
EUROGRAPHICS 2003 / P. Brunet and D. Fellner
(Guest Editors)

Volume 22(2003), Number 3

Particle-Based Simulation of Fluids

Simon Premože1, Tolga Tasdizen2, James Bigler2, Aaron Lefohn2 and Ross T. Whitaker2

1 Computer Science Department, University of Utah
2 Scientific Computing and Imaging Institute, University of Utah

Abstract
Due to our familiarity with how fluids move and interact, as well as their complexity, plausible animation of fluids
remains a challenging problem. We present a particle interaction method for simulating fluids. The underlying
equations of fluid motion are discretized using moving particles and their interactions. The method allows simula-
tion and modeling of mixing fluids with different physical properties, fluid interactions with stationary objects, and
fluids that exhibit significant interface breakup and fragmentation. The gridless computational method is suited
for medium scale problems since computational elements exist only where needed. The method fits well into the
current user interaction paradigm and allows easy user control over the desired fluid motion.

1. Introduction

Fluids and our interactions with them are part of our ev-
eryday lives. Due to our familiarity with fluid movement,
plausible simulation of fluids remains a challenging prob-
lem despite enormous improvements7, 6. Advances incom-
putational fluid dynamics(CFD) often cannot be directly
applied to computer graphics, because they have vastly dif-
ferent goals. Visual effects for feature films call for very
high resolution simulations with very realistic appearance
and motion. In addition, control over motion and appearance
is necessary for artistic purposes such that physically impos-
sible things become possible and that fluid motion is script-
able for user’s specific needs. Foster and Fedkiw7 and En-
right et al.6 showed that very realistic animation of water is
possible. Unfortunately, existing methods are computation-
ally very expensive and very slow to use. While great strides
have been made to make fluid simulation more controllable7,
these grid-based methods do not fit well with current user-
interaction paradigm used in modelling and animation tools.
Furthermore, large scale problems such as stormy seas re-
quire large grids and are currently impractical to simulate.
Also, multiphase flows, multiple fluids mixing, and sedi-
mentary flows are not easy to model. Foster and Fedkiw7 and
Enrightet al.6 addressed some of the difficult problems with
the grid-based methods using a hybrid representation: frag-
mentation and merging of fluids, numerical diffusion in con-
vection computation, etc. There are alternative approaches to
grid-based methods for simulating fluid flows: Large Eddy
Simulation, vorticity confinement, vortex vethods, and par-

ticle methods.Large-Eddy Simulation(LES) adds an extra
term to the Navier-Stokes equations to model the transfer of
energy from the resolved scales to the unresolved scales. In
vortex methods, large time steps are allowed and computa-
tional elements exist only where interesting flow occurs.

To address some of the deficiencies of the grid-based
methods, we describe a particle interaction method for sim-
ulation of fluids. The underlying equations of fluid motion
(the Navier-Stokes equations) are discretized using mov-
ing particles and their interactions. The particle method de-
scribed is very simple and easy to implement. It fits better
into current user-interaction paradigm and setting the sim-
ulation and controlling it is easy and intuitive. The method
allows setting up the simulation (inflow and outflow bound-
aries, obstacles, forces) at coarse resolution (small number
of large particles) to quickly preview the motion. Once the
user is satisfied with the overall motion of the fluid flow,
the simulation is run at high resolution to produce the final
fluid motion. The computational elements (fluid particles)
are only used in parts of the scene where they are required
and number of computational elements can change during
the course of the simulation. Therefore, if more detail is re-
quired in part of the scene, more particles can be put there to
get finer detail. The method can handle mixing fluids seam-
lessly without special treatment, and multiphase flows where
multiple fluids exist in liquid and gaseous form can also be
simulated with minimal modifications. While particle-based
methods have been presented in computer graphics literature

c© The Eurographics Association and Blackwell Publishers 2003. Published by Blackwell
Publishers, 108 Cowley Road, Oxford OX4 1JF, UK and 350 Main Street, Malden, MA
02148, USA.

Premože et al. / Particle-Based Simulation of Fluids

before, none of those methods dealt with incompressible flu-
ids and water-like liquids.

Foster and Fedkiw7 pointed out that it is difficult to create
a smooth surface out of particles. Many particles are neces-
sary to obtain a smooth surface. While many different meth-
ods can be used to create a surface from particles, we use a
level setPDE method to reconstruct the surface. The level
set surface is reconstructed on a grid whose resolution and
computation are completely independent of the fluid simu-
lation. On the other hand, for preview purposes, blending of
potential fields around each particle can be used to give fast
feedback on how the surface might look.

While the grid-based methods described by Foster and
Fedkiw7 and Enrightet al.6 provide impressive results, the
particle-based method could provide an alternative for simu-
lation and animation of variety of fluids with different phys-
ical properties while allowing user control and fast feedback
at coarse resolutions.

2. Background And Previous Work

Simulation of fluids and their motion in computer graph-
ics has been attempted with a variety of methods. We
briefly overview methods relevant to the work presented in
this paper. Early methods were geared towards simplify-
ing the computation by using Fourier synthesis18 or provid-
ing specialized solution for a specific problem9, 25. Kass and
Miller 13 used height field to represent the fluid surface and
used shallow water partial differential equations to describe
the fluid motion. O’Brien and Hodgins22 also used a height
field representation coupled with a particle system to rep-
resent fluid motion with splashing that was missing in pre-
vious methods. Foster and Metaxas8 realized the limitation
of the height field representation and used a Marker-And-
Cell (MAC) method11 to solve the Navier-Stokes equations.
Massless marker particles are put into the computational grid
and advected according to the velocity field to track the sur-
face. Their method was a true 3D method and was therefore
able to simulate fluid pouring and splashing. Stam28 simu-
lated fluids using a semi-Lagrangian convection that allowed
much larger time-steps while being unconditionally stable.
Foster and Fedkiw7 greatly improved the MAC method by
using the level set approach for tracking the fluid interface.
Enrightet al.6 further improved this method by introducing
an improved method of tracking the water interface using
particle level set and a new velocity extrapolation method.
Enrightet al.5 describe thisthickened front trackingmethod
in more detail. Carlsonet al. also utilized the MAC algo-
rithm for animation of melting and solidifying objects1.

Alternative methods of simulation fluid motion were
described by using particle-based simulations. Miller and
Pearce19 simulate deformable objects with particle interac-
tions based on the Lennard-Jones potential force. This force
is strongly repellent when particles are close together and

weakly attractive when particles are some distance apart.
Terzopouloset al.33 pairs particles together to better simu-
late deformable objects. Tonnesen34 improves particle mo-
tion by adding additional particle interactions based on heat
transfer among particles.

Lucy17 introduced a flexible gridless particle method
calledsmoothed particle hydrodynamics(SPH) to simulate
astrophysical problems including galaxial collisions and the
dynamics of star formation. The fluid is modeled as a col-
lection of particles, which move under the influence of hy-
drodynamic and gravitational force. SPH has recently been
adapted to many relevant engineering problems, including
heat and mass transfer, molecular dynamics, and fluid and
solid mechanics. SPH is a flexible Lagrangian method20, 21

that can easily capture large interface deformation, breaking
and merging, and splashing. Desbrun and Cani-Gascuel3 de-
scribed a model of deformable surfaces and metamorphosis
with active implicit surfaces. SPH method was used to com-
pute particles motion and particles were coated with a po-
tential field. Desbrun and Cani improved the particle model
to simulate a variety of substances using astate equation
to compute the dynamics of the substance2. Adaptive sam-
pling of particles improved the computational efficiency of
the method by subdividing particles where substance under-
goes large deformation, and merging particles in less active
areas. Storaet al.29 also used smoothed particles to solve the
governing state equation for animated lava flows by coupling
viscosity and temperature field.

While the SPH method is flexible, it can only solve com-
pressible fluid flow. Several extensions have been proposed
to allow simulation of incompressible fluids with SPH. Re-
cently, another gridless particle method called theMoving-
Particle Semi-Implicit(MPS) was developed that solves gov-
erning Navier-Stokes equations for incompressible fluids14.
The MPS method is capable of simulating a wide variety of
fluid flow problems including phase transitions, multiphase
flow, sediment-laden flows and elastic structures37, 15, 12. The
computational algorithm in this paper is based on the MPS
method.

3. Gridless Particle Method

The Moving Particle Semi-implicit method is a Lagrangian
method of computing fluid motion. Contrary to the grid-
based Eulerian methods where physical quantities are com-
puted on fixed points in space, the computational elements
in the MPS method are discrete number ofparticles of fluid
followed in time. The MPS method is meshless. Given an ar-
bitrary distribution ofinterpolation points, all problem vari-
ables are obtained from values at these points through an in-
terpolation function (kernel). Interpolation points and fluid
particles coincide.

GOVERNING EQUATIONS FOR I NCOMPRESSIBLE

FLOW. The motion of a fluid can be described by the Navier-

c© The Eurographics Association and Blackwell Publishers 2003.

Premože et al. / Particle-Based Simulation of Fluids

u Velocity
r Position
r Distance between particles
re Interaction radius
d Number of space dimensions
t Time
dt Time step
w Weight function
µ Viscosity
σ Surface tension
κ Surface curvature
ρ Density
n0 Fluid particle density

Table 1: Notation and important terms used in the paper.

Stokes equations. Ifu is a velocity field of the fluid, thecon-
tinuity equationstates that the massm is constant:

∇·u = 0, (1)

and thus enforces the incompressibility of the fluid. Thecon-
servation of momentumrelates velocity and pressure:

∂u
∂t

+u ·∇u = −1
ρ
∇p+ν∇2u + f, (2)

whereρ is density of the fluid,p is the pressure,ν is the vis-
cosity andf are forces. Other equations that describe molec-
ular diffusion, surface tension, conservation of energy and
many other relationships could also be written for a given
fluid. Table 1 summarizes important terms and notation used
in this paper.

3.1. Particle Interactions

In particle methods, mass, momentum and energy conserva-
tion equations are transformed to particle interaction equa-
tions. All interactions between particles are limited to a fi-
nite distance. The weight of interaction between two parti-
cles that are distancer apart is

w(r) =
{ re

r if 0 ≤ r ≤ re

0 if re ≤ r
(3)

wherer is the distance between two particlesi and j ,

r = |r j − r i |. (4)

If all particles are allowed to interact, the complexity is
O(N2). In contrast, if interaction radius is restricted, the
complexity is onlyO(NM), whereM is the number of in-
teracting particles24 within the radius of interactionre. The
particle number densityn can be computed as

〈n〉i = ∑
j 6=i

w(|r j − r i |).

The number of particles in a unit volume is approximated by
the particle number density

〈ρn〉i =
〈n〉iR
w(r)dv

.

For an incompressible fluid, the fluid density must be con-
stant:n0.

To solve the Navier-Stokes equations,differential opera-
tors on particles must be defined. Letφ andu be arbitrary
scalar and vector quantities. The gradient∇φ is the average
of scalar gradient between particlei and neighboring particle
j :

〈∇φ〉i =
d
n0 ∑

j 6=i

φ j −φi

|r j − r i |2 (r j − r i)w(|r j − r i |). (5)

Similarly, the vector gradient∇u is the average of vector
gradient between particlei and neighboring particlej :

〈∇ ·u〉i =
d
n0 ∑

j 6=i

(u j −ui) · (r j − r i)
|r j − r i |2 w(|r j − r i |). (6)

The Laplacian operator∇2 is derived from the concept of
diffusion. It can be seen as if a fraction of a quantity at par-
ticle i is distributed to neighboring particlej :

〈∇2φ〉i =
2d
λn0 ∑

j 6=i

(φ j −φi)w(|r j − r i |), (7)

whereλ:

λ =
R
V w(r)r2dv
R
V w(r)dv

. (8)

Note that this model does not require any spatial connec-
tivity information. When particles move around no special
care or reconfiguration is needed. Grid-based method suf-
fer from numerical breakdown when computational mesh
gets tangled due to large interface deformations. Arbitrary
materials and surfaces can all be represented with particles.
Any complex boundaries and objects (stationary or moving)
can be described with particle arrangements. This allows for
simulation of complex problems in a simple unified manner
without special cases.

3.2. MPS Method

The Navier-Stokes equations are solved by the semi-implicit
MPS method. For every time stepdt, the forces and viscos-
ity in the momentum conservation equation are computed
explicitly. Temporary particle locationsr∗ and velocitiesu∗
are computed from the positionsrn and velocitiesrn from
the previous time stepn as follows:

u∗ = un +
dt
ρ

(
µ∇2un +σ(κ ·n)n +ρg

)
, (9)

and

r∗ = rn +u∗dt. (10)

c© The Eurographics Association and Blackwell Publishers 2003.

Premože et al. / Particle-Based Simulation of Fluids

The surface tension model and computation is described in
Appendix A. After this step, the incompressibility of the
fluid is temporarily violated. The temporary particle density
n∗ is not equal ton0. The particle densityn∗ needs to be
modified byn′ such that the continuity equation is satisfied.
The particle densityn′ is related to modification of the ve-
locity u′:

1
dt

n′

n0 = ∇·u′. (11)

The modification velocityu′ is obtained from the implicit
pressure term in the momentum conservation equation:

u′ = −dt
ρ
∇pn+1. (12)

Note that this is the same as in the grid-based methods such
as MAC. By substituting equations 11 and 12 into

n0 = n∗ +n′, (13)

a Poisson equation for pressure is obtained:

〈∇2pn+1〉i = − ρ
dt

〈n∗〉i −n0

n0 . (14)

The right hand side of equation 14 is analogous to the di-
vergence of the velocity vector. Equation 14 is solved by
using the Laplacian differential operator and discretizing it
into a system of linear equations. The matrix representing
these linear equations is sparse and symmetric; therefore it
can be solved using the conjugate gradient method. Once the
pressurepn+1 is computed, the correction velocityu′ also
becomes known:

u′ = −dt
ρ
〈∇pn+1〉. (15)

New particle velocities and positions that satisfy both con-
servation of mass and momentum can then be updated:

un+1 = u∗ +u′ (16)

rn+1 = rn +un+1dt. (17)

BOUNDARY CONDITIONS . The particle density number
decreases for particles on the free surface. A particle which
satisfies a simple condition

〈n∗〉i < βn0, (18)

is considered on the free surface. In this paper, we use
β = 0.97. Intuitively, this makes sense because the weight-
ing kernel will span the fluid interface. Pressurep = 0 (or
atmospheric pressure, if applicable) is applied to these par-
ticles on the free surface in the pressure calculation. Solid
boundaries such as walls or other fixed objects are repre-
sented by fixed particles. Velocities are always zero at these
particles. Three layers of particles are used to represent fixed
objects to ensure that particle density number is computed
accurately. Note that there is no explicit collision detection

Algorithm 1 The Moving Particle Semi-Implicit (MPS) al-
gorithm.

Initialize fluid: u0, r0

for each time stepdt
Compute forces and apply them to particles. Find temporary
particle positions and velocitiesu∗, r∗
Compute particle number densityn∗ using new particle loca-
tionsr∗
Set up and solve Poisson pressure equation using Conjugate
Gradient method
Compute velocity correctionu′ from the pressure equation
Compute new particle positions and velocities:
un+1 = u∗ + u′
rn+1 = r∗ + u′dt

end for

between particles. The pressure that is computed at fixed par-
ticles essentially repels the fluid particles from the fixed ob-
jects. Therefore, no special cases are therefore needed and
arbitrary object-fluid configurations can be handled in the
same computation seamlessly.

The basic MPS algorithm is summarized in Algo-
rithm 3.2.

DISADVANTAGES . It is worth noticing that the gridless
MPS method has several disadvantages. Since it is a La-
grangian method, inflow and outflow of fluid is not allowed.
However, it can be easily combined with the Eulerian ap-
proach to handle inflow and outflow. We will describe a sim-
ple hybrid method in subsection 3.3. Conservation of scalars
(energy, etc.) is not guaranteed. If one truly cares about con-
servation, the finite volume methods based on integrals in
the cells are good for conservation. Also, large aspect ratio
is impossible at the moment. Note however that this is also a
problem for the most-advanced finite volume methods. The
biggest disadvantage of using particle method is the question
of surface representation. We have particles that accurately
represent the fluid motion and other interesting quantities,
but for rendering the fluid a surface representation is needed.
We describe the surface representation and extraction in sec-
tion 4.

3.3. MPS-MAFL Method

As discussed in the previous subsection, one of the main
problems with a purely Lagrangian approach is that inflow
and outflow of fluid cannot be handled. Furthermore, local
resolution enhancement is hard, because fluid particles move
around. If more particles are introduced to improve resolu-
tion, they will soon move to different locations. In order to
alleviate problems of purely Lagrangian method in the MPS
method, a gridless hybrid method has been developed37. The
method consists of three steps:

1. Lagrangian Phase: the MPS method
2. Reconfiguration Phase: particle positions are reconfig-

ured

c© The Eurographics Association and Blackwell Publishers 2003.

Premože et al. / Particle-Based Simulation of Fluids

rL
i 〈r〉i

∆r

Interpolation region

Figure 1: Directional local grid. A one-dimensional grid is
created in the particle’s streamline direction. The quantities
are only interpolated in the cut disk area. (After Heoet al.12)

3. Eulerian Phase: particle convection is computed on a one-
dimensional grid

The Lagrangian phase is exactly the same as described in the
MPS method. We denote the particle positions and velocities
obtained after this phase asuL andrL. The reconfiguration
phase and convection (Eulerian) phase are described next.

Reconfiguration Phase

In order to correctly handle inflow and outflow boundaries
and deal with irregular distribution of particles, the particle
positions have to be reconfigured. The computation points
are redistributed considering the boundaries. Points that be-
long to a fixed boundary (fixed objects, walls, etc.) or inlet
or outlet boundary, should go back to their original positions
rn. The moving boundary can be traced through Lagrangian
motion of points describing the free surface without comput-
ing the convection term:rn+1

s = rL
s where subscriptsdenotes

that the point is on the surface. In practice, it is likely that the
points on the surface will cluster together. To fix this prob-
lem, we make sure that the particles on the moving bound-
ary are an equal distance apart. The reconfiguration phase
is equivalent to remeshing in grid-based methods. However,
it is much easier in the particle-based methods because only
the particle locations need to be adjusted. Note that the num-
ber of fluid particles can vary. Therefore, higher particle con-
centration can be used in areas that require higher accuracy.

The computation pointrn+1 at the new time step is deter-
mined arbitrarily and the velocity of the computing pointuc

is

uc =
rn+1− rn

dt
. (19)

The convection velocity is then given by

ua =
rL − rn

dt
− rn+1− rn

dt
= − rn+1− rL

dt
. (20)

Eulerian Phase

After arbitrary convection velocityua is computed, proper-
ties atrn+1 are computed by interpolation of physical prop-
erty f (flow velocity, temperature, etc.):

f (t +dt, rn+1
i) = f (t, rL

i −ua
i dt). (21)

If the number of computation points changes during the re-
configuration phase, the physical quantityf is computed by

f (t +dt, rn+1
i) = f L(t, rL

o −ua
i dt), (22)

whererL
o is the closest point torn+1

i .

We follow a simple meshless advection method, MAFL,
proposed by Yoonet al.37. Other convection methods32 can
easily be substituted if so desired. There are four stages in
the convection phase computation:

1. Generate a one-dimensional directional grid,
2. Locally interpolate physical quantities,
3. Apply any high-order convection scheme,
4. Filter the result to prevent oscillatory solutions.

DIRECTIONAL GRID GENERATION . Because the fluid
properties are changing along the streamline (direction of
the velocity vector), the convection problem is a one-
dimensional problem if a grid is generated in the flow di-
rection. Figure 1 shows the directional grid. The number of
grid points used in computation depends on the convection
difference scheme used.

L OCAL I NTERPOLATION . At a local grid point, the
physical properties〈 f 〉k are interpolated from the neighbor-
ing computing pointsf L

j using the weight:

〈 f 〉k =
∑ j f L

j w(|rL
j −〈r〉k|, re,k)

∑ j w(|rL
j −〈r〉k|, re,k)

for k = -2,-1,1. (23)

CONVECTION SCHEME . Any difference scheme can
be used in the convection phase. If the first order upwind
scheme is applied to local grid points, only two points are
considered:

f̃ n+1
i = f L

i −q(f L
i −〈 f 〉−1),q =

|ua|dt
dr

. (24)

The second order QUICK16 scheme uses four points (two
upstream and one downstream) and yields

f̃ n+1
i = f n

i −q(
1

8
f n
i−2−

7

8
f n
i−1 +

3

8
f n
i +

3

8
f n
i+1),q=

|ua|dt

dr
. (25)

FILTERING . Higher order schemes often result in oscilla-
tory solutions. A filtering scheme can be applied to prevent
overshooting and undershooting. Minimum and maximum
limits are computed at each time step and the interpolants
are bounded by them:

f n+1
i ==

f̃ n+1
i min(f n

i) ≤ f̃ n+1
i ≤ max(f n

i)
min(f n

i) f̃ n+1
i < min(f n

i)
max(f n

i) f̃ n+1
i > max(f n

i)
(26)

Higher order schemes can exhibit numerical instability if
there is a large change in the number of particles and their
locations.

The hybrid MPS-MAFL algorithm that allows arbitrary
inflow and outflow of fluid, and arbitrary addition and

c© The Eurographics Association and Blackwell Publishers 2003.

Premože et al. / Particle-Based Simulation of Fluids

Algorithm 2 The hybrid MPS-MAFL algorithm.
Initialize fluid
for each time stepdt

Lagrangian phase: the same as MPS algorithm (Algorithm 1)
Reconfiguration phase: determine the positions of computing
points and convection velocities
Create a one-dimensional local grid in the streamline direction
Interpolate physical properties within the particle neighbor-
hood

end for

removal of computation points is summarized in Algo-
rithm 3.3. The interested reader is referred to papers by
Heoet al.12 and Koshizukaet al.15 to learn more about MPS-
MAFL methods.

3.4. Multifluid Flow

It is straightforward to extend the MPS and MPS-MAFL
models described in sections 3.2 and 3.3 for multifluid and
multiphase flows27. Let uξ,i denote the velocity of a fluid
particlei of typeξ, andrξ,i be the position of the fluid par-
ticle. The temporary velocityu∗

ξ that includes the diffusion,
gravity, and surface tension is similar to equation 9:

u∗
ξ = un

ξ +
dt
ρξ

{µξ∇2un
ξ +σξ(κξ ·nξ)

n +ρξg}. (27)

Other forces acting on the fluid can be included. The im-
plicit pressure computation is similar to the single fluid MPS
method. If the density of mixing fluids is on the same order
of magnitude, the pressure computation is done in a single
step as before. In order to avoid numerical instabilities when
multiple fluids have drastically different densities (e.g. wa-
ter and air), the pressure computation for each fluid is done
separately. First, the pressure computation is performed as if
all particles are gas particles. In the second step, the com-
puted pressure for gas particles is applied to the interface of
the liquid particles. This is an iterative process: if the particle
velocity and position converge we proceed to next step, oth-
erwise we repeat the pressure computation again until con-
vergence.

4. Surface Reconstruction

In this section, we introduce the notation of level set meth-
ods and discuss our approach to surface reconstruction from
particles. Letx(t) be the set of points on a deforming surface
at timet. We represent this deforming surface implicitly as

S= {x(t) | φ (x(t), t) = 0} , (28)

whereφ :R3 →R is the embedding function. Surfaces de-
fined in this way divide a volume into two parts: inside
(φ > 0) and outside (φ < 0). It is common to chooseφ to
be the signed distance transform ofS, or an approximation
thereof. The motion ofS is controlled indirectly by modi-
fying φ with a PDE. This family of PDEs and the upwind

scheme for solving them on a discrete grid is the methods of
level setsproposed by Osher and Sethian23. In this paper, we
consider level set PDEs of the form

∂φ(x)/∂t = −||∇φ|| (F (x)+µH(x)) , (29)

whereF is a force term ,H is the mean curvature of the
level set interface andµ defines the relative weights of the
two terms. The mean curvature term guarantees the smooth-
ness of the interface by favoring surfaces of smaller area
over surfaces of larger area26. The force termF is designed
to make the level set interface track the moving particles.
We fix µ = 1 for all of our experiments. Note that the set-
ting of the parameterµ is a trade-off between overall surface
smoothness and the capturing of surface features defined by
particle positions.

For a given frame, the particle simulation provides a set
of particle locations, radii and velocities{r i , ri,ui}N

i=1. Let
F be a sum over all the particles of a kernel functionf , i.e.

F(x) = T +
N

∑
i=1

f (x, r i , ri ,ui), (30)

whereT is a constant threshold. Letdi(x) denote the Eu-
clidean distance from the center of particlei to the point
x in space. Since the particles have a finite size, if we de-
fine fi(x) to be 1 fordi(x) ≤ ri and 0 outside, thenF repre-
sents the number of particles at any point in space. If we also
chooseT = −0.5, the points in space that satisfyF = 0 will
approximately represent the surface defined by the particles.
However, this binary choice forf leads to a very rough look-
ing surface, and the individual particles are easily recogniz-
able in the reconstruction. The curvature smoothing term in
(equation 29) can not compensate for this large-scale rough-
ness. What is needed is a smoother choice forf that provides
an interpolation between particles. Consider the following

fi(x) =
1

1+ |di(x)/ri |k
, (31)

wherek = 2. This function falls off smoothly as the distance
to the particle increases, and is well-behaved asd → 0. Be-
cause,f > 0 for di(x) > ri , F accumulates to larger quanti-
ties than with the previous case. This necessatiates choosing
a lowerT value; we find thatT =−2 is suitable. We also ex-
perimented withk = 1 andk > 2, but these choices resulted
in oversmoothing and not enough interpolation, respectively.

The interpolation obtained from (equation 31) is isotropic;
therefore, it has a thickening effect on the surface due to in-
terpolation in the direction perpendicular to the surface. A
further modification can be made to solve this problem by
allowing more interpolation in the physical surface tangent
plane, and less interpolation perpendicular to this plane. We
use the assumption that the velocities of the particles will be
approximately in the tangent plane. Letdv

i (x) andd⊥i (x) be

c© The Eurographics Association and Blackwell Publishers 2003.

Premože et al. / Particle-Based Simulation of Fluids

defined as:

dv
i (x) =

∣∣∣∣(x− r i) · ui

‖ ui ‖

∣∣∣∣ , d⊥
i (x) =

= ‖ (x− r i)−dv
i

ui

‖ ui ‖
‖ .

Let smax be the largest particle speed for the given frame.
Then, we define the modified distance to a particle as

di(x) =
(

1− ‖ ui ‖
2smax

)
dv

i (x)+
(

1+
‖ ui ‖
2smax

)
d⊥

i (x). (32)

Using this definition of distance in (equation 31) has the
effect of elongating the influence of a particle along its ve-
locity vector and shrinking it in all other directions.

The surface reconstruction algorithm starts with the parti-
cle information for the first frame. Before starting to eval-
uate (equation 29), we need an initialization forφ. After
computingF for the first frame, the initialization is obtained
from F = 0. Then, we iterate (equation 29) using an upwind,
sparse-field implementation35 until convergence. The com-
putation only occurs in grid cells that are on or near the sur-
face. Convergence is reached when the change toφ per time
step falls below a pre-determined threshold. At this point,
we save the state of the surface for generating the anima-
tion. Then,F is constructed for the particle information con-
tained in the next frame, and we continue iterating (equa-
tion 29) without reinitialization. In other words, the surface
result from the previous frame acts as the initialization. This
approaach guarantees the continuity of the surface models
produced for consecutive frames. Note that the level set sur-
face reconstruction step is solved on a grid whose resolution
is completely independent from the fluid simulation. Once
the fluid simulation is computed, the surface reconstruction
is done at arbitrary resolution.

5. Results and Discussion

The MPS and MPS-MAFL methods described in this pa-
per methods are straighforward to implement. For efficient
computation, a spatial data structure that quickly finds par-
ticles in a neighborhood is desired although not necessary.
The Poisson pressure equation can be efficiently solved with
a Conjugate Gradient (CG) method. In our implementation,
we use the CG method with an Incomplete Cholesky precon-
ditioner. We use theSparseLib++library4 for computing the
Poisson pressure equation.

We show several examples of fluid simulation computed
with the MPS and MPS-MAFL methods. All simulations
and rendering were performed on a Pentium IV 1.7 Ghz with
512 Mb of memory running Linux operating system. Videos
of animations discussed in this sections accompany this pa-
per.

The computational method is fairly efficient and allows
simulating about 10,000 particles per timestep per second.
This is fast enough to get an instantaneous feedback on
whether the fluid simulation will run as desired. After we

set up the scene (objects, obstacles, forces, fluid properties)
and initialize fluid particles, we run the fluid simulation at
low resolution to get feedback. After we set all simulation
parameters (particle size, interaction radius, etc.) and forces
(gravity, drag, surface tension, etc.), the final simulation is
run at high resolution. The main bottleneck in the compu-
tation is the Poisson pressure equation computation and the
computation time ultimately depends on the number of par-
ticles in the simulation. As a part of future work, it would be
beneficial to parallelize the Conjugate Gradient algorithm to
further speed up computation time on parallel architectures.

Corridor Flood

We simulated a simple flood in an underground corridor. We
modeled the corridor with a small number of polygons and
converted the polygonal scene into the particle representa-
tion. Each polygon was represented with three layers of fixed
particles. The inflow of water was simulated by positioning
a virtual square inflow boundary that was turned on for a
short period of time. This could also be simulated as a wa-
ter column collapse. The total number of fluid particles in
the scene is about 100,000. The only force acting on parti-
cles was gravity. Surface tension was not included in this
simulation. The computation time for the final simulation
was about 3 minutes per frame. Surface reconstruction took
10 minutes per frame (volume size 459x74x374). Figure 2
shows several frames from the simulation. The final sur-
face was rendered using a Monte Carlo path tracer with 10
area light sources. The rendering time per frame was about
20 minutes. Since the MPS method is fully Lagrangian, the
computational elements (fluid particles) were only present
in the part of the scene where they were needed. Note that
because the corridor is L-shaped, this provides some compu-
tational savings over the grid-based methods. In grid-based
approaches, about 70 percent of the space would be wasted.
A larger grid would be needed to accommodate the computa-
tion, therefore yielding larger computation time and memory
requirements.

Box Filling

In this simulation, we fill a box with a fluid that is being
poured from a source with three nozzles. The fluid does not
fall directly into the box. A polygonal obstacle set near the
top of the box at an angle obstructs the flow. The fluids
from the nozzles first hit the obstacle surface and then the
side of the box. The fluid was simulated with about 150,000
fluid particles. The simulation time is about 4 minutes per
frame. Gravity, surface tension and drag force were acting
upon fluid particles during the simulation. The fluids from
the three nozzles have the same physical properties. Surface
reconstruction took 30 minutes per frame (volume size 197 x
283 x 256). Figure 3 shows several frames from the box fill-
ing simulation. The example animation was being rendered

c© The Eurographics Association and Blackwell Publishers 2003.

Premože et al. / Particle-Based Simulation of Fluids

Figure 2: Corridor flood simulation. The fluid motion is
simulated by 100,000 fluid particles. The simulation time is
about 3 minutes per frame.

with a raytracer. Approximate rendering time was about 5
minutes per frame.

Mixing fluids

In this simulation, we fill a box with two fluids that have
very different densities and viscosities. First, we start fill-
ing the box with a water-like fluid. After some time, we
start filling the box with the second oil-like fluid. The flu-
ids start interacting and mixing. The second fluid ends on
top of the first fluid as expected from the physical properties
of the fluids. Gravity and surface tension were applied to
both fluids. About 80,000 fluid particles represent both flu-
ids. The simulation time was 3 minutes per frame. Surface
reconstruction took 10 minutes per frame per fluid (volume
size 245x245x274). Figure 4 shows three frames from this
simulation. Observe the mixing and interactions between the
two fluids. The images were being rendered with a raytracer.
Approximate rendering time was 5 minutes per frame. The
second-fluid has oil-like physical properties. For visualiza-
tion purposes we rendered this fluid opaquely to show the
separation between the two fluids. Some artefacts (e.g. round

Figure 3: A source with three nozzles filling a box. The fluid
motion is simulated by 150,000 fluid particles. The fluid is
being emitted from three nozzles that hit an obstacle surface
set near the top of the box.

boundary, non-perfectly smooth surface) resulting from the
surface reconstruction are visible.

6. Conclusion

We described a particle-based method for simulation fluid
motion. It is based on a particle discretization of the differ-
ential operators to solve the Navier-Stokes equations. It is
suited for simulating a wide variety of fluid flows including
multifluids, multiphase flows and medium scale problems
such as the corridor flood. Because of the Lagrangian nature

c© The Eurographics Association and Blackwell Publishers 2003.

Premože et al. / Particle-Based Simulation of Fluids

Figure 4: Two fluids mixing in a box. The box is being filled
with two fluids with drastically different physical properties
(density and viscosity). After interaction and mixing, the sec-
ond fluid ends up on top of the first fluid. About 80,000 par-
ticles were used to compute the fluid motion.

of the method, no grids are needed. The method is adap-
tive as it allows arbitrary addition and removal of computa-
tion points during the simulation. The described method is
also well suited for the current human-interaction paradigm
used in commercially available modelling and animation
software. The fluid simulation can be easily directed (e.g.
fluid moves on a path) and scripted (fluid reaches specified
destination), because the particle interactions are easily con-
trolled while ensuring physical correctness and plausibility
of motion. While particle-based fluid simulations (ad hoc
and semi-physically-based) were described in the graphics
literature before, the methods presented in this paper is gov-
erned by the Navier-Stokes equations and works with incom-
pressible fluids.

There are numerous possibilities for future work and ex-
tensions of the described method. The main computational
bottleneck is the Poisson pressure computation. By par-
allelizing the conjugate gradient computation the method
could be much faster and could potentially become more in-
teractive. More accurate interpolation schemes could be used
if more accurate simulations are desired32. Solid-fluid inter-
actions (e.g. fluid displacing a solid object) and sediment
flows could easily be added to the existing method10. The
MPS-MAFL method could be extended for adaptive simula-
tions similar to Desbrun and Cani2. Particles radii would be

small in areas where large deformations of the interface oc-
cur. The Eulerian step in the MPS-MAFL ensures that small
particles remain in areas of interest and would not get ad-
vected to other regions. The MPS particle method could also
be applied to simulate solid dynamics36.

The main problem with the particle-based method re-
mains surface generation. While the surface is easily being
tracked with fluid particles, it is hard to create a surface from
the fluid simulation. In this work we use a level set method
to obtain surface for rendering purposes. The method pro-
duces good results for most cases, but it also has some in-
herent problems with creating sharp boundaries when the
fluid is in contact with a solid object or another fluid. As
part of the future work, we want to try the hybrid approach
by Enrightet al.5 for tracking and evolving the surface. An
alternative would be to still use the level set to represent the
fluid interface, but use particles to directly evolve the level
set30, 31. By removing the level set surface extraction as a
separate step, all grid-based computations would be removed
entirely.

Acknowledgements

We thank Marko Dabrović and John Moores for discus-
sions and rendering help and suggestions. Part of this work
was supported by the Office of Naval Research under grant
N00014-01-10033 and the National Science Foundation un-
der grant CCR0092065.

Appendix A: Surface Tension Model

The momentum equation containing the surface tension is:

ρ ∂u
∂t

= −∇p+µ∇2u+ρg+σκδn (33)

whereσ is the surface tension coefficient,κ is the curvature
of the interface,δ is the delta function, andn is the surface
normal. Surface tension is calculated for the particles that are
regarded as on the interface. Another particle densitynst1

i is
computed at these particles:

〈n〉st1
i = ∑

j 6=i

wst1(|r j − r i |) (34)

wst1(r) =
{

1 if 0 ≤ r ≤ rst
e

0 if rst
e ≤ r

(35)

whererst
e is the interaction radius for surface tension model.

The particles regarded as on the surface of the interface are
found in thicknessdst. Within the thicknessd, the interior
particles have larger particle densitynst1

i than exterior parti-
cles. This leads to errors in curvature computation. A second
particle density excluding outside particles is computed:

〈n〉st2
i = ∑

j 6=i

wst2(|r j − r i |) (36)

c© The Eurographics Association and Blackwell Publishers 2003.

Premože et al. / Particle-Based Simulation of Fluids

wst2(r) =
{

1 if 0 ≤ r ≤ rst
e andnst1

j > nst1
i

0 otherwise
(37)

The curvature of the interface is then computed as:

κ =
1
R

=
2cosθ

rst
e

(38)

2θ =
nst2

i

nst1
0

π, (39)

wherenst1
0 is constant and is computed when the interface is

flat (curvature is zero).

Appendix B: Drag Force Model

The drag force due to the permeable layer is:

f = −3

4

CD

d0
|ūi |ūi (40)

wu(r) =
{

1/∑wu(r) if r ≤ αd0

0 if r > αd0
(41)

ūi = ∑u j wu(|r i j |), (42)

whereCD is drag coefficient,̄ui is spatially averaged veloc-
ity of neighborhood particles,α is model constant andd0 is
diameter of a fluid particle.

References

1. Mark Carlson, Peter J. Mucha, R. Brooks Van Horn III, and Greg Turk. Melting
and flowing. InACM SIGGRAPH Symposium on Computer Animation, 2002.

2. Mathieu Desbrun and Marie-Paule Cani. Space-time adaptive simulation of highly
deformable substances. Technical report, INRIA, 19990.

3. Mathieu Desbrun and Marie-Paule Cani-Gascuel. Active implicit surface for ani-
mation. InGraphics Interface, 1998.

4. J. Dongarra, A. Lumsdaine, R. Pozo, and K. Remington. A Sparse Matrix Library
in C++ for High Performance Architectures. InProceedings of the Second Object
Oriented Numerics Conference, pages 214–218, 1994.

5. D. Enright, R. Fedkiw, J. Ferziger, and I. Mitchell. A hybrid particle level set
method for improved interface capturing.J. Comput. Phys., (183):83–116, 2002.

6. Douglas P. Enright, Stephen R. Marschner, and Ronald P. Fedkiw. Animation and
rendering of complex water surfaces.ACM Transactions on Graphics, 21(3):736–
744, July 2002.

7. Nick Foster and Ronald Fedkiw. Practical animation of liquids. InProceedings of
ACM SIGGRAPH2001, pages 23–30, August 2001.

8. Nick Foster and Demitri Metaxas. Realistic animation of liquids. InGraphics
Interface ’96, pages 204–212, 1996.

9. Alain Fournier and William T. Reeves. A simple model of ocean waves. InCom-
puter Graphics (SIGGRAPH ’86 Proceedings), volume 20, pages 75–84, 1986.

10. Hitoshi Gotoh, Tomoki Shibahara, and Tetsuo Sakai. Sub-particle-scale turbulence
model for the MPS method.Computational Fluid Dynamics Journal, 9(4):339–
347, 2001.

11. F. H. Harlow and J. E. Welch. Numerical calculation of time-dependent viscous
incompressible flow of fluid with a free surface.The Physics of Fluids, 8:2182–
2189, 1965.

12. S. Heo, S. Koshizuka, and Y. Oka. Numerical analysis of boiling on heat-flux
and high subcoling condition using MPS-MAFL.Comput. Fluid Dynamics J.,
45:2633–2642, 2002.

13. Michael Kass and Gavin Miller. Rapid, stable fluid dynamics for computer graph-
ics. In Forest Baskett, editor,Computer Graphics (SIGGRAPH ’90 Proceedings),
volume 24, pages 49–57, August 1990.

14. S. Koshizuka, H. Tamako, and Y. Oka. A particle method for incompressible vis-
cous flow with fluid fragmentation.Comput. Fluid Dynamics J., 29(4), 1996.

15. S. Koshizuka, H. Y. Yoon, D. Yamashita, and Y. Oka. Numerical analysis of natural
convection in a square cavity using MPS-MAFL.Comput. Fluid Dynamics J.,
30(8):485–494, 2000.

16. B. P. Leonard. A stable and accurate convective modelling procedure based on
quadratic upstream interpolation.Comp. Methods Appl. Mech. Eng., 19:59–98,
1979.

17. L. B. Lucy. A numerical approach to the testing of the fission hypothesis.The
Astronomical Journal, 82(12):1013–1024, Dec 1977.

18. G. A. Mastin, P. A. Watterberg, and J. F. Mareda. Fourier synthesis of ocean scenes.
IEEE Computer Graphics and Applications, 7(3):16–23, March 1987.

19. Gavin Miller and Andrew Pearce. Globular dynamics: A connected particle system
for animating viscous fluids.Computers and Graphics, 13(3):305–309, 1989.

20. J. J. Monaghan. Smoothed particle hydrodynamics.Ann. Rev. Astron. Astrophys.,
30(2):543–574, 1992.

21. J. J. Monaghan. Simulating free surface flows with SPH.Journal of Computational
Physics, (110):399–406, 1994.

22. J. F. O’Brien and J. K. Hodgins. Dynamic simulation of splashing fluids. InCom-
puter Animation ’95, pages 198–205, April 1995.

23. S. Osher and J. Sethian. Fronts propagating with curvature-dependent speed: Algo-
rithms based on Hamilton-Jacobi formulations.Journal of Computational Physics,
79:12–49, 1988.

24. Allen M. P. and Tildesley D. J.Computer Simulation of Liquids. Clarendon Press,
Oxford, 1987.

25. Darwyn R. Peachey. Modeling waves and surf. InComputer Graphics (SIGGRAPH
’86 Proceedings), volume 20, pages 65–74, 1986.

26. Guillermo Sapiro.Geometric Partial Differential Equations and Image Analysis.
Cambridge University Press, 2001.

27. N. Shirakawa, H. Horie, Y. Yamamoto, and S. Tsunoyama. Analysis of the void
distribution in a circular tube with the two-fluid particle interaction model.Journal
of Nuclear Science and Technology, 38(6):293–402, June 2001.

28. Jos Stam. Stable fluids. InProceedings of SIGGRAPH 99, pages 121–128, August
1999.

29. D. Stora, P.O. Agliati, M.P. Cani, F. Neyret, and J.D. Gascuel. Animating lava
flows. InGraphics Interface, Kingston, Canada, June 1999.

30. John Strain. Semi-Lagrangian Methods for Level Set Equations.J. Comput. Phys.,
151:498–533, 1999.

31. John Strain. A Fast Modular Semi-Lagrangian Method for Moving Interfaces.J.
Comput. Phys., 161:512–536, 2000.

32. Nobuatsu Tanaka. Hamiltonian particle dunamics, CIVA-particle method and sym-
plectic upwind scheme.Computational Fluid Dynamics Journal, 9(4):384–393,
2001.

33. Demetri Terzopoulos, John Platt, and Kurt Fleischer. Heating and melting de-
formable models (from goop to glop). InProceedings of Graphics Interface ’89,
pages 219–226, June 1989.

34. David Tonnesen. Modeling liquids and solids using thermal particles. InProceed-
ings of Graphics Interface ’91, pages 255–262, June 1991.

35. Ross T. Whitaker. Algorithms for implicit deformable models. InFifth Interna-
tional Conference on Computer Vision. IEEE Computer Society Press, 1995.

36. S. Koshizuka Y. Chikazawa and Y. Oka. A particle method for elastic and
visco-plastic structures and fluid-structure interactions.Computational Mechan-
ics, 27:97–106, 2001.

37. H. Y. Yoon, S. Koshizuka, and Y. Oka. A particle gridless hybrid method for in-
compressible flows.Int. J. Numer. Meth. Fluids, 29(4), 1996.

c© The Eurographics Association and Blackwell Publishers 2003.

