
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
A-GWR: Fast and Accurate Geospatial Inference via Augmented Geographically Weighted 
Regression

Permalink
https://escholarship.org/uc/item/2s85s181

Author
Zare Shahneh, Mohammad Reza

Publication Date
2021

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
availalbe at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2s85s181
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA
RIVERSIDE

A-GWR: Fast and Accurate Geospatial Inference via Augmented Geographically
Weighted Regression

A Thesis submitted in partial satisfaction
of the requirements for the degree of

Master of Science

in

Computer Science

by

Mohammad Reza Zare Shahneh

June 2021

Thesis Committee:

Amr Magdy, Chairperson
Samet Oymak
Ahmed Eldawy



Copyright by
Mohammad Reza Zare Shahneh

2021



The Thesis of Mohammad Reza Zare Shahneh is approved:

Committee Chairperson

University of California, Riverside



Acknowledgments

First and foremost, I would like to thank my research supervisors, Prof. Magdy and Prof.

Oymak. Without their support and assistance in every step throughout the process, this

work would have never been accomplished. I would like to thank you both very much for

your support and understanding.

I would like to pay my special regards to my committee member, professor Ahmed Eldawy

whose work was, and is, an inspiration to me. My partner Saba – I simply couldn’t have

done this without you, thank you for making me believe in myself.

Most importantly, I must express my very profound gratitude to my parents and my brother

for providing me with unfailing support and continuous encouragement throughout my years

of study.

iv



ABSTRACT OF THE Thesis

A-GWR: Fast and Accurate Geospatial Inference via Augmented Geographically
Weighted Regression

by

Mohammad Reza Zare Shahneh

Master of Science, Graduate Program in Computer Science
University of California, Riverside, June 2021

Amr Magdy, Chairperson

Geographically Weighted Regression (GWR) is a seminal technique with rich ap-

plications in geospatial data analysis. However, it has critical drawbacks in the age of

big data in terms of expressiveness, i.e., predictive power, and scalability. This work pro-

poses Augmented GWR (A-GWR) that alleviates these drawbacks. A-GWR adapts a novel

technique, Stateless-MGWR or S-MGWR, that enriches the predictive power by allowing

distinct bandwidths for individual features of the training data. S-MGWR uses a cus-

tomized black-box optimization approach for discovering optimal bandwidths in a fast and

efficient way. In addition, A-GWR modularly combines S-MGWR or GWR with versatile

models such as random forest models. Moreover, A-GWR enables scalability by operating

on flexible partitions of the data that can adapt to the computational budget. Our extensive

evaluations on various real and synthetic datasets demonstrate the scalability and accuracy

benefits of the proposed techniques over state-of-the-art competitors.
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Chapter 1

Introduction

Regression is one of the most traditional and popular learning models in excessive

number of applications. In spatial applications, regression models of different types are used

for various use cases [4, 36, 34, 2, 27, 26, 40, 3, 10, 13, 35]. Geographically Weighted Re-

gression (GWR) is one of the most popular spatially-varying coefficient (SVC) models [11].

It has been widely adopted in many areas such as climate science [2], health and health care

[27], criminology [40], transportation analysis [3], house price modeling [10], data analysis

and visualization [13, 35]. GWR and its variations specifically are popular and have been

used recently for COVID-19 pandemic data in analyzing the spatio-temporal effects of its

driving factors to limits its spread worldwide [26]. SVC models are powerful alternatives

to most traditional methods of modeling data when dealing with spatial data. This is be-

cause in traditional methods, such as ordinary least squares, the role of location is often

neglected or is not properly captured. Despite its efficacy, GWR has two major limitations:

expressiveness and runtime scalablity. These limitations restricts utilizing GWR for mod-
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ern geospatial applications that involve diverse features and thousands to millions of data

points. We outline both limitations as follows:

(1) Expressiveness: GWR uses a single number, known as bandwidth, to control the

contribution of neighboring data around each location. This bandwidth plays the role

of the spatial influence parameter, so a point in a location L is only affected by other

points that are within L’s bandwidth but not beyond. GWR uses one bandwidth for all

features, which enforces same spatial impact for different features and reduces the expressive

power of the model. In reality, different features potentially have effects at different spatial

scales. For example, a feature that represents wind speed might be spatially correlated

at a state-level while another feature that expresses temperature is spatially correlated

at a county-level. Multiple works [25], [41], [19] attempted to overcome this issue with

providing a vector of bandwidths replacing the single bandwidth value, assigning a control

knob to each of the features. One of the recent notable advancements is Multiscale GWR

(MGWR) [12]. MGWR assigns different bandwidths for different features, thus, enabling

each parameter surface to operate on a different locality. MGWR uses the backfitting

algorithm for calibration involving many uni-variate GWR calibrations in each step. These

calibrations results in considerably higher run time than regular GWR. In addition, due

to the nature of backfitting, it is not possible to produce the same results only using the

learned bandwidth; the complete history of bandwidths throughout the process is required.

Besides the limited expressiveness of using a single bandwidth, GWR also ignores

nonlinear feature interactions beyond location. To overcome this, it is important to augment

GWR with other powerful supervised learning models, such as random forests and neural

2



networks. These models can effectively capture nonlinear feature interactions and has shown

superiority in various modern applications. While there have been attempts to combine

GWR with other learning methods [21], previous works are often optimized for a single

problem and do not provide a general method of using other learning models with GWR.

(2) Scalability is arguably a core bottleneck of the GWR, as training a GWR model has a

quadratic time complexity in terms of the training data size. Such quadratic growth implies

that scalability beyond a few tens of thousands examples becomes highly challenging. This

situation is exacerbated with MGWR-type approaches which require many iterations of

GWR subproblems to optimize bandwidths. For modern datasets, it is critical to develop

resource-aware algorithms which can adapt to the computational constraints and utilize

modern computational resources. Even though there have been some works on reducing

the run time of GWR[24] and MGWR [23], it is still a major runtime bottleneck to handle

large datasets.

Contributions: Towards addressing these challenges, this paper proposes Augmented Ge-

ographically Weighted Regression (A-GWR), a novel and scalable framework for applying

regression models to spatial data. A-GWR provides scalability for large spatial datasets

and benefits from the advantages of modern supervised learning techniques to boost both

accuracy and runtime efficiency. A-GWR goes two step beyond the existing GWR-related

literature. First, it innovates a stateless version of MGWR [12], called Stateless-MGWR (S-

MGWR). S-MGWR eliminates the need for the full history of bandwidth values to optimize

bandwidth of different features. This allows S-MGWR to use various out-of-the-box param-

eter optimization methods, and enables faster, more flexible, and more accurate parameter
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tuning. Second, A-GWR augments S-MGWR with a general-purpose model, e.g., random

forest model, to bring the benefits of popular supervised learning techniques into spatial

regression models. This enables spatial regression models to capture non-linear interaction

among different features, in addition to seamlessly integrates with modern machine learning

(ML) frameworks.

The flexibility of A-GWR framework allows performing regression on smaller

chunks of data to process large datasets with limited computational budgets. Therefore,

A-GWR significantly enhances the scalability and expressiveness of GWR via the following

novelties:

• We propose S-MGWR, a new adaptation of the MGWR approach to perform geo-

graphically weighted regression where each feature has its own spatial scale. S-MGWR

is able to adjust each set of bandwidths independently rather than the sequential na-

ture of MGWR, making it an ideal model to be compatible with black-box optimiza-

tion methods.

• We design a customized black-box optimization algorithm to accelerate the discovery

of optimal set of feature bandwidths for S-MGWR.

• We propose a framework for merging spatial regression algorithms such as GWR and

S-MGWR with fast ML models via ensemble learning to improve accuracy.

• We propose a divide-and-conquer technique that splits the data and operates on its

flexible partitions so as to adapt to the computational budget.

• We provide extensive experimental evaluation that shows superiority of our techniques
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in both accuracy and runtime with up to 14.4 times faster runtime.

The remainder of the paper is organized as follows: In Chapter 3, we review the

basics of the GWR and MGWR and their drawbacks in more detail. Chapter 4 introduces

S-MGWR and Chapter 5 introduces our ensemble framework with general ML models. The

experiments and performance analysis are presented in Chapter 7. In the last section, we

conclude and discuss potential future directions.
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Chapter 2

Related Work

This section outlines our related work that is mainly the literature of geographically

weighted regression (GWR) [11] and its variations. In GWR, regression coefficients vary

across space to capture the spatial non-stationarity aspect of the data. However, GWR

has limitations in both computational scalablity (quadratic complexity) and expressiveness

(using same spatial scale for all features). To overcome these limitations, several efforts

have been made. We classify this literature into three main categories as follows.

Variable spatial scale models. To improve the GWR expressiveness over datasets with

varying spatial scales for different features, different models have been proposed in [20, 25,

41, 19, 12]. All of these methods use a vector of bandwidths to express a different spatial

scale for each feature instead of a single bandwidth value. To find that vector, they use an

iterative method that adjusts the state of coefficients until a convergence.

Non-linear models. Combining GWR weighting schemes with Neural Networks have been

used to capture the non-linear relation between data points [14, 7]. Along with predicting
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dependant variables, GWR is also used for visualization of the data. The GWR is a popular

visualization tool to explore patterns of a data set and acquire valuable information, such as

locality of features, for further data analysis [42]. Given that Neural Networks, in general,

cannot be properly visualized, Combining GWR with Neural Networks affects the visual-

ization aspect of GWR. Another approach to capture the non-linearity is to use non-linear

kernels on data and extract features and then use a GWR on extracted features [21]. One

downside of this approach is that it requires finding a good kernel which can be challenging.

Parallel and grid models. To improve the runtime of GWR, one way is to parallelize the

process [24, 23]. Since parallelization does not reduce the time complexity, even parallelized

versions of GWR are bounded to comparably small data sets. Another approach is to

develop grid infrastructures. In this approach, the data points are divided to different

sections and different GWR model is trained over these sections [9, 16].

Distinguished from all existing work, A-GWR is the first model that simultane-

ously enables using variable spatial scales, capturing non-linear feature interactions with

customizable general-purpose models, and using both parallelization and grid-based mod-

eling to support large datasets. First, our proposed Stateless-MGWR (S-MGWR) model

trains a stateless model to find a vector of bandwidths. This enables better computational

scalability for variable spatial scales models, while maintaining the high model expressive-

ness. Second, our A-GWR multi-stage framework enable combining GWR variants with

any general-purpose learning models in a way that effectively visualizes the locality while

capturing the non-linear relations between features. The ability of A-GWR to adapt to var-

ious spatial and general models makes it fully customizable for use with a problem-specific
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kernel or a completely general method. Third, A-GWR framework enables using both par-

allelization and grid-based modeling. It uses grids to handle large data by splitting data into

multiple partitions, each works within a spatial locality. Grid system in A-GWR is general

and not limited to equal-sized grids, but uses various grid split criteria including variable

cells and k-means clusters. In addition, the bandwidth search method of Stateless-MGWR,

which is the bottleneck of the model, is also parallelizable. Having all these features, A-

GWR outperforms all existing models as a generic model that support various applications

and use cases with high computational scalability and model expressiveness.

8



Chapter 3

Preliminaries

This section introduces the preliminaries of GWR [11] and MGWR [12].

3.1 GWR

In GWR [11], the parameters can vary by location. Assume that each observation

i is in the location (ui, vi). Then the GWR model is

yi =
k∑

j=0

βj(ui, vi)xi,j + εi.

βj(ui, vi) can be computed using the following equation

β̂(ui, vi) = [XTWiX]−1XTWiy.

Wi in this equation is a diagonal matrix of weights assigned to each data point based on

its distance to the i-th observation. The main idea is to assign more weight to data points
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closer to i-th observation as close data points tend to share more similarities. Matrix Wi

is calculated based on a specified kernel function. This kernel function can be adjusted

using an input variable. This variable, known as bandwidth, is determined using a number

of trials. In each trial, a bandwidth is selected and then the kernel function uses the

bandwidth to construct the weights. GWR then uses these weights to solve the equation.

The bandwidth that produces the least error is selected as the trained bandwidth value and

is used during the prediction. The problem with GWR is that it bounds the locality of

all features to a single bandwidth. That is, all the features are assumed to have the same

locality which limits the flexibility of GWR in describing real-world data sets.

3.2 MGWR

MGWR [12] tries to address the the single locality issue by introducing a band-

width for each feature. The MGWR is formulated under Generalized Additive Model

(GAM) where:

y =
k∑

j=0

fj + ε (3.1)

Where fj is a smooth function estimated with covariate-specific bandwidths and

the ε is the i.i.d error. MGWR uses the backfitting algorithm to determine the fj . To

compute the functions fi, the backfitting algorithm interpolates the function in data points’

locations. For the initial state, all the coefficients are assigned with an initial value. Then,

MGWR at the first iteration, fixes all the functions fj 6=1 and considers them as constants,

then, it solves a uni-variate GWR for f1 and finds the optimum bandwidth for it. Using

this optimal bandwidth, the MGWR updates its state by the new coefficients computed
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for function f1 interpolation. For the second iteration, all the values of updated state,

except for the interpolated values of second function f2, are considered as constants. This

procedure is then repeated for all the different features. After adjusting all the features,

MGWR starts to readjust fi with the updated state. The process continues until a stopping

criteria is reached.

MGWR allows each feature to have its own spatial scale, represented by a separate

bandwidth. Due to the flexibility of locality for each feature, MGWR fits the training data

well and computes a good estimate over the coefficients of training data which makes it

a good tool for data analysis. However, the backfitting algorithm introduces a number of

problems. The first problem in MGWR is its running time. It solves a GWR for each feature

until convergence. The number of iterations for convergence can be large and therefore the

run time of the program can be very high. After computing a set of bandwidths, MGWR

cannot produce the same result using only that set of bandwidths. During the training, each

feature is adjusted using the updated state. This means that for creating the same results,

a complete history of all the intermediate bandwidths is required. Due to this problem,

MGWR is bound to use iterative methods and the bandwidth search method cannot be

parallelized.
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Chapter 4

Stateless-MGWR

In this section, we propose Stateless-MGWR (S-MGWR), a stateless spatial model

that assigns different localities to different features. S-MGWR is able to fit a set of band-

widths directly, hence, any search algorithm, independent of being parallel or linear, can

be used to find the locality of each feature. S-MGWR can fit a model for a given vector of

bandwidths, using this ability, a search algorithm can take repeated steps. In each step, a

vector of bandwidths is generated and based on the validation error over the trained model,

the search algorithm can decide its next step. This is in contrast to MGWR where the

bandwidth search happens one feature at the time and the trained model depends both on

the bandwidth and the previous state of the model.

Algorithm 4.1 gives the pseudo-code for the training phase of S-MGWR. S-MGWR

initializes the model values with the results of a GWR model fitted to the data. These values

are stored in initials and are not re-computed again. Afterwards, starting from the initials

values, it proceeds to adjust the model based on the bandwidths. To adjust the model, S-
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Figure 4.1: S-MGWR Training Phase Algorithm

Algorithm 1 (S-MGWR Training Phase)

Input: L, Training Data Dt, Validation Data Dv

Output: A vector of k bandwidths

1. initials = GWR(Dt ∪ Dv)
2. bw = initials.bandwidth
3. //compute error is detailed in Algorithm 4.2
4. error = compute error(3, bw, Dt, Dv)
5. While number of iterations < L

6. next bw = generate bandwidth(bw, error)
7. next error = compute error(3, next bw, Dt, Dv)
8. if next error < error

9. error = next error
10. bw = next bw

11. return bw

MGWR adjusts features based on the vector of bandwidths one at a time. Starting from the

first feature, rest of the coefficients are fixed as constants and updates the dependent values

accordingly. A weighted least squares computes the adjusted coefficients of the feature

and the algorithm proceeds to the next feature. For each set of bandwidths generated by

the bandwidth search algorithm, using generate bandwidth subroutine, S-MGWR adjusts

the model based on the bandwidths and computes a validation error based on the adjusted

model. The set of bandwidths with minimum validation error is then selected as the trained

bandwidths for the S-MGWR model. This process is repeated until a user-defined number

of iterations are performed. In each cycle of error computation, we set number of iterations

to three as this is enough experimentally to adjust coefficients for the best set of bandwidths

in this cycle. However, stopping criteria of error computation could also depend on a certain

13



error difference threshold or a combination of them.

Algorithm 4.2 details compute error subroutine. The subroutine takes two datasets

of points, training and validation data, each point consists of a triple (X, y, coordinates),

where X is the features, y is the dependant variable, and coordinates are the location

coordinates. Line 2 initializes the coefficients to the initial coefficients values of GWR as

computed in Algorithm 4.1. Then, for a user-defined number of iterations, it adjusts co-

efficients of all features one by one using each observation in the input training data. In

particular, for each regression point i, get weights subroutine computes the weights of other

data point based on its distance to point i. In the next lines, X:,j is the j-th column of X,

X:,j̄(coefficients:, j̄) refers to all the values in X (coefficients) except for the values in column

j, and the ∗ operator is the sum of the rows of the Hadamard product:

c = A ∗B ⇒ ci =
∑
j

Ai,jBi,j . (4.1)

The subroutine WLS returns the value of weighted least squares for the features

vector and the dependent vector using the weights wi. The predict subroutine, that is called

in Algorithm 4.2 line 2, is the same subroutine that is used to predict new observation. We

detail the prediction procedure in Section 4.3.

S-MGWR and MGWR share the core idea of using distinct bandwidths for different

features to enable multiple spatial scales. Also, both techniques adjust the model one

feature at a time using a variation of weighted least squares. However, there are significant

differences between the two models. MGWR uses back-fitting to adjust the coefficients

14



Figure 4.2: Compute Error Algorithm

Algorithm 2 (compute error)

Input: Tc, bandwidth vector bw, Training Data Dt, Validation Data Dv

Output: validation error
//each d ∈ Dt or Dv consists of (X, y, coordinates)

1. //initials computed in Algorithm 4.1
2. coefficients = initials.coefficients
3. while number of iterations ¡ Tc

4. foreach feature j
5. foreach observation i in Dt

6. wi = get weights(coordinatesi, bwj)
7. x’ = X:, j

8. y’ = y - (Xj̄ * coefficientj̄
T)

9. coefficientsi, j = WLS(x’, y’, wi)
10. ŷ = predict(bw, coefficients, Dv)
11. return residual error of ŷ

which means for every iteration and every feature, MGWR searches for the best bandwidth

for that specific feature and then updates its state based on the trained coefficients calculated

from the bandwidth. For example, based on the initial values, MGWR finds b1 as the

best bandwidth describing the first feature. Then, based on this it will update all the

other features. When MGWR tries to readjust the first feature, it will use the updated

coefficients which were computed based on b1. Choosing a different bandwidth in first

iteration can greatly impact the second iteration and the final result. This means, to

produce the same result as training MGWR needs the complete history of the bandwidths

to adjust the model. Generating the complete history where the length of the sequence

is not known extends the search space by orders of magnitude making it very difficult to

use a black-box optimization algorithm. This problem does not exist in S-MGWR where
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Figure 4.3: Adaptive bandwidth illustration.

the bandwidths adjust the model independently from the values of past bandwidths. In

addition to the flexibility to use various optimization algorithms, it also enables S-MGWR

to search multiple bandwidths simultaneously in parallel. Such parallelization facilitates

running more iterations to find the set of bandwidth that best describes the data. So, it

boosts both runtime scalability and accuracy of the model without compromising the model

expressiveness.

The remainder of this section detail different part of the S-MGWR technique.

Section 4.1 explains the concepts of the weight kernel used to compute the weights of data

points in Algorithm 4.2. Section 4.2 discusses different strategies to explore the bandwidth

space to find the optimal set of bandwidths. Section 4.3 explains the prediction procedure

for the validation as well as the test data. To further improve the runtime performance of

S-MGWR, we use a Least Recently Used (LRU) cache for the computed weights that is

described in Section 4.4.
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4.1 Spatial Weighting Scheme

The weight function can be any function that assigns weights to the data points

based on their distance to the regression point. The following equation is an example of

computing weight of point k based on regression point i and bandwidth of feature j using

a Gaussian weight function.

wi[k] = exp[−1

2
(
di,k
bj

)2]. (4.2)

In Equation 4.2, di,k is the spatial distance between data point i and regression point k. bj

is computed using the bandwidth parameter related to the feature j. The bandwidth value

for each feature helps indicate how local or global the impact of that feature is. We use

adaptive bandwidths in S-MGWR. For each bandwidth b for feature j and each regression

point i, the value bj (Equation 4.2) is computed based on the distance of b nearest neighbors

of data point i. This allows the weighting scheme to adjust the weight kernel based on how

dense or sparse the neighborhood of the regression point is. Figure 4.3 is an illustration of

fixed and adaptive kernels. In Figure 4.3, the dark blue points represent the data points and

the red points represent the regression points. The left plane shows a fixed kernel where for

each regression point the same kernel is applied. Either the locality is sparse or dense with

data points, the same influence range is used. The plane on the right represents the adaptive

kernel where different kernel functions are applied for points in dense or sparse areas. Areas

that are sparse and have less data points use larger influence ranges to capture enough

nearby points. On the contrary, areas that are dense with data points use smaller influence

ranges as they will be enough to capture nearby points. In both cases, the weight for distant

points would be very small. Therefore, in order to improve the speed, we introduced a cutoff
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distance to our algorithm. For each bj and cutoff number c, any point with a distance more

than c × bj from the observation point j is not considered and has a weight of zero. The

example kernel of Equation 4.2 will then change to:

wi[k] =


exp[−1

2(
di,k
bj

)2] di,k ≤ bj × c

0 otherwise

(4.3)

Cutoff threshold reduces the search space by allowing the algorithm to omit the data points

that are far enough from the regression point.

4.2 Bandwidth Search Strategies

The bandwidth should reflect the rate that regression weights decay around a

certain location. Using a sensible weighting function, if the bandwidth is small, weights

decrease quickly as the distance between a data point and the regression point increases.

On the other hand, using big bandwidths should create a smoother surface and the weights

would decline slowly as the distance increases. S-MGWR uses adaptive bandwidths. That

means S-MGWR uses the number of neighbors as bandwidths and computes the locality

based on the distance of its neighbors. Adaptive bandwidth gives S-MGWR the ability to

adjust the locality based on the sparsity of the neighborhood around an observation.

The bandwidth search space is extremely large. If n is the number of observations

and m is the number of features, then the bandwidth space size is nm. Thus, a smart

algorithm is necessary to explore the huge search space effectively. We have implemented
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Hyperband [22], Simulated Annealing, Bayesian Optimization[37], simultaneous perturba-

tion stochastic approximation (SPSA) [38], and Hill Climbing to search for the best set of

bandwidths. We also created a combination of these algorithms to benefit from the strength

of each algorithm. Our approach uses a combination of SPSA, Bayesian Optimization, and

hill climbing methods. This combination is founded on studying the effect of each method

on error improvement over time and its speed of convergence to the best error. SPSA

method is used to explore the space as broadly as possible in a short time frame. After

that, the Bayesian Optimization is performed with a slight modification that the random

states generated are in a close neighborhood of the previous state. This part helps to ex-

plore the space around the SPSA’s result. Finally, to find a local optima, our algorithm

performs the Hill Climbing search.

4.2.1 Implementation Details

In this section, the bandwidth search methods are explained in more detail. �

Hyperband: Hyperband [22] is an extension of successive halving algorithms [18] where

a number of different bandwidths are generated and then evaluated using a fraction of

training data. Then the top performing combinations are selected and evaluated using a

bigger fraction of training data. This methods takes three parameters, starting configs,

min budget, and eta. The starting configs determines the number of different combinations

to start from. The min budget determines the minimum number of points for evaluating

each set of bandwidths. The eta is the eta value explained in [22].

� Simulated Annealing: Simulated annealing is a well-known probabilistic opti-
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mization algorithm that simulates temperature-like heating and cooling moves in the search

space. It takes parameters T, α, steps, updates, µ, and σ. T and α determine the temper-

ature. The neighboring states are generated based on a normal distribution N(µ, σ). For

each state, the number steps is reduced by one. If the new state is better than the best

state found so far, the number updates is reduced by one. The algorithm returns the best

value when steps or updates reach to zero.

� Hill Climbing: Starting from an arbitrary solution, at each iteration of the Hill

Climbing method only one of the features’ bandwidth is changed. If the new combination

has a better validation result, it is replaced as the answer so far. This method is very

similar to the Simulated Annealing method. The only difference is in the way of generating

neighboring states.

� Bayesian Optimization: It is a black-box optimization algorithm. It creates a

probabilistic model (called surrogate model) of the objective function; with each new point,

the surrogate model is updated. To pick a new point for evaluating, an acquisition function

is used. At each step, the next point is determined by the acquisition function and after

evaluating that point the model is updated. We use the BayesianOptimization library for

python [28] and pass the random count and iter count to it. When the is local variable is

true, only values in the locality range of best answer so far is considered.

� SPSA: SPSA is a stochastic approximation algorithm that is capable of finding

the global optimum. At each step, it approximates the gradient by measuring the objective

function at only two points. Then, it moves in the direction that minimizes the error. The

fact that SPSA is independent of the dimension of the features makes it a great choice for
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our application where data have more than one feature and computing the gradient for all

these takes a lot of time. SPSA takes three parameters, alpha decay, gamma decay, and

steps.

� Combined Search Strategy: Our approach uses a combination of all the

methods discussed. Hyperband is used to explore the space as broadly as possible in a short

time frame. After that, the simulated annealing is performed with a slight modification that

the random states generated are in a close neighborhood of the previous state. This part

helps to explore the space around the Hyperband’s result. Finally, to find a local optima, our

algorithm performs the Hill Climbing search. Combining different bandwidth search method

is founded by analyzing the error improvement of each method over time. Figure 4.4 shows

the error reduction for different methods over 100 seconds of time. The x-axis represents a

timeline, from t = 0 to t = 100, and the y-axis represents the error value. The figure shows

GWR as the fixed upper bound (at error 1.15x10−2) and MGWR as the fixed lower bound

(at error 0.18x10−2), and every method starts with error close to GWR and converges to

an error close to MGWR. It is noticeable that different methods converge to the best error

(MGWR error) at different speeds. This guides the combined search strategy to use the

faster convergence methods first.

4.3 Prediction Procedure

To predict the dependant value for a new sample, similar to the train process,

the algorithm computes the coefficients of this sample. Algorithm 4.5 shows the prediction

procedure. For each feature of each new sample, the weight matrix is generated based on
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Figure 4.4: Timeline of error reduction for different bandwidth search methods.

the location of the new sample and the training data. After computing the weight matrix, a

weighted least squares will compute the coefficient which is used to compute the predicted

dependant value of the sample.

4.4 Accelerating Weight Computation

For each bandwidth value, a weight vector with size n is computed for each ob-

servation point i where n is the number of training data points. Thus, for each bandwidth,

we can store all the weights of all observations on a n × n matrix. Since S-MGWR uses

adaptive bandwidth, the bandwidth can only be a positive integer number smaller than n.

22



Figure 4.5: Predict Algorithm

Algorithm 3 (predict Procedure)

Input: bandwidth vector bw, trained coefficients, dataset D
Output: prediction values

1. m = |D|
2. k = number of features of d ∈ D
3. X = m× k matrix of feature values of D
4. coords = m× 2 matrix of location coordinates of D
5. coefficients = [0] m× k

6. foreach observation i in D
7. foreach feature j

8. wi = get weights(coordsi, bwj)
9. x’ = X:, j

10. y’ = y - (Xj̄ * trained coefficientj̄
T)

11. coefficients = WLS(x’, y’, wi)
12. predictions = coefficient*X
13. return predictions

23



Therefore, all the possible weights would require O(n3) space. Since most generated band-

widths have at least one value in common with previous bandwidths, storing the values of

previously computed weights can be helpful to reduce the run time of S-MGWR. In our

implementation, we are using a cache with least recently used (LRU) replacement policy. If

the cache stores c (a constant number) bandwidths at a time, then the memory usage will

be O(c × n2) → O(n2). The impact of cache is noticeable, especially when using the Hill

climbing algorithm for the bandwidth search. In Hill climbing, only one of the bandwidths

changes each time. Hence, the rest of the weights can be read from the cache. We evaluate

the caching impact in our experimental evaluation.
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Chapter 5

Augmented GWR (A-GWR)

S-MGWR provides a multi-bandwidth spatial regression model that does not need

a full history of bandwidth values for computations. Hence, it has eliminated the depen-

dency problem among the consecutive iterations of adjusting the model parameters. To

make use of such significant advancement in improving the accuracy and reducing the run-

time, we propose augmented GWR (A-GWR) model. A-GWR divides data into different

sections. Then, a combination of S-MGWR and a general-purpose supervised learning

model is used for each section. S-MGWR, as a spatial model, captures the spatial relation-

ships of the data and the general model captures nonlinear feature interactions which are

not necessarily dependent on the location. To combine both models, we use two different

methods, namely, pipeline and ensemble, that apply models in a different order. A great

advantage of this framework is that it can be generalized to other spatial regression models

as well. This gives flexibility for spatial applications to choose the best models accord-

ing to their needs and data characteristics. This is also applicable for the general-purpose
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supervised model, that can be a simple least-squares algorithm or a complex neural net-

work. However, for specificity, and without loss of generality, we discuss A-GWR in the

rest of this section using S-MGWR as a spatial model and Random Forest as a general-

purpose learning model. The rest of the section discusses data splits, model integration,

and computational complexity.

5.1 Data Splitting

In order to divide the data, we use two methods that can be applied to different

applications.

• Grid Splitting: Dividing data into grid cells is a popular method which is also used in

[9, 16]. In the grid splitting, the data is divided into grid cells where the number of rows

and columns are defined by the user. The grid either divides the space into equal-height

cells, by dividing the space to equal height rows and then dividing the rows to equal width

sections, as in Figure 5.1a. Another grid option is to divide the space into varying size cell

where each of them contains the same number of training data points, as in Figure 5.1b. For

a new point, its corresponding grid cell is located. Then, the result of the model associated

with that grid cell is reported.

• Cluster Splitting: Using randomly generated k-means centers, we perform k-means

clustering for training data points. Each cluster represents a section of data containing all

the training data points in that cluster. For a new point, after finding its designated cluster,

the result of the model associated with that cluster is reported. An example of this method
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(a) Equal Height Grid (b) Equal Count Grid (c) k-means Splitting

Figure 5.1: Splitting a sample data into eight sections using grid and k-means methods.

is shown in Figure 5.1c.

Using k-means and grid splitting methods focus more on preserving the spatial

neighborhood, which is more in accordance with Tobler’s first law of geography, i.e., “every-

thing is related to everything else, but near things are more related than distant things” [39].

Our empirical evaluation has confirmed the advantage of these splitting methods.

5.2 Model Integration

This section discusses integrating the two models employed by A-GWR: S-MGWR

and Random Forest. We apply these to different data sections using two different orders.

The first order, ensemble, employs the Random Forest model first, while the second order,

pipeline, employs S-MGWR first. We outline each of them below.

• Ensemble (general-purpose model first): In this method, for each section i, first, we

train a Random Forest (RF) model on all the training data except for the data in section i.

Then, using the trained model, we predict dependent values for the data in section i. Since

this data was not in the training process, the model does not overfit the data in section i.

27



Figure 5.2: Ensemble model integration order (general-purpose model first).

Using the true dependent values and the predicted ones, we compute the residual errors.

In the last step, an S-MGWR model is fitted to the data and the residuals. This model

captures the spatial relation between data that the RF model fails to capture. In addition,

due to running the spatial model on a fraction of data, the runtime is improved.

Figure 5.2 demonstrates the ensemble process on C sections of data. For Section i,

first, a random forest model is trained over all the data in the data set except for data in

section i to create model i. Then, the data of Section i is passed to Model i to compute the

residual errors. These residuals are then passed to the spatial S-MGWR model to capture

the spatial relativity of the data in each section. For predicting a new sample, if the data

splitting method is k-means or grid data, then the new sample is homed into a corresponding

data section. Afterward, the data is passed to the corresponding S-MGWR and RF models

of that section. The result is the sum of the two outputs. Another option is to run through

all the models and then combine the result based on the distance of each section to the

point. This can be measured by the distance of the grid center or cluster center of that

section to the point.
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Figure 5.3: Pipeline model integration order (spatial model first).

• Pipeline (spatial model first): In this method, we feed the training data to the

spatial S-MGWR model first. Then, the residual data computed from the spatial model

is passed to the RF model. The prediction is the same as the ensemble method. After

determining the section, the sum of results from both spatial and fast models is reported

as the result. Figure 5.3 shows the pipeline method on C data sections. For each section,

a spatial model is trained and then the residual errors are passed to the RF model. The

spatial model might overfit the data preventing the RF model to completely capture the

global relations between data. However, when using models such as S-MGWR where the

base is using less complex methods such as least squares, this is not the issue and the

pipeline method provides great improvements on accuracy.
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Chapter 6

Computational Complexity

6.1 Time Complexity

Assuming a training dataset of N observations and k features, in Algorithm 4.1,

we perform L iterations, each iteration performs bandwidth for the k features (in O(k)) and

residual error computation, which is more expensive than the bandwidth search as detailed

in Algorithm 4.2. So, the overall complexity is L multiplied by the cost of error computation.

The error computation involve T iterations, each goes over each feature and each training

observation to get weights and compute coefficients. According to Algorithm 4.2, this

performs total of O(TkN) iterations, each computes weights in O(N) (Line 2), which gives

error computation complexity of O(TkN2). So, the overall complexity of the training phase

is O(LTkN2).

A-GWR breaks data into different sections, each section contains a constant num-

ber of observations C, so it operates on N
C sections. At each section, the training cost

is O(LTkC2). For all sections, the overall complexity is O(LTkC2) × N
C = O(LTkCN).
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Having L, T, and C as constants, then the overall complexity is O(kN).

This complexity analysis does not consider parallel processing. However, our tech-

niques are parallelizable as different sections are independent and can be trained in parallel.

Also, the bandwidth search process is parallelizable, thanks to the stateless nature of S-

MGWR, so it is possible to independently validate each set of bandwidths.

6.2 Space Complexity

For each S-MGWR model, A cache size with a capacity of C different bandwidth

can be used, in that case the space required by the S-MGWR is C × N × N to hold the

weight values and N × k to hold the coefficients. For the ensemble learning, if we have

S sections, we need to store S random forest model and S S-MGWR model. The overall

space of A-GWR is

O(S × Random forest space(
N

S
) +

N

S
× S(C × S2))

. For pipeline model only one random forest is used:

O(Random forest space(N) +
N

S
× S(×C × S2))
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Chapter 7

Experimental Evaluation

We have implemented A-GWR using Python programming language and we use

PySAL library [33] modules to run MGWR and GWR techniques with Gaussian kernel and

CV criterion for the search method. For Random Forest (RF) learning model, we use scikit-

learn Python library with 60 as the number of estimators and default values for the rest of

model parameters. All techniques run on an Intel(R) Xenon Silver 4214 machine with CPU

@ 2.20GHz and 32 GB of RAM. We evaluate the performance using total of eight different

datasets, six real datasets and two synthetic datasets. Unless mentioned otherwise, by

default each data section contains 1000 thousands data points. Our performance measures

include training runtime and prediction accuracy. Prediction accuracy are measured on the

test data using [1− (R2)] error measure that is defined as follows:

1−R2 =

∑
i(yi − ŷi)2∑
i(yi − ȳ)2

Evaluation datasets. We use eight datasets, six real datasets and two synthetic datasets.
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Four out of the six real datasets are obtained from PySAL library [33], and these datasets

are the standard ones that are used to evaluate various variations of GWR and MGWR

techniques [29, 30, 17] . Below is the description of the different datasets.

• PySAL datasets: We use four of the datasets provided in the PySAL library, origi-

nally hosted by the Spatial Analysis Research Center of the Arizona State University that

provided GWR and MGWR software. The datasets represent the socio-economic variables

for counties of Georgia, Tokyo Mortality data, the clearwater dataset, and Prenzlauer Berg

neighborhood AirBnB data [8]. The dataset sizes are 159, 262, 239, and 2203 respectively.

Due to small size of these standard datasets, we solicited the other two large datasets that

are described below.

• New York City Airbnb Open Data: This dataset, denoted as NYCAirBnb, is Airbnb

data for the New York city [5]. After removing rows with missing data, we use the room

type, minimum nights that a guest can stay, number of reviews, reviews per month, amount

of listing per host, and the availability of the unit along with the location to predict the

listing price. The price in this dataset is skewed and therefore we use the logarithm of the

price. The dataset has 38782 listings after clean up.

• House Sales in King County, USA: This dataset, denoted as kingHousePrices, has

the house sale prices for King County [15]. After removing instances with missing values, we

select number of bedrooms, number of bathrooms, square footage of the apartments interior

living space, number of floors, house condition and grade, the year built, and the location

as our features to predict the price of the house. In total, the dataset has 18708 house sales.
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Figure 7.1: Illustration of the covariate functions. β0 to β4 are displayed from left to right,
respectively

• Synthetic Dataset 1: We create a synthetic dataset, denoted as synthData1, of

1296 points that is very close to what is described in MGWR [12]. We define five dif-

ferent surfaces for covariates and randomly generate the values for features and compute

the dependent values based on them. The synthetic data set is defined by the pair(l, b)

where l is the size of the grid and 1 ≤ b ≤ 5 is the number of surface functions to use. We

define the dependant values using the following equation:

yi = εi + β0(ui, vi) +
b−1∑
j=1

βj(ui, vi)xi,j (7.1)

Where ui and vi are the horizontal and vertical location of each point in the grid, 0 ≤

u, v < l. The covariate surface functions (β0 to β4) are defined in Equation 7.2 trough
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Equation 7.6. Figure 7.1 is an illustration of the surface functions.

β0 = 3 (7.2)
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1

12
(u+ v) (7.3)
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For all the points in an l× l grid, we generate x1 to xb randomly from a normal distribution

N(0, 1) and we combine that with the error term εi which is randomly generated from a

normal distribution N(0, 0.5).

• Synthetic Dataset 2: We created a second synthetic dataset, denoted as synthData2,

of 1600 points that is similar in structure to the first synthetic data set. However, one feature

is developed in a way that cannot be computed with a simple regression over neighbor data

points. The rationale of this dataset is to test different techniques on capturing nonlinear

interactions among features (as we will evaluate in Table 7.5 later in the section). The

dependant value for this data set is computed as:

yi = εi + β0(ui, vi) +
3∑

j=1

βj(ui, vi)xi,j + 15x2
i,jβ4(ui, vi).
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Method 1 - R2 (×10−3)

Hyperband 3.475
SPSA 2.570
Simulated Annealing 2.535
Bayesian Optimization 2.347
Hill Climbing 2.023
Fibonacci Hill Climbing 2.022
Combined Search 1.955

Table 7.1: Error value of different bandwidth search methods

7.1 Model Tuning

We performed a series of experiments to compare different bandwidth search meth-

ods and tune the data section size and show their impact on accuracy and run time.

Bandwidth search method. To choose the best strategy to search the band-

width space, we applied each method over the synthData1 dataset for the same amount

of time and compared the results. Due to the random nature of the algorithms, we per-

formed each experiment ten times and reported the average error value in Table 7.1. The

Fibonacci versions are similar to the ordinary versions but the bandwidths are forced to

be Fibonacci values. Using Fibonacci numbers limits the searching space and increases the

cache hits. The combined search strategy uses Hyperband, Simulated Annealing, and Hill

Climbing enabling it to search globally and locally for the optimum set of bandwidths. As

shown in Table 7.1, the combined search strategy gives the lowest error compared to other

strategies. This shows the superiority of our proposed combined search strategy. Therefore,

this strategy is used as the default strategy for bandwidth search in other experiments.

Data section size. In A-GWR, one of the most important factors that affect

accuracy and runtime is how many data sections the training data is divided to, and hence

36



(a) Runtime based on different number of
sections

(b) R2 error for different section sizes

Figure 7.2: Accuracy and runtime over synthData1 and kingHousePrices datasets

the size of each data section. There is a trade-off between runtime and accuracy. If there

are too many sections, each section contains a few data points and cannot necessarily

capture the relations among the data points which reduces the accuracy. If each section

has too many points, the runtime will be slow. Figure 7.2 shows the result of different

division sizes over two different datasets, synthData1 and kingHousePrices. We use GWR

as the spatial module and Random Forest (RF) as the general learning module. Figure 7.2b

represents the spatial grid with error value in each grid cell is color-coded according to the

associated legend. The figure shows that by dividing the data to more sections, the runtime

of the pipeline integration method will drop (Figure 7.2a) and error rate will generally

increase (Figure 7.2b). The pipeline integration method relies on the spatial module as the

first model and when the section size is too small, the spatial module cannot capture the

relation between data points. For the ensemble integration method, the runtime increases

after a certain points (10 data sections in Figure 7.2a), this is due to the fact that the

increase rate of runtime of Random Forest model is higher than the decrease rate in the run
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time of GWR. As the number of sections increases, the training data fed to the Random

Forest model increases. Since Random Forest is the first module of the ensemble method,

it captures most of the relation between data points. Therefore, having more sections and

consequently more data, increases the accuracy.

Evaluating cache impact. To evaluate the impact of the LRU cache, we com-

pare the runtime of A-GWR over the two synthetic datasets. Runtimes that are listed

in Table 7.2 shows around 30% improvement in time when using cache to store weights.

For large datasets, this percentage is considerable and contributes towards faster training

phases of A-GWR models.

Time (s)

Cache synthData1 synthData2

Enabled 1133.2258 764.5523
Disabled 1612.3177 1070.3291

Table 7.2: Errors and bandwidths computed by each search method

7.2 Model Performance

We perform a series of experiments to evaluate the performance of A-GWR, show-

ing the separate impact of S-MGWR as well as the impact of combining it with the other

parts of A-GWR framework.

Evaluating S-MGWR performance. To compare the performance of S-

MGWR with MGWR and GWR, we use the synthData1 dataset. We have the true values

of coefficients for this dataset and we can compute how good each method is computing the

coefficient. For a generated dataset we split the data to train and test sections and train
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Model Time (s) Coeff. RMSE 1 - R2 (×10−3)

GWR 1.18 3651.77 9.5
MGWR 42.88 467.75 1.2

S-MGWR 28.69 742.42 1.7
S-MGWR* - 468.20 1.2

Table 7.3: Performance of S-MGWR, GWR, and MGWR. S-MGWR* is the S-MGWR
model with bandwidth computed by MGWR.

the S-MGWR, MGWR, and GWR over the train section. We then report the 1−R2 error

over the test section and the root mean square error (RMSE) of the coefficients of training

points. Since the dataset is generated randomly, we generated ten different datasets and

report in Table 7.3 the average values of runtime, 1−R2 error, and the coefficients RMSE

over the ten simulations.

Table 7.3 shows that S-MGWR fills the gap between GWR and MGWR. It fits

the data more accurately than GWR due to its flexibility and it has a better runtime

than MGWR due to the ability to use advanced black-box optimization algorithms. Also,

running S-MGWR with the bandwidths computed by MGWR (denoted as S-MGWR*)

shows a small difference in coefficients RMSE while maintaining the best 1 − R2 error

value. The table does not report a runtime for S-MGWR* as it has no training phase and

uses the bandwidths computed by MGWR directly. S-MGWR* shows that given a good

bandwidth selection method, being stateless does not affect the accuracy. This shows even

though S-MGWR does not have the access to MGWR bandwidth history, its performance

is comparable to MGWR. This make it a perfect candidate to be used as part of high-level

models such as A-GWR or parallelized models.

Evaluating A-GWR framework. This experiment shows the impact of the
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general idea of the A-GWR as a framework that could adapt different spatial models and

learning models. We apply A-GWR using both MGWR and GWR as the spatial model

and Random Forest (RF) as the general learning model on four datasets, synthData1, syn-

thData2, kingHousePrices, and NYCAirBnb. For each dataset, we divide the data into

sections so that each section contains at most 1000 data points, except the last section

that could have less points. The synthetic datasets sections are split with a 36 × 36 grid

and divide it to two columns with equal number of points. The kingHousePrices dataset is

split using a grid to four rows and five columns with equal number of points. Finally, the

NYCAirBnb dataset is split using a grid to five rows and six columns with equal number

of points. The result of A-GWR w\MGWR and A-GWR w\GWR along with the ordinary

versions are shown in Table 7.4.

synthData1 synthData2 kingHousePrices NYCAirBnb

Time (s) 1 - R2 Time (s) 1 - R2 Time (s) 1 - R2 Time (s) 1 - R2

GWR 1.5558 0.0121 5.0826 0.9101 512.0763 0.1441 2064.8780 0.4284
A-GWR w\GWR 4.3137 0.0031 9.7359 0.1962 138.563 0.1288 345.7216 0.3932
MGWR 35.7843 0.0016 58.3185 0.8868 80501.9860 0.1378 103713.3542 0.4378
A-GWR w\MGWR 41.0223 0.0016 63.8316 0.1830 5574.1644 0.1143 21460.6177 0.4125

Table 7.4: Evaluating A-GWR as a framework.

Both A-GWR versions of GWR and MGWR outperform the ordinary versions in

accuracy in every dataset. In addition, the A-GWR models are considerably faster than

the ordinary versions on real datasets. The A-GWR w\MGWR performs up to 14.4 times

faster than MGWR and A-GWR w\GWR performs up to 5.9 times faster than GWR.

Finally, we compare A-GWR with S-MGWR as spatial module and Random Forest

(RF) as the general learning model with MGWR, GWR, and Random Forest. Table 7.5

shows the error rate of these methods over different datasets where A-GWR outperforms

40



all other techniques for most of the datasets. It worth noting that in order to have a fair

comparison with Random Forest, we have adjusted its hyper-parameters using a random

search algorithm to search for the best combination of number of estimators, max features,

max depth, min samples split, min samples leaf, and bootstrap setting. This shows the

superiority of A-GWR with the best setting of other models.

pGeorgia pTokyo pClrwatr pBerlin synthData1 synthData2 kingHousePrices NYCAirBnb

1 - R2 1 - R2 1 - R2 1 - R2 1 - R2 1 - R2 1 - R2 1 - R2

A-GWR 0.5962 0.0151 0.8902 0.7868 0.0014 0.2005 0.119 0.4134
MGWR 0.6862 0.029 0.7772 0.7283 0.0014 0.8868 0.1378 0.4378
GWR 0.645 0.0227 0.8365 0.7158 0.0124 0.9101 0.1441 0.4284
Random Forest 0.6195 0.0338 0.8912 0.664 0.0541 0.2685 0.1296 0.3836

Table 7.5: Performance of A-GWR, MGWR, GWR, and Random Forest over different
datasets
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Chapter 8

Conclusions

This paper has introduced Augmented Geographically Weighted Regression (A-

GWR), a spatial regression framework that generalizes MGWR with stateless training

and augmented general-purpose learning models. A-GWR introduces Stateless-MGWR

(S-MGWR) that is a flexible spatially-varying coefficient (SVC) model with distinct band-

widths for individual features to adjust spatial scale based on the feature impact. S-MGWR

is combined with state of the art black-box optimization techniques to find the optimum

set of bandwidths efficiently. A-GWR framework achieves higher expressiveness by aug-

menting powerful machine learning models with spatial models to capture both spatial and

non-spatial aspects of the data. In addition, A-GWR achieves scalability by intelligently

diving data to smaller sections while preserving the spatial relations between points. Ex-

tensive empirical evaluation on eight real and synthetic datasets has shown that A-GWR is

a fast, flexible, and scalable algorithm to model spatial data. It constantly achieves better

accuracy while performing up to 14.4 times faster than existing models.
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