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Abstract 
 

Novel Applications of Machine Learning and Statistics  
for Genome-resolved Metagenomic Data 

 
by 
 

Sumayah F Rahman 
 

Doctor of Philosophy in Microbiology 
 

Designated Emphasis in Computational and Genomic Biology 
 

University of California, Berkeley 
 

Professor Jillian Banfield, Chair 
 
 

By sequencing environmental DNA and reconstructing microbial genomes, we can obtain insight 
into the previously hidden microbial world. This approach, known as genome-resolved 
metagenomics, has been utilized to study microorganisms in a variety of environments. Small 
sample sizes were common in genome-resolved metagenomics studies of the past, and thus few 
statistical methods of analysis were applied to the data resulting from these small-n studies. 
Instead, the analyses were focused on other aspects that did not require statistical methods, such 
as the identification of metabolic pathways possessed by the genomes and the phylogenetic 
relationships between organisms. However, in recent years, decreased sequencing costs and 
greater availability of computational resources have enabled scientists to sequence and process 
hundreds of samples for a single study. This dissertation demonstrates the application of several 
statistical and machine learning methods for the interpretation and strategic analysis of data from 
high-throughput genome-resolved metagenomic studies. Through the combination of new 
methods with previously existing methods, this work illustrates potential benefits that quantitative 
methods of analysis can offer to the field of genome-resolved metagenomics. 

 
The first chapter of this dissertation serves as an example of a traditional genome-resolved 
metagenomics study, using primarily manual methods of analysis after the main steps of the data 
processing pipeline (including assembly, binning, and annotation) are complete. The manual 
methods of analysis applied in this small-scale study enable us to understand what microbes are 
present in a particular bioreactor community, and what metabolic functions these microbes are 
capable of. This contrasts with the much more data-intensive studies in the latter chapters, in which 
manual analyses would not be an efficient use of the data. 
 
The second and third chapters, which are both focused on very large-scale data from the premature 
infant gut microbiome, illustrate the use of statistical methods for deciphering relationships in 
complex systems. This includes machine learning techniques applied to metagenome-associated 
genomes to make predictions that may potentially be useful in determining optimal care for a 
patient, as well as more basic statistical methods that allow us to better understand the gut 
microbiome and how it is influenced by external factors.
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The fourth chapter is focused on the development of a new method that takes the hierarchical 
structure of genome-resolved metagenomic data into account. With genes in pathways, pathways 
in genomes, and genomes in communities of microorganisms, traditional ways of comparing 
samples fail to fully elucidate the biological systems because not all levels of the hierarchy are 
accounted for. To address this problem, the new concept described here allows for the inclusion 
of both functional and phylogenetic data to best utilize the wide breadth of information available 
in genome-resolved metagenomic data. The combination of quantitative approaches with genome-
resolved metagenomics may lead to a more robust understanding of microbial communities. 
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Chapter 1 
 
Genome-resolved metagenomics of a bioremediation system for degradation of thiocyanate in 
mine water containing suspended solid tailings 
 
Sumayah F. Rahman1, Rose S. Kantor1, Robert Huddy2, Brian C. Thomas3, Andries Wynand van 
Zyl2, Susan T.L. Harrison2 and Jillian F. Banfield3,4 
 
1Department of Plant and Microbial Biology, University of California, Berkeley, California, USA 
2Center for Bioprocess Engineering Research, Department of Chemical Engineering, University 
of Cape Town, Cape Town, South Africa 
3Department of Earth and Planetary Sciences, University of California, Berkeley, California, USA 
4Department of Environmental Science, Policy, and Management, University of California, 
Berkeley, California, USA 
 
Abstract 
 

Thiocyanate (SCN-) is a toxic compound that forms when cyanide (CN-), used to recover 
gold, reacts with sulfur species. SCN--degrading microbial communities have been studied using 
bioreactors fed synthetic wastewater. The inclusion of suspended solids in the form of mineral 
tailings, during the development of the acclimatized microbial consortium, led to the selection of 
an active planktonic microbial community. Preliminary analysis of the community composition 
revealed reduced microbial diversity relative to the laboratory-based reactors operated without 
suspended solids. Despite minor upsets during the acclimation period, the SCN- degradation 
performance was largely unchanged under stable operating conditions. Here we characterized the 
microbial community in the SCN- degrading bioreactor that included solid particulate tailings and 
determined how it differed from the biofilm-based communities in solids-free reactor systems 
inoculated from the same source. Genome-based analysis revealed that the presence of solids 
decreased microbial diversity, selected for different strains, suppressed growth of thiobacilli 
inferred to be primarily responsible for SCN- degradation, and promoted growth of Trupera, an 
organism not detected in the reactors without solids. In the solids reactor community, heterotrophy 
and aerobic respiration represent the dominant metabolisms. Many organisms have genes for 
denitrification and sulfur oxidation, but only one Thiobacillus sp. in the solids reactor has SCN- 
degradation genes. The presence of the solids prevented floc and biofilm formation, leading to the 
observed reduced microbial diversity. Collectively the presence of the solids and lack of biofilm 
community may result in a process with reduced resilience to process perturbations, including 
fluctuations in the influent composition and pH. The results from this investigation have provided 
novel insights into the community composition of this industrially-relevant community, giving 
potential for improved process control and operation through ongoing process monitoring.  
 
Introduction 
 

Cyanide (CN-) is used globally in the gold mining industry as a lixiviant to dissolve and 
remove gold from ore. During gold extraction by cyanidation, CN- can react with reduced sulfur 
species, forming thiocyanate (SCN-) in the gold mining effluents. Although SCN- is not as toxic 
as CN-, it is known to be harmful to humans and aquatic organisms (Boening & Chew, 1999; 
Erdogan, 2003; Shifrin, Beck, Gauthier, Chapnick, & Goodman, 1996), requiring the use of 
chemical or biological methods for its removal. The use of microbes for biological remediation of 
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SCN- from contaminated wastewater has been successful at both the laboratory scale (Boucabeille, 
Bories, Ollivier, & Michel, 1994; Du Plessis, Barnard, Muhlbauer, & Naldrett, 2001; Van Zyl, 
Huddy, Harrison, & Van Hille, 2014; Zyl, Harrison, & Hille, 2011) and in commercial operations 
(van Buuren, Makhotla, & Olivier, 2011). Engineers have developed and commercialized a SCN- 
biodegradation process known as Activated Sludge Tailings Effluent Remediation (ASTER™) 
that involves continuous feeding of SCN--containing solutions into aerated bioreactors to promote 
microbial degradation (van Buuren et al., 2011).  
 Two metabolic pathways have been proposed for the biological degradation of SCN-. In 
one pathway, thiocyanate hydrolase converts SCN- to sulfide and cyanate (OCN-). OCN- is further 
hydrolyzed to carbon dioxide and ammonium, while sulfide is oxidized to sulfate. In the other 
degradation pathway, SCN- is hydrolyzed into carbonyl sulfide (OCS) and ammonium. OCS can 
be broken down into carbon monoxide and sulfide, which is then oxidized to sulfate (Katayama et 
al., 1998, 1992).  

To identify the microorganisms responsible for SCN- degradation, microbial communities 
in experimental reactors have been characterized by molecular fingerprinting (Felföldi et al., 2010; 
Huddy, Van Zyl, Van Hille, & Harrison, 2015; Quan et al., 2006) and genome-resolved 
metagenomic analysis (Kantor et al., 2017, 2015). Analysis of the 16S and 18S rRNA in a reactor 
established with an ASTER™ consortium revealed that the microbial community was much more 
diverse than previously expected (Huddy et al., 2015). Metagenomic analysis of the same system 
predicted the metabolic potential of the key organisms (e.g., Thiobacillus spp.) and described the 
potential flow of carbon, sulfur, and nitrogen through the community (Kantor et al., 2015). 

In the laboratory-based SCN--degrading system described by previous studies, SCN--
containing synthetic wastewater was fed to the laboratory reactors and, where the SCN- feed 
concentration was sufficiently high, thick biofilms formed on all reactor surfaces. Biofilm 
improves SCN- degradation rates, in part by ensuring biomass retention during continuous flow 
mode and by enhancing process robustness for dynamic waste streams (Huddy et al., 2015). 
Typically, the ASTER™ process is not performed in the presence of particulate tailings (i.e., 
mineral particles left behind after separating the gold from ore concentrate). However, at some 
mining sites, the removal of solid tailings from the effluent is not achieved fully due to site 
topography, particle size, density of the tailings and other factors (Van Zyl et al., 2014). In a 
bioreactor inoculated with the microbial consortium of the SCN- stock reactor (Kantor et al., 2015), 
van Zyl et al. (2014) acclimatized the microbial community to an incrementally increasing loading 
of solids of density 2.7 g/l to a final concentration of 5.5% mass/volume, and showed that, 
following acclimatization, SCN- degradation still occurred. However, biofilm did not form on the 
submerged surfaces of the reactor. Following an extended period of continuous operation, this 
solids-containing reactor was operated in ‘draw and fill’ mode, meaning that fluid was removed 
periodically and the volume replaced with untreated fluid.  

This study was motivated by the use of the acclimatized microbial culture, as developed 
by van Zyl et al. (2014), as the inoculum for an ASTERTM process to treat the effluent from a 
bioleaching operation exploiting a refractory gold deposit in the Philippines. The aim of the 
research was to resolve the microbial community associated with an active ASTERTM solids 
reactor system and to compare that with previously resolved (Kantor et al., 2017, 2015) ASTER™ 
microbial communities. In this study, we used genome-resolved metagenomics to elucidate the 
microbial community composition and metabolic potential of the solids-containing SCN- 
degradation bioreactor. We hypothesized that due to the lack of biofilm in the solids reactor (Van 
Zyl et al., 2014), there would be differences in community membership compared to the reactors 
without solids. Moreover, we hypothesized that given the lower SCN- loading in this system, key 
SCN- degrading organisms may be at lower relative abundances in this reactor compared to solids-
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free reactors at higher loading rates. Here we report the composition and metabolic potential of the 
solids reactor microbial community.  
 
Materials and Methods 
 
Mineral solids 

The mineral solids were generated by SGS (Johannesburg) and provided by Gold Fields, 
as described by van Zyl et al. (2014). The fine grained particulates had a D50 of 6.122 µm (D10 of 
0.939 µm and D90 of 38.026 µm) and a density of 2.677 g/ml. 
 
The ASTERTM culture 

The mixed microbial consortium used to inoculate the reactors was derived from the 
stock ASTERTM culture, with prior characterization reported by Huddy et al., (2015) and Kantor 
et al. (2015). It was acclimatized to cultivation in the presence of suspended solids as described 
by van Zyl et al. (2014).   
 
Reactor system 

The work was conducted using a stirred tank reactor, with an operating volume of 1 L, as 
described by van Zyl et al. (2014). The microbial culture, acclimatized during the investigation by 
van Zyl et al. (2014), was maintained in a “draw-and-fill” culture with a 10% volume replacement 
by a feed solution, containing the solids (5.5% m/v), SCN- (450 mg/L, as KSCN), molasses (150 
mg/L) and phosphate (27 mg/L, as KH2PO4) on a weekly basis. The molasses was provided to 
support heterotrophic growth. The pH of the feed was initially adjusted using potassium hydroxide 
to maintain the reactor at approximately pH 7.0.  
 
DNA extraction and sequencing 

Two separate samples of approximately 15 mL were drawn from the well-mixed suspended 
solids reactor operated under the same conditions at an interval of 25 days. These samples were 
processed independently. The biomass was harvested by centrifugation (14,000 rpm for 10 min at 
22°C). Total DNA was extracted using a NucleoSpin® soil genomic DNA extraction kit (Machery-
Nagel, Germany) with the inclusion of a repeated extraction step, according to the manufacturer’s 
instructions. Paired end library preparation and sequencing were performed with Illumina HiSeq 
2500 run at the rapid mode at the Joint Genome Institute (Walnut Creek, CA). An insert size of 
500 bp was used to yield 251 bp reads.  
 
Read processing, assembly and initial functional annotation 

For both datasets, reads were hard trimmed to 150 bp and processed by BBtools to remove 
Illumina adapters and trace contaminants. The reads were then trimmed for quality using Sickle 
with default settings (https://github.com/najoshi/sickle). The datasets were assembled 
independently using idba_ud with the pre-correction option, for normalization of highly 
represented kmers (Peng, Leung, Yiu, & Chin, 2012). Genes on scaffolds ≥1000 bp were predicted 
using Prodigal with the metagenome option (Hyatt, Locascio, Hauser, & Uberbacher, 2012). For 
annotation, similarity searches were performed using USEARCH, which compares sequences 
against the KEGG, UniRef100, and UniProt databases. KEGG and UniRef100 were searched in 
the forward and reverse direction to identify reciprocal best hits, while only forward searches were 
done for UniProt. The phylogenetic affiliation to the lowest possible taxonomic level was 
determined based on the best hit against the UniRef100 database. 16S rRNA genes were predicted 
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based on the ssu-align-0p1.1.cm database, and transfer RNA genes were predicted using 
tRNAscanSE (Lowe & Eddy, 1997).   
 
Genome binning and dereplication 

Genome bins were assigned based on coverage, GC content, and the phylogenetic best-hit 
profile of scaffolds ≥1000 bp using ggkbase binning tools (ggkbase.berkeley.edu). Emergent-self 
organizing maps (ESOMs) based on di- and tri-nucleotide frequencies and differential coverage 
across the  samples were created for each of the two datasets (Dick et al., 2009), and the tentative 
bin information was superimposed onto the ESOMs as class files using the Databionic ESOM 
Tool, esomana (Ultsch and Moerchen, 2005).The bins were checked manually, and any mis-binned 
scaffolds were transferred to the correct bin. The bacterial genomes were curated to resolve 
assembly errors, extend scaffolds, and join scaffolds. Genome completeness for the bacterial bins 
was assessed based on the presence or absence of 51 bacterial single copy genes that are widely 
conserved. The genome bins from the solids 1 and solids 2 samples were aligned, and bins with 
>98% nucleotide identity across 50% of the genome were classified as the same genome. The 
winning genome was chosen based on genome completeness and included in the dereplicated 
solids dataset. To determine which organisms from the solids bioreactor have been found 
previously in thiocyanate bioreactors, genomes were clustered at >98% average nucleotide identity 
using the MinHash technique (Ondov et al., 2016). Read mapping for coverage calculation was 
performed using Bowtie2 with default settings (Langmead & Salzberg, 2012). If an organism 
occurred with coverage >1x, it was considered to be present in that sample. 
 
Phylogenetic analysis based on ribosomal protein sequences 

The genes for 16 ribosomal proteins (L2, L3, L4, L5, L6, L14, L16, L18, L22, L24, S3, S8, 
S10, S17 and S19) were collected from the solids 1 and solids 2 datasets, as well as the SCN-only 
( SCN- loading rate of 1.9 mM h-1; 12 h residence time; Kantor et al., 2015), CN-SCN ( SCN- and 
CN-  loading rate of 0.9 and 0.14 mM h-1 respectively at a 14 h residence time; Kantor et al., 2015), 
and SCN- two-reactor time series datasets (SCN- loading rate of 0.07 – 1.4 mM h-1 at a 12 h 
residence time and SCN- feed concentrations from 50 to 1000 mg/l; Kantor et al., 2017), excluding 
those from bins labeled as eukaryotes, viruses, phage, plasmids, or mitochondria. These 16 genes, 
along with the 16 ribosomal protein genes from a custom reference set, were aligned independently 
with MUSCLE (Edgar, 2004). The alignments were trimmed to remove ambiguously aligned 
termini and columns composed of more than 95% gaps. The alignments were then concatenated 
to form an alignment with 2,454 columns, and taxa that had less than 50% of the alignment were 
removed. Due to incomplete sequences, some organisms from the datasets did not get incorporated 
into the final concatenated alignment. This alignment was used to construct a maximum likelihood 
phylogeny with RAxML using the PROTGAMMALG model (Stamatakis, 2014).  
 
Metabolic analysis 

Genome-specific metabolic potential was determined by (1) searching all predicted ORFs 
in a genome with Pfam30, TIGRfam31, Panther32 and custom HMM profiles of marker genes for 
specific pathways using hmmscan33 (Anantharaman et al., 2016) (2) assessment of metabolic 
pathways using annotations on ggKbase (ggkbase.berkeley.edu) (3) searching particular proteins 
of interest using BLAST (Altschul, Gish, Miller, Myers, & Lipman, 1990). For generation of 
custom HMM profiles, references for each marker gene were aligned using MUSCLE and the start 
and ends of the alignment were manually trimmed. The alignment was converted into Stockholm 
format and databases were built using hmmscan33. For RuBisCO and hydrogenases34, different 
hmm databases were constructed for each distinct group. Individual cutoffs for all HMMs were 
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determined by manual inspection. To compare genomes found in thiocyanate bioreactors with 
published genomes, the genomes of interest were downloaded from NCBI, and reciprocal BLASTs 
were utilized to identify shared and unique genes. 
 
Results and Discussion 
 
Genome recovery and community structure 

Metagenomic sequencing for two samples from the SCN- bioreactor with solids was 
obtained: the “solids 1” sample (4.6 Gbp of sequence) was taken one month prior to “solids 2” (5.1 
Gbp of sequence). Raw read data for solids 1 and solids 2 can be accessed at NCBI with accession 
numbers SAMN05509838 and SAMN05509839. De novo assembly of the metagenomes resulted 
in a 178.9 Mbp assembly for solids 1 (with 51% of the assembly in contigs ≥ 5 kb) and a 213.2 
Mbp assembly for solids 2 (with 77% in contigs ≥ 5 kb). Genome binning based on GC content, 
coverage, di-and tri-nucleotide frequencies, and differential coverage across the solids 1 and solids 
2 samples yielded 34 bacterial genomes from solids 1 and 25 bacterial genomes from solids 2. The 
taxonomic compositions of the two samples were similar. However, in solids 1, we also 
reconstructed draft mitochondrial genomes for two protozoa and a partial genome of a yeast 
belonging to the Saccharomycetales.  

Based on coverage data, Sphingobacteriales_2 was consistently the dominant organism and 
Thiobacillus spp. were present at only moderate abundance (Figure 1.1), unlike in SCN- 
bioreactors without solids where thiobacilli were the most abundant community members (Kantor 
et al., 2015). Phylogenetic analysis revealed that the two thiobacilli in the solids reactor are closely 
related to, but distinct from, the strains reported from solids-free reactors with the same inoculum 
(Figure 1.2).  
 To identify overlapping genomes in solids 1 and solids 2, genomes with >98% nucleotide 
identity were clustered. This resulted in a dereplicated dataset of 40 bacterial genomes, available 
at http://ggkbase.berkeley.edu/scnpilot_solids_dereplicated/organisms. Out of the 34 distinct 
bacterial genomes in solids 1 that were abundant enough for at least partial genome-based analysis 
(>0.25% of the community), 19 were also sufficiently abundant for genome-based analysis in 
solids 2 (Figure 1.1). The relative abundances of some of these organisms did not change between 
time points (e.g., Truepera_1) whereas others decreased (e.g., Sphingobacteriales_2) or increased 
dramatically (e.g., Rhodanobacter_2) (Figure 1.1). However, based on an analysis involving 
stringent read mapping that enabled detection of organisms at relative abundance levels of ~0.06% 
of the community, 39 out of the 40 unique bacterial genomes were detected in both samples (Table 
1.1).  
 
Dominance of heterotrophy and aerobic metabolism   

Metabolic analyses revealed that no genomes from the solids bioreactor possess the genes 
for the Wood–Ljungdahl pathway or the reverse TCA cycle. Four genomes carry genes for form I 
and/or form II RuBisCO (rbc), the key enzyme of the Calvin–Benson–Bassham cycle (Table 1.1). 
The lack of carbon fixation genes in 90% of genomes from this dataset indicates that the 
community was mainly composed of heterotrophs. In fact, only one of the five most abundant (and 
genomically well-defined) organisms in the solids reactor is an autotroph (Figure 1.1). 
Heterotrophs likely consume the molasses in the media as well as biomass and/or organic exudates 
or lysis products from autotrophs. In contrast, three of the five most abundant organisms in the 
solids-free bioreactor are autotrophs (Kantor et al., 2015). 
 To determine the oxygen requirements for organisms in the solids bioreactor, we searched 
the genome bins for the presence of cytochrome oxidase genes. The vast majority of genomes 
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contain at least one cytochrome oxidase, indicating the ability to use oxygen as a terminal electron 
acceptor. Just one near-complete genome, the predicted endosymbiont Cytophagia_1, lacks 
cytochrome oxidase (Table 1.1). The presence of most of the glycolysis pathway, in addition to 
pyruvate dehydrogenase, suggests that Cytophagia_1 may ferment pyruvate, possibly producing 
acetate as a metabolic byproduct. The dominance of aerobic organisms is not surprising, given that 
the solids reactor is well aerated and does not develop biofilm (Van Zyl et al., 2014), which would 
provide anaerobic and microaerobic environments (Falsetta, McEwan, Jennings, & Apicella, 2010; 
Fox et al., 2014). 
 
Thiocyanate, nitrogen and sulfur compound metabolic pathways 

Thiobacillus_2, the more abundant of the two identified Thiobacillus strains (Figure 1.1), 
possesses a thiocyanate hydrolase (scnABC) (Table 1.1), the enzyme involved in the degradation 
of SCN- in Thiobacillus thioparus THI115 (Arakawa et al., 2007; Kataoka et al., 2006), and the 
genes for this enzyme are located in a conserved operon as previously described (Kantor et al., 
2015). Both Thiobacillus_1 and Thiobacillus_2 possess genes involved in sulfur oxidation and 
denitrification (Table 1.1). Thus, it is clear that Thiobacillus spp. have important roles in the solids 
reactor, although they are not the dominant organisms (Figure 1.1) as they were in the SCN- stock 
reactor (Kantor et al., 2015). The decrease in the proportion of Thiobacillus in the solids bioreactor 
relative to the reactors operated without solids and the reduced number of species with SCN- 
degradation ability may explain the increased sensitivity of the SCN- degradation to process 
perturbation and stress as reported by van Zyl et al. (2014).   

SCN- degradation results in the production of ammonium that could be converted to nitrite 
and removed by denitrification. Only one genome bin, Nitrosospira_1, contains genes for 
ammonium oxidation, amo and hao (Table 1.1), suggesting that this organism is critical for nitrite 
production in the system. We detected no genes for anaerobic ammonium oxidation in the dataset, 
as was the case in studies of solids-free reactors (Kantor et al., 2017, 2015). Six organisms in the 
solids reactor contain a full denitrification pathway (including nar, nir, nor, and nos genes) for the 
complete reduction of nitrate to N2 (Table 1.1). Other genomes were missing one or more genes 
in the denitrification pathway, although this may be due to incomplete genome recovery. The 
dominant organism, Sphingobacteriales_2, is likely the main contributor to denitrification in the 
system (Figure 1.1). 

An important step in the SCN- breakdown pathway is sulfur oxidation. For the oxidation 
of sulfide, either SoxCD or rDsrAB is required. The gene for SoxC, which forms a complex with 
SoxD and works in conjunction with the other Sox enzymes, is present in four genomes (Table 
1.1). Thiobacillus_1 contains dsrAB, which may function in the reverse dissimilatory sulfite 
reductase pathway that can oxidize sulfur to sulfite. We identified genes for APS reductase (apr) 
in Thiobacillus_2 and ATP sulfurylase (atpS) in Xanthomonadales_1; these may complete the 
oxidation by converting sulfite to sulfate. Other genes known to be involved in the oxidation of 
sulfur compounds, such as fcc and sqr, were found in several genomes in this dataset (Table 1.1). 
Overall, we conclude that based on its high abundance, Burkholderiales_1 is the most important 
organism involved in sulfur compound oxidation, although Rhizobiales_1 and Afipia_1 likely also 
contribute to these reactions (Figure 1.1). 
 
An organism in the solids reactor not found in the solids-free reactors 

A bacterium of the phylum Deinococcus-Thermus occurred in both the solids 1 and solids 
2 samples (Figure 1.1). To our knowledge, this is the first reporting of a Deinococcus-Thermus in 
bioreactors inoculated with the ASTERTM microbial consortium (Du Plessis et al., 2001; Huddy et 
al., 2015; Kantor et al., 2017, 2015; van Buuren et al., 2011; Van Zyl et al., 2014). We 
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reconstructed a draft Truepera_1 genome that is 1.22 Mbp in length with 90% of expected single 
copy genes (Table 1.1). In comparison, the published complete genome of Truepera radiovictrix, 
the only genome available from the Truepera genus, is 3.23 Mbp in length (Ivanova et al., 2011). 
The 16S rRNA gene of T. radiovictrix shares only 89% identity with the sequence from 
Truepera_1, so it is possible that the two organisms do not belong to the same Genus; however, T. 
radiovictrix is the nearest sequenced relative. Members of Deinococcus-Thermus are known to be 
highly resistant to environmental hazards; specifically, T. radiovictrix is resistant to ionizing 
radiation and can grow under extreme conditions such as high alkalinity (Albuquerque et al., 
2005). Given that T. radiovictrix is an alkaliphile, it was surprising that Truepera_1 was not also 
detected in the solids-free reactor, which has a higher pH than the solids reactor (Huddy et al., 
2015; Van Zyl et al., 2014). 

We compared the newly reconstructed Truepera_1 genome to that of T. radiovictrix, as it 
is the closest reference available. Like the published T. radiovictrix strain RQ-24T, Truepera_1 is 
predicted to be an aerobic heterotroph. Unlike the reference sequence, Truepera_1 has genes for 
the export of heavy metals. There were also several genes present in the published Truepera 
genome that are not in Truepera_1, although this may be due to the fact that the Truepera_1 
genome is incomplete. These included genes for L-lactate dehydrogenase, which T. radiovictrix 
strain RQ-24T utilizes when it switches to homolactic fermentation, and manganese catalase, an 
antioxidant defense metalloenzyme that may be involved in strain RQ-24T’s resistance to ionizing 
radiation.  

Truepera_1 thrives in the well-aerated solids bioreactor as the fifth most abundant 
organism (Figure 1.1), where it most likely consumes the molasses in the reactor feed. As the 
genome harbors a copper-containing nitrite reductase NirK, Truepera_1 may play a role in the 
denitrification process within the bioreactor (Table 1.1). The differing conditions in the solids 
reactor, including the SCN- loading rate, likely resulted in the enrichment of low-abundance 
organisms that were not detected previously, such as Truepera_1. A notable feature of the solids 
bioreactor is that the high agitation of solid tailings causes shear stress that prevents biofilm 
formation (Illing & Harrison, 1999; Van Zyl et al., 2014). Mechanisms for resistance to shear stress 
have been identified in other members of the Deinococcus-Thermus; e.g., the SlpA protein in 
Deinococcus radiodurans R1 maintains cell envelope integrity (Rothfuss, Lara, Schmid, & 
Lidstrom, 2006). One S-layer protein gene was found in the Truepera_1 genome, and its best hit 
in the NCBI Protein database is the S-layer protein of D. radiodurans R1. If Truepera_1 has 
capabilities similar to D. radiodurans that allow it to resist the shear stress brought about by the 
agitated solids, this may contribute to its proliferation in this bioreactor.  
 
Viruses and eukaryotes 

Viruses and phage were abundant in the solids reactor. Two eukaryotic viruses and twenty 
phage were binned from the dataset, with five of the phage occurring in both the solids 1 and solids 
2 samples. Some phage genomes were found within the genome bins of specific bacteria based on 
co-abundance patterns, suggesting possible affiliations. These bacteria include Rhizobiales_1, 
Rhizobiales_2, Xanthomonadales_1, Burkholderiales_1, Afipia_1, Chryseobacterium_1, and 
Rhodanobacter_2. A virus was found in the eukaryotic genome bin Saccharomycetales_1. These 
findings may indicate that viruses and phage play important roles in carbon turnover in the 
bioreactor. Metagenomic analysis of the bioreactors without solids also suggested that predation 
by eukaryotes and phage affects community dynamics (Kantor et al., 2015). 
 The genome for the yeast Saccharomycetales_1 was 8.52 Mbp in length and appears to be 
around half-complete, given 690 complete single-copy Benchmarking Universal Single-Copy 
Orthologs (BUSCOs) out of 1438 total BUSCO groups searched (Simão, Waterhouse, Ioannidis, 
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Kriventseva, & Zdobnov, 2015). Other organisms belonging to the order Saccharomycetales have 
been previously found in this system. An analysis of 18S rRNA genes from the solids bioreactor 
revealed the presence of a yeast that is a close relative of Candida palmioleophila (Van Zyl et al., 
2014), and the ASTERTM microbial consortium has been found to include Candida humulis (van 
Buuren et al., 2011). In a study that utilized light microscopy, yeast-like cells and other eukaryotes 
such as filamentous fungi were present in the biofilm of the SCN- reactor without solids (Huddy 
et al., 2015). The presence of Saccharomycetales_1 in the solids bioreactor, which does not contain 
biofilm, indicates that yeasts can also occur in the liquid portion of the bioreactor.  

Mitochondrial genomes for two protozoa were identified in the solids 1 dataset. 
Mitochondria_Protozoa_1 was classified as Acanthamoeba castellanii, a unicellular amoeba that 
frequently captures prey by phagocytosis and harbors bacterial endosymbionts (Khan, 2001). In 
the solids reactor, Protozoa_1 likely carried the bacterial symbiont Cytophagia_1 based on co-
abundance patterns. Mitochondria_Protozoa_2, which was also observed in one of the solids-free 
bioreactors (Figure 1.2), was classified as a Schizopyrenida. The majority of the contigs within the 
Mitochondria_Protozoa_2 genome bin corresponded to Naegleria, which are organisms known 
for their ability to transform from an amoeba to a flagellate (Marciano-Cabral, 1988). 

An interesting phenomenon is the lack of rotifers in the solids reactor, which have been 
identified and observed in bioreactors without solids (Kantor et al., 2017). The rotifers prefer the 
planktonic portion of these reactors and feed on the edges of the biofilm. The shear stress caused 
by the highly agitated tailings material in the solids bioreactor may hinder the survival of these 
pseudocoelomate animals. Additionally, the slightly acidic conditions in the solids reactor (Van 
Zyl et al., 2014) may not be ideal for these planktonic rotifers (Berziņš & Pejler, 1987). 
 
Conclusions 
 

Bacteria from seven phyla were detected in the solids bioreactor (present at > 0.06% of the 
community) (Table 1.1). In contrast, a sample from the SCN- stock reactor, sequenced to 
approximately the same depth, contained bacteria from nine different bacterial phyla (Kantor et 
al., 2015). The draw and fill mode of operation of the solids reactor at the time of analysis should 
have favored retention of slow-growing cells relative to the continuous flow mode of operation of 
the solids-free reactor, which could have led to increased diversity in the solids reactor. However, 
this effect would have been countered by biofilm formation in the reactor without solids, which 
likely prevented washout of slow-growing species, potentially increasing diversity in the solids-
free reactor. The bacteria detected represent only a subset of all organisms present in the SCN- 
stock reactor, given that organisms from 17 bacterial phyla have been detected across three 
experiments that were inoculated from that source (SCN- stock reactor + the CN-SCN- reactor + 
SCN- two-reactor time series; Kantor et al., 2015; Kantor et al., 2017). The finding of lower 
bacterial diversity in the solids reactor compared with the solids-free SCN-stock reactor expands 
on results of a previous study that used a 16S rRNA gene clone library (30 sequences) to suggest 
lowering of diversity in reactors operated with solids and in continuous culture (Van Zyl et al., 
2014).  

Differing conditions in the solids bioreactor, including the mode of operation, SCN- 
loading rate, absence of biofilm, increased shear stress, and lower pH (Van Zyl et al., 2014), likely 
affected the community composition. Truepera_1, an organism not previously detected in other 
reactors, was relatively abundant in the solids reactor, and may have been selected for due to its 
ability to withstand shear stress. The other bacteria enriched in the solids reactor were different 
species or different strains of species present in the other reactors derived from the same inoculum. 
The solids reactor exhibited lower diversity than any solids-free reactor at the strain as well as 
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phylum level. Performance of the solids reactor over an extended duration achieved a sustained 
SCN- degradation rate of 56 mg/l/h and was similar to the biofilm-based communities in the solids-
free reactors, in terms of SCN- degradation rates achieved relative to SCN- loading.  The solids 
reactor also exhibited short periods of compromised degradation in response to perturbation of 
preferred operating conditions over the experimental period (Van Zyl et al., 2014). This may have 
been a consequence of decreased species diversity in the solids reactor relative to the solids-free 
reactors and the presence of only one organism capable of SCN- degradation.  

Organisms that can respire aerobically dominated the solids reactor community (Table 1.1), 
as was expected since the reactor was well aerated and biofilm was not present (Van Zyl et al., 
2014). A moderately abundant Thiobacillus in the solids reactor possessed the genes for SCN- 
degradation (Figure 1.1), whereas in the solids-free reactors, SCN--degrading thiobacilli were the 
dominant organisms (Kantor et al., 2015; Kantor et al., 2017). The comparatively lower relative 
abundance of Thiobacillus explains the reduced resilience of the solids reactor system to 
perturbation in terms of SCN- degradation reported by van Zyl et al. (2014). Despite the differences 
between this reactor and the solids-free reactors, several organisms in the solids bioreactor 
harbored genes for denitrification and sulfur oxidation (Table 1.1), key steps in the remediation of 
thiocyanate from wastewater.  

We reconstructed genomes for 40 bacteria present in the solids reactor but only six of these 
were genomically sampled from bioreactors operated without solids (Figure 1.2). Thus this 
genome-resolved metagenomic analysis of the solids reactor expanded knowledge regarding 
organisms present in ASTERTM microbial consortium and increased available information about 
their metabolic potential. 
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Figure 1.1. Metabolic potential of the 19 organisms present at a high enough abundance in both 
the solids 1 and solids 2 samples to allow for genome‐based analysis. The number of raw reads for 
each sample was used to normalize the coverage data, in order to accurately compare the two 
samples. 
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Figure 1.2. Illustration of the overlaps among reactor communities. To identify overlapping 
genomes, representative parts of the genome bins were aligned and clustered based on >98% 
average nucleotide identity. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 12 

Table 1.1. Genome statistics and metabolic potential for the 40 bacterial genome bins in the solids 
bioreactor dataset (http://ggkbase.berkeley.edu/scnpilot_solids_dereplicated/organisms), ordered 
by normalized coverage in the solids 1 sample. The numbers represent the count of each indicated 
gene. 
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Abstract 
 

Antibiotic resistance in pathogens is extensively studied, yet little is known about how 
antibiotic resistance genes of typical gut bacteria influence microbiome dynamics. Here, we 
leverage genomes from metagenomes to investigate how genes of the premature infant gut 
resistome correspond to the ability of bacteria to survive under certain environmental and clinical 
conditions. We find that formula feeding impacts the resistome. Random forest models 
corroborated by statistical tests revealed that the gut resistome of formula-fed infants is enriched 
in class D beta-lactamase genes. Interestingly, Clostridium difficile strains harboring this gene are 
at higher abundance in formula-fed infants compared to C. difficile lacking this gene. Organisms 
with genes for major facilitator superfamily drug efflux pumps have faster replication rates under 
all conditions, even in the absence of antibiotic therapy. Using a machine learning approach, we 
identified genes that are predictive of an organism’s direction of change in relative abundance after 
administration of vancomycin and cephalosporin antibiotics. The most accurate results were 
obtained by reducing annotated genomic data into five principal components classified by boosted 
decision trees. Among the genes involved in predicting if an organism increased in relative 
abundance after treatment are those that encode for subclass B2 beta-lactamases and 
transcriptional regulators of vancomycin resistance. This demonstrates that machine learning 
applied to genome-resolved metagenomics data can identify key genes for survival after antibiotics 
and predict how organisms in the gut microbiome will respond to antibiotic administration. 
 
Introduction 
 
 Antibiotic use has been steadily increasing over the past several decades and is correlated 
with the prevalence of antibiotic resistance in bacteria (Goossens, Ferech, Vander Stichele, & 
Elseviers, 2005). Widespread antibiotic resistance, in combination with the decline in development 
of new antibiotics, presents a major threat to human health (Spellberg et al., 2008). The gut 
microbiome is a reservoir for antibiotic resistance genes (Penders, Stobberingh, Savelkoul, & 
Wolffs, 2013) and may be involved in the spread of resistance genes to pathogens (Simonsen, 
Lvseth, Dahl, & Kruse, 1998; Teuber, Meile, & Schwarz, 1999; Van Braak et al., 1998). 
Additionally, antibiotics are often prescribed to treat infections without considering how the drug 
will affect the gut microbial community, which can lead to negative consequences for the human 
host (Langdon, Crook, & Dantas, 2016). It is therefore important to study how the antibiotic 
resistance genes harbored by organisms in the gut microbiome impact community dynamics.  

The preterm infant gut resistome is considered a research priority because premature 
infants are almost universally administered antibiotics during the first week of life (Clark, Bloom, 
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Spitzer, & Gerstmann, 2014). Early life is a critically important time for community establishment 
(J. J. Faith et al., 2013), and neonatal antibiotic therapies have both transient and persistent effects 
on the gut microbial community. Included among the many ways that antibiotics have been shown 
to affect the microbiome are lower bacterial diversity (Greenwood et al., 2014), enrichment 
of  Enterobacteriaceae (Arboleya et al., 2015; Greenwood et al., 2014), reduction of 
Bifidobacterium spp. (Tanaka et al., 2009), and enrichment of antibiotic resistance genes (Jernberg, 
Löfmark, Edlund, & Jansson, 2007), including those that have no known activity against the 
particular antibiotic administered (Gibson et al., 2016). Previous studies have shown that the 
community composition of the infant microbiome is affected by diet, with artificial formula 
selecting for Escherichia coli and Clostridium difficile (Penders et al., 2005), and breast milk 
selecting for certain strains of Bifidobacterium (Costello, Stagaman, Dethlefsen, Bohannan, & 
Relman, 2012).  The effect of birth mode on the microbiome is contested, with most studies finding 
that it has an effect on the gut microbiome (Penders et al., 2006; Wampach et al., 2017; Yassour 
et al., 2016) although some show no effect (Chu et al., 2017; Stewart et al., 2017). Gender (Cong, 
Xu, Janton, Henderson, & Matson, 2016) and maternal antibiotics before or during birth (Fouhy 
et al., 2012; Keski-nisula et al., 2013; Mshvildadze et al., 2010) also influence microbiome 
assembly.  

Here we use genome-resolved metagenomics coupled with statistical and machine learning 
approaches to investigate the gut resistome of 107 longitudinally sampled premature infants. We 
show that certain antibiotic resistance genes in particular genomes affect how clinical factors 
influence the gut microbiome and, in turn, how the antibiotic resistance capabilities of a gut 
organism influence its growth and relative abundance.  
 
Materials and Methods 
 
Sample collection, sequencing, assembly, and gene prediction 

Fecal samples were collected from 107 infants that resided in the Neonatal Intensive Care 
Unit (NICU) at the Magee Women’s hospital in Pittsburgh, Pennsylvania during the sampling 
period. Briefly, DNA was extracted using the PowerSoil DNA isolation kit (MoBio Laboratories, 
Carlsbad, CA, USA) and sequenced using the Illumina HiSeq platform. Details on sample 
recovery, extraction, library preparation, and sequencing have been previously reported (Brooks 
et al., 2017; Raveh-Sadka et al., 2016, 2015). Using default parameters for all the programs, the 
reads were trimmed with Sickle (https://github.com/najoshi/sickle), cleared of human 
contamination following mapping to the human genome with Bowtie2 (Langmead & Salzberg, 
2012), and assembled with idba_ud (Peng et al., 2012). Additionally, idba_ud was used to generate 
co-assemblies for each infant by simultaneously assembling all the samples belonging to the infant. 
Prodigal (Hyatt et al., 2010) run in the metagenomic mode was used for gene prediction. 
 
Genome recovery and relative abundance calculation 

For each infant, reads from all samples from that infant were mapped to all individual 
assemblies from that infant as well as the infant’s co-assembly using SNAP (Zaharia et al., 2011). 
Coverage of scaffolds was calculated and used to run concoct (Alneberg et al., 2014) with default 
parameters on all individual assemblies and co-assemblies. To remove redundant bins, all bins 
recovered from each infant were de-replicated using dRep (Olm, Brown, Brooks, & Banfield, 
2017) v0.4.0 with the command: dRep dereplicate_wf --S_algorithm gANI -comp 50 -con 25 -str 
25 -l 50000 -pa .9 -nc .1. 
 Using Bowtie2 (Langmead & Salzberg, 2012), the reads from each sample were mapped 
to the set of genomes that were recovered from that particular infant. The read mapping output 
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files were used to calculate the average coverage of each genome in each sample, and the coverage 
values were converted to relative abundance by utilizing the read length, total number of reads in 
the sample, and genome length. 
 
iRep calculation 

For each sample, a set of representative genomes was first chosen from the complete 
collection of de-replicated genomes. First, all genomes were clustered at 98% ANI using dRep 
(Olm et al., 2017). A pangenome was then generated for each of these clusters using PanSeq (Laing 
et al., 2010), creating a list of fragments representing the entire sequence-space of each cluster. All 
pangenomes of all clusters were merged, and reads from all samples were mapped to the resulting 
pangenome set using SNAP (Zaharia et al., 2011). By analyzing the coverage of all fragments in 
the pangenome set, the breadth of each genome in each sample was calculated (number of genome 
fragments > 1x coverage / total genome fragments). Genomes with less than 85% breadth were 
removed from analysis. For all remaining genomes, the genome from each cluster with the highest 
breadth was added to that sample’s representative genome list.  

Next, reads from each sample were mapped to its representative genome list using bowtie2 
(Langmead & Salzberg, 2012) default parameters. iRep (Brown, Olm, Thomas, & Banfield, 2016) 
was run on the resulting mapping files using default parameters and without GC correction. Only 
values that passed iRep’s default filtering and were < 3 were considered for analysis. 
 
Annotation 
 The amino acid sequences of genes predicted by the metaProdigal gene finding algorithm 
(Hyatt et al., 2010) were searched against Resfams (Gibson, Forsberg, & Dantas, 2014), an 
antibiotic resistance gene specific profile hidden Markov model (HMM) database using the 
hmmscan function of HMMER v 3.1b2 (Finn, Clements, & Eddy, 2011). The --cut_ga option was 
used to set the reporting and inclusion limits as the profile-specific gathering threshold, which have 
been manually optimized on a profile-by-profile basis to ensure Resfams prediction accuracy 
(Gibson et al., 2014). The Resfams annotation output and the coverage of each scaffold that had a 
hit to a Resfams profile were used to generate sample resistance gene summaries. Each sample 
resistance gene summary, which represents the antibiotic resistance potential of a particular infant 
gut microbiome at a particular point in time, displays the counts per million reads (CPM) for each 
of the 170 antibiotic resistance gene families in the Resfams database. Additionally, genome 
resistance gene profiles that indicated the count of each resistance gene were developed for each 
genome. Information about the database, including descriptions of the antibiotic resistance genes 
represented by each accession code, is available at http://www.dantaslab.org/resfams/. 
 To gather general metabolism data, all binned sequences were searched against Kyoto 
Encyclopedia of Genes and Genomes (KEGG) (Kanehisa & Goto, 2000) HMMs and the results 
were parsed for genome profiling. This resulted in a KEGG metabolism profile for each organism 
that displayed the fraction of each KEGG module encoded by that genome. 
 
Statistical and computational analysis 
 To evaluate the effect of feeding regimen, delivery mode, gender, maternal antibiotics, and 
the infant’s current antibiotic therapy, three cross-sectional PERMANOVA (McArdle & 
Anderson, 2013) tests for weeks two, four, and six were performed using the adonis2 function of 
the vegan package in R (Dixon, 2003). For each infant, the first sample of each week was identified 
and the resistance gene summary of that sample was included in the PERMANOVA. If antibiotics 
were being administered on the day of sampling (which also indicates a current disease diagnosis), 
the infant was labeled as currently receiving antibiotics. Infants that were exclusively fed breast 
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milk and infants that were given breast milk at any point were both labeled as receiving breast 
milk. The Bray-Curtis dissimilarity metric was used and 9,999 permutations were performed to 
assess the marginal effects of the terms. The factor revealed to have a significant difference in 
antibiotic resistance gene content (p < 0.05) was selected for continued analysis. To identify 
antibiotic resistance genes associated with either formula feeding or breast milk during the weeks 
indicated by the PERMANOVA results, the infant’s diet was used to classify sample resistance 
gene summaries using random forest models (Pedregosa et al., 2012). Mann-Whitney U tests were 
performed on Resfams that had feature importance scores above 0.07 in the random forest models, 
as calculated by the Gini importance metric. Genomes containing resistance genes significantly 
associated with a particular feeding type, along with genomes of the same species lacking these 
genes, were further investigated. The ribosomal protein S3 (RPS3) genes for each genome were 
identified by rp16.py (https://github.com/christophertbrown/bioscripts/blob/master/bin/rp16.py). 
The RPS3 nucleotide sequences were aligned with MUSCLE (Edgar, 2004) using default 
parameters, and a maximum-likelihood phylogenetic tree was built with RAxML (Stamatakis, 
2014). Pairwise Pearson correlations of Resfams with KEGG modules within these genomes were 
calculated. 

The Pearson correlation of mean replication index (iRep) for a sample and the sample’s 
total resistance gene content was determined for samples collected within five days following 
antibiotic treatment. The replication rates of organisms harboring antibiotic resistance genes were 
compared to those lacking resistance genes of the same category, All p-values were Bonferonni 
corrected for multiple testing. 

Infants for which there was a sample taken both before and after post-week antibiotic 
treatment were identified and the before and after samples were selected (no samples were 
available prior to the empiric antibiotics administered during the first week). Genomes from the 
selected samples were identified and labeled as either increasing or decreasing in relative 
abundance from the pre-antibiotic sample to the post-antibiotic sample. Using scikit-learn 
(Pedregosa et al., 2012), development of a machine learning model to predict the direction of 
change in relative abundance for each genome based on its Resfams and KEGG metabolism was 
attempted; yet an adequate model could not be developed, presumably due to variation in the ways 
that organisms respond to different antibiotic combinations. Therefore, the dataset was narrowed 
to include the six infants that received either cefotaxime or cefazolin (both cephalosporin 
antibiotics) in conjunction with vancomycin. 70% of the genomes obtained from these infant 
samples were used for training, 15% was used as a validation set for model improvement, and 15% 
was held out as a final test set. Several attempts to improve model performance through algorithm 
choice, feature engineering, and parameter tuning were applied, and the model that exhibited the 
best results with regard to precision and recall was selected. This model was then used to make 
predictions on the final test set. Each feature constructed for the model was a principal component 
of the Resfams and KEGG metabolic data, and the genes/modules contributing most strongly to 
each of these principal components were identified. The tendency for each of the genes and 
modules to occur in the increase class was calculated by adding -1 to the gene’s mean value in the 
increase class divided by its mean value in the decrease class. 
 
Data availability 
 The dataset used is comprised of 597 previously reported samples (Brooks et al., 2017; 
Raveh-Sadka et al., 2016, 2015), as well as 305 new samples. These samples are available at NCBI 
under accession number SRP114966 (https://www.ncbi.nlm.nih.gov/sra/?term=SRP114966). The 
code for the analysis, along with all the data and metadata used in the analysis, is hosted at 
https://github.com/SumayahR/antibiotic-resistance.  
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Results and Discussion 
 
Antibiotic resistance of the premature infant microbiome 
 107 premature infants were studied during the first three months of life. The median 
birthweight was 1228 g (IQR = 902 - 1462), with 35% of the infants extremely low birthweight (< 
1000 g) and 65% of infants with birthweight > 1000 g. Birthweight is closely linked to gestational 
age, which is divided into the following categories: late preterm (34 to < 37 weeks gestation), 
moderate preterm (32 to < 34 weeks gestation), very preterm (28 to < 32 weeks gestation) and 
extremely preterm (< 28 weeks gestation) (Glass et al., 2016). 30% of infants in this study were 
extremely preterm; these infants tend to have significant health problems, including higher rates 
of necrotizing enterocolitis and extreme dysbiosis of the microbiota (Underwood & Sohn, 2017). 
The majority of infants in our study (60%) were classified as very preterm, just 10% of our infants 
were classified as moderate preterm, and no infants were late preterm. Because the infants in this 
study were mostly very or extremely preterm, it should be noted that the biological characteristics 
reported here are highly divergent from that of typical full-term infants (Schwiertz et al., 2003). 

Longitudinal sampling of each infant resulted in a total of 902 samples that were sequenced 
and analyzed. All 107 infants received gentamicin and ampicillin during the first week of life, and 
36 of those infants received additional antibiotics in the later weeks due to disease (Table 2.1). All 
samples were subject to Illumina short-read shotgun sequencing and the sequence data assembled 
using idba-ud (see methods for details). Binning resulted in a de-replicated set of 1483 genomes. 
The taxonomic composition of these samples is typical for the premature infant gut (Figure 2.1A, 
Figure 2.1B). Resfams (Gibson et al., 2014) annotations of predicted amino acid sequences from 
the resulting scaffolds revealed that the most abundant resistance mechanisms were resistance-
nodulation-division (RND) efflux pumps and ATP-binding-cassette (ABC) transporters (Figure 
2.1C, Figure 2.1D). It is important to note that in addition to their ability to contribute to antibiotic 
resistance, efflux pumps and transporters have been associated with stress response (Nagayama, 
Fujita, Takashima, Ardin, & Ooshima, 2014; Poole, 2008, 2014) and may reflect a rapidly 
changing environment during the first few months of life.  

For infants that did not receive additional antibiotics (Figure 2.1C), a decreasing trend in 
total antibiotic resistance potential is observed over time (p < 0.005). During the first week of life, 
empiric antibiotic therapy perturbs the microbiome by preferentially enriching for antibiotic 
resistant organisms. This is consistent with prior results showing temporarily elevated resistance 
gene levels after administration of antibiotics (Yassour et al., 2016). Microbial community 
recovery begins following this period. For infants that received antibiotics after the first week of 
life (Figure 2.1D), there was no consistent trend of decreasing resistance potential. This suggests 
that administration of antibiotics to premature infants after the first week of life can prolong the 
enrichment of the resistome.  

Approximately 20% of resistance genes annotated by Resfams were not assignable to 
specific organisms in the microbiome. This is partly due to some genes being carried on plasmids, 
which were excluded from the genomic analysis.  
 
Formula feeding influences the gut resistome through strain-level selection 
 Permutational multivariate analysis of variance (PERMANOVA) tests, which discern and 
isolate the effects of factors through partitioning of variance (Anderson, 2006), were performed to 
investigate the effect of feeding regimen, delivery mode, gender, maternal antibiotics, and the 
infant’s current antibiotic therapy on the resistome. Tests were performed on the resistomes of 
samples taken at weeks two, four, and six to avoid the bias of repeated measures in longitudinal 
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sampling. At week two, formula-fed infants did not have a significantly different distribution of 
antibiotic resistance genes compared to infants that received breast milk. However, a difference 
was detected at weeks four and six (p < 0.05), accompanied by an increase in effect size as assessed 
by PERMANOVA F-statistic (Table 2.2). This signals divergence of the resistomes of formula-
fed and breast-fed infants over time. The PERMANOVA tests were not sensitive enough to detect 
any effects on the resistome resulting from delivery mode, gender, or antibiotics, which may be 
because the test displays conservatism when variances are positively related to group sample 
size(Anderson & Walsh, 2013). Because these factors have been shown to alter the 
microbiota(Cong et al., 2016; Fouhy et al., 2012; Keski-nisula et al., 2013; Penders et al., 2006), 
it is unlikely that the resistome was truly unchanged. Since feeding type was the only factor that 
produced a detectable response, we further investigated its effects.  
 Random forest models were used to classify resistomes as either belonging to a formula-
fed baby or a breast-fed baby, and we used the trained model’s feature importance scores to select 
resistance genes for further study (Table 2.3). One out of the four selected resistance genes was 
significantly associated with a feeding group: Class D beta-lactamase was enriched in formula-fed 
infants (p < 0.05) (Figure 2.2A). Genome-resolved analysis revealed that Class D beta-lactamase 
genes are most frequently carried by Clostridium difficile. Of the 67 C. difficile genomes in the de-
replicated dataset, 38 of these organisms harbor a Class D beta-lactamase gene. Phylogenetic 
analysis reveals that these 38 organisms are very closely related (Figure 2.2B). To ascertain if this 
C. difficile strain is involved in the enrichment of Class D beta-lactamase in the formula-fed infant 
gut resistome, the relative abundance of C. difficile with and without a Class D beta-lactamase 
gene in the gut microbiome of breast-fed and formula-fed infants was assessed. In infants that only 
receive formula, C. difficile with Class D beta-lactamase is consistently more abundant than C. 
difficile lacking this gene; while in infants that receive breast milk, both types of C. difficile are 
low in relative abundance (Figure 2.2C). Even with the lower relative abundance of some C. 
difficile, there was no significant difference in genome completeness and N50 between the two 
groups, assuring us that there was no methodological issue that reduced ability to detect beta-
lactamase. Prior studies have reported an increased abundance of C. difficile in the gut 
microbiomes of formula-fed infants (Penders et al., 2005), but here we reveal that formula feeding 
enriches for a particular C. difficile strain.  

Class D beta-lactamase hydrolyzes beta-lactam antibiotics (Szarecka, Lesnock, Ramirez-
Mondragon, Nicholas, & Wymore, 2011), and there is no known connection between host diet and 
its antibiotic resistance function. It is thus unlikely that Class D beta-lactamase offers a selective 
advantage to organisms in the gut of formula-fed infants, but this gene may be linked to other 
genes that confer an advantage. Pairwise correlations of the Resfams and KEGG metabolism 
modules in C. difficile genomes revealed that one KEGG module, the cytidine 5’-monophospho-
3-deoxy-d-manno-2-octulosonic acid (CMP-KDO) biosynthesis module, was perfectly correlated 
with the presence of the Class D beta-lactamase gene. CMP-KDO catalyzes a key reaction in 
lipopolysaccharide biosynthesis (Wang & Quinn, 2010). Further inspection of the KEGG 
annotations revealed that only one gene from this module was present in C. difficile: arabinose-5-
phosphate isomerase. This gene typically occurs in Gram-negative bacteria, where it plays a role 
in synthesis of lipopolysaccharide for the outer membrane (Meredith, Aggarwal, Mamat, Lindner, 
& Woodard, 2006), yet a recent study identified arabinose-5-phosphate isomerase in a Gram-
positive organism, Clostridium tetani (Cech, Markin, & Ronald, 2017). Although the function of 
this gene in Gram-positive bacteria is unknown, it is hypothesized to be a regulator and may 
modulate carbohydrate transport and metabolism (Cech et al., 2017). If so, C. difficile (Gram-
positive) strains with arabinose-5-phosphate isomerase may have a competitive advantage because 
they are able to rapidly respond to availability of the carbohydrates that are abundant in formula. 
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It is also possible that other, potentially unknown, genes are responsible for the observed effect; 
and these genes may not necessarily relate to metabolism of compounds in formula. Breast-fed 
babies have increased abundance of Bifidobacterium (Costello et al., 2012), so the ways that 
different strains of C. difficile interact and compete with Bifidobacterium may contribute to the 
observed trend. 
 
Major facilitator superfamily pumps are associated with increased replication 
 A previous analysis revealed that antibiotic administration is associated with elevated 
bacterial replication rates (iRep values), which was hypothesized to be due to high resource 
availability after elimination of antibiotic susceptible strains (Brown et al., 2016). Extending upon 
this result, we show here that a sample’s mean replication index in the days following antibiotic 
treatment is positively correlated with total resistance gene content (p < 0.05) (Figure 2.3A). To 
be present in the period following antibiotic administration, all organisms must be antibiotic 
resistant; it is thus unclear why a larger inventory of resistance genes should lead to faster growth 
rates.  
 To characterize the effect of antibiotic resistance genes on iRep values in isolation from 
the confounding effects of antibiotics, we studied infants that did not receive any antibiotics after 
the first week of life. In these infants, organisms carrying genes for major facilitator superfamily 
(MFS) transporters have significantly higher iRep values than those that do not have MFS genes 
(p < 5 × 10-5) (Figure 2.3B). As there are known differences in median iRep values among phyla 
(Brown et al., 2016), the comparison was repeated within each phylum that contained members 
with and without MFS genes. The trend of higher iRep values for organisms with MFS was most 
apparent in Firmicutes (p < 5 × 10-4) (Figure 2.3B). The genomes lacking MFS show comparatively 
high completeness scores, suggesting that this finding is not due to missed detection of the MFS 
genes. Therefore, the presence of these antibiotic resistance genes appears to inherently increase 
replication, even when no antibiotics are being administered. This could be due to protection from 
antibiotics being produced at a low level by other gut organisms (Modi, Collins, & Relman, 2014) 
or a result of MFS pumps’ naturally beneficial physiological functions (Piddock, 2006). We also 
acknowledge that this finding may simply reflect high incidence of organisms with MFS genes 
during periods of fast replication without a causal link.  
 
A model that predicts an organism’s response to vancomycin and cephalosporins 
 We modeled the relationship between gene content of a gut organism and its direction of 
change in relative abundance (increase vs. decrease) after a premature infant is administered a 
combination of glycopeptide (vancomycin) and beta-lactam (cephalosporin, either cefotaxime or 
cefazolin) antibiotics. Principal component analysis was performed on Resfams (Gibson et al., 
2014) and KEGG (Kanehisa & Goto, 2000) annotations to generate a low-dimensional 
representation of each organism’s metabolic potential and resistance potential. The first five 
principal components (PCs) cumulatively explained 48% of the variation in the dataset. Using 
these PCs as input, the AdaBoost-SAMME algorithm (Zhu, Zou, Rosset, & Hastie, 2009) was 
applied, with decision tree classifiers as base estimators. The model, trained on 70% of the data, 
performed extremely well on the validation set, with a precision of 1.0 and recall of 1.0, indicating 
that every genome was correctly classified. Because the validation set was utilized for testing 
during the preliminary stages of model development, the model was also evaluated with a final 
test set, on which it achieved 0.9 precision and 0.7 recall.  

Of the features that acted as the strongest contributors to each of the PCs, five genes with 
a tendency to occur in microbes that increase in relative abundance after antibiotic treatment were 
identified (Figure 2.4). One of these is subclass B2 beta-lactamase, which is carried by several 
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organisms that persisted after antibiotics including Enterococcus faecalis, Clostridium baratii, and 
Bradyrhizobium sp. Subclass B2 beta-lactamase has been shown to hydrolyze carbapenems and 
displays much lower levels of resistance to cephalosporins (Valladares et al., 1997). Considering 
its substrate specificity for carbapenems, this beta-lactamase may not be directly contributing to 
an organism’s ability to persist after treatment with cephalosporins; rather, it may be linked to 
other, potentially unknown, genes. However, the substrate specificity of an antibiotic resistance 
gene can depend on the organismal context of that gene (Hansen, Jensen, Sørensen, & Sørensen, 
2007), and a single base substitution in a beta-lactamase gene can alter substrate specificity (Jacoby 
& Medeiros, 1991), so the possibility that beta-lactamases falling into the B2 subclass may confer 
some gut organisms with resistance to cephalosporins should not be discounted. 

Furthermore, our model shows that a gene linked to vancomycin resistance, vanR, is among 
the genes predictive of an organism’s propensity to increase in relative abundance after antibiotic 
treatment (Figure 2.4). VanR is the transcriptional activator of an operon encoding genes involved 
in peptidoglycan modification (VanH, VanA, and VanX), which prevents vancomycin from 
binding to its target (Hughes, 2003). This gene cluster usually resides on plasmids (Boyce, 1997; 
Périchon & Courvalin, 2009). VanR, an essential gene for the initiation of the vancomycin 
resistance operon promoter (Arthur & Quintiliani, 2001), was chromosomally encoded in several 
genomes of organisms that increased after antibiotics, such as Enterococcus faecalis and 
Clostridium perfringens. Because our genomic analysis precluded the assignment of genes on 
plasmids, VanR was the best indicator of resistance.   

In addition to genes specifically encoding for resistance to beta-lactams or glycopeptides, 
efflux pumps and transporters were also strong contributors to the PCs used as input to the model. 
Mex genes (of the resistance nodulation cell division family of drug efflux pumps) and ATP-
binding cassette (ABC) transporter genes were associated with microbes that increase in relative 
abundance after antibiotics (Figure 2.4). Multidrug efflux pumps are essential for the intrinsic drug 
resistance of many bacteria, and overexpression of the genes for these pumps leads to elevated 
resistance levels (Li & Nikaido, 2009). Bacteroides ovatus and Bacteroides helcogenes carried 
multiple copies of Mex efflux pumps, while Enterococcus faecalis and Clostridium baratii 
harbored several ABC transporter genes. Although the genomes of these organisms also encoded 
target-specific resistance genes such as the subclass B2 beta-lactamase, the more general pumps 
and transporters likely enhanced their ability to flourish after antibiotic treatment.  

Previous studies have utilized data from 16S rRNA gene amplicon sequencing or read-
based metagenomics of the human microbiome to predict life events and disease states of the 
human host using machine learning or other modeling techniques (DiGiulio et al., 2015; Yazdani 
et al., 2016). However, read-based metagenomics lacks resolution at the genomic level, and due to 
strain-level differences in antibiotic resistance (Kumar et al., 2011), taxonomy data from marker 
gene studies cannot be used to predict how particular organisms in a community will respond to 
antibiotics. Here, for the first time, we utilize the data obtained by reconstructing genomes from 
metagenomes to make predictions about the future states of individual gut microbes. This has 
tremendous potential for application in the fields of medicine and microbial ecology. For example, 
such a model can be used before administering drugs to a patient to verify that a particular 
combination of antibiotics will not lead to overgrowth of an undesirable microbe. Our study serves 
as a proof of concept for this application of machine learning used in conjunction with genome-
resolved metagenomics to derive biological insight.  
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Figure 2.1. Microbiome and resistome of the premature infant gut microbial community. The 
numbers of samples included in each week’s average are as follows: for the infants that did not 
receive antibiotics after the first week, week 2 n = 197, week 3 n = 188, week 4 n = 110, week 5 n 
= 16, week 6 n = 20, week 7 n = 7, and week 8 n = 8; for the infants that received antibiotics after 
the first week, week 2 n = 72, week 3 n = 73, week 4 n = 53, week 5 n = 24, week 6 n = 16, week 
7 n = 8, and week 8 n = 13. (A) The genus-level taxonomic composition of the gut community for 
the infants that did not receive antibiotics after the first week of life. (B) The genus-level taxonomic 
composition of the gut community for the infants that received antibiotics beyond the first week 
of life. (C) For the infants that do not receive antibiotics after the first week, the total resistance 
content of the premature infant gut microbiome has a slight negative correlation with age (p = 
0.003). (D) The resistance gene levels of infant microbiomes that were exposed to additional 
antibiotics did not display a significant trend (p = 0.265). 
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Figure 2.2. Formula feeding affects the resistome. (A) Class D beta-lactamase is enriched in 
formula-fed infants at 4 weeks of age (Mann-Whitney U = 66, Bonferroni-corrected p = 0.031). 
(B) Phylogenetic tree of Clostridium difficile genomes based on the ribosomal protein S3 gene. 
Names of genomes harboring a class D beta-lactamase are colored green and labeled with an 
asterisk. (C) The relative abundances of C. difficile genomes with class D beta-lactamase in 
formula-fed and breast-fed infants (top) (n = 38) and the relative abundances of C. difficile 
genomes lacking class-D betalactamase in formula-fed and breast-fed infants (bottom) (n = 29). 
Only the infants harboring C. difficile were included in calculations of average relative 
abundances. 
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Figure 2.3. Antibiotic resistance and replication. (A) Among the samples taken within 5 days after 
antibiotic treatment, the antibiotic resistance potential of each sample is correlated with its mean 
replication index value (Pearson’s r = 0.39, p = 0.03). (B) In infants that did not receive antibiotics 
after the first week of life, bacteria harboring at least one major facilitator superfamily (MFS) 
transporter gene had significantly higher iRep values (Mann-Whitney U = 827,176.0, p = 1.55 × 
10−5), and this pattern is apparent within the members of the Firmicutes phylum (Mann-
Whitney U = 136,756.0, p = 0.0002).  
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Figure 2.4. The tendency of genes to occur in the class of genomes that increased in relative 
abundance after antibiotics. Genes and modules strongly contributing to the principal components 
used in the machine learning model were identified, and class tendency was calculated using the 
ratio of the gene’s prevalence in the increased-abundance group to its prevalence in the decreased-
abundance group. Genes associated with the increased-abundance class of genomes are colored 
red. 
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Table 2.1. Infant characteristics. 
 

Characteristic 

Value for infants who: 

Received no 
antibiotics 
after the first week 

Received 
antibiotics 
after the first 
weeka 

No. of samples 604 298 

Total no. of infantsb 71 36 

No. of infants who received breast milk 52 32 

No. of infants who were delivered by C-
section 54 22 

No. of infants of male sex 34 17 

No. of infants with maternal antibiotics 24 20 
 

a The infants represented in the column corresponding to those who received antibiotics after the 
first week (right) were administered antibiotics while in the NICU beyond the first week of life 
due to late-onset sepsis, necrotizing enterocolitis, or another disease. 
b All 107 premature infants were in the neonatal intensive care unit (NICU) of the Magee-
Women’s Hospital in Pittsburgh, PA. 
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Table 2.2. Results of marginal PERMANOVAs with 9,999 random permutations for weeks 2, 4, 
and 6 performed on the antibiotic resistance gene content of infant samples as annotated by 
Resfams. The Bray-Curtis distance metric was used in the PERMANOVA and Bonferonni 
corrections were applied on the p-values to correct for multiple testing. 
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Table 2.3. Features selected using the random forest Gini importance metric after training on 
resistomes of formula-fed infants and breast-fed infants. 
	

Resfams 
category 

Feature 
importance score 

Mann-Whitney 
U value P value Corrected P valuea 

ANT6 0.071 17 0.327 1 

Class D beta-
lactamase 0.089 66 0.008 0.031 

mexX 0.098 11 0.106 0.426 

soxR mutant 0.071 10 0.081 0.324 
 

a Bonferroni corrections were applied to the P values obtained from Mann-Whitney U tests to 
adjust for multiple testing. 
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Abstract  
 

The gut microbiota of premature and full-term infants have many known differences, but 
the extent to which the degree of prematurity influences the structure and functional potential of 
the microbiome has not been deeply explored. Here, we used genome-resolved metagenomics to 
address how gestational age impacts the premature infant gut microbiome. Our analyses leveraged 
a genome-resolved metagenomic dataset derived from 106 infants, utilizing multiple linear 
regression and other data mining techniques. We found that gestational age is associated with 
species richness, with more premature infants having lower species richness; this effect lasts until 
the fourth week of life. Novel Clostridium species and strains related to Streptococcus salivarius 
and Enterococcus faecalis colonize infants of different gestational ages, and the metabolic 
potential of these organisms can be distinguished. Thus, we conclude that the extent of prematurity, 
or directly linked factors, can be an important influence on the microbiome and its functions. 
 
Introduction 
 
 The human gut microbiome plays many important roles, including the extraction of 
nutrients from food, metabolizing toxins, immunomodulation, and protection from pathogens 
(Jandhyala et al., 2015). Infants, near-sterile when born, obtain microbes from their mother and 
their environment (Brooks et al., 2014; Koenig et al., 2011; Makino et al., 2013). The gut 
microbiome of infants is known for its simplicity and low complexity compared to the gut 
microbiome of older children and adults (Yatsunenko et al., 2012). Premature infants, born before 
they have reached 37 weeks in utero, harbor gut microbial communities of even lower complexity 
than full-term infants, as they are colonized by tenfold fewer species (Gibson et al., 2016).  
Premature infant gut microbiomes display abrupt shifts in composition (Costello, Carlisle, Bik, 
Morowitz, & Relman, 2013), and may have a different taxonomic makeup than microbiomes of 
full-term infants (Gibson et al., 2016; Rodríguez et al., 2015; Sim et al., 2013). Studies on 
premature infants suggest that the extent of the infant’s prematurity influences their gut 
microbiome. A recent study, utilizing 16S rRNA gene sequencing, revealed that bacterial alpha 
diversity varies based on the infants’ gestational age, with more premature infants having less 
diverse microbiomes. This study also showed that infants born at a later gestational age had greater 
abundance of Bifidobacterium and Streptococcus (Chernikova et al., 2018). However, there were 
no analyses of differences in metabolic potential of microorganisms colonizing infants of different 
gestational age, due to the low resolution of the 16S method. A metaproteomics study revealed 
that gut bacteria of extremely preterm infants (< 28 weeks gestational age) produced more 
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translation and membrane transport proteins, while the microbiomes of infants with a gestational 
age of 30 weeks produced more energy metabolism proteins (Zwittink et al., 2017). 
 Genome-resolved metagenomics involves sequencing all the DNA extracted from a sample 
and then reconstructing genomes for the relatively abundant microorganisms present. Previous 
genome-resolved metagenomics studies found that the infant gut microbiome is influenced by 
factors such as formula feeding, the hospital room environment, and antibiotic exposure (Brooks 
et al., 2014; Brown et al., 2016; S.F. Rahman, Olm, Morowitz, & Banfield, 2018). Here, we utilize 
genome-resolved metagenomics to analyze the effects of gestational age on the composition and 
metabolic potential of the premature infant gut microbiome. It is well-established that prematurity 
is associated with increased disease and infant mortality (Kramer et al., 2000), and this is partially 
due to factors involving the microbiome (Morrow et al., 2013). Understanding the effect that 
gestational age, i.e. the extent of prematurity, has on the microbiome may improve understanding 
of disease in premature infants. We found that certain bacteria occurring in infants of different 
gestational ages carry distinct sets of metabolic genes, thus utilizing genome-centric metagenomics 
to resolve how the gut microbiome is influenced by extent of prematurity.  
 
 
Methods  
 
 Sample collection and metagenomic data processing for these samples were previously 
described (Sumayah F. Rahman, Olm, Morowitz, & Banfield, 2017). Briefly, fecal samples were 
collected from premature infants residing in the neonatal intensive care units (NICU) of the Magee-
Women’s Hospital in Pittsburgh, PA, and a PowerSoil DNA isolation kit (Mo Bio Laboratories, 
Carlsbad, CA) was used to extract the DNA, which was then sequenced on an Illumina platform 
(further details available in: (Brooks et al., 2017; Raveh-Sadka et al., 2016, 2015)). The samples 
analyzed in this study have been previously reported, and the reads are publicly available at NCBI 
as described in: (Brooks et al., 2017; S.F. Rahman et al., 2018; Raveh-Sadka et al., 2016, 2015).  
The reads were then trimmed using Sickle (https://github.com/najoshi/sickle) and cleared of 
human contamination through read mapping with Bowtie2 (Langmead & Salzberg, 2012). IDBA-
UD (Peng et al., 2012) was used to assemble the reads of each sample and was also used to generate 
co-assemblies by combining the reads of all the samples from a particular infant. The genes on the 
scaffolds were predicted using Prodigal (Hyatt et al., 2010). The scaffolds were grouped into 
genome bins using concoct (Alneberg et al., 2014) and redundant bins were dereplicated using 
dRep (Olm et al., 2017) v0.4.0. The sequences were searched against the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) (Kanehisa & Goto, 2000) using profile hidden Markov models, and 
the results were used to generate a KEGG metabolism profile for each organism that displayed the 
fraction of each KEGG module encoded by that genome. For specialized identification of 
biosynthetic gene clusters, antiSMASH (Medema et al., 2011) was used to annotate genes from 
particular scaffolds of interest. Organisms were considered to be present in a particular sample if 
the genome bin showed full breadth of coverage in the sample. 
 When calculating correlations, Pearson’s product-moment correlation was used for two 
continuous variables and the point biserial correlation was used for pairs that contained at least 
one categorical variable. To model the effects of infant characteristics and clinical treatments on 
gut species richness levels, linear regression from the scikit-learn (Pedregosa et al., 2012) package 
was utilized. Mann-Whitney U tests were performed for comparison of relative abundance values 
and for the comparison of richness values at each week, and p-values were corrected using the 
False Discovery Rate (FDR) method. Spearman correlations were performed to identify trends 
over time. When carrying out the strain-focused portion of the study, separate analyses were 
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performed for each week of life and for each species, to remove effects of these factors. Only one 
sample per infant was included in each analysis to avoid bias due to repeated samples. When a 
genome was considered to be lacking a particular gene, the entire dRep set (all genomes belonging 
to the same secondary cluster in dRep) was checked to ensure that another genome in that set did 
not harbor the gene of interest. Associations were considered spurious and removed if the 
validation step did not confirm the findings.   
 
Results 
 
 We analyzed 900 previously reported samples from 106 premature infants with gestational 
ages of 24 to 32 weeks at birth. Samples were collected over the first two to three months of life. 
Among these infants, just 10% were classified as moderate preterm (defined as 32 to < 34-week 
gestation), 60% of the infants were very preterm (28 to < 32-week gestation), and 30% were 
extremely preterm (< 28-week gestation) (Figure 3.1A). A correlation analysis revealed that 
gestational age is closely associated with birth weight (r = 0.84) (Figure 3.1B), but gestational age 
does not display a correlation with any of the other variables in the infant metadata (Figure 3.1C). 
Reconstructing genome bins from the 900 samples sequenced resulted in a dereplicated set of 
1,483 genomes with an average completeness of 92% as evaluated based on the presence of 
bacterial single copy genes. There was no significant difference in genome completeness or 
sequencing depth of infants of different gestational age. 
 A linear regression model was applied to evaluate the effect of the infant’s characteristics 
as well as environmental factors on the species richness of the gut microbial community. As 
expected, administration of antibiotics due to a disease diagnosis after the first week of life caused 
a significant decrease in richness (p < 1 ´ 10-6) (Table 3.1). The model also revealed that 
gestational age has a significant effect on species richness (p < 1 ´ 10-6) (Table 3.1). To understand 
how gestational age’s effect on species richness changes over the course of the first few months of 
life, the richness of microbiomes of infants with gestational age < 28 weeks (extremely premature) 
was compared to that of infants with gestational age ³ 28 weeks, at each week of life. In the first 
few weeks of life, microbiomes of extremely premature infants have significantly lower richness 
levels (Figure 3.2). This effect is no longer present at the fifth week of life and onward.  

We compared the average taxonomic composition of microbiomes of infants with 
gestational age < 28 weeks and infants with gestational age ³ 28 weeks (Figure 3.3). The figure 
shows small fluctuations in composition over time, but the microbiomes of individual infants can 
display more drastic shifts in composition. In infants with gestational age < 28 weeks, Klebsiella 
was consistently the most abundant taxa, except for during the seventh week of life where 
Escherichia was most abundant (Figure 3.3A). In infants with gestational age  ³ 28 weeks, 
Escherichia and Klebsiella were initially abundant but the relative abundance of these taxa 
appeared to decline over time (Figure 3.3B); however, this decline was not statistically significant, 
as the interindividual variation was substantial. When making direct comparisons of relative 
abundance between the two infant cohorts in the same week of life, the infants with gestational 
age ³ 28 weeks had significantly higher populations of Veillonella, Clostridioides and Clostridium 
throughout the first month of life (p < 0.001). When making comparisons based on corrected age, 
which is calculated from the time of conception to adjust for prematurity, we found no significant 
difference between the relative abundance values of Veillonella and Clostridioides in the two 
infant cohorts. The lack of difference when matching samples based on corrected age supports the 
hypothesis that the previously mentioned finding is due to prematurity—as the extremely 
premature infants reach the second month of life, they become more developmentally similar to 
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the less premature infants, and the (likely prematurity-induced) effects that were present in early 
life are no longer detectable.   
 We investigated the differences in metabolic potential of bacterial strains colonizing infants 
of varying gestational ages. Separate analyses were performed for each week of life and for each 
species or species group, in the case of Clostridium. Within each week we considered only one 
sample per infant to reduce bias due to resampling of the same strain in subsequent samples, 
allowing us to test for patterns that were consistent across infants. We uncovered trends related to 
the extent of prematurity, in which particular organisms exclusively colonized infants of a certain 
gestational age. In the second week of life, species of a novel group in Clostridium, all of which 
have genes for vitamin B biosynthesis, were only present in infants of gestational age greater than 
30 weeks (Figure 3.4A). Streptococcus salivarius-related strains containing genes for L-Cystine 
transport only occurs in infants of gestational age ≤ 30 weeks (Figure 3.4B). In the third and fourth 
week of life, very-closely related Enterococcus faecalis strains with genes for the RaxABRaxC 
type I secretion system are present exclusively in infants of gestational age ³ 28 weeks (Figure 
3.4C). Most of the E. faecalis carrying genes for this secretion system also harbor biosynthetic 
gene clusters for bacteriocin and lantibiotic, while none of the E. faecalis lacking the secretory 
genes were found to harbor these biosynthetic gene clusters. 
 
Discussion 
 

Our study involved analysis of the microbiomes of 107 premature infants for which a 
variety of metadata was collected, including each infant’s gestational age, birthweight, disease 
incidence, antibiotic exposure, feeding method, gender, and birth mode. Agreeing with population-
based references built from historical data (Talge, Mudd, Sikorskii, & Basso, 2014), the gestational 
age of infants in this study was closely correlated with birthweight (Figure 3.1B). However, the 
other collected metadata did not display a correlation with gestational age (Figure 3.1C), indicating 
that the findings of this microbiome study can be attributed to either (1) the gestational age, 
directly, or (2) differing clinical treatment among babies of varying gestational age that was not 
recorded in the collected metadata. This differing clinical treatment could be a particular feeding 
regimen (e.g., more specific than whether the infant received breastmilk, formula, or a 
combination), usage of a mechanical ventilator, length and timing of attachment to intravenous 
nutrition lines, or another factor.  

Regardless of whether it is a direct or indirect effect, gestational age was strongly 
associated with species richness (Table 3.1), and this effect is only present during the first month 
of life (Figure 3.2). This indicates that while gestational age influences the microbes present in the 
few weeks immediately following birth, it does not have a persistent impact on microbiome 
complexity over the study period. We found that no other factors besides gestational age and post-
week infant antibiotic exposure had a significant impact on richness of the gut microbiome (Table 
3.1). This contrasts with findings of previous studies that associated formula feeding with 
increased diversity (Mueller, Bakacs, Combellick, Grigoryan, & Maria, 2015) and intrapartum 
maternal antibiotic use with decreased diversity (Mshvildadze, M., and Neu, 2010). It is important 
to note, however, that in the current study, organisms can be grouped at the strain or species level, 
whereas prior studies mostly relied on 16S rRNA gene fragment profiling, which typically has 
genus-level resolution.  

Perhaps the most surprising result was that the day of life (infant’s age in days) did not 
have a significant influence on species richness (Table 3.1). Previous studies have shown that the 
microbiome of full term infants gains species over time and displays a clear increase in diversity 
(Bäckhed et al., 2015). The difference between the patterns reported here and prior studies may be 
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largely accounted for by prematurity and, in some cases the administration of antibiotics that cause 
a sharp decline in microbiome diversity (Relman, 2012).  Because these infants were in the 
neonatal intensive care unit throughout our study, the consortia available to colonize them likely 
had lower diversity than would have been encountered in the home environment and includes 
bacteria considered to be hospital-associated pathogens (Brooks et al., 2017). 

We found that certain organisms only colonized infants of a particular gestational age 
range. One such case is Clostridium, which are anaerobes that have been previously found in the 
infant gut (Ferraris et al., 2012). We identified a group of Clostridium that was not closely related 
to previously sequenced organisms, and found that some organisms in this group harbor genes for 
biosynthesis of pantothenate, also called vitamin B₅, a water-soluble vitamin and an essential 
nutrient typically supplied by intestinal bacteria (Said, 2011). These novel Clostridium species 
with genes for pantothenate production were only found in less premature infants (Figure 3.4A). 
It should be noted that two of the infants harboring Clostridium with the pantothenate biosynthesis 
genes are twins, born at a gestational age of 32 weeks. Genetic relatedness, exposure to the same 
mother’s microbiota, or other factors may have contributed to colonization by similar bacteria. 
However, the other infants showing gestational age-dependent colonization were unrelated. The 
observation that very premature infants may have comparatively lower access to vitamin B₅ than 
less premature infants due to strain colonization may be important because lack of pantothenic 
acid can adversely affect the immune system, producing a pro-inflammatory state (Gominak, 
2016). It has been shown previously that the production of pantothenate in the gut is negatively 
impacted by low availability of vitamin D, which is often the case with very premature infants 
(Gurmeet, 2017).  Thus, selection against Clostridium strains with the capacity for pantothenate 
production may be explained by increased prematurity.  

Streptococcus salivarius-related bacteria with genes for transport of L-cystine, an amino 
acid essential for infants, are present only in infants of less than 31 weeks gestational age (Figure 
3.4B). The infants in this study received cysteine, which forms the cystine dimer, as part of an 
amino acid mixture included in the parenteral nutrition. A study evaluating plasma amino acid 
concentrations in infants given parenteral nutrition found that infants of lower birthweight have 
less of an ability to use cystine/cysteine compared to infants of higher birthweight (W.C. et al., 
1988). Since the more premature infants have lower birthweight (Figure 3.1B), the inability of the 
human cells to uptake cystine may lead to higher concentrations of cystine in the gut, indicating 
why cystine-transporting bacteria are selected for in these infants. 

The trends described with Clostridium and S. salivarius both occur in the second week of 
life. However, Enterococcus faecalis displays interesting pattern in the third and fourth week of 
life: strains with a RaxABRaxC type I secretion system occur only in infants of greater gestational 
age, while strains lacking this secretion system occur exclusively in extremely premature infants 
(Figure 3.4C). The RaxABRaxC type I system is involved in the secretion of double-glycine-type 
leader peptides (da Silva et al., 2004), which occur in bacteriocins and lantibiotics (Aymerich et 
al., 1996). All the E. faecalis with the RaxABRaxC type I secretion system have gene clusters for 
production of lantipeptides, bacteriocin, or both. In contrast, most of the E. faecalis lacking the 
secretion system (i.e., the E. faecalis occurring in the infants of lowest gestational age) did not 
have these biosynthetic gene clusters. Since bacteriocins are toxins that inhibit the growth of 
closely related strains, the gestational age of an infant could indirectly influence the contribution 
of E. faecalis to bacteriocin production and thus influence microbiome composition. As E. faecalis 
is a common and often abundant member of the gut microbiomes of premature infants (Moles et 
al., 2015), it is possible that bacteriocin production is less common in infants of very low 
gestational ages.   
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The findings discussed above offer a strain-level perspective to what is known about how 
the taxonomic and functional characteristics of the gut microbial community change depending on 
the infant’s gestational age (Chernikova et al., 2018; Zwittink et al., 2017). By analyzing the 
metabolic potential of each genome, we found evidence that the extent of prematurity, either 
directly or indirectly, can affect the gut microbiome. Given evidence that a lower gestational age 
may limit bacteriocin and vitamin production, which are factors that can impact community 
structure and lead to inflammation (Hibberd et al., 2017; Umu et al., 2016), these findings may 
inform our understanding of diseases associated with dysbiosis of the microbiome, especially in 
very premature infants. 
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Figure 3.1. Gestational age and related infant metadata. (A) The distribution of gestational age in 
weeks. (B) Gestational age is correlated with birthweight (r = 0.84, p < 1 x 10-26). (C) Gestational 
age is not strongly correlated with any variable other than birthweight.  
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Figure 3.2. Mann-Whitney U tests were performed to compare species richness in infants with < 
28 week gestational age and infants >= 28 week gestational age, at each week of life. Two asterisks 
indicate statistical significance at p < 0.005, while 3 asterisks indicate statistical significance at p 
< 0.0005. Error bars represent standard error of the mean. The number of samples in each week 
for infants < 28 weeks are as follows: week 2 n = 79, week 3 n = 91, week 4 n = 79, week 5 n = 
13, week 6 n = 14, week 7 n = 5, week 8 n = 12. The number of samples in each week for infants 
³ 28 weeks are as follows: week 2 n = 190, week 3 n = 170, week 4 n = 85, week 5 n = 29, week 
6 n = 22, week 7 n = 10, week 8 n = 10. 
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Figure 3.3. (A) The genus-level taxonomic composition of the gut community for the infants with 
< 28 week gestational age. The number of samples in each week for infants < 28 weeks are as 
follows: week 2 n = 79, week 3 n = 91, week 4 n = 79, week 5 n = 13, week 6 n = 14, week 7 n = 
5, week 8 n = 12. (B) The genus-level taxonomic composition of the gut community for the infants 
with >= 28 week gestational age. The number of samples in each week for infants ³ 28 weeks are 
as follows: week 2 n = 190, week 3 n = 170, week 4 n = 85, week 5 n = 29, week 6 n = 22, week 
7 n = 10, week 8 n = 10. 
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Figure 3.4. Trends in strain functional potential related to extent of prematurity. Each dot 
represents one genome, and the location of the dot on the y-axis indicates the gestational age of 
the infant in which the organism was found. Green dots indicate that the genome has the particular 
metabolic function listed in the title of the plot, and blue dots indicate that the genome lacks this 
function. (A) Genomes part of a novel group in Clostridium labeled as having or lacking genes for 
pantothenate biosynthesis. (B) Streptococcus salivarius-related strains labeled as having or lacking 
genes for an L-cystine transport system. (C) Strains of Enterococcus faecalis labeled as having or 
lacking genes for RaxAB-RaxC type 1 secretion system. 
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Table 3.1. Linear regression using infant metadata variables to predict species richness. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Coefficient 
Estimate p-value 

intercept -4.819817 0.999999 

infant age (days) 0.096755 0.558479 

gestational age (weeks) 0.385138 0.000000 

birthweight (g) -0.001211 0.979418 

maternal antibiotics  -0.321744 0.215535 

antibiotic exposure during first week 0.005125 0.915728  

post-week antibiotic exposure -1.427714 0.000000 

male gender 0.098894 1 

vaginal birth 0.141521 1 

breastmilk 0.566750 1 

formula -1.014005 1 

combination of breastmilk and formula 0.447255 1 
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Chapter 4 
 
A new concept for the usage of genome functional potential in the quantification of community 
similarity  
 
Introduction 

 
 Over the course of the past century, community ecology emerged as a prominent area of 
research. Although the focus was on macro-biological communities rather than microbes, the tools 
and methods developed during this time are still relevant as we are uncovering and understanding 
the systems invisible to the naked eye. Several techniques were developed to detect changes or 
differences in community structure (Anderson, 2006; Clarke, 1993), and methods were developed 
to determine exactly how similar or different two communities of organisms are. For many years, 
the Bray-Curtis dissimilarity index, which is based on counts of species or operational taxonomic 
units (OTUs) at each site, has been considered the standard in community ecology (D. P. Faith et 
al., 2010). More recently, new similarity measures have been introduced that take the phylogenetic 
relatedness of OTUs into account (Lozupone & Knight, 2005). 

By sequencing all the environmental DNA of a sample taken at a particular site, we can 
also obtain information about the functional capabilities of microbes, which adds a new dimension 
to analysis of the community. Read-based metagenomics studies have used dissimilarity measures 
to evaluate community similarity based on the communities’ metabolic potential (Forsberg et al., 
2014). Yet, read-based metagenomics studies are lacking information regarding the organization 
of the sets of genes that individual organisms in the community are carrying. Genome-resolved 
metagenomics, on the other hand, reveals this information through the reconstruction of each 
genome in the metagenome. However, for genome-resolved communities, there is no established 
method of evaluating community similarity. In previous genome-resolved metagenomics studies, 
either functional or taxonomic data was used for evaluating similarity because there are no existing 
measures that combine these aspects. 

In order to best represent a microbial community, the metabolic potential of each organism 
and the structure of the community should be included in the representation. By considering only 
phylogenetic information, the functional capabilities are not accounted for, because even 
organisms of the same species can have very different functional potential (Israel et al., 2001; 
Rasko et al., 2008). Similarly, by studying the genes in the environment without assigning them to 
genomes, two communities that appear to have similar functions may in reality be surprisingly 
different. For example, if an entire biosynthetic pathway composed of ten genes is carried by one 
organism, there is a higher likelihood that the compound is actually being synthesized than if each 
of the ten genes were in ten separate organisms. Read-based metagenomics may not be able to 
differentiate between the two situations described. This chapter describes development and initial 
testing of a new concept that aims to utilize genome-resolved metagenomic data to more accurately 
calculate community similarity.  

 
 

Methods and Results 
 
 The usage of both phylogenetic and metabolic information for quantitative comparison of 
microbial communities was explored. In order to create a standard at which the proposed method 
and initial results could be evaluated, a test dataset using human infant gut samples was developed. 
A flowchart summarizing the test dataset development process is shown in Figure 4.1. The 
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sequencing and metagenomic data processing pipeline for these samples, including assembly, read 
mapping, and genome binning was described in chapters two and three of this dissertation. 
Centrifuge (Kim, Song, Breitwieser, & Salzberg, 2016) was used for taxonomy assignment. In 
previous studies, the metabolic potential of each genome was measured by using profile hidden 
Markov models (HMMs) to compare sequences against the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) (Kanehisa & Goto, 2000). For this study, an additional sample module 
completeness profile using the KEGG annotation data was calculated; this sample profile indicates 
the fraction of a particular KEGG module that is carried by a sample as whole. If a genome 
displayed 100% coverage breadth, it was considered to be present in a sample, and its metabolism 
was thus considered as a component of the whole sample metabolism.  
 The sample module completeness profiles were clustered using density-based spatial 
clustering of applications with noise (DBSCAN) (Ester, Hans-Peter, Jorg, & Xiaowei, 2010). 
Various clustering parameters were tested and indicator species analysis (ISA) (Dufrene & 
Legendre, 1997) was performed on each of the clustering schemes to determine which parameters 
resulted in the strongest sample indicators. For this application of ISA, the indicators were KEGG 
modules rather than species. After evaluation and subsequent selection of DBSCAN parameters, 
the minimum number of samples for a cluster was 16 and eps value (which refers to the maximum 
allowed distance for two samples in the same cluster) was 0.11. This resulted in two clusters of 
samples and some samples classified as noise, i.e. not belonging to either cluster (Figure 4.2A). 
To understand what factors most strongly influenced the clustering, the point-biserial correlation 
between the continuous metadata variables (such as infant age in days, gestational age at birth, 
days of antibiotic exposure, etc.) and the cluster that the sample fell into was calculated. There 
were no significant correlations. A chi-square contingency test between the categorical metadata 
variables and the cluster of a sample was performed, and it revealed that (1) maternal 
disease/antibiotic exposure, (2) infant disease/post-week antibiotic exposure, and (3) the specific 
infant that provided the sample had a significant influence on the clustering; the birth mode 
(vaginal vs. C-section) had an effect that approached significance; and the gender of the infant and 
feeding type did not have an influence (Table 4.1, Figure 4.2B). 
 ISA revealed which modules best represent a shared sample function for the group of 
samples in the same cluster. This is based on two measures: exclusivity (it is exclusively present 
in that cluster) and fidelity (it occurs in all samples within that cluster). These measures are 
combined into one statistic that represents the extent to which a particular module should be 
considered an indicator module of that cluster. To identify the samples within a cluster that are 
most similar (and are thus the best representatives of that cluster), the indicator modules in the top 
fifth percentile of that cluster were selected and considered as the top indicators for the cluster, 
and then samples with the following properties were selected: they have all the top indicators of 
their own cluster and none of the top indicators of the other cluster. This resulted in a test dataset 
in which samples in one cluster (hereby referred to as Cluster 1) are very similar to each other and 
are distinctly different than the samples in Cluster 2, and vice versa.  
 This test dataset was utilized to investigate how a microbial community could be accurately 
represented and how changes or differences between communities can be measured. Many avenues 
were explored and the process is still ongoing. One of these avenues, the results of which are 
described here, relates to the calculation of community similarity using both functional and 
phylogenetic information. For each sample in the test dataset, a matrix of species and modules was 
generated. This matrix represents which species are carried in a particular sample, and if a species 
is present, what functional modules are harbored by the genome. Traditional distance or 
dissimilarity measures (e.g. Euclidean or Bray-Curtis) cannot be applied to data in 2-D matrix 
form, as 1-D vectors are required for these methods. Therefore, alternatives were investigated. 
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Procrustes analysis is a type of geometric analysis typically used for the comparison of 
shapes. In this method, shapes are optimally superimposed. Generating species-module matrices 
for each of the samples as in the method described above creates representations that can be 
perfectly overlaid and then compared by matching corresponding points on the matrices. As in 
Procrustes analysis, least-squares orthogonal mapping can be performed to determine the 
difference between the datasets. The disparity at each point in the dataset can be calculated and 
then summed to produce a dissimilarity score between 0 and 1. With a greater number of points in 
the input matrix, an increased dissimilarity score is expected. Because our sample-module matrices 
have 97,012 points each and the sparseness of the matrices creates issues for Procrustes analysis, 
truncated Singular Value Decomposition (SVD) was used to create a reduced rank approximation 
of each matrix, and these approximations were used in the calculations. Combinations for all 
possible pairs of samples within clusters and between clusters were generated, and twenty 
difference subsets of these pairs were randomly selected to use as replicates. Procrustes analysis 
was performed on each pair of samples using the low-rank approximations of the matrices, and 
this was done for all subsets. The mean dissimilarity score for samples in different clusters was 
0.79, and the mean dissimilarity score for samples in the same cluster was 0.38 for Cluster 1 and 
0.31 for Cluster 2 (Figure 4.3A). The Bray-Curtis distance between samples based on their 
metabolism using the KEGG sample module completeness profiles was also calculated; using this 
method, the mean dissimilarity score for samples in different clusters was 0.30, and the mean 
dissimilarity score for samples in the same cluster was 0.15 for both Cluster 1 and Cluster 2 (Figure 
4.3B). Finally, the Bray-Curtis distance between samples based on the counts of the species that 
were present or absent in a particular sample was calculated; using this method, the mean 
dissimilarity score for samples in different clusters was 0.88, and the mean dissimilarity score for 
samples in the same cluster was 0.62 for Cluster 1 and 0.78 for Cluster 2 (Figure 4.3C).  
 
Discussion  
 

This report describes initial steps of exploration of a new concept in ecology that utilizes 
the unique nature of genome-resolved data to quantitatively compare microbial communities based 
on both phylogenetic structure and metabolic potential. To investigate this concept, a test set was 
developed using unsupervised learning and repurposing of a traditional ecological approach (ISA), 
illustrating the value of statistical learning methods in microbial ecology research. Samples from 
the same infant frequently fell into the same cluster group in the test set, which was expected. 
Other than the infants themselves, the strongest factors determining the grouping were intrapartum 
maternal antibiotic exposure and infant antibiotic exposure due to occurrence of disease after the 
first week of life (Figure 4.2B). This suggests that antibiotic administration may induce major 
changes in the metabolic potential of a microbial community that are even more expansive than 
changes in just antibiotic resistance levels as has been shown previously (Jernberg et al., 2007). 

The genome-resolved microbial communities were represented as matrices, and these 
matrices were compared using least-squares orthogonal mapping. One method for creating lower-
dimensional representations of these matrices (SVD) was utilized, but the many possible 
alternatives (e.g. autoencoders) also have potential as useful techniques for improving the matrix 
representation. The results indicated that Procrustes analysis applied to a combined approximation 
of metabolism and taxonomy data was better able to discern samples in different clusters 
(representing highly “different” communities) than Bray-Curtis distance of sample metabolisms, 
as evidenced by the higher dissimilarity scores resulting from the former (Figure 4.3A and Figure 
4.3B). This suggests that microbial communities can be better differentiated from each other when 
community structure is accounted for in addition to metabolism. In both the aforementioned 
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methods, the between-cluster dissimilarity score was significantly higher than the within-cluster 
dissimilarity scores (Figure 4.3A and Figure 4.3B), confirming the validity of the test. However, 
the Bray-Curtis distance calculations based on the counts of the species that were present or absent 
in samples led to fairly high dissimilarity scores even within clusters (Figure 4.3C), illustrating the 
method’s inability to recognize similar metabolisms that can arise in communities of dissimilar 
taxonomic makeups. Overall, it appears that the new method using both metabolism and taxonomy 
may be a middle ground that recognizes major differences between communities while still 
acknowledging function-based similarity. Because the clusters were significantly influenced by 
maternal and infant antibiotic exposure (Figure 4.2B), the results from the application of this 
method strongly suggest that the administration of antibiotics influences the microbial community 
both taxonomically and functionally.  
 Nevertheless, this new method has clear weaknesses. Although species were used as a 
grouping in the matrices so that the sample datasets could be consistently overlaid, there is 
substantial reason to consider the species an inappropriate partitioning of communities (Fraser, 
Alm, Polz, Spratt, & Hanage, 2009; Staley, 2006). Alternatives that use naturally hierarchical rank-
free representations have been proposed (Tikhonov, 2015), and these may be more appropriate for 
usage in similarity calculation methods. Moreover, the matrices were generated based on the 
presence or absence of organisms, rather than their relative abundance. By using coverage data 
obtained from read mapping of genomes across metagenomes, relative abundance information can 
be calculated and then applied as a multiplicative factor to the metabolisms carried by an organism, 
which would result in a more accurate representation of the community than one based on the 
presence/absence of organisms. 

Similarity calculation just scratches the surface of the host of possibilities for quantitative 
analysis of genome-resolved communities. Methods that identify the particular genomes carrying 
functions that are characteristic of a set of samples have substantial utility in research studies of 
microbial systems. Genome-resolved metagenomics creates a new form of biological data, but 
there are few established methods for analysis of this hierarchical data structure. This report makes 
a first attempt at combining a gene-centric approach with a phylogenetic approach to better analyze 
genome-resolved metagenomic data. 
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Figure 4.1. Process for development of a test set of similar and distinct microbial communities. 
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Figure 4.2. (A) Principal component analysis was used to visualize how the samples were 
clustered by DBSCAN. (B) False discovery rate corrected p-values resulting from chi-square 
contingency tests of metadata variables and sample clusters reveal that clusters were influenced 
by maternal antibiotic exposure, infant antibiotic exposure, and the specific infant that provided 
the sample. The orange dashed line represents the p = 0.05 significance threshold. 
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Figure 4.3. Calculated sample dissimilarity with (A) the Procrustes method using metabolism 
and taxonomy, (B) the Bray-Curtis method using metabolism, and (C) the Bray-Curtis method 
using taxonomy. 
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Table 4.1. Results of chi-square contingency tests for categorical metadata variables and sample 
clusters. P-values are FDR corrected. 
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Conclusion 
 
 This dissertation, focused on the development and application of quantitative methods for 
the analysis of genome-resolved metagenomic data, covers new ground on both the biological and 
methodological side. The biological conclusions resulting from this research have industrial and 
clinical applications. The study on the microbial community of a bioreactor used for 
bioremediation of thiocyanate that contains solid particulate tailings suggests that the presence of 
the solids prevents biofilm community formation, which may result in a process with reduced 
resilience to perturbations. Although meaningful conclusions can be obtained from this “small 
data” study, the transition to “big data” requires a change from manual analysis of metagenome-
associated genomes to computational and statistical analysis that can glean patterns of interest. 
The analysis of approximately one thousand samples of the premature infant gut (>4 terrabases of 
sequence data) reveals that formula feeding selects for antibiotic resistant bacterial strains and that 
gestational age at birth is a strong predictor of gut community diversity, among other findings. 
 On the methodological side, this dissertation makes advances in the area of applied 
statistical learning and illustrates the first instance that a machine learning method was used to 
predict the future state of gut microbes. This chapter was recommended in F1000 prime as being 
of special significance in its field and was selected as an mSystems “Editor’s Pick.” In the 
aforementioned study, the metagenomes were collected in a time series design, which is a 
requirement for this application. The ability to predict how a particular organism will respond to 
antibiotics, or any external factor, has significant value if samples are sequenced on a clinically 
relevant timescale, which may be the case in the near future. In a more general sense, the unique 
form of genome-resolved metagenomic data allows for greater information gain than other 
methods of community analysis, such as the taxonomic identification of organisms present in a 
community (e.g. as resulting from 16S rRNA gene sequencing) or functional potential of the 
community (e.g. as revealed by read-based metagenomics). This dissertation introduces a new 
concept to best utilize genome-resolved metagenomic data: quantitatively evaluating community 
dissimilarity based on both functional and phylogenetic information. This represents a shift in the 
way that ecological measures are typically performed and has the potential to start a new paradigm 
in community ecology. 

In conclusion, the combination of genome-resolved metagenomics with statistical learning 
and other quantitative techniques can lead to a better understanding of biological systems and 
potentially useful applications. The convergence of metagenomics and quantitative analysis of 
biological systems is still a relatively new area of research and is likely to be an area in which 
major advances are made in the coming years.  
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