vehicle
electrification, vehicle automaton and vehicle connectivity by designing, imple-
menting and testing a connected ecodriving technology for EVs. Researchers have
proposed several eco-driving systems that are capable of optimizing EV energy
efficiency under different driving conditions. An eco-friendly optimal adaptive
cruise control (ACC) was developed in (Flehmig et al. 2015). It calculates an
energy optimal trajectory for an EV when following another slower vehicle in
traffic. (Frank e al. 2013) designed an Android application to inform the driver
about the energy efficiency by calculating and showing an eco-score based on a
fuzzy system. A novel torque vectoring control system that can optimally distribute
the torque by considering the efficiency characteristics of EVs was proposed in
(Koehler et al. 2015) and 10% of energy efficiency improvement was identified.
Despite the above efforts on eco-driving systems for EVs, only a few are focused on
the eco-approach and departure (EAD) system which takes advantage of signal
phase and timing (SPaT) information broadcast via infrastructure-to-vehicle
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(I2V) communication. (Miyatake et al. 2011) applied a dynamic programming
(DP)-based model to develop eco-driving systems for EVs along signalized arte-
rials. The proposed model was tested in simulation with very limited signal phase
conditions. In a recent study (Zhang and Yao 2015), the authors developed an EAD
system for EVs based on their own EV energy consumption estimation model,
where the validation was also conducted in a simulation environment under 4
scenarios with different signal phases. In this chapter, an EAD system for EVs was
developed and evaluated in two different automation levels: manual driving with
assistance via human-machine interface (HMI) and partially automated longitudinal
control. Real-world driving data were collected for system evaluation, by com-
paring the energy and mobility performance to the baseline stage, i.e., manual
driving without any assistance.

2 Connected Eco-driving for EV

2.1 Vehicular Movements at Isolated Intersections

Basically, there are 4 different passing scenarios for a vehicle to travel through an
isolated signalized intersection. The velocity profiles of these 4 different scenarios
are shown by the green, blue, red, and yellow lines in Fig. 3. It is also noted that all
these trajectories have the same initial and final velocities, and same traveled dis-
tance (e.g., within the dedicated short range communication range). More specifi-
cally, these scenarios can be described as follows:

• Scenario 1 (cruise): the vehicle cruises through the intersection at a constant
speed (green line)

Fig. 3 Illustration of
different vehicle trajectories
traveling across an
intersection
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• Scenario 2 (speed-up): the vehicle speeds up to pass the intersection and then
gets back to the initial speed after the intersection (blue line)

• Scenario 3 (coast-down with stop): the vehicle slows down and stops at the
intersection (red line)

• Scenario 4 (coast-down without stop or glide): the vehicle slows down and
passes the intersection at a mid-range speed, and then speeds up to its initial
speed (yellow line)

For conventional gasoline vehicles, our previous research (Barth et al. 2011) has
shown that, even though all these scenarios cover the same distance with the
identical initial and final velocities, the associated fuel consumption and emissions
may vary greatly. Vehicle 1 (or Scenario 1) uses the least fuel since it does not need
to accelerate or make unnecessary deceleration. Vehicle 2 (or Scenario 2) consumes
more fuel than vehicle 1 since there is a slight acceleration and deceleration before
and after the intersection. Vehicle 3 (or Scenario 3) might use the most amount of
fuel since it has to decelerate to a full stop, idle for a certain period, and then
accelerate from a stop to a desired final speed. Finally, Vehicle 4’s (or Scenario 4’s)
fuel consumption may be comparable to Vehicle 2’s since both vehicles have a
slight speed up and slow down during their trips, although the acceleration occurs at
a relatively lower speed.

Therefore, when a gasoline vehicle is traveling through a signalized intersection,
its velocity profile could be optimized to achieve minimum fuel consumption for
each of the 4 scenarios. Similarly, the velocity profile of an EV can also be opti-
mized to achieve minimum energy consumption by taking into consideration of its
distinctive characteristics (e.g., regenerative braking). This is the basic idea behind
the vehicle trajectory planning algorithm described in the following.

2.2 Optimal Vehicle Trajectory Planning

In this study, a vehicle trajectory planning algorithm (VTPA) is designed for
generating an optimal velocity profile based on real-time SPaT information. Among
all the possible velocity profiles with which a vehicle can safely travel through an
intersection, the VTPA can choose the velocity profile that has minimum tractive
power requirements, in order to minimize energy consumption. The required
tractive power of a vehicle depends on the instantaneous velocity and acceleration
under the point mass assumption, as given by:

Ptract: ¼ AvþBv2 þCv3 þM 0:447aþ g sin hð Þv � 0:4471000 ð1Þ

where M is vehicle mass with appropriate inertial correction for rotating and
reciprocating parts (kg); v is instantaneous speed (miles/hour or mph); a is accel-
eration (mph/s); g is gravitational acceleration (9.81 meters/second2 or m/s2); and h
is road grade angle in degree. Here, the coefficients A;B; and C are associated with
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rolling resistance, speed-correction to rolling resistance, and aerodynamic drag,
respectively, which can be determined empirically.

As suggested in our previous work (U.S. Energy Information Administration
2015), there are numerous ways to accelerate or decelerate from one speed to
another, such as constant acceleration and deceleration rates, linear acceleration and
deceleration rates, and constant power rates. A family of piecewise
trigonometric-linear functions is selected as the target velocity profiles (for both
approach and departure portions), due to its mathematical tractability and
smoothness. For more details of the algorithm, please refer to (U.S. Energy
Information Administration 2015).

2.3 MPC-Based EAD System for Partially Automated
Driving

In this study, the designed VTPA is integrated with a model predictive control
(MPC) scheme to develop a partially automated EAD system for EVs (see Fig. 4).
For each optimization time horizon of the proposed system, the control objective is
to follow the pre-calculated optimal vehicle trajectory as close as possible. In
addition, the receding horizon property of MPC allows the system to better handle
unpredicted disturbances. The system diagram is provided in Fig. 4.

A nonlinear point mass model (longitudinal dynamics) (Kamal et al. 2013) is
adopted in this work:

_x ¼ v; ð2aÞ

_v ¼ � 1
M

CDqaAvv
2 � lg� ghþ uf ; ð2bÞ

where x is position of the vehicle; v is velocity; M is mass; h is road gradient
h ¼ 0 in this workð Þ; g is acceleration of gravity (i.e., 9:8 m=s2); uf is braking or
traction force per unit mass (i.e., the acceleration/deceleration generated from
vehicle propulsion); CD is drag coefficient; qa is air density; Av is frontal area of the

Fig. 4 The system diagram
of MPC-based EAD for EVs
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vehicle; and l is rolling friction coefficient. The values of CD; qa;Av; and l can be
found in (Kamal et al. 2013). When implementing MPC, Eq. (2a) needs to be
discretized as follows:

x t0 þ kþ 1ð ÞDtð Þ ¼ x t0 þ kDtð Þþ v t0 þ kDtð ÞDt; ð3aÞ

v t0 þ kþ 1ð ÞDtð Þ ¼ v t0 þ kDtð Þ
þ ð� 1

M
CDqaAvv t0 þ kDtð Þ2

� lg� ghþ uf t0 þ kDtð ÞÞDt;
ð3bÞ

where t0 is starting time, Dt is sampling period, and k is time step. For brevity, we
denote x t0 þ kDtð Þ as x kð Þ, v t0 þ kDtð Þ as v kð Þ, and uf t0 þ kDtð Þ as uf kð Þ in the
remaining parts of this work.

As stated above, the MPC is designed to follow the optimal vehicle trajectory.
Therefore, the objective function is defined as the sum of squared differences
between the modeled and reference velocities. We also consider box constraints for
the velocities, acceleration/deceleration and jerk values. In summary, the optimal
control problem based on MPC can be formulated as:

argminuf
Ptþ l

k¼t
v kð Þ � vr kð Þ½ �2;

subject to the discritized dynamics ð3Þ;
vm � v kð Þ� vM ;
uf kð Þ�� ��� uM ;
uf kþ 1ð Þ � uf kð Þ�� ��� duM ;

where t is current time; l is optimization horizon; v �ð Þ is velocity computed by the
MPC; vr �ð Þ is reference velocity; vm is minimum allowable speed, which is set to 0
in this work; vM is maximum allowable speed (usually the speed limit); uM is
maximum acceleration/deceleration constrained by the vehicle propulsion power;
and duM is the user-defined maximum jerk (mainly for driving comfort). We use
0.1 s as the time step and the control horizon of the MPC is set to 1 s, which means
that there are 10 time steps to optimize for each control horizon. Note that as the
dynamics in Eq. (3a) are nonlinear, the optimization problem at every time step of
the MPC is non-convex.

3 Experimental Design and Data Collection

The field data for evaluation were collected at the Turner-Fairbank Highway
Research Center (TFHRC) in McLean, Virginia. The driving test was conducted
from point “A” to point “B” with a length of 190 ft before the intersection and 126 ft
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after the intersection (see Fig. 5). In order to comprehensively investigate the
energy and mobility benefits of the proposed system for EVs, we evaluated the
system performance in 3 different stages as elaborated in the following:

• Stage I: “manual-uninformed” driving (MUD) as a baseline. In this stage, the
driver approached and traveled through the intersection in a normal fashion
without guidance or automation, stopping as needed without any guidance or
automated vehicle control.

• Stage II: “manual-HMI-assisted” driving (HMI). In this stage, the driver was
provided an enhanced dashboard which presented a recommended range of
driving speed overlaid on a speedometer (see Fig. 5). This information can assist
the driver to approach and depart the intersection in an environmentally friendly
manner while obeying the traffic signal. The advisory speed profiles were
generated using the VTPA described earlier.

• Stage III: “MPC-based (partially) automated” driving (MPC). No real-world
testing has been conducted in this stage due to the limited resources. Instead, we
evaluated the performance of the designed MPC-based longitudinal control
system in a simulation environment developed in Matlab using data collected
from the field testing. The optimal speed profile calculated by the VTPA was
used as the reference input to the MPC model. The results from this simulation
likely represent the upper bound of system performance.

To investigate different scenarios with respect to when a vehicle enters a sig-
nalized intersection, the field experiment was designed to have the test vehicle

Fig. 5 Graphic interface for “manual-HMI-assisted” driving
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approach the intersection at different time instances throughout the entire signal
cycle (i.e., every 5 s in the 60-s cycle). We call these different entering cases as
“entry case” in the rest of this chapter. Furthermore, the test vehicle approached the
intersection at different operating speeds (i.e., 20 and 25 mph). Therefore, a test
matrix was designed, consisting of the operating speed along the vertical axis, and
the entry case across the horizontal access. In this matrix, there are a total of 12
entry cases � 2 speed levels = 24 test cells. For the Stage I and Stage II experi-
ments, a total of four drivers were recruited to conduct test runs. Each driver
completed each of the test cells in the test matrix. Therefore, a total of 24 test
cells � 2 stages � 4 drivers = 192 test runs were conducted. For each test run, data
such as speed and distance to the stop bar were logged at 10 Hz and post-processed
to determine energy consumption and other performance measures. It is noted that a
hybrid vehicle (2012 Ford Escape) was used for the field study. The energy con-
sumption was estimated by the EV energy consumption model (see Sect. 4) under
the assumption that there would be no significant change in driving speed if an EV
were used.

4 Energy and Mobility Benefits Analysis

4.1 EV Energy Consumption Estimation Model

A microscopic EV energy consumption estimation model developed in (Zhang and
Yao 2015) was adopted to calculate the EV energy consumption based on the
collected vehicle speed profiles. This model is designed for 4 different EV driving
conditions: accelerating, decelerating, cruising and idling. The final model is pre-
sented as follows:

ECR ¼

e
ð
P3
i¼0

P3
j¼0

ðli;j�vi�a jÞÞ
a[ 0

e
ð
P3
i¼0

P3
j¼0

ðmi;j�vi�a jÞÞ
a\0

e
ð
P3
i¼0

ðni�viÞÞ
a ¼ 0; v 6¼ 0

const a ¼ 0; v ¼ 0

8>>>>>>>><
>>>>>>>>:

ð4Þ

where, ECR is energy consumption rate (Watt); li;j;mi;j; and ni are coefficients for
ECR at speed power index i (=0, 1, 2, 3) and acceleration power index j (=0, 1, 2,
3); v is instantaneous speed (km/h); a is instantaneous acceleration (m/s2); const is
the average energy consumption rate for idling. The coefficients in this model were
obtained through curve fitting of real-world driving data and can be found in
(Zhang and Yao 2015).
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4.2 Energy and Mobility Benefits Analysis

Using the data collected in the field test, the designed EAD system for EVs were
evaluated in terms of energy and motility benefits. The EV energy consumption
model described above was applied to calculate the energy consumption associated
with the collected vehicle trajectory data. Figure 6 indicates the change in passing
scenarios due to the application of the EAD system for one of the drivers (Driver
1). For example, in entry case 4, Driver 1 passed the intersection with passing
scenario 3 (which is the most energy intensive passing scenario) in both stages I and
II, but he would have done so with passing scenario 2 in stage III if the proposed
MPC-based longitudinal controller has been applied. It is observed that among the
12 entry cases of Driver 1, there are more scenario 3 in stage I than that in stage II
or stage III due to the lack of recommended driving speed provided to the driver. In
stage III, there would have been no passing scenario 3 with the aid of the
MPC-based longitudinal controller.

Figure 7a, b show the energy savings and time savings of stage II (“HMI vs.
MUD”) and stage III (“MPC vs. MUD”), as compared to stage I, for Driver 1.
Figure 6 shows clearly that most of the energy savings happen when the passing
scenarios changes from scenario 3 to scenario 2 or scenario 4 (i.e., entry cases 3, 4,
5, 6, and 7 shown in Fig. 6). The biggest energy saving (45.3%) occurs in entry
case 4 where the passing scenario changes from scenario 3 to scenario 2. The speed
profiles for this entry case are given in Fig. 8a. As shown in the figure, when given
the advisory speed profile through HMI, Driver 1 failed to follow it closely at the
beginning, resulting in a switch from passing scenario 2 to 3, and therefore, trivial
energy savings. For those entry cases where the three different stages are in the

Fig. 6 Changes in passing scenario in different stages (Driver 1)
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same passing scenarios, the energy savings are not as much and, for some entry
cases of stage 2, turn negative because of variations in real-world driving.

From themobility perspective, it is observed in Fig. 7b that most of the entry cases
in stage II and stage III result in minimal time savings or even small time penalties
except entry case 3 and entry case 4 of stage III where the passing scenario is 2. This
can be well explained by Fig. 8b where the speed profile in stage I shows a more
aggressive trend (i.e., exceeding the speed limit of 20 mph almost throughout) than
either of the other two stages. Although stages II and III have longer travel times in this
case, it is because of the uncharacteristic driving in stage 1 rather than the shortcoming
of the EAD system.

To further analyze the energy benefits of the designed EAD system, a scenario
change analysis was conducted using the driving data of all 4 drivers. The analysis
covers all the scenario changes that happened in the field experiment. As shown in
Table 1, most of the energy savings happen when the passing scenario changes
from scenario 3 to scenario 2 or scenario 4 with the assistance of the EAD system.
However, when the EAD system cannot change the passing scenario, there is not as
much energy saving (on average) or even a negative saving (for scenario 3 between
stage I and stage II) due to variations in real-world driving. This may suggest that
the information disseminated by the HMI is not effective enough in assisting the
manual driving and more comprehensive system design should be conducted to
take into consideration the human factors aspect. One possible way to improve the

Fig. 7 a Energy and time
savings for different entry
cases (Driver 1)—Energy
savings. b Energy and time
savings for different entry
cases (Driver 1)—Time
savings
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existing system is to disable the display of advisory speed when the system predicts
that there will be no change in the passing scenario.

Finally, the average energy and time savings across all entry cases and all drivers
were calculated and thus are provided in Table 2. It shows that the MPC based EAD
system can achieve an average of 21.9% electricity savings along with an average of
10.7% time savings (mostly contributed by entry case 3 and entry case 4), while the
driving assistance system with HMI achieves 12.1% energy savings on average but
with compromise of travel time (increase of 3.2%).
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Fig. 8 a Speed versus distance for entry case 4 (Driver 1). b Speed versus distance for entry case
9 (Driver 1)
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5 Conclusion

Due to the lack of evidence of how vehicle automation, vehicle connectivity could
influence the energy efficiency ofEVs, this chapter provides numerical evidence of the
energy synergy of combining vehicle connectivity, vehicle automation and vehicle
electrification, by designing, implementing and testing an eco-approach and departure
(EAD) system for EVs with real-world driving data. In this chapter, connected
eco-driving system for EVs is developed and then evaluated in two different stages:
driving assistance viaHMI and partially automated driving. The analyses show that an
average of 12 and 22% energy savings can be achieved in these two stages, respec-
tively, compared to the baseline stage (i.e., manual drivingwithout any assistance). To
the best of our knowledge, this is the first research that reports the energy benefits of
connected eco-driving system for EVs with real-world driving data at different
automation levels. Potential topics for future research include improving the system
performance by considering the human factors aspect in the design of the HMI and
conducting real-world experiments with actual EVs under a variety of scenarios.
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