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ABSTRACT
The construction of catalogues of a particular type of galaxy can be complicated by interlopers contaminating the sample. In
spectroscopic galaxy surveys this can be due to the misclassification of an emission line; for example in the Hobby–Eberly
Telescope Dark Energy Experiment (HETDEX) low-redshift [O II] emitters may make up a few per cent of the observed Ly α

emitter (LAE) sample. The presence of contaminants affects the measured correlation functions and power spectra. Previous
attempts to deal with this using the cross-correlation function have assumed sources at a fixed redshift, or not modelled evolution
within the adopted redshift bins. However, in spectroscopic surveys like HETDEX, where the contamination fraction is likely to
be redshift dependent, the observed clustering of misclassified sources will appear to evolve strongly due to projection effects,
even if their true clustering does not. We present a practical method for accounting for the presence of contaminants with redshift-
dependent contamination fractions and projected clustering. We show using mock catalogues that our method, unlike existing
approaches, yields unbiased clustering measurements from the upcoming HETDEX survey in scenarios with redshift-dependent
contamination fractions within the redshift bins used. We show our method returns autocorrelation functions with systematic
biases much smaller than the statistical noise for samples with at least as high as 7 per cent contamination. We also present and
test a method for fitting for the redshift-dependent interloper fraction using the LAE–[O II] galaxy cross-correlation function,
which gives less biased results than assuming a single interloper fraction for the whole sample.

Key words: methods: data analysis – cosmology: observations – large-scale structure of the Universe.

1 IN T RO D U C T I O N

The measurement of a redshift from a galaxy spectrum is one of the
most fundamental parts of a spectroscopic survey. This is usually
achieved by relying on features in the spectra such as emission
and absorption lines and the shape of the continuum. However,
when only one emission line is detected, it becomes impossible

� E-mail: dfarrow@mpe.mpg.de

to unambiguously identify the rest-frame emission line and return
an accurate classification and redshift. This results in catalogues
of galaxies that contain interlopers, i.e. misclassified sources at
the wrong redshift. Interloper contamination is expected to be
important in several major upcoming galaxy surveys (see e.g. Pullen
et al. 2016). The focus of this paper is the ongoing Hobby–Eberly
Telescope Dark Energy Experiment (HETDEX; Hill et al. 2008,
in preparation; Gebhardt et al. in preparation), where, due to the
spectrographs not resolving the [O II] doublet, low-redshift [O II]
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emitters with rest-frame wavelength 3727 Å can be mistaken for high
redshift Ly α emitters (LAEs) with rest-frame wavelength 1216 Å.

The impact of interlopers on the correlation function and power
spectrum of a galaxy sample has been studied in the literature
(e.g. Pullen et al. 2016; Leung et al. 2017; Addison et al. 2019;
Grasshorn Gebhardt et al. 2019; Massara et al. 2020). It has been
seen that the presence of interlopers in a sample changes the galaxies’
correlation function and power spectrum. It is also understood that if
the interlopers are unclustered then the main effect just decreases the
overall clustering amplitude by adding in uncorrelated sources (see
Appendix B.4 of Grasshorn Gebhardt et al. 2019). However, if the
interlopers are clustered, then a signal from their correlation function
is added into the sample. It has also been shown that these spurious
clustering signals can cause biases in the inferred cosmological
parameters (e.g. Pullen et al. 2016; Addison et al. 2019; Grasshorn
Gebhardt et al. 2019).

In both Addison et al. (2019) and Grasshorn Gebhardt et al.
(2019), methods are presented that include the effects of interlopers
in the modelling of the galaxy power spectrum. These authors note
that a cross-correlation signal between two intrinsically uncorrelated
samples of galaxies can be created entirely due to interloper contam-
ination. They advocate using this observed cross-correlation signal
to put constraints on the contamination fraction, in order to yield
better measurements of cosmological parameters. An alternative
approach to forward modelling techniques is to decontaminate
the measurements by applying a transformation that changes the
observed auto and cross-correlation functions into the true underlying
functions. A matrix to carry out this transformation and its inverse
is given in Awan & Gawiser (2020). Their work deals with angular
clustering measurements in redshift bins.

A related issue to interlopers in spectroscopic galaxy surveys is
their impact in line intensity mapping experiments (e.g. Visbal &
Loeb 2010; Gong et al. 2014; Cheng et al. 2016; Lidz & Taylor
2016; Cheng, Chang & Bock 2020; Gong, Chen & Cooray 2020).
These studies differ from emission line surveys in that they target the
light from unresolved populations of galaxies. However, it has also
been noted that interlopers in intensity mapping experiments add an
anisotropic signal to the power spectrum of the target population
(e.g. Visbal & Loeb 2010; Gong et al. 2014; Lidz & Taylor 2016).
In Gong et al. (2020), a method is presented that jointly fits the
cosmology and properties of interloper lines in line intensity mapping
experiments.

One scenario that has not been addressed by efforts to model the
correlation function or power spectrum from spectroscopic emission
line surveys is when the contamination fractions and the clustering
of the contaminants show rapid evolution within the redshift bins
used to define samples. Existing methods may work to an acceptable
level with correlation functions that have a reasonable amount of
evolution within the redshift bins considered, but in HETDEX, the
observed [O II] clustering signal will evolve rapidly with redshift, due
to projection effects (see e.g. fig. 2 of Grasshorn Gebhardt et al. 2019).
The [O II] contamination fraction will also be redshift dependent,
due to the intrinsic redshift distribution of the emission lines and due
to the wavelength dependence of the noise. Although Cheng et al.
(2020) recently published a method of generating a 3D lightcone of
the interlopers in an intensity mapping survey, their method relies on
the interlopers having multiple emission lines. That will not usually
be the case for HETDEX, as beyond z ∼ 0.13, the bulk of the
[O II] galaxy population will only have a single detectable emission
line. Cheng et al. (2020) also focus on producing a 3D map of the
interloper density, not unbiased correlation function measurements
from the target population.

In this paper, we present a method to account for the redshift
dependence of the contamination fractions in emission-line surveys
by combining the decontamination methodology in the literature with
lightcone effects presented in Yamamoto & Suto (1999) and Suto,
Magira & Yamamoto (2000). References to ‘lightcone effects’ in
this paper specifically refer to effects from the redshift dependent
contamination and observed clustering. We test our method on
simulations of the HETDEX survey, and demonstrate that our method
to deal with the lightcone effects is an improvement over assuming
fixed contamination fractions and clustering across a whole redshift
bin. We also show that our new method is useful when using
the cross-correlation function to gain unbiased constraints on the
contamination fractions. We focus on HETDEX here, but the work
we present gives insights into all surveys with contamination rates
that depend on redshift.

The outline of this paper is as follows: in Section 2, we introduce
the HETDEX survey and our simulations of it; this section also
includes a method of assigning source classification probabilities. In
Section 3, we present the methods used to measure and model the
projected clustering. Then in Section 4, we present the methodology
of our decontamination. We show the results of our model in
Section 5, and in Section 6, we use our new methodology to fit
for the redshift-dependent contamination. We give our conclusions
in Section 7.

2 SI M U L AT I O N S O F H E T D E X

In this section, we explain how we generate mock catalogues. We
note that our work follows that of Chiang et al. (2013), who use an
older version of the lognormal simulation code used here (Agrawal
et al. 2017), and an older HETDEX design, to produce simulations of
the HETDEX survey. We improve on that paper, first by adding [O II]
galaxies and source classifications following Leung et al. (2017), and
then by adding in more realistic redshift dependent variations into
the sensitivity and noise estimates.

We will begin by introducing HETDEX (Section 2.1), then the
following sections introduce the model of large-scale structure
(Section 2.2) and the approach we use to generate a density field
with a given power spectrum (Section 2.3). We also explain how we
assign galaxy properties (Sections 2.5 and 2.9), model observational
effects (Sections 2.4, 2.6, and 2.7) and assign the LAE probabilities
(Section 2.10) to generate samples of LAEs and [O II] emitters.

2.1 The HETDEX survey

HETDEX is a program on the Hobby–Eberly Telescope at the
McDonald Observatory, Texas (Hill et al. 2008, in preparation;
Gebhardt et al. in preparation) to use LAEs to map out the large-
scale structure of the 1.9 < z < 3.5 Universe. The survey measures
spectra from the sky using an array of up to 78 integral field units
(IFUs; Hill et al. 2018, in preparation), galaxies are not pre-selected
but instead observations are taken blindly. Each IFU has a square
footprint roughly 50 arcsec on a side, and neighbouring IFUs are
separated by 100 arcsec. When observing, the gaps between the fibres
are filled in by taking three dithered exposures. The dithering does
not fill in the gaps between the IFUs, however, meaning areas of
sky are sparsely sampled. It has been shown that such a sampling
can be treated as surveying the whole area with a lower number of
tracers (Chiang et al. 2013). We refer to the set of three dithers at one
pointing as an ‘exposure set’, and use the term ‘exposure set position’
to refer to the Right Ascension and Declination of the pointing.
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The survey sparsely samples two main fields: a roughly 390 deg2

field in the Northern hemisphere (the ‘Spring’ field) and an
∼150 deg2 equatorial region (the ‘Fall’ field). Defining the area that is
sparsely sampled is difficult due to the jagged edges of the HETDEX
footprint, which are caused by the approximately octagonal boundary
of IFUs in the focal plane. In the real survey, additional effects we
do not model here, such as bright stars in the Milky Way and large
foreground galaxies create holes in the survey, further complicating
the issue. Thus, the precise values for the survey areas depend on
how survey edges are defined and the regions that are compromised
by foreground sources.

The survey goal is to measure the clustering (e.g. correlation
function or power spectrum) of the LAEs and use it to probe
cosmology. The modest resolution of the spectrographs (mean
resolving power R = λ/δλ ∼ 800) means the [O II] doublet cannot be
resolved, resulting in some [O II] emitters being classified as LAEs
(see Leung et al. 2017).

2.2 Model of cosmology and large-scale structure

The simulations and our whole paper use the marginalized mean, flat
�CDM cosmology from the Planck Collaboration VI (2020), but for
simplicity we assume massless neutrinos (see table 1 for the exact
parameter values). The model of the power spectrum and bias used
to generate the simulations is the same as that used for the analysis of
the Baryon Oscillation Spectroscopic Survey (BOSS; Dawson et al.
2013) by Sánchez et al. (2017), and a full description of the model can
be found there. Briefly, a linear power spectrum is generated at the
mean pair redshift1 of the [O II] (z = 0.3) and LAE (z = 2.5) samples
using CAMB (Lewis et al. 2000). The modelling of the non-linear evo-
lution of the power spectrum is based on a Galilean-invariant version
of renormalized perturbation theory (Crocce & Scoccimarro 2006)
dubbed gRPT, which will be presented in detail in Crocce et al. (in
preparation) (see also the description in Eggemeier et al. 2020). The
gRPT model offers a good description of the power spectrum down
to k ≤ 0.25 h−1 Mpc for a survey like BOSS (Sánchez et al. 2017).

The bias model we use for the input power spectrum is from Chan,
Scoccimarro & Sheth (2012), and it relates the galaxy overdensity δg

to the matter overdensity δ using local bias parameters consisting of
b1 and b2 and non-local bias parameters γ 2 and γ −

3 as given in Chan
et al. (2012). The full expression of the power spectrum from this
bias model is given in appendix A of Sánchez et al. (2017). A review
on perturbative bias is given in Desjacques, Jeong & Schmidt (2018)

To generate input power spectra for the mocks, the γ 2 and γ −
3

parameters are set following the local Lagrangian approximation (see
Fry 1996; Catelan et al. 1998; Catelan, Porciani & Kamionkowski
2000; Chan et al. 2012). The local bias parameters we use for the
LAEs and [O II] galaxies are b1 = 2.5 and 1.5, respectively. The
LAE bias we adopt is consistent with the z ∼ 2.5 measurement
of Khostovan et al. (2019), if we convert their power-law fits of
the clustering to a bias via Quadri et al. (2007), which uses an
expression from Peebles (1980). The [O II] galaxy bias is chosen
to be consistent with previous work on HETDEX contamination
(Grasshorn Gebhardt et al. 2019). For the LAE second-order bias
we use fitting functions of b1 versus b2 from Lazeyras et al. (2016),
which they derive using the separate universe approach of Wagner
et al. (2015). We use the Lazeyras et al. (2016) results at redshifts
slightly higher than the maximum redshift they test, but they see no

1the mean over all pairs of (z1 + z2)/2, where z1 and z2 are the redshifts of
each galaxy in the pair.

evidence of redshift dependence in their relations in the range they
do test, 0 < z < 2. The fitting function yields b2 = 0.986 for the
LAEs. We do not use the same fitting function for the [O II] galaxies,
as it gives a negative power spectrum at scales important to the
simulation. This is likely due to an insufficient number of terms in
the expansion; correcting this issue would require higher order bias
terms in the expansion. We therefore set b2 = 0 for these galaxies
since it gives a reasonable power spectrum. We do not model any
dependence of the clustering of sources on luminosity or other galaxy
properties as this should not impact our conclusions.

2.3 Lognormal simulations

To generate mock catalogues with our desired power spectrum we
use the lognormal simulation code presented in Agrawal et al. (2017).
A full explanation of the generation procedure is given in the above
paper, but we include a brief summary here. The code uses an input
power spectrum PG(k) to generate a 3D Gaussian field on a grid in k-
space, G(k). It also generates random phases for each grid point and
then carries out a Fourier transform to generate G(x), a realization
of a Gaussian random field with the power spectrum PG(k). It then
transforms this field to yield a field with a lognormal distribution,
δ(x). The input power spectrum PG(k) is chosen in such a way that
this resultant lognormal field will have the desired power spectrum
P(k). In this case our non-linear power spectrum is used for the
matter density field, and our non-linear power spectrum with the
added effects of bias is used for the galaxy density field. Each cell
of the galaxy density field is randomly populated with galaxies. The
number of galaxies assigned to a cell is drawn randomly from a
Poisson distribution with a mean of n̄(1 + δ(x))Vcell, where n̄ is the
number density of galaxies and Vcell is the cell’s volume. The code
also assigns a velocity to every cell using the linearized continuity
equation in Fourier space on the simulated matter density field, using
linear growth rates from CAMB (Lewis et al. 2000). Mock galaxies
are then assigned the velocity of their cell.

The cell size we use in the simulations is 2.2 h−1 Mpc for our
LAE mocks. For the mocks of the [O II] galaxies, we use a minimum
scale of 0.88 h−1 Mpc; the smaller size compensates for the fact [O II]
emitters are projected on to larger scales by their misclassification
as LAEs. We expect resolution effects on scales to occur at least as
small as twice the cell size, and we will label this scale on our plots.

2.4 Adding an observer and the angular selection function

To convert the simulated galaxies into a catalogue, we place an
observer at an appropriate position in simulation coordinates and
compute the right ascension, declination and redshift to each mock
galaxy from this observer’s view point. The location of the observer,
the simulation cube dimensions and the coordinate system are chosen
in such a way to ensure the whole volume of a HETDEX field is
contained within the simulation. We assume the two widely separated
Spring and Fall fields are independent, and we also assume the
density fields of LAEs and [O II] galaxies are independent (as in
Addison et al. 2019 and Grasshorn Gebhardt et al. 2019, we ignore the
small, inferred correlations from gravitational lensing). We therefore
simulate each population with separate lognormal simulations.

The line-of-sight (LOS) direction between the observer and every
galaxy is computed, and each galaxy’s velocity is projected on to
the galaxy’s LOS direction. These LOS velocities are used to apply
the offsets to the galaxy’s ‘observed’ redshift, in order to model
redshift space distortions (RSDs). In these mocks we do not consider
additional effects from the virial motions of galaxies within groups
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Table 1. A short summary of the important assumptions and input parameters for the mocks of an idealized HETDEX survey.

Cosmology – flat �CDM (Planck Collaboration VI 2020, with a small modification; see the notes)

H 67.36 km s−1 Mpc−1

�bh2 0.022 37
�ch2 0.12
�k 0
ns 0.9649
σ 8 0.8226
σ 12 0.8167

LAE luminosity and EW functions (Gronwall et al. 2014)

Redshift 2.063 3.104

L∗(h = 0.7)(erg s−1) 4.07 × 1042 5.98 × 1042

φ∗(h = 0.7)(Mpc−3) 8.32 × 10−4 1.05 × 10−3

α −1.65 −1.65
w0 (Å) 50 100

[O II] luminosity and EW function (Ciardullo et al. 2013)

Redshift 0.1 0.2625 0.3875 0.5050

L∗(h = 0.7)(erg s−1) 1.17 × 1041 1.95 × 1041 3.16 × 1041 3.79 × 1041

φ∗(h = 0.7)(Mpc−3) 5.01 × 10−3 7.59 × 10−3 8.51 × 10−3 8.51 × 10−3

α −1.2 −1.2 −1.2 −1.2
w0 (Å) 8.00 11.5 16.6 21.5

Survey properties (Sections 2.4 and 2.6)

Field Spring Fall

Total area (with gaps) (deg2) 390 150
Total area (covered by fibres) (deg2) 55.6 27.2
Volume with LAEs (h−3Gpc3) 2.42 0.93
Number of IFUs 78 78
Number of LAEs 6.4 × 105 2.9 × 105

Number of [O II] galaxies 4.2 × 105 2.0 × 105

LAE number density (h3Mpc−3) 2.7 × 10−4 3.1 × 10−4

Notes. The cosmological parameters are from Planck Collaboration VI (2020). The values for angular area of the survey are explained in Section 2.4, the
prediction for the number of LAEs is explained in Section 2.6. The volume given is for the LAE redshift range and for the total area that is covered with gaps and
sparse observations (see Chiang et al. 2013). The number density assumes the total number of LAEs are spread uniformly over that volume. As we, unlike Planck
Collaboration VI (2020), assume massless neutrinos, we do not use their quoted σ 8 value but instead compute it using Lewis, Challinor & Lasenby (2000).
We also include σ 12, the square root of the variance in 12-Mpc spheres (i.e. not using h units), as an alternative to the more standard σ 8 (see the arguments in
Sánchez 2020).

and clusters or from Ly α radiative transfer (see e.g. Behrens et al.
2018; Byrohl, Saito & Behrens 2019; Byrohl et al. 2021; Gurung-
López et al. 2019, 2020). Also note that although this modelling
uses linear-theory-derived velocities, the resultant power spectrum
in redshift space is subject to the non-linear aspects of RSD that
arise from the transformation of mock galaxies from cosmological
to observed redshifts (Agrawal et al. 2017).

We apply the angular footprints of the HETDEX fields to the
mock catalogues. The exposure set positions for the full survey are
combined with the expected positions of the full 78 IFUs in the focal
plane. Instead of using the actual mask for the data taken on the
telescope we use idealized exposure set positions and assume a full
focal plane from the start. We also assume 78 working units for this
analysis, as there remains a goal to reach this number on the telescope.
Having 74 working units is a more realistic expectation given the
data taken at the time of writing (Gebhardt et al. in preparation).
These small differences should not impact our conclusions on the
decontamination. Fig. 1 shows a mock catalogue with the angular
selection function applied. The unusual shape of the Spring field
is due to a decision (made in the first half of 2020) that the most
efficient use of the telescope time is to extend the area rather than fill

in missing regions from the originally planned footprint. This also
explains the additional holes in the Spring footprint.

We use the masking software MANGLE from Hamilton & Tegmark
(2004) and Swanson et al. (2008) to apply the survey footprint and
also to generate a catalogue of random positions. These random
positions are used to measure the clustering and we refer to them as
the ‘random catalogue’ or ‘randoms’ hereafter. We also use MANGLE

to compute the area of the sky covered by fibres: 55.6 deg2 in the
Spring field and 27.2 deg2 in the Fall field, and make use of a wrapper
to MANGLE called LITEMANGLE.2 Although the footprint of HETDEX
is unlikely to have any influence on our ability to discriminate LAEs
from [O II] galaxies, it does influence the error estimates we use to
assess the size of systematic biases.

These lognormal simulations are not true lightcone simulations
like the ones used to probe contamination effects by Massara et al.
(2020), or in the tomographic analysis of Awan & Gawiser (2020),
since there is no evolution of the true power spectra along the
redshift direction. The focus of this paper, however, is to determine

2https://github.com/martinjameswhite/litemangle.
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Figure 1. A scatter plot of the sources in one of our mock HETDEX survey Spring fields (top panels) and Fall fields (bottom left-hand panel), computed using
an idealized focal plane containing 78 IFUs and a list of expected exposure set positions. The colour gives the reddening from Galactic extinction from the
Schlegel, Finkbeiner & Davis (1998) dust maps. As the gaps between the IFUs are not visible on these two plots, we also show a zoom of the Fall field (bottom
right-hand panel).

how the misclassification of [O II] emitters as LAEs produces a
redshift dependent projection of the [O II] galaxy density field, and
how this redshift dependence, combined with redshift-dependent
contamination fractions, affects clustering. These effects are included
as we compute ‘observed’ redshifts to all of our sources from a
simulated observer’s point of view.

2.5 LAE and [O II] properties

To generate catalogues with realistic number densities and classifica-
tion probabilities, we need to assign points in our mocks luminosities
and equivalent widths (EWs). To assign LAE luminosities we use the
Schechter function fits to the z = 2.1 and 3.1 measured luminosity
functions from Gronwall et al. (2014). These Schechter functions
are parametrized by the characteristic luminosity, L∗, the faint-
end slope, α, and the number density coefficient, φ∗. Similarly,
we assume that the LAE EWs follow the exponential distributions
found by Gronwall et al. (2014) at those two redshifts (see also
equation 2 of Leung et al. 2017). The parameters for the [O II]
luminosity and EW functions come from measurements in four
redshift bins between z = 0.1 and 0.5 by Ciardullo et al. (2013).
At redshifts other than bin centres, we use the linearly interpolated
or extrapolated values of all of the parameters. In Table 1, we
list the relevant parameters mentioned in this paragraph explicitly.
The choice of luminosity and equivalent width functions are made
to match the previous work on HETDEX source classification by
Leung et al. (2017). We also use the approach of Leung et al.
(2017) to correct the measured luminosity functions for low EW
LAEs (EW < 20 Å), which were removed when the luminosity
functions were estimated. We do not model any relationship between
EW and luminosity as this level or realism is not needed for our
work.

2.6 Assigning luminosities and the radial selection function

To apply the radial selection function to our mock and random cata-
logues, we first begin by assigning luminosities to our mock galaxies.
A minimum luminosity is computed for each redshift assuming flux
limits much deeper than those of the survey: 6 × 10−18 erg s−1 cm−2

for LAEs and 4 × 10−18 erg s−1 cm−2 for [O II] galaxies. A maximum
luminosity is computed as a large multiple of the minimum value,
Lmax = 6000Lmin. To test if our choice of Lmax could affect results,
larger values were tested. To avoid having to run the full simulation
pipeline, we adopted a faster approach to test where we integrated
products of the mean extinction, the luminosity function and our
completeness model in redshift slices up to an even higher Lmax.
The number of sources predicted by our mocks and this simple
integration-based technique agree to high precision (<1 per cent
difference).

Between the two luminosity limits, random luminosities are drawn
from our fiducial luminosity functions (Table 1). These luminosities
are then translated to fluxes using the luminosity distance to the
virtual observer. For the random catalogue, distances are randomly
chosen in a way that is uniform in volume, and luminosities and
fluxes are drawn that are consistent with that distance.

Model flux limits are adopted using the 5σ detection limit given
in the HETDEX science requirements (and also presented in Hill et
al. in preparation), and are based on a typical sky spectrum along
with the project’s expectations for image quality and the efficiency
of the whole telescope, spectrograph and detector system. Achieving
the number density of LAEs predicted by these flux limits is a target
of HETDEX.

We divide the 5σ flux limit at each mock galaxy’s observer-frame
wavelength by 5, and use that value as the standard deviation of the
Gaussian noise we add to the true flux of the emission line. The
signal-to-noise (S/N) ratio of this noisy ‘observed’ emission line is
computed and the line is classified as ‘detected’ in the simulation if
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its observed S/N exceeds 5. This results in sources being detected
50 per cent of the time if their flux is exactly at the 5σ limit; the
completeness that corresponds to other fluxes can be computed by
integrating a Gaussian and determining the area above the S/N cut.
Carrying out these mock observations is more resource intensive than
simply applying the predicted n(z) to the mocks, but it does have the
benefit of including Eddington bias in the emission line fluxes. These
fluxes are used to estimate the LAE/[O II] galaxy probabilities (see
Section 2.10).

In addition to cuts in simulated S/N, another part of the radial
selection function of [O II] emitters comes from their size. As
explained by Leung et al. (2017), at z < 0.05 most [O II] emitters will
appear extended in imaging data and therefore easily distinguished
from the LAE sample. We therefore do not include z < 0.05 [O II]
emitters in our simulations. The argument that imaging will be able
to remove very nearby galaxies is also why we do not consider
the impact of other even longer rest-frame wavelength potential
contaminants such as [O III] emitters. We further discuss the possible
impact of other contaminants on cosmology in an upcoming paper
(Farrow et al. in preparation).

2.7 On-sky sensitivity variations and extinction

The sensitivity and the flux errors of HETDEX vary from exposure set
to exposure set, IFU to IFU, and even fibre to fibre. These variations
are likely to change how well we can classify LAEs as a function of
sky position in the real survey. We do not model on-sky variations in
the sensitivity of the survey, as in this work we focus on effects along
the LOS, which are likely much more important, since the clustering
of the contaminants evolves quickly due to projection effects (see
Section 3.2).

Although we do not model the aforementioned on-sky sensitivity
variations, we do add some sky-position-dependent effects as we
attenuate the fluxes and mock spectra (see Section 2.9) by Galactic
extinction. We model the sky-position dependence of Galactic extinc-
tion via the python library of Green (2018), utilizing the dust maps
of Schlegel et al. (1998). To model the wavelength dependence we
use the EXTINCTION3 library with the Fitzpatrick (1999) function and
the parameters advocated in the appendix of Schlafly et al. (2010).
We confirm that our code can reproduce the extinction in the SDSS
bands (Doi et al. 2010) predicted by Schlafly & Finkbeiner (2011)
using Munari et al. (2005) stellar spectra to 2 per cent accuracy. This
is more than sufficient for our mock catalogues. We also add this
extinction to the randoms, so it is accounted for when measuring the
clustering.

The Galactic dust reddening versus position from Schlegel et al.
(1998) is indicated in Fig. 1; the equatorial Fall field typically has
more Galactic extinction than the Spring field.

2.8 Source density versus redshift

In the following sections we continue our explanation of the mocks
with how we assign mock continuum values and use them to classify
galaxies as LAE or [O II]. Before this, let us consider the number
density of the mock catalogues without contamination. Our model
of the selection function predicts about a million LAEs and 600 000
z > 0.05 [O II] emitters in the full HETDEX survey. Fig. 2 shows
the number density of detected emission line sources in one of our
mock catalogues (solid lines) and in our random catalogue (dashed
lines) versus redshift. The plots are computed using the full volumes

3https://extinction.readthedocs.io/en/latest/.

Figure 2. The number density of LAEs in one of our mock catalogues (solid
lines) and random catalogues (dashed lines, normalized to the total number
of mock sources) in the two HETDEX fields. The structure in the randoms
is caused by the complex, wavelength-dependent flux limits. The number
density is computed assuming the sparsely sampled on-sky area of the two
fields; the Fall field has higher number density as the fill-factor of the area is
larger.

of the two fields. The most prominent troughs in the number density
of the randoms are not due to noise, but the effect of sky lines, which
propagate into the survey’s sensitivity limit. The difference in the
number density between the Spring and Fall fields is mostly caused
by different sky filling factors (i.e. there are more gaps in the Spring
field). This figure shows the effect of the complicated radial selection
function on the detected number density.

2.9 Mock LAE/[O II] galaxy spectra

In order to model the separation of LAE and [O II] emitters as
accurately as possible, we generate mock spectra, which allow us
to model the noise on the measured EWs more accurately. To do
this we follow the approach of Leung et al. (2017). Details are
available in that paper, but summarizing the method is helpful for
future discussion. Equivalent widths are drawn from the distributions
described in Section 2.5, with scale lengths as given in Table 1. A
spectral slope is assigned to the line emitters, based on (g − r)
colours in SDSS filters (Doi et al. 2010) randomly selected from a
distribution that looks like the real data (details in Leung et al. 2017).
The line flux divided by the EW sets the amplitude of the mock
spectra. Then absorption from the intergalactic medium is applied to
the mock spectra from the prescription in Madau (1995), using the
code adapted from Leung et al. (2017) and Acquaviva, Gawiser &
Guaita (2011).

We apply broad-band filters to the mock spectra to simulate
the imaging surveys we intend to use to make estimates of the
continuum flux density. In the Fall field we already have Dark
Energy Camera (DECam; Flaugher et al. 2015) r-band survey data
from the Spitzer/HETDEX Exploratory Large Area survey (SHELA;
Papovich et al. 2016; Wold et al. 2019), and the Dark Energy Survey
(DES; Abbott et al. 2018), so we apply the DECam r-filter (Abbott
et al. 2018). In the Spring field, we have complete coverage with
Hyper-Suprime Cam (HSC) data in the r-band, so we apply the
HSC filter (Kawanomoto et al. 2018). We use the PYTHON library
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SPECLITE4 to supply the filter response functions. Noise is added to
the mock magnitude measurements, using a rough estimate derived
by dividing the 5σ flux limits of the SHELA survey by five. The 5σ

sky-aperture magnitude limits of SHELA were determined by Wold
et al. (2019), and we take the mean of the four different fields in
this work, r = 24.6, converting into flux via Oke & Gunn (1983).
For simplicity, we use the noise based off of SHELA for the whole
survey, which in some areas is actually covered by DES or HSC.
This simplification has some impact on the precision of the assigned
probabilities, but should not affect the conclusions of our work. Also,
early analysis suggests the HSC data is significantly deeper than the
SHELA data, so in the Spring field this is a conservative approach.
The noisy magnitude measurements are combined with the noisy
line flux measurements to make a noisy estimate of the equivalent
width, EWobs.

A few subtleties are worth mentioning here. Firstly, although all
of the noise we add is Gaussian, the distribution of EWobs can be
realistically non-Gaussian due to taking the inverse of the noisy
continuum estimates. Secondly, note we make the assumption in our
mock EW observations that the continuum is flat across the r-band
and the spectral range of HETDEX. In real data more sophisticated
techniques could be used, but here we again decide to be conservative
and make the most simple mock measurements from our spectra.
Finally, note that for the broad bands we use, which are to the red of
Ly α, applying IGM absorption makes no difference to the results,
but we include it in the model for possible future work.

Also following the Leung et al. (2017) approach, we add other
expected emission lines to the spectra of [O II] galaxies (namely
[Ne III] λ3869 Å, H β λ4959 Å, [O III] λ4949 Å, and [O III] λ5007 Å)
using fixed line ratios for one fifth solar abundance (Anders & Fritze-
v. Alvensleben 2003, and references therein). We also add appropriate
Gaussian noise to these lines, following the same wavelength-
dependent noise prediction used for Ly α. These other emission lines
can also be used to identify [O II] emitters in the regions of redshift
where they are within the spectral range of HETDEX. We use this
method to generate 1000 realistic mock HETDEX catalogues.

2.10 A modified method to assign probabilities

To split the mocks into ‘observed’ LAE and [O II] samples, we
assign each mock source a probability of being an LAE, based
on its ‘observed’ properties. To generate these probabilities, we
reformulate the Bayesian method of separating the two classes that
was presented in Leung et al. (2017). We begin by presenting a
conceptually different way to formulate the problem, that results in
a set of more easily evaluated equations. We use the same set of
inputs as in Leung et al. (2017), except for the source colour as it
is unclear whether we will have deep multiband imaging over the
whole HETDEX field. We then consider a small n-dimensional box
in the parameter space of EW, flux, wavelength, and the flux of other
non-[O II]/LAE emission lines. Assuming the primary emission -line
can only be [O II] λ3727 or Ly α, the probability of the source being
an LAE is

PLAE = NLAE

NLAE + N[O II]
, (1)

4Note we use the older ‘DECam 2014’ filters; see the SPECLITE website for
details (https://speclite.readthedocs.io/en/latest/index.html). Using the older
filter curves should not impact our conclusions.

where NLAE and N[O II] represent the number of LAE and [O II]
emitters, respectively, in the box defined in the space of parameters
used for the discrimination. We want this box to be a fixed size
in observed coordinates. If we choose a fractional interval of ±δ

in observed flux (f), equivalent width, (w) and wavelength (λ) this
corresponds to

(1 ± δ)L = (1 ± δ)f × 4πd2
L, (2)

(1 ± δ)w = (1 ± δ)wobs/(1 + z), (3)

(1 ± δ)(z + 1) − 1 = (1 ± δ)λ/λline − 1, (4)

where dL is the luminosity distance. We can now express
the number in terms of integrals over the luminosity function,
�(L/L∗, z) dL/L∗, the equivalent width distribution W(w, z) and
a Gaussian, G(fobs − fexp, σ line), with mean fexp and dispersion σ line.
This last term expresses the difference between the noisy measured
flux and the expected flux, fexp, of a non-[O II] emission line (i.e.
[Ne II], [O II] etc.), in terms of the uncertainty in the measurement,
σ line. This term is the product over all of the other emission lines that
are expected, given the wavelength of detection and assuming the
galaxy is an [O II] emitter. The expression for the expected number
of LAEs or [O II] galaxies is then

N =
∫ (z+1)(1+δ)−1

(z+1)(1−δ)−1

dV

dz
dz′

∫ L(1+δ)

L(1−δ)
�(L′/L∗, z)d(L′/L∗)

×
∏

i=[O III],[Hβ],...

∫ fobs,i (1+δ)

fobs,i (1−δ)
G(f ′ − fexp,i , σi)df ′

×
∫ w(1+δ)

w(1−δ)
W (w′, z)dw′. (5)

This equation is very similar to equation (19) of Leung et al. (2017),
except here we do not normalize by the number density of the
emission line sources at the redshift under consideration. Moreover,
Leung et al. (2017) chose a fixed size value for δ; we set δ to be
infinitesimally small as then we can drop the integrals. The number
in an infinitesimally sized box becomes

N = dV

dz
2δ(z + 1) · �(L′/L∗, z)2δL/L∗ · W (w′, z)2δw

×
∏

i=[O III],[Hβ],...

G(fobs,i − fexp,i , σi)2δfobs,i . (6)

Then, using equation (1), substituting 1 + z with the ratio of observed
to assumed rest wavelength, and cancelling the 2δ and λ terms, the
expression for the LAE probability becomes

PLAE = ÑLAE

ÑLAE + Ñ[O II]
, (7)

with

Ñx = �x

dV

dz
�(Lx/L∗,x

, zx)
Lx

L∗,x

Wx(wx, zx)wx

×
∏

i=[O III],[Hβ],...

G(fobs,i − f x
exp,i , σi)fobs,i , (8)

where x labels whether the relevant functions and measurements are
for LAEs or [O II] galaxies, �LAE = 1 and �[O II] = λLAE/λ[O II].
For LAEs, the expected flux at the wavelength of other emission lines
is f LAE

exp,i = 0, while for [O II] emitters, this value is equal to the relative
line ratio for each line, Ri, multiplied by the observed [O II] flux, i.e.

f
[O II]
exp,i = Rifobs,[O II]. In these simulations we evaluate equation (8)
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using the true underlying input luminosity and equivalent width
distributions, the input line ratios, and cosmology used in the survey.
We also use our mock observed measurements when computing the
probabilities, which adds noise similar to real data. Future HETDEX
papers will carry out more extensive tests and assessments of LAE
classification approaches (Davis et al. in preparation).

Our library to produce these probabilities, and also an implemen-
tation of the Leung et al. (2017) method, has been integrated into the
rest of the HETDEX source classification code, and is also available
online.5 The authors of Leung et al. (2017) provided us with their
original code, which we use as a reference (and for some sections
reproduce directly) in our implementation. This is also true for parts
of the HETDEX simulation pipeline.

2.11 The mock observed LAE and [O II] samples

To generate samples of contaminated LAEs and [O II] emitters from
the mocks, we classify all sources with PLAE > 0.5 as LAE and all
other sources as [O II] galaxies. Despite the fact that these probabili-
ties do not account for the noise on the EWobs or on the LAE/[O II] line
flux, this simple cut produces an LAE sample where only 1.3 per cent
of the sources are misclassified [O II] emitters and 4.4 per cent of the
observed [O II] catalogue are LAEs. This is actually better than the
target LAE sample contamination fraction of 2 per cent, but our
classifier is better than what is obtainable for real data, as it assumes
we know the properties of the input LAE and [O II] populations
perfectly. To consider a pessimistic scenario we also split the samples
using a less conservative cut of PLAE > 0.15, which produces a purer
[O II] sample (contamination fraction of 1.7 per cent), but a greater
number of contaminants in the LAE sample (5.1 per cent). It might
seem surprising that the PLAE > 0.15 cut still gives a relatively small
fraction of contaminants, but it is important to realize the PLAE values
assigned to individual [O II] emitters are skewed towards zero, as for
most sources, the classification is nearly unambiguous. In the rest
of the paper we will refer to the high-contamination sample as that
for PLAE > 0.15 and the low-contamination sample for PLAE > 0.5.
These two samples bracket the expected 2 per cent contamination of
HETDEX.

In order to create a random catalogue that correctly follows the
redshift distribution of the data samples, we also compute LAE
probabilities for the random catalogue and apply the same probability
cuts. If we used random catalogues without contamination the
different redshift distribution of the randoms versus that inferred
for the observed samples would cause a huge systematic bias.

The predicted sample purity, defined as the number of correctly
classified sources in a sample divided by the total size of the sample,
is shown in Fig. 3. The lower redshift limit of this plot corresponds
to our minimum redshift for [O II] emitters (z = 0.05). Although our
simulations make the simplifying assumption of perfect knowledge
of the true distribution of [O II] and LAE properties, we can still see
many features expected for LAE/[O II] classifiers. As the observed
emission line wavelength increases, the volume of space inhabited by
[O II] emitters grows faster than that of the LAEs, causing a decrease
in the purity of the LAE sample. The large, sudden decreases in
the purity correspond to where emission lines useful in identifying
a source as an [O II] emitter are redshifted out of the HETDEX
spectral range. Although the full, high-contamination LAE sample
has an interloper fraction of 5.1 per cent, when the sample is split by

5https://github.com/djfarrow/hetdex-line-classification.

Figure 3. The purity of the mock ‘observed’ LAE (solid red lines) and
[O II] (dashed black lines) galaxy catalogues for the PLAE = 0.5 (top panel)
and 0.15 cuts (bottom panel). We only show the observed wavelength range
where [O II] emitters are included in the simulation. The sharp drops occur
where important emission lines redshift out of the HETDEX spectral range,
specifically [O III] λ5007 [O III] λ4949, H β, and [Ne III] at z = 2.35, 2.38,
2.45, and 3.34, respectively. The inset numbers show the total number
of sources in the full HETDEX redshift range in each of the samples
(including interlopers) for the given cuts. The dotted lines show the best-
fitting contamination values from our linear model of LAE and [O II] purity,
which has two parameters per galaxy type: f(zlow) and f(zhigh). The shaded
regions show the maximum and minimum purity values in the 68 per cent
confidence region (see Section 6.4).

redshift, the contamination can be as large as around 17 per cent in
the highest redshift bins.

3 C O R R E L AT I O N FU N C T I O N S

3.1 Measuring the clustering

The correlation functions of the mock catalogues are measured on a
two-dimensional grid of the galaxy and/or random pair separation, s,
and the cosine of the angle between the pair separation vector and the
LOS, μ. We use the estimator introduced by Landy & Szalay (1993),
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modified for cross-correlation functions by Blake et al. (2006),

ξ (s, μ) = DDc(s, μ) − DcR(s, μ) − DRc(s, μ) + RRc(s, μ)

RRc(s, μ)
, (9)

where c indicates which of the objects in the pair is an [O II] emitter
and DDc(s, μ), DcR(s, μ), DRc(s, μ), and RRc(s, μ) are the binned
counts of pairs of LAEs and [O II] galaxies, [O II] galaxies and LAE
randoms, LAEs and [O II] randoms, and LAE randoms and [O II]
randoms, respectively. The autocorrelation functions are estimated
with the usual Landy & Szalay (1993) estimator. We compute the
LOS direction to each pair of galaxies as the vector between the
observer and the mid-point of the separation vector of the pair. When
measuring the correlation function, we use random LAE and/or
[O II] catalogues at least 13 times larger than the data catalogue,
to decrease shot noise from the randoms. We measure the autocor-
relation functions and the cross-correlation functions assuming Ly α

derived redshifts for both the LAE and [O II] catalogues, except when
measuring the [O II] clustering to use with equation 14, where we
use the [O II] derived redshifts.

The 2D correlation functions are integrated in μ, weighted with
the appropriate Legendre polynomials, to yield measurements of the
first three even multipoles, ξ�(s), following the standard method (e.g.
Sánchez et al. 2017). The covariance matrix is estimated from the
measured multipoles also using the standard approach, i.e.

C��′ (sa, sb) = 1

Nmk − 1

Nmk∑
i=0

(
ξ�(sa) − ξ̄�(sa))(ξ�′ (sb) − ξ̄�′ (sb)

)
,

(10)

where C��′ (sa, sb) is the covariance between multipoles � and �′, for
measurement bins sa and sb. The index i runs over the number of
mock catalogues, Nmk = 1000. The quantities with bars, e.g. ξ̄�′ (xb),
are the mean values from all of the mock catalogues.

The simulated Fall and Spring fields have different average flux
limits due to different values of the Galactic extinction. Normally, if
the fields have significantly different average flux limits, they would
be biased differently and need to be analysed separately. In our
simulations however all the LAE sources have the same correlation
function; we therefore combine the two fields by computing weighted
sums of the multipoles and covariances following equations (8) and
(9) of White et al. (2011).

3.2 Projected [O II] clustering

The [O II] contaminants in the LAE sample are assigned redshifts
assuming the rest-frame wavelength of Ly α, and vice versa for the
LAE contaminants in the [O II] sample. The relation between the
source redshift assuming the emission line is [O II] λ3727 rather than
Ly α is simply given by

z[O II] = (1 + zLAE)
λLAE

λ[O II]
− 1. (11)

As noted in Lidz & Taylor (2016), the misclassification has an effect
very analogous to the Alcock–Paczynski test (Alcock & Paczynski
1979, hereafter AP), in that the three-dimensional positions inferred
from the position and redshift of the sources are distorted. Following
Pullen et al. (2016), Leung et al. (2017), and the earlier similar
derivation from Visbal & Loeb (2010) while adopting a slightly
different notation, we can relate the true separation of a pair of
[O II] emitters, in directions parallel, s ′

‖, and perpendicular, s ′
⊥, to the

LOS, to the separation projected into LAE coordinates (s⊥, s�) by

Figure 4. The solid lines show mean of the [O II] galaxy correlation function
multipoles measured from 199 of our mock catalogues, along with error
bars expected from a single realization of HETDEX. The dotted and dashed
lines show the multipoles when distorted by a projection to different LAE
redshifts, as indicated in the legend. This projection occurs due to LAE/[O II]
misclassification and we model it using equation (14). For visual clarity, only
every fourth data point and error bar is marked, and the correlation functions
have been multiplied by the separation, s.

misclassification with

s ′
⊥ = s⊥c⊥, s ′

‖ = s‖c‖, (12)

with

c‖(zLAE) = λLAE

λ[O II]

H (zLAE)

H (z[O II])
, c⊥(zLAE) = DM(z[O II])

DM(zLAE)
, (13)

where H(z) is the Hubble parameter and DM(z) is the comoving
angular diameter distance to z. This is given by DM(z) = (1 +
z)DA(z), where DA(z) is the angular diameter distance. Given these
distortion parameters, the correlation function can be written as

ξ
proj

[O II](s, μ, zLAE) = ξ[O II]
(
sq(μ), μc‖(zLAE)/q(μ)

)
, (14)

where we do not explicitly show the dependence of q on zLAE to
shorten the notation (for the expression for the power spectrum
see e.g. Pullen et al. 2016; Leung et al. 2017; Grasshorn Gebhardt
et al. 2019). Equation (14) assumes all the evolution of the projected
[O II] clustering is caused by projection effects, as is the case in
our simulations. It should be possible in future work to extend
this methodology to also include intrinsic evolution of the [O II]
correlation function. The value of q is given by Ballinger, Peacock &
Heavens (1996) (see also e.g. equation 9 of Pullen et al. 2016):

q(μ) = [
c2
‖(zLAE)(μ)2 + c2

⊥(zLAE)(1 − (μ)2)
]1/2

. (15)

The equations describing the clustering of LAEs misclassified as
[O II] galaxies are the same but with the inverse of the distortion
parameters, i.e. c−1

‖ and c−1
⊥ . As the distortion parameters are an

approximation of a more complicated effect, we carry out tests
in Appendix A of the distortion parameters compared to a brute
force approach. This appendix also presents an additional test of the
methodology we present in Section 4.2.

The redshift dependence of the distortions causes the clustering
of the [O II] contaminants to evolve with (Ly α-based) redshift. To
illustrate these effects we show in Fig. 4 the mean correlation function
measured from 199 pure mock [O II] catalogues, along with the
same measurements projected on to two different Ly α redshifts. To
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predict the projected measurements, we use equation (14), linearly
interpolating over the measured [O II] correlation function for ξ[O II].
The solid lines show multipoles from the samples analysed with
the [O II] redshifts, the negative quadrapole is evidence of the
Kaiser effect (Kaiser 1987), an effect of the peculiar velocities
of galaxies falling into overdensities. The dashed line shows the
predictions of projecting from the [O II] redshift at z[O II] = 0.21 to
the misclassified LAE redshift of zLAE = 2.7. We see the projection
causes a clear increase in the monopole for all but the smallest
separations under consideration. We also see the quadrupole becomes
much more negative, which is a result of the projected correlation
function appearing very elongated along the direction transverse to
the LOS. The impact of this on the multipoles is much larger than
for the Kaiser effect. In Fourier space, the elongation looks like a
compression along the direction transverse to the LOS (see e.g. fig.
3 of Grasshorn Gebhardt et al. 2019). We also note an increase in the
hexadecapole.

The dotted lines in Fig. 4 show the predicted multipoles of
z[O II] = 0.44 [O II] emitters that are misclassified as zLAE = 3.4
LAEs. We see similar trends to the lower redshift projection, but the
amplitude of the distorted multipoles is lower. This decrease is driven
by c⊥ becoming closer to unity, and the distortion transverse to the
LOS is much larger than the distortion in the parallel direction, c�

(e.g. Grasshorn Gebhardt et al. 2019). We will return to modelling
these signals over a redshift range in Section 4.2.

At this point, we highlight the fact that we always use the true
cosmology when computing the parameters for the projection. As
highlighted by Addison et al. (2019), if we want to make predictions
for the projected functions in the real data, we need to be aware of
the additional uncertainty from not knowing the actual cosmology.
We discuss this again at the end of this paper.

4 D E C O N TA M I NAT I O N ME T H O D S

4.1 Simple decontamination ignoring redshift dependencies

As mentioned, in this paper we develop a new method to deal with
the redshift dependence of the contamination. We start by slightly
modifying equation (12) of Awan & Gawiser (2020) to use the
multipoles of the two-dimensional correlation function instead of
the angular clustering, giving
[
ξ obs
�,aa(s), ξ obs

�,ab(s), ξ obs
�,bb(s)

]T = Ds

[
ξ true
�,aa(s), ξ true

�,ab(s), ξ true
�,bb(s)

]T
, (16)

where � indicates the multipole, ‘a’ and ‘b’ indicate the two possible
samples (in our case LAEs and [O II] galaxies), the ‘true’ and
‘obs’ superscripts indicate the pure and contaminated correlation
functions and Ds is the contamination matrix. The matrix of Awan &
Gawiser (2020) compactly expresses the important equations for
contamination, which have also been presented in other literature
(e.g. Pullen et al. 2016; Leung et al. 2017; Addison et al. 2019;
Grasshorn Gebhardt et al. 2019). The matrix contains contributions
from the fractions of each type of galaxy that were correctly classified
(i.e. the purity), labelled faa, and fbb, and the fractions that were
misclassified, fab and fba. In Awan & Gawiser (2020), this matrix is
given as

Ds =
⎛
⎝ f 2

aa 2faafab f 2
ab

faafba faafbb + fabfba fabfbb

f 2
ba 2fbbfba f 2

bb

⎞
⎠, (17)

where the contamination fractions can be computed from the purity
via fba = 1 − fbb and fab = 1 − faa. To be more specific to the case
of HETDEX, we relabel faa as fLAE and fbb as f[O II]. Also following

Awan & Gawiser (2020), the decontaminated estimates of the auto
and cross-correlation functions can then be given by applying the
matrix inverse to a vector of the observed functions, i.e.[
ξ est
�,aa(s), ξ est

�,ab(s), ξ est
�,bb(s)

]T = D−1
s

[
ξ obs
�,aa(s), ξ obs

�,ab(s), ξ obs
�,bb(s)

]T
.

(18)

The superscript ‘est’ indicates the decontaminated estimates of the
correlation function. Again, for the specific case of HETDEX ξ�,aa(s),
ξ�,bb(s) and ξ�,ab(s) are the autocorrelation functions of the LAE
sample, ξ�, LAE(s), the [O II] sample, ξ

�,[O II](s), and the cross-
correlation ξ�,LAE×[O II](s) respectively. Once we have estimates
of the autocorrelation functions, we can make an estimate for the
contribution of the contamination to the observed cross-correlation
signal, ξ

pred,obs

�,LAE×[O II](s), using equation (16), resulting in

ξ
pred,obs

�,LAE×[O II](s) = fLAE(1 − f[O II])ξ est
�,LAE(s)

+ f[O II](1 − fLAE)ξ est
�,[O II](s). (19)

This can be related to the full decontaminated cross-correlation from
equations (16) and (17) via

ξ est
�,LAE×[O II](s) =

ξ obs
�,LAE×[O II](s) − ξ

pred,obs

�,LAE×[O II](s)

f[O II]fLAE + (1 − f[O II])(1 − fLAE)
. (20)

We will label this approach ‘simple decontamination’ and differen-
tiate it from our new approach of ‘lightcone decontamination’. We
note that Awan & Gawiser (2020) developed this method for angular
clustering in tomographic redshift bins. They do not claim that the
method will work for our scenario, which has rapidly evolving
projected [O II] contamination within the redshift bins considered.
However, we present it in its unmodified form as a demonstration of
what might happen if one does not take additional steps to deal with
this rapid evolution.

4.2 Lightcone-based decontamination

When we apply the matrix of Awan & Gawiser (2020) to HETDEX,
we make the assumption that the clustering of the galaxies classified
as [O II] emitters is the same as the clustering of [O II] interlopers in
the LAE sample with some fixed scaling for contamination. However,
this may not be the case, as the shape of the volume number density
versus redshift, n(z), of the interlopers will not match that of the
[O II] sample when the purity has a redshift dependence. To give a
hypothetical example, consider most of the [O II] emitters being at
the high redshift end of the range. If that were the case, the projected
clustering of the [O II] sample would have distortion parameters
appropriate for high redshifts. If all of the misclassifications occurred
at low redshift, however, then the interlopers would have low-redshift
distortion parameters.

The idea then is to use something like the decontamination matrix
of Awan & Gawiser (2020), but instead of using the observed clus-
tering of the [O II] emitters, we apply a prediction for the clustering
of contaminants that is consistent with the redshift dependence of
the interloper number density, ninter(z). To make a prediction for the
expected interloper clustering in a redshift range, we refer to the
work of Yamamoto & Suto (1999) and Suto et al. (2000). They
approximate the correlation function between two galaxies as the
correlation function at the mid-point between them (equation 19 of
Yamamoto & Suto 1999). This results in a fairly intuitive expression
that approximates the observed correlation function for galaxies in
the redshift range zmin to zmax as an integral of the redshift-dependent
correlation function weighted by the square of the number density as
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a function of redshift, i.e.

ξLC
� (s) =

∫ zmax

zmin
dz dV

dz
n(z)2ξ�(s; z)∫ zmax

zmin
dz dV

dz
n(z)2

. (21)

This differs slightly from equation (18) of Suto et al. (2000) in that
we use the observed number density of objects, not the true comoving
number density in real space, so that the terms related to the selection
function and the AP distortion are unneeded. Equation (21) also
assumes that n(z) does not change much over the separations under
consideration, s < 180 h−1 Mpc, and the redshift evolution of ξ�(s;
z) is slow enough to be unimportant over those same scales. This
is an approximation, as there are certainly redshifts over which the
projected [O II] clustering changes rapidly. But as we will see, the
simplification works reasonably well for our simulations. For surveys
whose properties differ from those of mock HETDEX, it would be
prudent to test the technique with tailored simulations.

To continue, we define a function to carry out the lightcone (i.e.
redshift) integral, F (x, y), as

F (x(z), y(z)) =
∫ zmax

zmin
dz dV

dz
x(z)2y(z)∫ zmax

zmin
dz dV

dz
x(z)2

. (22)

Given equation (22), and using equations (16) and (17) with equa-
tion (21), we obtain the following expression for the prediction of
the observed autocorrelation function for LAEs with redshift z and
purity f(z):

ξLC,obs(s, μ) = F
[
nLAE(z), f 2(z)ξ true

LAE(s, μ, z)
]

+F
[
nLAE(z), (1 − f (z))2ξ

proj
[O II](s, μ, z)

]

+ 2F
[
nLAE(z), f (z)(1 − f (z))ξ true,proj

LAE×[O II](s, μ, z)
]

.

(23)

The subscripts on n(z) indicate which observed sample redshift
versus volume number density should be used. To be closer to
the numerical implementation we replaced the multipoles of equa-
tion (16) with the 2D correlation function; this makes no practical
difference as the decontamination has no μ dependence so the
order of decontamination and converting the measurements into
multipoles is unimportant. The number densities are for the total
‘observed’ samples with contaminants. Here we use the fact that
the (LAE) redshift distribution of the [O II] interlopers is given by
ninter.

[O II](z) = (1 − f (z))nLAE(z). We explicitly include the redshift

dependence of the purity parameters, to differentiate them from their
redshift-independent versions: fLAE and f[O II]. For brevity, we also
drop the LAE subscript from the redshift dependent purity parameter
in this section. Since the integral of the number density gives the total
number of objects, the redshift-dependent and independent types of
purity parameter are related by the lightcone integral, i.e. for the LAE
sample:

fLAE = F
(√

nLAE(z), f (z)
)

, (24)

and the equivalent for the [O II] sample.
Samples of emission-line galaxies with nearby rest-frame wave-

lengths, such as H β and [O III], will have a non-zero cross-correlation
due to large-scale structure, and even distant samples like our LAE
and [O II] galaxies will have a slightly non-zero cross-correlation
due to cosmic magnification of the background galaxies by the
foreground galaxies. As mentioned, our simulations do not include
such magnification, as it is a very small signal. We therefore will now
assume that the true cross-correlation between the [O II] and LAE
samples is zero. This limits the method to scenarios, like HETDEX,

where the contaminants are not correlated with the main sample.
However, future work on surveys with sample-contaminant cross-
correlations could still use equation (23) in an approach that tries to
forward-model the relevant auto and cross-correlations.

Given that the cross-correlation is zero, to find our estimate for
ξ true

LAE(s, μ, z) we now make the assumption that the LAE clustering
does not evolve with redshift, which allows us to take it out of the
lightcone integral and we are left with

ξ est
LAE(s, μ) = F

[
nLAE(z), f 2(z)

]−1
{

ξLC,obs(s, μ)

− F
[
nLAE(z), (1 − f (z))2ξ

proj

[O II](s, μ, z)
]}

. (25)

The integrals over redshift are then all carried out numerically and
an estimate of the true correlation function, ξ est

LAE, can be made.
Even when the assumption that ξ true

LAE(s, μ, z) does not evolve over
the whole survey is unreasonable, this approach can be utilized to
estimate the observed correlation function in bins of redshift over
which that evolution is expected to be small enough that this average
provides a meaningful observable. Additionally, we discuss plans to
relax this assumption in Section 7.

Given our estimate of ξ est
LAE(s, μ), we can use the cross-correlation

term of equations (16) and (17) to predict the observed cross-
correlation measured with LAE redshifts as follows:

ξ
LC,obs
LAE×[O II](s, μ)

= F
[{

nLAE(z)nproj

[O II](z)
}0.5

, f (z)(1 − f[O II](z))ξ est
LAE(s, μ)

]

+F
[{

nLAE(z)nproj

[O II](z)
}0.5

, f[O II](z)(1 − f (z))ξ proj

[O II](s, μ, z)

]

+F
[{

nLAE(z)nproj

[O II](z)
}0.5

,

× {
f (z)f[O II](z) + (1 − f (z))(1 − f[O II](z))

}
ξ

true,proj

LAE×[O II](s, μ, z)
]

,

(26)

where we have restored the cross-correlation term,
ξ

true,proj

LAE×[O II](s, μ, z). Here n
proj

[O II](z) is the redshift distribution

of [O II] emitters projected into LAE redshifts. This latter relation
can easily be measured by computing redshifts assuming Ly α

for the galaxies in the [O II] sample. We cannot estimate the
redshift dependent cross-correlation by simply re-arranging
this expression, but if the cross-correlation is expected to be
non-zero a forward modelling approach could be used. Here we
forward-model the expected cross-correlation signal, using the fact
ξ

true,proj

LAE×[O II](s, μ, z) = 0 in HETDEX, which gives

ξ
pred,obs

LAE×[O II](s, μ)

= F [{nLAE(z)nproj

[O II](z)}0.5, f (z)(1 − f[O II](z))ξ est
LAE(s, μ)]

+F [{nLAE(z)nproj

[O II](z)}0.5,

f[O II](z)(1 − f (z))ξ proj

[O II](s, μ, z)]. (27)

This equation is the lightcone version of equation (19). The use
of the lightcone equations requires a model of the projected [O II]
clustering. As in Section 3.2, we interpolate over the measured
clustering of the [O II] sample, and then apply a redshift dependent
projection via equation (14). To make a fairer comparison of decon-
tamination techniques, we only interpolate over the measurement
of the [O II] clustering for each single realization of the catalogue,
and we use the observed [O II] catalogue, not the pure one. As
the observed [O II] clustering has contamination, we experimented
with an iterative process where we first decontaminate the [O II]
clustering with the projected LAE correlation function, and then
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3198 D. J. Farrow et al.

Figure 5. The left-hand column shows the average difference between the LAE correlation function from 1000 mock LAE catalogues containing [O II]
contamination and the pure catalogues. Each panel is split at s = 20 h−1 Mpc to enable a better vertical and horizontal dynamic range, green crosses indicate
the range of the right-hand panel on the axes of the left. In the right-hand panel, only every fourth data point is marked with a symbol for clarity. The right-hand
column shows the residual signal left when subtracting the predicted cross-correlation from contamination from the measured cross-correlation functions,
averaged over the 1000 mock [O II] and LAE catalogues. Different approaches to dealing with contamination are shown: dotted lines display results with no
corrections, dashed lines show the results of a decontamination procedure that ignores the redshift dependence of the interlopers (‘simple decontaminated’) and
the solid lines show results from our new method that accounts for redshift dependencies (‘lightcone decontaminated’). If the contamination is fully accounted
for, all the differences plotted here should be zero. All results are divided by the error on a single realization, to give a rough estimate of the statistical significance
of any unaccounted for contamination in either method. The colours indicate the mono-(red), quadru- (grey), and hexadeca- (blue) poles of the correlation
function. The different rows show results from the different LAE probability cuts used to define samples: 1.3 per cent contamination (top panels) and 5.1 per cent
contamination (bottom panels); see Fig. 3 for the purity versus redshift of these samples. The dashed, black vertical line shows twice the cell size of the LAE
simulation box.

use the decontaminated [O II] clustering to decontaminate the LAE
clustering. We find the first and second iterations give almost identical
results, so we stop after two iterations and use the resultant [O II]
clustering to decontaminate the LAE measurement.

5 R ESULTS

The differences between the multipoles of the autocorrelation func-
tion for the (de)contaminated and the pure cases (measured from the
corresponding pure LAE catalogues) for the full HETDEX redshift
range (1.9 < z < 3.5) are given in the left-hand column of Fig. 5.
The upper and lower panels in Fig. 5 give the two PLAE cuts under
consideration. The points are the mean of the 1000 mocks. Each
measurement has been divided by the statistical error expected for
the HETDEX survey, i.e. the square root of the diagonal of the
covariance matrix derived from the mocks. As we have 1000 mock
catalogues, the errors on our mean measurement are much smaller
than the statistical error on a single HETDEX mock. In the following,

when we refer to σ , we specifically mean the statistical error on a
single realization.

The right-hand column shows for the same redshift range, the
residual difference between the observed cross-correlations of the
[O II] and LAE samples, and the predicted cross-correlation from
the contamination, from equation (19) for the simple method and
equation (27) for the lightcone method. The differences are divided
by the statistical errors. Recall from equation (20) that for the
simple method the decontaminated cross-correlation is related to the
residual we plot, ξ obs

�,LAE×[O II](s) − ξ
pred,obs

�,LAE×[O II](s), by a constant

factor. As we divide by the statistical error, this means the residuals
we plot for the simple decontamination method are also the statistical
significance (ignoring the diagonal terms of the covariance) of
the spurious cross-correlation signal that remains in the simple
decontaminated multipoles. We chose to frame the discussion of the
simple method in terms of the residuals, in order to make comparisons
to the lightcone approach easier.

In the following subsections, we study the impact of contamination
on the raw (Section 5.1), the simple decontaminated (Section 5.2),
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Redshift-dependent contamination 3199

and lightcone decontaminated (Section 5.3) multipoles. The final
subsection considers the scenario where the redshift range with
no modelled [O II] emitters (z < 0.05) is cut out of the catalogue
(Section 5.4).

5.1 Raw clustering multipoles

It is clear from the dotted lines Fig. 5, which show the results from
the raw measurements of the contaminated mocks, that interloper
contamination modifies the correlation signals. This has been previ-
ously seen or predicted many times in the literature (e.g. Leung et al.
2017; Addison et al. 2019; Grasshorn Gebhardt et al. 2019; Awan &
Gawiser 2020; Massara et al. 2020). In the low-contamination LAE
sample, the offset in the autocorrelation is generally <1σ but reaches
a maximum difference of ∼2.5σ at scales down to twice the cell size
of the lognormal simulations (indicated by the vertical dashed line).
In the high-contamination sample, where 5.1 per cent of the LAE
catalogue are [O II] galaxies, many of the autocorrelation function
hexadecapole measurements are systematically high by up to 2σ

at separations >20 h−1Mpc. At smaller scales, where the effect of
the contamination appears greater, the raw autocorrelation function
multipole measurements can be biased by several σ .

The signal of contamination in the cross-correlation function is
even stronger. We can see from the right-hand column of Fig. 5 that
we expect the signal to be clearly detected in the HETDEX survey,
even at low levels of contamination. The cross-correlation function,
which is zero for pure samples, shows a positive monopole and
hexadecapole, and a negative quadrupole. The negative quadrupole
implies that the two-dimensional cross-correlation function appears
elongated transverse to the LOS. This could be explained by the
fact that the cross-correlation is dominated by the strong clustering
signal of [O II] galaxies (Grasshorn Gebhardt et al. 2019), which, as
mentioned, appears elongated due to projection effects.

5.2 Simple decontaminated measurements

In this section, we use equation (18) to decontaminate the galaxy
samples while ignoring redshift dependencies in the interloper
fraction. We take the required contamination and purity factors, i.e.
the components of Ds, from the numbers of LAEs and [O II] emitters
in the mock catalogues averaged over the realizations; in real data,
some procedure will be needed to measure the contamination and
purity. We cover this scenario in Section 6.

The dashed lines in Fig. 5, labelled ‘simple decontaminated’, show
the results. In the low-contamination LAE sample (1.3 per cent [O II]
galaxies), the simple method results in all of the multipoles having
no significant systematic bias (<1.0σ ) all the way down to the
resolution limit of the catalogue. The decontaminated measurements
are a modest improvement over the raw measurements. In the
high LAE sample contamination case (5.1 per cent [O II] emitters),
the decontamination improves the monopole, but at small scales,
the monopole still has a bias approaching ∼2σ . Additionally the
hexadecapole is biased up to ∼1.5σ low after the decontamination –
a bias in the opposite direction from what was seen in the raw data.

Subtracting the predicted contribution to the cross-correlation
from contamination decreases the observed cross-correlation. How-
ever, the correction is too small, and very significant (>5σ over
a range of scales) cross-correlations still remain in the high-
contamination case. The low-contamination sample also shows
residual cross-correlation signals that increase relative to the sta-
tistical errors. As smaller separations are considered, these signals
increase, causing what can be as great as an ∼5σ spurious signal.

As mentioned, the residuals we plot are related to the full decon-
taminated cross-correlation from the simple method via a constant
factor (equation 20), meaning they also show the significance
of spurious cross-correlations left after the full decontamination
process. Although a strong cross-correlation signal would not be
expected to directly affect cosmological parameters derived from
HETDEX, a non-zero cross-correlation after simple decontamination
does suggest a failure of the modelling, which can cause indirect
effects. For example, the methods presented in Addison et al. (2019)
and Grasshorn Gebhardt et al. (2019) use the cross-correlation signal
to determine the purity and contamination of the LAE and [O II]
samples. If the lightcone effects are ignored, then inferred values of
the contamination will become artificially high in order to force the
decontaminated cross-correlation towards zero. This, in turn, would
impact the contamination and purity values used to decontaminate
the autocorrelation, causing additional bias in their measurement.
We will demonstrate this in Section 6.

5.3 Lightcone decontamination

In this section we apply our new method of decontaminating the
samples while accounting for lightcone/redshift effects. As with
the simple method, we will start by assuming perfect knowledge
of the purity and contamination, i.e. f(z) and f[O II](z), and use
the redshift-dependent contamination fraction measured from the
random catalogues (i.e. Fig. 3). The results of this are the solid lines
in Fig. 5.

In the low-contamination LAE sample autocorrelation function,
we see little meaningful difference when compared to the simple
method. Both return clustering multipoles with very little evidence of
systematic bias. On the other hand, in the high-contamination sample,
the lightcone-based contamination does a better job at correcting the
multipoles. Down to a scale of 20 h−1Mpc, the new method returns
measurements with a bias less than ∼0.25σ .

The differences between the lightcone model predicted and mea-
sured cross-correlation functions show an even greater improvement
over the simple method. In both the low- and high-contamination
scenarios, the new method accounts for the spurious cross-correlation
signal leaving less than ∼1σ residuals at all scales greater than twice
the cell size of the LAE simulation box.

The improvements seen in our approach support the idea that the
residual, biased signals seen when using simple decontamination
come from applying it to clustering measurements without account-
ing for the significant redshift evolution of the projected clustering
and the contamination fraction within the redshift bin.

5.4 Restricted redshift range

The redshift range studied so far, 1.9 < z < 3.5, includes a volume
in which we expect there to be no [O II] emitters. This is strictly
true at redshifts 1.90 < zLAE < 2.06, since at these redshifts, [O II]
λ3727 would need to be blueshifted to be confused with Ly α. As
mentioned, for zLAE < 2.22, the very small redshift of the [O II]
emitters (z[O II] < 0.05) would likely allow their classification via
their physical sizes and appearance on broad-band images. Thus,
while studying the full redshift range of HETDEX is a perfectly
valid approach, we would also like to see what would happen if we
restricted measurements to the range over which [O II] galaxies are
included in our simulations (z[O II] > 0.05). Removing the redshift
range over which the LAE sample is pure means the contamination
fraction for LAEs increases to 6.8 per cent for the high-contamination
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3200 D. J. Farrow et al.

Figure 6. The same relations shown in Fig. 5, except now the redshift is restricted to the range over which [O II] emitters are simulated (z[O II] > 0.05). The
results are very similar, though the residual spurious cross-correlation signal seen when ignoring the redshift dependence on the contamination is decreased.

sample (defined by PLAE > 0.15) and 1.8 per cent for the low-
contamination case.

In Fig. 6, we show results for the redshift range 2.22 < z <

3.5. As before the plots with autocorrelations show the difference
between the (de)contaminated measurements and those from the
corresponding pure catalogues with the same redshift range. In the
new case, the contaminated cross-correlation function looks the same
as for the full redshift range. However, the simple decontamination
procedure, which ignores the redshift dependence of the purity within
the redshift bin, works better than for the full z range. None the
less, it can be seen from Fig. 6 that even when cutting out redshifts
with the most dramatic changes in purity and contamination, not
accounting for lightcone effects can still cause biases. In the lower
contamination case, the simple decontamination leaves an ∼2σ

biased cross-correlation monopole at separations s > 20 h−1 Mpc.
This bias increases to ∼5σ for the higher contamination case.
The autocorrelation also displays significant biases in the high-
contamination case if redshift effects are ignored. The hexadecapole
shows a systematic bias even at large scales of up to ∼1σ , while
the monopole shows an ∼2σ bias at the resolution limit of the
simulation.

In contrast, as for the full redshift range analysis, the new
lightcone-based decontamination method returns very close to
the true autocorrelation function down to twice the cell size of
the LAE box, and also accurately predicts the cross-correlation,
with only tiny insignificant residuals, over the same range of
scales.

6 FI T T I N G TH E C O N TA M I NAT I O N

6.1 Fitting model and technique

The work so far has assumed we have perfect knowledge of the
contamination. We now attempt to fit for the contamination by min-
imising the residual cross-correlation function, which as mentioned
previously, should be zero for the case of perfect decontamination
as the LAE and [O II] samples are in completely separate volumes.
We do this using both the simple method and our lightcone-based
approach to decontamination. We minimize the residual difference
between the observed cross-correlation multipoles and the predicted
cross-correlation multipoles evaluated using equations (19) and (27)
for the simple and lightcone methods, respectively:

χ2 =
(
ξ obs

LAE×[O II] − ξ
pred,obs

LAE×[O II]

)T

×C−1
(
ξ obs

LAE×[O II] − ξ
pred,obs

LAE×[O II]

)
, (28)

where ξLAE×[O II] is a vector of all the decontaminated multipole
measurements, with superscripts indicating the observed (‘obs’) and
predicted (‘pred, obs’) cross-correlation functions due to contamina-
tion, and C is the covariance matrix of ‘observed’ cross-correlation
functions that we measure from the mock realizations. The data
to which we fit our model are the mean of the 1000 measured
cross-correlation functions, but we use the covariance matrix, C,
appropriate for a single realization. This means our results will
have the reported uncertainty appropriate for a single HETDEX
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Redshift-dependent contamination 3201

Figure 7. The MCMC 68 and 95 per cent contours for the simple decon-
tamination method fits to the contaminated cross-correlation multipoles for
the high contamination, PLAE > 0.15 sample. The plots assume a single
parameter purity model for LAE and [O II] galaxies. The dotted lines show
the true purity measured directly from the mock catalogues. The normalized
and marginalized 1D likelihoods are also shown.

realization, but they will be centred much closer to the best model
description than statistically likely for real data.

In the lightcone method for the redshift dependence of the
decontamination, we use a two-parameter model for each sample,
where we fit the purity at the high and low edges of the redshift bin
f(zlow) and f(zhigh) for both LAEs and [O II] galaxies, corresponding
to four parameters in total. We linearly interpolate between the two
purity fractions to return purity values for the intermediate redshifts.
This is motivated by considering the simplest model that could fit
the redshift dependent contamination fractions shown in Fig. 3.

We need models of the LAE and [O II] clustering to make
predictions for the cross-correlation for given contamination param-
eters. One approach could be to use the measured LAE and [O II]
correlation functions, decontaminated using the model whose χ2 is
being evaluated. Since our aim is to present a proof of concept, and
highlight the sensitivity of these statistics to the redshift dependent
f(z), we avoid this extra complication by using the true [O II] and
LAE correlation functions, taken as the mean measurement of the
1000 pure mocks of the Fall field. For the [O II] correlation function
in the simple method we use the mean correlation function measured
from 1000 pure [O II] catalogues using LAE redshifts.

If one did estimate autocorrelation functions from the data, then
their errors would have to be accounted for in the fitting routine.
For the simple method one could use equation A16 of Awan &
Gawiser (2020), which is an expression for the covariance of the
decontaminated auto and cross-correlation functions that propagates
the errors on the observed auto and cross- correlation functions.
For the lightcone method, we argue we can avoid these issues in
future work by including models of the LAE and [O II] correlation
functions in the fitting (see more discussion in Section 7). As
we only use the covariance of the cross-correlation function in
our fits, it means the uncertainties in our parameter estimates
correspond to the unrealistically optimistic scenario of perfect
measurements or knowledge of the LAE and [O II] autocorrelation
functions.

We fit the sample in the restricted redshift range 2.22 < zLAE <

3.50, since we assume all lower redshift [O II] emitters can be
correctly classified by imaging. We note even in the restricted redshift
range there is an area that in practice has 100 per cent LAE sample
purity, where many other [O II] emission lines also lie in the HETDEX
spectral range. Because of this, and the presence of other sharp
features in the purity versus redshift relation, our simple straight
line model for the contamination is not an ideal model of f(z).
Nevertheless, we shall see it does a reasonable job of describing
the behaviour of contaminants.

To explore the posterior of the contamination model parameters,
we use the software package COBAYA (Torrado & Lewis 2021), which
uses the MCMC sampler of Lewis & Bridle (2002) and Lewis (2013).
We use a flat prior between 0.6 < f < 1.0 for the purity parameters,
and compute the likelihood as L = exp(−χ2/2). We ran eight chains
for each fit and set the convergence criteria in COBAYA to require
that a value of the Gelman–Rubin statistic (Gelman & Rubin 1992;
Brooks & Gelman 1998), modified as described in Lewis (2013), of R
− 1 = 0.005 is achieved (the COBAYA parameter RMINUS1 STOP). The
smallest separation bin we use is 15.0 < s[ h−1 Mpc] < 20.0. Even
though we assume perfect knowledge of the LAE and [O II] autocor-
relation functions, we avoid using smaller scales in the fit. This mim-
ics a scenario where a model of the autocorrelation function might not
work sufficiently well on small, more non-linear scales. The MCMC
contour plots, confidence intervals, and best-fitting parameters were
derived using the GETDIST Python package (Lewis 2019).

6.2 Results of the fit from the simple method

The simple method results of our MCMC fits to the cross-correlation
function of the low-contamination LAE sample yield the sample
purities f̃ = 0.975 ± 0.003 for LAEs and f̃[O II] = 0.96 ± 0.03
for [O II] emitters. The tildes specify quantities estimated from the
MCMC fitting. We quote the best-fitting value and the range between
the maximum and minimum value within 68 per cent of the highest
likelihood weighed chain values. In Section 6.4 we explain why
we do this rather than quoting the marginalized mean and standard
deviation. These values can be compared to the total purity and
contamination of the whole sample. The LAE purity has a slight bias
with respect to the true purity of the sample (f = 0.982), while the
[O II] purity value agrees with the true value of f[O II] = 0.956 (these
true values are exact to the given number of significant figures.) Note
that since we fit to the mean of the mock measurements, the detection
of this bias in LAE purity is more significant than its size.

The biases from the simple method of fitting for contamination are
small in the low-contamination sample. In the high-contamination
case (where 6.8 per cent of the LAE sample in the restricted redshift
range are [O II] emitters), the bias on the LAE contamination is
larger. We plot the results of the MCMC chains in Fig. 7. We can
see from the figure that the LAE purity is much better constrained
than the [O II] purity; the best-fitting LAE and [O II] purity values
are f̃ = 0.907 ± 0.004 and f̃[O II] = 0.99±0.01

0.03, respectively. For
comparison, the true purity values are f = 0.932 and f[O II] = 0.983.
In this case, the LAE purity measurement is biased much lower than
the truth, which is because the true purity values leave spurious
cross-correlation signals (see Fig. 6), so a better χ2 is given by
biased parameters that return a smaller cross-correlation signal.

6.3 Results of the fit using the lightcone method

We now turn our attention to the new lightcone decontamination
model, which uses two parameters to describe the redshift depen-
dence of the sample purity. The results of our MCMC fitting of
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Figure 8. The 68 and 95 per cent MCMC contours derived by fitting the cross-correlation function of the mock catalogues using a two parameter model for
the purity to the LAE and [O II] samples. These results are from our lightcone decontamination method. The data are for the high-contamination PLAE > 0.15
sample, which has an average contamination rate of 7 per cent. The normalized, marginalized 1D likelihoods are also shown. A redshift dependence of the
contamination of the LAEs is clearly detected.

the cross-correlation function for the high-contamination sample
are given in Fig. 8. We can see a degeneracy between the low
and high redshift purity limits. Lower high-redshift completeness
can be somewhat mitigated by higher low-redshift completeness.
However, this degeneracy is not complete, and more contamination
at higher redshifts is favoured. The [O II] emitters, on the other hand,
are consistent with 100 per cent purity and there is no significant
detection of any redshift dependence of the contamination.

The MCMC chains of the low-contamination sample also show
the contamination of the LAEs is detected. In this case, however,
no redshift dependence on purity is found. For the [O II] sample,
100 per cent purity is disfavoured but there is a degeneracy in the
f[O II](zlow) and f[O II](zhigh) parameters, which means the slope
of the purity-redshift relation is not well constrained. Unlike in the
simple method, there is no true value to compare the best-fitting
parameters to (or to include in Fig. 8), as a straight line is not a
perfect model of the true f(z) or f[O II](z). Instead, in Section 6.4,
we compare the straight-line fit from this method directly to the true
purity versus redshift relations.

6.4 Constraints on the purity

We now wish to visualize our constraints in a plot of purity versus
redshift. The flat priors on the purity at the ends of the redshift

range result in non-flat priors on the derived values of purity at
intermediate redshifts. For example, at the centre of the redshift
range a contamination fraction in the middle of the prior range is
favoured, as there are more allowed values of f(zlow) and f(zhigh)
that produce a purity crossing that point. In addition, we have the
added complication that the expected purity is very close to the
priors we use, and those priors cannot be expanded without including
nonsensical values of purity (i.e. >1.0). Therefore, to minimize the
effects of priors when plotting the purity constraints of Fig. 3, we
do not plot the weighted mean and standard deviation of the chains.
Instead we show the best-fitting parameters as a dotted line, and the
maximum and minimum values of purity in 68 per cent of weighted
chain values with the highest likelihoods as a shaded region. We
compute these parameters using the likelihood functions in GETDIST

(Lewis 2019).
We can see in Fig. 3 that for both of the PLAE cuts, and for

both the LAE and [O II] galaxy samples, the best-fitting parameters
qualitatively reproduce the slope and amplitude that would be
expected for a straight line fit to the more complex behaviour of
the true purity. The true purity as a function of redshift is nearly
always within the minimum and maximum range defined by the
68 per cent of chain positions with the highest likelihood. We do
however see the true purity is slightly outside the region at the two
redshift extremes. This is reasonable, as at those positions the true
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purity deviates most from the straight line. It is possible the fits could
be improved by adding additional parameters to the model to mimic
the sharp drops in purity. However, we will see in Section 6.5 that this
detailed modelling is unnecessary to decontaminate the clustering
measurements for the scenarios considered here. It is also unclear
whether the data are really constraining enough to warrant additional
model parameters.

In general, we see that the LAE purity is better constrained than
the [O II] purity. A possible cause of this is the choice of measuring
the cross-correlation function using LAE redshifts for both samples.
This mapping between observed wavelength and redshift means
that the LAE contamination in the [O II] sample has a correlation
function that is fixed with redshift. This allows us to remove it
from the integral in equation (27). Since the LAE clustering term
is independent of redshift, the sensitivity to the redshift dependence
of purity in equation (27) comes from the f[O II](z)(1 − f (z)) term.
This term is most sensitive to changes in f(z), since f[O II](z) is
always close to one but (1 − f(z)) is always very small. One way to
better constrain the [O II] purity versus redshift could be to measure
the cross-correlation using [O II] redshifts for all sources. Then the
projected LAE clustering would evolve over the redshift range of
[O II], making the cross-correlation more sensitive to f[O II](z).
Note this approach is not guaranteed to give a strong constraint
on the [O II] purity, as the LAE sample has an intrinsically weaker
correlation function, which may get even weaker when projected to
lower redshifts. Since we are mainly interested in the contamination
of the LAE correlation function, and f(z) is the only purity term
appearing in equation (17), we leave further study of this to future
work.

6.5 Using the fitted contamination

In Section 5, we assume we have perfect knowledge of the purity as
a function of redshift. Here we use the purity we have fit from the
cross-correlation function, to see if it can be used to give unbiased,
decontaminated measurements of the autocorrelation functions. We
decontaminate the measurements from the two fields separately
using the estimated parameters from the combined field, and then
combine them after the decontamination (following, e.g. White et al.
2011). To test if combining before or after decontamination makes
a difference in our mocks, we tried combining the two fields before
decontaminating for one of the scenarios, specifically the high-
contamination sample using the simple decontamination method. We
found results that agree closely, confirming the order of combining
and decontaminating is not important for our mocks. In the future,
further tests could be carried out to find if this is also the case with
the real HETDEX data.

In Fig. 9, we show the results of using the best-fitting contam-
ination parameters. We can see that these parameters return much
smaller residual cross-correlation signals than the true parameters
for the simple approach that ignores redshift effects. This is because
it is able to fit the extra cross-correlation signal with artificially low
purity values. However, the LAE autocorrelation function shows the
danger in this, as the incorrect inferred purity values results in even
more biased results than when using the true values. The monopole
from the high-contamination sample can have a ∼2σ bias even at
larger scales (s > 20 h−1 Mpc) and the bias gets even worse at small
scales. The low-contamination sample monopole shows a ∼1σ bias
at large scales, increasing to ∼2σ at small scales.

In contrast, our new lightcone method of accounting for the redshift
dependence of contamination works well for both the auto and cross-
correlation functions, yielding autocorrelation measurements with

only an ∼0.3σ bias at large scales (s > 20 h−1 Mpc) and biases
smaller than the statistical error down to twice the cell size of
the simulation box. The results from the fitted contamination are
slightly worse than the results from using the true purity versus
redshift, but this is to be expected, given the limitations of the
model parametrization and the added uncertainties from the fit. These
results show this method could potentially be used to both fit for
contamination and correct clustering measurements.

It is important to note that in Fig. 9 we have the benefit of a best-
fitting purity measured from our large number of mock catalogues.
In the real data, there will be some statistical error associated with
the best-fitting purity parameters that would have to be propagated
into the final results.

It should also be noted that an alternative method of deriving the
f(z) to the one presented here is to use the simple decontamination
method in narrow redshift bins where the contamination and projec-
tion parameters are roughly constant. This could have benefits, such
as avoiding potentially losing information by not integrating over
redshift, and not needing a model of the LAE or [O II] correlation
function. On the other hand, using narrow redshift bins would make
the individual measurements noisier. We leave a comparative study of
these approaches for later work. We also highlight regardless of how
the f(z) is derived, the lightcone formalism allows one to optimize the
size of redshift bins for the cosmology measurements without having
to be restricted by the requirement of avoiding projected interloper
clustering evolution.

7 C O N C L U S I O N S

We generated 1000 mock catalogues of the HETDEX survey, which
include clustering, redshift-space distortions, redshift-dependent
noise, and a realistic selection function. We used a reformulated
version of the probabilistic classifier of Leung et al. (2017) to generate
catalogues of LAEs with realistic, redshift-dependent [O II] galaxy
contamination, and considered two scenarios that bracket the ex-
pectations for HETDEX: low (1–2 per cent) and high contamination
(5–7 per cent). These catalogues were used to explore the impact
of the redshift dependence of the contamination fraction and the
correlation function of the contaminants on the observed correlation
functions.

The mock catalogues show that existing methods of decontami-
nation such as Awan & Gawiser (2020), and other methods that do
not account for redshift evolution of the interlopers within a redshift
bin, should not be directly applied to clustering measurements from
a survey such as HETDEX, unless the analysis is restricted to using
redshift bins that are narrow enough for the evolution effects to
not be important – which is unlikely to be ideal for the HETDEX
cosmological analysis. This is because in HETDEX both the [O II]
galaxy contamination fraction and the projected [O II] clustering vary
with redshift. Although in the low-contamination cases we consider,
such methods may be effective enough, when the contamination is
larger (with misclassified fractions of 5–7 per cent) biases appear.
In the autocorrelation function, these biases can be larger than the
statistical error of HETDEX. Moreover, the biases in the cross-
correlation signal are even stronger, with a spurious signal of more
than 5σ of the expected statistical noise being left after subtracting
the expected cross-correlation from contamination. A biased, decon-
taminated cross-correlation function is not a problem for HETDEX
in itself. However, we have also shown the inability of the simple
decontamination method to correctly account for the spurious cross-
correlation signal results in biases in the inferred contamination
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Figure 9. This same plot as in Fig. 6, except now instead of using the true purity as a function of redshift, the purity values are determined by fitting the
cross-correlation functions. In this case all decontamination methods are forced towards returning a zero residual cross-correlation signal in order to minimize
the χ2. However, if we ignore the redshift dependence of the contamination, the best-fitting contamination value is too high; this error propagates directly into
additional biases in the decontaminated LAE autocorrelation function. The new biases are most noticeable in the higher contamination results shown on the
left-hand panel of the bottom row. The new lightcone approach however works well for both the auto and cross-correlation functions.

fractions from fits to the observed, raw cross-correlation functions.
If these incorrect contamination fractions are used to decontaminate
the autocorrelation function, additional biases will be propagated
into the measurements used to fit cosmological parameters.

We present a method to account for the redshift effects that
can be applied when there is no true cross-correlation between
the pure samples of the target galaxies and the contaminants. Our
method combines the literature approach to decontamination with the
models of correlation functions integrated along a lightcone given
in Yamamoto & Suto (1999) and Suto et al. (2000). This method-
ology is needed in scenarios like HETDEX, where the correlation
function of the [O II] interlopers evolves rapidly due to projection
effects. Accounting for the lightcone effects gives a much better
model of the cross-correlation, and it also produces decontaminated
autocorrelation functions that agree with the pure measurements to an
accuracy much smaller than the statistical noise down to 20 h−1 Mpc.
Although we formulate this work for the correlation function, our
findings should also apply to the power spectrum.

The work on this topic is not complete. The method we have
developed is an improvement over existing methods, but we still have
to assume that the true clustering of LAEs and [O II] galaxies does not
evolve with redshift. Allowing for evolving LAE and [O II] correla-
tion functions is possible in the framework we present however, and
such an evolution could be constrained with autocorrelation function
measurements from the data. We also mention once more that we
always compute the projected clustering using distortion parameters

assuming a true cosmology. As advocated by Addison et al. (2019),
future work could consider the impact of this limitation.

Although our decontamination method itself relies only on inter-
polating over the observed correlation functions and the assumption
of a fiducial cosmology for computing the distortion parameters, our
method of fitting the contamination assumes perfect knowledge of
the LAE and [O II] autocorrelation functions. One way to make our
experiments with fitting the contamination applicable to real data
would be to develop an approach that simultaneously fits models
of the cosmology, bias, and the contamination parameters to both
the cross- and autocorrelation functions. The distortion parameters
could also be modified to be consistent with the different cosmologies
during the fit, solving a further issue.

Simultaneously fitting contamination, galaxy bias, and cosmology
is advocated in e.g. Addison et al. (2019) and Grasshorn Gebhardt
et al. (2019). While their approaches assumed single contamination
values for the whole sample, we would suggest including our new
redshift dependent modelling of contamination. This is especially
true if the contamination fraction of HETDEX is closer to 5 per cent
than 1 per cent, and if there are significant differences in the sample
purity at different redshifts. Before applying the method to real data,
a modelling pipeline that includes redshift-dependent contamination
should be tested on more realistic simulations than our lognormal
mocks. These simulations should include possible evolution in
the true galaxy correlation function and a better modelling of the
clustering and redshift space distortions on non-linear scales.
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To summarize, this paper highlights the importance of the redshift
dependence of the contamination, presents a method to model these
effects, and shows that such effects should be considered when de-
contaminating clustering measurements from surveys with redshift-
dependent contamination within the adopted redshift bins. These
effects are particularly important when using the cross-correlation
function to constrain contamination.
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APPENDIX A : TESTS OF THE PRO JECTION

In this section, we further test our modelling of the lightcone
projection and our use of the distortion parameters c⊥ and c�. To
do this, we measure the projected clustering of pure samples of
[O II] emitters in 1000 of our Fall field mock catalogues. This means
we measure the multipoles of a pure [O II] catalogue assuming Ly α

redshifts for everything. To assess how well equation (21) models the
redshift dependent distortion of the [O II] density field, we compute
a prediction of the projected correlation function for the redshift
interval 2.22 < z < 2.5 via

ξ proj(s, μ) = F
[
n

pure

[O II](z), ξ proj

[O II](s, μ, z)
]
, (A1)

where n
pure

[O II](z) is the number density as a function of LAE redshift

of the projected, pure [O II] sample. We then compare the multipoles
of the result to the multipoles measured from the mock catalogue
ξmock
� (s).

The difference between the mock and predicted multipoles of the
projected [O II] galaxy correlation function is given as dashed lines
in Fig. A1; the measurements are divided by the statistical error
expected for one HETDEX Fall-field realization. We can see only
very small (∼0.2σ ) differences between the statistical errors down to
s = 20 h−1 Mpc, which gives further confirmation of our use of the
Yamamoto & Suto (1999) and Suto et al. (2000) approach to account
for the redshift dependence of the projection parameters. On scales
smaller than this, the differences increase, becoming approximately
the same size as the statistical error around s = 10 h−1 Mpc. It is
unclear why the modeling of the projection does not work perfectly
down to the smallest scales, but for the purposes of decontaminating
the LAE signal, the projected [O II] clustering is down weighted by
the square of the LAE sample contamination. Thus, this small bias

Figure A1. The difference between the mean multipoles measured from
1000 Fall field mock catalogues of [O II] emitters, analysed using redshifts
assuming the [O II] emitters are actually LAEs, and our prediction of the
projected [O II] galaxy clustering. Dashed lines use our standard approach
with distortion parameters and an integral along the redshift range. The dotted
lines replace the distortion parameters with the brute force approach detailed
in the text. The distortion parameters and the brute force approach give nearly
indistinguishable results. The plot is split into two panels to allow a larger
dynamic range, in the right-hand panel only every forth data point is marked
with a symbol for visual clarity.

should not affect our results on LAE clustering decontamination. In
Section 6, where we fit the cross–correlation, we restrict ourselves
to larger separations that will also mitigate any possible effect.

In this paper, we use a model of ξ
proj

[O II](s, μ, z) that relies on

distortion parameters, i.e. equation (13). These distortion parameters
are, however, an approximate model of the effects of the true
projection as they do not account for the different redshifts of the two
galaxies in the pair. We therefore also compute a mapping between
the s and μ coordinates using a brute force method. In 800 uniform
bins of LAE redshift within 2.06 < z < 3.5 (i.e. the range where a
Ly α emitter has a wavelength greater than 3727 Å), we generate
pairs of galaxies in Cartesian coordinates with given values for
the true separation s, μ and compute an observed Right Ascension
and Declination to a virtual observer. The pairs we generate are
always in a plane and use a fixed LOS. We then recompute the
Cartesian coordinates from our ‘observed’ coordinates but assume
[O II] redshifts, and recompute the LOS to the galaxy pair. By
measuring the r′, μ′ of this projected pair we generate a look-up
table between true and projected coordinates in 400 bins of r and μ.
We interpolate over this 3D look-up table to provide an alternative
coordinate mapping for our model of the projected [O II] clustering.

The dotted lines in Fig. A1 show the difference of the mock
multipoles and the projected multipoles using the brute force look-
up table for the mapping between LAE and [O II] coordinates.
There is extremely close agreement between the predictions using
the distortion parameters and the brute force look-up table. This
confirms that the distortion parameters c�, c⊥, which are advocated
by several other authors (e.g. Visbal & Loeb 2010; Gong et al. 2014;
Lidz & Taylor 2016; Pullen et al. 2016; Leung et al. 2017; Grasshorn
Gebhardt et al. 2019), are an excellent model of the true distortion
for the HETDEX LAE/[O II] confusion scenario.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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