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MJ-MESONIC MOLECULES: I. THE THREE-BODY PROBLEM¥
Stanley Cohen, David L. Judd, and Robert J. Riddell, Jr.
Radiation Laboratory
University of California
Berkeley, California

August 1, 1958 °

ABSTRACT

An approximate method is developed for treating a generalized hydrogen=-

molecule ion in which two heavy particles have positive unit charges and one

light particle has a negative unit charge. The expansion parameter of this approxs. -

imation is the ratio of the light to the heavy mass. In first order, the method

'requirés_finding & solution to a pair of ordinary,'secondaorder differential

eqpations,'which are coupled unless the masses of the heavy particles are equal. -
Explicit ekpres§ions for the‘céefficients in these egquations are derived. The
asymptotic forms of these coefficient§ for large nuclear seﬁarations give to

first order the reduced-mass corrections to the binding energy of the light
particle on either of the two heavy particles. The usuai écattering théory is".
extended to obtein formulae for the.various possible cross sections associated -
with thié sysfeme An iterative, variational technique for obtaining eigenvalues

and eigenfunctions for bound states of the system is presented.

*
- This work was performed under the auspices of the U.S. Atomic Energy Commission.
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August 1, 1958

~ I. INTRODUCTION

The eXperimental_observation of u_-méson;induced fusion in a hydrogen .
bubble,chamberl has led to an increased interest in the three-body system
consisting éf a light negativély charged particle in the presence of.two
heévier positively charged nuclei. This system, the generalized hydrogen
molecﬁlar ién, has been treated in the paét by the approximation of Born and
Oppenheimer.2 'In this-aéproximation the expansion parameter is the fourth root
of the ratibvof thévmass of the.light particle to;ihat;of the heavier particles.
For electronic.mqlecules this quantity is small (~ % )-aﬁd the approximation

is sufficiently accurate to be useful in many calculations. For p-mesonic

molecules, however, the corresponding value is nearly one (~/ % ), and the

- approximation is open to question.

In thisrpéper we develop a method.based on a Variatiopal_approximation :
to the ﬁave function of this three-body éystem.' Although this method has the
same starting point as the Born-Oppenheimer approximation——namely,'the soiution :
fof the motion of the light  particle with the heaﬁy ones held fixed--it leads
to an expansion parameter that is the ratio of the masses themselves. In the
present approximate treatment first—érder terms in,this parameter havelbeen
included, while second-order ones are ignored. When the masses of the two
nuclei are not equal, it is essential that the first-order terms be included,

because they lead to the distinctive features of the unequal-mass case. Thus,
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for example, .the difference in binding energy of the light particle on one or the
other of the two nuclei is cdntained iﬁ these terms; clearly, if the positions
of the nuclei are fixed, their mass differences can pléy no role. in this "‘ | y
~unequal-mass case, it will be shown that the wave function of thé system is

obtained frém the solution of a pair of coupled, ordinary,'secondeorder differential
equations in which the coupling terms come from the first~§rder corrections. On

the other hand, if the masses of‘the two nuclei are equal, the pair of equétions

is uncoupled and the first-order terms serve only to improve the accuracy of the
calculation. The development of the equations for the wave funetions is given

in Section ITI. | | |

In Section III; the scattering states for these systems are treated. By

use of the asymptotic behavior of the system of eqpations,vexplicit expressions

for the elastic and exchange cross sections are derived. For unequal nuclear
. masses one obtains'different-expressions depending on whether the total energy

is less than or greafer than the binding'energy of the light particle on the |

lighter npcleus. Finally, in Section IV'a variational procedure for the
determination of the eigenvalues énd eigenfunctions of the bound states of the

system is given.‘ This method involves an iteration scheme that converges rapidly

to the desired eigensolutioﬁét

3

- In a subseguent paper,” the techniques that have been developed in this
paper will be applied to the problem of muonacatalyzed fusion. It will be seén

that close agreement with the experimental results is obtaihed.
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IT. THE THREE-BODY WAVE FUNCTION

- A. The General Equations

In this section we treat the Schrbdinger equation for the generalized.

hydrogen molecular ion consisting of two positively charged nuclei and a light

negatively charged particle referred to as a meson. All particles are assumed to

have pnit'charge.

In'the déveldpmenﬁ which follows, a convenignt choice for a coordinate
systemiiS'one in which the center-of-mass motion, the relative motion of thé‘
two nuclei, and the motion of the meson relative to the center of mass of ‘the
two pucléi are separated. If ;i, ;;, .and ;; are thelpbsition vectors of
Micleus 1, Nucleus 2, and thg mesbn} respectively,Vand'vmi;v o, and’ mu>-their
masses, then the position of the center of_mass; ;;, the_;nternucieus separation,
;£, and the position of the meggn_relat;ve to the cehter qf ma#s of the two

—
nuclei, Ru, are

-3 _ — ' - . -
I‘c - Pl I‘l + p2 I‘e pu rp. s
- > -
T T T T oo
and ' ‘
- - -
ﬁh - rM - f1 - fg Ty
where .
, mi. mi' |
pl = F’I; = ml e ———— (for i = l, 2, u)
and
mi , 4 . o | . .
£ 0= "~ (for i=1, 2) .
1 M Ty

‘The wave function, *gf s Tor the three<body system satisfies the

Schrédinger equation,
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where W is the energy and Mn ‘and.’ Mﬁ ‘are the appropriate reduced masses, -

i.e.,
- omyom m (ml + m2)
M= ===t  and = 0 0M = =t
n m. + 'm : ‘ [P Mt

The subscripts on the lLaplacians refer to derivatives with respect to the
appropriafe coordinates.

- If all particles have unit charge, thé’potential V can be written as .

, L 2 2 2 2 . 2 2
VE, T, R) - & - £ .S . & . R
e e ™n 1 Tho T R -f 7| R +£ 7|
H K 4 2 "'n 0] 1™n
where Tl and r#e are the distances between the meson and Nuclei 1 and 2

a

respectively; r  is the magnitude of ’;£,
The dependence'of the wave function on the center-of-mass motion is

removed by the usual substitution

where Pc is the momentum associated with the motion of the center of mass.
The’resultant'wave function 'W(ﬁh, ;5) can then be expanded in terms of a
complete set of functions, wi, which are functions of the variable ﬁ; and

may contain the variable ;£ ‘as an iﬁdependent parameter. Thus we may write
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WB,2) = 5 @&, D) xE)

Here the functions Xi(;ﬁ) are to be determined and are dependent on the choice
. (§~ R ) i . S .
or the wi % rn . |

It is convenient to choose for the Wi the‘complete sét of solutions for
the wave functions of the meson in the Coulomb potential of the fixed nuclei of
unit charge.h With such a choice the adiabatic effects of the presence of the
meson on the motion of the two nuclei cah be réplacéd by an effective potential.
In this case the Xi(;ﬁ) represent to lowést order the wave function describing -

L "n .

the motion of the two nuclei.

The wi are therefore the solutions to the equations

- - - -\
BowEp ) = ) wE, 1)
‘where
}i _ ’ﬁg 'v 2 e2 62
- = oM - P - T J
Tl 2M i rul _rp.E

and Wi(rn).,is the energy associated with this syétem as a function of the
parameter L

If we insert the expansion for v(ﬁ#, ?ﬁ) into the Schr5dinger_eqpation,
mltiply by Wj’ and integrate over all values of ﬁ# , We obtain & set of
eqpations

F @, 7)) vl kG, @, F)a%k + W (;':")+‘*QIX(" )v— WX ()
B S W o’/ "n ¥ i?nwi. w T’ T i o’ T j\Fa’ T _._jrn-’
where W 1is now‘the“energy of the three~body system in its center of mass.

When the indicated differéhtiations:are carfied out, the first term in this

- equation may be revritten as
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) - - - 2 - - - 3
[ wj(Ru,‘r ) >§ v, % (r) "’i(Rw r)d R,

.
4

i B - - ‘-—r - - 3
- V% X, + 2 % V% Xi~f .Wj(Ru’ rn)vh Ilfi(Rtut’ rn) d Ru
= - .
Here the last term dan be made more symmetric by an integration by parts:
. 2 : 3 _ - ) . - 3 . : 3
f»ijn \IlidRu—an wjvnwiqRu fvnnyvnqud .

Finally, if we define .

? .= [yv.T y.aR = -F
37 71yt T T
and
) - - 7 = ) 3 ~

the set of Schrodinger equations becomes

2

" - h 2 e - . - - '
- §ﬁ; ( Va Xj(rn) * ? [ efji Vn %y (vh'fji) Xy -.gji.xi 1}
+ (W(r)+§-—=.)X(r) = wxj(}’n) .
Tn .

For convenience, we introduce the dimensionless parameters

-
7 _ n PR
-~ a 7 I ’
B M

wy
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where aH 'is the Bohr radius for the mesonic atom having a reduced mesonic mass
Mu,(au =‘hf/?M“'é2) ), and wu is the corresponding mesonic Rydberg,.

(Wu = elL M“/(zfle))° All distances are measured in units of 2 and all.

energies in units of Wu° The dimensionless Schr&dinger equations are then

M ' .
- _& 2 - s v -5 6-3» - o-—» . o '
) A xj(rn) + E’ [ 2fji V% ¥ (vn fji)}gi - 8y X, ]
2\, > Y
+ (Wj(rn) + ;_ )Xj(rn) - W Xj(rn) 2

n

where the definitions of the symbols have been altered to refér to the dimensionless

variables. We may write these equations as

" . :
) n ) - -
v« T [W-W(r) ST ]}xj(rn) = -z CARACHE (1)
where
-5 - -3 -
&l = 2t v o+ (VFf.) - g, -
Ji Ji 'n n - Ji Ji

In the lowest Born=0ppenheimer' approximation to the solution—to these |
equatiohs the dynamic‘correctién terms Cééi are assumed to be zero.and only
the. Xj corresponding to the lowest Wj is retained. Furthermore, the
effective potential Wj(rn) + %/%n is expanded about its minimum va;ue in
a power series in the displacement of r  from its vaiue at this minimum.
While such approximations are reasonable for the treatment of the elecéronié
mblecular ions) the larger mass of meson present in the mesonic molecular ions

makes these approximations less reliable.
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_ An alternative approach, develdped‘here includes the lowestuordef dynamic
corrections and makes use of exact solutions to é simplified sef of SchrSdinger_
equétionsa' In this treatment it is.negessary to separate the cases for identical
and distinguisﬂable nuclei. If the nﬁclei are identical, the wave functions must
be either symmetric, + , or éntisymmétric, = , with respect to an interchange
of the two nuclei, and the two types are not coupled in the set of equations;
i.e. ?ij ‘and gij are zero if i and cofrespond to states of opposite
symmetries. If the nuelei are ncot identical these terms do not vanish, and

furthermore, since there is a degeneracy between the unperturbed symmetric and

antisymmetric energies for large nuclear separation (corresponding to the equality

of bihding energy of the meson on either of the two fixed charge centers), it is
necéssary to include gtates of both symmetry in the wave functibn.

4In our'treafment we restrict ourselves to.treating only the_étatés
corresponding to the lowest values of Wi(rn), designated by a zero subscript,
for either of the two possible symmefriese Therefore for distinguishable

(unequal-mass) nuclei our wave function is of the form

while for the equal-mass case

eithér ‘ o ¥ (symmetric .case)

i

<
o

X
o

or Vo= ¥y X (antisymmetric case) .

The errcrs introduced by the omission of the higher excited mesonic
states cannot be accurately determined. We may, however, estimate these errors

to some extent by use of a simple perturbation expansion. If we consider the

¥
«
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1

state of lowest W, to be the dominant ones and treat Mu/Nh = € as an expansion

parameter, then for the nondegenerate (equal-mass) case we may write

VRV ¢ ) B (2)
Xo = XO o+ € XO,~, vee

(1) . 2., (2) |
€ X, + € Xy e for i£0,

x
I

where XO is the state corresponding to the lcwest Wio' Inserting these
expressions in the coupled egquations and considering only those terms in the

lowest power in € , we cbtain

hence, to lowest order in ¢ ,

X, = (W=w -2 'rn)'l € Oy %y -
If we consider the effects of the 1ith excited state on the equation
for XO we the that they enter the equation dnly in second order in € . Thus
the omission of the excited states introduces errors of order €2 in the .
calculation of the energy of bound states° Similarly, for free states at
energies such that mesonic excitations are energetically impossible eﬁen for
large nuclear separations, only XO is necessary to determine cross sections.
The errors in these cross sections are also of order &€ . In addition, for the
treatment of bound states and scattefing states of léw energ&, the denominator

in the above expression is. in general large dide to the large separation of the

.excited states of the meson in the molecular ions which we shall treat.
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In. the degénerate (unequal-mass) case, a small perturbation can éause
1§rge changes in'thé wave function. It is therefore necessary to treat the two
states_af lowést‘ Wi correspond?ng to opposite symmetries, XO+ and XO;’
together; The effects of thevfemaining higher states will, as before, intrpduce

. second-order corrections to the binding energies and cross sections.

B. The Solution for Wi

Although it is péssible in principle to obtain exact numerical solutions

5

to the mescnic problem with two fixed centers,” the ultimate accuracy of our
approximations has been shown to be limited. We therefore felt justified in
using approximate variational solutions for this part of the problem.

For the symmetric solution WO+ , we assumed a variational solution of

the form
L g r n - iy
! + + "n 2
vwo = A+ cosh —5— . © s

where A+ "is the normalization constant and p+' and q, are the variational

parameters which minimize the expectation value of :HH for a given value of T,

The variables € and q' are the usval confocal elliptic coordinates,

. r + T r - T
e = e g - M MR

A similar function was chosen for the antisymmetric solutions, i.e.,

aLr,n - T3
e °

Vo = A_ (&) sinh

Here the { & } indicates that a factor of & was includéd in the expression

if this led to a lower expectation value. Specifically, for values of‘ T, less

than rc(rc.ru 1.70) this factor was included; for values of T larger than
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this it was omitted. For small values of r this additional factor is
essential in order for the solution to approach the hydrcgenlike 2p function
as I, approaches zerc. In thé neighborhood of r, the two sets of solutions
were smoothly Joined. |

The desired expectation values can be expressed as the sum of two terms,

W= S ¥ v ae = (T, (v
ﬁhere_
(T = T T v e = [V ¥V, Y 9ty
- and |
(3 - - R |
W = Ty v s = fuy D2 0g= + =) Ty ay -

pl e

For confoecal elliptic coordinates the volume element is
T 3 ‘
H /2 2
at, = 5 (& - n)aeanag ,
where the limits on the variables are

1 < ¢ < o , | 1 &5 €1,  and 0 < ¢ < 2n.

The integrands in the above expressions may also be expressed in these coordinates,

i.e.,
g ‘
T o= e e 2
v r. §2 . n2
and
_VL_¢1°VL v, = —3 (67 - n7)( T + (1 =1 )( Ty P
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The integrals that occur in these and cther expressions in this paper

can be conveniently expressed in terﬂs of the definite integrals

@ -PE
E = E (P) = f e E d§ »
n n
1
o | 2n 2 Q
- Y = 2N
oy = cgn(Q, = »{ ) .COSkl st an
: L on 2 o -
' . _ .
c on = C 21’1(Q) — “{ n sinh ) d'r] 3
and .
' en Q 24|
. v )
ey = g_2n+l = _{ n~ sinh 5 cosh'A2 dn .

Where P = pr, and Q = ar, -

. For the symmetric solution the explicit results are

(v)Y = -2tr°A°EC. ,

IS n + 170
- o % I'1A+C 2 | 2 »
; 2 —— 3 - v oty
(1’“>+ = n [ (8, ‘ By)Co + @, (€7 = C")Eg 1

The normalization constant A+' is determined by the relationship'

T A+2 3 . v ,
I
Similar expressions can be obtained for the antisymmetric sclutions.
The minimization of the eipectation values.of.:ﬂH for vaiues of r
between O and 20 in intervals of 0.05 were carried ouf with the aid of aﬁ
IBM 650 digital computer. The expression for Wi was minimized tc an accuracy

.of eight figures; however, because of the extremal properties of Wi’ errors
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due to rounding made the determinafion of P and @ less accurate. The results.
of these calculations are given graphically in Figs. 1 aﬁd.Q, For comparison
the results of some previous calculations of the values of Wi are included.in
Fig. 1. For the SymmetriC'case yith oﬁr approximate solutions we obtain
Wi'= -1.20489 for é value of rn} of 2,00. This is to be compared tp the exact
value of «1.20527 obtained by Hyllerass.5 Similar agreement is found for the
other-?alues calculated by him. In view qf the other approximations made iﬁ
these calculations we felt ‘that this close agreemeht indicated a satisfactory
.solution to the mesonic part of the wave function.

By meking use of the analytic fqrms for the mesonic wave function it
was possible to analytically evaluatg the first-order dynamic correction terms,
fig andv gij’. discussed in the preceding section. The spécific analytic forms
fof these terms are given in thevAppendix°

For the equal-mass case only "diagonal"” correction terms dccuf, because
thé states of different symmetries are not coupled. Asvabconsequence of the
- relationship ?gj - - ?}i it follows that f,. = O. Thus the only first-order
_correctionS‘fdf the equalwmass‘case can be considered as a correction to thé
potentiala This term is of the fofm

[T v v, at
€11 = 0 ViVa V1 9%,

where i denotes either + or - . This correction has been computed numerically
by using the pafameﬁemaobtained from the variational calculation. The'results
for both fhe symmétric'and antisymmetric states in the equal-mass case are shown
in Fig° 3. There has been a certain amount of controversy cohcerning these’

\ corrections; our results for the symmetrié case are in general agreement with

those of Dalgarno and McC’arroll.,7
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For the unequal-mass case in which the ratio of the two masses is 1:2,
similar diagonal correction terms were computed. In addition, the off-diagonal
terms were cbtalned for this case. The results for these calculations are shown

in Figs. 4 and 5.

C.’ Behavior for Small Iy

t

The study of the behavior of the mesonic solutions for émall values of
T, is of considerable intereét, both for the general understanding of the thres-
body problem and for the development of solutions to the differential equations
for X.(r ). .

i‘*"n

The behavior of the parameters p and g in this limit can be obtained

- by expressing the'enérgy Wi in powers of the parameters rn, P, and Q. For

the symmetric case to lowest order in P+ and Q+ we have

' 2 I : 2. 2
. P g : P
2 -2 + 2 4+ g
oo = = ) : s i —C——p— M S .
w,r, | P~ + WP r =To (P+ AP+Mn) 5 .

Minimizing this expression for W+ with respect to the parameters P+ and. Q+ 5

we find for ;v

T =0 Qv »'

W _b‘l;‘ °
+

These results are consistent with the hydrogenlike 1ls solution which would be
expected in this limiting case. We ncte that the energy is relatively insensitive .

.. . . D . L
to the parameter q, in this region, occurring in terms of order T
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In a similar manner we may obtain Limiting values for the parameters’

p_ and g  for the antisymmetric solution. In this case we have

o . p %q ° P %q°
-Wry o= R T e ) v 5 ) - mme o

from which it follows, for

. : P - T, o , p =1,
Lim : : 7 ’
. - - f 2 2
. Th O . Q_ /;rn P a = 5 3
and
W= el

o

which indicates ﬁhat our solution v approaches a hydrogenlike 2§ solutioﬂ
with m, = O where the 2z axis is a;igned in the direction of ?£ . |
The asymptotic forms-for. g, . and g _ can be readily obtained frbm,
the éomplete expressions givenvin the Appendix. It is found that ﬁhile g++
tends to zero in‘the limit of vgnishing ro 8. is divergent, having a leading
term of the form  2/3“n2o This asymptétie behaviorvis in fact necessary for év
consistent set of solutions to thé,three-bédy syétem for a state in which tﬂe
total angﬁlar momentum is zero. We have already seen that ¥_  approaches a
p state as T, tehd; to zerc, hence for the total angular momentum of the
system to be preserved the two nucleons must be in a relative p state. This
angular dependence must be carried entirely by Xn(;g),'becauée ﬁm (or w+)
is a function only of the ﬁarameters rg, r and '?;°;£ and hepce’is invariant
with respect to rotations of»the entire system. For s states the radial

wave functions, X , associated with ¥ satisfy an eguation which in the
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1imit of small rr is of the form
ax
'lg <4 (r 2 = ;oo —§§ X + terms of order < = 0 ,

where the singularity in g _ provides the term necessary to correct the form
~ for the X_ equationvto agree with that of the usual p-state equation.

For the caée in which the total angular momentﬁm of the system is one,
the situation is somewhat less clear. In this‘ease;.if the meson is ina p
sfate it is necessary only that the nuclei be in relative s or 4 'states°
With our choice of approximate wave functions we ﬁave in fact chosen a. linear
combination of thé;e states such that the potentiai for small r is %/%ng.
A similer situation arises for states of higher total gngular momenﬁum; so that
for smail values of Ty the wave Functions for'antisymmetric meson states are
not accurately.&escfibed. For symmetric states no such ambiguities appear.
This difficulty for small values of rﬁ is associated with the degeﬁeracy of
the various 2p states that occur for r, = 0, and is-therefore unimportant for
_ larger valuves of Ty To treat the inner regionbcqrre¢tly would require the
introduction of the two:other 2p states and their aSSociated Xi‘so We eXpect
that such a treatment would, howeﬁer, make small corrections tc the wéve functionsv
at large Aiéténceé and'wpuld be significant only for small values of- r,o- -qu
the scattering states fhe energies of interest to us are such that the contributions
for 6ther then s staﬁés are ﬁegiigible° For the bound'states, only thg
unequal-mass cases invoive V¥, and the effect of this term is sma.ll except
for large values of rﬁo We have therefore felt jusﬁified in omitting these

additional complications in our treatment.

-«
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The asymptotiec behavior of ?;, and g, in this limit are also of

interest. From the expressions in the Appendix we obtain for
p.a Ved
. = + > 1672 . A
Lim -, T = uKA-I-A«»(fE - fl) T L% S, T TBT (f2 - f1)er
r -0 , - (p, + 1) n n
I i + &
and for
Lim 8. = " 2f+_ .o
r =0
- =
where e is a unit vector in the direction of r and f = f -e .
ry _ n e de= T

- The term

g, is therefore seen to be divergent in this limit. As we shall

show, the particular form of this divergence is crucial for the satisfactory

solution

of the differentiél.equationso

The radial equations for a state of total angular momentum £ can be

obtained. from Egs. (1) by the usual substitution of Qé/%n Tor Xio These

equations are

e, ( -3 ar, _ |
5 +t glw- V+\rn) 18, = ~2f g = gz L.+ g f
drn S n n
_ (2a)
and
2. : .
8%y . _ ag, ar, _
R R N LA A A
n ‘ (2b)
where
v(r) = W + 2r =Ly g+ eﬂ(ﬁ + _‘L)r"“2
+n + n ++ n

5
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_ ‘ -1 -2
Va(rn) = W_+or + eg__ + es(l + l)rn .

In order to cobtain the behavior of the solutions to these equations for
small values of- T it is convenient to express the solutions in a power series

in rn ; l.e., we assunme

: (0]
g+(rn)' = z at r o
s .
and
Co
g(r) = Z b, rnt+K
- +=0

In addition it is necessary to expand the various other functions which appear

in the equations in power series, thus

@ £
f__ = = Ftrn s
™ t=0 ’
o .
t
g, _ = & g.r s
+ — t n
N .o o o© +
v, = es(£ + L)r + = v,r = E VL,
n =anl 't';'=2
. and
A 00 @
V.= ela(s + 1) + z]rn°2 + utrt = X utrt
: ==l L b=-2

Inserting these expressions into Egs. (2a) and (2b) and equating terms with

equal powers of r s we obtsin the recursion relationships
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| 1 1 W
[((t +K)(t +K=~1) - 28 + 1)]at - = 't§=o Veril ®otiol T @ Prep
t-1 - }
o - o= LI
= ? .[gtﬂfl (2t + 2K = £ 2)Ft9]bt-t,__1
t'=0 _ "
.and
1 -1 W
[(t + K)(t +K=-1) -2~ £(8 + 1)]bt - t§=o T - bt*g
=1 .
— : - [ . .
= % (g (2t + 2K = ¢ 2)Fte]bt_t,_l .
t7=0 " ”
From these equations we obtain the pair of indieial equations
[K(K - 1) ~ (£ + 1)) ay = O
o . _ ) ‘
[K(K = 1) « 2 = £(4 + 1)] by = 0.

Thus if ay is not zero K is either -£ or £ + 1, while if bO is not zero

K is equal to % + % + 2(8 + l)]l/2 . In both‘these cases the soiuticns
with the minus sign do not satisfy the conditions of integrability and may be
discarded. For £ 7é 0, these two caseé constitute the two possible solutions

to the equations. For £ = O, on the other hand, these two values for K differ
by an integer, and therefore further investigation is necessary to determine
whether or not two regular'andvindependent solutions to the equations exist.

It is clear that two such solutions must exist; since we must be able to

describe states in which the meson is associated with either of the two nuclei

Q@
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for large separations of the nuclei. If we examine the recursion equation which
determines the value of b, in the case where K= 1, i.e., for. 8y 7 0, we

find

((1 +KK - 2(2 +1) - e]b1 .= (gml + zbojao
or | » . A

Oth, = <gnl + EbO)ao 3

this would lead to an inconsistency unless the multiplier of a. were zero.

0
This is, in fact, the condition which we have shown to be true from the

~asymptotic behavior of ﬁhe functions %;m and é;m . This being true, the

13 which is arbitrary in the

‘solution with K = 1, represents the fact that one can add an arbitrary amount

value of bl is_undeterminedo Thus the constant b

of the solution with K=2 to the solution and still retein a valid power=séries

expansion for small values of L

D, Unitarity Currenﬁ

It is of interest that one can obtain an invariant relationship between
the vafiéus solutions for. the system of equations describing the motion of the
nuclei. If we consider tﬁﬁ sets of solufions Xi(l) and Xi(g) to these
equations, with eigenvalues Wi. and W2 respectively, then the following

equation can be constructed:

! {X_F(e)* (g2 -1v) x, (M ve x Wy 4 x @rg? Ly x (1) 6 x, M)

\

X+(2)]* dTh

| § |
- x, M2 -2y @ e x P x P oLy P ve

22 {wlf o (2% (1 (2% (g o2 <x+(l5x+<2>* r o (D P9y,
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I Wl is equal to W2 then the right-hand side of the equation is zero and we

find
- f->>"—> d O
V'JlZ 1-1'1." ?
where
> () o (1) () (2% (2%, (1) (2)*
12 { Xy XD R Yo %4 Lo X a te _ X Y X

+ eﬁ%w(x;(g)* x (1) x_(e.)*-x,r(l-)) )

We shall call the "unitarity current". (For X(l) - X(Q) this reduces

e
| d12 \ L ,
tc the usual expression for the probability current.) If X(l) and X(E) have

the same angular dependence, then we may write

(1) o ()%
22 = 2 . - (2)* dx+_ . X-(l) dX+“ .
Tn d12fn = Tn daeo T M TEr T+ ar
n n
(1) | (2)
L &
- dr - dr
n | n

+ 2f+_(X+(2)*_X_(l) - X.(l) x_(vg)%)

+

= c¢constant.

Furthermore, if these scluticns are regular sclutions to the differential

equations, %heir contribution to this quantity is zero because rn2 312

vanishes at the origin. Irregular soclutions, on the other hand, contribute a

finite amount to this expression. It follows that if rr2 j12 is nct zero
4

when evaluated for any value of r, ~ some irregular solutions must be present.
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III. SCATTERING WAVE FUNCTIONS

A. The Asymptotic Behavior for Large Values of rﬁ

| In the 1limit of large values of T, the parameters P and Q which
describe the mesonic wave functions also become large. In this limit'the binding

energies may be expressed approximately by

Lim =w+r2=~w r'2=(P+Qmurn)PQ/(P+Q),°

r, -® ‘ : ~
Thevvalues of P and Q which minimize this expression for the energies are
P=2q =‘rn, for which W+ =W_ = ~-1l. This expresses qualitatively the fact that
the symmetric ahd antisymmetric solutions fof fixed muclei cén be formed from
fhe solutions in which the meson is centered on either of the two nuclei; These
eigenvalues, however, are not exactly thé binding energy for such a séparated
system, because the units in which the eigenvalues are measured use the reduced
.mass for the meson with respect to the sum of the nuclear masses. The necessary
corrections to the energies in this limit are contained in the asymptotic behavior
of éoupling‘terms 84 . In addition, for the unequalmmass'case’it is necéssary
to obtain the splitting in the energies corresponding to the fact that the meson
is more tightly bound on the heavier of the nuclei. The removal of this
' degeneracy in energy for this limit is conﬁéine& in the off=-diagonal term g+co'
As will be shown, boih these corrections lead to expressions accurate to first
order in the parameter € . |

The asymptotic values of é++ and g__ come éntirely from the fermé
I and T n (see Appendii)_because the derivatives which occur in thé remaining

€€

terms vanish in this limit. We find for
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. _ _ o1 2 2
Lim &, = &._ = 3 (fl + £, e
o= Qb . .
n
: 1
For the equal-mass case we have fl = f2 = 5 hence
for Lim g, = &. = /b,
r, = .

and the effective potentials are corrected to give

 Lim 1 - r
for T - o0 s V+ = V = =1 + e = - 1 + el
n ‘ 1
To first order in e +this is identical to MM//MM’ where Mp is the reduced
mass of the meson with respect to one of the nuclei. For the ﬁnequalamass‘caSé

let us consider a system which consists of a proton (Nucleon 1), a deutersn
' 1 2

(Nucleon 2), and a meson. In this case we have fl = 3 and f2 = vg , and
hence
o Lim : -
for r = ’ v v T B T 58 18 .
n ,

/

o

The only term for g _ which does not vanish in this limit is the term ggﬁ 5

and this leads to the result
for | Lim ' g = (f, - f ;/é = - ;/6 .
r, C® ? = 2 1

To interpret these results let us consider the asymptotic form for the
radial differential equationms,
2

a g
2+ + % (Ww+1 - %% e, = - z 9.

dr
n
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and
2 .
da- g :
- 1 5 _ 1
—_— E.(W- + 1 = EB'€)¢= = -z g, -
dr
n
From these eqpatibns we obtain a new set of equations,
a g ' '
—>p , 1 1 - 2 L -
= + S [W+1 E(TB'*E;)]% 0 (3a)
dr .
. \
and
2 .
a” g5 .
¢ 1 5 1 _
5 + 2 [ .o+ 1 - &( -3 )] ﬁd = 0 (3b)
dr : : .
n
where

?,-?P‘ = '(.¢+ - ¢_)/7/'?_ and g, = (g, + gn)/{;o_

This particular choice for ¢p and ¢ a is such that asymptotically '¢p
corresponds to a total wave function in which the meson is centered on Nucleon 1,
while Qd is the corresponding case for Nucleon 2,' The binding energy of the

meson is that value of W for which the kinetic energy of the relative nuclear

2 : .
motion is zero ( 9;—%~ = 0). Thus we find, for the binding energies,
dr '
4 e
W o= =1 + =5
p 9
and
I = o £
We = =1 + <5 .

Tﬁese expressions are the correct binding energies to first order in the

9

parsmeter e .
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B, BScattering Cross Sections

‘In the treatment which follows we restrict ourselves to the consideration .
of the scatiering states of zero total angular momentum; the extension to states
of higher angular momentum, however,.is.straightforward, For the investigation
Cof scattering phenomena, as in the usual treatments, wé need study only the
asymptotic behavior of the wave functions fér the separated system.

For the unequal-mass case there ére-four‘asymptotic functions ﬁo consider,
i.e., X+ and XP for each Qf the two solutions regular at the.originc In
addition, as we have shcwh in the preceding section,bthe degeneracy of the binding
energies of the meson on the two separated nuclei has been removed by the
dynamic correction terms. It is therefore necessary to distinguish between the
case in which the energy of the‘sysﬁem lies between these two binding energies
and the case in which it is 1arger than either of them. These two energy ranges
correspond to different physical situations. In the former the only scattering
states allowed are those in which the meson is bound to the heavier nucleus for
large separaﬁionso In thé latter the meson may be boﬁnd to either of the.nuclei;
exchange processes are also.possible in "‘chis_caséo

- It is once again convenient to use wa&e functions that asymptotically

describe the meson centered on one of the two nuclei. We therefore define

ALY O

=
!_I
i

and

=
H
[l

AR Y,

Here ﬁp is the radial wave function whose form corresponds to. the meson bound..

on Nueleus 1, the lighter nucleus, with an energy Wb ; ﬁd and W& are

defined in & similar manner for the heavier mucleus. (If we consider the:
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system of s proton; a deuteron, and a meson, the expressions of the preceding
section define Wp and Wda) The éuperscripts i (i =1, 2) refer to either
of the two regular solutions‘to the radial differential equations.

If the energy, W, is such that Wdé W éWp s then we cap write "c_;he

asymptotic behavior for ﬂp and ﬁd in the form

5 arg N ~Qr
= 8 e + b e
ﬁp b b
and.
i . i
.Qd = 8y 31n(kdrn + By )
| 1/2 2
where a = [(Wb - WZ/e] ‘ and ky = (W - Wd)//g] . The parameters

a~, b, adl, and 6dl are determined by the value of ¢pl, dﬁp%/drn, v ¢d13

andAdﬁdi/drn evéluated for somé large valué~of re In order to completely
specify the wave function if is'necessary to determine that linear coﬁbination
of the two solutiéps i=1 and i =2 for which no increasing exponential
rémains in the asymptoticvexpression for ¢p° We may also normalize these
solutions to the incident part of the plane wave. If this is done we find,vfor

the corresponding wave functions Xp and Xd in this asymptotic limit, the

fo::"msl-o
[0Ag
X o = -
P n
“and , .
. . ik.r
< ) elkdz . M1 ) . d'n |
a .- 2ik. r. 4
d n

where the 2z axis is in the direction of the incident~particle beam. The quantity

M is defined as
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2 _ a1
aTal’ elad aalt eléd'-
p_d - p 4 - -
M = " e 2 N 2 .
- =1dg Q2 2 ~184
p 4 p “d
210,

If we replace M by the quantity e . =, then 6, may be eonsié%red the'phase

d

shift for this scattering, and the scattering cross section can be written in-

the usuval form,

b=
. -

.2
g = 5 sin e
d

-

If the energy is larger than Wp, then both sdlutions have asymptotic

sinusoidal behavior, i.e-.,

i i o i
= a  sin (kr + B
gP e ( Pn Y )
and
i i, iy
¢d = a; sin (kdrn + By )
| | 12 | |
where k? = (W - Wp}/é ] . There are now two possible physical states

corresponding to incidént states in which the meson is centered on either of
the two nuelei. In this case, however, we may separately choose those linear
combinations of the two sets of solutions that correspond to no incident part
fpr either the Xp 6r the Xd° In either»casé'we may normalize the solutiéns,to
‘the incident wave. |

For the_scattéring of the pnﬁésonic system.from é 4 ﬁﬁcléﬁs; we obtain

the asymptotic forms
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ikpz kprn
x = e + - h e
P pp /Ty
ik.r
_ d'n/
[ bpd - //rn ?
where . »
2 1 1 2
i(8 ° = 5.7) i(s = - 8.%)
. 2 1 D d 1 2 he) d =1
h = a a e : L= 8 a e D - 1 2ik
PP [(_ p 4 7 - p d ) } v’
1 2 1 24 /o
hpd = &," a," sin (Bd - 8y ) ka s
and 4 .
. 2 1 . 1 2
5 1 rn_1.(8}? + 6(1 ) 1 ) ”l(ap + Sd )
D = &a & e @ .8 & e e
p. d p . d

Here hpp gives the amplitude for normal scattering and hpd the corresponding
amplitude for exchange scattering in which the meson is captured by the heavier

nucleus. The cross sections for these cases are

and for the exchange process,
g = ba ]hpd i/kd LI

where the facter kd/kp is ﬁeeessary to correct for the change in velccity of
the incident and outgoing particles in this inelastie collision.
In a similar fashion the scattering of the d-mesonic system from a p

nucleus can be obtained. In this case we find
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] 2 - 1,
N ) [(a2 . 1 ei(sd -5 P ) - e 1 o 2 el(ad - 5p ))D_l . le X
aa " p “d _ p od » 4
and
. 12 1 2, /. ‘
h = a a_  sin (8 -5 VYBk, .
D sin ( P p_)/ a

dp p

The corresponding cross sections are

%a = M | Pgq °
and ‘
0gp = M | by |2 kp/ka E
From the conservation of unitgrity current one can show .hpd = hdp gna

that the two exchange cross sections are Simply related.

‘For the equal-maés case the.phase shifts foi the symmetric_and
antisymmetric séattering states may be independently evaluated by use of the
asymptotic forms

Xiﬁ;ai sin (krn + Si)/rn ., :. ’ (for 1=+, =) v,
wheré k=[(W-1+ g/h)/e]l/g . In this case, however, a further complicatién
is introduced because thé nuclei are generally identical particles. In such.
cases thé total wave functions for the system must be properly symmetrized.

As before, it is convenient to introduce combinations of wave functions which
describe the states correspondiné to the meson‘déntered on each of the two .
nuclei for large separations. For the case in which.the meson is centered on
Nueleus 1 the.mesonic'wave funection is

hos G, - e
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with a corresponding.-nuecleonic wave function.
Xl = (X+’=‘= X=.>/’/2/'.

The wave functiong for the other case are

(v, + v.) /42

\’8

and

I

X, (x, + xm)//7Q§7o

The total wave function is then of the form

bo=oxpwy o X,

- UCRL-8390

Before symmetrization, the solution which corresponds to an'incident

system in which the meson is associated with Nucleus 1 or with Nueleus 2 has

the asymptotic forms

X, = e + hllrn"1 e 7
X2 = h12 rnal eikrn
and -
X1 0= By rn~1 elkrn
~1kz . ikr
X, = e + hoor. T e ®

respectively. Using the asymptotic forms for X+ and Xm; ﬁé find

1 218
‘hy; = hy, = (kik) [ e + e

e
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and
_ -1 216+ 21 :
hyy = By = (Lbik) ~ [ e - e 1
C e » .1 ;
For a system consisting of a meson and two spin-z particles such as
protons, the total wave function must be symmetric for singlet states (s) and

antisymmetric for tripiet states (t). Thus for States of zero total angular‘

momentum the total wave functions arelo

ikz -ikz ikr

o ' b | h,, +h S hﬂkbg sin® &
singlet v o + -7

Striplet 4¢ | b, - h

il
1]

' hﬂk_g sin2 5 .

The total cross. section is

L -2 1 .2 3 .2
O?P = b k[ T sin 6+ + f sin 5_ ] .

Similarly we find, for the case in which the two nuclei are deuterbns,

-2 2 2 o 1 .2 4
o = Lhr k.7 [ 3 sin” & + 5 sin §~,] .

dd
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IV. BOUND STATES

This section is devoted to a discussion of an iterative scheme by which
it is possible to obtain the bound-state eigenvalues and eigenfunctions for the
system of differential equations deseribing the nuclear motion. " In this
development. it is assumed that: the intégration of the differentiél equations
éan»be carried out by either exact or numerical methods.

For the unequal-mass csse, the Hamiltonian for the nuclear system can be

written as

o a2 @ 2 v v - | o
[+ (& R A AR

r
n

| W i,
- 2g gp +of (8, & - ﬁ T, ) }ar .

If we consider variations of ¢+, where ¢+ . is assumed to be comtinuous with
a plecewise continuous first derlvatlve, subject to the constralnt that

2
+ g )drn = 1, then the variation of H . is

o
/@,
0

2 o +- dr
n

: 2

© ag \ ag

BH = f e l-—ps + (= + HExD g Lo g4 =
0 drn o _

n

ar _ R N ag,
+ g )5¢+drn+>\,£ 2¢+6¢+drn+§ag+(ri)Ai(auI¢; .

n

Here rs indicates the values of r at the ﬁoints of discontinuity,
dﬁ
of d¢+/&rn, and A ( ) are the changes in dﬁ /&r between r; - ] ))l

and T, + | ¥ | in the limit of vanishing ))o If the parameter A is m@/% s
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then the condit;ons fqr an extremum in H are that the radial differential
equation for ¢+ " be Sat%Sfied and d¢¥/drn be continuous. In a similar manner
the variationé of H Wifh respect to variations of ﬁ_ lead to the radial
- equations for @_ . The value of H obtained for this.extremum is in fact @/%.
If we now use trlal wave functions ﬁ (0 } and. ﬂ (0) “that (a) satlsfy the
differential equatlons for an energy W , (b) are continuous for all values of r_,

n

and (c) have continuous first derivatives ekcept'at one point r., then the true

0

eigenvalue WT may be expressed as

' ; 2 (0)
o | - 2 .
S S T B R A
u | ik
\
() | .
24 +1) . (0 (0) g’ (0) ..
LN LR

e ] &
. f g—(o) )\I _ ___:_2__ + _e:g_(o) + ML'F_;‘.Z ¢~(_O) - g+-g+’(o)
0 l ar s dr ‘ . .
L n i
- (0)
a (0) .
- 2f+_ ;;'rn - Ql.{. d;n drn
5 (0) ag (0

+

o % (g ) o 1D ) oy o= )

As a result of condition (a) and the extremal nature of H for this solution,

g (0

this may be rewritten as
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,(o) . (C)
(o) @, <o g
g, <r,%< =)+ 9. (r;u.\.oc =)}
Wt oo w0 2 0 n v 0(g?)
£ < ¢+(O)2 + ﬁw(o)e } drn'

where & is a mrameter of émallness ﬁhatﬂindicaﬁeé the deviatioﬁvﬁetween the.
trial and true solutions. |

The.infegration'for the.baﬁnd states‘can.be divided into.two régions,
with r, 8s the common boundary. At this point four.indepeﬁdént quantities
can be'speéified, ngmély, ¢+<O?j d¢+<oa/drn,' ¢m§0?, and @ﬁm(oa/drn,
By choosing appropriate linear combinations of the twe regular inner solutions

and the two bounded outer golutiéns, three of the four quantities can be made
12

continuous at r For the correcﬁ éigenvalue the fourth gquantity will also
be continuous. - For a trial eigenvalue in general one of the four quantities will
not be continuoﬁs, however. If, for example, we alloﬁ this discontinuity to
oceur in d¢+(022drn ; then a better apﬁroximaﬁion to the correct eigenvalue,
Wn', is_expresse& in terms of the trial eigenvalue and the value of the function

at r as
m

g, — .

Wn é ; ‘ ) Ln /re I)}l ) \ n '//I"-i-J))I .
| [oglo, o2, |
+ - .

( ( :
(O) |: g O) d@'+(o) \[

xr
n

By using this new improved eigenvalue to obtain a new trial solution and thus
iterate the sclution, we can converge upon the correct eigenvalue and consequently

the correct eigenfunction.
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This variational procedure is not restricted to the ground state, but
‘may be applied to the higher excited states as well. The determination of &
specifié state mefeiyvrequifes the speeification of a boundary coﬁditioﬁ on ‘the
number of nodes allowed in the solution. o

For the equal-mass case the development given above is equally applicable.
In this case the ¢+ end ﬁ_ .equations are not coupledoi Bound states, however,
occur only for the ¢+ solutions. It therefore suffices to impose on the

- development given above the added constraint ¢_ = 0.
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- APPENDIX

In this appendix we obtain explicit analytic expressions for the
B firstéorder'dynamic corrections for the case in which the mesonic wave functions

are assumed to be those used in the text, i.e.,

' a r 1 u”p+rn§
¢, = A cosh——B o o
+ + 2
d
an . .,pérng
a. I"nTI = o)
v_ = A (&) simh 3" e S
The dynamiec correction terms are of the form
; = /¥ . TV Y, d f
8y = 831 < n ¥y 0 V5 dT,
and
7 rd f v d
ij = = ji - ﬂfi n‘lfj T 2

where, from the previous development, the indicated differentiations, 3;, - must

be carried out with the mesonic variable ﬁ; fixed.

b

For the symmetric case, we may write

9 .
Vh W+ g 1 dA+ “pl dq% 4, rng dp, - 2
v T % K T YT o Ty - o
+ n 4 n n n ’f
q q.r 1 je
+ = +nl Yy oz
- Vh(rnﬂ) tanh 2 ) V%(rn £)

where g; is & unit vector in the direction of ?£ . For reference we
CTnm
designate these five terms by the subseripts A, g, p, 17, and ¢, respectively.
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Similarly for the antisymmetric cases for rn > rc, we have

Va- = B 1 EAL: + iIlT_] :i!l'; coth 20 - f_rf_ _.._dp"
¥ T Tr A ar 2 dr 2 2 dar
- n - 'n n n
_ a . a_r,n b -
= Vn(rhn) coth —— = — vn(rng) ,
while for T, < rc, we write
v a a | t dp
n' = e (3 — - &)+ i coth Sl Tt 2P ?
¥ r A dr r 2 dr 2 2 dr j
- “n - n n n ‘ n
) ‘ q._' - Q.__rn'ﬂ - ‘ P_ a 1. - '
A (rnn) coth —5 N = - ;;E ) Vh(rng) .

In order to obtain the ekpresSions for gij and fij the following

identities are useful:

T(r £)T(rt) = £° + £° of_ T E_Z_L_Tf_:._?_

n'n n't 1 2 T “T1te €2 - 1 ’
- =3 2 2 52 + 2 -2

n(rnq)-v (r.q) = £.° + £,° + 2f.f, ——;5—?f;—-— ,
Vp(r 8) Ve n) = £, - )
eg(rn§>°g;ﬁ~ = ggr%;;§ .{ e(1 - ﬂa) + (f2 - fl)j(EE -Il)J ’
gg(rnﬂ)°er = ;5—2;—5 {(f2 - fl) (1 - ﬂe) + n(§2 -1)) .

n -7 - . . . K .
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Using the above expressions, we may evaluate each of the terms that occur.

For g Ly e obtain the sum of the following terms:

. 2
T o ( i Eéi
7
ALA A+ drn
+ rn.e cip+ 2 v '
e = F 1 (-——-drn) (B, ¢, = Ez_YGE) ,
+ I'n‘2 'dq+l ¢
— e ~ g - 1]
Iq,q = N 7 ( dr ) (EQ s By © 4) ’
2
r dp dq
+ n + +- '
dp
+ 1 + +
oo = =08 (K+ T )7y & ) (E5Cp = By C)
o+ 1 + s
Tg,a = ¥ ( E, ar i, O ) (By 0y Bo Cs)
2 , .
It oow (224 e E0 ~E O] 4 26.£ (B0 +EBC - 5 ])
NN B , I 1 2 270 0" 2 17277270 "o 2 oo ¢
e
.
I = 0
£, ’
(E, = E,)
+ 3 1 :
In,p = =N¥rgC 2 7
(E, - E,)
I o Nr g C' 2 0
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~Li0-
+ 1 dA+
Lea = -3 E, & ) 2, By = Cy) s
+ 1 +
Lo = N E, dr, Ja, €,(8y = B)
D 2
+ + 2 2 ' -
L ¢ = (£, +£," -2f, 0, N[ BC, + EC, - &I ,
| (c, - C)
+ 1 3
e T T EmBRR T
| (c, - ¢c,)
+ ‘ 0 2
IE;P = N.rn P, E2 5 - P
where N = (E2 CO - EO CE) + The subscripts indicate the palrs of terms
involved. | |

A similar set of terms is obtained for g _ « For rnj> Ty these differ
from the above not oﬁly in that D, and q, are replaced by p_ and q_-,
but also by the interchange of CEn and. C'Qn' For T < ry several additional

changes occur:

1 “dA+ 1 dA+ 1
(a) T § is replaced by ( T T - )

+ n S n n .
(b) En is rgplaced by En+2 ,

. - ' . v 2
(e) in the last two terms p+En is replaced by p_ En+2 - T En+l B
and .
(a) I, , has the form

£,¢€
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=1

1 e 9
¢, -es 0t 1)

2
b .
- = . OF g
T = { £,7+ £, 2f £, N [ E,C'y + E,

2 o oo L om
+ £ f2 N[ E.C + ElC 5 2ElC 0 ]

'2rn 1 370

. & Ff N[EGC _ +EC - 2EC" ]
2 1o 207" %o e 0”0 4
N

In the calculation for f+,’ only those tierms containing either
%;(rn_g) or -sg(rn 1) give a result different from zero because the others

lead to integrands odd in the variable 17 . Thus we find

3
R .
£, = =g AA. (5, - 1) { p (B, - E) [C,(8) + C (a)]

- 4By [G(8) - Gyla) - o) v o) 1),

where Zp. =p +Dp_, I= (q+ + q=}/2 , and A= (q+ - qﬂ}/E . The argument
of the terms E_  is (% p ). . This expression is valid for r > r,; for

r<r , E becomes E o ' :
c n n 3
nr
n

Finally we obtain the expression for g, as (f2 - fl)A+A, '—Ef—'

+1

times the sum of the terms

P4 o

8 o = =5 (BlC(Z) + qu(A)] - Eley(z) + ()] ),
q+p= =y f 3 ;

e = - [By [Co(8) - C(a)] - By [ cy(z) - ca)] ),
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Lo
e R = -E) [0 - oy(a)]
8,k TR a2 o T Fol th1NES T NS
.- 1 d_A-= p+ ' -
g n = K: Ei‘—r: = »(Ez - EO) [Cl_(z) - Cl(.A) 1,
rpo_ dp,

&6 = TR &, (B5 - ) [603) - cy(a) ],

' + - . ) .
n . .
, rp dq
0 e +
€ = - T (2, E,) [02(;) CQ(A) I,
r p dg
- _.n + = - T .
B,q - C A @ (B E) [0(B) o],
ara q :
. 1 E T
. dA q . i : ‘
1l - 4+ A ' :
N By [0y(Z) = co(a) - cy(®) + cx(a) 1, [
rq dp
n ‘= -+ " -
B T T w1 LG () - 6B - e )
. rq dp ‘ ' '
- n+ _= - -
rq dq '
- n=- : ‘ - - C.
Eg,n = T @ Fq [0(B) +cy(8) - ey(3) - ox(a) 1,
n
r q dg ' .
= o+ o _ - ~ - -
g4 = T T B [c (z) +c (a) 05(2) CB(A) 1 .
. n
Again, for r < L modifications such as have already been pointed out must be
. da o da
- 1 - 1 5
made: -E Er-l- is replaced by e a}; - -I-;;l— s En by En+l" and p_En
~ 2 . ' - ;
by men-HL Rl En in these expr.essmnsor

n
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By generalizing the functions W+ and ¢ to the form V¥ =« ¢+ + B wa

and including in the Hamiltonian those térms in g g , and g+ that

' ++7
are independent of derivatives of p, g, etc., one could obtain the exact
binding energy &as r, = oo , without changing ihe’form of the differential

equation for the K's. Becsuse physical processes would still involve

unknown terms of order -é22 it was felt that the additional labor involved

in such a treatment was not Jjustified.
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It might be pointed out that this asymptotic form has a defect in that the

meson current is zerc. This is consistent with the assumption that the

meson velocity about the nuclei is large compared with the nuclear velocities,

and thefefore, in the region where the particles interact strongly, such

additional velocities represent a small correction. A correct asymptotic

form for the plane-wave part would be

0 ’ ? - R} ]
L[kz-u + k'8 (k¥ + k )&2]

-
e f(rH - rl) s

‘where g/ml = kﬁ/mﬁf and f is the wave function for the meson about

‘Nucleus 1. Our wave function thus neglects k' = (mu/ml)k,

It is perhéps of interest that this result is the same as that which would
have been obtained for nonidentical particles. The presence of the mesbn
on one of the two particles provides some Easis for distinguishing_betﬁéén
them. The result follows directly from second quantization of the sysﬁem;
If, as was done for the bound states, the integration is divided into two
regions for free states with W <L WL WP, three bounded outer solutions

D

exist (two sinusoidal ones associated with WD’ and a decreasing-exponential

cne associated with WH)O This gives the necessary freedom to make all four

quantities continuous at Ty
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FIGURE LEGENDS

- Static molecular-ion potentisls for the lowest symmetric (W+) and

antisymmetric {W ) mesonic states. Here [0 indicates values obtained

by Teller,h an& Qé the exact values of Hyllerass.

Mesomic wave-function parameters, pi(r)' = P.(r)/r and q/(r)=Q(r)r,
which minimize the static Hamiltonian. For thevaﬁtisymmetric states,

different curves ars presented for r < L r > r. (see text).

First-crder dynemic corrections to the molecular-ieon potentials for the

equal-mass case.

First-order dynamic correction terms to the molecular-ion potentials

for the unegual-mass case (mr/m_2 = 2),

First-order dynamic coupling terms between the lowest symmetric and

antisymmetric molecular-ion states for the unequal-mass case (ml m, = 2).
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This report was prepared as an account of Government
sponsored work. Neither the United States, nor the Com-
mission, nor any person acting on behalf of the Commission:

5

A. Makes any warranty or representation, expressed or

‘ implied, with respect to the accuracy, completeness,
or usefulness of the information contained in this
report, or that the use of any information, appa-
ratus, method, or process disclosed in this report
may not infringe privately owned rights; or

R, Assumes any liabilities with respect to the use of,
or for damages resulting from the use of any infor-
mation, apparatus, method, or process disclosed in
this report. '

As used in the above, "person' acting on behalf of the
Commission" includes any employee or contractor of the Com-
mission, or emplovee of such contractor, to the extent that

. such employee or contractor of the Commission, or employee
of such contractor prepares, disseminates, or provides access
to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.





