
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
The impact of correlated variability on models of neural coding

Permalink
https://escholarship.org/uc/item/2s93m6wd

Author
Sachdeva, Pratik Singh

Publication Date
2021
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2s93m6wd
https://escholarship.org
http://www.cdlib.org/


The impact of correlated variability on models of neural coding

by

Pratik Singh Sachdeva

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Physics

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Michael R. DeWeese, Chair, Co-chair
Adjunct Assistant Professor Kristofer E. Bouchard, Co-chair

Professor Na Ji
Professor Bruno A. Olshausen

Summer 2021



The impact of correlated variability on models of neural coding

Copyright 2021
by

Pratik Singh Sachdeva



1

Abstract

The impact of correlated variability on models of neural coding

by

Pratik Singh Sachdeva

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Michael R. DeWeese, Chair, Co-chair

Adjunct Assistant Professor Kristofer E. Bouchard, Co-chair

Variability is a prominent feature of neural systems: neural responses to repeated presenta-
tions of the same external stimulus will typically vary from trial to trial. Furthermore, neural
variability exhibits pairwise correlations, commonly referred to as correlated variability. Cor-
related variability is a pervasive neural phenomenon that arises due to a variety of sources
including shared input, biological noise, global fluctuations, and neural activity unobserved
by experimental apparatuses. It is of theoretical interest because of its importance for models
of neural coding: the existence of correlated variability can improve or harm neural coding
depending on its structure. In this work, we examine how correlated variability impacts neu-
ral coding for both analyses on decoding efficacy and parametric models of neural activity.
First, we demonstrate that correlated variability induced by noise sources common to a neu-
ral population can be manipulated by heterogeneous synaptic weighting to improve neural
coding, even at the cost of amplifying the noise. Second, we demonstrate that correlated
variability in neural data exhibits worse than chance decoding fidelity, and identify biological
constraints in achieving optimal neural representations. Third, we examine how an improved
inference algorithm for common parametric models can shape the scientific interpretation of
common systems neuroscience models, despite the presence of correlated variability in the
data. Lastly, we identify how omitting correlated variability arising from unobserved activity
in parametric models of tuning and functional coupling can bias parametric estimates, and
propose a new model and inference procedure to mitigate these biases. Together, our results
highlight the importance of correlated variability on a wide range neural coding models.
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Chapter 1

Introduction

1.1 Overview

A central goal of theoretical and computational systems neuroscience is to characterize neural
coding, or how external stimuli are represented in the activity of neural populations [57].
This task is particularly difficult in systems neuroscience, given the size and complexity
of neural systems [156]. We typically achieve this by specifying a model that relates the
structure of spiking activity in an ensemble of neurons to the input stimuli. The model,
when fit to neural data, or optimized to satisfy a desired property, can then be interpreted
to gain insight into the underlying neural system.

The structure of a model – i.e., its mathematical or computational formulation – reflects
our assumptions about the properties of the neural system and its constituent units. These
assumptions effectively act as constraints, which serve to simplify the model and abstract
away details that may not be relevant for the question at hand. For example, we may
choose to model a neural system with functional units that output a continuous firing rate.
This choice reflects several assumptions: that the neurons are the only relevant units in the
system (thereby omitting other neural bodies); that firing of action potentials is the relevant
means by which neurons communicate (thereby neglecting other neural signals); and that
firing rate is the meaningful quantity in the action potential (thereby neglecting any spike
timing). Thus, there is a natural tension between a model’s expressiveness (less constraints)
and simplicity (more constraints). The more expressive a model, the more powerfully it can
capture the details of the underlying system. These benefits come at the cost of the model’s
interpretability.

At the same time, a model should possess sufficient degrees of freedom, which reflect the
properties of the system that could conceivably be manipulated. In almost all cases, the
degrees of freedom correspond to parameters that we are free to choose. To interpret the
model, then, we choose some parameter configuration within the degrees of freedom that
satisfies a criterion. This criterion could reflect a desirable biological property or a suitable
fit to existing neural data. After a model is optimized, we can examine the fit parameters
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– or some output of the model that depends on them – to aid in answering questions about
the neural system in question. In the example described above, this could entail fitting pa-
rameters that detail how the neuron’s firing depends on an input stimulus. After performing
the fit, we can analyze the parameters to determine what stimulus conditions evoke the most
activity from the neurons.

The two criterion in choosing the model parameters reflect two different approaches in
computational neuroscience. In the former, we approach the problem from first principles
by asking, for example, how a neural system might perform a specific computation given
biological constraints. This approach often invokes the efficient coding hypothesis, which
posits that neural populations construct “efficient” representations of input stimuli [22].
From this perspective, any consistent structure observed in the activities of neural ensembles
can be framed in terms of how it might “improve” the neural coding via some metric of
efficiency. A second approach involves constructing phenomenological models that we fit to
experimentally recorded neural data. These models can be sufficiently abstract such that
they facilitate interpretation, but robust enough to capture the structure in the neural data.
Furthermore, they can serve a predictive purpose (if they are capable of generating data)
or can be interpreted by examining the fitted parameters directly. Both approaches aid our
understanding of the neural system by allowing us to characterize its structure and behavior.

When we use a model in a systems neuroscience setting, we must choose some neural
phenomena by which to constrain the model. One such phenomenon is that of neural vari-
ability: neurons respond variably under presentations of the same stimulus. Thus, to account
for such variability, we commonly utilize probabilistic models. These models constrain the
average neural response, with the trial-to-trial variability accounted for by some inherent
stochasticity in the model. Thus, the model can be interpreted in how it relates the stimulus
to the neural response. In a standard example, simple cells in visual cortex can be modeled
with a linear model to relate the stimulus – a drifting grating – to their firing rate. The
model parameters demonstrate that, on average, neurons are most active in response to a
preferred stimulus value [189]. The remaining trial-to-trial variability is simply modeled as
noise, whether it be Gaussian or Poisson.

However, neural variability contains additional structure that can influence a model.
Specifically, variability in neural responses is correlated across pairs of neurons. This cor-
related variability has been observed consistently throughout cortex, under a variety of ex-
perimental conditions, and is of paramount importance for neural coding [51, 11, 106]. Its
presence stems from a variety of sources. Generally, correlated variability arises from inputs
shared across neurons in a neural circuit. Any variability in the inputs that cannot be ex-
plained by the stimulus – whether it be true biological noise, unobserved neurons, global
fluctuations, attentional state, etc. – will result in correlated variability across the observed
neural population. Thus, the phenomenon of correlated variability reflects both fundamental
biological noise as well as our limitations in probing the entire neural system.

In this thesis, we examine the role of correlated variability in models of neural coding.
We approach this general question from two perspectives: the usage of theoretical models
optimized for decoding accuracy and phenomenological models fit to experimentally recorded
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data. Thus, this thesis can be divided roughly into two parts, corresponding to each of these
perspectives. In the first half, we examine correlated variability from an efficient coding
perspective, and ask whether its presence is beneficial for stimulus decoding. Broadly, we
answer the following questions:

(1) Neural circuits receive thousands of common inputs, some of which may be extraneous
to the stimulus at hand. How do these common noise sources interact with synaptic
weighting to produce correlated variability, and thus impact decoding performance?
More simply, can neural circuits overcome common noise sources via their synaptic
weighting? (Chapter 2)

(2) To what degree is the correlated variability observed in neural systems structured in
a manner to optimize decoding? More simply, is correlated variability efficient from a
decoding perspective? (Chapter 3)

In the second half, we turn to how correlated variability as a structure of neural activity
impacts the fitting of phenomenological models of neural activity:

(3) Correlated structure generally impedes the fitting of phenomenological models, be-
cause it introduces correlations among predictive features. Can we develop improved
inference techniques that are stable to such structure in common systems neuroscience
models? How does this influence their interpretation relative to traditional approaches?
(Chapter 4)

(4) How can we simultaneously model a neuron’s dependence on external input (e.g., stim-
uli) and internal input (e.g., other neurons) given that we only record from a subset
of the complete neural population? The unobserved neural activity – a source of cor-
related variability – will bias parameter estimates in simple phenomenological models.
How do we account for correlated variability in such systems neuroscience models?
(Chapter 5)

Lastly, a chapter in this thesis is dedicated to the development of software engineering tools
for science (Chapter 6). Each of the projects in this thesis comes with a relatively polished
software package capable of reproducing their analyses and figures. Thus, this final chapter
serves as an outline to interested researchers in developing such packages for their scientific
work.

The remaining two sections in this chapter are structured as follows. In Section 1.2, we
present a gentle overview of correlated variability and the requisite background literature
for later chapters. We introduce correlated variability, its importance for decoding, how
to measure its decoding strength, and how it impacts the scaling of information in neural
populations. In Section 1.3, we provide research summaries, while additionally framing
each project thematically within the broader scope of the thesis. Each research summary is
accompanied with a “research narrative”. As many graduate students know, it is difficult
to predict the research trajectory of a project at its onset. Experiments fail, results may be
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surprising (or negative), new literature arises, and things never go according to plan. Thus,
publications rarely present an accurate picture of the research trajectory. Instead, they frame
the results as an expected output of a “well-designed” or “well-motivated” research process.
The narratives presented here, therefore, serve to shed light on how these projects started,
how they changed, and how they were finished.

1.2 Correlated Variability and its Importance for

Neural Coding

Neural activity throughout cortex has long understood to be “variable:” spiking responses
can differ considerably between multiple presentations of the same stimulus [197, 58]. For
example, in one of the earliest studies on this subject, simple cells in cat striate cortex were
presented with drifting gratings at different contrasts and spatial frequencies [58]. Impor-
tantly, each stimulus was presented multiple times. The author found that the number of
spike responses varied from trial to trial, and furthermore, the variance of the spike counts
scaled with the average firing rate. These observations, and others, formed the basis of the-
oretical studies modeling spiking responses as Poisson processes. Additionally, they laid the
groundwork for studies examining the higher-order statistics of neural variability.

From a neural coding perspective, such variability is undesirable if the animal must use
the neural responses to decode the stimulus. The solution to decoding in the presence of
trial-to-trial variability is redundancy. If there are enough neurons in the population, with
different stimulus preferences, their responses can be aggregated to compute a reasonable
estimate of the stimulus [11]. Thus, neural variability can be “averaged away” provided
that a circuit contains a suitable number of neurons. Given the extraordinary number of
neurons in even a simple microcircuit, “averaging away” population coding is achievable. At
the same time, neural decoding is likely only a small part of the overall neural computation,
and “averaging away” only requires linear decoding. A more advanced decoder, operating on
neurons that are coding for multiple stimuli, could likely achieve good decoding performance.

The “averaging away” view becomes more complicated if the variability carries higher-
order structure across the neural population. A landmark study by Zohary, Shadlen, and
Newsome [226] first characterized the second-order structure in neural variability at the pair-
wise level. Specifically, they recorded from a population of neurons in the middle temporal
visual area (MT) of rhesus monkey, presented with a motion detection task of random dot
images. They observed that pairs of neurons in the population typically exhibited a weak
correlation in the variability of their responses, with an average of 0.12 across the popula-
tion. Importantly, in a simple model of population coding, they demonstrated that neurons
exhibiting positive correlations in their variability will saturate the population’s signal-to-
noise ratio as a function of circuit size. Furthermore, this saturation would occur no matter
the strength of the observed correlation. Their result was an indictment against the prevail-
ing “averaging away” view in population coding. Their observation implies that there is a
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Figure 1.1: Noise and signal correlations. Each plot depicts the neural space, with each
axis referring to the activity of a neuron in response to a stimulus. Left: Noise correlations.
Each blue point refers to the neural response on a distinct trial for a single stimulus (depicted
to the right as an image). Pink point denotes the mean response across trials. The blue
points across trials exhibit a correlation in the neural space, with magnitude given by 0.4
(covariance ellipse depicted in red). This correlation is the noise correlation. Right: Signal
correlations. Each pink point denotes the mean response to a distinct stimulus (depicted
to the right as images). The mean responses exhibit a correlation in the neural space, with
magnitude given by −0.7 (covariance ellipse depicted in blue). This is the signal correlation.

practical limit on the number of neurons in a cortical microcircuit coding for a particular
stimulus, and sets an upper bound for coding, psychophysical, and behavioral capacity.

A toy example serves to concretely demonstrate the phenomenon of correlated variability.
Consider the simple case of two neurons. We examine their responses in the neural space,
where each axis denotes one neuron’s response (Fig. 1.1). On repeated presentations of
the same stimulus, the neural responses between the pair of neurons are correlated. The
exact value of this correlation is referred to as the noise correlation (Fig. 1.1: red covariance
ellipse). At the same time, we can define a signal correlation, or the correlation amongst the
average neural responses to a variety of stimuli (Fig. 1.1: right). The relationship between
the signal and noise correlation is important from a theoretical perspective, and will be
discussed in the following section.

Thus far, we have used various terminology to refer to second-order structure in the
variability of neural activity, including “noise correlations,” “shared variability,” and “corre-
lated variability.” In this thesis, we will largely refer to it as correlated variability. Correlated
variability is largely a descriptive term, whereas “noise correlations” presumes that the un-
derlying variability is “noise,” while “shared variability” can be used more generally than
second-order structure. We only use the term “noise correlations” when referring to the
quantity describing the correlation in the variability (i.e., as a specific number, as done in
Fig. 1.1). Furthermore, we use “shared variability” when explicitly defined and appropriate.
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A landmark theoretical study followed the work of Zohary et al., examining the role of
correlated variability in a population code [2]. Abbott and Dayan grounded their analysis
in the Fisher information, an information theoretic quantity that measures the ability of a
representation r = f(x) to reconstruct some observable quantity x [53]. Using the Fisher
information, they assessed the strength of a population code, analytically, under various
configurations of correlated variability. Abbott & Dayan were able to reproduce the satu-
rating behavior observed by Zohary et al. in the Fisher information for positive correlated
variability. They additionally scenarios in which the presence of correlated variability did
not saturate the Fisher information. Even more strikingly, Abbott & Dayan provided cases
where correlated variability improved decoding relative to the case of independent noise.

The work by Abbott & Dayan spurred a long line of theoretical work examining the
implications of correlated variability for neural coding. This work has largely been concerned
with elucidating whether correlated variability improves or harms coding fidelity, both in
the finite-neuron and infinite-neuron case. Additionally, these theoretical analyses have
been accompanied by a robust line of experimental work examining the properties of noise
correlations in various brain regions, behavioral settings, and population sizes [51].

Correlated variability: harmful or beneficial?

We turn to a canonical toy model to better understand why correlated variability can either
improve or harm neural coding. Consider, once again, the neural space of a two neuron
population. This system is presented with two stimuli, s1 and s2, which evoke mean responses
as depicted in Figure 1.2. Given these mean responses, an optimal decoding plane can be
drawn to efficiently reconstruct the stimulus despite the presence of neural variability. In the
case of uncorrelated variability (Fig. 1.2, left) the neural responses overlap across the optimal
decoder, which reduces the accuracy of the decoder. If the variability is positively correlated,
however (i.e., the system exhibits positive noise correlations), then the variability is reshaped
in such a way that it overlaps even more, resulting in reduced decoding performance (Fig. 1.2,
middle). However, if the variability is negatively correlated, i.e., the system exhibits negative
noise correlations, then the variability lies parallel to the optimal decoder (Fig. 1.2, right).
In this case, the coding performance improves relative to the uncorrelated case. Framed in
another way, the relationship between the signal correlations (in this case, it is positive) and
noise correlations informs whether decoding improves due to the correlated variability.

In practice, the situation is more complicated. The correlated variability structure exists
across the entire neural population, not just two neurons. Furthermore, we are not simply
concerned with discriminating between two stimuli, but often many pairwise stimuli existing
on a spectrum. Earlier work, building on that of Dayan & Abbott, found that noise corre-
lations will harm neural coding [181, 175]. More recent work has found that the picture is
complicated, particularly when the population of neurons exhibits diverse tuning [62, 136].
Furthermore, correlated variability exhibits stimulus-dependence [92], which may improve
neural coding in early sensory areas such as retina [227, 66]. Overall, the general conclusion
is that correlated variability may have varying impacts on neural coding depending on its
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Figure 1.2: Correlated variability can improve or harm decoding depending on its
structure. Each axis denotes the response of a neuron in the two-neuron population. Blue
points denote mean responses to stimuli s1 and s2. Diagonal line depicts the optimal decoder
given the mean firing rates. Left: Uncorrelated variability results in neural responses that
may overlap trial-to-trial. Middle: Positive noise correlations reshape the variability to
harm decoding relative to the uncorrelated case, by increasing the overlap. Right: Negative
noise correlations improve decoding by reshaping variability to lie parallel to the decoder.

structure, relationship with the tuning properties of the neural population, and brain region
in which it occurs.

An important point here is that “harmful” or “beneficial” must be interpreted in relative
terms. That is, when we ask whether correlated variability is harmful or beneficial for neural
coding, there is an implicit alternative variability structure to which we are comparing. This
can be thought of as the null model. If we are comparing to the null model of no variability,
then obviously correlated variability will always be harmful – we would rather have no
variability then any at all, whether it is correlated or not. In Figure 1.2, we are implicitly
comparing to the null model of uncorrelated noise, where the variances of the neural activity
are kept the same, but the off-diagonal covariance structure is destroyed. The question of
whether this is an appropriate null model to compare to is of particular interest in this thesis,
and will be explored more deeply in Chapter 3.

Measuring the strength of a neural code

Thus far, we have not precisely defined “the strength of a neural code” beyond stating quan-
tities that past authors have examined. Since the neural code provides some representation
of the external stimulus, information theory is well-suited to assessing the fidelity of a neural
code. It provides a rich set of tools by which the amount of “information” about the stimulus
is captured in a population, and thus has served as the foundation for much of the theoretical
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analyses on correlated variability and neural coding.
The predominant measure used to evaluate a neural code in the correlated variability

literature is the Fisher information. The Fisher information is framed in terms of decoding:
it sets a limit by which the readout of a population code can determine the value of the
stimulus. Formally, it sets a lower bound to the variance of an unbiased estimator for the
stimulus. Framed in terms of neural code, the Fisher information of a representation r = f(s)
quantifies how well the stimulus s can be decoded given the representation. Specifically, for
any estimator ŝ that depends on the representation r, the variance of that estimator is lower
bounded by the Fisher information:

var(ŝ) ≥ 1

IF (s)
. (1.1)

Equation (1.1) is known as the Cramer-Rao bound. While the Fisher information provides
a lower bound to the variance of any unbiased estimator, there may not exist an estimator
that saturates the bound.

The Fisher information is given by the variance of the score, which is the derivative of
the log-representation with respect to the stimulus [53]. Define the probability density of
the representation, dependent on the stimulus s, as p(r; s). Then, the Fisher information is

IF (s) = E

[(
∂

∂s
log p(r; s)

)2
∣∣∣∣∣ s
]

(1.2)

=

∫ (
∂

∂s
log p(r; s)

)2

p(r; s)ds. (1.3)

The Fisher information can alternatively be written as a second derivative of the score:

IF (s) = −E
[
∂2

∂s2
log p(r; s)

∣∣∣∣ s
]
. (1.4)

In practice, the Fisher information is often analytically intractable. In the case where the
representation takes on a Gaussian noise model, where p(r; s) can be described as a Gaussian
with mean f(s) and covariance Σ(s), the Fisher information takes on the form

IF (s) =
∂f(s)

∂s

T

Σ−1(s)
∂f(s)

∂s
+ Tr

[
Σ−1(s)Σ′(s)Σ−1(s)Σ′(s)

]
. (1.5)

When the covariance is stimulus-independent, the second term vanishes, and the expression
reduces to the linear Fisher information (LFI):

ILFI(s) =
∂f(s)

∂s

T

Σ−1(s)
∂f(s)

∂s
(1.6)

The LFI serves as a lower bound for the Fisher information and thus is a useful proxy
when the Fisher information is challenging to calculate analytically. Furthermore, the LFI
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comes with its own decoder – the locally optimal linear estimator [106] – which serves as its
namesake.

The linear Fisher information is the predominant measure used in correlated variability
analyses. It is favored for several reasons. First, it describes the strength of a neural
code from the perspective of decoding, which is desirable in correlated variability settings.
Furthermore, it is easy to calculate, is often a good lower bound for the Fisher information,
and comes with a decoder of the representation [216]. Thus, we know that a neural code with
corresponding Fisher information could actually achieve the prescribed decoding variance
with a simple linear estimator. Lastly, the linear Fisher information can be analogized
to a signal-to-noise ratio, where the signal, or discriminability (i.e., the derivative of the
tuning curve) is scaled according to the inverse covariance matrix. Thus, its form is easily
interpretable.

Another measure of interest is the Shannon mutual information. The mutual information
quantifies the reduction in uncertainty of one random variable given knowledge of another.
In the context are neural coding, we are interested in quantifying how much knowledge of the
neural representation r reduces uncertainty about the stimulus s. The mutual information,
then, is defined as

I[s, r] =

∫
dsdr p(s, r) log

(
p(s, r)

p(s)p(r)

)
. (1.7)

The mutual information is one of the foundational results of information theory, and likely
the quantity of highest interest due to its desirable properties. However, it is notoriously
difficult to calculate, either analytically or numerically. This holds especially true in the high-
dimensional neural context. Thus, mutual information is not often explored in the context
of correlated variability, since estimating it from data would require an extraordinarily large
number of samples given the size of the population. However, it has been used in some
theoretical analyses, and we return to it in Chapter 2.

Differential correlations limit information

A substantial portion of the theoretical work examining the impact of correlated variability
on a neural code has been concerned with the scaling properties of information as a function of
population size. This interest is rooted in the efficiency of information processing throughout
cortex. Animal behavior on tasks is not perfect, which implies that the total amount of
information about the stimulus is finite (Fig. 1.3). If early sensory areas, such as V1, can
continually add information as a function of population size, this implies that downstream
processing loses much information through suboptimal computation (Fig. 1.3: red line). If,
instead, the information saturates, but at a value much higher than the information available
in the behavior, then downstream processing is inefficient, but less so than the unsaturated
case (Fig. 1.3: purple line). At the other extreme, if information saturates at a low value,
close to that of behavior, this implies that neural systems are limited at the early sensory
input, and downstream processing is efficient (Fig. 1.3: blue line).
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The question, then, becomes: does correlated variability limit the growth of information
in a population, as Zohary et al. found? If so, what is the structure of such information-
limiting variability? This question was answered by a landmark paper by Moreno-Bote et
al. [128]. They identified a particular structure of correlations – differential correlations –
whose presence in the covariance structure of the neural population will cause the information
to saturate as a function of the number of neurons. Differential correlations take on the form
f ′f ′T , where f = f(s) is the mean response of the neural population as a function of the
stimulus (i.e., the tuning curves). Specifically, the covariance matrix Σ(s) must take on the
form

Σ(s) = Σ0(s) + f ′(s)f ′(s)T (1.8)

where Σ0(s) is a positive semi-definite matrix. Moreno-Bote et al. demonstrate that the
differential correlations are the only correlations that can saturate the linear Fisher informa-
tion. However, this holds only for rank-1 correlations (i.e., outer products) and only for the
linear Fisher information as the measure of interest.

The form of differential correlations clearly motivates their name, due to the derivative
in the outer product. A geometric viewpoint, however, provides a deeper understanding
to why they take on their particular form. Differential correlations contain a direction in
the covariance eigenspectrum that aligns with the derivative of the tuning curve. Why
should such a direction saturate information? This is variability that lies along the stimulus
manifold – i.e., variability that causes the stimulus to take on a different value. There is
nothing a population can do to rid of variability that mimics a change in the stimulus. Adding
neurons to the population will lead to decreasing gains in information, causing saturation.
Thus, “shared input noise”, or an noise that is carried by the stimulus into the system, is a
source of differential correlations. Moreno-Bote et al. also specify suboptimal computations
as a source of differential correlations.

Detection of differential correlations is difficult because assessing such scaling properties
requires on the order of thousands of simultaneously recorded neurons. Recent advances
in recording technologies have allowed experimentalists to record at the scales necessary
to detect differential correlations. Multiple papers have come out recently confirming that
differential correlations are prevalent in visual cortex [160, 94] and prefrontal cortex [23],
establishing differential correlations as the dominant source of information saturation in the
brain. Thus, these results imply that the blue line in Figure 1.3 is the most likely scenario
for early sensory areas.

Sources of correlated variability

Thus far, we have motivated our discussions of correlated variability based off its detection
in experiment and implication for decoding in theoretical analyses. However, we have not
discussed why such structure arises in the first place, nor its biophysical sources. The mag-
nitude of correlated variability can be large, depending on the brain region (correlations up
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Figure 1.3: Scaling of information in early sensory areas relative to behavioral
performance. Image taken from [127].

to 0.5 in some recordings) [51], implying that such structure could not arise simply due to
chance. However, there is no single source of correlated variability that can easily explain
such observations. Broadly, however, correlated variability can be thought of as arising from
true variability sources (i.e., biological noise) [64] and recurrent dynamics in cortex that are
modulated by state dependence [60].

There are variety of “true” noise sources in the brain, including shot noise in the retina,
channel noise, stochastic synaptic vesicle release, thermal fluctuations, and others [64]. Many
of these noise sources can be thought of as “private variability,” or inherent to single neu-
rons. However, to downstream neurons that often receive overlapping input from upstream
neurons, this private variability becomes their “shared variability” [174]. This, in combina-
tion with common signal arising from the stimulus, or other computations, is a source of
correlated variability in neural circuits. However, the stimulus and biological noise are not
the only contributions to neural activity. Indeed, neural activity can be modulated by global
fluctuations, such as arousal, attentional state, learning, task engagement, and others [60].
Thus, particularly in downstream processing, correlated variability is significantly impacted
by recurrent dynamics.

As stated in the prior section, differential correlations are caused by shared input noise
and suboptimal computations. This is well understood in the case of shared input noise:
any noise carried by the stimulus cannot be averaged away, and thus will lead to information
saturation [96]. Suboptimal computations can be understood broadly: if the algorithm by
which a neural circuit performs a certain computation is incorrect, then information cannot
increase without bound [28]. However, the manner in which suboptimal computations can
arise on a mechanistic level via extraneous input or other upstream noise sources has not
been explored fully. For example, common noise, or noise that is a shared input, but can be
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manipulated by features of the neural circuit such as synaptic weighting, is also a prominent
feature of neural systems, and can induce correlated variability. We explore how common
noise impacts correlated variability in Chapter 2.

Correlated variability in phenomenological models of neural
activity

Since correlated variability is a pervasive phenomenon in neural activity, its role is important
to assess in the fitting of phenomenological models of neural activity. Generally, our goal
is to attempt to relate important features of neural activity – such as external stimuli and
functional coupling – to the generation of neural activity. We typically do this via a prob-
abilistic model, which can capture some degrees of freedom in the neural activity, leaving
the remaining variability to the stochastic component of the model. Then, when the models
are fit to the data, their parameters can be interpreted to gain insight into the underlying
biological processes that generated the data. The degree to which the assumptions about
the controlled degrees of freedom align with reality affects how accurate the model is, and
therefore the degree to which it provides accurate scientific conclusions. If correlated vari-
ability is not modeled explicitly, or the inference procedure is not robust to its presence, we
may obtain biased parameter estimates, making the model unreliable.

Correlated variability is often neglected in such phenomenological models. Typically, it is
not a phenomenon of interest, either because it is not relevant for the task at hand, or because
introducing it into the model would impede parameter inference. Thus, building models and
inference procedures that are either robust to correlated variability, or capture it explicitly,
is necessary to ensure that we extract correct scientific conclusions from our models. For
example, we consider inference procedures that explicitly consider stability as a criteria
of importance (i.e., they are stable to the variability inherent in the data) in Chapter 4.
Such inference procedures are more likely to give accurate parameter estimates, even when
correlated variability exists in the data. On the other hand, we also consider modeling
the correlated variability explicitly by treating it as an unobserved source of variability in
Chapter 5. By modeling the correlated variability explicitly, we obtained different systems
neuroscience conclusions about the datasets we examined.

1.3 Summary of Results

Heterogeneous synaptic weighting improves neural coding in the
presence of common noise

The study of information-limiting correlations by [128] was landmark in its identification of
the exact structure of correlated variability that produces information saturation in neural
populations. The authors called this correlated variability differential correlations, gave
its analytic form, and the conditions under which it may arise: shared input noise and
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suboptimal computations. Differential correlations almost surely arise in neural populations
due to the unavoidable fact that the stimulus will carry its own noise into the system, which
qualifies as a form of “shared input noise.” However, the authors did not discuss in further
detail other conditions in which differential correlations may arise.

Downstream excitatory neurons can receive up to thousands of inputs, some of which may
serve as a representation of the stimulus, while others may be extraneous input not relevant
for decoding. It is not practical for the neuron to zero out the extraneous input, because
such input may be relevant on another trial or serve other downstream computation. Thus,
this extraneous input, for purposes of decoding the stimulus, is a “noise source.” However, it
is not “shared input noise” as Moreno-Bote et al. envision it, because it can be manipulated
by the neuron via its synaptic weighting. We call such noise sources “common noise.” How
do common noise sources generate correlated variability, impact decoding, and fit into the
theory of differential correlations? This project sought to answer these questions.

We examined common noise in a simple linear-nonlinear model and assessed the net-
works decoding ability under various synaptic weight configurations. We found that diverse
synaptic weighting improves neural decoding in the presence of a common noise source, even
if the weighting amplifies the common noise. On the other hand, homogeneous synaptic
weighting that does not amplify the common noise will induce differential correlations. We
also found that, in the nonlinear regime, such improvements only hold up to a certain level
of heterogeneity, beyond which it produces worse coding performance. Lastly, we charac-
terized how the relationship between private variability and correlated variability impacts
the optimal amount of synaptic heterogeneity. Together, our results shed light on how cor-
related variability can be induced via common noise sources, characterizes the structure of
this variability, and assesses its impact on neural coding.

Research Narrative

This project began largely as exploratory work inspired by Moreno-Bote et al.’s differential
correlations paper [128]. We began by attempting to induce differential correlations in a very
simple linear-nonlinear network. Since Moreno-Bote et al. claimed that shared input noise
would induce differential correlations, we added a noise term as an input to the network.
Crucially (and somewhat naively), the noise term was allowed to be weighted by the network.
This can be seen as a somewhat odd choice, as noise terms are not thought to be manipulated
by a system. But when we found that the Fisher information improved when the noise was
weighted more heavily, we were surprised enough to keep investigating.

We interpreted the initial results as synaptic weighting preventing differential correla-
tions. We presented these results, along with this understanding of it, at Cosyne. However,
we received criticism of this interpretation, particularly by the authors of the differential
correlation paper. They argued that “shared input noise” cannot be manipulated by the
system, and thus our network had not “prevented” differential correlations. Ultimately, our
results were interesting, but required reframing in order for the community to find them
interesting.
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The fundamental result of the paper – that heterogeneous synaptic weighting improves
neural coding in the presence of common noise – was obtained within a few weeks of the
initial exploratory research. It took two more years of work to build a coherent narrative
around this result, in particular identifying “common noise” as the biophysical property of
interest, as well as framing the results within the interplay of shared and private variability.
This narrative building shaped additional analyses to perform, which led to the remaining
results of the paper. Lastly, we bolstered our analysis by including additional numerical
experiments examining the mutual information.

Optimal correlated variability is biologically implausible

Studies that examine the benefit or harm of correlated variability in population coding
require a benchmark against which to compare the observed correlated variability structure.
The standard benchmark is the null model with no correlated variability, while retaining
the per-neuron variability. In a covariance matrix, this can be achieved by setting all off-
diagonal components equal to zero. In neural data, this is typically done by shuffling neural
responses across trials. Shuffling maintains the first-order structure (the average responses)
while destroying any second-order structure (pairwise correlations).

Posing the question of whether correlated variability benefits neural coding implies that
observed correlated variability might be an intentional structure of the neural system. That
is, biological systems, by virtue of optimizing their neural activity for decoding, have pur-
posely shaped the observed correlated variability structure. Ultimately, when framed in the
context of efficient coding, this becomes a question of optimality. While the shuffle null
model tests against the benchmark of no correlated variability, it does not speak to whether
correlated variability is optimal, or approaches optimality. Thus, it is possible that corre-
lated variability improves coding relative to no correlations, but is still suboptimal relative to
what could be achievable. Such an observation would weaken the hypothesis that correlated
variability is purposely structured to improve coding fidelity.

Thus, we sought to assess whether correlated variability in neural systems is optimal.
Since the shuffle null model is not sufficient for answering this question, we proposed two
new null models: the rotation null model and the factor analysis null model. Rather than
considering no correlational structure, the rotation null model rotates the covariance matrix
in the neural space. Thus, it preserves the eigenspectrum of the observed neural activity,
but allows it to take any orientation in the neural space. The factor analysis model similarly
rotates components of the observed covariance matrix. However, it relaxes the assumption
that the neural system can rotate the entire covariance matrix, and instead assumes it can
only shape a shared component, while assuming there is a private variability component
inherent to the activity of each neuron.

We found that, across diverse datasets, the rotation and factor analysis null models
suggest that neural activity is highly suboptimal. Furthermore, the sub-optimality worsens
with increasing circuit size. This is in contrast to the shuffle null model, which suggests
that neural circuits are highly optimal, or close to optimal, at lower population sizes. To
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better understand the surprising result that neural populations are highly suboptimal, we
compared the structure of observed correlated variability to that of the optimal correlated
variability structure under each null model.

We assessed the observed correlated variability structure using two measures of biological
plausibility: the marginal distribution of the neural activity and the Fano factor. In the
former, we assessed whether the optimal marginal distributions of the neural activity was
similar to that of the observed marginal distributions. In the latter, we compared the optimal
Fano factors to the observed Fano factors. We found that, in both cases, the observed neural
activity was closest to optimal when the optimal Fano factor and marginal distributions
were achievable. When they were not – e.g., it would result in negative firing rates, or Fano
factors that were biologically implausible – then the neural activity was highly suboptimal.

Together, our results demonstrate that neural circuits may be biophysically limited in
achieving optimal correlated variability arrangements. Thus, while correlated variability
may be structured in a way to improve neural coding relative to independent variability, it
is still limited to being structured in a highly suboptimal fashion.

Research Narrative

This project began when Jesse Livezey made the observation that shuffling neural responses
may be a poor null model for answering questions about optimality. Instead, rotating the
covariance would be a more suitable null model. He also suggested that alternative measures
other than the linear Fisher information – such as the symmetric KL-divergence – could be
better suited for decoding scenarios in which the underlying stimulus was categorical, rather
than continuous. Thus, the initial version of this project considered both new null models
and new metrics for examining correlated variability.

The initial results demonstrating that the rotation null model indicated the sub-optimality
of the neural code were obtained by Jesse relatively early in the project. They, along with
some theoretical predictions about the optimal orientation of the symmetric KL-divergence,
were presented at Cosyne in 2019.

Crafting a narrative for this observation was difficult, because the observed neural data
performed so poorly according to the null model. It took a couple more years to flesh out
the results on additional datasets (with the same findings) in addition to performing large
scale analyses that demonstrated that our initial observations were sound. Furthermore, we
realized that in the cases where the sub-optimality was particularly bad, the optimal results
provided by the rotation null model didn’t really make sense biologically. So, the narrative
became apparent: optimal noise correlations are biologically unattainable. Thus far, the set
of results was becoming rather large, and we decided to remove the exploration of categorical
stimuli as a set of main results, since they no longer fit thematically.

At the same time, Jesse suggested an additional null model – the factor analysis null
model – which was more believable null model than the rotation null model, and provided
similar results. This fleshed out both the narrative and results of the project, and we were
quickly able to finish the results and figures. At the time of this writing, Jesse has suggested
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an additional null model – one that provides equal density for any off-diagonal correlation
structure – and we are currently attempting to fit this null model in our pipeline.

Improved inference in coupling, encoding, and decoding models
and its consequence for neuroscientific interpretation

A central goal of systems neuroscience is to understand the relationships amongst constituent
units in neural populations, and their modulation by external factors, using high-dimensional
and stochastic neural recordings. Parametric statistical models (e.g., coupling, encoding, and
decoding models), play an instrumental role in accomplishing this goal. However, extracting
conclusions from a parametric model requires that it is fit using an inference algorithm
capable of selecting the correct parameters and properly estimating their values. This is
particularly difficult in neural data, which possesses an abundance of structure that may not
be captured in a phenomenological model. Thus, it is crucial that an inference procedure
is robust to additional structure it may not explicitly model in order for a model to be
scientifically useful.

Correlated variability is pervasive in neural datasets. Standard systems neuroscience
models, including coupling, tuning, and decoding models, do not generally capture the
structure of correlated variability present in the data. In most cases, modeling it explic-
itly complicates model fitting. Thus, it is generally more worthwhile to fit a simpler model,
but use an inference procedure that is stable to the data generating process.

Traditional approaches to parameter inference have been shown to suffer from failures in
both selection and estimation. The recent development of algorithms that ameliorate these
deficiencies raises the question of whether past work relying on such inference procedures have
produced inaccurate systems neuroscience models, thereby impairing their interpretation.

We used algorithms based on Union of Intersections, a statistical inference framework
based on stability principles, capable of improved selection and estimation. We fit func-
tional coupling, encoding, and decoding models across a battery of neural datasets using
both UoI and baseline inference procedures, and compared the structure of their fitted pa-
rameters. Across recording modality, brain region, and task, we found that UoI inferred
models with increased sparsity, improved stability, and qualitatively different parameter dis-
tributions, while maintaining predictive performance. We obtained highly sparse functional
coupling networks with substantially different community structure, more parsimonious en-
coding models, and decoding models that relied on fewer single-units. Together, these results
demonstrate that improved parameter inference, achieved via UoI, reshapes interpretation
in diverse neuroscience contexts.

Research Narrative

The Union of Intersections (UoI) framework had already been developed prior to this project’s
onset. We needed to use UoI early on in the triangular model project (see below) to perform
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selection in some early synthetic experiments. A gap in the development of UoI was a pa-
per that explicitly explored its application to diverse neuroscience datasets. Since we were
exploring tuning and coupling models in the triangular model project, this was a natural
project to explore in parallel. Thus, this project largely consisted of gathering a wide array
of datasets, parsing them, fitting models with UoI, and comparing to baseline procedures.

At the same time, this project pushed forward the development of the UoI script into a
full software package. Thus, our paper on PyUoI, was finished in parallel to this project. We
developed additional fitting procedures, including UoILogistic and UoIPoisson. This allowed us
to proceed with fitting additional neuroscience models, such as spiking coupling models and
decoding models. Once we obtained fitted models, we had to explore how to interpret the
models, which included a range of secondary analyses.

The narrative of this project waffled between a strict methods paper on UoI applied
to neural data and a more general paper focusing on improving inference in parametric
neuroscience models. The idea of the second narrative was that an inference procedure
that exhibits improved inference will ultimately change the neuroscience interpretation, and
assessing these changes in interpretation is important. It took a couple submissions to
different journals to eventually pin down the final narrative, which was a largely methods
based paper (it was accepted to Journal of Neuroscience Methods), but with a focus on the
interpretation of the fitted models.

Overall, this project (other than PyUoI) was the most straightforward in its research
narrative. We set out with a clear research goal, and the end product looked similar to what
we expected it might be. As is often the case, many of the major results were obtained
relatively quickly. It took longer to sort out the details of the narrative (i.e., focusing on
interpretation), which became more clear as the results and figures solidified.

Identifying and mitigating statistical biases in neural models of
tuning and functional coupling

Phenomenological models of neural activity allow us to assess how important neurobiological
factors relate to the generation of neural activity. In systems neuroscience, two fundamental
factors of interest include tuning, or how neurons respond to external stimuli, and functional
coupling, or how neurons respond to the activities of neighboring neurons. These two factors
can be thought of as external, or exogenous to the neural system, and internal, or endogenous
to the neural system. Statistical models, such as generalized linear models, have been used
to describe neural responses with tuning and functional coupling, achieving high predictive
accuracy while using fitted parameters to provide insight into which factors are important and
their relative importance. Furthermore, past studies have demonstrated that the inclusion of
coupling decreases the magnitudes of the tuning parameters. This effect has been interpreted
as an “explaining away” of tuning, i.e., a decrease in the relative importance of external
factors for the generation of neural activity.

However, extracting conclusions about neural activity from model parameters requires
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that their estimates are unbiased. For example, models that incorporate both tuning and
coupling fail to account for unobserved activity, which is a source of correlated variability in
neural activity. Thus, not only do these models not reproduce the phenomenon of correlated
variability, but their parameter estimates are likely biased due to model incompleteness.
Such parameter biases may jeopardize past conclusions about neural activity.

In this project, we proposed the triangular model, a latent-variable model of neural
activity that is more complete than the tuning and coupling model. In particular, it models
unobserved activity using a low-dimensional latent state, which reproduces the phenomenon
of noise correlations. Additionally, it directly models the data generation process of the
coupling neurons, allowing tuning to influence the “target” neuron directly and indirectly
via the coupled neurons.

We demonstrated that parameter estimates obtained by fitting the tuning and coupling
model to data generated from the triangular model are biased due to the fact that the un-
observed activity is not modeled. We characterized this bias as the simultaneous equations
bias, or an omitted variables bias, previously studied in the econometrics literature. We fur-
ther demonstrated that the triangular model is structurally non-identifiable, where infinite
parameter configurations exist for each value of the likelihood. Both of these issues impede
interpretability: the simultaneous equations bias prevents us from obtaining accurate pa-
rameter estimates, while structurally non-identifiability prevents us from having a unique
parameter set for an optimized model.

We proposed an inference procedure that solves both issues in the triangular model.
First, we show that inducing sufficient sparsity – where some of the parameters are exactly
zero – mitigates the identifiability bias. Second, using the expectation-maximization algo-
rithm, we develop an inference procedure that fits the triangular model to the data, thereby
sidestepping the simultaneous equations bias. This inference procedure can either induce
sparsity on its own by imposing `1 penalties on the relevant parameters, or utilize a selection
profile obtained by an alternative method. We demonstrate that our inference procedure is
capable of unbiased estimation in synthetic data. Furthermore, we characterize the scenar-
ios in which inference breaks down, shedding light on parameter inference in the triangular
model at large.

Lastly, we applied our inference procedure to multiple neural datasets, finding that it
resulted in noticeable changes relative to a tuning and coupling model. Most strikingly,
it elevated the tuning modulation relative to the coupling model, implying that some of
the previously observed “explaining away” may have due to the simultaneous equations
bias. At the same time, it did not elevate tuning modulations to that of the tuning model
alone, implying that coupling, and unobserved activity, does explain away tuning to some
degree. Together, our results shed light on the simultaneous equations bias and structural
non-identifiability in the parametric models for systems neuroscience.
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Research Narrative

This project was motivated by a paper examining models of tuning and functional coupling
[188]. In this paper, Stevenson et al. find that the inclusion of functional coupling in a
tuning model “explains away” tuning. That is, by combining both tuning and coupling
features into a single model, the relative importance of tuning for predicting neural activity
is downplayed, since the neighboring neurons shared some of that explanatory power. The
“relative importance” was assessed by the magnitudes of the fitted parameter values.

Kris Bouchard had two concerns with this paper. First, the “tuning and coupling” model
used by the authors neglected to consider that tuning influences both the “target” neuron
and “non-target” neuron jointly (i.e., their graphical model was incomplete). Second, they
enforced sparsity by applying an `1 penalty to the parameters of the problem, which is known
to lead to shrinkage. Thus, it is unclear whether some of the “explaining away” may have
been artificial due to shrinkage. These critiques require a new graphical model as well as a
new inference procedure, which was the starting point for the project.

We began by generating synthetic data from the triangular model (though we did not
call it that at the time) in various parameter regimes to assess the parameter fits. At some
point, Kris had the idea of inducing correlated variability in the triangular model, by having
the error terms be positively correlated with each other. This led to noticeable biases in the
tuning parameters, particularly in the downward direction. This led to the key, motivating
observation: the decrease in tuning parameters observed in the previous paper could simply
be a byproduct of the bias that we were observing.

We found that this bias was studied by the econometrics community. Initially, inspired
by some approaches in the econometrics literature, we developed an ad-hoc procedure called
Iterated Two-Stage Factor Analysis (ITSFA), that seemed to perform well in correcting for
the bias in synthetic data. We also applied ITSFA to neural data, finding elevation of tuning
modulations in some cases, and not in others. We hypothesized that the heterogeneity in
tuning modulation changes corresponded to the distribution of noise correlations, with some
initial evidence.

While our work was being reviewed at NeurIPS (and eventually rejected), we began
developing an expectation-maximization approach to perform parameter inference in the
problem. This required recasting the triangular model as a latent variable problem (it
initially was not quite so), and performing a large amount of algebra to develop the rules.
We found that, when implemented, EM didn’t quite work, which puzzled us. This led to our
discovery that the triangular model was not identifiable – that is, we analytically derived
a transformation that maintained the log-likelihood for any parameter configuration. The
structural non-identifiability was challenging for inference, because during optimization, we
could end up anywhere on an identifiability family.

Our initial approach to handle this was to develop a “constraint” that we could apply to
the parameter fits to obtain a desirable solution. The intention was that we would perform
parameter optimization, apply the constraint as a post-hoc procedure, and end up with a
final parameter solution. The constraint would satisfy a desirable property about the neural
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system. We developed a whole suite of constraints – some that worked well, and some that
didn’t. At the end of the day, though, there was no constraint that worked exceptionally
well, nor were they desirable or flexible enough to apply outside of the triangular model
context.

At some point, we realized that the non-zero parameters were not preserved under an
identifiability transform. Thus, having a sparse set of parameters could serve as the desir-
able constraint. We were able to perform some experiments initially that supported this
hypothesis, and it was a desirable, general constraint because of our work described in the
previous section. It wasn’t until we were able to prove the conditions under which sparsity
could alleviate the identifiability issue that we were confident that we could proceed forward.

To utilize the sparsity constraint, we needed an inference procedure capable of setting
parameters exactly equal to zero during optimization. Our initial approach was to simply
include an `1 penalty on the EM optimizer. The tricky aspect was that we needed two
penalties: one for the tuning parameters, and one for the coupling parameters. Building,
scaling, and testing this optimizer took a large amount of time. Furthermore, running it on
a large scale synthetic experiment produced middling results, and it broke down easily in
more difficult parameter inference regimes.

It was at this point that it became clear that the selection profile was very important
in the problem, with dramatic impacts on the values of the estimated parameters. This
motivated a change of how we formulated the inference procedure: as in the UoI case, we
needed to separate selection and estimation. We had previously developed several ad-hoc
selection procedures. Thus, on the synthetic side, we could examine how a wide range of
selection profiles perform in terms of triangular model inference, relative to the tuning and
coupling model. This project is currently still in progress at the time of this writing.
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Chapter 2

Heterogeneous synaptic weighting
improves neural coding in the
presence of common noise

Chapter Co-authors
Jesse A. Livezey

Michael R. DeWeese

Neural circuits receive thousands of common inputs, some of which may be extraneous to
the stimulus at hand. These noise sources, which we call common noise, can induce corre-
lated variability, particularly through how they are shaped by features of neural computation
such as synaptic weighting. Their impact on correlated variability and the coding fidelity
of a neural population is not well understood. How do these common noise sources interact
with synaptic weighting to produce correlated variability, and thus impact decoding perfor-
mance? More simply, can neural circuits overcome common noise sources via their synaptic
weighting? This chapter seeks to answer these questions.

2.1 Introduction

Variability is a prominent feature of many neural systems – neural responses to repeated
presentations of the same external stimulus will typically vary from trial to trial [174]. Fur-
thermore, neural variability often exhibits pairwise correlations, so that pairs of neurons are
more (or less) likely to be co-active than they would be by chance if their fluctuations in ac-
tivity to a repeated stimulus were independent. These so-called “noise correlations” (which
we also refer to as “shared variability”) have been observed throughout the cortex [12, 51],
and their presence has important implications for neural coding [226, 2].

If the activities of individual neurons are driven by a stimulus shared by all neurons
but corrupted by noise that is independent for each neuron (so-called “private variability”),
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then the signal can be recovered by simply averaging the activity across the population [2,
119]. If instead some variability is shared across neurons (i.e., there are noise correlations),
naively averaging the activity across the population will not necessarily recover the signal,
no matter how large the population [226]. An abundance of theoretical work has explored
how shared variability can be either beneficial or detrimental to the fidelity of a population
code (relative to the null model of only private variability amongst the neurons), depending
on its structure and relationship with the tuning properties of the neural population [226, 2,
217, 181, 13, 52, 45, 62, 128, 136].

One general conclusion of this work highlights the importance of the geometric relation-
ship between noise correlations and a neural population’s signal correlations [12, 84]. To
illustrate this, the mean responses of a neural population across a variety of stimuli (i.e.,
those responses represented by receptive fields or tuning curves) can be examined in the
neural space (Fig. 2.1a, black curves). The correlations amongst the mean responses for dif-
ferent stimuli specify the signal correlations for a neural population [12]. Private variability
exhibits no correlational structure, and thus its relationship with the signal correlations is
determined by the mean neural activity and the individual variances (Fig. 2.1a, left). Shared
variability, however, may reshape neural activity to lie, for example, orthogonal to the mean
response curve (Fig. 2.1a, middle). In the case of Figure 2.1a, middle, neural coding is im-
proved (relative to private variability), because the variability occupies regions of the neural
space that are not traversed by the mean response curve [126]. Shared variability can also
harm performance, however. Recent work has identified differential correlations – those that
are proportional to the products of the derivatives of tuning functions (Fig. 2.1a, right) –
as particularly harmful to the performance of a population code [128]. While differential
correlations are consequential, they may serve as a small contribution to a population’s to-
tal shared variability, leaving “non-differential correlations” as the dominant component of
shared variability [106, 127, 93].

The sources of neural variability – and their respective contributions to the private and
shared components – will have a significant impact on shaping the geometry of the popu-
lation’s correlational structure, and therefore its coding ability [37]. For example, private
sources of variability such as channel noise or stochastic synaptic vesicle release could be
averaged out by a downstream neuron receiving input from the population [64]. However,
sources of variability shared across neurons – such as the variability of pre-synaptic spike
trains from neurons that synapse onto multiple neurons – would introduce shared variability
and place different constraints on a neural code [174, 96]. In particular, differential cor-
relations are typically induced by shared input noise (i.e., noise carried by a stimulus) or
suboptimal computations [29, 96].

Past work has examined the contributions of private and shared sources to variability in
cortex [8, 59]. Specifically, by partitioning sub-threshold variability of a neural population
into private components (synaptic, thermal, channel noise in the dendrites, and other local
sources of variability) and shared components (variability induced by afferent connections),
it was found that the private component of the total variability was quite small, while the
shared component can be much larger (Fig. 2.1b and c). Thus, neural populations must
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Figure 2.1: (a) The geometric relationship between neural activity and shared variability.
Black curves denote mean responses to different stimuli. Variability for a specific stimulus
(black dot) may be private (left), shared (middle), or take on the structure of differential
correlations (right). The red arrow represents the tangent direction of the mean stimulus
response. (b) Schematic of the types of variability that a neural population can encounter.
The variability of a neural population contains both private components (e.g., synaptic
vesicle release, channel noise, thermal noise, etc.) and shared components (e.g., variability
of pre-synaptic spike trains, shared input noise). Shared variability can be induced by the
variability of afferent connections (which is shared across a postsynaptic population) or
inherited from the stimulus itself. Furthermore, shared variability is shaped by synaptic
weighting. (c) Estimates of the private variability contributions to the total variability of
neurons (N = 28) recorded from auditory cortex of anesthetized rats. Diagonal line indicates
the identity. Figure reproduced from [59].

contend with the large shared component of a neuron’s variability. The incoming structure
of shared variability and its subsequent shaping by the computation of a neural population
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is an important consideration for evaluating the strength of a neural code [228].
Moreno-Bote et al. demonstrated that shared input noise is detrimental to the fidelity

of a population code [128]. Here, we instead examine sources of shared variability which do
not necessarily result in differential correlations (i.e., they do not appear as shared input
noise) and thus can be manipulated by features of neural computation such as synaptic
weighting. We refer to these noise sources as “common noise” to distinguish them from the
aforementioned special case of “shared input noise” [203, 110]. For example, a common noise
source could include an upstream neuron whose action potentials are “noisy” in the sense
that they are unimportant for the computation of the current stimulus. Common noise,
because it is manipulated by synaptic weighting, can serve as a source of nondifferential
correlations (e.g., Fig. 2.1a, middle), thereby having either a beneficial or harmful impact on
the strength of the population code. We aim to better elucidate the nature of this impact.

We consider a linear-nonlinear architecture [144, 97, 151] and explore how its neural rep-
resentation is impacted by both a common source of variability and private noise sources
affecting individual neurons independently. This simple architecture allowed us to analyt-
ically assess coding ability using both Fisher information [2, 217, 213, 214], and Shannon
mutual information. We evaluated the coding fidelity of both the linear representation and
the nonlinear representation after a quadratic nonlinearity as a function of the distribution
of synaptic weights that shape the shared variability within the representations [3, 63, 165,
142]. We find that the linear stage representation’s coding fidelity improves with diverse
synaptic weighting, even if the weighting amplifies the common noise in the neural circuit.
Meanwhile, the nonlinear stage representation also benefits from diverse synaptic weighting
in a regime where common noise may be amplified, but not too strongly. Moreover, we found
that the distribution of synaptic weights that optimized the network’s performance depended
strongly on the relative amount of private and shared variability. In particular, the neural
circuit’s coding fidelity benefits from diverse synaptic weighting when shared variability is
the dominant contribution to the variability. Together, our results highlight the importance
of diverse synaptic weighting when a neural circuit must contend with sources of common
noise.

2.2 Methods

The code used to conduct the analyses described in this paper is publicly available on Github
[161].

Network Architecture

We consider the linear-nonlinear architecture depicted in Figure 2.2. The inputs to the
network consist of a stimulus s along with common (Gaussian) noise ξC . The N neurons
in the network take a linear combination of the inputs and are further corrupted by i.i.d.
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Figure 2.2: Linear-nonlinear Network Architecture. The network takes as its inputs a stim-
ulus s and common noise ξC . A linear combination of these quantities is corrupted by
individual private noises ξP,i. The output of this linear stage is then passed through a non-
linearity gi(`) to produce a “firing rate” ri. The weights for the linear stage of the network, vi
and wi, can be thought of as synaptic weighting. Importantly, the common noise is distinct
from shared input noise because it is manipulated by the synaptic weighting.

private Gaussian noise. Thus, the output of the linear stage for the ith neuron is

`i = vis+ wiσCξC + σP ξP,i, (2.1)

where ξP,i is the private noise, vi and wi are the weights, and the common and private noise
terms are scaled by positive constants σC and σP . The noisy linear combination is passed
through a nonlinearity gi(`i) whose output ri can be thought of as a firing rate.

Thus, the network-wide computation is given by

r = g(vs+ wσCξC + σPξP ) (2.2)

where g(`) is an element-wise application of the network nonlinearity.

Measures of Coding Strength

In order to assess the fidelity of the population code represented by ` or r, we turn to the
Fisher information and the Shannon mutual information [53]. The former has largely been
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utilized in the context of sensory decoding and correlated variability [2, 12, 106] while the
latter has been well studied in the context of efficient coding [10, 22, 30, 156].

The Fisher information sets a limit by which the readout of a population code can
determine the value of the stimulus. Formally, it sets a lower bound to the variance of
an unbiased estimator for the stimulus. In terms of the network architecture, the Fisher
information of the representation r (or `) quantifies how well s can be decoded given the
representation. For Gaussian noise models with stimulus-independent covariance, the Fisher
information is equal to the linear Fisher information (LFI):

ILFI(s) =
∂f(s)

∂s

T

Σ−1(s)
∂f(s)

∂s
(2.3)

where f(s) and Σ(s) are the mean and covariance of the response (here r or `) to the stimulus
s. In other cases, the LFI serves as a lower bound for the Fisher information and thus is
a useful proxy when the Fisher information is challenging to calculate analytically. The
estimator for ILFI is the locally optimal linear estimator [106].

The Shannon mutual information quantifies the reduction in uncertainty of one random
variable given knowledge of another

I[s, f ] =

∫
dsdf p(s, f) log

(
p(s, f)

p(s)p(f)

)
. (2.4)

Earlier work demonstrated that the Fisher information provides a lower bound for the Shan-
non mutual information in the case of Gaussian noise [39]. However, more recent work has
revealed that the relationship between the two is more nuanced, particularly in the cases
where the noise model is non-Gaussian [211]. Thus, we supplement our assessment of the
network’s coding ability by measuring the mutual information, I[s, r], between the neural
representation r and the stimulus s. As with the Fisher information, the mutual information
is often intractable, but fortunately can be estimated from data. Specifically, we will employ
the estimator developed by Kraskov and colleagues, which utilizes entropy estimates from
k-nearest neighbor distances [108].

Structured Weights

The measures of coding strength are a function of the weights that shape the interaction of
the stimulus and noise in the network. Thus, the choice of the synaptic weight distribution
impacts the calculation of these quantities. We first consider the case of “structured weights”
in order to obtain analytical expressions for measures of coding strength. Structured weights
take on the form

w =


 1 · · · 1︸ ︷︷ ︸
N/k times

2 · · · 2︸ ︷︷ ︸
N/k times

· · · k · · · k︸ ︷︷ ︸
N/k times



T

. (2.5)
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Specifically, the structured weight vectors are parameterized by an integer k which divides
the N weights into k homogeneous groups. The weights across the groups span the positive
integers up to k. Importantly, larger k will only increase the weights in the vector. Thus,
in the above scheme, increased “diversity” can only be achieved by increasing k, which will
invariably result in an amplification of the signal to which the weight vector is applied. In
the case that k does not evenly divide N , each group is repeated dN/ke times, except the
last group, which is only repeated N−(N−1) · dN/ke times (i.e., the last group is truncated
to ensure the weight vector is of size N).

Additionally, we consider cases in which k is of order N , e.g., k = N/2. Allowing k to
grow with N ensures that typical values for the weights grow with the population size. This
contrasts with the case in which k is a constant, such as k = 4, which sets a maximum weight
value independent of the population size.

Unstructured Weights

While the structured weights allow for analytical results, they possess an unrealistic distri-
bution of synaptic weighting. Thus, we also consider the case of “unstructured weights,” in
which the synaptic weights are drawn from some parameterized probability distribution:

v ∼ p(v; θv); w ∼ p(w; θw). (2.6)

We calculate both information theoretic quantities over many random draws from these
distributions, and observe how these quantities behave as some subset of the parameters θ
are varied. In particular, we focus on the lognormal distribution [90], which has been found
to describe the distribution of synaptic weights well in slice electrophysiology [183, 166].
Specifically, the weights take on the form

w ∼ ∆ + Lognormal(µ, σ), (2.7)

where ∆ > 0. For a lognormal distribution, an increase in µ will increase the distribution’s
mean, median, and mode (Fig. 2.3e, inset). Thus, µ as a parameter acts similarly to k for the
structured weights in that increased weight diversity must be accompanied by an increase in
their magnitude.

2.3 Results

We consider the network’s coding ability after both the linear stage (`) and the nonlinear
stage (r). In other words, the linear stage can be considered the output of the network
assuming each of the functions gi(`i) is the identity. Furthermore, due to the data processing
inequality, the qualitative conclusions we obtain from the linear stage should apply for any
one-to-one nonlinearity.
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Linear Stage

The Fisher information about the stimulus in the linear representation can be shown to be
(see Appendix 2.5 for the derivation)

IF (s) =
1

σ2
P

(σ2
P/σ

2
C) |v|2 + (|v|2|w|2 − (v ·w)2)

(σ2
P/σ

2
C) + |w|2 (2.8)

=
|v|2
σ2
P

(σ2
P/σ

2
C) + |w|2 sin2 θ

(σ2
P/σ

2
C) + |w|2 (2.9)

which is equivalent to the linear Fisher information in this case. In equation 2.9, θ refers to
the angle between v and w. The mutual information can be expressed as (see Appendix 2.5
for the derivation)

I[s, `] =
1

2
log
[
1 + σ2

SIF (s)
]
. (2.10)

For the case the mutual information, we have assumed the prior distribution for the stimulus
is Gaussian with zero mean and variance σ2

S.
Examining equation (2.9) reveals that increasing the norm of v without changing its di-

rection (i.e., changing θ) will increase the Fisher information, while increasing the norm
of w without changing its direction will either decrease or maintain information (since
0 ≤ sin2 θ ≤ 1). Additionally, if v and w become more aligned while leaving their norms
unchanged, the Fisher information will decrease (since sin2 θ will decrease). This decrease in
Fisher information is consistent with the observation that alignment of v and w will produce
differential correlations. If v and w are changed in a way that modulates both their norm
and direction, the impact on Fisher information is less transparent.

To better understand the Fisher information, we impose a parameterized structure on the
weights that allows us to increase weight diversity without decreasing the magnitude of any of
the weights. This weight parameterization, which we call the structured weights, is detailed
in Section 2.2. We chose this parameterization for two reasons. First, we desired a scheme
in which an increase in diversity must be accompanied by an amplification of common noise.
We chose this behavior so that any improvement in coding ability can only be explained
by the increase in diversity, rather than a potential decrease in common noise. Secondly,
we desired analytic expressions for the Fisher information as a function of population size,
which is possible with this form of structured weights.

Under the structured weight parameterization, equations (2.8) and (2.10) can be explored
by varying the choice of k for both v and w (we will refer to them as kv and kw, respectively).
It is simplest and most informative to examine these quantities by setting kv = 1 while
allowing kw to vary, as amplifying and diversifying v will only increase coding ability for
predictable reasons (this is indeed the case for our network) [175, 62]. While increasing kw
will boost the overall amount of noise added to the neural population, it also changes the
direction of the noise in the higher-dimensional neural space. Thus, while we might expect
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that adding more noise in the system would hinder coding, the relationship between the
directions of the noise and stimulus vectors in the neural space also plays a role.

We first consider how the Fisher information and mutual information are impacted by
the choice of kw. In the structured regime, we have

|v|2 = N (2.11)

v ·w =
N

k

k∑

i=1

i =
N(k + 1)

2
(2.12)

|w|2 =
N

k

k∑

i=1

i2 =
N(k + 1)(2k + 1)

6
, (2.13)

which allows us to rewrite equation (2.8) as

IF (s) = IF =
N

2σ2
P

12(σ2
P/σ

2
C) +N(k2 − 1)

6(σ2
P/σ

2
C) +N(2k2 + 3k + 1)

. (2.14)

The form of the mutual information follows directly from plugging equation (2.14) into
equation (2.10).

The analytical expressions for the structured regime reveal the asymptotic behavior of the
information quantities. Neither quantity saturates as a function of the number of neurons,
N , except in the case of kw = 1 (Fig. 2.3a, b). In this regime, increasing the population size
of the system also enhances coding fidelity. Furthermore, both quantities are monotonically
increasing functions of the common noise synaptic heterogeneity, kw (Fig. 2.3c, d), implying
that decoding is enhanced despite the fact that the amplitude of the common noise is mag-
nified for larger kw. Our analytical results show linear and logarithmic growth for the Fisher
and mutual information, respectively, as one might expect in the case of Gaussian noise [39].
These qualitative results hold for essentially any choice of (σS, σP , σC).

In the case of kw = 1, the signal and common noise are aligned perfectly in the neu-
ral representation. Thus, the common noise becomes equivalent in form to shared input
noise. As a consequence, we observe the saturation of both Fisher information and mutual
information as a function of the neural population. This saturation implies the existence
of differential correlations, consistent with the observation that information-limiting corre-
lations occur under the presence of shared input noise [96].

The structured weight distribution described above allows us to derive analytical results,
but the limitation to only a fixed number of discrete synaptic weight values is not realistic for
biological networks. Thus, we utilize unstructured weights, described in Section 2.2, in which
the synaptic weights are drawn from a lognormal distribution. In this case, we estimate the
linear Fisher information and the mutual information over many random draws according to
wi ∼ ∆ + Lognormal(µ, σ2). We are primarily concerned with varying µ, as an increase in
this quantity uniformly increases the mean, median, and mode of the lognormal distribution
(Fig. 2.3e, inset), akin to increasing kw for the structured weights.
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Figure 2.3: Network coding performance of the linear stage representation. Here, the noise
variances are σ2

P = σ2
C = 1. Fisher information is shown on the top row while mutual infor-

mation is shown on the bottom row. (a), (b) Structured weights. Linear Fisher Information
and Mutual Information are shown as a function of the population size, N , across different
levels of weight heterogeneity, kw (indicated by color). (c), (d) Linear Fisher Information
and Mutual Information are shown as a function of weight heterogeneity, kw, for various
population sizes, N . (e), (f) Unstructured weights. Linear Fisher Information and Mutual
Information are shown as a function of the mean of the lognormal distribution used to draw
common noise synaptic weights. Information quantities are calculated across 1000 random
drawings of weights: solid lines depict the means while the shaded region indicates one stan-
dard deviation. Inset: the distribution of weights for various choices of µ. Increasing µ shifts
the distribution to the right, increasing heterogeneity.

Our numerical analysis demonstrates that increasing µ increases the average Fisher infor-
mation and average mutual information across population sizes (Fig. 2.3e, f: bold lines). In
addition, the benefits of larger weight diversity are felt more strongly by larger populations
(Fig. 2.3e, f: different colors).

In the structured weight regime, our analytical results show that weight heterogeneity
can ameliorate the harmful effects of additional information-limiting correlations induced by
common noise mimicking shared input noise. They do not imply that weight heterogene-
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ity prevents differential correlations, as the common noise in this model is manipulated by
synaptic weighting, in contrast with true shared input noise. For unstructured weights, we
once again observe that larger heterogeneity affords the network improved coding perfor-
mance, despite the increased noise in the system. Together, these results show that linear
networks could manipulate common noise to prevent it from causing induced differential
correlations. However, neural circuits, which must perform other computations that may
dictate the structure of the weights on the common noise inputs, can still achieve good
decoding performance provided that the circuits’ synaptic weights are heterogeneous.

Quadratic Nonlinearity

We next consider the performance of the network after a quadratic nonlinearity gi(x) = x2 for
all neurons i. This nonlinearity has been used in a neural network model to perform quadratic
discriminant analysis [142] and as a transfer function in complex cell models [3, 63, 165].
Furthermore, we chose this nonlinearity because we were able to calculate the linear Fisher
information analytically (as an approximation to the Fisher information). See Appendix 5.3
for a numerical analysis with an exponential nonlinearity. However, the mutual information
is apparently not analytically tractable; we performed a numerical approximation using
simulated data.

Linear Fisher Information

An analytic expression of the linear Fisher information is calculated in Appendix 2.5. Its
analytic form is too complicated to be restated here, but we will examine it numerically
for both the structured and unstructured weights. The qualitative behavior of the Fisher
information depends on the magnitude of the common variability (σC) and private variability
(σP ) in a more complicated fashion than the linear stage, which depends on these variables
primarily through their ratio σC/σP . Thus, we separately consider how common and private
variability impact coding efficacy under various synaptic weight structures.

As before, we first consider the structured weights with kv set to 1 while only varying
kw. We start with the special case where σP = σC = 1 (i.e., equal private and common noise
variance). Here, the Fisher information saturates for both kw = 1 and kw = 2, but increases
without bound for larger kw (Fig. 2.4a). We can also consider the case where the structured
weight heterogeneity grows in magnitude with the population size (i.e., kw is a function of
N). In this scenario, the Fisher information is much smaller and saturates (Fig. 2.4a, dashed
lines).

The information saturation (or growth) for various kw can be understood in terms of
the geometry of the covariance describing the neural population’s variability. Information
saturation occurs if the principal eigenvector(s) of the covariance align closely (but not neces-
sarily exactly) with the differential correlation direction, f ′, while the remaining eigenvectors
quickly become orthogonal to f ′ as population size increases [128] (see Appendix 2.5 for
more details). When kw = 1, the common noise aligns perfectly with the stimulus and so
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Figure 2.4: Linear Fisher information after quadratic nonlinearity in a network with struc-
tured weights. (a) Fisher information as a function of population size when σP = σC = 1,
i.e., private and common noise have equal variances. Solid lines denote constant k while
dashed lines denote k scaling with population size. (b) Same as (a), but for a network
where private variance dominates (σP = 5, σC = 1). (c) Normalized fisher information: for
a choice of σP , the Fisher information is calculated for a variety of kw (y-axis) and divided
by the maximum Fisher information (across the kw, for the choice of σP ). For a given σP ,
the normalized Fisher information is equal to one at the value of kw which maximizes decod-
ing performance. (d) Behavior of the Fisher information as a function of synaptic weight
heterogeneity for various population sizes (σP = σC = 1). (e) Same as (d), but for networks
where private variance dominates (σP = 5, σC = 1). (f) The coefficient of the linear term in
the asymptotic series of the Fisher information at different levels of private variability. At
kw = 1, 2, the coefficient of N is exactly zero.

the principal eigenvector of the covariance aligns exactly with f ′ (as in Fig. 2.1a, right).
When kw > 1, the principal eigenvector aligns closely, but not exactly, with the differential
correlation direction. However, when kw = 2, the remaining eigenvectors become orthogonal
quickly enough for information to saturate. This does not occur when kw > 2. The case of
kw ∼ O(N), meanwhile, is slightly different. Here, the variances of the covariance matrix
scale with population size, so that the neurons simply exhibit too much variance for any
meaningful decoding to occur. However, we believe that it is unreasonable to expect that
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the synaptic weights of a neural circuit scale with the population size, making this scenario
biologically implausible.

When private variability dominates, we observe qualitatively different finite network be-
havior (σP = 5, Fig. 2.4b). For N = 1000, both kw = 1 and kw = 2 exhibit better
performance relative to larger values of kw (by contrast, the case with kw ∼ O(N) quickly
saturates). We note that, unsurprisingly, the increase in private variability has decreased
the Fisher information for all cases we considered compared to σP = 1 (compare the scales
of Fig. 2.4a and Fig. 2.4b). Our main interest, however, is identifying effective synaptic
weighting strategies given some amount of private and common variability.

The introduction of the squared nonlinearity produces qualitatively different behavior at
the finite network level: in contrast with Figure 2.3, increased heterogeneity does not auto-
matically imply improved decoding. In fact, there is a regime in which increased heterogene-
ity improves Fisher information, beyond which we see a reduction in decoding performance
(Fig. 2.4d). If the private variability is increased, this regime shrinks or becomes nonexistent,
depending on the population size (Fig. 2.4e). Furthermore, entering this regime for higher
private variability requires smaller kw (i.e., less weight heterogeneity).

The results shown in Figure 2.4d and Figure 2.4e imply that there exists an interesting
relationship between the network’s decoding ability, its private variability, and its synaptic
weight heterogeneity kw. To explore this further, we examine the behavior of the Fisher in-
formation at a fixed population size (N = 1000) as a function of both σP and kw (Fig. 2.4c).
To account for the fact that an increase in private variability will always decrease the Fisher
information, we calculate the normalized Fisher information: for a given choice of σP , each
Fisher information is divided by the maximum across a range of kw values. Thus, a normal-
ized Fisher information allows us to determine what level of synaptic weight heterogeneity
maximizes coding fidelity, given a particular level of private variability σP .

Figure 2.4c highlights three interesting regimes. When the private variability is small, the
network benefits from larger weight heterogeneity on the common noise. But as the neurons
become more noisy, the “Goldilocks zone” in which the network can leverage larger noise
weights becomes constrained. When the private variability is large, the network achieves
superior coding fidelity by having less heterogeneous weights, despite the threat of induced
differential correlations from the common noise. Between these regimes, there are transitions
for which many choices of kw result in equally good decoding performance.

It is important to point out that Figures 2.4a-e only captures finite network behavior.
Therefore, we extended our analysis by validating the asymptotic behavior of the Fisher
information as a function of the private noise by examining its asymptotic series at infinity
(Fig. 2.4f). For kv = 1, 2, the coefficient of the linear term is zero for any choice of σP ,
implying that the Fisher information always saturates. In addition, when the common noise
weights increase with population size (i.e., kw ∼ O(N)), the asymptotic series is always
sublinear (not shown in Fig. 2.4f). Thus, there are multiple cases in which the structure of
synaptic weighting can induce differential correlations in the presence of common noise. In-
creased heterogeneity allows the network to escape these induced differential correlations and
achieve linear asymptotic growth. If kw becomes too large, however, the linear asymptotic
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Figure 2.5: Linear Fisher information after quadratic nonlinearity, unstructured weights.
In contrast to Figure 4, subplots (a) and (b) are plotted on a log-scale. (a) Linear Fisher
information as a function of the mean, µ, of the lognormal distribution used to draw the
common noise synaptic weights. Solid lines denote means while shaded regions denote one
standard deviation across the 1000 drawings of weights from the lognormal distribution. (b)
Same as (a), but for networks in which private variability dominates (σP = 5, σC = 1). (c)
Normalized Linear Fisher information. Same plot as Figure 2.4c, but the average Fisher
information across the 1000 samples is normalized across µ (akin to normalizing across kw).

growth begins to decrease. Once kw scales as the population size, differential correlations
are once again significant.

Next, we reproduce the above analysis with unstructured weights. As before, we draw
1000 samples of common noise weights from a shifted lognormal distribution with varying µ.
The behavior of the average (linear) Fisher information is qualitatively similar to that of the
structured weights (Fig. 2.5). There exists a regime for which larger weight heterogeneity
improves the decoding performance, beyond which coding fidelity decreases (Fig. 2.5a). If
the private noise variance dominates, this regime begins to disappear for smaller networks
(Fig. 2.5b). Thus, with very noisy neurons, the coding fidelity of the network is improved
when the synaptic weights are less heterogeneous (and therefore, smaller).

To summarize these results, we once again plot the normalized Fisher information (this
time, normalized across choices of µ and averaged over 1000 samples from the lognormal
distribution) for a range of private variabilities (Fig. 2.5c). The heat map exhibits a similar
transition at a specific level of private variability. At this transition, a wide range of µ’s
provide the network with similar decoding ability. For smaller σP , we see behavior compa-
rable to Figure 2.5a, where there exists a regime of improved Fisher information. Beyond
the transition, the network performs better with less diverse synaptic weighting, though it
becomes less stringent as σP increases. The behavior exhibited by this heat map is similar
to Figure 2.4c, but contains fewer uniquely identifiable regions. This may imply that the
additional regions in Figure 2.4c are an artifact of the structured weights.

The amount of the common noise will also impact how the network behaves and what
levels of synaptic weight heterogeneity are optimal. For example, consider a network with
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private noise variability set to σP = 1. When common noise is small, the Fisher information
is comparable among various choices of synaptic weight diversity (Fig. 2.6a). When the
common noise dominates, however, the network benefits strongly from diverse weighting
(Fig. 2.4b), though it is punished less severely for having kw scale with N (Fig. 2.6b, dashed
lines; compare to Fig. 2.4b). These observations are true at finite population size. As before,
the Fisher information saturates for kw = 1, 2 and kw ∼ O(N), no matter the choice of
common noise variance.

We calculated the normalized Fisher information across a range of common noise strengths
to determine the optimal synaptic weight distribution. The results for structured weights and
unstructured weights are shown in Figures 2.6c and 2.6d, respectively. While they strongly
resemble Figure 2.4c and Figure 2.5c, they exhibit opposite qualitative behavior. As before,
there are three identifiable regions in Figure 2.6c, each divided by abrupt transitions where
many choices of kw are equally good for decoding. For small common noise, the coding
fidelity is improved with less heterogeneous weights, but as the common noise increases, the
network enters the “Goldilocks regions”. After another abrupt transition near σC ≈ 0.34,
the network performance is greatly improved by heterogeneous weights.

Thus, common noise and private noise seem to have opposite impacts on the optimal
choice of synaptic weight heterogeneity. When private noise dominates, the Fisher infor-
mation is maximized under a set of homogeneous weights, since coding ability is harmed
by amplification of common noise. When common noise dominates, the network coding is
improved under diverse weighting: this prevents additional differential correlations and fur-
thermore helps the network cope with the punishing effects on coding due to the amplified
noise.

How should we choose the synaptic weight distribution within the extremes of private or
common noise dominating? We assess the behavior of the Fisher information as both σP and
σC are varied over a wide range. For the structured weights, we calculate the choice of kw that
maximized the network’s Fisher information (within the range kw ∈ [1, 10]) (Fig. 2.6e). For
the unstructured weights, we calculate the choice of µ that maximizes the network’s average
Fisher information over 1000 drawings of w from the lognormal distribution specified by µ
(Fig. 2.6f).

Figures 2.6e and 2.6f reveal that the network is highly sensitive to the values of σP and
σC . Figure 2.6e exhibits a band like structure and abrupt transitions in the value of kw
which maximizes Fisher information. This band-like structure would most likely continue to
form for smaller σP if we allowed kw > 10. One might expect that the band-like structure is
due to the artificial structure in the weights; however, we see that Figure 2.6f also exhibits
these types of bands. Note that the regime of interest for us is when private variability is a
smaller contribution to the total variability than the common variability. When this is the
case, Figures 2.6e and 2.6f imply that a population of neurons will be best served by having
a diverse set of synaptic weights, even if the weights amplify irrelevant signals.

Together, these results highlight how the introduction of the nonlinearity in the network
reveal an intricate relationship between the amount of shared variability, private variability,
and the optimal synaptic weight heterogeneity. Our observations that the network benefits
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Figure 2.6: The relationship between common noise, private noise, and synaptic weight het-
erogeneity. (a), (b) Fisher information as a function of population size, N , when common
noise contribution is drowned out by private noise (a), and when common noise dominates
(σP = 1) (b). Solid lines indicate constant kw while dashed lines refer to kw that scales with
N . (c), (d) Normalized Fisher information as a function of common noise for structured
weights (c) and unstructured weights (d). For unstructured weights, each Fisher information
is calculated by averaging over 1000 networks with their common noise weights drawn from
the respective distribution. (e) The value of kw that maximizes the network’s Fisher infor-
mation for a given choice of σP and σC . The maximum is taken over over kw ∈ [1, 10]. (f)
The value of µ that maximizes the average Fisher information over 1000 draws for a given
choice of σP and σC .
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from increased synaptic weight heterogeneity in the presence of common noise are predicated
on the size of the network (Fig. 2.4a-b, Fig. 2.6a-b) and the amount of private and shared
variability (Fig. 2.4c, Fig 2.6c-d). In particular, when shared variability is the more signifi-
cant contribution to the overall variability, the coding performance of the network benefits
from increased heterogeneity, whether the weights are structured or unstructured (Fig. 2.6e-
f). This implies that, in contrast to the linear network, there exist regimes where increasing
the synaptic weight heterogeneity beyond a point will harm coding ability (Fig. 2.4d-e,
Fig 2.5a-b), demonstrating that there is a tradeoff between the benefits of synaptic weight
heterogeneity and the amplification of common noise it may introduce.

Mutual Information

When the network possesses a quadratic nonlinearity, the mutual information I[s, r] is far
less tractable than for the linear case. Therefore, we computed the mutual information
numerically on data simulated from the network, using an estimator built on k-nearest
neighbor statistics [108]. We refer to this estimator as the KSG estimator.

We applied the KSG estimator to 100 unique datasets, each containing 100,000 samples
drawn from the linear-nonlinear network. We then estimated the mutual information within
each of the 100 datasets. The computational bottleneck for the KSG estimator lies in
finding nearest neighbors in a kd-tree, which becomes prohibitive for large dimensions (∼20),
so we considered much smaller population sizes than in the case of Fisher information.
Furthermore, the KSG estimator encountered difficulties when samples became too noisy, so
we limited our analysis to smaller values of (σP , σC). Due to these constraints, we are only
able to probe the finite network behavior of the mutual information.

Our results for the structured weights are shown in Figure 2.7. When utilizing estimators
of mutual information from data, caution should be taken before comparing across different
dimensions, due to bias in the KSG estimator [72]. Thus, we restrict our observations to
within a specified population size. First, we evaluated the mutual information for various
population sizes (N = 8, 10, 12, 14) in the case where σC = σP = 0.5. Observe that, as
before, the mutual information increases with larger weight heterogeneity (kw, Fig. 2.7a).
The improvement in information occurs for all four population sizes.

Decreasing the private variability increases mutual information (Fig. 2.7b). However, the
network sees a greater increase in information with diverse weighting when σP is small. This
is consistent with the small σP regime highlighted in Figure 2.4c: the smaller the private vari-
ability, the more the network benefits from larger synaptic weight heterogeneity. Similarly,
decreasing the common variability increases mutual information (Fig. 2.7c). If the common
variability is small enough (for example, σC = 1), then larger kw harms the encoding. Thus,
when the common noise is small enough, the amplification of noise that results when kw is
increased harms the network’s encoding. It is only when the common variability becomes
the dominant contribution to the variability that the diversification provided by larger kw
improves the mutual information.
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Figure 2.7: Mutual information computed by applying the KSG estimator on data simulated
from the network with quadratic nonlinearity and structured weights. The estimates consist
of averages over 100 datasets, each containing 100,000 samples. Standard error bars are
smaller than the size of the markers. (a) Mutual information as a function of common noise
weight heterogeneity for various population sizes N . We consider smaller N than in the case
of Fisher information as computation time becomes prohibitive for larger dimensionalities.
Here, σP = σC = 0.5. (b) The behavior of mutual information for various choices of σP ,
while σC = 0.5. (c) The behavior of mutual information for various choices of σC , while
σP = 0.5.

As for the unstructured weights, we calculated the mutual information I[s, r] over 100
synaptic weight distributions drawn from the aforementioned lognormal distribution. For
each synaptic weight distribution, we applied the KSG estimator to 100 unique datasets, each
consisting of 10,000 samples. Thus, the mutual information estimate for a given network
was computed by averaging over the individual estimates across the 100 datasets. With this
procedure, we explored how the mutual information behaves as a function of the private
noise variability, common noise variability, and mean of the lognormal distribution.

Similar to the normalized Fisher information, we present the normalized mutual informa-
tion as a function of the private and common variances (Fig. 2.8). For a given σP or σC , the
mutual information is calculated across a range of µ ∈ [−1, 1]. The normalized mutual infor-
mation is obtained by dividing each individual mutual information by the maximum value
across the µ. Thus, for a given σP , the value of µ whose normalized mutual information is
1 specifies the lognormal distribution that maximizes the network’s encoding performance.
As private variability increases, the network benefits more greatly benefits diverse weighting
(larger µ, Fig. 2.8a). As common variability increases, the network once again prefers more
diverse weighting. If the common variability is small enough, however, the network is better
suited to homogeneous weights (Fig. 2.8b). Therefore, the analysis utilizing the unstructured
weights largely corroborates our findings for the structured weights shown in Figure 2.7.

Thus, these results highlight that there exist regimes where neural coding, as measured
by the Shannon mutual information, benefit from increased synaptic weight heterogeneity.
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Figure 2.8: Normalized mutual information for common and private variability. For a given
µ, 100 networks were created by drawing common noise weights w from the corresponding
lognormal distribution. The mutual information shown is the average across the 100 net-
works. For a specified network, the mutual information was calculated by averaging KSG
estimates over 100 simulated datasets, each containing 10,000 samples. Finally, for a choice
of (σP , σC), mutual information is normalized to the maximum across values of µ. (a)
Normalized mutual information as a function of µ and private variability (σC = 0.5). (b)
Normalized mutual information as a function of µ and common variability (σP = 0.5).

Furthermore, similarly to the case of the linear Fisher information, the improvement in coding
occurs more significantly when shared variability is large relative to private variability.

2.4 Discussion

We have demonstrated in a simple model of neural activity that if synaptic weighting of com-
mon noise inputs is broad and heterogeneous, coding fidelity is actually improved despite
inadvertent amplification of common noise inputs. We showed that for squaring nonlinear-
ities, there exists a regime of heterogeneous weights for which coding fidelity is maximized.
We also found that the relationship between the magnitude of private and shared variability
is vital for determining the ideal amount of synaptic heterogeneity. In neural circuits where
shared variability is dominant, as has been reported in some parts of the cortex [59], larger
weight heterogeneity results in better coding performance (Fig. 2.6e).

Why are we afforded improved neural coding under increased synaptic weight hetero-
geneity? An increase in heterogeneity, as we have defined it, ensures that the common noise
is magnified in the network. At the same time, however, the structure of the correlated vari-
ability induced by the common noise is altered by increased heterogeneity. Previous work
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Figure 2.9: The benefits of increased synaptic weight heterogeneity. (a) The responses of a
pair of neurons against the signal space, taken after the linear stage. Colors indicate different
choices of kw (while kv = 1). Each cloud contains 1000 sampled points. (b) Same as (a),
but responses are taken after the quadratic nonlinearity.

has demonstrated that the relationship between signal correlations and noise correlations is
important in assessing decoding ability: for example, the sign rule states that noise correla-
tions are beneficial if they are of opposite sign as the signal correlation [84]. Geometrically,
the sign rule is a consequence of the intuitive observation that decoding is easier when the
noise correlations lie perpendicular to the signal manifold [12, 227, 126].

For example, consider the correlated activity for two neurons in the network against
their signal space (black lines, Fig. 2.9a, b) as a function of kw. Note that the signal space
is linear. After the linear stage, the larger weight heterogeneity pushes the cloud of neural
activity to lie more orthogonal to the signal space. At the same time, the variance becomes
observably larger due to the magnification of the common noise (Fig. 2.9a). Importantly,
note that the variability for kw = 1 lies parallel to the signal space, signifying the presence of
differential correlations. The correlated variability after the nonlinear stage is similar in that
orthogonality to the signal space increases with kw. There is a notable difference: squaring
the linear stage ensures non-negative activities, thereby limiting the response space. Thus,
for large enough kw, the rectification manifests strongly enough that the network enters a
regime where increased heterogeneity harms decoding. These figures only demonstrate the
relationship between a pair of neurons, while the collective correlated variability structure
ultimately dictates decoding performance. They do, however, shed light on how the distri-
bution of synaptic weights can radically shape the common noise and thereby the overall
structure of the shared variability.

The linear stage of the network constitutes a noisy projection of two signals (one of
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which is not useful to the network) in a high-dimensional space. Thus, we can assess the
entire population by examining the relationship between the projecting vectors v and w.
We might expect that improved decoding occurs when these signals are farther apart in the
N -dimensional space [95]. For a chosen kv, this occurs as kw is increased when the weights
are structured. When the weights are unstructured, the average angle between the stimulus
and weight vectors is large as either µv or µw increases. Increased heterogeneity implies
access to a more diverse selection of weights, thus pushing the two signals apart. From this
perspective, the nonlinear stage acts as a mapping on the high-dimensional representation.
Given that no noise is added after the nonlinear processing stage in the networks, if the
nonlinearities were one-to-one, the data processing inequality would ensure that the results
from the linear stage would hold. But, as we observed earlier, the nonlinear stage benefits
from increased heterogeneity only in certain regimes. Thus, the behavior of the nonlinearity
is important: the application of the quadratic nonlinearity restricts the high-dimensional
space that the neural code can occupy, and thus limits the benefits of diverse synaptic
weighting. Validating and characterizing these observations for other nonlinearities (such
as an exponential nonlinearity or a squared rectified linear unit) and within the framework
of a linear-nonlinear-Poisson cascade model will be interesting to pursue in future studies.
For example, we performed a simple experiment numerically assessing the behavior of the
linear Fisher information under an exponential nonlinearity. We observed that synaptic
weight heterogeneity benefits coding, but information may saturate for a wide range of kw
(Appendix 2.5). Thus, the choice of nonlinearity may impact the coding performance in the
presence of common noise.

In this work, we considered the coding ability of a network in which a stimulus is corrupted
by a single common noise source. However, cortical circuits receive many inputs and must
likely contend with multiple common noise inputs. Thus, it is important to examine how our
analysis changes as the number of inputs increases. Naively, the neural circuit could structure
weights to collapse all common noise sources on a single subspace, but this strategy will fail
if the circuit must perform multiple tasks (e.g., the circuit may be required to decode among
many of the inputs using the same set of weights). Furthermore, there are brain regions in
which the dimensionality is drastically reduced, such as cortex to striatum (10 to 1 reduction)
or striatum to basal ganglia (300 to 1 reduction) [19, 171]. In these cases, the number of
inputs may scale with the size of the neural circuit. In such an underconstrained system,
linear decoding will be unable to properly extract estimates of the relevant stimulus. This
implies that linear Fisher information, which relies on a linear decoder, may be insufficient
to judge the coding fidelity of these populations. Thus, future work could examine how the
synaptic weight distribution impacts neural coding with multiple common noise inputs. This
includes the case when the number of common noise sources is smaller than the population
size or when they are of similar scale, the latter of which may require alternative coding
strategies [56, 73].

It may seem unreasonable that the neural circuit possesses the ability to weight com-
mon noise inputs. However, excitatory neurons receive many excitatory synapses in circuits
throughout the brain. Some subset of common inputs across a neural population will un-
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doubtedly be irrelevant for the underlying neural computation, even if these signals are not
strictly speaking “noise” and could be useful for other computations. Thus, these popula-
tions must contend with common noise sources contributing to their overall shared variability
and potentially hampering their ability to encode a stimulus. Our work demonstrates that
neural circuits, armed with a good set of synaptic weights, need not suffer adverse impacts
due to inadvertently amplifying potential sources of common noise. Instead, broad, hetero-
geneous weighting ensures that common noise sources will project the signal and noise into
a high-dimensional space in such a way that is beneficial for decoding. This observation is in
agreement with recent work that explored the relationship between heterogeneous weighting
and degrees of synaptic connectivity [116]. Furthermore, synaptic input, irrelevant on one
trial, may become the signal on the next: heterogeneous weighting provides a general, robust
principle for neural circuits to follow.

We chose the simple network architecture in order to maintain analytic tractability, which
allowed us to explore the rich patterns of behavior it exhibited. Our model is limited, how-
ever. It is worthwhile to assess how our qualitative conclusions hold with added complexity
in the network. For example, interesting avenues to consider include the implementation of
recurrence, spiking dynamics, In addition, these networks could also be equipped with vary-
ing degrees of sparsity and inhibitory connections. Importantly, the balance of excitation
and inhibition in networks has been shown to be vital in decorrelating neural activity [154].
Past work has explored how to approximate both information theoretic quantities studied
here in networks with some subset of these features [27, 216]. Thus, analyzing how common
noise and synaptic weighting interact in more complex networks is of interest for future work.

We established correlated variability structure in the linear-nonlinear network by tak-
ing a linear combination of a common noise source and private noise sources (though our
model ignores any noise potentially carried by the stimulus). This was sufficient to estab-
lish low-dimensional shared variability observed in neural circuits. As a consequence, our
model as devised enforces stimulus-independent correlated variability. Recent work, how-
ever, has demonstrated that correlated variability is in fact stimulus-dependent. Such work
used both phenomenological [114, 66] and mechanistic [227] models in producing fits to
the stimulus-dependent correlated variability. These models all share a doubly stochastic
noise structure, stemming from both additive and multiplicative sources of noise [77]. It
is therefore worthwhile to fully examine how both additive and multiplicative modulation
interact with synaptic weighting to influence neural coding. For example, [7] demonstrated
that such additive and multiplicative modulation, modulated by overall population activity,
can redirect information to specific neuronal assemblies, increasing information for some but
decreasing it for others. Synaptic weight heterogeneity, attuned by plasticity, could serve
as a mechanism for additive and multiplicative modulation, thereby gating information for
specific assemblies.
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2.5 Supporting Analyses

Calculation of Fisher and Mutual Information Quantities

Calculation of Fisher Information, Linear Stage

All variability after the linear stage is Gaussian; thus, the Fisher information can be expressed
in the form [2, 100]:

IF (s) = f ′(s)TΣ−1(s)f ′(s) +
1

2
Tr
[
Σ′(s)Σ−1(s)Σ′(s)Σ−1(s)

]
. (2.15)

Our immediate goal is to calculate f(s), the average response of the linear stage, and Σ, the
covariance between the responses. The output of the ith neuron after the linear stage is

`i = vis+ wiσCξC + σP ξP,i, (2.16)

so that the average response as a function of s is

fi(s) = 〈`i〉 = vis. (2.17)

Thus,

f(s) = vs⇒ f ′(s) = v, (2.18)

and

〈`i`j〉 = 〈(vis+ wiσCξC + σP ξP,i)(vjs+ wjσCξC + σP ξP,j)〉 (2.19)

= vivjs
2 + wiwjσ

2
C + σ2

P δij (2.20)

so that

Σij = 〈`i`j〉 − 〈`i〉〈`j〉 (2.21)

= σ2
P δij + wiwjσ

2
C (2.22)

⇒ Σ = σ2
P I + σ2

CwwT . (2.23)

Notice that the covariance matrix does not depend on s, so the second term in equation
(2.15) will vanish. We do, however, need the inverse covariance matrix for the first term:

Σ−1 =
1

σ2
P

(
I− σ2

C

σ2
P + σ2

C |w|2
wwT

)
. (2.24)

Hence, the Fisher information is

IF (s) =
1

σ2
P

vT
(

I− σ2
C

σ2
P + σ2

C |w|2
wwT

)
v (2.25)

=
1

σ2
P

(σ2
P/σ

2
C) |v|2 + (|v|2|w|2 − (v ·w)2)

(σ2
P/σ

2
C) + |w|2 . (2.26)
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Calculation of Mutual Information, Linear Stage

The mutual information is given by

I[s, `] =

∫
d`dsP [s]P [`|s] log

P [`|s]
P [`]

(2.27)

= H[`] +

∫
dsP [s]

∫
d`P [`|s] logP [`|s]. (2.28)

Note that P [`] and P [`|s] are both multivariate Gaussians. The (differential) entropy of a
multivariate Gaussian random variable X with mean µ and covariance Σ is given by

H[X] =
1

2
log (det Σ) +

N

2
(1 + log(2π)). (2.29)

Therefore, by the Gaussianity of the involved distributions,

P [`|s] =
1

σN−1P

√
(2π)N(σ2

P + σ2
C |w|2)

× exp

[
− 1

2σ2
P

(`− vs)T
(

I− σ2
CwwT

σ2
P + σ2

C |w|2
)

(`− vs)

]
(2.30)

P [`] =
1√

(2π)Nσ2N−4
P κ

exp

[
−1

2
`T
(
σ2
P I + σ2

SvvT + σ2
CwwT

)−1
`

]
. (2.31)

where

κ = (σ2
P + σ2

C |w|2)(σ2
P + σ2

S|v|2)− σ2
Cσ

2
S(v ·w)2. (2.32)

Thus,

H[`] =
1

2
log
(
σ2N−4
P κ

)
+
N

2
(1 + log(2π)). (2.33)

and
∫
d`P [`|s] logP [`|s] = −1

2
log(σ2N−2

P (σ2
P + σ2

C |w|2))−
N

2
(1 + log(2π)), (2.34)

which is notably independent of s. Thus, the integral over s will marginalize away. We are
left with

I[s, `] =
1

2
log

(
κ

σ2
P (σ2

P + σ2
C |w|2)

)
(2.35)

=
1

2
log
(
1 + σ2

SIF (s)
)
. (2.36)
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Calculation of Linear Fisher Information, Quadratic Nonlinearity

We repeat the calculation of the first section, but after the nonlinear stage. In this case, we
consider a quadratic nonlinearity. Instead of the Fisher information, we calculate the linear
Fisher information (since it is analytically tractable). The output of the network is

ri = (vis+ wiσCξC + σP ξP,i)
2 (2.37)

= v2i s
2 + w2

i σ
2
Cξ

2
C + σ2

P ξ
2
P,i + 2sviwiσCξC + 2sviσP ξP,i + 2wiσCσP ξCξP,i. (2.38)

Thus, the average is then

fi(s) = 〈ri〉 = v2i s
2 + w2

i σ
2
C + σ2

P , (2.39)

which implies

〈ri〉〈rj〉 = (v2i s
2 + w2

i σ
2
C + σ2

P )(v2j s
2 + w2

jσ
2
C + σ2

P ) (2.40)

= σ4
P + s2σ2

P (v2i + v2j ) + σ2
Pσ

2
C(w2

i + w2
j )

+ s2σ2
C(v2iw

2
j + v2jw

2
i ) + s4v2i v

2
j + σ4

Cw
2
iw

2
j (2.41)

Next, the covariate can be written as

〈rirj〉 = σ4
P + s2σ2

P (v2i + v2j ) + σ2
Pσ

2
C(w2

i + w2
j ) + s2σ2

C(v2iw
2
j + v2jw

2
i )

+ s4v2i v
2
j + 3σ4

Cw
2
iw

2
j + 4s2σ2

Cvivjwiwj. (2.42)

The off diagonal terms of the covariance matrix are then

〈rirj〉 − 〈ri〉〈rj〉 = 2σ4
Cw

2
iw

2
j + 4s2σ2

Cvivjwiwj. (2.43)

Lastly, the variance of ri (the diagonal terms of the covariance matrix) is given by

Var(ri) = 〈r2i 〉 − 〈ri〉2 (2.44)

= 3σ4
P + 6s2σ2

Pv
2
i + 6σ2

Pσ
2
Cw

2
i + 6s2σ2

Cv
2
iw

2
i + s4v4i + 3σ4

Cw
4
i

−
(
v2i s

2 + w2
i σ

2
C + σ2

P

)2
(2.45)

= 2σ4
Cw

4
i + 4s2σ2

Cv
2
iw

2
i + 2σ4

P + 4s2σ2
Pv

2
i + 4σ2

Pσ
2
Cw

2
i . (2.46)

Thus, the total covariance, which takes the variance into consideration, is

Σij = δij
(
2σ4

P + 4σ2
P (s2v2i + σ2

Cw
2
i )
)

+ 4s2σ2
Cvivjwiwj + 2σ4

Cw
2
iw

2
j . (2.47)

In vector notation, this can be expressed as

Σ = 2σ4
P I + 4σ2

P s
2diag(V) + 4σ2

Pσ
2
Cdiag(W) + 4s2σ2

CXXT + 2σ4
CWWT (2.48)
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where

V = v � v (2.49)

W = w �w (2.50)

X = v �w, (2.51)

where � indicates the Hadamard product (element-wise product). We now proceed to the
linear Fisher information:

ILFI(s) = f ′(s)TΣ(s)−1f ′(s). (2.52)

We start by calculating the inverse covariance matrix, which we will achieve with repeated
applications of the Sherman-Morrison formula [179]. We can write

Σ−1 = (M + 2σ4
CWWT )−1 (2.53)

= M−1 − M−1(2σ4
CWWT )M−1

1 + 2σ4
CWTM−1W

(2.54)

= M−1 − 2σ4
C

1 + 2σ4
CWTM−1W

M−1WWTM−1. (2.55)

Where

M−1 ≡
(
2σ4

P + 4σ2
P s

2v2i + 4σ2
Pσ

2
Cw

2
i

)−1
δij

− s2σ2
C

σ4
P + 2s2σ2

Cσ
2
P

∑

i

v2iw
2
i

σ2
P + 2s2v2i + 2σ2

Cw
2
i

× vivjwiwj

(σ2
P + 2s2v2i + 2σ2

Cw
2
i )
(
σ2
P + 2s2v2j + 2σ2

Cw
2
j

) . (2.56)

Note that

f ′(s) = 2sV, (2.57)

so the Fisher information is

ILFI(s) = 4s2
(

VTM−1V − 2σ4
C

1 + 2σ4
CWTM−1W

VTM−1WWTM−1V

)
(2.58)

= 4s2
(

VTM−1V − 2σ4
C

1 + 2σ4
CWTM−1W

(
VTM−1W

)2
)
. (2.59)

To facilitate the matrix multiplications, we will define the following notation

{v, w}m,n =
∑

i

vmi w
n
i

σ2
P + 2s2v2i + 2σ2

Cw
2
i

. (2.60)
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Thus,

VTM−1V =
1

2σ2
P

∑

i

v4i
σ2
P + 2s2v2i + 2σ2

Cw
2
i

− s2σ2
C

σ4
P + 2s2σ2

Cσ
2
P {v, w}2,2

(∑

i

v3iwi
σ2
P + 2s2v2i + 2σ2

Cw
2
i

)2

(2.61)

=
1

2σ2
P

{v, w}4,0 −
s2σ2

C

σ4
P + 2s2σ2

Cσ
2
P {v, w}2,2

{v, w}23,1 . (2.62)

Furthermore,

WTM−1W =
1

2σ2
P

{v, w}0,4 −
s2σ2

C

σ4
P + 2s2σ2

Cσ
2
P {v, w}2,2

{v, w}21,3 (2.63)

and finally

VTM−1W =
1

2σ2
P

{v, w}2,2

− s2σ2
C

σ4
P + 2s2σ2

Cσ
2
P {v, w}2,2

{v, w}1,3 {v, w}3,1 . (2.64)

Inserting this expression into equation (2.59) and simplifying, we can write the Fisher infor-
mation as

ILFI(s) = 4s2
(

1
σ2
P
{v, w}4,0 −

2s2σ2
C

σ2
P+2s2σ2

P σ
2
C{v,w}2,2

{v, w}23,1 +

σ2
P σ

4
C{v,w}2,2+2s2σ6

C({v,w}2,2−2{v,w}1,3{v,w}3,1)
σ4
P+σ2

P (σ4
C{v,w}0,4+2s2σ2

C{v,w}2,2)+2s2σ6
C({v,w}0,4{v,w}2,2−2{v,w}

2
1,3)

)
. (2.65)

Information Saturation and Differential Correlations

In Section 2.3, we observed that the Fisher information saturates in particular instances of
the nonlinear network. Specifically, for the nonlinear network, Fisher information saturates
for kw = 1 and kw = 2, but not for kw > 3. Additionally, Fisher information saturates for
kw ∼ O(N). To understand why we observe saturation in some cases and not others, it
is helpful to examine the eigenspectrum of the covariance matrix Σ describing the neural
responses. Here, we rely on an analysis in the supplement of [128].

The linear Fisher information can be written in terms of the eigenspectrum of Σ as

ILFI = f ′TΣ−1f ′ (2.66)

= f ′T f ′
∑

k

cos2 θk
σ2
k

, (2.67)
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where σ2
k is the kth eigenvalue, and θk is the angle between the kth eigenvector and f ′. We

consider the cases in which ILFI saturates with the population size N . First, note that
squared norm of the tuning curve derivative f ′T f ′ will scale as O(N), since there are N terms
in the sum. This implies that the summation must shrink at least as fast as O(1/N) for
information to saturate. This implies that any eigenvalues scaling as O(1) must have their
corresponding cosine-angles shrink faster than O(1/N). If there are O(N) such eigenvalues,
they must shrink faster than O(1/N2).

In the case of kw = 1, one eigenvalue grows as O(N) while the others remain constant
(Fig. 2.10a, left). Meanwhile, the cosine-angles of the constant eigenvalues are effectively
zero. This case is the easiest to understand: the principal eigenvector aligns with f ′ while
all other directions are effectively orthogonal to f ′. For kw ≥ 1, however, two eigenvalues
grow as O(N) while the others grow as O(1) (Fig. 2.10a, middle and right). In this case,
the behavior of the cosine-angles corresponding to the constant growth eigenvalues varies
depending on kw.

As in Moreno-Bote et al., we split up equation (2.67) into two groups: those with eigen-
values that scale as O(N) (denoted by the set SN), and those that scale as O(1) (denoted
by the set S1):

ILFI = f ′T f
∑

m∈SN

cos2 θm
σ2
m

+ f ′T f ′
∑

n∈S1

cos2 θn
σ2
n

. (2.68)

The left sum contains one term when kw = 1 and two terms when kw > 1. Information
saturation is dictated by the right sum, which we call Rkw :

Rkw =
∑

n∈S1

cos2 θn
σ2
n

. (2.69)

The addends of Rkw correspond to the O(1) eigenvalues, whose eigenvectors must have
cosine-angles that vanish more quickly than O(1/N) since there are O(N) such eigenvalues.
As expected, for kw = 1, R1 quickly vanishes (Fig. 2.10b: gray line). We observe similar
behavior for kw = 2: the summation R2 eventually vanishes as well (Fig. 2.10b: red line).
However, for kw > 2, this no longer occurs: the cosine-angles scale to zero slowly enough that
R3 approaches a constant value (thereby preventing information saturation). Thus, going to
larger kw ensures that the majority of the eigenvectors of Σ do not become orthogonal to f ′

quickly enough for information saturation to occur.
In the case of kw ∼ O(N), however, the behavior of the covariance matrix is different.

Recall that the covariance matrix takes on the form

Σ = 2σ4
P I + 4σ2

P s
2diag(V) + 4σ2

Pσ
2
Cdiag(W) + 4s2σ2

CXXT + 2σ4
CWWT . (2.70)

The dominant contribution to the covariance matrix is 2σ4
CWWT . Thus, the scaling of the



CHAPTER 2. HETEROGENEOUS WEIGHTING FOR COMMON NOISE 49

1 2 3

log N

1

2

3

4

5

lo
g
σ

2 i

kw = 1

1 2 3

log N

1

2

3

4

5

lo
g
σ

2 i

kw = 2

1 2 3

log N

1

2

3

4

5

lo
g
σ

2 i

kw = 3

σ2
1

σ2
2

σ2
3

1 2 3

log N

0.00

0.01

0.02

R
k

w

kw = 1

kw = 2

kw = 3

1 2 3

log N

−30

−20

−10

lo
g
R

k
w

a

b

Figure 2.10: Characterizing the scaling of the eigenvalues and the shrinking of the cosine-
angles for the nonlinear stage covariance. (a) Behavior of largest three eigenvalues σ2

1, σ2
2,

and σ2
3 for the cases of kw = 1, 2, 3. Aspect ratio is chosen so that unit steps on each

axis appear of equal length. (b) The behavior of cosine-angle sum Ri corresponding to the
constant-growth eigenvalues, for each of kw = 1, 2, 3. Inset depicts the same curves, but on
a log-log scale.

trace of Σ is

Tr[Σ] ∼ Tr[WWT ] = Tr[(w �w)(w �w)T ]. (2.71)

= (w �w)T (w �w) (2.72)

∼
N∑

i=1

(
i2
)2 ∼ O(N5). (2.73)

Since the trace of the covariance matrix is equal to the sum of the eigenvalues, some subset
of the eigenvalues can scale as O(N5) as well. In fact, all eigenvalues scale at least as O(N),
with the largest eigenvalue scaling as O(N5). In this scenario, the Fisher information must
saturate because the cosine-angle can at most scale to a constant. In plainer terms, the
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variances of the covariance matrix scale so quickly that the differential correlation direction
is irrelevant. We interpret this behavior as the neurons simply exhibiting too much variance
for any meaningful decoding to occur. Note, however, that the saturation can be avoided
if the behavior of f ′, which we assumed scales as O(N), instead scales more quickly. This
can occur, for example, when kv ∼ O(N). However, it is unreasonable to expect that the
synaptic weights of a neural circuit scale with the population size, making this scenario
biologically implausible.

Linear Fisher Information under an Exponential Nonlinearity

The application of an exponential nonlinearity to the output of the linear stage gi(`i) =
exp(`i) implies that the output of the network r = g(`) follows a multivariate lognormal
distribution (since the linear stage is Gaussian). The linear stage is described by the distri-
bution

` ∼ N (µ,ΣL) (2.74)

µ = vs (2.75)

ΣL = σ2
P I + σ2

CwwT . (2.76)

The multivariate lognormal distribution has first- and second-order statistics given by

E [r]i = exp

[
µi +

1

2
ΣL
ii

]
(2.77)

Var [rij] = exp

[
µi + µj +

1

2

(
ΣL
ii + ΣL

jj

)] (
exp(ΣL

ij)− 1
)

(2.78)

Thus, the mean activity and its derivative with respect to s are given by

fi(s) = exp

[
1

2
σ2
P + vis+

1

2
σ2
Cw

2
i

]
(2.79)

f ′i(s) = vi exp

[
1

2
σ2
P + vis+

1

2
σ2
Cw

2
i

]
. (2.80)

These equations provide us the tools to calculate the linear Fisher information. The inversion
of the covariance matrix (equation 2.78) is not tractable, but we can proceed numerically.

We calculated the linear Fisher information numerically under the same conditions as
in Figure 2.4a, but with kw = 1, . . . , 5 and for a wider range of population sizes. In Figure
2.11, we plot the linear Fisher information as a function of N for these choices of kw. We
observe that, for large enough N , synaptic weight heterogeneity results in improved coding
performance. However, we also observe what appears to be saturation of the Fisher infor-
mation. Since we cannot write the Fisher information as a function of N , we cannot validate
this observation analytically. This does, however, suggest that the choice of nonlinearity can
dramatically impact the behavior of the linear Fisher information.
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Figure 2.11: The behavior of linear Fisher information for an exponential nonlinearity as a
function of population size. Colors denote different choices of kw. Inset shows the same plot,
but on a regular scale.

Conclusion

We demonstrated that diverse synaptic weighting can reduce the adverse effects of common
noise even if it amplifies that common noise. Thus, our results provide a general principle
by which neural circuits can shape and leverage correlated variability to improve neural
decoding. This work falls in a long line of literature demonstrating whether correlated
variability is beneficial or harmful for decoding. However, it does not speak to answer
questions on the optimality of observed correlated variability. Assessing optimality requires
a new framework, developed in the following chapter.
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A long line of analyses on correlated variability do not speak to whether observed correlated
variability is optimal, despite implying that correlated variability might benefit neural cod-
ing. To what degree is the correlated variability observed in neural systems structured in a
manner to optimize decoding? More simply, is correlated variability efficient from a decoding
perspective? Answering this question requires the development of a new framework, which
this chapter details.

3.1 Introduction

Variability is a prominent feature of neural activity: neural activity exhibits trial-to-trial
fluctuations in response to the same stimulus. Furthermore, such variability is typically
pairwise correlated (noise correlations) [12, 51]. Specifically, conditioned on repeated stim-
ulus presentations, neural responses will covary (Fig. 3.1b). The existence of correlated
variability is of paramount importance for the fidelity of a neural code.

Neural variability is believed to have several underlying sources. First, individual neurons
may have their own private trial-to-trial variability (Fig 3.1a), which is a zero-correlation
contribution to the total multi-unit variability. Another potential source of variability can
come from ongoing neural activity across the brain that is not relevant for the decoding
task [191], which can contribute to correlated variability depending on how it is loaded
onto the observed neurons [164]. A third type of potentially correlated variability which is
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relevant for decoding is information limiting variability (Fig. 3.1c). Although it can arise
from different sources, without additional simultaneous measurements, it is indistinguishable
from stimulus corrupting noise. This type of correlated variability leads to information
limiting correlations [128]. Finally, recurrent computations in the observed area, sub-optimal
computations in the preceding areas, and attention have all been related to changes in the
correlated variability [227, 128, 86, 158, 29].

Assessing the impact of correlated variability on a population code has long been of
theoretical interest. A host of studies have demonstrated correlated variability’s diverse
effects on the fidelity of a neural code, depending on the variability’s sources, structure, and
relationship with the tuning properties of the population [226, 2, 217, 62, 14]. Furthermore,
correlated variability can potentially limit the precision with which a downstream cortical
areas or brain-computer interfaces can decode the incoming stimulus information [128, 96,
106]. The question of whether correlated variability is beneficial for decoding can be framed
in the broader question of whether the observed structure is optimal for decoding.

Recent large recordings have confirmed that the scale at which the class of information
limiting correlations cause information saturation is approximately 1,000 neurons [93, 160,
23]. Thus, it is well understood that the structure of correlated variability at large population
sizes is sub-optimal due to information-limiting correlations. Although there is evidence
that some of these correlations are inevitable due to noise in the incoming stimulus or
biophysical sensors [128, 96], it is possible that some part of them are due to sub-optimal
computations [29]. At a smaller scale of 10s of neurons, however, the optimality of the
correlated variability has not been thoroughly analyzed.

At these smaller dimensions, it has been shown that noise correlations often increase
LFI compared to neural responses where the pairwise correlations have been removed [13,
62, 66, 227], although this is not always the case [85]. However, this comparison between
observed correlations and zero correlations is only a weak test of optimality. The fact that
the observed data exhibits higher LFI than the zero-correlations case does not imply that
there are not other correlated variability structures with even higher LFI. Thus, theoretical
analyses on the “optimality” of correlated neural variability depend strongly on the choice
of null model (optimal relative to what? ).

A model for correlated variability is comprised of a set of constraints (e.g., fixed marginals,
fixed spectrum) and a set of degrees of freedom (e.g., pairwise correlations, synaptic load-
ings). These constraints and degrees of freedom reflect what we believe the biological network
cannot modify and what it can modify and potentially optimize. When paired with a de-
coding measure such as LFI, the model degrees of freedom can be optimized to maximize
the measure to potentially compare it with observed structure [85]. When paired with a null
distribution of the degrees of freedom, this defines a null model to compare the observed
measure against. Determining whether an observed set of neural responses is optimal, near
chance, or worse-than-chance for decoding consists of examining where the observed measure
lies within the null distribution (the null percentile). Across a population, the distribution
of the observed percentiles under the null model can be used to asses the degree to which the
biological network has optimized its hypothesized degrees of freedom for the paired measure.
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Figure 3.1: Correlated variability is a pervasive neural phenomenon. Continued on
the following page.
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Figure 3.1: Continued from previous page. a-c: Potential components of neural
variability. Each plot depicts the neural space, whose axes correspond to the response of
a specific pair of neurons to a stimulus. Black curves denote the mean responses across
different stimuli (i.e., tuning curves). Variability about a specific stimulus mean response
(solid points) may exhibit: a. Private, uncorrelated variability in each neural dimension (full
rank), b. Correlated variability, with correlations in the neural space (potentially low-rank),
and c. Differential correlations, which lie parallel to the mean response curve (low-rank).
d-l: Correlated variability in neural data. Each row refers to a different dataset, while
columns refer to a calculated aspect of the dataset. Rows: d-f. Calcium imaging recordings
from mouse retinal ganglion cells in response to drifting bars. g-i. Single-unit activity
recorded from primary visual cortex of macaque monkey in response to drifting gratings. j-
l. Micro-electrocorticography recordings (z-scored Hγ response) from rat primary auditory
cortex in response to tone pips at varying frequencies. Columns: First column (d, g, j)
depicts the brain region and stimulus for each dataset. Second column (e, h, k) depicts the
response of two randomly units in the population to two neighboring stimuli. Individual
points denote the unit response on separate trials, while covariance ellipses denote the noise
covariance ellipse at 2 standard deviations. Third column (f, i, l) plots the distribution of
noise correlations, calculated for each unit and unique stimulus, across the population.

As a starting point, if the percentiles are distributed uniformly between zero and one, then
the observed neural responses are no more optimized than a random-uniform setting of the
degrees-of-freedom in the model. To the extent that the observed percentiles are distributed
closer to one, the neural activity can be interpreted as being optimal, although real datasets
are unlikely to achieve perfect optimality (all percentiles equal to one). Conversely, to the
extent that the observed percentiles are distributed closer to zero, the neural activity can be
interpreted as having worse optimality than a chance setting of the degrees-of-freedom.

In order to test the optimality of observed neural responses, we propose three null models,
each of which have a particular biophysical interpretation. We contrast these null models
with the commonly used shuffle null model, which compares the observed correlations to
a distribution with equal per-unit variance, but zero correlations. The first proposed null
model has the same constraints as the shuffle null model (preserves the per-unit variance),
but compares the observed correlations to all possible correlational structures uniformly. The
other two null models, a rotation null model and a Factor Analysis null model, attribute the
correlated variability entirely to incoming shared variability and to a mixture of private
variability and shared variability, respectively. Together, these null models provide methods
to test the optimality of correlated variability under various biophysical assumptions.

We test the optimality of neural responses in three datasets recorded from retina, primary
visual cortex (V1), and primary auditory cortex. Using the proposed null models, we find
that the observed correlated variability has discriminability that is lower than chance across
all datasets and null models. Furthermore, the observed percentiles quickly approach zero
as a function of the dimensionality of the neural data. In order to understand this result,
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we analyze the features of optimal correlational structures under the null models. We find
that for a large fraction of subsamples of the recorded units, achieving optimality would
push the neural responses into regimes that violate soft biophysical constraints. Together,
our results demonstrate that traditional null models of correlated variability may overstate
the optimality of observed neural data, and that biophysical constraints limit the ability of
neural activity to achieve optimal correlated variability.

3.2 Methods

Linear Fisher information measures coding fidelity

One commonly used measure of coding fidelity in the context of decoding is the Fisher
information, which is related to a limit on how accurately a readout of a neural representation
can be used to determine the value of the stimulus [53]. Formally, it sets a lower bound to
the variance of an unbiased estimator for the stimulus. In practice, the Fisher information
is analytically intractable. An alternative measure is the linear Fisher information (LFI),
defined as

I(s) =
df(s)T

ds
Σ(s)−1

df(s)

ds
(3.1)

where f(s) is the neural population’s average response across trials, and Σ(s) is the popula-
tion’s covariance across trials both for a stimulus s [106]. The LFI acts as a suitable lower
bound to the Fisher information and is the most commonly used measure of coding fidelity
in correlated variability analyses [2, 181, 216, 227, 66, 106, 164].

Experimental neuroscience datasets only consider discrete sets of stimuli, which is not
amenable to the computation of LFI as posed in Equation 3.1. In particular, the derivative
of the average neural response must be estimated by considering the neighboring pairs of
stimuli. Thus, in practice, we calculate the coarsened linear Fisher information [93], which
is defined for two stimuli s1 and s2 as

Icoarse(f1, f2,Σ1,Σ2) =

(
f1 − f2

∆s

)T (
Σ1 + Σ2

2

)−1(
f1 − f2

∆s

)
(3.2)

where f1 = f(s1), f2 = f(s2), Σ1 = Σ(s1), Σ2 = Σ(s2), and ∆s is the stimulus difference
between s1 and s2, whose form may depend on the stimulus structure. In this work, we use
the terms “coarsened LFI” and “LFI” interchangeably.

A formalism for assessing the optimality of neural data

Information theoretic analyses of neural data often ask whether the observed neural data
is “optimal.” In the case of correlated variability, the question can be posed as: are the
observed covariances optimal from a decoding perspective? If we consider the linear Fisher
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Information (LFI, Eq. 3.1) as the measure of optimality, what structure for Σ maximizes
LFI? In this case, LFI can be infinitely large if Σ → 0 (or at least if the subspace of Σ

defined by df(s)
ds

has zero variance). This answer is likely unsatisfying because neural systems
have many sources of variability, and so expecting a neural system to become noiseless or
exactly remove noise from a subspace seems implausible.

In this section, we develop the formalism that will allow us to assess the optimality of
observed correlated neural variability. The formalism consists of first defining a covariance
parameterization for Σ, which is composed of constraints (fixed parameters) and degrees-
of-freedom (free parameters). Ideally, these constraints and degrees-of-freedom have some
biophysical interpretation. Then, a null model is defined by combining a covariance pa-
rameterization with a null distribution of the degrees of freedom. The distribution of some
measure, such as the LFI, over the null model serves as a gauge to assess the optimality of
the observed neural data.

We first consider an example to motivate our formalism. Then, we review the commonly
used “fixed-marginal” model for correlated variability using our formalism and define two
potential null models including the “shuffle” null model. Finally, we propose two covari-
ance parameterizations and associated null models for assessing optimality which have more
biophysical interpretability. In the following sections we will use the following terminology
which we define here:

• Covariance Parameterization: a parameterization of Σ which can combine various
constraints (fixed parameters) and degrees-of-freedom (free parameters).

• Constraints: elements of the covariance parameterization which are estimated from
data and fixed.

• Degrees-of-Freedom: elements of the covariance parameterization which can poten-
tially be modified or optimized to analyze a null model or optimality.

• Optimality: values for the degrees of freedom in a covariance parameterization which
maximize a specified objective. Here we assess optimality using the Linear Fisher
Information (LFI), although this formalism can be applied to other objectives.

• Null Distribution: distribution of a covariance parameterization’s degrees-of-freedom.

• Null Model: combines a covariance parameterization with a baseline or uniform null
distribution over the degrees-of-freedom.

The standard constraint considered for understanding correlated neural variability is
to keep the per-neuron marginal distributions fixed. Since the LFI only depends on the
covariance of the correlated variability, the fix-marginal parameterization is equivalent to
constraining the per-neuron variances to be constant (equivalently, the diagonal of Σ is kept
constant, diag(Σ) = σ2). The corresponding degrees-of-freedom in this parameterization are
the positive-definite pairwise correlation matrix, ρ, specifically the symmetric, off-diagonal
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Model Constraints DoFs Null Distribution(s)
Fixed-Marginal diag(Σ) ρ shuffle, U(ρ)
Rotation Evals(Σ) R U(SO(d))
Factor Analysis σ2

FA, Evals(LT
FALFA) R U(SO(d))

Table 3.1: Existing and proposed null models and their breakdown in the constrains, degrees
of freedom, distribution formalism. Evals(·) gives the eigenvalues of the argument and diag(·)
gives the diagonal of the argument.

entries, ρi 6=j which can vary (summarised in Table 3.1). Under this parameterization, the
observed correlational structure can be compared to other proposed distributions of correla-
tions.

When considering the structure that generates Σ, it is desirable that the constraints
and degrees-of-freedom be biophysically interpretable. Commonly, this can be achieved
by considering the equations that define the mean-centered, single-trial response in terms
of the degrees-of-freedom being considered. For the fixed-marginals parameterization, the
distribution of the differences between the single trial responses ft(s) and the mean response
f(s) can be written in terms of a mean-zero multivariate normal distribution where the
covariance is the element-wise product of the constrained marginal standard deviations,
σσT , and the free correlations, ρ

ft(s)− f(s) = ε (3.3)

ε ∼ N (0,σσT � ρ) (3.4)

Given a parameterization (fixed-marginal) and a measure of coding fidelity (LFI), it
is possible to find optimal covariance structures. In general, the values (or distribution)
for the degrees-of-freedom that lead to optimality can be derived analytically or optimized
numerically. This corresponds to finding the points, ρ̂, such that

ρ̂ = argmax
ρ

LFI

(
df(s)

ds
, diag(Σ),ρ

)
. (3.5)

Hu, Zylberberg, and Shea-Brown [85] show that, for the fixed-marginal model, the optimal
correlational structure exist on the boundaries of the allowed values of ρ for several measures
of coding fidelity including the LFI.

Novel null models allow the assessment of optimality in neural
data

So far, we have have developed a formalism to define the optimal degrees-of-freedom for a
specified parameterization. It is unlikely that observed neural data will precisely match the
predicted optimal degrees of freedom, even if the biological system is behaving optimally, so
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the predictions from Eq 3.5 cannot be used directly to assess optimality in data. In order to
asses the optimality of a observed population of neurons, a null model must be constructed for
a corresponding parameterization. In this formalism, constructing a null model corresponds
to assuming a null distribution for the degrees-of-freedom of the covariance parameterization.
The null distribution should correspond to some notion of “uniform” or “baseline” for the
degrees of freedom.

For example, the shuffle null model, based on the fixed-marginal parameterization, posits
that the baseline distribution of correlations is zero correlations. The shuffle null model
compares the LFI of the observed response marginal distributions and correlations to the LFI
of the responses under a distribution where the individual neural responses are independently
trial shuffled, that is, with fixed-marginal variability, no underlying pairwise correlations, and
empirical pairwise correlations only arising from finite sampling effects. This is analogous
to defining the null distribution for the covariance as a Wishart distribution with scale
matrix equal to a matrix with the diagonal entries of Σ and zeros elsewhere, although the
shuffle model exactly preserves the marginal variance, unlike a Wishart distribution which
allows sampling variability in both the variance and correlations. Under this choice of null
model, the observed LFI can be considered optimal if it has a high percentile under the null
distribution, and furthermore, optimal is considered specifically with respect to a distribution
with no correlations.

Our first contribution is a related null model based on the fixed-marginal parameteriza-
tion, where the correlations are chosen randomly from a uniform distribution over correlation
matrices. This tests whether the observed correlation are optimal with respect to all cor-
relations, rather than zero correlations. To our knowledge, this null model has not been
considered before. Evaluating data under this null model answer the question of whether
the observed correlations are optimal with respect to all possible correlations, not just zero
correlations.

At another extreme, we can attribute all trial-to-trial variability to external sources
that the network can shape or filter. To prevent trivial solutions, we propose a “rotation”
parameterization that preserves the spectrum of the variability (Evals(Σ) = λ), but allows
the network to change the loading of the variability onto the neurons (through a rotation,
R). This model was discussed by Hu, Zylberberg, and Shea-Brown [85], but not analyzed
due it its incompatibility with the fixed-marginal constraint. Let Σ = LTL be the Cholesky
decomposition of the observed covariance matrix. If a rotation, R, is applied to L, the
eigenvalues of Σ are preserved (the model constraint), while their loading onto the observed
neurons is rotated (the degrees of freedom). The mean-centered single trial response can
be written as a function of the full-rank external sources z, loading matrix L, and rotation
matrix R

ft(s)− f(s) = RTLTz (3.6)

z ∼ N (0, I). (3.7)

To optimize the rotation model, the eigenvector with the smallest eigenvalue can be
rotated to align with df(s)

ds
which maximized the LFI. In addition to maximizing the LFI, the
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optimal rotation can be constructed to be “minimal”, that is, to have no off-axis rotation.
To construct the rotation null model, a uniform distribution (Haar distribution) over special
orthogonal rotations [190] is applied to the rotations (see Table 3.1 for summary).

As a parsimonious combination of these models, we propose using a Factor Analysis (FA)
model to model correlated variability. Factor Analysis decomposes the observed correlated
variability into two components: the first is per-neuron private variability, represented as
a diagonal matrix diag(σ2

FA), and the second is a low-rank shared variability component,
LT

FALFA, where LFA ∈ Rk×d, k < d. We propose that the FA model has private variability
and the spectrum of the shared component as constraints and the rotation of the shared
components as the degrees-of-freedom, combining aspects of the fixed-marginal and rotation
null models. The mean-centered single trial response can be written as a function of the
private variances σ2

FA, low-rank external sources z, loading matrix LFA, and rotation matrix
R

ft(s)− f(s) = RTLT
FAz + ε (3.8)

z ∼ N (0,1) (3.9)

ε ∼ N (0, diag(σ2
FA)) (3.10)

To our knowledge, there is no closed-form solution for R in the FA model to maximize LFI.
Instead, to optimize the FA model, the rotation can be numerically optimized by gradient
ascent. To construct the FA null model, a uniform distribution (Haar distribution) over
special orthogonal rotations [190] is applied to the rotations (see Table 3.1 for summary).

Population statistics across dim-stims capture optimality under a
null model

Each dataset can be described by a D × N design matrix X, where D is the total number
of samples and N is the number functional units in the population (Fig. 3.3a, left). We
considered distributions of LFI across dim-stims, or sub-components of the design matrix.
To create dim-stims, we first selected a dimlet of size d by subsampling d units from the
population at random, resulting in the D × d design matrix Xd (Fig. 3.3, middle). Next,
we created the dim-stim by further subsampling the design matrix according to a specific
stimulus pairing. Specifically, we chose two neighboring stimuli, s1 and s2 (Fig. 3.3, middle),
and isolated the samples of Xd corresponding to those stimuli, thereby creating a pair of
design matrices [Xd

s1
,Xd

s2
]. The dim-stim maps to the task of discriminating between two

neighboring stimuli using a sub-population’s responses across trials to those stimuli, which
can be visualized in the neural space (Fig. 3.3, right).

For each dataset, we considered dimlet dimensions d = 3, . . . , 15. As we only allowed
neighboring stimulus pairings, the number of available stimulus pairings for a dimlet was 6
(retinal), 12 (V1) and 29 (PAC). Note that the retinal and V1 stimulus sets are circular,
providing an additional stimulus pairing. In the retinal and V1 datasets, we drew d = 1000
dimlets for each dimension d, and considered all stimulus pairings per dimlet, resulting in
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Figure 3.2: Observed correlated variability has LFI percentiles below chance. Each
colums corresponds to one of the datasets. a-c. The LFI calculated on the observed data and
null models for the retinal (a), V1 (b) and primary auditory cortex (c) datasets. Each plot
depicts the LFI, plotted on a log-scale (y-axis) as a function of the dimlet dimension (x-axis).
For the observed data (black), the solid line denotes the median LFI across dim-stims. For
the null models (shuffle: gray, rotation: red, factor analysis: purple), solid lines denote the
median across both dim-stims and repeats of the null distribution. Shaded regions bound the
40th and 60th percentiles of the LFI distribution. d-f. The distribution of LFIs across the
shuffle, rotation, and factor analysis null models for a specific dim-stim. The observed LFI
is denoted by the black dashed line in each plot. Percentiles are calculated as the fraction
of the null model repeats that lie below the observed LFI, and are denoted in each plot’s
legend. g-i. Observed percentiles, for each dataset (columns) and null model (colors), across
dimlet dimensions (x-axes). Solid line denotes the median observed percentile across all dim-
stims, while shaded region bounds the 40th and 60th percentiles of the observed percentile
distribution.

1000 × 6 = 6000 dim-stims for the retinal dataset and 1000 × 12 = 12000 dim-stims for
the V1 dataset. To manage computation time, we considered 3000 unique dim-stims for the
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PAC dataset, selecting both the dimlet and stimulus pairing at random for each dim-stim.
For each dim-stim, we calculate its observed LFI, defined as Icoarse(f1, f2,Σ1,Σ2). Specif-

ically, we computed

Iobs(Xd
s1
,Xd

s2
) = Icoarse

(
mean(Xd

s1
),mean(Xd

s2
), cov(Xd

s1
), cov(Xd

s2
)
)

(3.11)

=

(
fds1 − fds2

∆s

)T (
Σd
s1

+ Σd
s2

2

)−1(
fds1 − fds2

∆s

)
(3.12)

where [fds1 , f
d
s2

] are the dim-stim average responses, [Σd
s1
,Σd

s1
] are the dim-stim covariances,

and ∆s is the stimulus difference, or ∆s = |s1− s2|. When necessary, the stimulus difference
was taken as a circular difference (retinal and V1 datasets). Since the LFI is scaled by the
units of the stimulus differences, it is only meaningful to compare observed LFIs within a
particular dataset.

Each null model acts on the design matrices of a dim-stim and outputs a distribution
of covariance matrices. For example, the fixed-marginal null model shuffles the data within
the design matrix, producing new design matrices [Xd

s1

′
,Xd

s2

′
] and corresponding covariances

[Σd
s1

′
,Σd

s2

′
]. We then calculate the LFI using the new covariance matrices. Each null model

can be summarized as such: a sampled transformation is applied to the observed dim-stim,
producing new sampled covariance matrices and therefore a sample of LFI from the null.
The shuffle null model transformed the data directly, so we write its LFI as

IFM(Xd
s1
,Xd

s2
) = Iobs

(
shuffle(Xd

s1
), shuffle(Xd

s2
)
)
. (3.13)

Meanwhile, the uniform, rotation, and factor analysis null models transform the covariance
or its parameterization directly, so we write their LFIs as:

IU(Xd
s1
,Xd

s2
) = Icoarse

(
fds1 , f

d
s2
, sampleU(Σd

s1
), sampleU(Σd

s2
)
)

(3.14)

IR(Xd
s1
,Xd

s2
) = Icoarse

(
fds1 , f

d
s2
, rotate(Σd

s1
), rotate(Σd

s2
)
)

(3.15)

IFA(Xd
s1
,Xd

s2
) = Icoarse

(
fds1 , f

d
s2
, rotateFA(Σd

s1
), rotateFA(Σd

s2
)
)
. (3.16)

Equations (3.13-3.16) capture a single application of a null model. Specifically, shuffle()
shuffles the neural data, sampleU() samples a random off-diagonal correlation structure and
applies it to the covariance, rotate() applies a rotation to the covariance, and rotateFA()
applies a rotation to the shared component of the covariance. However, we were interested
in characterizing the entire distribution of the null model. Thus, for each dim-stim, we
applied 1000 repeats of the null model to obtain a null model distribution of LFIs. We then
calculated observed percentiles as the fraction of repeats for which the observed LFI exceeded
the null model LFI. Thus, each dim-stim has its own corresponding observed percentile, per
null model.

Neural Recordings

We examined correlated variability in a diverse set of datasets, spanning distinct brain
regions, animal models, and recording modalities. We used calcium imaging recordings from
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Dataset Animal Recording Stimulus # Units # Stimuli # Trials/Stim
Retina Mouse (Isolated) Calcium Imaging Drifting Bars 54 6 114

V1 Macaque Single-Units Drifting Gratings 106 12 200
PAC Rat µECoG Tone Pips 65 30 60

Table 3.2: Experimental dataset summary.

mouse retinal ganglion cells, single-unit recordings from macaque primary visual cortex,
and micro-electrocorticography recordings from rat auditory cortex. We briefly describe the
experimental and preprocessing steps for each dataset. See Figure 3.2 and Table 3.2 for
summaries of the datasets.

Recordings from mouse retina

Mouse retinal data was comprised of calcium imaging recordings from retinal ganglion cells
isolated from mice. Retinal ganglion cells were presented with drifting bars at 6 unique
angles (spanning 0◦ to 300◦). Each angle was presented 114 times, for a total of 684 trials
per cell. A total of 832 retinal ganglion cells were extracted, of which we analyzed 54 that
exhibited tuning. Data was recorded by Summers & Feller.

Recordings from macaque primary visual cortex (V1)

Primary visual cortex data (V1) was comprised of spike-sorted units simultaneously recorded
in anesthetized macaque monkey. This dataset contains recordings from three monkeys, of
which the main text presents results from the first one (see Appendix for results on additional
two monkeys). Recordings were obtained with a 10×10 grid of silicon microelectrodes spaced
400 µm apart and covering an area of 12.96 mm2. A total of 106 units were isolated in the
monkey. The monkey was presented with grayscale sinusoidal drifting gratings, each for
1.28 s. Twelve unique drifting angles (spanning 0◦ to 330◦) were each presented 200 times,
for a total of 2400 trials per monkey. Spike counts were obtained in a 400 ms bin after
stimulus onset. The data was obtained from the Collaborative Research in Computational
Neuroscience (CRCNS) data sharing website [192] and was recorded by Kohn and Smith
(KS) [106]. Further details on the surgical, experimental, and preprocessing steps can be
found in [180] and [102].

Recordings from rat primary auditory cortex (PAC)

Auditory cortex data (PAC) was comprised of cortical surface electrical potentials (CSEPs)
recorded from rats with a custom fabricated micro-electrocorticography (µECoG) array. The
µECoG array consisted of an 8×16 grid of 40 µm diameter electrodes. Anesthetized rats were
presented with 50 ms tone pips of varying amplitude (8 different levels of attenuation, from
0 dB to −70 db) and frequency (30 frequencies equally spaced on a log-scale from 500 Hz to
32 kHz). We only used samples for the lowest 3 levels of attenuation since these evoked the
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largest responses. Each frequency-amplitude combination was presented 20 times, for a total
of 3 × 30 × 20 = 1800 samples. The response for each trial was calculated as the z-scored
to baseline, high-γ band analytic amplitude of the CSEP, calculated using a constant-Q
wavelet transform. Of the 128 electrodes, we used 65, selecting those that recorded from
primary auditory cortex. Data was recorded by Dougherty & Bouchard. Further details on
the surgical, experimental, and preprocessing steps can be found in [61].

3.3 Results

An abundance of work has aimed to assess whether observed correlated variability is benefi-
cial for neural coding. This question is a relative one, in which the observed data is compared
to a specified benchmark. The benchmark must be chosen to adequately reflect what could
be achievable by the neural system. If this is not the case, we may come to the conclusion
that correlated variability is beneficial for neural coding, when in reality the observed corre-
lated variability is sub-optimized. Ultimately, this becomes a question of whether correlated
variability is structured optimally for decoding.

To answer this question, we developed a novel formalism to assess the optimality of
correlated variability in neural data. The formalism consists of evaluating some measure
of coding fidelity relative to a null model. We define a null model as a specific covariance
parameterization (i.e., the identification of degrees of freedom for the correlated variability)
coupled with a null distribution for those degrees of freedom. The goal of the null model,
then, is to constrain some aspect of the data while perturbing other aspects. Thus, optimality
in this framework is assessed by benchmarking the observed data relative to what could be
achievable by probing the degrees of freedom.

The standard practice for evaluating coding fidelity under correlated variability is to
shuffle the data across trials. The goal of trial-shuffling is to constrain the marginals (i.e.,
the means and variances) of the neural activities, but destroy any pairwise correlations.
This approach lies within the optimality framework as the shuffle null model, consisting of
a fixed-marginal covariance parameterization coupled with a null distribution obtained by
shuffling the data (Fig. 3.2a).

However, the shuffle null model is only a weak test of optimality: it does not account
for other possible correlational structures that could be achievable by neural systems. Here,
we propose three null models that allow us to asses the optimality of the observed neural
responses: the uniform correlation null model (Fig. 3.2b), the rotation null model (Fig. 3.2c),
and the factor analysis null model (Fig. 3.2d). The uniform correlation null model main-
tains the marginal distributions, but allows for any off-diagonal noise correlation structure
(Fig. 3.2b: dashed lines). The rotation null model maintains the eigenvalues of the correlated
variability, but allows for any orientation of the covariance in the neural space (Fig. 3.2c:
dashed lines). The factor analysis null model maintains the eigenvalues of a suitable shared
sub-component of the covariance, but allows for any orientation of this sub-component in the
neural space. Each of these null models have unique biological interpretations and provide



CHAPTER 3. OPTIMALITY IN CORRELATED VARIABILITY 65

more suitable tests of optimality. To our knowledge, they have not been evaluated on neural
data before.

We characterized the optimality of several neural datasets by evaluating their coding
fidelity relative to each of the aforementioned null models. We first show that neural re-
sponses are largely suboptimal (worse than chance), across datasets. Second, we analyze the
properties of derived optimal response distributions and find that biophysical constraints
restrict the observed populations from achieving optimality.

Neural populations exhibit worse than chance coding fidelity
according to novel null models

To characterize the optimality of a wide range of sub-population and stimulus settings, we
performed a large scale experiment evaluating the LFI in both the observed data and null
models. For each neural population, we randomly sampled dimlets, or sub-populations, of
dimension d. We paired dimlets with a variety of neighboring stimulus pairings to obtain
a subset of the neural responses which we call a dim-stim (Fig. 3.2e; see Methods). A
dim-stim maps to the task of constructing a decoder for neighboring stimuli using a neural
sub-population’s responses across trials (Fig. 3.2f and Fig. 3.1e, h, k).

We calculated the LFI for each dim-stim, across dimensions and datasets. We refer to
this quantity as the observed LFI. Next, we applied the null models repeatedly (R = 1000
times) to each dim-stim, and calculated the LFI for each repeat (see Methods). Thus, for
each dim-stim, we obtain a single observed LFI, and a distribution of R LFIs for each null
model. We summarized each null model by calculating the median LFI across the R repeats.

We compared the behavior of the observed LFI to those of the null models as a function of
dimlet dimension (Fig. 3.3a-c). For each dataset, we generated a large number of dim-stims
across a set of dimensions d = 3, . . . , 20 (see Methods). The observed LFIs across dim-stims
grows with dimlet dimension, as we might expect (Fig. 3.3a-c: black lines). Similarly, the null
model LFIs grow with dimlet dimension. However, both the rotation and factor analysis null
models clearly exhibit larger LFIs than the observed data, with the disparity increasing with
dimlet dimension. The rotation null model achieves the highest median LFIs, indicating that
this null model produces, in general, noise correlation structure with the highest discrim-
inability (Fig. 3.3a-c: red lines). Meanwhile, the shuffle null model generally exhibits worse
or comparable discriminability relative to the observed LFI at lower dimensions (Fig. 3.3a-c:
gray lines). At higher dimensions, however, its LFIs begin to exceed the observed LFIs.
We further observe differences across datasets. For example, the factor analysis null model
(Fig. 3.3a-c: orchid lines) exhibits similar LFIs as the rotation null model for the retinal and
PAC datasets. However, in the V1 data, its LFIs are more comparable to the observed and
shuffle LFIs. Overall, Figure 3.3a-c demonstrates that the median LFIs of the rotation and
factor analysis null models produce LFIs that generally exceed that of both the shuffle null
model and the observed data.

We quantified the optimality of a dim-stim’s representation, relative to a null model,
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with its observed percentile. As described in the previous section, we calculated the observed
LFI, as well as the LFI for each of the R repeats across the null model. The R LFIs
constitute a null model distribution, which serves as a benchmark for the observed LFI.
We calculated observed percentile as the fraction of the R repeats that the observed data
outperformed, according to their LFIs. A larger observed percentile implies that the observed
data possessed higher discriminability relative than most orientations provided by the null
model, corresponding to optimal or near-optimal discriminability. On the other hand, a
lower observed percentile implies that the dim-stim possesses sub-optimal discriminability.

Each null model exhibits distinct LFI distributions, with further variation depending on
the dataset and dim-stim. Example null model distributions for a particular dim-stim are
depicted in Figure 3.4d-f. The observed percentiles calculated in each example highlights that
the performance can vary dramatically across dim-stims. For example, we observe highly
sub-optimal performance (Fig. 3.3d), middling performance (Fig. 3.3e), and nearly optimal
performance (Fig. 3.3f) as captured by the observed percentiles (Fig. 3.3d-f, legends).

The heterogeneity in observed percentiles motivates examining their behavior at the
population level. Thus, on each dataset, we computed the distribution of observed percentiles
across 1000 dim-stims per dimlet dimension, ranging from d = 3 to d = 15. The behavior
of the median observed percentile (calculated across dim-stims) as a function of dimlet
dimension is shown in Figure 3.3g-i. We found that, across the datasets, the shuffle null
model has the largest observed percentiles, while the rotation null model has the lowest
observed percentiles. This implies that, among the three null models, usage of the shuffle
null model is most likely to imply optimality of the neural representations. Meanwhile,
the factor analysis and rotation null models exhibit similar observed percentiles, with the
factor analysis null model slightly higher across all three datasets (Fig. 3.3g-i, red and orchid
lines). All observed percentiles decrease with dimlet dimension, implying that the neural
representations become less optimal as the number of neurons increases. This decrease is
expected as differential correlations induce information saturation in the populations.

Figure 3.3 highlights intriguing differences across datasets. In particular, the shuffle null
model for the V1 data clearly exhibits the highest observed percentiles, indicating nearly
optimal performance for small dimlet sizes (up to d ≈ 10). Meanwhile, the shuffle null
model in the primary auditory cortex data exhibits lower observed percentiles, with a larger
spread, indicating a higher heterogeneity in the observed percentiles (Fig. 3.3i: gray shaded
region). The shuffle null model for the retinal data has the lowest observed percentiles among
the three datasets, exhibiting the smallest discrepancy between it and the other two null
models. Meanwhile, the observed percentiles for the factor analysis and rotation null models
are similar across the three datasets, with slightly different magnitudes. In particular, the
retinal data exhibits the largest observed percentiles for these two null models, while the PAC
data exhibits the smallest, going to zero around d = 5. This behavior roughly corresponds
to the distribution of noise correlations amongst the three datasets (Fig. 3.1f, i, l), with the
PAC data possessing the highest average noise correlation, and the retinal data possessing
the lowest average noise correlation.
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Figure 3.3: Observed correlated variability has LFI percentiles below chance. Each
colums corresponds to one of the datasets. a-c. The LFI calculated on the observed data and
null models for the retinal (a), V1 (b) and primary auditory cortex (c) datasets. Each plot
depicts the LFI, plotted on a log-scale (y-axis) as a function of the dimlet dimension (x-axis).
For the observed data (black), the solid line denotes the median LFI across dim-stims. For
the null models (shuffle: gray, rotation: red, factor analysis: purple), solid lines denote the
median across both dim-stims and repeats of the null distribution. Shaded regions bound the
40th and 60th percentiles of the LFI distribution. d-f. The distribution of LFIs across the
shuffle, rotation, and factor analysis null models for a specific dim-stim. The observed LFI
is denoted by the black dashed line in each plot. Percentiles are calculated as the fraction
of the null model repeats that lie below the observed LFI, and are denoted in each plot’s
legend. g-i. Observed percentiles, for each dataset (columns) and null model (colors), across
dimlet dimensions (x-axes). Solid line denotes the median observed percentile across all dim-
stims, while shaded region bounds the 40th and 60th percentiles of the observed percentile
distribution.
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Optimal noise correlations are biologically implausible

We sought to understand why the observed correlated variability structure is highly sub-
optimal, as opposed to random or optimal. To do so, we compared the structure of the
observed covariances to those of the optimal covariances under the rotation and factor anal-
ysis null models. Consider an example dim-stim for a dimlet of size d = 3, with low observed
percentiles under both the null models (e.g., pR = 0.0 and pFA = 0.002). We plot the ob-
served covariance structure, projected into two dimensions, in Figure 3.4a (black covariance
denotes average covariance). Next, we compare the observed structure to that of the optimal
structure, both within the rotation null model (Fig. 3.4b: red ellipse) and the factor analysis
null model (Fig. 3.4c: orchid ellipse).

The observed correlated variability structure (Fig. 3.4a) clearly exhibits poor discrim-
inability, because the variability is oriented parallel to the stimulus manifold (Fig. 3.4: black
lines). The rotation null model, which has the greatest amount of flexibility in orienting the
correlated variability, is oriented orthogonal to the stimulus manifold, as we might expect.
Meanwhile, the optimal covariance structure under the factor analysis null model lies more
orthogonal to the stimulus manifold, but not to the degree of the rotation null model. It is
clear that the optimal covariance structures are markedly different from that of the observed
covariance. In particular, the optimal structures project more variance into the negative
neural space, which is an unattainable region for spiking units (Fig. 3.4: gray regions in
marginal distributions). Furthermore, the rotation and factor analysis optimal covariances
possess different per-neuron variances (Fig. 3.4: black side bars). Both of these features are
biological restrictions on neural activity, and may impede a neural system from obtaining an
optimal correlated variability structure.

We aimed to quantify the degree to which the biological implausibility of the optimal
covariance structures correlated with the optimality of the observed firing for each dim-stim.
That is, we examined whether the cases where a dim-stim exhibited optimal, or near optimal
coding performance – as measured by the observed percentile – corresponded to scenarios
where optimal covariances were achievable within biological constraints. We first examined
the degree to which the Fano factor is preserved under optimal orientations. Then, we
examined a quantity we refer to as the excess negative density (END), which measures the
degree to which an optimal covariance structure places probability density in low or negative
neural activity regions, relative to the observed data. In both cases, we found that dim-stims
exhibited increased coding performance whenever the END or Fano factors were biologically
plausible.
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Figure 3.4: Biological constraints may not be preserved under null model trans-
formations. Example dim-stim. Fits and optimal covariances are from a d = 3 dimlet
projected into the first 2 neurons. The marginal probabilities of the multivariate gaussian
fits are shown along the axes and the areas with values less than the empirical 1% are shaded
grey with the maximum excess negative density in dark grey (annotated with “END”). The
marginal means and standard deviations (for Fano factor calculations) are shown in the black
error bars (annotated with “FF” and neuron number). a: Neuron responses to stimuli 1 and
2 (orange and blue circles) and the respective means (outlined circles). Their joint meant is
the green circle and the observed mean covariance is in green. b: Covariance and marginals
from the optimal rotation. c: Covariance and marginals from the optimal Factor Analysis
rotation.

Biologically achievable Fano factors restrict optimality

The Fano factor quantifies the variability of neural units relative to their average activity.
Typically, Fano factors have been observed to be around 1. However, Figure 3.4 demonstrates
that the optimal covariance orientations under a null model may possess substantially differ-
ent Fano factors. Thus, we aimed to assess whether biologically unachievable Fano factors
shared any relation with the sub-optimality exhibited by the neural codes in our analyses.



CHAPTER 3. OPTIMALITY IN CORRELATED VARIABILITY 70

10−1.5 10−1 10−0.5

Fano Factor

0

250

500

750

1000

F
re

q
u

e
n

cy

a Retina

Observed

Rotation

FA

100 101 102 103

Fano Factor

0

1000

2000

3000

4000

F
re

q
u

e
n

cy

b V1

Observed

Rotation

FA

100 101 102

Fano Factor

0

200

400

600

F
re

q
u

e
n

cy

c PAC

Observed

Rotation

FA

10−1.5 10−1 10−0.5

Observed Fano Factor

10−1.5

10−1

10−0.5

R
o
ta

ti
o
n

F
a
n

o
F
a
ct

o
r

d

100 101 102 103

Observed Fano Factor

100

101

102

103

R
o
ta

ti
o
n

F
a
n

o
F
a
ct

o
r

e

100 101 102

Observed Fano Factor

100

101

102

R
o
ta

ti
o
n

F
a
n

o
F
a
ct

o
r

f

10−1.5 10−1 10−0.5

Observed Fano Factor

10−1.5

10−1

10−0.5

F
A

F
a
n

o
F
a
ct

o
r

g

100 101 102 103

Observed Fano Factor

100

101

102

103

F
A

F
a
n

o
F
a
ct

o
r

h

100 101 102

Observed Fano Factor

100

101

102

F
A

F
a
n

o
F
a
ct

o
r

i

Rotation Factor
Analysis

−1.00

−0.75

−0.50

−0.25

0.00

C
o
rr

e
la

ti
o
n

∗ ∗ ∗
∗ ∗ ∗

j

Rotation Factor
Analysis

−1.00

−0.75

−0.50

−0.25

0.00

C
o
rr

e
la

ti
o
n

∗ ∗ ∗
∗ ∗ ∗

k

Rotation Factor
Analysis

−1.00

−0.75

−0.50

−0.25

0.00

C
o
rr

e
la

ti
o
n ∗ ∗ ∗ ∗ ∗ ∗

l

0.0

0.2

0.4

0.6

0.8

1.0

A
v
e
ra

g
e

P
e
rce

n
tile

0.0

0.2

0.4

0.6

0.8

1.0
A

v
e
ra

g
e

P
e
rce

n
tile

0.0

0.2

0.4

0.6

0.8

1.0

A
v
e
ra

g
e

P
e
rce

n
tile

0.0

0.2

0.4

0.6

0.8

1.0

A
v
e
ra

g
e

P
e
rce

n
tile

0.0

0.1

0.2

0.3

0.4

0.5

A
v
e
ra

g
e

P
e
rce

n
tile

0.0

0.1

0.2

0.3

0.4

0.5

A
v
e
ra

g
e

P
e
rce

n
tile

Figure 3.5: Biologically achievable Fano factors restrict optimality. Each column
corresponds to a separate dataset. a-c. The distribution, across dim-stims, of Fano factors
from: the observed data (black), the optimal noise covariance under the rotation null model
(red), and the optimal noise covariance under the factor analysis null model (orchid). Fano
factors are shown on a log-scale (x-axis). Continued on the following page.
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Figure 3.5: Continued from previous page. d-f. Fano factors for optimal noise covari-
ance under the factor analysis null model plotted directly against the observed Fano factor,
across dim-stims. Each dim-stim is summarized by its mean Fano factor across the dimlet.
Cells in each hexagonal bin are colored according to the average observed percentile, relative
to the factor analysis null model (color bar to the right). Note that the colorbar for the AC
data (f) is on a different scale. g-i. Same as d-f, but comparing the observed Fano factors
to the those of the rotation null model. j-l. The correlation between the observed percentile
and the logarithm of the Fano factor ratio, log (FFnull/FFobs) . Each point denotes a corre-
lation for a different dimlet dimension. Significance markers denote p < 10−3 (one-sample
t-test from µ = 0).

We summarized each dim-stim with an aggregate Fano factor, by averaging the Fano
factors of that dim-stim’s individual units. We repeated this process for the optimal noise
covariances under each null model, using the variances from the diagonal of the optimal
noise covariance matrix directly when calculating Fano factors. As an example, we show the
distribution of Fano factors across dim-stims for d = 3 in Figure 3.5a-c. We observed that
the rotation and factor analysis null models generally exhibited larger Fano factors, with
substantially longer tails. This indicates that optimal orientations under the null models
typically possess higher Fano factors, with high variance directions being assigned to units
with lower activity. Furthermore, we observe that discrepancy between the observed and
null model Fano factor distributions is largest for the V1 and PAC data.

We aimed to determine whether the Fano factor distribution related to the optimality
of the neural code. To this end, we directly compared the null model Fano factors to
the observed Fano factors in Figure 3.6d-f (rotation null model) and Figure 3.6g-i (factor
analysis null model). We color-coded each bin of the 2-d histogram according to the average
observed percentile of dim-stims within the bin. Thus, in Figure 3.6d-i, bins with lighter
colors contain dim-stims whose coding performance is closer to optimal. We observed that
dim-stims whose observed Fano factors are similar in magnitude to the optimal null model
typically exhibit higher average observed percentiles, indicating that their neural codes are
closer to optimal (Fig. 3.6d-i: lighter color bins near gray identity line). Meanwhile, dim-
stims whose observed Fano factors were substantially smaller than the (Fig. 3.6d-i: darker
color bins). This indicates that if the optimal noise covariance exhibits biologically plausible
Fano factors, then the neural representations typically achieved better than sub-optimal (and
in some cases, close to optimal) decoding performance. This was less true for the PAC data,
which typically exhibited the lowest observed percentiles (Fig. 3.6f, i: see colorbar range).

Lastly, we quantified the correspondence between Fano factor and observed percentile.
Specifically, we calculated the log-ratio of Fano factors, log(FFnull/FFobs) for each dim-stim
and null model. When the null model Fano factors are substantially different from the
observed Fano factors, this quantity is of larger magnitude. In the case of Fig. 3.6, the null
model Fano factors were virtually never lower than the observed Fano factors. Thus, the log-
ratio was almost always positive, with larger values corresponding to decreased biological
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plausibility. Thus, we calculated the Spearman correlation between the log-ratio and the
observed percentile, across dim-stims, and for each dimlet dimension d (Fig. 3.6j-l). For
each null model and dataset, we observed negative correlations that were significantly lower
than zero (p < 10−3, one sample t-test). These correlations imply that the log-ratio decreases
with increased observed percentile. Thus, when the optimal Fano factor is similar to the
observed Fano factor (i.e., the log-ratio is of lower magnitude), the neural codes tend to be
closer to optimal (i.e., the observed percentile is higher).

Excess negative density correlates with highly sub-optimal coding performance

A covariance arrangement that places density in negative neural space can be interpreted as
less biologically plausible, because negative activity is either unachievable (for single-units) or
highly unlikely (calcium imaging or µECoG). In other words, such covariance arrangements
do not capture the underlying marginal statistics of a dimlet. The shuffle null model will
necessarily reproduce the observed marginals, because it only changes correlational structure.
The rotation and factor analysis null models, however, can produce covariance ellipses that
have different marginal distributions. Thus, some optimal arrangements may orient variance
in the negative or low-activity regions of the neural space.

To quantify this phenomenon, we calculated the excess negative density (END), which
captures the degree to which a null model produces diverging marginal distributions for the
dimlet it models. We calculate the END as follows. For each dim-stim, we calculated, ri, the
neural activity at the 1st percentile, for each neuron i. We then computed ci, the cumulative
density at ri for a Gaussian obtained from either the observed data or the optimal orientation
under the null model (Fig. 3.4: shaded regions in marginals). The END, then, was defined
as the maximum ci among the neurons in the dimlet (Fig. 3.4: dark gray shaded regions).
Thus, a larger END implies that the covariance places an excess of density in the negative
or low-activity regions for at least one dimension of the neural space. On the other hand, a
lower END is more biologically plausible, as this implies there is less negative density.

We calculated the END for the observed fit, the optimal rotation fit, and the optimal
factor analysis fit, across dim-stims, dimensions, and datasets. The distribution of ENDs
across dim-stims at d = 3 is depicted in Figure 3.6a-c. We observe that the observed fits
exhibit the lowest ENDs, as we might expect (black lines). Meanwhile, the optimal rotation
null model covariances exhibit the largest ENDs (red lines), with the optimal factor analysis
covariances lying in the middle (orchid lines). Interestingly, the V1 and primary auditory
cortex data exhibit larger ENDs than the retinal dataset. This implies that the dim-stims
are more likely to contain units that exhibit large differences in activity.

Next, we examined how the END behaved as a function of each null model’s percentile
(for d = 3). Specifically, we plotted the END of rotation and factor analysis null models
against their corresponding observed percentiles as a 2D histogram (Fig. 3.6d-f: bottom
rows). Across all datasets, we observe a clear, inverse relationship: the END generally
decreases with the observed percentile (Fig. 3.6d-f: red and orchid lines). This implies
that, in dim-stims where the observed data is close to optimal, the END is small, or more
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biologically plausible. As a baseline, we examined the relationship between the observed
END and the observed percentiles for each null model (Fig. 3.6d-f: top row). We observe
either no relationship (retinal and PAC data) or a more muted inverse relationship (V1),
implying that the relationship we observe is not simply by chance.

We quantified the relationship between the END and observed percentile with the Spear-
man correlation across dim-stims. Furthermore, we calculated the correlation at each dimlet
dimension d. We compare the distribution of correlations across dimensions between the null
model and its corresponding observed data in Figure 3.6g-i. We observe negative correlations
for each dataset, confirming the inverse relationship between END and observed percentile.
Furthermore, the rotation and factor analysis null models each exhibit significantly lower
correlations than their baseline counterparts (p < 10−3, Wilcoxon rank-sum test). Thus,
dim-stims with lower, more biologically plausible ENDs are more likely to exhibit more
optimal neural representations as measured by the observed percentiles. We note that at
d increases, the correlations decrease, since observed percentile decreases with dimension
(Fig. 3.3).

3.4 Discussion

Since correlated variability is prevalent in neural recordings, it has been the subject of
studies looking to understand their mechanistic sources, implication for neural computation,
and modulation by brain-state and behavior. To assess the significance of the observed
correlated variability, the shuffle null model is typically used. This null models compares
the discriminability of observed correlations, as measured by the Linear Fisher Information
(LFI), to a null model which preserves the per-unit variance but zeros out the pairwise
correlations. The comparison with only a distribution near zero correlations limits the value
of the shuffle null model in assessing optimality. To close this gap, we proposed three null
models which allow the optimality of observed correlated variability to be assessed: the
uniform-correlation, rotation, and factor analysis (FA) null models.

Using these null models, we found that observed neural activity across three datasets and
all null models had discriminability consistently lower than chance. As the dimensionality of
the neural activity increased this effect was more pronounced. At higher neural dimensions,
it is expected that the observed correlational structure would become highly sub-optimal
since the differential correlations have a variance that scales with the neural dimensionality
(other directions will generally have constant variance as a function of dimensionality) and
they are exactly oriented in the information limiting direction. In this case, many deviations
from the observed correlational structure would lead to increased discriminability. However,
recent work has shown that information limiting correlations do not cause saturation until
neural dimensionalities in the hundreds or several thousands [23, 93, 160], not tens, as found
in this work.

In order to understand the below-chance observed discriminability across null models, we
evaluated the characteristics of the optimal covariance structure across dim-stims and found
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Figure 3.6: Excess negative density correlates with worse than chance coding per-
formance. Each column corresponds to a separate dataset. a-c. The distribution, across
dim-stims at d = 3, of excess negative densities for the observed data (black), the optimal
noise covariance under the rotation null model (red), and the optimal noise covariance under
the factor analysis null model (orchid). A larger excess negative density can be interpreted
as less biologically plausible. d-f. The END from the previous subplots, compared to the ob-
served percentile in a 2-d hexagonal histogram. For each subplot, the left column compares
the the observed END (top) and rotation END (bottom) to the rotation observed percentile.
The right column, meanwhile, compares the observed END (top) and FA END (bottom) to
the FA observed percentile. Each bin’s color is scaled according to its log-count. Colored
lines denoted a rolling median of the END, binned according to the observed percentile.
g-i. The Spearman correlation between the END and observed percentile, calculated across
dim-stims. Each point denotes the correlation calculated at a different dimlet dimension,
from d = 3 to d = 15. Red points denote the correlation between the rotation END and
rotation observed percentile, while orchid points denote the correlation between the FA END
and FA observed percentile. Each point is matched to a correlation (black lines) calculated
between the observed END and corresponding null model percentile. Significance markers
denote p < 10−3 (Wilcoxon signed-rank test).
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that a consistent picture emerges across datasets: when observed neural activity is more
optimal, the optimal correlational structure is biophysically plausible, and when the observed
neural activity has discriminability below chance, the optimal correlational structure is not
plausible. When analyzed with respect to the rotation and FA null models the correlational
structures that would be optimal would require marginal unit activity distributions that are
highly divergent from observed biological distributions as assessed by the excess negative
density and Fano factor. All three of the neural response modalities (calcium imaging, single
unit spike counts, and high gamma amplitude) have highly skewed evoked responses with few
or no negative values and longer tails to positive values. Achieving the optimal correlational
structure might require highly bi-modal distributions of activity for a single stimulus, which
is atypical for neurons in early sensory areas responding to simple parametric stimuli.

We observed worse than chance coding performance for each null model we proposed.
However, the magnitude of the optimality (or lack thereof), as measured by the observed
percentile, differed across null models and brain region. We consistently observed lower ob-
served percentiles for the rotation null model compared to the factor analysis null model. In
other words, the rotation null model was able to obtain orientations with greater LFI than
the factor analysis null model. This observation is to be expected since the rotation null
model can more flexibly achieve optimal orientations than the factor analysis null model,
since the latter is limited to rotating a sub-component of the correlated variability. Inter-
estingly, the observed correlations for the uniform null model were the lowest for the retinal
data, and highest for the PAC data. This observation matches with the distribution of noise
correlations in each dataset (Fig. 3.1f, i, l). The retinal dataset exhibits, on average, the
smallest magnitude noise correlations, while the PAC datasets exhibits the largest. With a
correct orientation in the neural space, a covariance only needs a larger condition number
(i.e., the ratio of the largest to smallest eigenvalues) to improve its LFI. Since the rotation
null models can freely access any orientation in neural space, it will exhibit larger LFIs in
general when the data possesses higher noise correlations (thereby having larger condition
number). Thus, the rotation and factor analysis null models exhibit larger LFIs when the
data has larger noise correlations, explaining the discrepancies in observed percentiles across
the datasets.

In this work, we have proposed three novel null models which are designed to assess
the optimality of observed correlated variability. This invites the questions: is there a null
model which can subsume all of these possibilities that can be applied in general, or is there
and endless list of null models that need to be tested against? We suggest that the answer
is “no” to both. Like picking a model, choosing a null model to assess optimality should
be tailored to the particular question at hand and any potential interventions that can be
applied to the neural system. For example, the mammalian retina does not receive feedback
from cortex and the stimuli to the whole system can be carefully controlled. In this case, it
may be most relevant to test the optimality of the recurrent processing systems rather than
shared input from other areas. Therefore, the uniform correlation null model would be the
relevant test. Alternatively, areas A and B are recurrently connected, and if the activity in
areas B is being modulated optogenetically while areas A is being recorded, the rotation or
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FA models may be more relevant to understand the impact of incoming shared variability
on discriminability.

The theory of differential correlations identified a particular subspace in the neural space
that limits the growth of information in a neural system. One possible source of these
differential correlations lies in shared input noise, or noise carried by the stimulus. A neural
system cannot do anything to prevent the onset of differential correlations. Thus, extensions
of the null models could consider limiting the null distribution to avoid perturbing the
differential correlation distribution. In practice, this is difficult, as identifying differential
correlations requires recording on the order of thousands of neurons [128, 93, 160]. However,
for a hypothesized set of differential correlations, the rotation null model could be applied
only on the remaining component of the noise correlation covariance. These rotations would
serve as a more suitable test of optimality, since they accurately reflect what is biologically
achievable by a neural circuit.

Conclusion

We have demonstrated that neural activity is decisively sub-optimal using a novel frame-
work. This required the development of novel null models, to which we applied large scale
analyses across several datasets. This has important implications for the study of correlated
variability. This concludes our analysis on correlated variability from a decoding perspec-
tive. We now turn to how correlated variability as a structure of neural activity impacts the
fitting of phenomenological models of neural activity.
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Correlated structure generally impedes the fitting of phenomenological models, because it
introduces correlations among predictive features. In this chapter, we seek to develop im-
proved inference techniques that are stable to such structure in common systems neuroscience
models. If baseline procedures suffer from the prevalence of correlated variability, then their
improper parameter estimates may hamper model interpretation. Thus, we seek to deter-
mine how such improved inference procedures change neuroscientific interpretation relative
to traditional approaches.

4.1 Introduction

Neuroscience is undergoing a rapid growth in the size and complexity of experimental and
observational data [172, 124]. Realizing the benefits of these advances in data acquisition
requires improvements in the statistical models characterizing the data, as well as the infer-
ence procedures used to fit those models [189, 44]. For example, generalized linear models
are appealing because the model parameters can be interpreted to gain insight into the un-
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derlying biological processes that generated the data [185, 139, 200, 152]. However, even
for this ubiquitously used class of models, the impact of an inference procedure’s statistical
properties on neurobiological interpretation is poorly appreciated.

These issues are particularly salient in systems neuroscience, where parametric models
are often used to understand how neural activity is modulated by external factors (e.g.,
stimuli or a behavioral task) and internal factors (e.g., other neurons) [145, 98]. The fit-
ted parameter values, therefore, specify which factors are important in modulating neural
activity, and how important they are. The specific relationships that a parametric model
describes ultimately frames how the model will be interpreted in a neuroscientific context,
emphasizing the importance of accurate parameter inference.

For example, functional coupling models (Fig 4.1a) capture the statistical dependencies
between different functional units in the brain, at scales ranging from single units to func-
tional areas [185, 139, 200, 152, 15, 223, 188, 182]. These models can be used to construct
networks [25, 42], which are analyzed with an assortment of tools from graph theory to char-
acterize the population [26, 20]. Additionally, functional coupling networks are related to
structural connectivity [125], used to assess directed influence amongst neurons (i.e., effec-
tive connectivity) [70, 173], or related to external factors such as behavior, genetics, aging,
or psychiatric conditions [103, 71, 9]. Encoding models map the dependence of a brain
signal (e.g., neuronal spikes) on external factors, such as stimuli (Fig 4.1b) [57, 169, 198].
An example encoding model is a spatio-temporal receptive field of a visual cortex neuron,
which maps the image space to the neuronal response (Fig 4.1b, right) [178, 195, 88]. More
complex encoding models of neural population data can be used to test theoretical and com-
putational theories of neural coding [153, 205, 225]. On the other hand, decoding models
map brain signals to external factors, using the activities in, e.g., a neural population, to
predict a stimulus or task-relevant behavioral condition (Fig 4.1c) [75, 131, 82, 34, 33, 118,
6]. A common linear decoding model is the extraction of a hyperplane in the neural activity
space, which provides a decision boundary for one of two behavioral conditions or stimuli
(Fig 4.1c, right: s1, s2) [103, 215, 155]. Recent work has explored more complex decoders,
using artificial neural networks [118] or predictive latent representations [143]. Using decod-
ing models for brain-computer interfaces has both clinical uses and scientific implications for
understanding learning and motor control [206, 46]. Since these models are used to make
scientific conclusions about the function of the brain, understanding the stability, accuracy,
and parsimony of the inference procedures and resulting models is of paramount importance.

The utility of parametric models hinges on the assumption that the inference procedure
used to fit them selects the correct parameters (i.e., specified as zero or non-zero) and properly
estimates their values. The statistical consequences of improper selection are false positives
or false negatives (Fig 4.1d), while poor estimation results in high bias (Fig 4.1e: e.g., β1)
or high variance (Fig 4.1e: e.g., β6). The neuroscientific consequences of statistical inference
lie in the interpretation of the fitted parametric model. Selection informs which internal
and external factors are relevant for predicting neural activity, and estimation specifies their
relative importance. Importantly, accurate selection is not a natural byproduct of predictive
capacity, as cross-validated predictive accuracy is often a poor criterion for feature selection.
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Specifically, model selection by held-out cross-validation predictive accuracy lacks guarantees
on consistency and has been implicated in producing false positives [177, 222, 176, 209, 117].
Thus, validating that an inference procedure can reliably select and estimate a model’s
parameters is vital to ensure that they motivate correct conclusions about neural activity.

These issues imply that, when fitting parametric models in a scientific context, multiple
goals beyond predictive performance must be balanced to produce a scientifically meaningful
model. In particular, achieving a parsimonious model, which uses the fewest number of
features to sufficiently predict the response variable (i.e., finding the “simplest”), has long
served as a goal in statistical model selection [170]. One approach to model parsimony
relies on the imposition of sparsity during feature selection, which has the added benefit
of identifying a small subset of predictive features, facilitating the interpretability of the
model [196, 81]. This is particularly relevant in high-dimensional settings where there are
few task-relevant features and strong priors from domain knowledge for selection may not
exist. Another desired property is stability, or the reliability of an inference algorithm when
its inputs are slightly perturbed [218, 35]. For a model to be interpretable, its parameters
must be robust to the often noisy processes that generated the data. Thus, encouraging
stability in a model’s parameter inference procedure will ensure that the features describing
the relevant signal are selected and their correct contributions are properly estimated [113,
18]. Until recently, inference procedures that sufficiently balanced selection and estimation,
predictive performance, and stability were lacking. This raises the question of whether the
usage of traditional inference procedures in systems neuroscience has adversely impacted
neuroscientific interpretation and data-driven discovery.

Our recently introduced Union of Intersections (UoI) is an inference framework based on
stability principles which enhances inference in a variety of common parametric models [31].
The properties characterizing UoI models — sparsity, stability, and predictive accuracy —
are well-suited to data-driven discovery in neuroscience, due to the high dimensionality and
many sources of variability in these datasets. Furthermore, UoI is a frequentist approach,
similar to the predominant traditional approaches used by neuroscientists (though we note
recent development of Bayesian inference algorithms that also perform well in these settings
[47, 224, 87]). Thus, we used UoI to assess whether common approaches to parameter
inference in models are susceptible to improper feature selection and estimation, and if so,
assess the consequences for model interpretability in a neuroscience context.

In this work, we used the UoI framework to fit functional coupling, encoding, and de-
coding models to diverse neural data in an effort to elucidate the impacts of precise selec-
tion and estimation on neuroscientific interpretation. We found that, compared to baseline
procedures (e.g., `1-regularization), we obtained models with enhanced sparsity, improved
stability, and significantly different parameter distributions, while maintaining predictive
performance across recording modality, brain region, and task. Specifically, we obtained
highly sparse coupling models of rat auditory cortex, macaque V1, and macaque M1 with-
out loss in predictive performance. These models were used to construct functional networks
that exhibited enhanced modularity and decreased small-worldness. We built parsimonious
encoding models of mouse retinal ganglion cells and rat auditory cortex that more tightly
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Figure 4.1: Parametric models and statistical inference in systems neuroscience. a-
c. Three examples of parametric models widely used in systems neuroscience. a. Functional
coupling models characterize the statistical relationships between neurons in a population.
b. Encoding models map M internal or external factors {ei}Mi=1 to a neuronal response n. c.

Decoding models map the activities of N neurons in a population {ni}Ni=1 to an internal or
external factor e. e-f. Quantification of statistical selection and estimation performance. e.
The ground truth values of the parameters in an example model, given by the first column,
along with estimated values across K different resamples of the data, denoted by R1, R2, . . .,
RK . f. The distribution of estimated values for each parameter in the ground truth model
of the previous panel, with the true values denoted by vertical lines. For β1, H denotes the
mean estimated value across resamples. False positives and false negatives are denoted with
an ×.

matched with theory. These models were able to predict held-out neural responses with
parameters that were as simple as possible, but no simpler. Lastly, we decoded task-relevant
external factors from rat basal ganglia activity using fewer single units than baseline models.
Overall, by utilizing improved inference algorithms during the fitting of parametric neural
models, we constructed more sparse and stable models. We assessed the neuroscientific
consequences of using these models, finding notable changes in secondary analyses.
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4.2 Methods

Our goal is to demonstrate how the statistical properties of inference algorithms impact
the fitting and interpretation of diverse parametric models commonly used in neuroscience.
The main tools we use for this purpose are algorithms based on the Union of Intersections
framework [31, 201, 163]. Thus, we organize the Methods as follows. First, in Section 4.2, we
introduce the Union of Intersections framework, while providing other relevant background.
Second, in Section 4.2, we describe a large-scale synthetic experiment comparing a specific
UoI algorithm, UoILasso, versus other algorithms on a synthetic dataset to motivate UoI’s
usage on neural datasets. Third, in Section 4.2, we describe the neural datasets on which
we performed the model-fitting and subsequent analyses. Lastly, in Section 4.2, we provide
the details of those analyses, outlining how model-fitting was performed for each coupling,
encoding, and decoding model. We provide further details on subsequent analyses performed
on the fitted models, such as statistical tests and network construction for coupling models.

The Union of Intersections framework balances sparsity, stability,
and predictive performance

Union of Intersections (UoI) is not a single method or algorithm, but a flexible framework
into which other algorithms can be inserted for enhanced inference. In this work, we apply
the UoI framework to generalized linear models, focusing on linear regression (UoILasso),
Poisson regression (UoIPoisson) and logistic regression (UoILogistic). We refer the reader to UoI
variants of other procedures, such as non-negative matrix factorization [201] and column
subset selection [31].

Consider the general problem of mapping a set of p features x ∈ Rp×1 to a response
variable y ∈ R, of which we have N samples {xi, yi}Ni=1. For convenience, we focus on linear
models, which require estimating p parameters β ∈ Rp×1 that linearly map xi to yi. We
describe the UoI framework in this context, which involves the algorithm UoILasso. The
steps we detail, however, extend naturally to other penalized generalized linear models [67].
Typically, the mapping in linear models is corrupted by i.i.d. Gaussian noise ε:

y = βTx + ε. (4.1)

The parameters β can be inferred by optimizing the traditional least squares error on y:

β̂ = argmin
β

1

N

N∑

i=1

(yi − βTxi)
2, (4.2)

where i indexes the N data samples. The UoI framework combines two techniques — regular-
ization and ensemble methods — to balance sparsity, stability, and predictive performance,
thereby improving on the traditional least squares estimate (Fig 4.2a).

Structured regularization, or the inclusion of penalty terms in the objective function to
restrict the model complexity, can be useful when a subset of the βi are exactly equal to
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zero, i.e., β is sparse. Sparsity implies that some features are not relevant for predicting
the response variable. This assumption is often useful for data-driven discovery in biological
settings, particularly for framing the interpretation of the model in the context of physical
processes that generated the data. The identification of which βi are non-zero can be viewed
as a feature selection (or more generally, model selection) problem [81]. A common regular-
ization penalty used for feature selection is the lasso penalty |β|1, or the `1-norm applied to
the parameters [196]. For the case of linear regression, this creates an optimization problem
of the form

β̂ = argmin
β

1

N

N∑

i=1

(yi − βTxi)
2 + λ|β|1. (4.3)

Solving Eq (4.3) returns parameter estimates with some sparsity, provided that λ is appro-
priately chosen (Fig 4.2a, top). Typically, λ, the degree to which feature sparsity is enforced,
is unknown and must be determined through cross-validation or a penalized score function
such as the Bayesian information criterion (BIC) [170] across a set of J hyperparameters
{λj}Jj=1. Importantly, solving the lasso problem simultaneously performs model selection
(identifying the non-zero features) and model estimation (determining the specific values of
those parameters). However, the application of the lasso penalty suffers from shrinkage [196],
or a parameter bias that erroneously reduces the magnitudes of the parameters (Fig 4.2a,
top: compare opacity of parameter estimates), and often does not correctly identify the true
non-zero parameters (Fig 4.2a, top: false positives).

On the other hand, ensemble procedures (e.g., bagging and boosting [36, 69]) aggre-
gate model fits across resamples of the data to improve the stability of parameter estimates
(Fig 4.2a, bottom). The more stable parameter estimates result in improved predictive ac-
curacy. This is particularly desirable in biological settings, where model aggregation ensures
that the relevant signal in noisy data is reflected in the parameter estimates. However,
ensemble procedures do not perform feature selection.

UoI separates model selection and model estimation into two stages, with each stage
utilizing ensemble procedures to promote stability. Specifically, model selection is performed
through intersection (compressive) operations and model estimation through union (expan-
sive) operations, in that order. This separation of parameter selection and estimation pro-
vides selection profiles that are robust and parameter estimates that have low bias and vari-
ance. Fig 4.2b and 4.2c provide a visual depiction of the UoI framework, and 4.5 provides
pseudocode for the UoI algorithm in generalized linear models. For UoILasso, the procedure
is as follows:

Model Selection. Define the support S as the set of non-zero parameters in an estimate
β̂. First, generate a regularization path of {λj}Jj=1 spanning (ελmax, λmax) where λmax is

analytically determined to result in an empty support and ε = 10−3 [68]. For each λj,
generate parameter estimates by solving the lasso optimization problem (Eq 4.3) on NS

resamples of the data, and calculate a support for each resample-λj pairing. The intersection
step requires that only the features that appear in a sufficient number of resamples are
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Figure 4.2: The Union of Intersections framework combines ensemble and regu-
larization approaches in model inference. a. Schematic of regularization and ensemble
methods. Top: Regularization can be used to perform feature selection. Features set exactly
to zero are denoted by ×. Bottom: Ensemble procedures aggregate model fits across resam-
ples of the data. b. Schematic of the UoI framework. The x-axis corresponds to the set of
regularization parameters while the y-axis corresponds to the feature space (X1, X2, . . . , Xp).
Pink bands denote features included in a support or estimated model. Dark pink bands de-
note features included after the intersection step. c. UoILasso depicted in a data-distributed
fashion. Caption continued on following page.

included in the final stability support Sj for λj. We depict this in Fig 4.2b, top, where the
light pink bands denote features that are included in the model due to regularization while
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Figure 4.2: Continued from previous page. Model Selection (left): Left column depicts
the NS data resamples, ZS

i , during selection. Lasso fits are obtained for each resample, at
different λj (e.g., left column: λ2). Right column depicts the intersected supports Sj for
each λj, with S2 referring specifically to the estimates in the left column. Red here denotes
1, rather than maximum value. Model Estimation (right): Middle column denotes each data
resample, ZE

i , for estimation. Each resample is fit using each support {Sj}Jj=1 (arrows before
left column), generating a set of fits per resample (left column). The fit that achieves the
best predictive performance for a given resample is chosen as that resample’s candidate fit
(left column: dashed lines). The candidate fits are aggregated to produce the final predictive
model (right column).

the dark pink bands denote features that are included in the stability support after the
intersection across resamples. The bands are arranged in order of increasing regularization
strength (Fig 4.2b: x-axis) and thus sparser (i.e., smaller) support sets (Fig 4.2b: y-axis).
Note that the stability support may be calculated with a hard intersection (e.g., Fig 4.2c:
Model Selection) or a soft intersection. In the former case, a feature must appear in the
support of every resample to be included in Sj. In the latter, the feature must only appear
in a sufficient fraction of supports which is a hyperparameter.

Model Estimation. Generate NE resamples of the data, and perform an unregularized
fit on each resample using each support set Sj. For each resample, the support generating
the fit that performs the best according to some metric is chosen as the “candidate fit” for
that resample (Fig 2b: bottom). We used the Bayesian information criterion (BIC) as this
metric, which balances both predictive accuracy and model size (see Section 2.4.1 for more
details on this choice). Unique supports may have the best performance across multiple
resamples (e.g., only three unique supports, Sj−1, Sj, and Sm−1, are included for model
averaging in Fig 4.2b). The NE candidate fits across resamples are unionized according to
some metric (e.g., median, mean, etc.), resulting in a final parameter estimate (Fig 4.2b,
bottom). We use the median during the union step because it is more stable than the mean
from a selection perspective. To be clear, the median will result in a parameter estimate set
exactly equal to zero if that parameter is equal to zero in at least a majority of candidate
fits. In contrast, the mean will likely result in a non-zero parameter estimate if even a single
parameter value is non-zero. Note that, in the context of (generalized) linear models, the
bagging of model parameters performed in the estimation procedure is equivalent to the
bagging of model predictions. For UoILasso, the estimation procedure consists of applying
Ordinary Least Squares to each stability support and resample combination (Fig 4.2c: Model
Estimation).

UoI’s modular approach to parameter inference capitalizes on the feature selection achieved
by stability selection and the unbiased, low-variance properties of the bagged OLS estimator.
Furthermore, UoI’s novel use of model aggregating procedures within its resampling frame-
work allows it to achieve highly sparse (i.e., only using features robust to perturbations in
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the data) and predictive (i.e., only using features that are informative) model fitting. Im-
portantly, this is achieved without imposing an explicit prior on the model distribution, and
without formulating a non-convex optimization problem. Since the optimization procedures
across resamples can be performed in parallel, the UoI framework is naturally scalable, a
fact that we have leveraged to facilitate parameter inference on larger datasets [163]. The
application of UoILasso in a data-distributed manner is depicted in Fig 4.2c. In the selection
module, the first column depicts lasso estimates across data resamples for a particular choice
of regularization parameter, all of which can be fit in parallel (Fig 4.2c, Model Selection: left
column). In the estimation module, OLS estimates are fit across resamples and supports,
which can be done in parallel (Fig 4.2c, Model Estimation: left column).

Evaluation of Union of Intersection on synthetic data

We evaluated UoILasso’s abilities as an inference procedure by assessing its performance on
synthetic data generated from a linear model. The performances of UoI and five other
inference procedures are depicted in Fig 4.3: UoILasso (black), ridge regression (purple) [81],
lasso (green) [196], smoothly clipped absolute deviation (SCAD; red) [65], bootstrapped
adaptive threshold selection (BoATS; blue) [32], and debiased lasso (dbLasso; coral) [91].

The linear model consisted of p = 300 total parameters, with k = 100 non-zero parameters
(thereby having sparsity 1 − k/p = 2/3). The non-zero ground truth parameters were
drawn from a parameter distribution characterized by exponentially increasing density as a
function of parameter magnitude (Fig 4.3b: gray histograms). We used N = 1200 samples
generated according to the linear model (4.1) with noise magnitude chosen such that Var(ε) =
0.2 × |β|1. We report metrics according to their statistics across 100 randomized cross-
validation samples of the data.

In Fig 4.3a, we show scatter plots comparing the predicted and actual values of the obser-
vation variable on held-out data samples. We visualized how well the inference procedures
captured the underlying parameter distribution by comparing the histograms of (average)
estimated model parameters (colors) overlaid on the ground truth model parameters (grey)
(Fig 4.3b). We additionally plotted parameter bias and variance, first by comparing the mean
estimated value (± standard deviation) against the ground truth parameter value (Fig 4.3c),
and then examining the standard deviation of the parameter estimates as a function of their
mean estimated value (Fig 4.3d).

Fig 4.3a-d captures the improvements that the UoI framework offers in parameter infer-
ence. UoILasso is designed to maximize prediction accuracy (Fig 4.3a) by first selecting the
correct features (Fig 4.3b), and then estimating their values with high accuracy (Fig 4.3c)
and low variance (Fig 4.3d). By separating model selection and model estimation, UoILasso
benefits from strong selection (as in BoATS and debiased Lasso), but with the low variabil-
ity of the structured regularizers (Lasso, SCAD), while alleviating shrinkage with its nearly
unbiased estimates.

We quantified the performance of the inference algorithms on synthetic data using a
variety of metrics capturing selection, bias, variance, and prediction accuracy. Specifically,
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these metrics were:

• Selection Accuracy. The selection accuracy, or set overlap, is a measure of how
well the estimated support captures the ground truth support. Define Sβ as the set of
features in the ground truth support, Sβ̂ as the set of features in the estimated model’s
support, |S| as the cardinality of S, and ∆ as the symmetric set difference operator.
Then the selection accuracy is defined as

selection accuracy
(
Sβ, Sβ̂

)
= 1−

|Sβ∆Sβ̂|
|Sβ|+ |Sβ̂|

. (4.4)

The selection accuracy is bounded in [0, 1], taking value 0 if Sβ̂ and Sβ have no elements
in common, and taking value 1 iff they are identical.

• Estimation error. The estimation error of the p fitted parameters β̂, with ground
truth parameters β, is defined as the root mean square error, or

estimation error =

√√√√1

p

p∑

i=1

(βi − β̂i)2. (4.5)

• Estimation variability. The estimation variability for parameter βi is defined as
the parameter standard deviation σ(βi). We calculated this quantity by taking the
variance of the estimated parameter β̂i over R resamples of the data:

σ(βi) =

√√√√ 1

R

R∑

j=1

(βi − β̂ij)2, (4.6)

where j indexes the resample. To summarize this measure across all p parameters in
a model, we took the average, i.e., σ = 1

p

∑p
i=1 σ(βi).

• Predictive performance. To capture predictive performance, we used the coefficient
of determination (R2) evaluated on held-out data:

R2 = 1−
∑D

i=1(yi − ŷi)2∑D
i=1(yi − y)2

(4.7)

where yi is the ground truth response for sample i, ŷi its corresponding predicted value,
and y the mean of the response variable over trials. R2 has a maximum value of 1,
when the model perfectly predicts the response variable across samples. R2 values
below zero indicate that the model is worse than an intercept model (i.e., simply using
the mean value to predict across samples).
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• Model Parsimony. We evaluated model parsimony using the Bayesian information
criterion (BIC) [170]:

BIC = k log(D)− 2 log `(β̂). (4.8)

Here, D is the number of samples, k is the number of parameters estimated by the
model, and log `(β̂) = p(β̂|D,m) is the log-likelihood of the parameters β̂ under data
D and model m. Thus, the BIC includes a penalty that encourages models to be more
sparse (first addend) while still accounting for predictive accuracy (second addend).
Importantly, the BIC is evaluated on the data that the model was trained on (rather
than held-out data). It is typically used as a model selection criterion (in lieu of, for
example, cross-validation). When used as a model selection criterion, the model with
lower BIC is preferred.

UoILasso generally resulted in the highest selection accuracy (Fig 3e, first column), param-
eter estimates with lowest error (Fig 3e, second column) and competitive variance (Fig 3e,
third column). In addition, it led to the best prediction accuracy (Fig 3e, third column).
UoILasso best captured the true model size (Fig 3e, fourth column), avoiding the abundance
of false positives suffered by most other inference algorithms. UoILasso’s enhanced predictive
performance with fewer features resulted in superior model parsimony (Fig 3e, fifth column).

A robust set of experiments have been conducted comparing UoILasso to these methods
in other settings. Specifically, these experiments assessed UoILasso’s performance across a
range of ground truth model sparsities, parameter distributions, and noise levels. Overall,
UoI excels at parameter inference relative to other models across all these settings. These
results can be found in the appendix of the original UoI paper [31].

Figure 4.3 demonstrates the superiority of UoI methods over a battery of other approaches
for a linear model. However, any generalized linear model fits within the UoI framework.
For example, we used the Poisson (UoIPoisson) and logistic (UoILogistic) variants of the UoI
algorithm in this study. Thus, we compared the performance of UoI to baseline procedures
for Poisson and logistic regression. Specifically, we created similar synthetic datasets as
described above, but in the Poisson and logistic contexts, and attempted to estimate the
ground truth parameters using UoI and lasso-penalized Poisson and logistic regression. These
results are detailed in 4.5. We arrived at similar conclusions: UoI exhibits increased selection
accuracy, decreased estimation error, comparable variability, improved prediction accuracy,
and enhanced model parsimony relative to the baseline procedures. These results are in line
with theoretical guarantees on support recovery in generalized linear models [202, 40].

Neural recordings

We sought to demonstrate impact of improved inference on parametric models across a
diversity of datasets, spanning distinct brain regions, animal models, and recording modali-
ties. We used micro-electrocorticography recordings obtained from rat auditory cortex (for
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Figure 4.3: UoI achieves superior selection and estimation performance on syn-
thetic data over a battery of alternative inference algorithms. The performance
of ridge regression (purple), lasso regression (green), smoothly clipped absolute deviation
(SCAD; red), bootstrapped adaptive threshold (BoATS; blue), debiased lasso (dbLasso;
coral), and UoILasso (black) on data generated from a synthetic linear model. Panels a-d
highlight separate measures per row, with each column referring to a separate inference al-
gorithm. Each column in panel e. directly compares a summary measure across inference
algorithms. a. Comparison of the predicted and true values of the response variable for
held-out data. b. Histogram of the estimated parameters (colored outline) compared to the
distribution of true parameters (gray). c. Estimated parameters (colored points; error bars
denote the IQR across data resamples) compared to true parameters (gray), both sorted
on the x-axis according to the value of the true parameter. d. Variance of the parameter
estimates across data resamples as a function of the mean estimated parameter’s magnitude.
Caption continued on the following page.
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Figure 4.3: Continued from previous page. e. Direct comparison of the selection
accuracy, estimation error (root mean square of parameter estimates), estimation variability
(mean parameter variance), prediction accuracy (coefficient of determination), the inferred
model’s size (number of identified non-zero parameters, with the black dashed line denoting
ground truth), and parsimony (Bayesian information criterion). Error bars denote IQR
across data resamples. Caption continued on following page.

coupling and encoding models), single-unit recordings from macaque visual and motor cor-
tices (coupling models), single-unit recordings from isolated rat retina (encoding models),
and single-unit recordings from basal ganglia (decoding models). We briefly describe the
experimental and preprocessing steps for each dataset.

Recordings from auditory cortex

Auditory cortex (AC) data was comprised of cortical surface electrical potentials (CSEPs)
recorded from rat auditory cortex with a custom fabricated micro-electrocorticography (µECoG)
array. The µECoG array consisted of an 8 × 16 grid of 40 µm diameter electrodes. Anes-
thetized rats were presented with 50 ms tone pips of varying amplitude (8 different levels
of attenuation, from 0 dB to −70 db) and frequency (30 frequencies equally spaced on a
log-scale from 500 Hz to 32 kHz). Each frequency-amplitude combination was presented 20
times, for a total of 4200 samples. The response for each trial was calculated as the z-scored,
to baseline, high-γ band analytic amplitude of the CSEP, calculated using a constant-Q
wavelet transform. Of the 128 electrodes, we used 125, excluding 3 due to faulty chan-
nels. Data was recorded by Dougherty & Bouchard (DB). Further details on the surgical,
experimental, and preprocessing steps can be found in [61].

Recordings from primary visual cortex

We analyzed three primary visual cortex (V1) datasets, comprised of spike-sorted units
simultaneously recorded in three anesthetized macaque monkeys. Recordings were obtained
with a 10× 10 grid of silicon microelectrodes spaced 400 µm apart and covering an area of
12.96 mm2. Monkeys were presented with grayscale sinusoidal drifting gratings, each for 1.28
s. Twelve unique drifting angles (spanning 0◦ to 330◦) were each presented 200 times, for a
total of 2400 trials per monkey. Spike counts were obtained in a 400 ms bin after stimulus
onset. We obtained [106, 88, 112] units from each monkey. The data was obtained from
the Collaborative Research in Computational Neuroscience (CRCNS) data sharing website
[192] and was recorded by Kohn and Smith (KS) [104]. Further details on the surgical,
experimental, and preprocessing steps can be found in [180] and [102].
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Recordings from primary motor cortex

Primary motor cortex (M1) data was comprised of spike-sorted units simultaneously recorded
in the motor cortex of Rhesus macaque monkey. Recordings were obtained with a chronically
implanted silicon microelectrode array consisting of 96 electrodes spaced at 400 µm and
covering an area of 16 mm2. We used three datasets, consisting of three recording sessions
from monkey I. The behavioral task required the monkey to make self-paced reaches to
targets arranged on a 8 × 17 grid. Spike counts were binned at 150 ms over the course
of the entire recording session, resulting in [4089, 4767, 4400] samples per recording session.
We obtained [136, 146, 147] units from each dataset. Data was recorded by O’Doherty et al.
(OCMS) and obtained from Zenodo [138]. Further details on the surgical, experimental, and
preprocessing steps can be found in [122].

Recordings from retina

Retina data comprised spiking activity, extracellularly recorded from isolated mice retina.
Recordings were obtained using a 61-electrode array. Isolated retina were presented with
a flicking black or white bar stimulus according to a pseudo-random binary sequence for a
period of 16.6 ms. We utilized recordings from 23 different retinal ganglion cells. Data was
obtained from CRCNS and recorded by Zhang et al [221]. Further details on the surgical,
experimental, and preprocessing steps can be found in [111].

Recordings from basal ganglia

Basal ganglia data comprised tetrode recordings from two regions of rat basal ganglia: the
globus pallidus pars externa (GPe: 18 units) and substantia pars nigra reticulata (SNr:
36 units). Recordings were performed during a rodent stop-signal task. Briefly, a rat was
prompted to enter a center port with a light cue. The rat remained in the port until a Go
cue (audio stimulus at 1 kHz or 4 kHz) which directed a lateral head movement to the left
or right ports. On a subset of trials, the Go cue was followed by a Stop signal (white noise
burst), indicating that the rat should remain in the center port. We utilized the successful
Go trials, in which the rat was not given a Stop signal and successfully entered the correct
port (186 trials). We used the spike count in the first 100 ms after the rat exited the center
port to predict the behavioral condition (left or right). Further details on the surgical,
experimental, and preprocessing steps can be found in [79].

Neural data analysis and model fitting

All models fit to neural data consisted of various generalized linear models, depending on the
application. We trained all baseline models using either the glmnet [67] or scikit-learn

[150, 41] packages. Meanwhile, we trained all UoI models using the pyuoi package [163].
This section is organized as follows: first, we discuss model fitting, including details on
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the estimation module in UoI, followed by data analysis for coupling, encoding, and de-
coding models. Second, we detail model evaluation, including the measures used to assess
each model, statistical tests, calculation of effect size, and the cross-validation approach for
evaluation.

Model selection criterion in the estimation module

In the UoI framework, the estimation module operates by unionizing fitted stability supports
across resamples. Thus, the module requires a criterion by which to choose the best fitted
stability support per resample. A natural choice, akin to cross-validation, is the out-of-
resample validation performance according to some measure (e.g., R2, deviance, etc.). This
is a principled approach when predictive accuracy is the only usage of the model. However,
in this context, where we frame the fitted parameters of the model in the underlying neu-
roscience, parameter selection implicitly becomes an additional goal that must be reflected
in the model criterion. Cross-validated predictive accuracy is often not sufficient in these
cases. Variations of cross-validation have been shown to be model inconsistent [177, 176],
with theoretical guarantees on its probability of overfitting [222]. Furthermore, empirically,
it has been shown to overfit, and suffer from false positives [209, 117]. Therefore, we instead
utilized the Bayesian information criterion in the estimation module for each model, which
has been shown to be model selection consistent [177]. Furthermore, the BIC is a principled
choice for model selection criterion because it can be couched as an approximation to Bayes
factors [133].

Data analysis for coupling models

We used UoILasso (rat auditory cortex) and UoIPoisson (macaque V1 and M1) to fit coupling
models. The auditory cortex model can be described with a linear model as

ni = βi0 +

p∑

j=1
j 6=i

βijnj + ε (4.9)

where ni is the high-gamma activity of the ith electrode on a trial. The baseline procedure
consisted of a lasso optimization with coordinate descent, while the UoI approach utilized
UoILasso. The model for the spiking datasets, which utilizes a Poisson generalized linear
model, can be written as

µi = exp


βi0 +

p∑

j=1
j 6=i

βijnj


 , (4.10)

ni ∼ Poisson(µi). (4.11)
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where ni corresponds to the spike count of the ith neuron. The corresponding objective
function for this model is the log-likelihood,

Li
(
β|
{
nk1, . . . , n

k
p

}D
k=1

)
=

D∑

k=1


n

k
i


β0i +

p∑

j=1
j 6=i

nkjβij


− exp


β0i +

p∑

j=1
j 6=i

nkjβij





 (4.12)

where i denotes that this model corresponds to the ith neuron, j indexes over the remaining
neurons, and k indexes over the D data samples. The baseline approach consisted of applying
coordinate descent to solve this objective function with a lasso penalty:

Li,baseline
(
β|
{
nk1, . . . , n

k
p

}D
k=1

)
=

1

D
Li + λ1|β|1 (4.13)

where λ1 is a hyperparameter specifying the strength of the `1 penalty. Note that the
intercept terms were not penalized. Meanwhile, in UoIPoisson, we utilized the same objective
function Eq (4.13) in the selection module. In the estimation module, we used Eq (4.12) with
a very small `2 penalty for numerical stability purposes. The specific optimization algorithm
was a modified orthant-wise L-BFGS solver [76].

Data analysis for encoding models

For retinal data, we fit spatio-temporal receptive fields (STRFs) frame-by-frame. Specifically,
the STRF was comprised of F frames β1,β2, . . . ,βF , each a vector of size M and spanning
∆t seconds. For neuron i and frame k, the encoding model consisted of

ni(t) = β0 + βTk e(t− k∆t) (4.14)

where ni(t) is the spike count at timepoint t and e(t − k∆t) is flicking bar stimulus value
at k bins before t. We fit the F models using lasso (baseline) and UoILasso, and created the
final STRF by concatenating the parameter values β = [β1,β2, . . . ,βF ] .

The tuning model for the rat auditory recordings was constructed using Gaussian basis
functions. We used eight Gaussian basis functions spanning the log-frequency axis with
means {µj}8j=1 [185, 188]. Thus, the high-gamma activity ni of electrode i in response to
frequency f was

ni(f) = βi0 +
8∑

j=1

βij exp

(
− log f − µj

2σ2

)
(4.15)

We chose σ2 = 0.64 octaves so that basis functions sufficiently spanned the plane. We chose
p = 8 basis functions because this was the minimum number of basis functions for which
every electrode had a selection ratio less than 1. We fit Eq (4.15) using cross-validated
lasso as the baseline. To characterize the relationship between selection ratio and predictive
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performance of the rat AC tuning models, we fit trendlines across models using Gaussian
process regression. Specifically, we utilized a regressor with radial basis function kernel
(length scale ` = 0.01) and a white noise kernel (noise level α = 0.1).

Lastly, we fit encoding models for the macaque V1 and M1 datasets using cosine ba-
sis functions as a function of grating and reach angle, respectively [188]. Importantly, we
modeled the spike count of the ith neuron after a variance stabilizing square-root trans-
form, which is typically used when a Gaussian model is applied to data exhibiting Poisson
variability [219]. For the M1 dataset, the encoding model can be written as

ri = βi0 + βi1 cos(θ) + βi2 sin(θ) + ε (4.16)

where ri =
√
ni is the square-rooted spike count of the ith neuron, and θ is the angle of the

reach [186]. The encoding model for the V1 neurons was similar, aside from an adjustment
in period:

ri = βi0 + βi1 cos(2θ) + βi2 sin(2θ) + ε, (4.17)

where θ is the angle of the grating. We adjusted the period of the basis functions because
the single-units were responsive to gratings drifting in either direction along an axis. Since
these models only use two basis functions, we fit them using ordinary least squares (OLS)
with no regularization. We did not perform a comparison between the baseline model and a
UoI-fitted model, since the OLS estimator is a consistent estimator. These encoding models
were only used when examining the relationship between network and tuning structure.

Data analysis for decoding models

We fit decoding models to basal ganglia recordings as binary logistic regression models. The
model expresses the probability of one experimental condition e (e.g., the rat entering the
left port) as

Pr[e = left] = sigmoid

(
β0 +

p∑

j=1

βjnj

)
, (4.18)

where ni is the neural activity of the ith neuron. The corresponding objective function is
the log-likelihood, or

Li
(
β|
{
nk1, . . . , n

k
p

}D
k=1

)
=

D∑

k=1

[
log

(
1 + exp(β0 +

p∑

j=1

βjn
k
j )

)
− ek(β0 +

p∑

j=1

βjn
k
j )

]
. (4.19)

The baseline approach consisted of solving this objective function with an `1 penalty. UoILogistic
utilized objective function (4.19) with an `1 penalty in the selection module, and Eq (4.19)
alone in the estimation module.



CHAPTER 4. INFERENCE AND NEUROSCIENTIFIC INTERPRETATION 94

Network creation and analysis

We performed secondary analyses on the coupling models by constructing graphs using the
fitted parameters. We then analyzed these networks with standard graph theoretic measures.
Here, we detail how we constructed the networks and the measures we used to analyze them.

We created directed graphs by filling the adjacency matrix Aij with the coefficient βij
(i.e., the coupling coefficient for neuron j in the coupling model for neuron i). Meanwhile,
we created undirected networks from coupling models by symmetrizing coefficients [208].
Specifically, the symmetric adjacency matrix satisfies Aij = 1

2
(βij + βji) where βij is the

coefficient specifying neuron i’s dependence on neuron j’s activity, and vice versa for βji.
Thus, the network lacked an edge between vertices (neurons) i and j if only if neuron i’s
coupling model did not depend on neuron j, and neuron j’s coupling model did not depend
on neuron i. This adjacency matrix is weighted in that each entry depends on the magnitudes
of the coupling coefficients. However, we can also consider an unweighted, undirected graph,
whose adjacency matrix is simply the binarization of Aij.

We analyzed the networks with the following measures:

• In- and out-degree. In a directed graph, the in-degree of a vertex is the number of
incoming edges to that vertex. Meanwhile, the out-degree is the number of outgoing
edges from the vertex. We examine the distribution of in-degrees and out-degrees across
vertices in each group, which is dependent on the sparsity of the coupling models.

• Modularity. The modularity Q is a scalar value that measures the degree to which
a network is divided into communities [135]. We operate on the undirected graph
described by the binarized adjacency matrix, described above. Suppose each vertex v
is partitioned into one of c communities, where vertices within a community are more
likely to be connected with each other than vertices between communities. Then, the
modularity is defined as

Q =
1

2m

∑

v,w

[
Avw −

kvkw
2m

]
δ(cv, cw) (4.20)

where cv denotes community identity, kv is the degree of vertex v, and m is the total
number of edges. Thus, the modularity is greater than zero when there exist more edges
between vertices within the same community than might be expected by chance accord-
ing to the degree distribution. Specifically, Q is bounded within the range [−1/2, 1],
where Q > 0 indicates the existence of community structure. We calculated modular-
ity with the Clauset-Newman-Moore greedy modularity maximization algorithm [49].
This procedure assigns vertices to communities by greedily maximizing the modularity,
and then calculating Q using the ensuing community identities.

• Small-worldness. Small-world networks are characterized by a high degree of cluster-
ing with a small characteristic path length [210, 26, 24]. There are multiple measures
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used to quantify the degree to which a network is small-world. We use ω, which can
be expressed as

ω =
Lr
L
− C

C`
, (4.21)

where L is the characteristic path length of the network, Lr is the characteristic path
length for an equivalent random network, C is the clustering coefficient, and C` is the
clustering coefficient of an equivalent lattice network [193]. The quantity ω is bounded
within [−1, 1], where ω close to 0 indicates that the graph is small-world. When ω is
close to 1, the graph is closer to a random graph, while ω close to −1 implies the graph
is more similar to a lattice graph.

Model evaluation

We used the following measures to evaluate the models fit to neuroscience data:

• Selection Ratio. We evaluate the sparsity of estimated models with the selection
ratio, or the fraction of parameters fitted to be non-zero:

selection ratio =
k

p
, (4.22)

where p is the total number of parameters available to the model and k is the number
parameters that a model-fitting procedure explicitly sets non-zero.

• Predictive performance. We utilized several measures of predictive performance,
depending on the model. For linear models (i.e., a generalized linear model with an
identity link function), we used the coefficient of determination (R2) evaluated on held-
out data, as detailed in Section 2.2 Recall that R2 values below zero indicate that the
model is worse than an intercept model (i.e., simply using the mean value to predict
across samples).

For Poisson regression, or a generalized linear model with a logarithmic link function,
we utilized the deviance, which is the difference in log-likelihood between the saturated
model and the estimated model [134]. The saturated model has parameters specifically
chosen to reproduce the observed values. For the Poisson log-likelihood, the expression
for the deviance as a function of the estimation parameters β̂ is given by

deviance(β̂) =

[
D∑

i=1

yi log(yi)− yi
]
−
[

D∑

i=1

yi(β̂0 + β̂Txi)− exp
(
β̂0 + β̂Txi

)]
, (4.23)

where {xi, yi}Di=1 denote the features and response variable of the model, respectively.
Note that lower deviance is preferred, in contrast to the coefficient of determination.
For logistic decoding models, we used the classification accuracy on held-out data as
the measure of predictive performance.
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• Model Parsimony. As detailed in Section 4.2, we evaluated model parsimony using
the Bayesian information criterion (BIC). Recall that the BIC includes a penalty that
encourages models to be more sparse while still accounting for predictive accuracy.
Importantly, the BIC is evaluated on the data that the model was trained on (rather
than held-out data). It is typically used as a model selection criterion (in lieu of, for
example, cross-validation). When used as a model selection criterion, the model with
lower BIC is preferred.

• Effect Size. To fully capture the difference in model evaluation metrics beyond sta-
tistical significance, we measure effect size using Cohen’s d [50]. For two groups of data
with sample sizes D1, D2, means µ1, µ2, and standard deviations s1, s2, Cohen’s d is
given by

d =

∣∣∣∣
µ1 − µ2

s

∣∣∣∣ (4.24)

where s is the pooled standard deviation:

s =

√
(D1 − 1)s21 + (D2 − 1)s22

D1 +D2 − 2
. (4.25)

We often considered cases where D1 = D2, implying that s =

√
s21+s

2
2

2
. Values of d

on the order of 0.01 indicate very small effect sizes, while d > 1 indicates a very large
effect size [167].

• Statistical Tests. We used the Wilcoxon signed-rank test [212] to assess whether
the distributions of selection ratios and predictive performances, across units, were
significantly different between the UoI models and the baseline models. Importantly,
we did not apply the test to the distribution of BICs, since differences in BIC are
better interpreted as approximations to Bayes factors [132]. To assess whether distri-
butions of UoI and baseline model parameters were significantly different, we used the
Kolmogorov-Smirnov test. We applied a significance level of α = 0.01 for all statistical
tests.

Cross-validation, model training, and model testing

Each dataset was split into 10 folds after shuffling across samples (except for the basal ganglia
data, which was split into 5 folds due to fewer samples). When appropriate, the folds were
stratified to contain equal proportions of samples across experimental setting (e.g., stimulus
value or behavioral condition). In each task, we fit 10 models (or five, for basal ganglia) by
training each on 9 (4) folds, and using the last fold as a test set. Hyperparameter selection
for baseline procedures was performed via cross-validation within the training set of 9 (4)
folds. Meanwhile, all resampling for the UoI procedures was also performed within the
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training set. Model evaluation statistics (selection ratio, predictive performance, Bayesian
information criterion) are reported as the median across the 10 (5) models. Any measures
that operate on the fitted models (e.g., coefficient value, network formation, modularity,
etc.) were calculated by using the model that is formed by taking the median parameter
value across folds.

4.3 Results

Parametric models are ubiquitous data analysis tools in systems neuroscience. However, their
usefulness in understanding a neural system hinges on the assumption that their parameters
are accurately selected and estimated. By accurate selection, we mean low false positives and
false negatives in setting parameters equal to zero; by accurate estimation, we mean low-bias
and low-variance in the parameter estimates. The potential neuroscientific consequences of
improper selection or estimation during inference are generally not well understood. Thus,
we studied selection and estimation in common systems neuroscience models by comparing
the properties of models inferred by standard methods to those inferred by the Union of In-
tersections (UoI) framework. We fit models spanning functional coupling (coupling networks
from auditory cortex, V1, and M1), sensory encoding (spatio-temporal receptive fields from
retinal recordings and tuning curves from auditory cortex), and behavioral decoding (classi-
fying behavioral condition from basal ganglia recordings). We analyzed the fitted models to
assess whether improvements in inference impact the resulting neuroscientific conclusions.

Highly sparse coupling models maintain predictive performance

Functional coupling models detail the statistical interactions between the constituent units
(e.g., neurons, electrodes, etc.) of a population. Such models can be used to construct
networks, whose structural properties may elucidate the functional and anatomical orga-
nization of the neurons within the population [182, 125, 25]. Enhanced sparsity in these
models could result in different inferred functional sub-networks reflected in the ensuing
graph. Furthermore, obtaining biased parameter estimates obscures the relative importance
of neuronal relationships in specific sub-populations. Therefore, precise selection and estima-
tion in coupling models is necessary to properly relate the network structure to the statistical
relationships between neurons.

We examined the possibility of building highly sparse and predictive coupling networks
by fitting coupling models to data from three brain regions: recordings from auditory cortex
(AC), primary visual cortex (V1), and primary motor cortex (M1). The AC data consisted
of micro-electrocorticography (µECoG) recordings from rat during the presentation of tone
pips (Dougherty & Bouchard, 2019: DB). The V1 data consisted of single-unit recordings in
macaque during the presentation of drifting gratings (Kohn & Smith, 2016: KS). The M1
data consisted of single-unit recordings in macaque during self-paced reaches on a grid of
targets (O’Doherty, Cardoso, Makin, & Sabes: OCMS). See Methods for further details on
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experiments, model fitting, and metrics used for model evaluation, and see 4.1 for a model
statistic summary.

We constructed coupling models consisting of either a regularized linear model (AC) or
Poisson model (V1, M1) in which the activity of an electrode/single-unit (i.e., node) was
modeled using the activities of the remaining electrodes/single-units in the population. Thus,
each dataset had as many models as there were distinct electrodes/single-units. We quanti-
fied the size of the fitted models with the selection ratio, or the fraction of parameters that
were non-zero. We compare the selection ratio between baseline and UoI coupling models
across electrodes/single-units in Fig 4.4a. For all three brain regions, UoI models exhibited
a marked reduction in the number of utilized electrodes/single-units. Specifically, UoI mod-
els used 2.24 (AC), 2.21 (V1), and 5.50 (M1) times fewer features than the corresponding
baseline models. Across the populations of electrodes/neurons, this reduction was statisti-
cally significant (p � 0.001; see 4.2) with large effect sizes (AC: d = 1.74; V1: d = 2.26;
M1: d = 2.49). Interestingly, while the reduction in features for AC and V1 are roughly
similar, the M1 models exhibit a much larger reduction in selection ratio, an observation
that holds across the three M1 datasets. Furthermore, we examined coupling fits obtained
via UoILasso, finding that the enhanced sparsity persists despite the change in model. Ad-
ditionally, the UoI linear and Poisson models exhibited similar recovery in selection profiles
not recapitulated by baseline procedures (4.5).

We assessed whether the reduction in features resulted in meaningful loss of predictive
accuracy. We measured predictive accuracy using the coefficient of determination (R2) for
linear models (AC) and the deviance for Poisson models (M1, V1), both evaluated on held out
data. Note that in contrast to R2, lower deviance is preferable. The predictive performances
of baseline and UoI models for each brain region are compared in Fig 4.4b. We observed
that there is almost no change in the predictive performance across brain regions, with
most points lying on or close to the identity line. We note that while the differences in
performance across all models were statistically significant (AC: p < 10−3; V1: p � 0.001;
M1: p � 0.001; see 4.3), the effect sizes of the reduction in predictive performance were
very small (AC: d = 0.005; V1: d = 0.05; M1: d = 0.03), making it irrelevant in practice.
Thus, these results imply that it is possible to construct highly sparse coupling methods that
exhibit little to no loss in predictive performance across brain regions and datasets.

We captured the two previous observations — increased sparsity and maintenance of pre-
dictive accuracy — with difference in Bayesian information criterion (BIC) between baseline
and UoI methods, ∆BIC = BICbaseline − BICUoI. Lower BIC is preferable, so that positive
∆BIC indicates that UoI is the more parsimonious and preferred model. The distribution of
∆BIC across coupling models is depicted in Fig 4.4c. ∆BIC is positive for all models, with
a large median difference (AC: 170; V1: 149; M1: 186; see 4.4). Thus, usage of BIC as a
model selection criterion provides very strong evidence against the baseline models.

To characterize the functional relationships inferred by the coupling models, we exam-
ined the distribution of coefficient values. We normalized each model’s coefficients by the
coefficient with largest magnitude across the baseline and UoI models, and concatenated
coefficients across models and datasets. We visualized the baseline and UoI coefficient val-
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ues using a 2-d hexagonal histogram (Fig 4.4d). First, we observed a density of bins above
(positive coefficients) and below (negative coefficients) the identity line (Fig 4.4d: red dashed
line). This indicates that the magnitude of non-zero coefficients as fit by UoI are larger than
the corresponding non-zero coefficient as fit by the baseline, demonstrating the amelioration
of shrinkage and therefore reduction in bias. Next, we observed a density of bins on the x = 0
line, indicating a sizeable fraction of coefficients determined to be non-zero by baseline meth-
ods are set equal to zero by UoI. This density corroborates the reduction in selection ratio
observed in Fig 4.4a. We further note that the density of bins on the x = 0 line encompass a
wide range of baseline coefficients values, especially for the V1 and M1 datasets. This implies
that utilizing a thresholding scheme based on the magnitude of the fitted parameters for a
feature selection procedure will not reproduce these results. Lastly, we observe no density
of bins along the y = 0 line, which indicates that UoI models are likely not identifying the
existence of functional relationships which do not exist (i.e., suffering from false positives).

While many of the coefficients set equal to zero by UoI have large magnitude (as measured
by baseline methods), the bulk of density lies in coefficients with small magnitude. We found
that the difference in distributions of non-zero coefficients between the two procedures is
statistically significant (p � 0.001; Kolmogorov-Smirnov test). We highlight the marginal
distribution of non-zero coefficients whose magnitudes are small (Fig 4.4d, top and side
histograms). While the baseline histograms (Fig 4.4d, top histograms) have the largest
density of coefficients close to zero, the UoI histograms, in a similar range, exhibit a large
reduction in density. Together, these results demonstrate that coupling models fit by UoI
possess qualitatively different parameter distributions, and raise the possibility that these
differences may reflect shrinkage and abundance of false positives.
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Figure 4.4: Highly sparse coupling models maintain predictive performance. a-c.
Comparison of coupling models fit using baseline and UoI approaches to recordings from the
auditory cortex (AC), primary visual cortex (V1), and primary motor cortex (M1). Each
column corresponds to a different recording area (titles), and each row corresponds to a
different model evaluation measure (right side labels). Colors denote different data sets
within the same experiment, if available. Caption continued on following page.
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Figure 4.4: Continued from previous page. a. The selection ratio, where the y-axis refers
to the UoI model and x-axis the baseline model. Each point represents a coupling model
for a specific single-unit/electrode. Gray line denotes the identity line. b. Comparison of
predictive performance. c. The distribution of BIC differences across coupling models. d.
Comparison of the coefficient values inferred by UoI (y-axis) and baseline (x-axis) methods.
Data is depicted on a hexagonal 2D histogram with a log intensity scale. The marginal
distributions of the non-zero coefficient values are shown on the top (baseline) and side
(UoI) for each brain area. Note that the 1D histograms display the distribution in a more
restricted domain than the 2D histograms, as depicted by the black lines.

Improved inference enhances visualization, increases modularity,
and decreases small-worldness in functional coupling networks

Functional coupling networks are useful in that they provide opportunities to visualize the
statistical relationships within a population. Furthermore, their graph structures can be
analyzed to characterize global properties of the network. The previous results show that
improved inference gives rise to equally predictive models, but with much greater sparsity
and qualitatively different parameter distributions. Thus, we next determined the impact
on network visualization and structure. To this end, we constructed networks by placing
coefficient values extracted from the coupling models directly in an adjacency matrix; i.e.,
Aij = βij, where βij is the jth parameter for the ith coupling model. The adjacency ma-
trices constituted directed graphs with weighted edges, which served as the primary focus
in the subsequent analyses. When necessary, we considered undirected graphs calculated by
symmetrizing pairwise coupling coefficients (see Methods for more details).

We first visualized the AC networks by plotting the baseline and UoI networks according
to their spatial organization on the µECoG grid (Fig 4.5a). Each vertex in Fig 4.5a is color-
coded by preferred frequency, while the symmetrized coupling coefficients are indicated by
the color (sign) and weight (magnitude) of edges between vertices. We observed that the
UoI network is easier to visualize, with densities of edges clearly demarcating regions of
auditory cortex. This is contrast to the baseline network, whose lack of sparsity makes it
difficult to extract any meaningful structure from the visualization. For example, the UoI
network exhibits a clear increase in edge density in primary auditory cortex (PAC) relative
to the posterior auditory field (PAF) and ventral auditory field (VAF). Thus, the increased
sparsity in UoI networks reveals graph structure that ties in closely with general anatomical
structure of the recorded region.
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Figure 4.5: Improved inference enhances visualization, increase modularity, and
decrease small-worldness in functional coupling networks. a. Networks obtained
from auditory cortex data. Vertices are organized according to their position on the elec-
trocorticography grid. Vertices are color coded by preferred frequency, with fuchsia vertices
denoting non-tuned electrodes. Edge width increases monotonically with edge weight while
edge color denotes the sign of the weight. White lines segment the grid according to the
regions of auditory cortex. b. Visualization of example coupling networks for visual cortex
recordings, with vertices color-coded by preferred tuning. Edges are bundled according to
detected communities, while vertex size corresponds to its degree. Note that stimulus en-
coding is cyclical (static grating angle from 0◦ to 180◦). Caption continued on the following
page.
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Figure 4.5: Continued from previous page. c. Visualization of coupling networks for
motor cortex recordings, with vertices color-coded by preferred tuning. Edges are bundled
according to detected communities, and vertex size corresponds to its degree. Note that
stimulus encoding is cyclical (movement direction angle from 0◦ to 360◦). d-f. Comparison
of common graph metrics evaluated on UoI networks (red) and baseline networks (gray).
Each row corresponds to a distinct brain region (left: AC, V1, and M1 from top to bottom).
d. In-degree and out-degree densities. e. The graph modularity, averaged across datasets.
f. The small-worldness as quantified by ω, and averaged across datasets.

Since we lacked the physical layout for V1 and M1 recordings, we visualized the networks
by fitting nested stochastic block models to the directed graphs and plotting the ensuing
structure in a circular layout with edge bundling (Fig 4.5b, c). The nested stochastic block
model identifies communities of vertices (neurons) in a hierarchical manner. We color-coded
the vertices of the visualized graphs according to preferred tuning inferred from fitted en-
coding models (drifting grating angle for V1 networks and hand movement angle for M1
networks with cosine basis functions: see Methods). The UoI V1 network exhibits clear
structure, with specific communities identifying similarly tuned neurons (Fig 4.5b). The
baseline V1 network does not exhibit as clear structure, and was highly unbalanced, with
more than half the neurons placed in the same community. For the M1 data, the UoI com-
munities were more balanced, though they lacked clear association with tuning properties.
Together, these results demonstrate that enhanced sparsity of functional coupling networks
result in cleaner visualizations and, in the case of V1, a clearer connection to functional
response properties.

These plots suggest different graph structures in the networks extracted by UoI and
baseline methods. Thus, we first calculated the in-degree and out-degree distributions of
the vertices in both networks (Fig 4.5d). We observed that the in-degree and out-degree
distributions for the UoI networks are much smaller, as one might expect due to the reduc-
tion in edges. Furthermore, the in- and out-degree distributions describing the UoI networks
are nearly identical, in contrast to those of the baseline networks. Next, we calculated
the modularity of the networks, which quantifies the degree to which the networks exhibit
community-like structure. We found that the modularity for the UoI networks is much
larger than that of baseline networks, indicating that UoI networks express more community
structure than baseline networks (Fig 4.5e). These results corroborate the visual findings
in Fig 4.5b. Since modularity implicitly depends on degree distribution, the enhanced com-
munity structure exhibited by the UoI networks is not simply a property of the reduction
of in- and out-degrees, emphasizing that the enhanced sparsity is functionally meaningful.
We found similar findings in functional networks built from linear models, rather than Pois-
son models, implying that the structure of coupling networks persists across the type of
underlying model (4.5).

Finally, we examined the small-worldness of the networks, a graph structure commonly
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used to describe brain networks. Small-world networks are characterized by a high degree
of clustering and low characteristic path length, making them efficient for communication.
We used ω to calculate small-worldness, whose values are bounded by the range [−1, 1],
with ω close to −1, 0, and 1 indicative of lattice, small-world, and random structure, re-
spectively. Interestingly, UoI networks are considerably less small-world than the baseline
networks (Fig 4.5f). However, we note that all networks are more small-world than they
are random. Furthermore, the small-worldness of the networks is dependent on the brain
region. For example, the V1 networks exhibit substantially more small-worldness than the
auditory cortex or M1 networks. Together, these results demonstrate that several properties
of networks can be substantially altered by the utilized inference procedure, and that UoI
networks are more modular and less small-world.

Parsimonious tuning from encoding models

A long-standing goal of neuroscience is to understand how the activity of individual neurons
are modulated by factors in the external world (e.g., how the position of a moving bar is
encoded by a neuron in the retina). In such encoding models, incorrect feature selection
or parameter bias may mistakenly implicate factors in the production of neural activity,
or misstate their relative importance. Thus, we examined how improved inference impacts
tuning models, where an external stimulus is mapped to the corresponding evoked neural
activity.

We first fit spatio-temporal receptive fields (STRFs) to single-unit recordings from iso-
lated mouse retinal ganglion cells during the presentation of a flicker black or white bar
stimulus (generated by a pseudo-random sequence). We used a linear model with a lasso
penalty to fit STRFs (i.e., regularized, whitened spike-triggered averaging) to recordings
from 23 different cells, using a time window of 400 ms. Thus, the fitted STRFs were two
dimensional, with one dimensional capturing space (location in the bar stimulus) and the
other capturing the time relative to neural spiking. For further experimental and model
fitting details, see Methods. See 4.5 for a dataset and model statistic summary.

The fitted STRFs for an example retinal ganglion cell are depicted in Fig 4.6a. The UoI
STRF captures the ON-OFF structure exhibited by the baseline STRF. However, the UoI
model is noticeably sparser, resulting in a tighter spatial receptive field. The features set to
zero by UoI (relative to baseline) include regions both further from the dominant ON-OFF
structure, and regions very close to the center. Additionally, the coefficient values of the UoI
STRF are noticeably larger in magnitude. These observations raise the possibility that the
baseline procedure could be producing false positives in both the central and distal regions
of the STRF, with the remaining coefficients suffering from shrinkage.

We compared the selection ratios across fitted STRFs (Fig 4.6b) and found UoI fits
to be substantially sparser, with a median reduction factor of 4.98. This reduction was
statistically significant (p � 0.001; see 4.6) and had a very large effect size (d = 3.05). At
the same time, UoI models exhibited a statistically significant improvement in R2 (p < 0.01;
see Table 4.7), but with a very small effect size, making the improvement irrelevant in
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practice (d = 0.05; see 4.8). Meanwhile, the BIC differences (Fig 4.6d) were all large and
positive (median difference = 654), providing very strong evidence in favor of the UoI model.
Lastly, we compared the distribution of baseline and UoI encoding coefficients, normalized
to the largest magnitude coefficient. We found evidence that the UoI models exhibited
reduced shrinkage (Fig 4.6e: larger tails), and a substantial reduction in false positives
(Fig 4.6e: reduced density at origin). Thus, improved inference resulted in STRFs with
tighter structure.

Across neurons, we observed selection ratios and predictive performances spanning a
wide range of values (Fig 4.6b, c). We might expect that models with little predictive
accuracy utilize fewer features, since poor predictive performance indicates that the provided
features are inadequate. For example, in the limit that the model has no predictive capacity
(R2 ≤ 0), the model should utilize no features, since such an R2 indicates that none of the
available features are relevant for reproducing the response statistics better than the mean
response value. Therefore, we sought to determine whether inaccurate inference mistakenly
identifies models as tuned (i.e., non-zero tuning features), when in fact a “non-tuned” model
is appropriate (e.g., an intercept model: all features set equal to zero). To this end, we
utilized a dataset in which the feature space dimensionality is small. This scenario provides
a suitable test bed for assessing whether an intercept model could arise, and if such a model
is appropriate given the response statistics of the data. We examined a dataset consisting of
µECoG recordings from rat auditory cortex during the presentation of tone pips at various
frequencies. We employed a linear tuning model mapping frequency to the peak (z-scored
relative to baseline, see Methods), high-γ band analytic amplitude of each electrode. The
model features consisted of 8 Gaussian basis functions that tiled the log-frequency space.

We first examined whether improved inference resulted in any qualitative changes in the
fitted encoding models. We plotted the fitted tuning curves as a function of log-frequency
for a subset of electrodes arranged according to their location on the µECoG grid (Fig 4.6f).
Interestingly, the baseline and UoI tuning curves exhibit similar structure for a large fraction
of the electrodes on the grid, in many cases matching closely (e.g., Fig 4.6f: anterior side of
grid). In other cases, particularly on the posterior side of the grid, the UoI tuning curves
exhibit similar broad structure with noticeable smoothing, indicating that UoI has simplified
the tuning model.

We compared the selection ratio of the models (Fig 4.6g), and found that the UoI tuning
curves utilize fewer features than those fit by baseline, with a median reduction factor of
2.5 that was statistically significant (p � 0.001; see 4.6) and a large effect size (d = 2.19).
Furthermore, despite a statistically significant decrease in R2 (Fig 4.6h) across electrodes
(p� 0.001; see 4.7), the observed effect size is very small (median ∆R2 = 0.001; d = 0.05).
Meanwhile, we observed a median BIC difference of 19.4, providing evidence in favor of the
UoI models (Fig 4.6i; Table 4.8). Taken together, these results imply that the reduction in
features did not harm the predictive performance of the tuning models, thereby enhancing
their parsimony.

We highlight four electrodes whose selection ratios, according to UoI, are exactly zero
in Figure 4.6g (purple points; some points overlap). The tuning curves of two of these
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electrodes are depicted in the posterior region of Figure 4.6f (purple axis boundaries). These
four “non-tuned” electrodes are among the least predictive, with R2 close to or below zero for
both baseline and UoI methods (Fig 4.6h: purple points; some points overlap). Interestingly,
the baseline selection ratio for one of these models was close to 0.4, indicating that UoI is
generating models with substantially different support. We visually examined the frequency-
response areas (FRAs) of these four electrodes, which detail the mean response values as a
function of sound frequency and amplitude. We compared them to the FRAs of two randomly
chosen electrodes, finding they had little discernible structure relative to the “tuned” FRAs
(4.5). Thus, while increased sparsity in encoding models may not always result in perceptible
changes in their appearance (e.g., Fig 4.6f), there are cases where an inference procedure
may mistakenly imply that a constituent unit is tuned, when in fact the stimulus features
are not relevant for capturing its response statistics. To understand the behavior of the
selection ratio as R2 → 0, we examined the relationship between selection ratio and R2 for
baseline (gray) and UoI (red) models (Fig 4.6j). We found that the sparser models exhibit
lower predictive power, with model trends predicting that at R2 = 0, the selection ratio for
the baseline model would be 0.35± 0.10 (mean ± 1 s.d.) while the UoI selection ratio would
be 0.12 ± 0.10. This demonstrates that baseline procedures can suffer from false positives
even when their fitted models exhibit little to no explanatory power. Overall, our results
reveal that UoI can identify units as non-tuned when their encoding models lack predictive
ability.

Decoding behavioral condition from neural activity with a small
number of single-units

Decoding models describe which neuronal sub-populations contain information relevant for
an external factor, such as a stimulus or a behavioral feature. Such models can identify which
neurons may be useful to a downstream population for a task that requires knowledge of
an external factor. Specifically, a decoding model’s non-zero parameters can be interpreted
as the sub-population of neurons containing the task-relevant information, emphasizing the
need for precise selection. Additionally, the model details how specific neurons describe the
decoded variable through the magnitudes of its parameters, requiring unbiased estimation.
Thus, we sought to assess the degree to which an improved inference algorithm might impact
data-driven discovery in neural decoding models.

For this analysis we examined 54 single units in the rat basal ganglia (18 units from
globus pallidus pars externa, GPe, and 36 from the substantia nigra pars reticulata, SNr)
that were recorded simultaneously during performance of a behavioral task involving rapid
leftward or rightward head movements in response to cues. Details of the task are given in
[79]; the analysis was restricted to trials in which a correct head movement was made. Thus,
the decoding model consisted of binary logistic regression predicting trial outcome (left or
right) using the single-unit spike counts as features. We fit the logistic regression with an `1
penalty (baseline) and the UoI framework (UoILogistic). Further details on the experimental
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Figure 4.6: Parsimonious tuning from encoding models. a-e. Analysis of spatiotem-
poral receptive fields (STRFs) fit to spikes from mouse retinal ganglion cells using a 1d white
noise stimulus. a. Example STRF extracted by baseline (left) and UoI (right) procedures.
b-c. Quantitative comparison of STRFs extracted with UoI (y-axis) and baseline (x-axis)
procedures. Each point represents a unique STRF. Gray line denotes identity. b. Com-
parison of selection ratios for each STRF. c. Comparison of coefficient of determination
(R2) on held out data. d. The distribution in BIC differences across STRFs. Dashed line
denotes equal BIC, i.e. ∆BIC = 0. e. Distribution of normalized coefficient values across
all baseline (gray) and UoI (red) STRFs. The broken y-axis is log-scale below the break and
a regular scale above the break. Inset shows distribution of coefficients for STRFs depicted
in a. f-j. Analysis of tuning curves extracted from micro-electrocorticography recordings
on rat auditory cortex during the presentation of tone pips. Caption continued on following
page.

setup and model fitting can be found in Methods. See 4.9 for a summary of the dataset and
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Figure 4.6: Continued from previous page. f. Examples of tuning curves for a subset
of electrodes on the grid, as fit by baseline (gray) and UoI (red) procedures. Purple outlines
denote tuning curves set exactly equal to zero by UoI (of the four electrodes, only two are
shown). g-h. Quantitative comparison of tuning curves extracted with UoI (y-axis) and
baseline (x-axis) procedures. Panels are structured similarly as panels b-c.. Purple points
highlight tuning curves that had a selection ratio of zero, as determined by UoI. i. The
distribution in BIC differences across electrode tuning curves, structured similarly as panel
d. j. Selection ratio plotted against coefficient of determination for baseline (gray) and
UoI (red) procedures. Each point denotes a STRF. Trendlines are fit with Gaussian process
regression.

fitted model statistics.
The selection ratios for GPe and SNr, as obtained by baseline and UoI procedures, are

depicted in Fig 4.7a. In GPe, the UoI decoding models utilized about half the number of
parameters as the baseline procedures. Meanwhile, in SNr, the UoI models utilized four times
fewer parameters than the baseline. Furthermore, we observe that UoI model sizes were more
consistent across folds of the data. For example, the baseline SNr decoding models estimated
anywhere from 1 to 21 parameters (out of 36) depending on the data fold, while UoI models
consistently used only 2 or 3 parameters (Fig 4.7a: IQR bars). These results validate that
neural decoding models are capable of utilizing fewer features to predict relevant behavioral
features. Furthermore, the stability principle ensures that these features are more robust to
perturbations of the data (e.g., random subsamples).

To examine whether the use of fewer single-units decreased predictive performance, we
evaluated the decoding models’ classification accuracy on held-out data, depicted in Fig 4.7b.
The classification accuracy of the UoI models is equal to that of the baseline models for both
GPe (67%) and SNr (100%). Furthermore, in both regions, the classification accuracy is
greater than chance (56%), implying that the models are extracting meaningful information
about the behavioral condition from the neural response. Interestingly, the median SNr
models achieve perfect classification accuracy. The UoI model achieves this performance
utilizing only 2 neurons, in contrast to median baseline model, which utilizes 8. Therefore, the
activities of only a small subset of neurons are required to predict the behavioral condition,
an observation that required an improved inference algorithm to consistently capture.

We examined the fitted coefficient values for each brain region and fitting procedure
(Fig 4.7c). First, we observed that all coefficients set equal to zero by the baseline proce-
dure are also set equal to zero by UoI. Additionally, the coefficients set equal to zero by
UoI, but not the baseline procedure, typically have smaller magnitudes than the coefficients
that are non-zero for both procedures. Finally, the coefficients set non-zero by UoI have
larger magnitudes relative to their value under the baseline procedure. These observations
imply that the UoI procedure, for this task, consistently utilized only the most important
neurons to predict the behavioral condition. At the same time, UoI elevated the coefficient
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Figure 4.7: Behavioral condition can be decoded with a small number of single-
units at no loss in accuracy. Decoding models were applied to single-unit recordings from
rat basal ganglia. The models, consisting of binary logistic regression, predicted whether the
rat went left or right on a stop signal task. Single-unit recordings were used from the
globus pallidus pars externa (GPe: 18 units) and the substantia nigra pars reticulata (SNr:
36 units). a-b. Evaluation of decoding models fit via the UoI (red) and baseline (gray)
procedures. Bar heights indicate median across five data folds, while error bars denote IQR.
a. Comparison of the selection ratios. b. Comparison of left/right classification accuracy on
held-out data. Dashed line denotes accuracy by chance. c. Comparison of fitted coefficient
values extracted by baseline and UoI procedures in GPe and SNr. The decoding models fit
by UoI utilize about 3 times fewer single-units at no cost to accuracy, indicating that task
relevant information is contained in a small number of single-units.

values relative to the baseline procedure, implying that baseline procedures suffered from
substantial parameter shrinkage. In contrast to the coupling models, the parameters with
the lowest magnitude in the baseline decoding models were set to zero by UoI. This could
reflect differences in the task (classification vs. regression) or collinearity between the neural
responses. Overall, these results demonstrate that task-relevant information is conveyed by
a sparse subset of basal ganglia neurons, especially in SNr.

4.4 Discussion

Parametric models are used pervasively in systems neuroscience to characterize neural ac-
tivity. The parameters of these models must be precisely selected and estimated in order to
ensure accurate interpretation, particularly in the sparse parameter regime that is desirable
for neural data. Motivated by the advent of new inference procedures capable of improved
inference, we used the UoI framework to assess the degree to which poor parameter inference
may impact neuroscientific interpretation of parametric models. We fit functional coupling,
encoding, and decoding models to a battery of neural datasets, using standard and UoI infer-
ence procedures. We found that, across all models, the number of non-zero parameters could
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be reduced by a factor of 2–5, while maintaining predictive performance. Furthermore, we
found broader, structural differences in the models beyond enhanced sparsity, which resulted
in concrete changes to secondary analyses that inform neuroscientific interpretation.

The parameters obtained in coupling models denote the existence and strength of func-
tional relationships between constituent units in a population. We fit coupling models that
exhibited a marked reduction in model size, providing evidence that the baseline models
suffered from false positives. Interestingly, the amount of feature reduction varied across
brain areas, which may reflect differences in the nature of neural activity for these regions.
Furthermore, we observed striking differences in the distribution of these parameter esti-
mates, which impacted the graph structure. These changes produced cleaner visualizations,
which in the case of V1, could related to the functional response properties of the neu-
rons. In M1, we found no such relationship, inline with the dynamics view of this region
[48]. Additionally, these networks were characterized by increased modularity and decreased
small-worldness. These results do not directly contradict previous work characterizing brain
networks as small-world, but do reduce the magnitude of the characterization [26, 83, 24]
(though see [123]). Furthermore, coupling model parameters have been assessed for their
recapitulation of synaptic weight distributions in neural circuits, in some cases identifying
parameter biases induced by specific dynamical regimes of neural activity [55]. These biases
could be due to shrinkage of large parameter values, as observed here, and are mitigated
by UoI. Furthermore, the coupling parameters extracted by UoI better reflect the weight
distribution as observed in neural circuits, which is characterized by sparse connectivity
with a heavy-tailed distribution [183, 21]. This was not achieved by baseline procedures,
suggesting that the previously identified biases are due to inaccurate inference. The salient
differences in the inferred coupling parameter distributions we observed motivates similar
examination in models that capture neural dynamics, such as vector auto-regressive models
[16, 159], which could be further assessed by controllability metrics used in recent work on
fMRI networks [80].

The parameters in encoding models detail which features modulate neural activity. We
observed that the application of UoI to the encoding models highlighted cases where the fitted
model had only zero parameter values, other than the intercept. Such an intercept model
implies that a tuning model may be inappropriate for capturing the response statistics of the
constituent units. This observation can be understood as a natural consequence of stability
enforcement during parameter inference: UoI benefits from the stability principle by only
utilizing selected features that persist across data resamples [129]. The use of data resamples
mimics perturbing the dataset, ensuring that features are included only if they are robust to
those perturbations. Thus, the stability principle enforces model parsimony by encouraging
the use of fewer features, eliminating those that offer no predictive accuracy throughout
the resamples. However, UoI prioritizes predictive accuracy in the model averaging step.
Therefore, models will only be made “as simple as possible” (e.g., removing all features)
when they possesses no predictive ability. Furthermore, the fit spatio-temporal receptive
fields on the retinal ganglion cells had typical ON-OFF structure, characteristic of the linear
model [152]. In contrast to the auditory cortex, the stability enforcement of UoI resulted
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in models that were more spatially constrained, in better agreement with theoretical work
characterizing the receptive fields and more accurately reflecting the visual features that
explain the production of neural activity in retinal ganglion cells [141, 191]. More broadly,
these results indicate that such improvements in parameter inference could serve to close the
gap between experiment and theory in systems neuroscience.

Likewise, decoding models can inform which internal factors contain information about a
task-relevant external factor. We found that decoding models could be fit using fewer single-
units, at no cost to classification accuracy, implying that task-relevant information can be
confined to a very small fraction of a neural circuit. In the context of this work, we note
that SNr is a basal ganglia output nucleus, receiving converging inputs from multiple basal
ganglia structures including GPe. Thus, the finding that SNr decodes behavioral output more
selectively and accurately compared to GPe is consistent with the idea that SNr is closer to
post-decision behavioral outputs, whereas GPe represent internal preparatory states. Our
observations have more general implications for communication between brain areas: wiring
constraints often restrict information transmission through a relatively smaller number of
projection neurons, suggesting that these neurons contain the relevant information required
to “decode” a given signal [168, 89]. These results, in which we identified a very small fraction
of the neurons capable of accurate decoding, raise the possibility that these selected neurons
are, in fact, the projection neurons. Decoding using fewer single-units also has practical
implications. An abundance of work has considered the fidelity of a neural code by assessing
the decoding ability of neural populations as a function of population size [107]. These
decoding analyses can be informed by knowledge of the sparse sub-populations predictive of
an external factor, which these results indicate are smaller than previously thought. Brain-
machine interfaces (BMIs), which rely on accurate decoding from neural activity to operate,
could reduce their power consumption by using a decoder relying on fewer single-units.
Together, these results imply that accurate inference procedures, more capable of discovering
specific task-relevant neuronal sub-populations, could drive the development of normative
theories of neural communication and decoding.

Across brain regions and models, UoI resulted in more parsimonious models with dif-
ferences in predictive performance that were irrelevant in practice, as measured by Cohen’s
d. However, statistical tests comparing the distribution of predictive performance between
the baseline and UoI models revealed a statistically significant decrease in predictive per-
formance for some cases (coupling models, AC tuning) and statistically significant increase
in others (retinal STRF, decoding). Depending on one’s goals, relying solely on predictive
performance to judge a model may be unreliable [177, 207]. In particular, because model
interpretability depends crucially on the included features and their estimates, we prioritized
feature selection and estimation. Cross-validated predictive accuracy is often a poor crite-
rion for accurate feature selection [176, 222]. In these cases, the BIC, which captures model
parsimony, serves as a more suitable criterion [170], and universally favored the UoI models
(though we note there is no single preferred model selection criterion [170, 4, 157, 74, 222]).
Furthermore, the increase in sparsity of the UoI models imply that the baseline fits suffered
from an abundance of false positives. The similar predictive performance between the UoI
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and baseline fits could imply that false positives can have little impact on predictive perfor-
mance in models of neural data, further emphasizing the need to consider multiple criteria
in model selection. Alternatively, UoI fits may have suffered from false negatives, thereby
lowering predictive performance, though previous experiments in synthetic data make this
unlikely [31].

We considered models of neural activity exclusively in terms of coupling, encoding, or
decoding. However, past studies have built parametric models of neural activity by using
other features or model structures. For example, the combination of coupling and encoding
in a single model is a natural extension which has been examined extensively in previous work
[188, 152, 204, 200, 139]. Other features that are not constrained within coupling, encoding,
or decoding — such as spike-time history or global fluctuations — are also important to
incorporate [200, 140, 145]. Additionally, latent variable models have been used to great
success to capture, in particular, the dynamics of neural activity [43, 147, 121]. In this work,
the stability principles used by UoI resulted in a significant difference in the model sparsity
and estimated parameter distribution, which impacted interpretation. Future work should
assess whether similar results can be achieved in these extended models, and if so, determine
the neuroscientific consequences.

UoI is formulated in a frequentist context, which guided the baseline methods we chose as
comparisons. This was done to have maximal utilization by neuroscientists, which predomi-
nantly utilize frequentist inference. However, a multitude of inference approaches, including
Bayesian methods [47, 224, 87], have been introduced in recent years which all excel at
parameter inference. This new class of inference approaches will fundamentally change the
interpretation of parametric models on neural data, and therefore should preferentially be
used in future studies to improve data-driven discovery. As these inference procedures con-
tinue to be improved, additional assessments on neural data will be informative to better
understand how neuroscientific interpretation further develops.

We restricted our analysis to generalized linear models, because their structure lends
itself well to interpretation, making them ubiquitous in neuroscience. However, the improve-
ments we obtained by encouraging stability and sparsity in these models may extend to
other classes of models. For example, dimensionality reduction methods have also played an
important role in systems neuroscience [54]. The UoI framework is naturally extendable to
such methods, including column subset selection [31] and non-negative matrix factorization
[201]. Furthermore, recent work has found success in using artificial neural networks (ANNs)
to model neural activity, which excel at predictive performance [101]. Since ANNs are highly
parameterized, these models are not interpretable in the sense that their parameter values
do not directly convey neuroscientific meaning. Instead, these models are often interpreted
through the lens of learned representations or recapitulation of emergent properties of neu-
ral activity. Future work could assess whether the inference principles described in this
work could have similar effects for ANNs modeling neural activity, especially given recent
advancements in compressing such models [1].
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4.5 Supporting Analyses

Pseudocode for the Union of Intersections

We provide pseudocode to the Union of Intersections framework. This pseudocode is gen-
eralized to all UoI algorithms discussed in the paper, with the objective L(β;Xk, yk) corre-
sponding to the choice of algorithm.

Algorithm 1 Union of Intersections inference in generalized linear models

Input: Data X ∈ Rn×p, y ∈ Rn

1: Regularization strengths {λj}qj=1

2: Number of resamples NS and NE

3: Loss function L(β;X, y)
4: Model Selection
5: for k = 1 to NS do
6: Generate resample Xk, yk

7: for j = 1 to q do
8: β̂jk ← Optimize L(β;Xk, yk) + λj|β|1 (`1-penalized objective)

9: Skj ← {i} where β̂jki 6= 0
10: end for
11: end for
12: for j = 1 to q do

13: Sj ←
NS⋂

k=1

Skj . Intersection

14: end for
15: Model Estimation
16: for k = 1 to NE do
17: Generate training

(
Xk
T , y

k
T

)
resample

18: for j = 1 to q do
19: Xk

T,j ← Xk
T with features Sj extracted.

20: β̂jk ← Optimize L(β;Xk
T,j, y

k
T )

21: `jk ← BIC(β̂jk, Xk
T,j, y

k
T )

22: end for
23: β̂k ← argmin

β̂jk

`jk

24: end for
25: β̂∗ = median

k

(
β̂k
)

. Union

26: return β̂∗
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Extended synthetic results for Poisson and logistic variants

We conducted additional synthetic experiments evaluating the performance of UoI in the con-
text of Poisson and logistic regression. As in the case of the linear model (detailed in Section
4.2), we generated data with p = 300 total parameters of which k = 100 were non-zero. The
non-zero ground truth parameters were drawn from a parameter distribution characterized
by exponentially increasing density as a function of parameter magnitude (Fig. 4.3b: gray
histograms). We used N = 1200 samples generated according to the Poisson model and
N = 2400 samples generated according to the logistic model (logistic regression typically
requires more samples for convergence). We compared UoI against `1-penalized Poisson re-
gression, fit by glmnet [68], and `1-penalized logistic regression, fit by scikit-learn [150].
We did not conduct an analysis against a full battery of methods, as done in Section 4.2,
because solvers beyond the `1-penalty are not readily available in the Poisson and logistic
contexts.

We summarized our findings with similar metrics detailed in Section 4.2. Specifically,
we quantified selection performance with the selection accuracy, bias with estimation error,
variance with the estimation variability, predictive performance with the deviance and log-
likelihood, and model parsimony with the Bayesian information criterion. Our results are
shown in Figure 4.8, with boxplots capturing the distribution of metrics across 30 synthetic
datasets (in the case of estimation variability, the distribution across parameters). We found
that UoI exhibits increased selection accuracy (Fig. 4.8a, b) and decreased bias (Fig. 4.8c,d).
At the same time, UoI exhibits comparable variability, with most parameters seeing an im-
provement, but a longer tail exhibiting increased variance (Fig. 4.8e, f). These improvements
in model sparsity and bias translated to improved prediction performance, as quantified by
the deviance for Poisson regression (Fig. 4.8g: lower is better) and the log-likelihood for
logistic regression (Fig. 4.8h: higher is better). Lastly, UoI exhibited markedly improved
model parsimony as quantified by the Bayesian information criterion (Fig. 4.8i: lower is
better).
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Figure 4.8: UoI exhibits improved selection, decreased bias, comparable variance,
and superior model parsimony on Poisson and logistic variants. Top row depicts
results for Poisson regression, while bottom row depicts results for logistic regression. Each
column corresponds to a different metric, with red box plots denoting UoI performance and
gray boxplots denoting baseline performance. Circular points denote median, with whiskers
denoting the total spread of responses. a, b. Comparison of selection accuracies (higher
is better). c, d. Comparison of estimation errors, quantifying bias (lower is better). e,
f. Comparison of estimation variabilities (lower is better). g, h. Comparison of predictive
performance. For Poisson models, this is quantified by deviance (g: lower is better). For
logistic models, this is quantified by log-likelihood (h: higher is better). i, j. Comparison of
model parsimonies, as quantified by Bayesian information criterion (lower is better).
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Supplementary Tables

Functional coupling dataset summary and fitted model statistics

Dataset summary (Table 4.1) provides details on the datasets used to fit functional coupling
models, including the number of units and samples across brain region and recording ses-
sion. The following tables provide statistics summarizing aspects of the fitted baseline and
UoI models, including selection ratio (Table 4.2), predictive performance (Table 4.3), and
Bayesian information criterion (Table 4.4).

Brain Region Number of Units Number of Samples

AC 125 4200

VC 1 106 2400

VC 2 88 2400

VC 3 112 2400

MC 1 136 4089

MC 2 146 4767

MC 3 147 4400

Table 4.1: Dataset summary for functional coupling models

Brain Region Baseline UoI Reduction Factor p-value d

AC 0.30± 0.07 0.13± 0.03 2.24 5× 10−23 1.74
VC 1 0.59± 0.11 0.27± 0.07 2.21 2× 10−19 2.26
VC 2 0.66± 0.17 0.26± 0.11 2.56 2× 10−16 1.87
VC 3 0.59± 0.10 0.28± 0.07 2.13 2× 10−20 2.57
MC 1 0.43± 0.12 0.07± 0.04 5.85 3× 10−24 2.49
MC 2 0.46± 0.12 0.08± 0.04 5.50 3× 10−25 2.37
MC 3 0.46± 0.10 0.09± 0.04 5.15 1× 10−25 2.58

Table 4.2: Selection ratios for functional coupling models
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Brain Region Baseline UoI p-value d

AC 0.98± 0.02 0.98± 0.02 5× 10−4 0.005
VC 1 203± 35 205± 36 3× 10−16 0.05
VC 2 166± 44 168± 43 3× 10−12 0.03
VC 3 213± 42 217± 41 2× 10−18 0.05
MC 1 232± 65 233± 65 1× 10−23 0.03
MC 2 263± 60 266± 59 1× 10−23 0.03
MC 3 248± 57 250± 58 2× 10−25 0.03

Table 4.3: Predictive performance for functional coupling models

Brain Region Baseline UoI Median Difference

AC −6240± 1884 −6491± 1859 170
VC 1 −15349± 20946 −15516± 20970 149
VC 2 −2864± 11046 −3007± 11087 131
VC 3 −35164± 34069 −35309± 34066 161
MC 1 481± 124 321± 59 162
MC 2 542± 150 354± 75 186
MC 3 564± 120 362± 67 190

Table 4.4: Bayesian information criteria for functional coupling models

Encoding model dataset summary and fitted model statistics.

Dataset summary (Table 4.5) provides details on the datasets used to fit encoding models,
including the number of units and samples across dataset. The following tables provide
statistics summarizing aspects of the fitted baseline and UoI models, including selection
ratio (Table 4.6), predictive performance (Table 4.7), and Bayesian information criterion
(Table 4.8).

Brain Region Number of Units Number of Samples

Retina 125 4200

AC 23 89896

Table 4.5: Dataset summary for encoding models
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Brain Region Baseline UoI Reduction Factor p-value d

Retina 0.084± 0.020 0.017± 0.004 4.98 3× 10−5 2.21
AC 0.625± 0.116 0.250± 0.114 2.50 7× 10−23 2.19

Table 4.6: Selection ratios for encoding models

Brain Region Baseline UoI p-value d

Retina 0.028± 0.013 0.028± 0.013 0.004 0.05
AC 0.042± 0.034 0.041± 0.033 2× 10−19 0.05

Table 4.7: Predictive performance for encoding models

Brain Region Baseline UoI Median Difference

Retina −1646606± 44936 −1647261± 44857 654
AC 4371± 2495 4351± 2493 19.4

Table 4.8: Bayesian information criteria for encoding models

Decoding model dataset summary and fitted model statistics

Dataset summary (Table C.3a) provides details on the datasets used to fit decoding models,
including the number of units and samples across dataset. The following tables provide
statistics summarizing aspects of the fitted baseline and UoI models, including selection
ratio (Table C.3b), and predictive performance (Table C.3c).

Brain Region Number of Units Number of Samples

GPe 18 186

SNr 36 186

Table 4.9: Dataset summary for decoding models

Brain Region Baseline UoI Reduction Factor

GPe 0.722± 0.083 0.333± 0.028 2.167
SNr 0.222± 0.167 0.056± 0.014 4

Table 4.10: Selection ratios for decoding models
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Brain Region Baseline UoI

GPe 0.676± 0.054 0.676± 0.031
SNr 1.000± 0.014 1.000± 0.014

Table 4.11: Prediction performance for decoding models

Comparison of Poisson and linear coupling models for single-unit
activity

We used a Poisson distribution to model single-unit spike count activity in the M1 and V1
datasets. However, past work has modeled single-unit activity with a linear-Gaussian model,
after applying variance-stabilizing square root transform to the spike count responses. The
degree to which a linear model can capture the functional relationships identified by a Poisson
model for spiking data is unclear. Thus, we sought to characterize this capability, and its
dependence on the inference procedure. We modeled the neural activity after a square-root
transform

√
ni using a linear model

√
ni = β0 +

M∑

j=1

βij
√
nj + ε. (4.26)

We fit this model with lasso optimization by coordinate descent (baseline) and UoILasso.
We compared the fitted selection profiles, i.e. the set S = {i|βi 6= 0} between the linear

and Poisson models. To do so, we used the hypergeometric distribution, which describes
the probability that k objects with a particular feature are drawn from a population of size
M that has K total objects with that feature, using m draws without replacement. To
frame this in terms of selection, suppose the Poisson model has |SPoisson| = K non-zero
parameters out of the M possible features. Then, the probability the linear model, which
has |Slinear| = m non-zero parameters, would match the Poisson model on k such features is
given by the hypergeometric distribution:

Pr(k) =

(
K
k

)(
M−k
m−k

)
(
M
m

) . (4.27)

Thus, the probability that the selection profile would overlap at most as well by chance as
the linear model is given by poverlap = 1 − Pr(k < klinear). We compared the distribution of
poverlap across coupling models, calculated for both baseline and UoI procedures (Fig. 4.1,
panel a). For the V1 data, the UoI linear models better reproduced the Poisson selection
profiles, with 98% of the profiles fit by UoI satisfying poverlap < 0.001, compared to only 74%
of the baseline selection profiles. In contrast, in the M1 data, both inference procedures fit
linear models that closely matched the selection profiles of the Poisson models, with 99%
of the selection profiles satisfying poverlap < 0.001. Therefore, improved inference results in
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more consistent selection across models, and furthermore this consistency depends on brain
region.

We constructed networks from the linear models as described in Methods, and calculated
their in-degree and out-degree distributions. We compared the in-degree and out-degree
distributions of the linear networks to the Poisson networks, finding a closer correspondence
between the UoI models than for the baseline models in most cases (Fig. 4.1, panel b).
Specifically, the in-degrees of UoI models had a correlation of 0.742 (V1) and 0.969 (M1)
compared to 0.717 (V1) and 0.924 (M1) for the baseline procedures. Similarly, we obtained
out-degree correlations of 0.806 (UoI) and 0.531 (baseline) for V1 and 0.918 (UoI) and
0.924 (baseline) for M1. Lastly, we found that the UoI linear networks were more modular
than the baseline linear networks. Interestingly, both were more modular than their Poisson
counterparts (4.1, panel c). Taken together, these results imply that a more precise inference
framework better preserves structure across model types.
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Figure 4.1: Improved inference ensures that the structure of fitted coupling net-
works persists across the type of underlying model. Linear and Poisson coupling
models were fit to the datasets with single-unit recordings (V1 and M1) using baseline
(gray) and UoI (red) procedures. Top row corresponds to results from networks fit to V1
recordings, while bottom row corresponds to networks fit to M1 recordings. a. The (log)
probability distribution of extracting a support (set of non-zero parameters) by the linear
model that matches with the Poisson model support, according to a hypergeometric distribu-
tion. Vertical line denotes a p-value of 0.001 b. Comparison of the in-degree and out-degree
distributions between the Poisson network (y-axis) and linear network (x-axis). Each point
represents a single unit. Black line denotes identity. c. Graph modularity of linear and
Poisson networks.
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Frequency response area analysis for tuned and non-tuned
electrodes
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Figure 4.2: Frequency response area (FRA) analysis of non-tuned electrodes, as
determined by UoI, confirm that a frequency tuning model captures no dis-
cernible structure in their responses. Each plot depicts the FRA, or the mean re-
sponses, across trials, to frequency-attenuation stimulus pairings. The plots are normalized
to their maximum value. In each plot, the y-axis denote attenuation (ranging from −70 db
to 0 db) while the x-axis denotes frequency (ranging from 500 Hz to 32 kHz). a. FRAs
corresponding to the four electrodes that UoI determined to be non-tuned (pink points in
Fig 4.6). b. FRAs for two randomly chosen tuned electrodes. The non-tuned electrodes
exhibit no discernible structure in the FRAs (in contrast to the clear structure depicted by
the tuned electrodes), validating that UoI correctly determined them to be non-tuned.

Conclusion

In this work, we demonstrated that a novel inference procedures can fit parametric models
that are robust to correlated variability in the data. In particular, we created encoding and
functional coupling models. A next iteration would be combining the models into a single
model capturing both. However, doing so is difficult without capturing correlated variability
at the same time. In the next chapter, we follow this line of work, and construct models
capable of modeling both encoding and functional coupling.
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Chapter 5

Identifying and mitigating statistical
biases in neural models of tuning and
functional coupling

Chapter Co-authors
Jesse A. Livezey

Sharmodeep Bhattacharyya
Kristofer E. Bouchard

We have already separately modeled encoding, which captures how external input drives
neural activity, and functional coupling, which captures how internal input drives neural
activity. How can we simultaneously model a neuron’s dependence on external input and
internal input given that we only record from a subset of the complete neural population?
The unobserved neural activity – a source of correlated variability – will bias parameter
estimates in simple phenomenological models. How do we account for correlated variability
in such systems neuroscience models? In this chapter, we develop new models and inference
procedures to answer these questions.

5.1 Introduction

Statistical models are a central tool in systems neuroscience for understanding neural activity
[146, 99]. In particular, parametric models, such as generalized linear models, are appealing
because the model parameters are interpreted to gain insight into the underlying neurobi-
ological processes that generated the data [199, 144, 152, 188, 149]. For example, model
parameters can represent external factors (e.g., stimuli or a behavioral task) and internal
factors (e.g., other neurons). The fitted parameter values, therefore, specify which factors
are important and how important they are. In many cases, this amounts to describing the
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statistical nature of stimulus-neuron relationships (tuning: Fig. 5.1b) and neuron-neuron
relationships (functional coupling: Fig. 5.1c) [185, 38, 184].

Assessing the degree to which these models actually capture the underlying neurobiolog-
ical processes that generated the data is imperative to ensure that these models can serve
scientific use beyond prediction. In particular, understanding what features these models
fail to capture aids in constructing more complete models that are less prone to error. For
example, tuning models neglect to consider how neighboring neurons impact the modeled
neuron, while coupling models neglect to capture external drive. A tuning and coupling
model (TC), which aims to remedy both these issues, combines both tuning and coupling
into a single model (Fig. 5.1d). However, all these models neglect the fact that unobserved
activity, not recorded by the experimental apparatus, will influence the observed neural
activity (Fig. 5.1a).

Previous work has examined how the inclusion of functional coupling in a model modu-
lates the magnitude of tuning in neuronal populations [188, 152, 185]. When a tuning and
coupling model model is fitted to data, the ensuing tuning modulation has been observed
to be downplayed compared to a tuning model alone. For example, we observe such “ex-
plaining away” in a population of neurons from macaque primary visual cortex during the
presentation of drifting sinusoidal gratings (Fig. 5.2a) [105]. As shown by Figure 5.2b, neu-
ronal activity is dependent on the angle of the grating. Tuning curves as a function of the
drifting angle can be constructed using cosine basis functions (Fig. 5.2c: black curves). If
we include functional coupling in the model, the tuning modulation, or min-to-max distance
of the tuning curve, is reduced (Fig. 5.2c: gray curves).

Extracting conclusions about neural computation by interpreting the parameters of a fit-
ted model requires unbiased parameter estimation, in addition to predictive power. On top of
this, precise selection of the relevant, non-zero parameters necessarily impacts interpretabil-
ity [31]. If structure in the data is not captured by the model, or the improper parameters
are selected in the first place, the resulting parameter estimates may be sufficiently biased
to jeopardize these conclusions. The TC model obtained different parameter fits relative
to a tuning alone model, resulting in different neuroscientific conclusions. This “explaining
away” effect can be viewed as a consequence of utilizing a more complete model relative to
the tuning model alone [185]. Recent work has examined how model misspecification may
introduce biases in models of neural activity [187, 55].

Thus, it is imperative to assess the degree to which models are misspecified, and the
consequences for their interpretation. Just as the tuning model and coupling model are
incomplete, the tuning and coupling model also suffers from misspecification. In particular,
it omits two important features of the underlying neural activity. First, it neglects to consider
that tuning may jointly impact both the observed neurons and the target neuron of interest.
Second, as mentioned above, it neglects to consider that unobserved activity also jointly
influence the observed neurons and the target neuron. Incorporating both of these features
into a model is necessary to assess whether the TC model paints an accurate picture of the
underlying neural computation.

In this work, we sought to understand whether a TC model accurately captures tuning
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Figure 5.1: Systems neuroscience models capture the impact of tuning and func-
tional coupling on neural activity. a. Neural datasets are comprised of recordings from
observed neurons y that respond to an external stimulus x. However, the recording appara-
tus fails to capture unobserved activity z. b. Tuning model. c. Coupling model. d. Tuning
and coupling model.

n1

n2

n3

n4

Macaque V1

Angle

R
esponse

a b c

Figure 5.2: Explaining away in a tuning and coupling model. a. Single-unit recordings
from macaque V1 during the presentation of drifting gratings. Colors denote four unique
angles. b. Filtered firing rates for four example neurons in response to the four angles. c.
Tuning curves, as a function of angle, for each neuron as fitted by a tuning model (black)
and a TC model (gray).

and coupling parameters that reflect the data generation process. To do so, we first introduce
the triangular model, a novel model of neural activity that is more complete than the TC
model (Fig. 5.3). The triangular model allows stimulus information to flow through both a
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tuning pathway and a coupling pathway. Additionally, the triangular model incorporates a
latent space [203, 110, 148, 137] that jointly influences the entire neural population, thereby
reproducing the phenomenon of correlated variability [11]. Lastly, posed as a graphical
model, the triangular model allows the generation of synthetic data, allowing us to assess
the degree to which the TC model sufficiently captures ground truth parameter values.

We demonstrated, using synthetic data generated from the triangular model, that the
TC model suffers from the simultaneous equations bias due to the fact that it omits un-
observed activity. Furthermore, we characterized that bias as underestimated tuning and
overestimating coupling, implying that past observations of explaining may simply be a
side effect of the simultaneous equations bias. Next, we develop inference procedures, using
expectation-maximization, to fit the triangular model to data. We further demonstrate that
the triangular model suffers from structural non-identifiability, demonstrate that sufficient
sparsity in the model can mitigate this issue. We characterize the identifiability and loss
surface of the triangular model. Lastly, we apply our inference procedure to neural data, and
demonstrate the elevation of tuning modulations relative to the tuning and coupling model.

5.2 Methods

Triangular model definition

The triangular model is defined by the graphical model depicted in in Figure 5.3. The
observed neural population consists of N + 1 neurons y = [y¬t, yt], jointly influenced by an
M -dimensional stimulus x and an latent K-dimensional population z. Importantly, we make
a distinction between a “target neuron” yt and “non-target neurons” y¬t. The latent state
acts as a low-dimensional representation of the unobserved neurons in the neural population.
Thus, the graphical model allows the target neuron to be influenced by a an external factor
(the stimulus), an internal factor (the observed neurons), an unobserved internal factor (the
latent state), while accounting for the fact that both the stimulus and unobserved activity
jointly influence the observed neurons.

The main parameters of interest the N coupling parameters a and the M target tuning
parameters, bt. These have direct analogues with the tuning and coupling model, and
describe how the target neuron depends on the non-target neurons and stimulus, respectively.
However, because the triangular model is more complete than the tuning and coupling model,
it requires inferring additional parameters. These include the non-target parameters BM×N

¬t
and parameters describing how the latent state influences the observed neurons.

In this work, we operate in the linear-gaussian setting, where all relationships are linear,
and the latent state operates in the gaussian settings. Thus, the graphical model in Figure 5.3
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Figure 5.3: Graphical model describing the triangular model. The target neuron is
denoted by yt, non-target neurons as y¬t, stimulus as x, and latent state as z. Latent state
is shaded gray to emphasize that it is unobserved. The main parameters of interest are the
target tuning parameters bt, coupling parameters a, and non-target tuning parameters B¬t.

can be written as

y¬t = BT
¬tx + ε¬t (5.1)

= BT
¬tx + LT

¬tz +ψ¬t (5.2)

yt = bTt x + aTy¬t + εt (5.3)

= bTt x + aTy¬t + lTt z + ψt. (5.4)

Note that we have used additional terms, εεt and εt to refer to unobserved variability that
cannot be captured by the observed parameters. Then, we rewrite these terms in terms
of shared and private components in Equations (5.2) and (5.4), similar to a factor analysis
model. Thus, the additional parameters include latent factors L = [L¬t, lt] and private vari-
ances Ψ = [Ψ¬t,Ψt], which describe how the neural population depends on the unobserved
influences.

When we have D data samples, we can write the data generation process across all
samples as

Y¬t = XB¬t + ZL¬t +ψ¬t (5.5)

yt = Xbt + Y¬ta + Zlt +ψt (5.6)

where instead the data is rewritten as xM×1 → XD×M , yN×1¬t → YD×N
¬t , yt → yD×1t , zK×1 →

ZD×K . We further note that the variability stems from a factor analysis model with latent
factors L = [L¬t, lt] and private variances Ψ = [Ψ¬t,Ψt] which characterize the specific
private noise terms on a trial ψ = [ψ¬t, ψt]. Thus, inference across all parameters in the
model requires estimation of the set θ = [a,bt,B¬t, lt,L¬t,Ψt,Ψ¬t] .

Parametric Inference in the Triangular Model

Since the triangular model is a latent variable model, we can perform parametric inference via
the expectation-maximization algorithm. At the same time, the linear-gaussian instantiation
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of the model lends itself well to analytic derivations of the joint and marginal distributions.
Here, we calculate these distributions as pre-requisites for deriving the EM-update rules for
optimization.

Joint distribution of the neural activity and latent state

A full likelihood expression of the triangular model incorporates the parameters L = [lt,L¬t]
and Ψ = [Ψt,Ψ¬t] that define the shared and private variability. Recall that the neural
activities are defined as

yt = xTbt + yT¬ta + zT lt + ψt (5.7)

y¬t = BT
¬tx + LT

¬tz +ψ¬t. (5.8)

The joint distribution of the data, including the latent variables, can be written as

p(yt,y¬t,x, z; θ) = p(yt|y¬t,x, z; θ)p(y¬t|x, z; θ)p(x)p(z) (5.9)

where θ specifies the parameter set. In the linear-gaussian setting, each of these densities
takes on the form

p(yt|y¬t,x, z; θ) ∼ N (xTbt + yT¬ta + zT lt,Ψt) (5.10)

p(y¬t|x, z; θ) ∼ N (BT
¬tx + LT

¬tz,Π¬t) (5.11)

p(z) ∼ N (0, I), (5.12)

where Π¬t := diag(Ψ¬t). By the gaussianity of the above distributions, we can write the
joint distribution of yt, y¬t, and z (conditioned on x) as a multivariate Gaussian distribution.
Specifically, we have




yt
y¬t
z


 ∼ N (µ,Σ) (5.13)

where

µ =




xTbt + xTB¬ta
BT
¬tx
0


 , (5.14)

Σ =




Ψt + aTΠ¬ta + (lt + L¬ta)T (lt + L¬ta) aTΠ¬t + (lt + L¬ta)TL¬t (lt + L¬ta)T

Π¬ta + LT
¬t(lt + L¬ta) Π¬t + LT

¬tL¬t LT
¬t

lt + L¬ta L¬t I




(5.15)

and an associated precision matrix with analytic form given by

Σ−1 =




Ψ−1t −Ψ−1t aT −Ψ−1t lTt
−Ψ−1t a Π−1¬t + Ψ−1t aaT Ψ−1t alTt −Π−1¬t L

T
¬t

−Ψtlt Ψ−1t lta− L¬tΠ
−1
¬t I + Ψ−1t ltl

T
t + L¬tΠ

−1
¬t L

T
¬t


 . (5.16)
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Since we have the complete joint distribution, we can easily extract marginals of the neural
activity by taking the corresponding blocks of the mean and covariance matrices.

Maximum likelihood via expectation-maximization

The triangular model is a latent state model. Thus, parameter inference can be achieved by
performing expectation-maximization (EM). In this section, we derive the update rules for
EM optimization. To do so, we first must determine the complete log-likelihood. From this,
we derive the E-step, followed by the M-step.

Complete likelihood

Using the joint distribution calculated above, we can write the log-likelihood over all random
variables as

`c(yt,y¬t,x, z; θ) = −1

2

D∑

d=1

[
log Ψt +

1

Ψt

(
y
(d)
t − x(d)Tbt − y

(d)
¬t

T
a− zT lt

)2

+ log det Π¬t +
(
y
(d)
¬t −BT

¬tx
(d) − LT

¬tz
)T

Π−1¬t

(
y
(d)
¬t −BT

¬tx
(d) − LT

¬tz
)]
− 1

2
zTz

+ log p(x(d)). (5.17)

In general we will ignore the contribution from the density of x since it is observed and has
no parents in the graphical model.

E-step update

To perform the E-step, we need to calculate the averaging distribution q(z|D(d); θ) with a

dataset D(d) =
(
x(d),y

(d)
¬t , y

(d)
t

)
. Note that

q(z|D(d); θ) = p(z|D(d); θ)

∝ p(x(d),y
(d)
¬t , y

(d)
t |z; θ)p(z) (5.18)

= p(y
(d)
t |y(d)

¬t ,x
(d), z; θ)p(y

(d)
¬t |x(d), z; θ)p(x(d))p(z). (5.19)

Ultimately, this expression can be written as a Gaussian in z with mean µ(d) and covariance
Σ, i.e.

q(z|D(d); θ) ∝ exp

(
−1

2
[z− µ(d)]TΣ−1[z− µ(d)]

)
. (5.20)

Collecting the quadratic terms gives us the inverse covariance matrix:

zTΣ−1z = zTz + zT ltΨ
−1
t lTt z + zTL¬tΠ

−1
¬t L

T
¬tz (5.21)

⇒ Σ−1 = I + LΠ−1LT . (5.22)
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Next, we examine all the linear terms in z:

zTΣ−1µ(d) = zT ltΨ
−1
t (y

(d)
t − x(d)Tbt − y

(d)
¬t

T
a) + zTL¬tΠ

−1
¬t (y

(d)
¬t −BT

¬tx
(d)) (5.23)

⇒ µ(d) = Σ
[
ltΨ
−1
t (y

(d)
t − x(d)Tbt − y

(d)
¬t

T
a) + L¬tΠ

−1
¬t (y

(d)
¬t −BT

¬tx
(d))
]
. (5.24)

The statistics of the unobserved variables, given by

〈z〉q(d) = µ(d) (5.25)

〈zzT 〉q(d) = Σ + µ(d)µ(d)T (5.26)

will become relevant in the M-step.

M-step update

To calculate the M-step, we take the expectation of the complete log-likelihood over the
averaging distribution q(z|D). Note that we ignore the prior distribution for x as it will not
be relevant for any gradients. The expected complete log-likelihood is given by

〈`c(yt,y¬t,x, z; θ)〉 = −1

2

D∑

d=1

[
log det Π +

1

Ψt

〈(
y
(d)
t − x(d)Tbt − y

(d)
¬t

T
a− zT lt

)2〉

q(d)

〈(
y
(d)
¬t −BT

¬tx
(d) − LT

¬tz
)T

Π−1¬t

(
y
(d)
¬t −BT

¬tx
(d) − LT

¬tz
)〉

q(d)

]

= −1

2

D∑

d=1

[
log det Π +

1

Ψt

(
y
(d)
t − x(d)Tbt − y

(d)
¬t

T
a
)2

− 2

Ψt

(
y
(d)
t − x(d)Tbt − y

(d)
¬t

T
a
)

lTt 〈z〉q (5.27)

+
1

Ψt

lTt 〈zzT 〉qlt +
(
y
(d)
¬t −BT

¬tx
(d)
)T

Π−1¬t

(
y
(d)
¬t −BT

¬tx
(d)
)

−2
(
y
(d)
¬t −BT

¬tx
(d)
)T

Π−1¬t L
T
¬t〈z〉q + 〈zTL¬tΠ

−1
¬t L

T
¬tz〉q

]
. (5.28)

Note that the last expectation can be written as

〈zTL¬tΠ
−1
¬t L

T
¬tz〉q = Tr

[
L¬tΠ

−1
¬t L

T
¬tΣ
]

+ 〈z〉Tq L¬tΠ
−1
¬t L

T
¬t〈z〉q (5.29)

Intercepts and standardizing

In practice, we often want to include an intercept term in our models. With an intercept
term, the triangular model becomes:

yt = b0,t + xTbt + yT¬ta + zT lt + ψt (5.30)

y¬t = b0,¬t + BT
¬tx + LT

¬tz +ψ¬t. (5.31)
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In this case, the marginal distribution (conditioned on the stimulus x) of the neural activity
is given by

y =

(
yt
y¬t

)
∼ N (µy,Σy) (5.32)

where

µy =

(
b0,t + aTb0,¬t + xTbt + xTB¬ta

b0,¬t + BT
¬tx

)
(5.33)

and Σy is unchanged. This gives log-likelihood:

`(yt,y¬t; x, θ) = −1

2

D∑

d=1

[
log det Σy + (y(d) − µy)TΣ−1y (y(d) − µy)

]
(5.34)

Taking the gradient of the marginal log-likelihood with respect to the intercept terms gives

1

D

D∑

d=1

yt − (b0,t + âTb0,¬t + xTbt + xTB¬ta) = 0 (5.35)

⇒ b0,t + aTb0,¬t = ȳ − x̄T b̂t − x̄T B̂¬tâ (5.36)

and

D∑

d=1

y¬t − b0,¬t −BT
¬tx = 0 (5.37)

⇒ b̂0,¬t = ȳ¬t − B̂T
¬tx̄. (5.38)

implying that

b0,t = ȳ − x̄T b̂t − x̄T B̂¬tâ− âT
(
ȳ¬t − B̂T

¬tx̄
)

(5.39)

= ȳ − x̄T b̂t − ȳT¬tâ (5.40)

Note that if we center the inputs, i.e. (yt,y¬t,x)→ (y − ȳt,y¬t − ȳ¬t,x− x̄) = (y′t,y
′
¬t,x

′),
we would find that the intercepts are zero. Thus, performing triangular model inference on
the data (y′t,y

′
¬t,x

′) requires that we need not fit an intercept. However, we must transform
back to the non-centered space. In such a case, we have

y′¬t = 0 + B′
T
¬tx
′ + LT

¬tz +ψ¬t. (5.41)

⇒ y¬t − ȳ¬t = B′
T
¬t (x− x̄) + LT

¬tz +ψ¬t (5.42)

⇒ y¬t =
(
ȳ¬t − B̂T

¬tx̄
)

+ B′¬t
T
x + LT

¬tz +ψ¬t. (5.43)



CHAPTER 5. MITIGATING BIASES IN NEURAL MODELS 131

Thus, we have the same intercept formula as above, and B¬t = B′¬t. Similarly,

yt − ȳt = 0 + (x− x̄)Tb′t + (y¬t − ȳ¬t)
Ta′ + zT lt + ψt (5.44)

⇒ yt =
(
ȳt − x̄Tb′t − ȳT¬ta

′)+ xTb′t + yT¬ta
′ + zT lt + ψt (5.45)

Implying that b0,t = ȳt − x̄Tb′t − ȳT¬ta
′, as above.

If we standardize the data in addition to centering, then we have the following:

y¬t − ȳ¬t
sy

= B′
T
¬t

(
x− x̄

sx

)
+ LT

¬tz +ψ¬t (5.46)

⇒ y¬t =

(
sxȳ¬t −

sy
sx

B̂T
¬tx̄

)
+

(
sy
sx

B′¬t

)T
x +

(
sy
sx

L¬t

)T
z +

sy
sx
ψ¬t. (5.47)

Structural non-identifiability in the triangular model

In this section, we show that the triangular model is structurally non-identifiable. Further-
more, we prove that sufficient sparsity in the triangular model remedies the non-identifiability.

Deriving the identifiability subspace

Recall that the marginal log-likelihood is given by

`(yt,y¬t; x, θ) = −1

2

D∑

d=1

[
log det Σy + (y(d) − µy)TΣ−1y (y(d) − µy)

]
(5.48)

= −D
2

log det Σy −
1

2
Tr
[
RyΣ

−1
y RT

y

]
(5.49)

where

µy =

(
xTbt + xTB¬ta

BT
¬tx

)
, (5.50)

Σy =

(
Ψt + aTΠ¬ta + (lt + L¬ta)T (lt + L¬ta) aTΠ¬t + (lt + L¬ta)TL¬t

Π¬ta + LT
¬t(lt + L¬ta) Π¬t + LT

¬tL¬t

)
. (5.51)

Here, we consider an identifiability issue in the “separable” sense, i.e. offsets that can be ap-
plied to the parameters such that the mean µy and covariance Σy are separately unchanged.
If these quantities remain unchanged, the log-likelihood will necessarily be unchanged. The
“separable” case is in contrast to the scenario in which we change the parameters such that
the log-likelihood is unchanged, but through its overall computation (rather than due to the
mean and covariance remaining unchanged).

We apply offsets to lt, Ψt, a, and bt. Specifically, suppose we apply some offset δ to lt:

l′t ← lt + δ (5.52)
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and define the quantity

∆ = −(Π¬t + LT
¬tL¬t)

−1LT
¬tδ. (5.53)

Then, we apply the following transformations to Ψt, a and bt:

a′ ← a + ∆ (5.54)

b′t ← bt −B¬t∆ (5.55)

Ψ′t ← Ψt − 2∆TΠ¬ta−∆TΠ¬t∆

− (δ + L¬t∆)T (δ + L¬t∆)− 2(lt + L¬ta)T (δ + L¬t∆) (5.56)

The bottom block of the mean is necessarily unchanged, since we have not modified B¬t.
Meanwhile, the top block, with the new parameter configuration, becomes

xT (b′t + B¬ta
′) = xT (bt −B¬t∆ + B¬t(a + ∆)) (5.57)

= xTbt + xTB¬ta. (5.58)

Thus, µy is unchanged with the new parameter configuration. In the covariance matrix
Σy, the bottom right quadrant is necessarily unchanged, since we do not modify any of the
constituent parameters. The bottom left component (which is identical in content to the top
right component), under the new configuration, is given by

Π¬ta
′ + LT

¬t(l
′
t + L¬ta

′) = Π¬t(a + ∆) + LT
¬t((lt + δ) + L¬t(a + ∆)) (5.59)

= Π¬ta + LT
¬t(lt + L¬ta) + Π¬t∆ + LT

¬t(δ + L¬t∆) (5.60)

= Π¬ta + LT
¬t(lt + L¬ta) +

(
Π¬t + LT

¬tL¬t
)
∆ + LT

¬tδ (5.61)

= Π¬ta + LT
¬t(lt + L¬ta)− LT

¬tδ + LT
¬tδ (5.62)

= Π¬ta + LT
¬t(lt + L¬ta) (5.63)

and so is unchanged. Lastly, we consider the top-left component of the covariance matrix:

Ψ′i + a′TΠ¬ta
′ + (l′t + L¬ta

′)T (l′t + L¬ta
′) = Ψ′t + (a + ∆)TΠ¬t(a + ∆)

+ [(lt + δ) + L¬t(a + ∆)]T [(lt + δ) + L¬t(a + ∆)] (5.64)

= Ψ′t + aTΠ¬ta + 2∆TΠ¬ta + ∆TΠ¬t∆

+(lt + L¬ta)T (lt + L¬ta) + (δ + L¬t∆)T (δ + L¬t∆) + 2(lt + L¬ta)T (δ + L¬t∆) (5.65)

= Ψt + aTΠ¬ta + (lt + L¬ta)T (lt + L¬ta). (5.66)

Thus, the variance for the target neuron is unchanged. These offsets specify a family of
solutions, given a B¬t, L¬t, and Π¬t. Importantly, however, this family is restricted to
where Ψt is positive.
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Model sparsity sufficiently constrains identifiability

In this section, we determine under what conditions having sparse support in a and b removes
enough degrees of freedom in the identifiability subspace to have a unique solution. We aim
to show the following: given a procedure for sparse estimation of a and b, there is a required
level of sparsity in a and b (and an additional condition on the rank of a matrix) such
that any identifiability transform modifies the support of a and b and so support-preserving
estimation is unique.

Theorem 1. Consider an identifiability transformation of the tuning and coupling parame-
ters:

a′ = a + ∆ (5.67)

= a− (Π¬t + LT
¬tL¬t)

−1LT
¬tδ (5.68)

b′ = bt −B¬t∆ (5.69)

= bt −B¬t(Π¬t + LT
¬tL¬t)

−1LT
¬tδ (5.70)

where there are N coupling parameters in a, M tuning parameters in b, and K latent factors.
Π¬t, L¬t, and B¬t are fixed. Let kC be the sparsity of a so that NkC parameters are exactly
zero. Similarly, let kT be the sparsity of bt so that MkT are exactly zero. Let P = (Π¬t +
LT
¬tL¬t)

−1LT
¬t and Q = B¬t(Π¬t + LT

¬tL¬t)
−1LT

¬t and let Psub and Qsub be their respective
matrices with only the rows that are not in the selection profiles of a and b.

If K ≤ NkC +MkT and R =

(
Psub

Qsub

)
is full-rank, then the only δ in the identifiability

subspace which preserves the selection profile of a and b is δ = 0.

Proof. The only free parameters lie in the K-dimensional subspace determined by δ or
equivalently ∆. We can rewrite the identifiability transform equations as

a′ − a = a′′ = −(Π¬t + LT
¬tL¬t)

−1LT
¬tδ (5.71)

= Pδ (5.72)

b′ − bt = b′′ = −B¬t(Π¬t + LT
¬tL¬t)

−1LT
¬tδ (5.73)

= Qδ. (5.74)

In these equations, the subset of a′′ and b′′ which are not included in the selection profile
must be set to 0 to preserve the support. Thus, we are only concerned with the subset of
the parameters that are constrained to be 0. Call this subset (of rows)

Psubδ = a′′sub = 0 (5.75)

Qsubδ = b′′sub = 0 (5.76)

where Psub and Qsub are the NkC ×K and MkT ×K linear transforms. This linear system
can collectively be written as the (NkC +MkT )×K linear system

(
Psub

Qsub

)
δ = Rδ =

(
a′′sub
b′′sub

)
= 0. (5.77)
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When K ≤ NkC +MkT and R is full-rank, the only solution is δ = 0.

Otherwise, there will be a family of non-trivial solutions which live in the kernel of R.
So, solutions with higher sparsity permit a higher latent dimensionality which still having a
unique support-preserving solution. Thus, for a sufficiently sparse estimate with low enough
latent dimensionality, a check of the rank of a matrix is sufficient to determine whether
the identifiability subspace has been constrained through fixing the support. Note that
this determines conditions on identifiability for both ground-truth parameters or estimated
parameters in the triangular model.

Modularized inference procedures

The structural non-identifiability elevates the issue of selection in parameter inference for the
triangular model. Specifically, a sufficiently sparse number of non-zero tuning and coupling
parameters must be identified to ensure that their values can be accurately estimated, thereby
avoiding the simultaneous equations bias. Thus, parameter inference in the triangular model
can be modularized into a selection procedure, which identifies the non-zero parameters, and
an estimation procedure, which estimates their values given a selection profile. In this section,
we detail each components of the overall modularized inference procedure.

Selection procedures

Sparse TM inference. One natural approach to performing selection in the triangular
model is to apply an `1 penalty to the tuning and coupling parameters during expectation-
maximization. However, since these parameters may have different sparsity levels, a different
`1 penalty must be applied to each set. In practice, this would occur during the M-step of the
EM optimization when maximizing the expected complete log-likelihood. Thus, the M-step
would consist of minimizing the expression

`M(θ;D) = −〈`c(θ;D)〉+ λ1|a|1 + λ2|bt|1 (5.78)

where we assume that the tuning penalties are applied equally across both target and non-
target parameters. Such an optimization would require cross-validating over a grid of (λ1, λ2)
combinations.

In practice, only one λ penalty can be used at a time. We can sidestep this issue by
rescaling the parameters during optimization. Let r = λ2/λ1 and

b′t = rbt (5.79)
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so that

`M(a,bt, θ;D) = −〈`c(a,bt, θ;D)〉+ λ1|a|1 + λ2|bt|1 (5.80)

= −〈`c(a,
1

r
b′t, θ;D)〉+ λ1|a|1 +

λ2
r
|b′t|1 (5.81)

= −〈`c(a,
1

r
b′t, θ;D)〉+ λ1|a|1 + λ1|b′t|1 (5.82)

= `′M(a,b′t, θ;D). (5.83)

The expressions `M and `′M are equivalent aside from a reparameterization. Thus, the
minimization we want to achieve,

a∗,b∗t = argmin
a,bt

`M(a,bt, θ;D) (5.84)

can be achieved by instead minimizing

a∗,b′∗t = argmin
a,b′

t

`′M(a,b′t, θ;D). (5.85)

However, we want the solution that minimizes `M , so after performing the optimization, we
need to transform back to the desirable parameters:

b∗t = b′∗t /r. (5.86)

Sparse TC inference. If we enforce sparsity in this fashion via the triangular model, the
most natural comparison to the tuning and coupling model is via a similar sparse optimizer.
Specifically, the loss function would be simply be the mean-squared error, with the additional
penalties:

`TC(a,bi;D) =
D∑

d=1

(
y(d) − x(d)Tbi − y

(d)
¬t

T
a
)2

+ λ1|a|1 + λ2|bi|1 (5.87)

This optimization problem is ultimately a linear regression with lasso penalty, with some
parameters penalized differently than others. Thus, it can easily be solved using a cross-
validation grid to determine the best (λ1, λ2) configuration.

TC Selection. This approach is the same as sparse TC inference, but instead of one
penalty, a single penalty is applied to both the tuning and coupling parameters. Thus, only
one loop of cross-validation needs to be performed.

Separate Selection. Lastly, we can perform separate tuning and coupling selection fits
using an inference procedure of choice to obtain corresponding selection profiles.
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Estimation procedures

Estimation procedures accept a selection profile and estimate the values of the non-zero
parameters. If we use a tuning and coupling model, we can simply use ordinary least squares.
If we use a triangular model, we can simply use EM inference, while masking the updates
for the non-zero parameters. We propose an additional estimation procedure called Iterated
Two-Stage Factor Analysis (ITSFA).

Iterated Two-Stage Factor Analysis. This approach is based on the the usual econo-
metric approach to combat the SEB, known as two-stage least squares, where the endogenous
features are replaced with their projections onto the column spaces of alternative features
known as instrumental variables [5, 194]. These instruments are necessary because simul-
taneous equations models can be unidentifiable, preventing maximum likelihood estimation
[78]. The instruments are specifically chosen such that they are correlated with the response
variable only through the endogenous features. In a canonical example, the relationship
between smoking and general health can be understood using the tax rate on cigarettes as
an instrument, as tax rates should only be correlated with health outcomes through smoking
[112].

It may seem natural to use the stimulus as an instrument for the non-target neurons,
since this reflects their data generation process. However, in the triangular model, this is
problematic due to their direct correlation with yi through the tuning parameters bi. Instead,
we note that projecting the non-target neurons on the stimulus gives us access to an estimate
of the shared variability (i.e., zTL¬i), which is the cause of the SEB. Our approach is founded
on goal of isolating this shared variability and removing it from the dataset, accomplished
in two stages.

First Stage. If the shared variability (i.e., the contribution from the latent space) is
removed from the data for the non-target neurons, a second-stage regression would provide
unbiased estimation of the tuning and coupling parameters. Thus, the first stage consists
of estimating the noise terms by regressing the non-target neural responses Y¬i on the
stimulus X with UoILasso and calculating residuals (Lines 5-6). We apply factor analysis
to the residuals to obtain an estimate of the shared variability, and remove it from Y¬i to
obtain a modified dataset Y′¬i (Line 8). This first stage is analogous to profile likelihood
approach for B¬i followed by an application of the EM-algorithm to the residuals in order
to deduce the shared variability contribution to uncaptured variance [130, 109].

(Iterated) Second Stage. In practice, the factor analysis cannot truly capture the shared
variability, as the E-step will only provide the expected latent state values. Thus, some
shared variability will remain in the non-target design matrix and the SEB will persist.
Therefore, we utilize a second stage regression as an error correction step. Specifically, we
perform a TC model regression (target neuron yi on the regressor set (X,Y′¬i)) to extract
estimates â and b̂i of the fitted parameters, and obtain a set of residuals from this fit. We
then perform factor analysis on the concatenated residuals between the first and second
stages, and subtract the estimated shared variability from the target neuron to obtain y′i.
The second stage regression is performed once again, now regressing y′i on (X,Y′¬i) and
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Algorithm 2 IteratedTwoStageFactorAnalysis(X,Y¬i,yi).

Input: X, D ×M stimulus design matrix
Y¬i, D ×N non-target neural activity matrix
yi, D × 1 target neuron activity vector

1: B̂¬i ← Regress Y¬i on X
2: R¬i ← Y¬i −XB̂¬i . non-target neuron residuals
3: L̂¬i, Ψ̂¬i, Ẑ, K ← FactorAnalysisCV(R¬i) . cross-validated factor analysis
4: Y′¬i ← Y¬i − ẐL̂¬i . remove shared variability
5: (â, b̂i)← OLS regress yi on (X,Y′¬i)
6: while parameters not converged or max iterations not reached do

7: ri ← yi −
(
Xb̂i + Y¬iâ

)
. target neuron residuals

8: R← [ri,R¬i] . concatenate residuals
9: L̂, Ψ̂, ẑ← FactorAnalysis(R, K) . factor analysis
10: y′i ← yi − Ẑl̂i . remove variability
11: (â, b̂i)← OLS regress y′i on (X,Y′¬i) . iterated regression
12: end while
13: return â, b̂i

obtaining estimates â and b̂i. This process can be repeated until the parameters converge
to some tolerance or a maximum number of iterations has been reached. Empirically, we
observe consistent convergence of the parameters. A pseudocode for ITSFA is shown in
Algorithm 2.

Neural recordings and data analysis

Recordings from auditory cortex

Auditory cortex (AC) data was comprised of cortical surface electrical potentials (CSEPs)
recorded from rat auditory cortex with a custom fabricated micro-electrocorticography (µECoG)
array. The µECoG array consisted of an 8 × 16 grid of 40 µm diameter electrodes. Anes-
thetized rats were presented with 50 ms tone pips of varying amplitude (8 different levels
of attenuation, from 0 dB to −70 db) and frequency (30 frequencies equally spaced on a
log-scale from 500 Hz to 32 kHz). Each frequency-amplitude combination was presented 20
times, for a total of 4200 samples. The response for each trial was calculated as the z-scored,
to baseline, high-γ band analytic amplitude of the CSEP, calculated using a constant-Q
wavelet transform. Of the 128 electrodes, we used 125, excluding 3 due to faulty chan-
nels. Data was recorded by Dougherty & Bouchard (DB). Further details on the surgical,
experimental, and preprocessing steps can be found in [61].
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Recordings from primary visual cortex

We analyzed three primary visual cortex (V1) datasets, comprised of spike-sorted units
simultaneously recorded in three anesthetized macaque monkeys. Recordings were obtained
with a 10× 10 grid of silicon microelectrodes spaced 400 µm apart and covering an area of
12.96 mm2. Monkeys were presented with grayscale sinusoidal drifting gratings, each for 1.28
s. Twelve unique drifting angles (spanning 0◦ to 330◦) were each presented 200 times, for a
total of 2400 trials per monkey. Spike counts were obtained in a 400 ms bin after stimulus
onset. We obtained [106, 88, 112] units from each monkey. The data was obtained from
the Collaborative Research in Computational Neuroscience (CRCNS) data sharing website
[192] and was recorded by Kohn and Smith (KS) [104]. Further details on the surgical,
experimental, and preprocessing steps can be found in [180] and [102].

Modeling tuning with basis functions

We used basis functions to model the influence of tuning in the neural data. We use a set
of M basis functions gi(s), which form the M -dimensional stimulus representation x. The
contribution to the activity of a specific neuron provided by the stimulus is encoded by
tuning parameters b, where

g(s) = xTb =
M∑

i=1

bi · gi(s) (5.88)

For the primary visual cortex data, we use cosine basis function (using M = 2). For the
auditory cortex data, we used Gaussian basis functions. Specifically, we chose M = 8 basis
functions tiling the log-frequency plane with a standard deviation of σ2 = 0.64 octaves.
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Figure 5.4: Triangular model inference alleviates the simultaneous equations bias.
Each point is a different model and hyperparameter configuration. Left. The bias of the
coupling parameters, in the triangular model versus the tuning and coupling model. Right.
The bias of the tuning parameters, in the triangular model versus the tuning and coupling
model.
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Figure 5.5: Bias for oracle TM inference across hyperparameters. Top row depicts
the biases for the triangular model, while the bottom row depicts biases for the tuning
and coupling model. Left column corresponds to the coupling biases, while right column
corresponds to tuning biases. Each plot consists of biases aggregated across datasets, models,
and cross-validation folds, for each hyperparameter configuration. Note that each plot has
its own bias scale (colorbars).
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Figure 5.6: Selection performance in the synthetic data. Selection accuracy is summa-
rized across models, datasets, and cross-validation folds. The procedure consisted of applying
separate UoILasso fits for the tuning and coupling parameters. Left. The selection accuracy
of the coupling parameters as a function of hyperparameter configuration. Right. The
selection accuracy of the tuning parameters as a function of hyperparameter configuration.

5.3 Results

Triangular model inference mitigates biases in synthetic data

We evaluated the performance of our inference procedures in synthetic data generated from
the triangular model to assess whether they mitigate the simultaneous equations bias. Our
main comparison was between inference procedures for the tuning and coupling model and
the triangular model. We considered a large-scale synthetic experiment with two hyper-
parameters of interest: the means of the coupling and tuning parameters. Specifically, we
enforced N = M = 10 coupling and tuning parameters, sparsities of kT = kC = 0.5, and
a noise correlation of ρC = 0.25 with K = 1 latent factor. Then, we drew both tuning
parameters and coupling parameters from Gaussian distributions (with variance σ2 = 0.5),
allowing the means to vary across µ ∈ [−2, 2].

Since we modularized the inference procedure, we consider two cases. First, we utilize
oracle selection, where each inference procedure was provided the true selection profile of
the triangular model. For the triangular model, this consists of performing expectation-
maximization with no regularization. For the TCM, this consists of ordinary least squares.
We considered 10 values per hyperparameter (for a total sweep of 10× 10 settings), and for
each hyperparameter setting, we considered 10 models. For each model, we drew 30 datasets
and performed inference over 3 folds of the data. We estimated statistics by taking averages
or variances across datasets, averaging across folds, and taking a median across models and
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Figure 5.7: Estimation performance with inferred selection profiles in synthetic
data. Each point is a different model and hyperparameter configuration. Left. The bias
of the coupling parameters, in the triangular model versus the tuning and coupling model.
Right. The bias of the tuning parameters, in the triangular model versus the tuning and
coupling model.

parameters within a model.
Our results are shown in Figure 5.4. We find that triangular model inference achieves

nearly unbiased parameter estimates for both the tuning and coupling parameters. Mean-
while, the simultaneous equations bias is evident for the tuning and coupling model. In-
terestingly, we observed only positive biases for the coupling parameters, while the tuning
parameters exhibit both negative and positive biases. To better assess this difference in
sign, we examined aggregate biases across models, for each hyperparameter configuration
(Fig. 5.5). We find that, as expected, bias magnitude increases with both the tuning or
coupling mean, for both sets of parameters. Furthermore, the tuning parameter bias cor-
responds to the sign of the underlying hyperparameters: if the hyperparameter is positive,
the bias will be negative, and vice versa (Fig. 5.5, right). Furthermore, we similarly observe
that triangular model inference exhibits lower bias than the tuning and coupling model. In
particular, its biases are an order of magnitude smaller, indicating what is effectively unbi-
ased estimation. Interestingly, however, the signs of the biases exhibit the same structure as
depicted in the tuning and coupling case.

Next, we evaluated how our inference procedure performed when selection was required.
We considered double selection using UoILasso, which typically achieved the best selection
performance (Fig. 5.6). We observed that selection performance was not strongly modulated
by the underlying hyperparameters, with the procedure exhibiting moderate to good selection
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performance (selection accuracy greater than 0.5) in all regimes. The procedure tended to
suffer from false positives, which is to be expected, since the procedure cannot disentangle
influence between tuning and coupling parameters. In the context of the triangular model,
however, false positives are less detrimental than false negatives, as the latter can induce
additional omitted variables bias.

We then evaluated how the inferred selection profiles influenced the estimation module.
Once again, we compared the triangular model to the tuning and coupling model, but this
time using the selection profiles obtained by the double selection procedure. Once again, we
evaluated the bias across a wide range of model conditions (Fig. 5.7). We observe that the
bias is substantially worse in this scenario, demonstrating that selection is important for the
success of estimation. While the triangular model still outperforms the tuning and coupling
model on the whole, it generally performs worse relative to the case of oracle selection.

Triangular model elevates tuning modulations in neural data

We applied triangular model inference to neural data to assess whether it resulted in any
discernible changes in the structure of tuning and functional coupling. We considered two
datasets: single-unit activity from macaque primary visual cortex in response to drifting
gratings, and µECoG recordings from rat auditory cortex in response to tone pips. We fit
linear Gaussian models, encoding the tuning parameters using basis functions. We performed
fits for each functional unit of both datasets. We performed selection using a double fit
with UoILasso. With the fitted selection profiles, we performed estimation using either the
triangular model or the tuning and coupling model. We then examined the parameter
estimates to assess whether there were differences between the two.

We examined the tuning modulation for each set of fits. Specifically, we examined the
fitted tuning parameters, constructed the tuning curves, and examined the minimum-to-
maximum distance. We then compared these tuning modulations between the triangular
model and the tuning and coupling model. Our results are shown in Figure 5.8. We observe
that, in the case of the auditory cortex data, the tuning modulations of the triangular model
are elevated relative to the tuning and coupling model. In the case of the visual cortex
data, we generally observe the elevation of tuning modulations. However, in the case of
some functional units, we observe that some are decreased relative to the TC model. This
implies that there is a heterogeneity of changes in the tuning modulation. However, on
the whole, our results demonstrate that application of the novel triangular model inference
procedures results in alleviation of the simultaneous equations bias, which removes some of
the explaining away effect observed in Figure 5.2, but not all of it.

Failure to enforce identifiability reproduces biases

The triangular model suffers from structural non-identifiability. We demonstrated that ap-
plying sparsity to the fitted parameter values removes the structural non-identifiability (see
Methods). Since structural non-identifiability is often unmitigated in neural models, we
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Figure 5.8: Triangular model inference elevates tuning modulation relative to
baseline procedures. Each point is a different model. Axes denote the tuning modulation
of the fitted models, or the minimum-to-maximum distance of the tuning curve. Left.
Comparison of tuning modulations for macaque V1 recordings. Right. Comparison of
tuning modulations for rat µECoG recordings.

aimed to assess the degree to which it might parameter inference without correction. To
recap, a structural non-identifiability exists when an infinite number of transformations can
be applied to any parameter set, resulting in a new parameter set that has equal likelihood.
This implies that for a given parameter set, there always exists an infinite number of other
parameter sets with the same likelihood. In realistic scenarios, such as the triangular model,
the identifiability family exists in a high-dimensional space. We can apply dimensionality
reduction to better understand the relationship amongst the variables.

The identifiability family in the triangular model is linear in the target tuning, coupling,
and latent factor parameters, and quadratic in the target private variance. The identifi-
ability family is specified by the K-dimensional vector δ, with transform (a,bt, lt,Ψt) →
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(a′,b′t, l
′
t,Ψ

′
t) given by

l′t ← lt + δ (linear) (5.89)

a′ ← a−PLT
¬tδ (linear) (5.90)

b′ ← b + B¬tPLT
¬tδ (linear) (5.91)

Ψ′t ← Ψt − 2lTt (I− L¬tPLT
¬t)δ − δTδ (quadratic) (5.92)

where P ≡ (Π¬t + LT
¬tL¬t)

−1.
If we have K = 1, or one latent dimension, then this implies that the identifiability family

can be projected down to fewer dimensions: for example, two which capture projections of
the linear subspace, and the other which captures the quadratic subspace denoted by the
private variance. Thus, the identifiability family looks like a parabola. Importantly, this
quadratic subspace is truncated at two ends, because the target private variance cannot be
negative. The identifiability family is visualized in Figure 5.9.

Without enforcing sparsity, optimizations are drawn to the solution on an identifiability
family that exhibits the largest private target variance. We performed an experiment to
validate this: we initialized a series of fits across an identifiability family, and observed
where they end up on a fitted identifiability family. The fitted solutions crowded the apex
of the parabola, implying that the target private variance maximizing solution is preferred,
regardless of the initialization. The experiment setup is depicted in Figure 5.9 (left), with
actual experiment results shown in the figure on the right. The solution with maximum
private variance will have the lowest shared variability, which is the closest model to the
tuning and coupling model. This implies that the solution will reproduce the simultaneous
equations bias.

5.4 Discussion

In this work, we identified that a tuning and coupling model is prone to the simultaneous
equations bias. We provided a novel null model that is more complete than the tuning and
coupling model, and provided inference procedures that mitigate two issues: the simultaneous
equations bias and structural non-identifiability. We validated these procedures on synthetic
data and applied them to neural data, observing significant changes in the ensuing tuning
modulations.

The triangular model we examined is linear, and thus is limited in how well it charac-
terizes neural activity. Future work could build on this model using a Poisson generalized
linear model as done in previous studies [152, 189]. Furthermore, while the model is time-
instantaneous, and thus cannot capture dynamics, it incorporates a data generation process
for the non-target neurons, more accurately reflecting the flow of tuning through neural
populations. Consequentially, this allows the interaction of unobserved activity, modeled as
a lower-dimensional latent state, with the coupling parameters. Such interactions introduce
identifiability issues that hamper joint estimation of the parameters.
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Figure 5.9: Failure to enforce identifiability reproduces biases. Left: An series of
optimizations are initialized are various points along an identifiability family (orange curve).
The resulted fitted parameters are examined to assess where they lie on a fitted identifiability
family (green curve). The fitted points cluster toward the solution maximizing private target
variance, despite the fact that the initializations were equally spread along the identifiability
family. Right: The first two principal components of the fitted identifiability family (black
line). Within this PC space, the fitted solutions across the initializations are denoted by red
points. The red points cluster toward the extrema of the parabola, in accordance with the
left plot.

The usage of the unobserved activity effectively acts a way to account for omitted neurons
in the model. The inclusion of other omitted variables that are not accounted by the latent
state, such as spike-time history or additional tuning parameters (e.g., spatial frequency of
the gratings) are also important in order to extract unbiased and interpretable parameter
estimates from the model [187].

Lastly, while the triangular model allows the exploration of how tuning can flow through
two different pathways, its unidirectional setup leaves the target neuron in a position of
privilege relative to the non-target neurons. We aim to pursue a natural extension of the
triangular model, the dynamic simultaneous equations model (DSEM), that incorporates
the data generation process for all neurons and further captures dynamics. The DSEM is
similar to recent work examining autoregressive models [115, 120, 17], but can be rewritten
in a “structural form” whose parameters represent instantaneous functional coupling as
distinct from tuning and lagged functional coupling [78, 220]. However, the DSEM is also
prone to simultaneous equations biases and identifiability concerns. Future work will require
developing estimators that mitigate these issues, particularly in the context of selection.
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Conclusion

We have demonstrated that omitting correlated variability in neural models of tuning and
functional coupling biases their parameter estimates. We proposed a novel model to mitigate
this issue, and solved the model’s structural non-identifiability by inducing sparsity within it.
Thus, we developed novel inference procedures to perform parameter estimations in models
that incorporate correlated variability. This concludes our analysis on correlated variability.
We now turn to examining the software tools required to complete the analyses described in
the thesis thus far.
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The projects discussed in this thesis required the development of software engineering tools
to facilitate their analyses. In this chapter, we discussed a framework to conduct software
engineering in science, and provide a case study of this framework in a polished scientific
software package. This package, PyUoI, was instrumental in conducting the analyses of
correlated variability described in this thesis.

6.1 Introduction

Computational and data-driven research increasingly requires developing complex codebases.
At the same time, many scientists don’t receive training in software engineering practices,
resulting in, for some, the perception that scientists write poor software. More importantly,
this lack of training impedes scientific progress, as good software can accelerate scientific
work and facilitate its reproducibility. However, achieving such proficiency is not trivial,
and generally requires knowledge of and experience with a variety of programming tools.

Each project discussed in this thesis required developing an accompanying software pack-
age to facilitate the involved analyses and generate the results and figures. Furthermore,
these software packages are readily available in an effort to support the reproduction of all
figures in this thesis. Since the development of scientific software was of paramount impor-
tance for the research presented here, an entire chapter is dedicated to developing software
for science. My hope is that future scientists can use this chapter as a helpful resource in
developing good software for their research.
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This chapter is organized as follows. In Section 6.2, we start by discussing virtual environ-
ments, which should serve as a precursor to actual software developing. Next, in Section 6.3,
we discuss how to build a software package for a research project. Then, in Section 6.4, we
discuss extensions to professionalize software repositories, making them “production-ready.”
Lastly, we conclude in Section 6.5 by presenting a case study on software packaging for
science called PyUoI. Note that these sections are written from the perspective of someone
using the Python programming language, but the principles are language agnostic.

6.2 Preparing Virtual Environments

Imagine you have a codebase for one of your projects. You submit a paper, and go work
on other projects while waiting on reviews. When the reviews come back, you need to do
additional analyses. You open up the codebase for the original project only to find that your
code runs into errors. As it turns out, while working on the newer projects, you updated
package A from version 1.0 to version 2.0. Unfortunately, this update made changes to
specific functions your codebase relied on, which expected version 1.0.

This scenario is one motivation for using a virtual environment. A virtual environment
is an isolated copy of Python and any external packages, all installed at specific versions.
Ideally, you’d have a virtual environment for each one of your research projects (or group
of closely related research projects). Thus, when using a virtual environment, you can be
confident that any changes you make will not impact your other projects. In the scenario
described above, your codebase would have its own virtual environment, in which package A

would be version 1.0. Meanwhile, your other projects would have their own virtual environ-
ment(s), in which package A could be updated to version 2.0. When you return to the old
codebase, you’d switch back to the virtual environment for it, and everything should work
as expected.

Building and running a virtual environment requires external software that is easily instal-
lable. In Python, the most commonly used distributor of virtual environments is Anaconda
(often referred to as conda). Anaconda is specifically tailored toward scientific programming,
making it an ideal choice for researchers. Furthermore, it is well-supported, actively devel-
oped, and has extensive documentation. Setting up a conda environment for your research
project is the first step you should take before you begin developing any software.

6.3 Setting up a Package for Scientific Programming

The next step is to build a code repository for your research project. In order to manage the
development of the repository as it is changed, version control must be implemented. Then,
we discuss how to set up the repository specifically as a software package, which will facilitate
its usage throughout your (and others’) analyses. Lastly, we discuss an often overlooked
aspect of setting up a code repository: file organization. Structuring repositories according
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to a predictable template will make your science easier, cleaner, and more reproducible.
This section is accompanied with an example template, which can serve as a model for
future code repositories. This template is designed with a “paper repository” in mind: that
is, it is intended for projects whose output is a written report (e.g., publication, thesis,
technical report). The template I present is accessible on Github. It’s forked from another
template that is used by my lab. This original template was developed by Jesse Livezey.

Version control: Setting Up a Github repository

Imagine that you are collaborating with one of your labmates on a project. You are both
concurrently making changes to functions in the codebase. At one point, you both have
changed the same lines in a particular function. How do you go about merging your changes
so that you both are using a consistent function? This is the rationale for version control: a
system that manages and records changes to a codebase. The most commonly used version
control system is called git (others include Mercurial and SVN). git is often used in tandem
with a cloud-based hosting platform–the most common is Github (but others include Gitlab
and Bitbucket). The benefit to using Github is that it makes it easier to collaborate on code
with others via its web platform. Thus, your next step after creating the environment should
be to initialize a git repository for your project, and make sure it’s hosted somewhere like
Github, Gitlab, or Bitbucket.

Instantiating Your Project as a Package

Now that you have created a repository, you need to start populating it. The first file to
create is the setup.py file. This file provides instructions to Python on how to treat your
repository like a package. The benefit to having your repository be an installable package is
that you can access the code within the package–any classes or utility functions–anywhere you
might be coding, as long as you import the package. This is much easier than having to set
your working directory every time you need to import a class or function from your codebase.
The setup.py file tells a virtual environment how to install your package. Furthermore, it
contains descriptive information about the package as well as any dependencies, which are
other packages that need to be installed before you can run your code.

Once you have a setup file, you can install your package onto your conda environment
using pip, which is a Python package index and installer (pip and conda can work together,
each capable of installing packages into a conda environment). In particular, you can use
pip to install an editable version of the package. This means that any changes you make
during development will automatically update the package. So, if you are testing some code
and find a bug, you can fix the bug and expect the package to update on its own, without
having to reinstall it.
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Choosing the best folder structure

Now that you have an installable package, you are ready to begin developing. The next step
is to decide where to place all the files in the package. It would not be productive to have all
your files in the same folder–having some organization will make it easier for you and others
to efficiently use the repository. The folder organization for the template linked to above is
as follows:

• codebase: The name of this folder is set by the setup.py file. This is your main
codebase: any code that you expect to be imported when this package is imported
should go in here. This includes any classes and functions that are consistently used
during analyses relevant for the project. Some suggested files are included in the
template: these include analysis.py, plotting.py, and utils.py, which contains,
as one might expect, analysis, plotting, and utility functions, respectively.

• scripts: Contains scripts that perform the important analyses for the project. These
scripts will depend on the functions in the codebase, but should not contain functions
themselves. For example, a script may apply functions in analysis.py on specific
datasets, producing outputs that are used in the figures of the paper.

• notebooks: Contains Jupyter notebooks that perform important analyses for the
project. Note that there may be some flexibility between what goes in scripts and
notebooks. This is often up to personal style. As a general rule of thumb, if the output
is a plot, use a notebook. If the output is processed data, use a script.

• figures: A separate folder, often consisting of Jupyter notebooks that generate the
figures (or at least each figure’s subpanels) of the paper that the project leads to.
Ideally, each figure should have its own notebook. This way, any user can download
your repository, install the package, and easily generate the figures in your paper.

• tests: An important component of good software engineering is unit testing, where
you develop simple tests for the classes and functions in the package. You often do
some sort of unit testing as you debug your code. However, storing these tests in
their own folder - which can be run with an external package, like pytest, increases
confidence in the quality and correctness of the code.

Ultimately, the only required folder here is codebase, since it contains the package code.
The rest can be tailored to your preferences, but you can use this organization as a starting
point.

6.4 Extensions

The above steps should be considered the minimum amount needed to produce a software
package for a research project. However, depending on the use case, there are a variety
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of tools and practices from software engineering that may be beneficial. These include the
following:

• Code coverage and continuous integration. As discussed above, unit testing is
very important to ensuring that users trust the correctness of your package. Github
provides tools to facilitate the effectiveness of these unit tests. The first is code cover-
age: this is a measure of how well your tests cover your code. That is, it checks what
parts of you software package actually are involved in your unit tests, allowing you to
assess whether you may have incomplete tests. The second is continuous integration,
which continuously runs unit tests as new changes are integrated into the package.
This a centralized way of making sure any changes respect the old unit tests, but also
conveys to other users the health of a software package (e.g., a repository that is fail-
ing its continuous integration is likely not production ready). Both code coverage and
continuous integration rely on third party services that automatically run via Github
anytime updates are made to the repository.

• Code linting: In addition to unit testing, code style is instrumental to ensuring
that your code is readable and clean. Different languages have style standards that
you should follow (e.g., when to indent, when to have spaces, restrictions on variable
names, etc.). In Python, there are packages that can automatically lint your code, to
point out instances where style is not being adhered to. Such packages include flake8

or pylint. You can include a protocol in your Github repository that details the
custom style guide it follows (e.g., a .flake8 file). Furthermore, variously integrated
development environments have add-ons that will run the linting as you code, allowing
you to make fixes in real-time.

• Documentation: The last key component to code reproducibility is documentation.
In Python, classes and functions should each be accompanied by docstrings, which
provide important information on the inputs, outputs, and what the functions and
classes do. There are tools that will automatically compile all docstrings into an easy-
to-read website (e.g., a “ReadTheDocs”). In Python, you can use a package called
Sphinx to generate these websites.

• Docker: A virtual environment helps reproducibility by providing a record of exactly
what packages are installed, and what their version numbers are. However, this might
not be good enough, particularly if users are running different operating systems. For
example, packages often require slightly different dependencies, making cross-platform
building of virtual environments tricky. This is where Docker comes in: Docker provides
a platform for constructing a container that is, quite literally, a barebones virtual
OS capable of running your code. That way, another user can simply run your code
within a Docker container, without having to worry about the details of the underlying
environment.
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6.5 PyUoI: The Union of Intersections Framework in

Python

In this section, we describe a software package called PyUoI, a Python package that imple-
ments the Union of Intersections framework, described earlier in this thesis [31]. PyUoI is
open-sourced, carefully designed, rigorously tested, thoroughly documented, and fully par-
allelized, making it easy and flexible to use in the general scientific setting [162]. It was
intentionally designed for general use, and structured similarly as scikit-learn in order
to facilitate its adoption. Thus, PyUoI has supported multiple, often unrelated, research
projects. We present this package as a case study for scientific software engineering [163].

Summary

The increasing size and complexity of scientific data requires statistical analysis methods
to produce models that are both interpretable and predictive. Interpretability implies one
can interpret the output of the model in terms of processes generating the data. This
typically requires identification of a small number of features in the actual data and accurate
estimation of their contributions. Meanwhile, achieving predictive power requires optimizing
the performance of some machine learning measure such as precision, mean squared error,
etc. There is often a trade-off between interpretability and predictive power. This trade-off
is particularly acute for scientific applications, where the output of the model is used to
provide insight into the underlying physical processes that generated the data.

The recently introduced Union of Intersections (UoI) is a flexible, modular, and scalable
framework designed to enhance both the identification of features (model selection) as well as
the estimation of the contributions of these features (model estimation). UoI-based methods
leverage stochastic data resampling and a range of sparsity-inducing regularization parame-
ters to build families of potential feature sets robust to perturbations of the data, and then
average nearly unbiased parameter estimates of selected features to maximize predictive ac-
curacy. Models inferred through the UoI framework are characterized by their usage of fewer
parameters with little or no loss in predictive accuracy relative to benchmark approaches.

PyUoI is a Python package containing implementations of a variety of UoI-based algo-
rithms, encompassing regression, classification, and dimensionality reduction. In order to
better facilitate its usage, PyUoI’s API is structured similarly to the scikit-learn package,
which is commonly used to build models on scientific data. Additionally, because the UoI
framework is naturally scalable, PyUoI is equipped with mpi4py functionality to parallelize
model fitting on large datasets.

Background

The Union of Intersections is not a single method or algorithm, but a flexible statistical
framework into which other algorithms can be inserted. In this section, we briefly describe
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UoILasso, the UoI implementation of lasso penalized regression. UoILasso is similar in structure
to the UoI versions of other lasso or elastic net penalized generalized linear models. We refer
the user to existing literature on the UoI variants of column subset selection and non-negative
matrix factorization [31, 201].

Linear regression consists of estimating parameters β ∈ Rp that map a p-dimensional
vector of features x ∈ Rp to the observation variable y ∈ R, when the n samples are
corrupted by i.i.d Gaussian noise:

y = βTx+ ε (6.1)

where ε ∼ N (0, σ2) for each sample. When the true β is thought to be sparse (i.e., some
subset of the β are exactly zero), an estimate of β (i.e., β̂) can be found by solving a
constrained optimization problem of the form

β̂ = argmin
β∈Rp

n∑

i=1

(yi − βxi)2 + λ|β|1 (6.2)

where |β|1 is the `1-norm of the parameters. The `1-norm is a convenient penalty because it
will tend to force parameters to be set exactly equal to zero, performing feature selection.
Typically, λ, the degree to which feature sparsity is enforced, is unknown and must be
determined through cross-validation across a set of hyperparameters {λj}kj=1.

The key mathematical idea underlying UoI is to perform model selection through intersec-
tion (compressive) operations and model estimation through union (expansive) operations,
in that order. For UoILasso, the procedure is as follows (see Algorithm 1 for a more detailed
pseudocode):

• Model Selection: For each λj, generate Lasso estimates on NS resamples of the data
(Line 2). The support Sj (i.e., the set of non-zero parameters) for λj consists of the
features that persist in all model fits across the resamples (Line 7).

• Model Estimation: For each support Sj, perform Ordinary Least Squares (OLS) on
NE resamples of the data. The final model is obtained by averaging across the supports
chosen according to some model selection criteria, such as optimally predicting on data
according to an information criterion (Lines 20-21).

Thus, the selection module ensures that, for each λj, only features that are stable to pertur-
bations in the data (resamples) are allowed in the support Sj. Meanwhile, the estimation
module ensures that only the predictive supports are averaged together in the final model.
The degree of feature compression via intersections (quantified by NS) and the degree of
feature expansion via unions (quantified by NE) can be balanced to maximize prediction
accuracy for the response variable y.
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Features

PyUoI is split up into two modules, with the following UoI algorithms:

• linear model (generalized linear models)

– Lasso penalized linear regression (UoILasso).

– Elastic-net penalized linear regression (UoIElasticNet).

– Logistic regression (binary and multinomial) (UoILogistic).

– Poisson regression (UoIPoisson).

• decomposition (dimensionality reduction)

– CUR decomposition (UoICUR).

– Non-negative matrix factorization (UoINMF).

Similar to scikit-learn, each UoI algorithm has its own class. Instantiations of these
classes are created with specific hyperparameters and are fit to user-provided datasets. The
hyperparameters allow the user to fine-tune the number of resamples, fraction of data in
each resample, and the model selection criteria used in the estimation module (in Algorithm
1, Bayesian information criterion is used, but test set accuracy and the Akaike Information
Criteria are also available). Additionally, PyUoI is agnostic to the specific solver used for a
given model. For example, for UoILasso, PyUoI comes equipped with a coordinate descent
solver (from scikit-learn), a built-in Orthant-Wise Limited memory Quasi-Newton solver,
and the pycasso solver. The choice of solver is left to the user as a hyperparameter.

Applications

We have used PyUoI largely in the realm of neuroscience and genomics. A few applications
include:

• Interpretable functional connectivity networks from neural populations in the visual,
auditory, and motor cortices of various animal models;

• Sparse decoding of behavioral activity from spiking neural activity;

• Parts-based decomposition of electrocorticography recordings in rat auditory cortex
that reflect functional cortical organization;

• Extraction of characteristic single nucleotide polymorphisms for the prediction of phe-
notypes in mice.

However, the algorithms implemented in PyUoI are broadly applicable and not limited to
these contexts.
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Extensions to standard estimators

PyUoI builds on commonly used optimization procedures provided by scikit-learn, but
there are scenarios in which scikit-learn lacks proper estimators, which required custom
implementations. Specifically, there are two points where the scikit-learn estimators
cannot be used for fitting. The first is during estimation when a zero-feature support has
been found during the selection step. In this case, a model should be fit with no input
features, but only an intercept. This is not supported with the scikit-learn estimators.
The second is after selection and estimation, when the final intercept in the model needs to
be fit without adjusting the coefficients.

For linear and Poisson regression, there are closed form solutions for fitting intercepts in
both of these situations. For logistic regression with no features, there is also a closed form
solution. For the fixed-feature logistic regression cases, we have to solve an optimization
problem. We have implemented fitting functions or classes for these two cases. They require
calculations of the loss and gradient of the loss, described in the following sections.

Bernoulli logistic regression

For Bernoulli logistic regression (binary choice), the model is defined as

P (y = 1|x;w, b) = ŷ = σ(x · w + b) with

σ(r) =
1

1 + exp(−r) .
(6.3)

The negative log-likelihood (nll) for one sample is

nll(x, y) = −y log

(
1

1 + exp(−x · w − b)

)
− (1− y) log

(
1− 1

1 + exp(−x · w − b)

)

= y log(1 + exp(−x · w − b)) + (1− y)(x · w + b+ log(1 + exp(−x · w − b))
= log(1 + exp(−x · w − b)) + (1− y)(x · w + b).

(6.4)

The derivative with respect to b is

∂nll

∂b
= − exp(−x · w − b)

1 + exp(−x · w − b) + (1− y)

= σ(x · w + b)− y
(6.5)

which is the update for the fixed-feature case. For a dataset, both the nll and gradient should
be averaged over samples.

In the case where we have no features, the nll simply becomes:

nll(x, y) = log(1 + exp(−b)) + (1− y)b

∂nll

∂b
= σ(b)− y

(6.6)
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which can be solved for the intercept as:

b = log
〈y〉

1− 〈y〉 , (6.7)

where 〈y〉 is the average of the response variable over samples. This needs to be clipped to
prevent the log from blowing up if the dataset contains only one class.

Multinomial logistic regression

In the multinomial case, having one intercept per class is overparameterized, since an additive
constant will get normalized out of the softmax. So, without loss of generality, we choose to
set the first element of the intercept to zero and solve for the rest.

For multinomial logistic regression (multiclass), the model is defined as

P (yi = 1|x;w, b) = ŷi =





exp(x·βi)
exp(x·βj)+

∑
j>1 exp(x·βj+bj)

, i = 1
exp(x·βi+bi)

exp(x·βj)+
∑

j>1 exp(x·βj+bj)
, i > 1

(6.8)

The negative log-likelihood for one sample is

nll(x, yi = 1) =




− log

(
exp(x·βi)

exp(x·βj)+
∑

j>1 exp(x·βj+bj)

)
, i = 1

− log
(

exp(x·βi+bi)
exp(x·βj)+

∑
j>1 exp(x·βj+bj)

)
, i 6= 1

=




−x · βi + log

(
exp(x · βj) +

∑
j>1 exp(x · βj + bj)

)
, i = 1

−x · βi − bi + log
(

exp(x · βj) +
∑

j>1 exp(x · βj + bj)
)
, i > 1

.

(6.9)

Thus, the derivative with respect to bk is

∂nll(x, yi = 1)

∂bk
=





exp(x·βk+bk)
exp(x·βj)+

∑
j>1 exp(x·βj+bj)

, i = 1

−δij + exp(x·βk+bk)
exp(x·βj)+

∑
j>1 exp(x·βj+bj)

, i > 1
(6.10)

which is the update for the fixed-feature case. For a dataset, both the nll and gradient should
be averaged over samples.

For the no-feature case, this expression is the same without the x · w

nll(x, yi = 1) =





log
(

1 +
∑

j>1 exp(bj)
)
, i = 1

−bi + log
(

1 +
∑

j>1 exp(bj)
)
, i > 1

∂nll(x, yi = 1)

∂bk
=





exp(bk)
1+

∑
j>1 exp(bj)

, i = 1

−δik + exp(bk)
1+

∑
j>1 exp(bj)

, i > 1

(6.11)

which can be solved. If there are any zero-occurrence classes, those class probabilities will
need to be clipped away from zero.
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Determining the largest L1 coefficient

For linear models, model selection is done by fitting a family of L1 regularized models over
many bootstraps. The family is defined by a range of regularization parameters. A desirable
range of regularization parameters is one that does not always set β = 0 but provides enough
regularization so that many different supports are selected. Here, we describe the strategy
for selecting the strongest regularization parameter.

For a L1 (generalized) regression model, the loss function that is being minimized can be
written as

` =
1

N
nll(X, y, β, b) + λ

∑

ij

|βij| (6.12)

where N is the number of samples and nll is the negative log-likelihood. The gradient of the
L1 part will always be proportional to λ

∂

∂βnm
λ
∑

ij

|βij| = λ · sign(βnm) (6.13)

for βnm 6= 0. The value for the largest λ is the largest element of the absolute value of the
derivative of the nll term when β = 0.

λmax = max
n,m

∣∣∣∣
1

N

∂nll(X, y, β, b)

∂βnm
|β=0

∣∣∣∣ . (6.14)

At this value, a gradient descent step away from β = 0 due to the nll will be brought back to
0 by the L1 term. For models with intercepts (b), λmax is derived with b equal to the value
it would take with β = 0. Said another way, this is the regularization parameter such that
the intercept-only model will be chosen.

Lasso. For the multi-target Lasso problem, the average nll is

1

N
nll(X, y, β, b) =

1

2N

∑

i,k

(yki −
∑

j

βijX
k
j − b)2 (6.15)

where subscripts are feature dimensions and superscripts are over samples. λmax can be
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solved for as

λmax = max
n,m

∣∣∣∣
1

N

∂nll(X, y, β, b)

∂βnm
|β=0

∣∣∣∣

= max
n,m

∣∣∣∣∣
1

2N

∑

i,k

∂

∂βnm
(yki −

∑

j

βijX
k
j − bi)2|β=0

∣∣∣∣∣

= max
n,m

∣∣∣∣∣
−1

N

∑

i,j,k

δinδjmX
k
j (yki −

∑

r

βirX
k
r − bi)|β=0

∣∣∣∣∣

= max
n,m

∣∣∣∣∣
−1

N

∑

k

Xk
m(ykn −

∑

r
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L1-Logistic, Bernoulli. For the L1 Logistic regression with a Bernoulli noise model
(binary features), the average nll is

1

N
nll(X, y, β, b) = − 1

N

∑

i,k

(
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where subscripts are feature dimensions and superscripts are over samples, and

P (yki = 1|x, β, b) =
1

1 + exp(−∑j βijX
k
j − bi)

(6.18)

1− P (yki = 1|x, β, b) =
1

1 + exp(
∑

j βijX
k
j + bi)

. (6.19)
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λmax can be solved for as

λmax = max
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(6.20)

L1-Logistic, Multinomial. For the L1 Logistic regression with Multinomial noise model
(classes), the average nll is

1

N
nll(X, y, β, b) = − 1
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∑

i,k

yki log(P (yki = 1|x, β, b))

= − 1
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) (6.21)

where subscripts are feature dimensions or classes and superscripts are over samples, and

P (yki = 1|x, β, b) =
exp(

∑
j βijX

k
j + bi)∑

n exp(
∑

j βnjX
k
j + bn)

. (6.22)
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λmax can be solved for as
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Poisson Regression

The average negative log-likelihood for Poisson regression is given by

1

N
nll(x, y, β, b) = − 1
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Thus, λmax can be solved for as

λmax = max
m
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1
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= max
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∣∣∣∣∣ . (6.27)

The value of the intercept we use is the b that results from a featureless model, i.e. b = log(ȳ).
Thus,

λmax = max
m

∣∣∣∣∣
1

N

D∑

k=1

xkm(yk − ȳ)

∣∣∣∣∣ . (6.28)
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Conclusion

We have provided a framework for developing software engineering packages in scientific
settings. These principles were used to great effect to conduct the analyses in this thesis. In
particular, PyUoI was presented as a case study, which was used to conduct the correlated
variability analyses discussed in the latter half of this thesis.
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