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5Institute for Computational and Mathematical Engineering, Stanford University, CA 94305, USA
6Simons Institute for the Theory of Computing, University of California, Berkeley, CA 94720, USA

Quantum phase estimation is one of the most powerful quantum primitives.
This work proposes a new approach for the problem of multiple eigenvalue es-
timation: Quantum Multiple Eigenvalue Gaussian filtered Search (QMEGS).
QMEGS leverages the Hadamard test circuit structure and only requires sim-
ple classical postprocessing. QMEGS is the first algorithm to simultaneously
satisfy the following two properties: (1) It can achieve the Heisenberg-limited
scaling without relying on any spectral gap assumption. (2) With a positive
energy gap and additional assumptions on the initial state, QMEGS can es-
timate all dominant eigenvalues to ϵ accuracy utilizing a significantly reduced
circuit depth compared to the standard quantum phase estimation algorithm.
In the most favorable scenario, the maximal runtime can be reduced to as low
as log(1/ϵ). This implies that QMEGS serves as an efficient and versatile ap-
proach, achieving the best-known results for both gapped and gapless systems.
Numerical results validate the efficiency of our proposed algorithm in various
regimes.

1 Introduction
Phase estimation is among the most powerful quantum primitives, offering eigenvalue
estimates of a Hamiltonian H when given quantum access to Hamiltonian simulation
exp(−iHt) or block encoding of H. While initial algorithms, such as the textbook version
of phase estimation [1], depend on techniques such as the Quantum Fourier Transform
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(QFT) and multiple ancilla qubits, recent advances demonstrate that comparable results
can be achieved with as few as one ancilla qubit. Despite the much simpler quantum circuit,
these “modern” approaches often match or exceed the performance of their predecessors
due to enhanced postprocessing techniques. This improvement has been demonstrated in
applications such as estimating the ground-state energy, which involves determining the
smallest eigenvalue of H and is an important application of phase estimation [2–12]. More
recently, this enhancement has also been evident in the broader and more general problem
of Multiple Eigenvalue Estimation (MEE) [13–20]. A typical example of MEE is estimating
the low-lying energies of Hamiltonian H, which has many applications, such as determining
the electronic and optical properties of materials.

In order to solve MEE for a given quantum Hamiltonian H ∈ CM×M , we assume the
availability of an initial state |ψ⟩ that contains several dominant modes. Specifically, let
{(λm, |ψm⟩)}Mm=1 represent pairs of eigenvalues and eigenvectors of H. We define pm =
|⟨ψm|ψ⟩|2 as the overlap between the initial state and the m-th eigenvector. Our primary
assumption in this paper is the Sufficiently Dominant Condition: there exists a set of
indices D ⊂ 1, 2, · · · ,M such that pmin =: mini∈D pi > ptail =: ∑i∈Dc pi, where Dc =
{1, 2, · · · ,M}\D. The eigenvalues {λm}m∈D are then called the dominant eigenvalues of H
with respect to the initial state |ψ⟩ (or simply the dominant eigenvalues), and the associated
eigenvectors are referred to as the dominant eigenvectors. For simplicity, we assume ∥H∥ ≤
π, which also implies {λm}m∈D ⊂ [−π, π]. Our objective is to estimate the dominant
eigenvalues {λm}m∈D. From a signal processing perspective, the Sufficiently Dominant
Condition allows us to differentiate signal and noise, providing a natural basis for analysis.
Different versions of the condition have appeared in previous works [10, 11, 14, 18, 19]. A
notable instance is in ground-state energy estimation, where the condition is equivalent to
the initial overlap p1 between the initial state and the ground state being greater than 0.5.
The O(1) error allowed by this condition is the key to the robustness of many algorithms
based on phase estimation.

To estimate the dominant eigenvalues, we assume an oracle access to the Hamiltonian
simulation exp(−itH) for any t ∈ R. Specifically, given any t ∈ R, we assume the ability
to implement the Hadamard test circuit (see Section 2 for details) to obtain an unbiased
estimation to ⟨ψ| exp(−itH)|ψ⟩i. Several quantum phase estimation algorithms [5, 9–
11, 14, 18, 19] have been developed assuming access to the Hadamard test circuit. In
general, these algorithms, including the one proposed in this paper, involve three steps
(refer to Fig. 1 for the flowchart): 1. Generate a proper set of {tn}Nn=1 ⊂ R; 2. Execute the
Hadamard test circuits with tn and obtain the dataset {(tn, Zn)}Nn=1, where Zn is an ap-
proximation of ⟨ψ| exp(−itnH)|ψ⟩; 3. Classically post-process Zn to derive the estimation
for {λm}m∈D. The efficiency of a quantum phase estimation algorithm is then quantified
by two metrics: the maximal runtime denoted by Tmax = max1≤n≤N |tn|, and the total
runtime Ttotal = ∑N

n=1 |tn|. Here, Tmax and Ttotal approximately measure the depth of the
circuit and the total cost of the algorithm, respectively. Although the access to the Hamil-
tonian simulation exp(−itH) is assumed to be exact in this work for the sake of simplicity,
we anticipate that a certain level of simulation error can be allowed as well by treating
the simulation error together with the statistical errors and the effect of non-dominant
eigenvectors (see Section 5 for details).

We further define two types of spectral gaps. The first is the spectral gap between
the dominant eigenvalues, denoted by ∆dom := mini,j∈D,j ̸=i |λi − λj |. The second is the

iThroughout this paper, we assume access to exp(−itH) for any t ∈ R for simplicity of presentation. It
is straightforward to extend our algorithm to the case with integer powers, where access only to exp(−inH)
for n ∈ N is assumed. Refer to Section 5 and Appendix C for details.
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spectral gap between the dominant eigenvalues and the remaining eigenvalues, denoted
by ∆ := mini∈D,j ̸=i |λi − λj |. In this paper, we use the notations O[a], Ω[a], and Θ[a] to
indicate that the quantity polynomially depends on the parameters in [a] if a is a number
greater than one, or inversely proportional to [a] if a is a number smaller than one.

The phase estimation algorithm proposed in this paper exhibits the following properties:

(1) Allow imperfect initial state: ptail > 0.

(2) Maintain Heisenberg-limited scaling: Assuming all other parameters remain constant,
the algorithm can achieve ϵ-accuracy with Ttotal = Õ(1/ϵ).

(3) No gap requirement: The algorithm can achieve ϵ-accuracy with Ttotal = poly(1/ϵ)
for any ϵ > 0, where the polynomial and constants are independent of ∆,∆dom.

(4) “Short” depth: When the spectral gap between the dominant eigenvalues ∆dom > 0
and the precision is small enough, that is, ϵ = Õptail,pmin,|D|(∆dom), the maximal
runtime Tmax can be as small as Õpmin,|D|(ptail/ϵ). Here, the constant before 1/ϵ
approaches zero when ptail → 0. In addition, the total runtime still achieves the
Heisenberg-limited scaling. More specifically, Ttotal = Õptail,pmin,|D|(1/ϵ).

Although previous algorithms may fulfill some of the mentioned properties (see Sec-
tion 2.1 for a detailed discussion), to our knowledge, our algorithm stands out as the
first algorithm that can be rigorously proven to simultaneously achieve all four properties,
which matches the best available results in the literature. In particular, the “short” circuit
depth property is considered important for applications on early fault-tolerant quantum
computers [10, 21].

The algorithm presented in this paper also fulfills the following two additional proper-
ties, enhancing its efficiency compared to others:

(5) “Constant” depth: When the spectral gap between dominant eigenvalues and all other
eigenvalues ∆ > 0 and ϵ = Õpmin(∆), we can set Tmax = Õpmin (δ/ϵ log(1/δ)) and
Ttotal = Õpmin (1/(δϵ)) for any δ = Ωpmin(ϵ/∆). In particular, setting δ = Θpmin(ϵ/∆)
gives the constant depth Tmax = Õ(∆−1 log(1/ϵ)), and the total cost is Ttotal =
Õpmin

(
∆ϵ−2).

(6) The quantum cost of the algorithm depends logarithmically on the number of domi-
nant eigenvalues |D|.

Property (5) can be satisfied in some of the prior work, such as [9, 10] for ground
state energy estimation and [18] for MEE (see the detailed discussion in Section 3). An
application of Property (5) is to ensure the algorithm’s efficiency in the presence of global
depolarizing noise. In this scenario, it is important to maintain a short depth Tmax =
O(log(1/ϵ)) (setting δ = Θ(ϵ/∆)) to ensure that Ttotal polynomially depends on 1/ϵ [22].

We find that our algorithm does not require meticulous tuning of the simulation pa-
rameters. Specifically, for the algorithm to succeed, only knowledge of the upper / lower
bounds of the parameters is required (see Section 2). For optimal complexity, the param-
eters can be chosen according to ∆,∆dom, ptail, pmin (see Section 3 for details).

The rest of this paper is organized as follows. In Section 2, we introduce the main
idea of our method, present the algorithm, and provide a brief summary of related works.
The complexity of our algorithm is detailed in Section 3. The proofs are included in
Appendix A. Section 4 proposes several numerical examples and compares our algorithm
with previous ones to justify its efficiency. A summary of this work and a discussion of
possible extensions are provided in Section 5.
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Figure 1: Flowchart of the main algorithm. The procedure involves three steps: Firstly, a sequence of tn
is generated from a truncated Gaussian using a classical computer. In the second step, the Hadamard
test circuit is implemented on a quantum computer to produce the dataset (tn, Zn) as defined in (8).
Within the Hadamard test circuit, we select W = I or W = S† (where S is the phase gate) to estimate
the real or imaginary part of ⟨ψ| exp(−itH)|ψ⟩. In the final step, postprocessing is performed on the
quantum data (tn, Zn) for eigenvalue estimation.

2 Main algorithm and previous work
We first introduce our main idea informally. Given a Hamiltonian H and an initial state
|ψ⟩, our approach relies only on quantum access to the Hadamard test. Specifically, for
any t ∈ R, we can repeat the Hadamard test with |ψ⟩ and exp(−iHt) several times to
obtain an unbiased estimation Z(t) of the following expression:

Z(t) = ⟨ψ| exp(−iHt) |ψ⟩ =
M∑

m=1
pm exp(−iλmt) , (1)

meaning E(Z(t)) = Z(t).
The central subroutine of our algorithm involves a filtering-searching process. Given an

even probability density a(t), we independently generate N samples {tn}Nn=1 from this dis-
tribution. Subsequently, we obtain approximations {Z(tn)}Nn=1 and calculate the filtering
function:

G(θ) =
∣∣∣∣∣ 1
N

N∑
n=1

Z(tn) exp (iθtn)
∣∣∣∣∣ , (2)

where Z(tn) is a random variable that can take values in {±1 ± i}; a detailed discussion
can be found later.

Define the Fourier transform of the probability density function a(t) as follows:

F (x) =
∫ ∞

−∞
a(t) exp(ixt)dt . (3)
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Because {tn} are independently sampled from a(t), it is straightforward to see

G(θ) ≈ |Et∼a (Z(t) exp(iθt))| =
M∑

m=1
pmF (θ − λm) =: G(θ) , when N ≫ 1 . (4)

We observe that G(θ) is an even function of real value, given that a(t) = a(−t). In an
ideal scenario, assuming that F (x) reaches its maximum at x = 0 and decays rapidly
as |x| increases so that max1≤m≤M−1 |F (λm+1 − λm)| ≪ 1, we can derive the following
approximations:

G(θ) ≈ G(θ) ≈
{
pmF (θ − λm), θ close to λm ,

0, otherwise .
(5)

Subsequently, we can implement the following search procedure to identify all dominant
eigenvalues:

• First, we locate the maximum point θ1 of G(θ). Following (5), we find θ1 ≈ λm1 ,
where pm1 = max1≤m≤M pm.

• To approximate the next dominant eigenvalue, we establish a block interval IB,1 =
[θ1−d,θ1+d] around θ1 with a suitable d. Subsequently, we identify the second max-
imal point θ2 of G(θ) outside the block interval, denoted θ2 = arg maxθ∈Ic

B,1
G(θ).

Given that F concentrates around 0, we have pm1 exp(θ − λm1)≪ 1 when θ ∈ Ic
B,1.

Consequently, the impact of the first dominant eigenvalue is mitigated by blocking
the interval in the second search step, allowing us to show θ2 ≈ λm2 , where pm2 =
maxm ̸=m1 pm.

• After acquiring θ2, we update the block interval by defining IB,2 = [θ2− d,θ2 + d]∪
IB,1 and identify the third maximal point of G(θ) outside IB,2.

This searching and updating process is iteratively repeated until a set of |D| “maxi-
mal” points is discovered. Ultimately, we obtain an approximate set {θm}|D|

m=1 cor-
responding to the set of dominant eigenvalues {λm}m∈D.

To ensure the success of the process, it is crucial to choose a suitable probability density
function a(t) such that the function F (x) concentrates around x = 0. In this paper, we
adopt the truncated Gaussian density function for a(t):

a(t) =
(

1−
∫ σT

−σT

1√
2πT

exp
(
− s2

2T 2

)
1[−σT,σT ](s)ds

)
δ0(t)

+ 1√
2πT

exp
(
− t2

2T 2

)
1[−σT,σT ](t) .

(6)

Here, δ0(t) is Dirac delta function at point 0. The choice of a(t) is inspired by the fact
that the Fourier transform of a Gaussian function remains a Gaussian function and a
recent result of spike localization [23]. The parameter σ represents the level of truncation.
Specifically, when σ = ∞, we have F (x) = exp

(
−T 2x2

2

)
, reaching its maximum at x = 0

and exponentially decaying to zero with respect to T |x|. Furthermore, the use of the
truncated Gaussian ensures that the maximum runtime Tmax = maxn |tn| never exceeds
σT . In the following part of the paper, we may also employ the notation aT (t) = a(t) and
FT (x) = F (x) to emphasize the dependence on T .

Now, we are ready to introduce our main algorithm. With the motivation explained
above, we propose the algorithm in two steps:
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Step 1: Data generation.
We implement the Hadamard test quantum circuit as shown in Fig. 1 to obtain our

data set. Specifically, we can set W = I (or W = S† with S being the phase gate), measure
the ancilla qubit, and define a random variable X (or Y ) such that X = 1 (or Y = 1) if
the outcome is 0 and X = −1 (or Y = −1) if the outcome is 1. Then

E(X + iY ) = ⟨ψ| exp(−itH) |ψ⟩ . (7)

Given a set of time points {tn}Nn=1 drawn from the probability density a(t), we apply
Hadamard tests to generate the following data set:

DH = {(tn, Zn)}Nn=1 := {(tn, Xn + iYn)}Nn=1 . (8)

Here, Xn and Yn are random variables that each take values of −1 or 1. Each evaluation
of Xn (or Yn) only requires running the Hadamard test circuit with W = I (or W = S†)
once at t = tn. Referring to (7), we obtain:

E(Zn) = ⟨ψ| exp(−itnH) |ψ⟩ , Zn ∈ {±1± i} , |Zn| =
√

2. (9)

Hence, Zn serves as an unbiased and bounded estimate of ⟨ψ| exp(−itnH) |ψ⟩. Further-
more, it should be noted that if we employ the aforementioned method to construct the
data set, the maximum simulation time is Tmax = max1≤n≤N |tn|, and the total simulation
time is Ttotal = ∑N

n=1 |tn|.
We summarize the data generation process in Algorithm 1.

Algorithm 1 Data generator
1: Preparation: Number of data pairs: N ; Truncated Gaussian density: a(t);
2: Running:
3: n← 1;
4: while n ≤ N do
5: Generate a random variable tn with the probability density a(t).
6: if tn > 0 then
7: Run the quantum circuit (Figure 1) with t = tn and W = I to obtain Xn.
8: Run the quantum circuit (Figure 1) with t = tn and W = S† to obtain Yn.
9: Zn ← Xn + iYn.

10: end if
11: if tn = 0 then
12: Zn ← 1.
13: end if
14: n← n+ 1
15: end while
16: Output: {(tn, Zn)}Nn=1

Step 2: Filtering and searching. After generating the dataset, we define the Gaussian
filtering function as in (2). By selecting a suitable q, we define the set of candidates:

θj = −π + jq

T
, 0 ≤ j ≤ J :=

⌊2πT
q

⌋
.

Subsequently, we iterate the previously described searching procedure K times using G(θ)
and the set {θj}Jj=0 to obtain the approximation {θk}Kk=1.
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The main algorithm of this paper is described in Algorithm 2. It should be noted that
our algorithm is flexible in terms of parameter selection. Specifically, a meticulous adjust-
ment of the parameters σ, T,N, α, q based on prior knowledge of (pm, λm) is unnecessary
for the algorithm to work. When no prior knowledge is available, we recommend choosing
larger values for σ, T,N . In practice, to avoid detection of repeated dominant eigenvalues
during the search, we recommend choosing q < α ≪ T . In Section 3, we provide a lower
bound for α, σ, T,N (no required upper bound) and an upper bound for q (no required
lower bound) to ensure the algorithm’s success.

Algorithm 2 Quantum Multiple Eigenvalue Gaussian filtered Search (QMEGS)
1: Preparation: Number of data pairs: N ; Depth parameter: T ; Block parameter: α;

Searching parameter: q; Truncated Gaussian density: aT (t); Number of dominant
eigenvalues (guess): K;

2: Running:
3: Generate a data set of size N ▷ Step 1: Generate data

{(tn, Zn)}Nn=1

using Algorithm 1 with truncated Gaussian density aT (t).
4: J ←

⌊
2πT

q

⌋
.

5: Generate discrete candidates: θj ← −π + jq
T .

6: Calculate ▷ Step 2: Compute the filtered density function

Gj ←
∣∣∣∣∣ 1
N

N∑
n=1

Zn exp(iθjtn)
∣∣∣∣∣ , 0 ≤ j ≤ J.

7: Block set: IB,1 ← ∅. ▷ Step 3: Find peaks
8: k ← 1.
9: while k ≤ K do

10: jk = argmaxθj /∈IB,k
Gj .

11: θk ← θjk
.

12: IB,k+1 ← IB,k ∪
(
θk − α

T ,θk + α
T

)
.▷ Block interval to avoid finding the same peak

13: k ← k + 1
14: end while
15: Output: {θk}Kk=1

Finally, we emphasize that while the informal analysis provided above appears to be
conceptually simple, there are still some issues that need to be addressed.

• In the informal analysis, to ensure (5), we require

max
1≤m≤M−1

|F (λm+1 − λm)| ≪ 1. (10)

Given our choice of a(t) as specified in (6), where F (x) ≈ exp
(
−T 2x2

2

)
, ensuring

that (10) asks for

Tmax > T >
1

min1≤m≤M−1 |λm+1 − λm|
= Ω (M) , (11)

which poses an undesirable requirement in the context of quantum phase estimationii.
Here, the last equality is based on the assumption that all the eigenvalues of H belong
to the interval [−π, π].

iiFor example, in ground state energy estimation, it is well known that Tmax can be independent of the
spectral gap λ2 − λ1.
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• In the informal derivation, we ignored the finite sampling and measurement errors
and replaced G(θ) directly with G(θ). In practice, however, ensuring small finite
sampling and measurement errors requires a large number of samples and is not
ideal in quantum computing.

In Section 3, we present several results that demonstrate that our algorithm can au-
tonomously address the two concerns mentioned above. We will show that under condition
pmin > ptail, (5) and (11) are not necessary. Specifically, even if T does not satisfy (11), and
(5) does not hold, the set {θk}

|D|
k=1 still serves as an approximation to the set of dominant

eigenvalues in a meaningful sense. Moreover, even when G(θ) is not O(ϵ) close to G(θ),
the search process remains stable enough to ensure the accuracy of the approximation.

We also remark here that the choice of distribution a(t) is not confined to the form
specified in (6), and it can be tailored based on the setting of the problem. For instance,
in scenarios where only a unitary operator U is provided as a black box, and the goal is to
retrieve its eigenvalues eiλm , the power t is constrained to integers and thus a(t) needs to
be a distribution on integers. A detailed discussion is given in Appendix C.

2.1 Comparison with previous work
In this section, we review previous multiple eigenvalue estimation algorithms. A summary
of the comparison between different algorithms is listed in Table 1.

The first work using the Hadamard test circuit to achieve Heisenberg-limited scaling is
[5]. Several works have been developed to achieve Heisenberg-limited scaling for multiple
eigenvalue estimation and without relying on any gap assumptions (Properties (2) and
(3)iii). For example, [17] introduced a method for estimating multiple eigenvalue phases
that extends the idea of robust phase estimation (RPE) [11, 24, 25] to multiple eigenval-
ues and achieves Heisenberg-limited scaling without relying on any assumptions about the
spectral gap. However, the theoretical analysis in [17] is based on the assumption that all
non-dominant modes vanish, as defined in [17, Definition 3.1 and Theorem 4.5], specifically
ptail = 0. This drawback has been resolved by a recent work [19]. The robust multiple
phase estimation (RMPE) method in [19] extends the Kitaev-type RPE method [11, 25]
to the multiple eigenvalue estimation problem by using adaptive simulation time ampli-
fying factors and suitable signal processing algorithms. In contrast to [17], the algorithm
proposed in [19, Section III] can achieve Heisenberg-limited scaling without the require-
ment of a gap between dominant eigenvalues, even when dealing with an imperfect initial
state (ptail > 0) (Properties (1)-(3)). The design of the algorithm is based on a dedi-
cated line spectrum estimation algorithm [23], which employs the same Gaussian filtering
function as employed in this work. Moreover, in scenarios where a gap exists between dom-
inant eigenvalues, the algorithm presented in [19, Section V] combines the line spectrum
estimation algorithm with ESPRIT to estimate the dominant eigenvalues with a short
circuit depth (Property (4)). Specifically, to achieve ϵ-accuracy, the algorithm requires
Tmax = Opmin,|D|(max{p−1

tail∆
−1
dom, ptailϵ

−1}) and Ttotal = Opmin,|D|(p−2
tail∆

−1
dom + p−1

tailϵ
−1), re-

sulting in a short circuit depth as long as ϵ = O(p2
tail∆dom). Compared to the algorithms

outlined in [19, Sections III, V], the quantum cost of QMEGS exhibits a logarithmic de-
pendence on |D|, and QMEGS can further achieve the “constant” depth property in the

iiiRigorously speaking, Heisenberg-limited scaling without gap requirement surpasses the strength of
Properties (2) and (3) stated in Section 1. It implies that the algorithm can achieve Heisenberg-limited
scaling without any gap assumption. Specifically, for any ϵ > 0, the algorithm achieves ϵ-accuracy with
Ttotal = Õptail,pmin (1/ϵ), where the constant is independent of ∆, ∆dom. As demonstrated in Theorem 3.1,
our algorithm achieves Heisenberg-limited scaling without relying on any gap assumptions.
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presence of a spectral gap between dominant and other eigenvalues. In addition, QMEGS
does not require meticulous parameter adjustment (e.g., σ, T,N, α, q) based on prior knowl-
edge of {(pm, λm)}, and can be more flexible than the algorithms proposed in [19].

An optimization-based signal processing method called the multi-modal, multi-level
quantum complex exponential least squares (MM-QCELS) method has recently been pro-
posed [18], which generalizes the quantum complex exponential least squares (QCELS)
method [10] to the setting of multiple eigenvalues. When ∆dom > 0, MM-QCELS can
approximate these dominant eigenvalues with Heisenberg limited scaling, “short”, or “con-
stant” circuit depth (Properties (1), (2), (4), (5)). Furthermore, the quantum cost of MM-
QCELS only depends logarithmically on |D| (Property (6)). To achieve Heisenberg-limited
scaling, MM-QCELS needs to generate a sequence of datasets on quantum computers. The
classical optimization procedure of MM-QCELS to find K dominant eigenvalues solves an
optimization problem in a K-dimensional space (see Appendix B for a brief overview). In
the worst-case scenario, the classical post-processing cost can grow exponentially in ϵ−K .
Compared to MM-QCELS, QMEGS has a much simpler data generation and searching
process. The algorithm only requires a single dataset generated by a single T . Addition-
ally, leveraging block intervals in the searching process, QMEGS can achieve ϵ-accuracy
with Heisenberg-limited scaling even when ϵ = Ω(∆dom). Regarding the classical process-
ing cost, QMEGS only requires evaluating the filter function at a finite number of discrete
points in [−π, π] and the number of evaluations is O(1/ϵ) and is independent of K.

Quantum subspace diagonalization (QSD), quantum Krylov, matrix pencil, and ES-
PRIT methods, as highlighted in studies such as [15, 16, 20, 26–33], offer an alternative
way to solve the eigenvalue estimation problem. These methods estimate eigenvalues by
addressing specific projected eigenvalue problems or singular value problems and have
proven valuable for estimating ground-state and excited-state energies across various sce-
narios. Despite classical perturbation theories suggesting potential challenges, such as
ill-conditioned projected problems and sensitivity to noise, empirical observations indi-
cate that these quantum methods often outperform pessimistic theoretical predictions.
Recently, [14] proposed and investigated the complexity of a quantum phase estimation
algorithm based on ESPRIT [34, 35]. It recovers the frequencies by computing the SVD
of the Hankel matrix generated from samples of the signal. Assuming a sufficiently large
dominant spectral gap ∆dom and ptail = 0, [14] establishes that ESPRIT can achieve ϵ
precision with Tmax = Õ(poly(|D|)ϵ−o(1)) and Ttotal = Õ(poly(|D|)(pminϵ)−2). Notably,
the relationship Ttotal = Ω(T 2

max), which arises from the aliasing issue, poses a challenge to
the ESPRIT method (as well as other ESPRIT-like methods, such as the observable dy-
namical mode decomposition (ODMD) method [20]) in achieving the Heisenberg-limited
scaling (see Appendix B for detail). More recently, [19, Section IV] presented a multi-
level ESPRIT technique to overcome the restriction of ptail = 0 and reach the Heisen-
berg limited scaling with short circuit depth (Properties (1), (2), (4)). Specifically, when
ϵ ≪ ∆dom, the authors illustrate that multilevel ESPRIT can achieve ϵ-accuracy with
Tmax = Õ(poly(|D|)ptail(pminϵ)−1) and Ttotal = Õ(poly(|D|)(ptailpminϵ)−1). In addition,
despite the apparent importance of the gap assumption in the previous analysis of ES-
PRIT [14, 19], our numerical experiments in Section 4 suggest that this assumption might
be relaxed in real-world applications.

It should be noted that filtering techniques have also been explored in previous stud-
ies. For example, in [9], the authors introduced the Gaussian derivative filter to estimate
the ground-state energy (smallest eigenvalues) and achieve a “Constant” depth property
(Property (5)). However, it remains unclear how to extend their algorithms to address the
MEE problem while satisfying the first four properties (Properties (1)-(4)). More recently,
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[12] proposed an algorithm that employs a filter function based on the derivative Heaviside
function. In this approach, the eigenvalues of H can be approximated by identifying the
local maxima of the approximate derivative of the cumulative distribution function (CDF).
As Tmax tends to infinity, their approach aligns with QMEGS in that both methods aim
to identify the local maximal point in the sum of delta functions. However, when aiming
to identify dominant eigenvalues with finite Tmax, the performance of their algorithm and
its ability to achieve Heisenberg-limited scaling are unclear.

Algorithms Properties Comments
Allow Heisenberg No gap “Short”
ptail > 0 limit requirement depth

QEEA [13] ✓ ✗ ✓ ✗

ESPRIT [14] ? ✗ ? ✗

[17] ? ✓ ✓ ✗ poly(|D|) quantum cost
[19, Theorem III.5] ✓ ✓ ✓ ✗ poly(|D|) quantum cost[19, Theorem V.1] ✓ ✓ ✗ ✓

MM-QCELS [18] ✓ ✓ ✗ ✓

“Constant” depth,
log |D| quantum cost
large classical cost

QMEGS (this work) ✓ ✓ ✓ ✓
“Constant” depth,

log |D| quantum cost

Table 1: Comparison of the existing theoretical analysis of different methods for multiple eigenvalue
estimation. In the table, a question mark indicates that the method potentially satisfies this property,
although there is no existing result that rigorously proves it. For simplicity, certain properties in this
table represent a slightly relaxed version of those introduced in Section 1. Specifically, Allow ptail > 0
means that the algorithm can deal with an imperfect initial state. The Heisenberg limit implies that
the algorithm can achieve ϵ-accuracy with Ttotal = Õ(1/ϵ), assuming that all other parameters remain
constant. No gap requirement means that the algorithm can achieve ϵ-accuracy with Ttotal = poly(1/ϵ),
where the polynomial and constants are independent of ∆,∆dom. “Short” depth means that, when
ϵ = Õptail,pmin,|D|(∆dom), the algorithm can achieve ϵ-accuracy with Tmax = Õpmin,|D| (ptail/ϵ) and
Ttotal = Õptail,pmin,|D| (1/ϵ). A more detailed comparison can be found in Section 2.1.

3 Statement of the main results
This section introduces the complexity result of Algorithm 2. The goal is to demon-
strate that, across all three regimes categorized by our knowledge of the spectral gap, the
algorithm consistently identifies a highly accurate approximation of the dominant eigen-
values through appropriate parameter selection. We provide the proof of the results in
Appendix A.

The three cases are divided as follows depending on the values of T,∆,∆dom:

• General case: In this case, the theoretical result does not require assumptions about
T , ∆dom, and ∆. Consequently, we refer to it as the No gap requirement regime.
The result is summarized in the following theorem.

Theorem 3.1 (∀T > 0). Assume pmin > ptail and K ≥ |D|. Given the probability
of failure η > 0, we choose the following parameters:

– Block constant: α = Ω
(
log1/2

(
1

pmin−ptail

))
,
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– Searching parameter: q = O
(
log1/2

(
pmin

ptail+(pmin−ptail)/2

))
, q < α/3, and α/q ∈

N,
– Truncation parameter: σ = Ω

(
log1/2

(
1

pmin−ptail

))
,

– Number of samples: N = Ω
(

1
(pmin−ptail)2 log

((
T
q + |D|

)
1
η

))
.

Then, with probability at least 1 − η, we have that for each i ∈ D, there exists
1 ≤ ki ≤ |D| such that

|λi − θki
| ≤ α

T
. (12)

In particular, for any ϵ > 0, to achieve

{λm}m∈D ⊂ ∪k[θk − ϵ,θk + ϵ] ,

it suffices to choose

Tmax = Θ̃
(1
ϵ

)
, Ttotal = Θ̃

( 1
(pmin − ptail)2ϵ

log
( |D|
η

))
,

The above theorem guarantees that Properties (1)-(3) are attained as outlined in
Section 1. This result shares similarities with [19, Theorem III.5]. Since a spectral
gap is not assumed, T may not be large enough to distinguish between close dominant
eigenvalues, and it is possible for two dominant eigenvalues to fall within the same
interval [θk − α/T,θk + α/T ]. Also, some intervals may not include any dominant
eigenvalues since K ≥ |D|. But (12) ensures that the dominant eigenvalues are
covered by the union set ∪k[θk − α/T,θk + α/T ].
We briefly describe the strategy of proving the theorem using proof by contradiction
as follows: First, assume that there exists λm⋆ such that λm⋆ /∈ IB,|D| (here I denotes
the closure of I). Then one can show that there exists a grid point θ⋆ /∈ IB,|D| such
that |θ⋆−λm⋆ | ≤ q/T using the condition of q, α. Thus the value of G at θ⋆ has the
following lower bound due to (4):

G(θ⋆) ≥ pmin exp
(
−q

2

2

)
+ small error .

Then each
[
θk − α

3T ,θk + α
3T

]
must cover some dominant eigenvalue λm since other-

wise

G(θk) ≤ ptail + exp
(
−α

2

18

)
+ small error < pmin exp

(
−q

2

2

)
+ small error ≤ G(θ⋆) ,

which contradicts with the fact that θk is the maximal point at k-th step. Finally,
since λm⋆ is not covered by any block intervals, some dominant eigenvalue λm′ must
be covered by at least two such intervals

[
θk − α

3T ,θk + α
3T

]
and

[
θj − α

3T ,θj + α
3T

]
(j ̸= k). However, according to the definition of the block interval, we have |θk−θj | ≥
α
T , which implies

[
θk − α

3T ,θk + α
3T

]
∩
[
θj − α

3T ,θj + α
3T

]
= ∅. This contradicts the

existence of λm′ and concludes the proof.

In Appendix A, we account for both random and truncation errors and form a rigorous
proof using this idea.
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• Gapped dominant eigenvalues case: In this case, we assume that T is large enough
to allow the Gaussian filter to distinguish dominant eigenvalues. We show that
Algorithm 2 attains Heisenberg-limited scaling with Tmax = ptail/(pminϵ). Similar
results have been attained by previous algorithms, such as MM-QCELS [18] and [19,
Theorem IV.2], and are referred to as Short depth regime (Property (4)). The results
are summarized in the following theorem:

Theorem 3.2 (T ≫ ∆−1
dom). Assume that pmin > ptail and define

ζ = min{(pmin − ptail)/ptail, 1} .

Given failure probability η > 0, we choose q < α/3, α/q ∈ N such that

σ = Ω
(

log1/2
( 1
ζptail

))
, α = Ω (σ) , q = O

(
ζptail
σ

)
. (13)

and
T = Ω

(
α

∆dom

)
, N = Ω

( 1
(ζptail)2 log

((
T

q
+ |D|

) 1
η

))
.

There exists
Q = Θ

(
exp

(
Θ(ζ−1)

)
(σζ + 1) ptail

pminT

)
such that, with probability 1 − η, for each i ∈ D, there exists a unique 1 ≤ ki ≤ |D|
such that

|λi − θki
| ≤ Q

T
. (14)

Furthermore, we have ki ̸= kj for i ̸= j. In particular, when pmin > (1+o(1))ptail, for
ϵ = Õ (ptail∆dom/pmin), the following quantum cost is enough to achieve maxm∈D |λm−
θkm | ≤ ϵ:

Tmax = Θ̃
(
ptail
pminϵ

)
, Ttotal = Θ̃

( 1
ptailpminϵ

log
( |D|
η

))
.

In contrast to the general case, in this scenario,

exp
(
−T 2(λm1 − λm2)2/2

)
≪ 1, m1,m2 ∈ D.

This condition ensures that the Gaussian filter can effectively distinguish between
different dominant eigenvalues, establishing a one-to-one correspondence between
dominant eigenvalues λm and their corresponding maximal points θkm .

To establish the short circuit depth result in (14), we begin by noting that, ne-
glecting the influence of other eigenvalues and noise, we must have |λm − θkm | ≤
q/T due to the decreasing property of the function F (x). When accounting for
the impact of other eigenvalues, the following observations hold: 1. The influ-
ence of other dominant eigenvalues is negligible when determining θk since T =
Ω̃
(
∆−1

dom

)
; 2. The effect of the tail eigenvalues diminishes as ptail approaches zero

since
∣∣∑

m∈Dc pm exp(−(θ − λm)2T 2/2)
∣∣ ≤ ptail. By leveraging these observations

and controlling the impact of random noise, we establish the validity of (14) in Ap-
pendix A.
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• The case where a gap is known between dominant eigenvalues and the tail: In this
case, we assume that T ≫ ∆−1. The Gaussian filter thus becomes sufficiently sharp
to distinguish between dominant eigenvalues and tail eigenvalues. In this scenario,
we demonstrate that Algorithm 2 can achieve Heisenberg-limited scaling, with Tmaxϵ
arbitrarily close to zero. Furthermore, Algorithm 2 is capable of achieving ϵ accu-
racy with Tmax = O(log(1/ϵ)) and Ttotal = O(1/ϵ2). Since the maximum running
time Tmax depends only logarithmically on ϵ, we refer to this regime as the “Con-
stant” depth regime (Property (5)). It should be noted that similar results have been
achieved previously in the task of ground-state energy estimation algorithms, such as
QCELS [10, 22], and [9]. Here, we extend this result to the case of multiple eigenvalue
estimation.

Theorem 3.3 (T ≫ ∆−1). Assume that pmin > ptail. Choose all parameters such
that they satisfy the condition of Theorem 3.1. Furthermore, given any 0 < ζ <
pmin/4 and failure probability η > 0, we choose

σ = Ω
(

log1/2
(1
ζ

))
, α = Ω(σ), q = O

(
ζ

σ

)
,

and
T = Ω

(
α

∆

)
, N = Ω

( 1
ζ2 log

((
T

q
+ |D|

) 1
η

))
.

Let Q = O
(

ζσ
pmin

)
. Then, with high probability, for each i ∈ D, there exist 1 ≤ ki ≤

|D| such that
|λi − θki

| ≤ Q

T
. (15)

Furthermore, it holds that ki ̸= kj for i ̸= j. In particular, for ϵ = Õ (∆/pmin) and
δ = Ω(pminϵ/∆), the following quantum cost is enough to achieve maxm∈D |λm −
θkm | ≤ ϵ:

Tmax = Θ
(

δ

pminϵ
log

(1
δ

))
, Ttotal = Θ̃

( 1
pminδϵ

log
( |D|
η

))
.

According to the above theorem, we can increase the number of samplesN to decrease
Tmaxϵ to an arbitrarily small value. However, it is crucial to acknowledge the tradeoff,
as an increase in the number of samples N also amplifies the total running time. In
the extreme scenario where N−1/2 = Θ̃(ϵ), Algorithm 2 achieves ϵ accuracy with
Tmax = Θ (log (1/ϵ)).
The proof strategy employed in Theorem 3.3 closely mirrors that of Theorem 3.2.
The key difference lies in the influence of tail eigenvalues. As T = Ω(α/∆), we
observe that ∣∣∣∣∣ ∑

m∈Dc

pm exp(−(θ − λm)2T 2/2)
∣∣∣∣∣ ≤ exp(−α2/2) = O(ζ2) .

This implies that the impact of tail eigenvalues can be arbitrarily small. By combining
this observation with the proof strategy applied in Theorem 3.2, we can establish the
validity of (15).
The algorithm’s ability to achieve a “Constant” depth comes from the rapid decay of
the filter function F (x) as |x| increases. A similar concept is employed in QCELS [10,
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22], where solving the optimization problem is nearly equivalent to a filtering and
searching process using the Gaussian filter function. It is also important to note
that the choice of the Gaussian filter function might not be exclusive to achieve
the “Constant" depth property. For instance, in the algorithm presented in [9], the
filtering and searching process is applied using the Gaussian derivative function to
approximately locate the ’zero point’ of the filtered signal, which corresponds to the
ground state energy. Exploring the possibility of extending other filter functions
to MEE and achieving similar results would be an interesting avenue for further
investigation.

4 Numerical experiments
In this section, we demonstrate the efficiency of QMEGS numerically by comparing it
with previously established quantum phase estimation algorithms: MM-QCELS [18], QPE
(textbook version [1]), and ESPRIT [14]. A brief summary of these three methods is pro-
vided in Appendix B. We share the code on Github (https://github.com/zhiyanding/
phase_estimation_methods).

We consider three models: 1. Toy Hamiltonian with almost zero dominant spectral gap
between dominant eigenvalues (Section 4.1); 2. TFIM model (Section 4.2); 3. Hubbard
model (Section 4.3). In all cases, we normalize the Hamiltonian spectrum so that the
eigenvalues lie within the range of [−π/4, π/4] for our numerical experiments. Specifically,
we use the normalized Hamiltonian in the experiment.

H̃ = πH

4∥H∥2
. (16)

In our test, we construct an initial state |ψ⟩ with p1 = p2 = 0.4. Therefore, we let λ1, λ2
be the dominant eigenvalues and set D = {1, 2}. In addition, the dominant spectral gap
is ∆dom = λ2 − λ1. To test the four algorithms, we set T = 100× 2n with n = 1, 2, · · · , 7.
For QMEGS (Algorithm 2), we choose N = 500, K = 2, α = 5, σ = 1, q = 0.05.
For MM-QCELS [18, Algorithm 2], the parameters are set to K = 2, T0 = 100, N0 =
103, Nj≥1 = 500 and σ = 1. For ESPRIT (see Appendix B), we set N = ⌊T ⌋ and K = 2.
For QPE, we consider the specific version designed for estimating the ground state energy
λ1, which is a variation of the version proposed in [1, Chapter 5.2]. Specifically, we
sample its distribution NQPE = ⌈6/p1⌉ times, and take the minimal of the measures as the
approximation to λ1 (see Appendix B). The error QPE is defined as the error for estimating
this single eigenvalue.

We then use QMEGS (Algorithm 2), MM-QCELS, and ESPRIT to estimate the two
dominant eigenvalues and measure the max-min error:

error = max
m∈D

min
σ∈{1,2,··· ,K}⊗K

|θ∗
σi
− λm| . (17)

In our case, D = {1, 2},K = 2. This testing criterion gives QPE with an advantage.
Nonetheless, we illustrate that the performance of QMEGS, MM-QCELS, and ESPRIT
can all to surpass that of QPE.

4.1 Almost zero dominant spectral gap
In this test, we randomly generate a Hamiltonian H

H =
M∑

m=1
λm |ψm⟩ ⟨ψm| ,
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with dimension M = 20, ∥H∥ = 1, and λ1 − λ0 = 10−3. Thus, we have ∆dom = λ1 − λ0 =
10−3. We then randomly generate an initial state |ψ⟩ such that p1 = p2 = 0.4.

We apply QMEGS (Algorithm 2), MM-QCELS, ESPRIT, and QPE to estimate the
dominant eigenvalues (λ1, λ2) of the normalized Hamiltonian H̃ according to (16). A
comparison of the results is shown in Fig. 2.

We observe that the QPE error consistently decreases with increasing Tmax. However,
with the same Tmax, the error for QPE is consistently higher than that of the other three
methods. For QMEGS (Algorithm 2) and ESPRIT, errors do not change much with small
values of Tmax and gradually decrease when Tmax is large enough. This behavior aligns
with expectations, as for small Tmax, QMEGS and ESPRIT struggle to distinguish between
two dominant eigenvalues. When Tmax becomes sufficiently large, these algorithms auto-
matically differentiate between λ1 and λ2, leading to more accurate estimates. In contrast,
the performance of MM-QCELS is different. Despite a large Tmax, MM-QCELS struggles
to differentiate between two dominant eigenvalues, resulting in the error persisting around
∆m = 10−3. Additionally, when comparing the total evolution time (Ttotal), QMEGS
(Algorithm 2) is shown to be more time efficient than both QPE and ESPRIT.
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Figure 2: QMEGS (Algorithm 2) vs. MM-QCELS vs. ESPRIT vs. QPE in almost zero dominant
spectral gap Hamiltonian with p1 = p2 = 0.4. We highlight that when the spectral gap is small
(∆m = 10−3), MM-QCELS struggles to differentiate between two prominent eigenvalues even when T
is large. In contrast, QMEGS and ESPRIT exhibit the ability to automatically distinguish between λ1
and λ2, achieving high accuracy as T increases.

4.2 Ising model
Consider the one-dimensional transverse field Ising model (TFIM) model defined on L sites
with periodic boundary conditions:

H = −
(

L−1∑
i=1

ZiZi+1 + ZLZ1

)
− g

L∑
i=1

Xi (18)

where g is the coupling coefficient, Zi, Xi are Pauli operators for the i-th site and the
dimension of H is 2L. We choose L = 8, g = 4 and apply four algorithms to estimate
the dominant eigenvalues (λ1, λ2) of the normalized Hamiltonian H̃ according to (16). We
note that in this case, ∆dom = λ1 − λ0 ≈ 0.2. A comparison of the results is shown in
Fig. 3.

We observe that the errors of QMEGS, MM-QCELS, and QPE exhibit a proportionality
to the inverse of the maximal evolution time (Tmax). In particular, the constant factor δ =
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Tϵ for QMEGS and MM-QCELS is considerably smaller than that of QPE. As illustrated
in Fig. 3, QMEGS and MM-QCELS significantly reduce the maximal evolution time by
two orders of magnitude. In contrast to the other three methods, the error of ESPRIT
decreases with T−1.5

max
iv, enabling it to achieve a smaller error than the other methods when

Tmax is sufficiently large. However, in terms of the total evolution time Ttotal, ESPRIT
incurs a cost that is one order of magnitude higher than QMEGS.
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Figure 3: QMEGS (Algorithm 2) vs. MM-QCELS vs. ESPRIT vs. QPE in TFIM model with 8 sites
with p1 = p2 = 0.4. Left: Depth (Tmax); Right: Cost (Ttotal). The errors of QPE, QMEGS, and MM-
QCELS methods exhibit a linear scaling with 1/Tmax, where the constant factor δ = Tϵ for QMEGS
and MM-QCELS is notably smaller than that of QPE. On the other hand, ESPRIT’s error scales as
T−1.5

max . In terms of the total evolution time Ttotal, QMEGS stands out with the smallest Ttotal compared
to other methods and is shown to be one order of magnitude more cost-effective than ESPRIT.

4.3 Hubbard model
Consider the one-dimensional Hubbard model defined on L spinful sites with open bound-
ary conditions:

H = −t
L−1∑
j=1

∑
σ∈{↑,↓}

c†
j,σcj+1,σ + U

L∑
j=1

(
nj,↑ −

1
2

)(
nj,↓ −

1
2

)
.

Here cj,σ(c†
j,σ) denotes the fermionic annihilation (creation) operator on the site j with spin

σ, nj,σ = c†
j,σcj,σ denotes the number operator for σ ∈ {↑, ↓}, and t, U ∈ R are parameters.

We choose L = 4, 8, t = 1, U = 10 and test four algorithms to estimate λ1, λ0. We note
that the dominant spectral gap ∆dom = λ1 − λ0 ≈ 0.02.

The numerical results are presented in Fig. 4. Similar to the TFIM model, the maximal
evolution time of QMEGS and MM-QCELS is nearly two orders of magnitude smaller
than that of QPE, while the error of ESPRIT scales as T−1.5

max . Additionally, the overall
computational cost of QMEGS is lower than that of other methods and is almost one order
of magnitude lower than the cost of ESPRIT.

5 Discussions
In this paper, we introduce a novel algorithm, Quantum Multiple Eigenvalue Gaussian fil-
tered Search (QMEGS), designed for addressing the multiple eigenvalues estimation prob-

ivA very recent work [36] rigorously proves this based on a highly nontrivial matrix perturbation argu-
ment. Specifically, when Tmax ≫ ∆m, the authors show that the error of ESPRIT scales as T −1.5

max .
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Figure 4: QMEGS (Algorithm 2) vs. MM-QCELS vs. ESPRIT vs. QPE in TFIM model with 8 sites
with p1 = p2 = 0.4. Left: Depth (Tmax); Right: Cost (Ttotal). QMEGS and MM-QCELS methods
exhibit significantly smaller Tmax values compared to QPE. Moreover, QMEGS achieves the smallest
total evolution time and is one order of magnitude more cost-effective than ESPRIT.

lem. In contrast to preceding algorithms for multiple eigenvalue estimation, QMEGS is the
first algorithm capable not only of consistently achieving Heisenberg-limited scaling but
also of attaining “short” and “constant” depth in the presence of gaps between eigenval-
ues. Additionally, QMEGS offers flexibility in parameter selection. It is not imperative to
meticulously set the parameters based on prior knowledge of (pm, λm) for the algorithm to
operate effectively. Numerous numerical results substantiate the efficiency and flexibility
of the algorithm.

There are several directions to extend this work.

• While QMEGS has small quantum computational complexity, the classical cost of
the algorithm is linearly dependent on the inverse of the precision ϵ−1 and the size
of the domain (assuming λm ⊂ [−π, π]). Exploring more efficient search algorithms
is an intriguing direction to reduce this linear dependence to logarithmic potentially.

• QMEGS demonstrates flexibility in parameter selection, achieving accurate estima-
tions when α, σ, T,N, q−1 are chosen to be sufficiently large. The challenge of adap-
tively selecting these parameters to achieve optimal complexity without prior knowl-
edge of (pm, λm) remains an open problem.

• In this study, we assume the exactness in the Hamiltonian simulation exp(−iHt)
for simplicity. However, this assumption may not hold in the context of early fault-
tolerant quantum computers. In cases where the Hamiltonian simulation is not ex-
act, Zn becomes a biased estimate for ⟨ψ| exp(−itnH)|ψ⟩. Investigating the impact
of different noise models on QMEGS performance is an intriguing problem, and the
results depend on the noise models chosen and the assumptions about Zn. For exam-
ple, when the bias size is independent of t and sufficiently small, such as in the case
of small additive noise, a similar analysis to the proof of Theorem 3.1 (Appendix A)
can be employed. This allows us to absorb the error into statistical error and non-
dominant parts, demonstrating that the method still achieves Heisenberg-limited
scaling.

• It is important to emphasize that while ESPRIT-type algorithms [14, 20] may not
achieve Heisenberg-limited scaling and theoretically require gap assumptions, these
algorithms still perform effectively in the absence of gaps between dominant eigen-
values and show rapid error decay with Tmax. In the presence of a gap, numerical
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results indicate that the decay rate of the error appears to be O(T−1.5
max ). To our

knowledge this phenomenon was not previously reported in the literature. The the-
oretical underpinning of these phenomena remains an open question, which makes it
an intriguing direction for further exploration into the complexity of ESPRIT-type
algorithms.

• As highlighted in Section 2.1, the Gaussian filtering function is not the only option for
addressing the MEE problem. Some other filtering functions, such as the Gaussian
derivative filter [9] and derivative Heaviside function [12], might also be used to
solve the MEE problem. The exploration of alternative filtering functions that offer
improved complexity performance and flexibility remains an open problem.
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A Proofs
In this section, we prove Theorems 3.1 to 3.3. We first introduce a lemma that helps us
bound the error caused by time truncation and random noise. Define the error term

Ej = |E (θj) |, E (θ) =: 1
N

N∑
n=1

Zn exp(iθtn)−
M∑

m=1
pm exp

(
−T

2(λm − θ)2

2

)
,

where θj is defined in Algorithm 2. We note that Ej contains errors caused by time
truncation and finite samples of tn. We demonstrate the smallness of Ej in the following
lemma:
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Lemma A.1. Given δ > 0 and the pair of overlap-eigenvalues {(pi, λi)}Mm=1, if σ =
Ω
(
log1/2 (1/δ)

)
, we have∣∣∣∣∣E
(

1
N

N∑
n=1

Zn exp(iθtn)
)
−

M∑
m=1

pm exp
(
−T

2(λm − θ)2

2

)∣∣∣∣∣ ≤ δ2 . (19)

Furthermore, define E (θ) = 1
N

∑N
n=1 Zn exp(iθtn) −∑M

m=1 pm exp
(
−T 2(λm−θ)2

2

)
. Given

η > 0 and Θ = {θj}Jj=1 ∪ {λm}m∈D, if N = Ω
(

1
δ2 log

(
(J + |D|) 1

η

))
, we have

P
(

max
θ∈Θ
|E(θ)| ≤ δ

)
≥ 1− η , (20)

and
P
(
∩θ,θ′∈Θ,θ ̸=θ′

{∣∣E(θ)− E(θ′)
∣∣ ≤ σTδ|θ − θ′|+ δ2

})
≥ 1− η . (21)

Proof. According to Algorithm 1, when σ = Ω
(
log1/2 (1/δ)

)
, we have∣∣∣∣∣E

(
1
N

N∑
n=1

Zn exp(iθtn)
)
−

M∑
m=1

pm exp
(
−T

2(λm − θ)2

2

)∣∣∣∣∣
≤
∫

|t|>σT

1√
2πT

e− t2
2T 2

∣∣∣∣∣
M∑

m=1
pme

−itλmeiθt

∣∣∣∣∣ dt = 2
∫ ∞

σT

1√
2πT

e− t2
2T 2 dt

=
√

2
π

∫ ∞

σ
e− s2

2 ds < e−σ2
< δ2,

(22)

where the inequality
∫∞

x e− 1
2 t2dt ≤

√
π
2 e

− x2
2 is used in the second last inequality. This

proves (19). The proof of (20) and (21) is the same as the proof of [22, Appendix B.3
Lemma 4 eqn. (B8)], thus, we omit it here.

Recall that

G(θ) =
∣∣∣∣∣ 1
N

N∑
n=1

Zn exp(iθtn)
∣∣∣∣∣ .

We are ready to prove Theorem 3.1.

Proof of Theorem 3.1. According to Lemma A.1 (20) with δ = O(pmin − ptail) and J =
O(T/q), we obtain

P
(

max
θ∈Θ
|E(θ)| < pmin − ptail

8

)
≥ 1− η . (23)

Thus, to prove Theorem 3.1, it suffices to show (12) assuming Ej <
pmin−ptail

8 . Under this
condition, we consider two classes of candidates:

• When θj ∈ ∪m∈D
[
λm − q

T , λm + q
T

]
, we obtain

Gj = G(θj) ≥
∣∣∣∣∣

M∑
m=1

pm exp
(
−T

2(λm − θj)2

2

)∣∣∣∣∣− Ej

> pmin exp
(
−q

2

2

)
− pmin − ptail

8

≥ ptail + pmin − ptail
2 − pmin − ptail

8 ≥ ptail + 3(pmin − ptail)
8 .
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where we use Ej <
pmin−ptail

8 in the second inequality, and the condition of q in the
last inequality.

• When θj /∈ ∪m∈D
[
λm − α

3T , λm + α
3T

]
, we obtain

Gj ≤
∣∣∣∣∣ ∑
m∈D

pm exp
(
−T

2(λm − θj)2

2

)∣∣∣∣∣+
∣∣∣∣∣ ∑
m∈Dc

pm exp
(
−T

2(λm − θj)2

2

)∣∣∣∣∣+ Ej

≤ exp
(
−α

2

18

)
+ ptail + pmin − ptail

8 ≤ ptail + pmin − ptail
4 ,

where Dc := [M ]\D, and we use Ej <
pmin−ptail

8 in the second inequality and the
condition of α in the last inequality.

Because q < α/3, the above two inequalities imply

max
θj /∈∪m∈D[λm− α

3T
,λm+ α

3T ]
Gj < min

θj∈∪m∈D[λm− q
T

,λm+ q
T ]
Gj . (24)

Now, we prove (12) using the proof by contradiction argument. Assuming that there exists
m⋆ ∈ D such that

λm⋆ /∈ ∪K
k=1

[
θk −

α

T
,θk + α

T

]
,

then the grid point θ∗ closest to λm⋆ is not in the block set since α/q ∈ N and the block set
is a union of open intervals. According to (24), we must have θk ∈ ∪m∈D,m ̸=m⋆

[
λm − α

3T , λm + α
3T

]
for all 1 ≤ k ≤ |D|. By the pigeonhole principle, there exist k1 < k2 and m′ ∈ D such that
{θk1 ,θk2} ⊂

[
λm′ − α

3T , λm′ + α
3T

]
. Thus, |θk1 − θk2 | ≤ 2α

3T . However, this contradicts the
blocking process that ensures

θk2 /∈
(

θk1 −
α

T
,θk1 + α

T

)
.

This concludes the proof.

Next, we give the proof of Theorem 3.2. Define the tail term that contains the impact
of non-dominant eigenvalues:

Gtail(θ) =
∑

m∈Dc

pm exp
(
−T

2(λm − θ)2

2

)
. (25)

The proof of Theorem 3.2 is as follows.

Proof of Theorem 3.2. Because pmin > ptail, it is straightforward to see that the condition
of Theorem 3.1 is satisfied. In addition, using the condition of N with Lemma A.1 by
setting δ = ζptail/10 and J = O(T/q), we obtain

P
(

max
θ∈Θ
|E(θ)| ≤ ζptail/10

)
≥ 1− η/2 , (26)

and

P
(
∩θ,θ′∈Θ,θ ̸=θ′

{∣∣E(θ)− E(θ′)
∣∣ = σTζptail|θ − θ′|/10 + ζ2p2

tail/100
})
≥ 1− η/2 . (27)

where Θ = {θj}Jj=1 ∪ {λm}m∈D.
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To prove the theorem, it suffices to show that when (26) and (27) hold, (14) holds.
Fixed 1 ≤ k ≤ |D|. Define Dk− := {m ∈ D : λm ∈ IB,k}, where IB,k is the block
interval defined in the algorithm. We note that Dk− is the set of indices that have already
been covered by the blocked set. Because T = Ω

(
α

∆dom

)
, we find that each interval[

θj − α
T ,θj + α

T

]
contains exactly one dominant eigenvalue for all 1 ≤ j ≤ k − 1 and

D\Dk− ̸= ∅. Then, to prove (14), it suffices to show that, if
∣∣∣θj − λmj

∣∣∣ ≤ Q
T for j < kv,

then there exists mk ∈ D \ Dk− such that

|θk − λmk
| ≤ Q

T
. (28)

The proof of (28) consists of two main steps. In the first step, we directly control the
error of the filter function to establish a loose bound T |λmk

− θk| = O(ζ−1/2). When
pmin ≫ ptail, this results in T |λmk

− θk| = O((ptail/pmin)1/2), a bound that is weaker than
the one in (28). This weaker bound allows the confinement of θmk

to a narrow region
around λi. Then we employ a Taylor expansion of the filter function within this restricted
region and refine the bound to T |λi − θki

| = O(ptail/pmin).
Definem⋆

k = argminm∈D |θk − λm|, λ⋆
k = λm⋆

k
, p⋆

k = pm⋆
k
, and θ⋆

k = argminθj

∣∣∣θj − λm⋆
k

∣∣∣.
It is straightforward to see λ⋆

k /∈ IB,k because each interval
[
θj − α

T ,θj + α
T

]
contains ex-

actly one dominant eigenvalue for every j ∈ [k − 1]. Next, because the candidates θj are
chosen with the step size q/T , we have

|θ⋆
k − λ⋆

k| ≤
q

T
.

Furthermore, because α/q ∈ N, and λ⋆
k is not covered by the blocked set, we must have

θ⋆
k /∈ IB,k. In addition, we have G(θ⋆

k) is close to G(λ⋆
k), as given by

|G(θ⋆
k)−G(λ⋆

k)|

≤
∣∣∣∣∣p⋆

k

(
1− exp

(
−T

2 (λ⋆
k − θ⋆

k)2

2

))∣∣∣∣∣
+

∣∣∣∣∣∣
∑

m∈D\{m⋆
k

}
pm exp

(
−T

2 (λm − λ⋆
k)2

2

)
− pm exp

(
−T

2 (λm − θ⋆
k)2

2

)∣∣∣∣∣∣
+ |Gtail(θ⋆

k)−Gtail(λ⋆
k)|+ |E(θ⋆

k)− E(λ⋆
k)| ,

(29)

where Gtail is defined in (25). For the first term in (29), since |θ⋆
k − λ⋆

k| ≤
q
T , we have∣∣∣∣∣p⋆

k

(
1− exp

(
−T

2 (λ⋆
k − θ⋆

k)2

2

))∣∣∣∣∣ = O(q2).

For the second term in (29), since T = Ω(α/∆dom) and |θ⋆
k − λm| ≥ ∆dom

2 , we have∣∣∣∣∣∣
∑

m∈D\{m⋆
k

}
pm exp

(
−T

2 (λm − λ⋆
k)2

2

)
− pm exp

(
−T

2 (λm − θ⋆
k)2

2

)∣∣∣∣∣∣ = O(exp(−Θ(α2))).

For the third term in (29), by the ptailT -Lipschitz property of Gtail(θ) and |θ⋆
k − λ⋆

k| ≤
q
T ,

we have

|Gtail(θ⋆
k)−Gtail(λ⋆

k)| = O(ptailq).

vWhen k = 1, we don’t need this condition.
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For the last term in (29), by (27) and |θ⋆
k − λ⋆

k| ≤
q
T , we have

|E(θ⋆
k)− E(λ⋆

k)| ≤ ζptail(σq/10 + ζptail/100).

Combining them, we get that

|G(θ⋆
k)−G(λ⋆

k)| ≤ ζp2
tail

10 , (30)

which follows by employing employ (13) to control the parameters σ, α, q.
Now we show that θk is close to λ⋆

k using θ⋆
k as a bridge. First, we notice

|θk − λj | ≥
∆dom

2 , ∀j ∈ D \ {m⋆
k} .

Combining this with the condition that T = Ω
(
log1/2(1/(ζptail))∆−1

dom

)
, we have

∑
m∈D\{m⋆

k
}
pm exp

(
−T

2 (λm − λ⋆
k)2

2

)
≤ ζp2

tail
10 ,

∑
m∈D\{m⋆

k
}
pm exp

(
−T

2 (λm − θk)2

2

)
≤ ζp2

tail
10 .

(31)
Next, we use |Gtail| ≤ ptail, (26), and (31) to obtain

G (θk) ≤ p⋆
k exp

(
−T 2 (λ⋆

k − θk)2 /2
)

+ ptail + ζptail + ζp2
tail

10
≤ p⋆

k exp
(
−T 2 (λ⋆

k − θk)2 /2
)

+ ptail + ζptail
5

(32)

and

G (λ⋆
k) ≥ p⋆

k +
∑

m ̸={m⋆
k

}
pm exp

(
−T

2 (λm − λ⋆
k)2

2

)
− |E(λ⋆

k)| ≥ p⋆
k −

ζptail
10 . (33)

Furthermore, (30) and the assumption that θk is the maximal point imply that

G (θk) ≥ G (θ⋆
k) ≥ G (λ⋆

k)− ζptail
10 . (34)

Combining (32), (33), and (34), we obtain

p⋆
k

(
1− exp

(
−T 2 (λ⋆

k − θk)2 /2
))
≤ (1 + 2ζ/5) ptail ,

which implies

|T (λ⋆
k − θk)| ≤

√
−2 ln

(
1− (1 + 2ζ/5) ptail

pmin

)
= O

(
ζ−1/2

)
. (35)

We note that, in the case where ζ−1 = O (ptail/pmin), the upper bound proved above
scales with (ptail/pmin)1/2, while the goal is to improve the upper bound to Q, which
linearly depends on ptail/pmin. Now we show how to improve (35). Similar to (32) and
(33), ∣∣∣G2 (θk)− (p⋆

k)2 exp
(
−T 2 (λ⋆

k − θk)2
)

−2p⋆
kRe

(
exp

(
−T 2 (λ⋆

k − θk)2 /2
)

(Gtail(θk) + E(θk))
)∣∣∣ = O(p2

tail)
(36)
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and ∣∣∣G2 (λ⋆
k)−

[
(p⋆

k)2 + 2p⋆
kRe ((Gtail(λ⋆

k) + E(λ⋆
k)))

]∣∣∣ = O(p2
tail) . (37)

Furthermore, (30) and the assumption that θk is the maximal point imply that

G2 (θk) ≥ G2 (θ⋆
k) ≥ G2 (λ⋆

k)−O(p2
tail) . (38)

Combining (36), (37), and (38), we obtain

p⋆
k

(
exp

(
−T 2 (λ⋆

k − θk)2
)
− 1

)
≥ 2Re

(
− exp

(
−T 2 (λ⋆

k − θk)2 /2
)

(Gtail(θk) + E(θk)) + (Gtail(λ⋆
k) + E(λ⋆

k))
)
−O(p2

tail/pmin)

≥ 2Re
((

1− exp
(
−T 2 (λ⋆

k − θk)2 /2
))

(Gtail(θk) + E(θk))
)

+ 2Re (− (Gtail(θk) + E(θk)) + (Gtail(λ⋆
k) + E(λ⋆

k)))−O(p2
tail/pmin)

≥ 2Re
((

1− exp
(
−T 2 (λ⋆

k − θk)2 /2
))
E(θk)

)
+ 2Re (− (Gtail(θk) + E(θk)) + (Gtail(λ⋆

k) + E(λ⋆
k)))−O(p2

tail/pmin) .

Define Fk(θ) = exp
(
−T 2(λ⋆

k−θ)2

2

)
vi. Then, the above inequality can be rewritten as

p⋆
k(1− Fk(θk))(1 + Fk(θk)) + 2Re ((1− Fk(θk))E(θk))

≤2 |Gtail(θk)−Gtail(λ⋆
k)|+ 2 |E(θk)− E(λ⋆

k)|+O(p2
tail/pmin) .

Because |E(θk)| ≤ ζptail/10 according to (26), the above inequality further implies

(pmin − ζptail/5) (1− Fk(θk))
≤2 |Gtail(θk)−Gtail(λ⋆

k)|+ 2 |E(θk)− E(λ⋆
k)|+O(p2

tail/pmin)

≤2(σζ + 1)Tptail |θk − λ⋆
k|+O

(
p2

tail/pmin
)
.

(39)

where we use the fact that Fk(θk) ∈ [0, 1] in the first inequality, and use (27) and the fact
that Gtail is ptailT -Lipschitz in the last inequality.

Using (35), we obtain

1− Fk(θk) = 1− exp
(
−T

2 (θk − λ⋆
k)2

2

)
≥ exp

(
−Θ(ζ−1)

)
T 2 (θk − λ⋆

k)2

2 .

Plugging this into (39), we obtain

(pmin − ζptail/5) exp
(
−Θ(ζ−1)

)
2 T 2 (θk − λ⋆

k)2−2(σζ+1)ptailT |θk − λ⋆
k| = O

(
p2

tail/pmin
)
.

Viewing the left-hand side as a quadratic function with respect to T |θk − λ⋆
k|, we obtain

|θk − λ⋆
k| = O

(
exp

(
Θ(ζ−1)

)
(σζ + 1)ptail

(pmin − ζptail/5)T

)
≤ Q

T
. (40)

This concludes the proof.

viWe note that Fk(θ) ≈
∫∞

−∞ a(t) exp(i(λ⋆
k − θ)t)dt = F (λ⋆

k − θ), where F is defined as the Fourier
transform of a(t) (refer to (3)).
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We prove Theorem 3.3 as follows.

Proof of Theorem 3.3. The proof is similar to the proof of Theorem 3.2. For simplicity,
we omit some details in this proof.

By Lemma A.1 with δ = ζ and J = O(T/q), it holds that

P
(

max
θ∈Θ
|E(θ)| = O(ζ)

)
≥ 1− η , (41)

and
P
(
∩θ,θ′∈Θ,θ ̸=θ′

{∣∣E(θ)− E(θ′)
∣∣ = O

(
σTζ|θ − θ′|+ ζ

)})
≥ 1− η , (42)

where Θ = {θj}Jj=1 ∪ {λm}m∈D. Thus, it suffices to prove (15) assuming (41) and (42)
hold.

Because T = Ω
(

α
∆
)
, for any j ∈ [k − 1], the interval

[
θj − α

T ,θj + α
T

]
contains exactly

one dominant eigenvalue, and those intervals that contain {λj}j∈D will not contain any
λj′ for j′ ∈ Dc. Define m⋆

k := argminm∈D |θk − λm|, λ⋆
k := λm⋆

k
, p⋆

k := pm⋆
k
, and θ⋆

k :=
argminθj

∣∣∣θj − λm⋆
k

∣∣∣. Similar to the argument as the proof of Theorem 3.2, we know that
|θ⋆

k − λ⋆
k| ≤

q
T and θ⋆

k /∈ IB,k. In the following proof, we show that |θk − λ⋆
k| ≤

Q
T . Define

the filter function that contains the impact of other dominant eigenvalues:

Gdom(θ) :=
∑

m∈D\{m⋆
k

}
pm exp

(
−T

2 (λm − θ)2

2

)
.

We first prove that Gdom(λ⋆
k), Gdom(θ⋆

k), and Gdom(θk) are of order O(ζ2) similar to the
proof of Theorem 3.2. Because λ⋆

k is the closest dominant eigenvalue for θ⋆
k and θk and

α/T < ∆/2, we obtain

|λ⋆
k − λj | ≥ ∆, |θk − λj | ≥

∆
2 , |θk − λj | ≥

∆
2 , ∀j ∈ D \ {m⋆

k} .

Combining this with T = Ω(log1/2(1/ζ)/∆), we obtain

max {Gdom(λ⋆
k), Gdom(θ⋆

k), Gdom(θk)} ≤
∑

m∈D\{m⋆
k

}
pm exp

(
−Ω(T 2∆2)

)
= O(ζ2) . (43)

Then, we upper bound the tail errors Gtail(λ⋆
k) and Gtail(θk). For Gtail(λ⋆

k), since |λ⋆
k −

λm| ≥ ∆ for any m ∈ [M ], using the same calculation as (43), it holds that

Gtail(λ⋆
k) = O(ζ2ptail). (44)

where we also use ∑m∈Dc pm ≤ ptail. For Gtail(θk), according to Theorem 3.1, we have
|θk − λ⋆

k| ≤ α/T ≤ ∆/2. This implies |θk − λm| > ∆
2 for any m ∈ Dc. Therefore, using a

similar calculation as (43), we can show that

Gtail(θk) = O(ζ2ptail). (45)

Now, we are ready to upper bound |θk−λ⋆
k|. Similar to (30), we can show |G(θ⋆

k)−G(λ⋆
k)| =

O(ζ2). This implies

G(θk)2 ≥ G(θ⋆
k)2 ≥ G(λ⋆

k)2 −O(ζ2) . (46)
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Define Fk(θ) = exp
(
−T 2(λ⋆

k−θ)2

2

)
. Since G(θ) = |p⋆

kFk(θ) + E(θ) + Gdom(θ) + Gtail(θ)|,
we have

G(θk)2 = p⋆
k

2Fk(θk)2 + |E(θk)|2 +Gdom(θk)2 +Gtail(θk)2

+ 2p⋆
kFk(θk)(Re(E(θk)) +Gdom(θk) +Gtail(θk))

+ 2(Re(E(θ))(Gdom(θk) +Gtail(θk)) + 2Gdom(θk)Gtail(θk)
= p⋆

k
2Fk(θk)2 +Gtail(θk)2 + 2p⋆

kFk(θk)(Re(E(θk)) +Gtail(θk)) + 2Re(E(θk))Gtail(θk) +O(ζ2)
= p⋆

k
2Fk(θk)2 + 2p⋆

kFk(θk)Re(E(θk)) +O(ζ2) ,

where the second step follows from (41) and (43), and the third step follows from (45).
Similarly, for G(λ⋆

k)2, by (41), (43), and (44), we have the following:

G(λ⋆
k)2 ≥ p⋆

k
2 + 2p⋆

kRe(E(λ⋆
k))−O(ζ2)

Similar to the (39), the above two inequalities, (42), and (46) imply

(pmin − 2ζ)(1− Fk(θk)) ≤ O(ζ) ·min{σT |θk − λ⋆
k|, 1}+O(ζ2/pmin) . (47)

Similar to (39)-(40), using ζ < pmin/4, we further obtain

|θk − λ⋆
k| = O

(
ζσ

pmin − 2ζ
1
T

)
≤ Q

T
.

The theorem is then proved.

B Other quantum phase estimation algorithms
In this section, we give a brief summary of the previous quantum phase estimation algo-
rithms that are tested in Section 4: MM-QCELS [18], QPE (textbook version [1]), and
ESPRIT [14].

• (MM-QCELS [18]): The dataset used in MM-QCELS is similar to QMEGS (Algo-
rithm 2) and is also generated by Algorithm 1. The main subroutine of MM-QCELS
is called quantum complex exponential least squares (QCELS): Given a data set
{(tn, Zn)}Nn=1 generated from Algorithm 1, MM-QCELS obtains an estimate for the
dominant eigenvalues by solving the following optimization problem:(

{r∗
k}Kk=1, {θ∗

k}Kk=1

)
= arg min

rk∈C,θk∈R
LK

(
{rk}Kk=1, {θk}Kk=1

)
. (48)

with loss function

LK

(
{rk}Kk=1, {θk}Kk=1

)
= 1
N

N∑
n=1

∣∣∣∣∣Zn −
K∑

k=1
rk exp(−iθktn)

∣∣∣∣∣
2

. (49)

Choosing K = |D| and a proper generated data set {(tn, Zn)}Nn=1
vii, [18] shows that

the solution {θ∗
k}Kk=1 of (48) is a good approximation to the set of dominant eigen-

values {λm}m∈D. MM-QCELS can reach Heisenberg limit scaling and small circuit
depth when ptail ≪ 1. However, the algorithm requires a spectral gap assumption,
meaning T = Ω(1/ϵ) > ∆−1

dom, to ensure that the optimization problem can differen-
tiate between the dominant eigenvalues.

viiIn [18, Algorithm 2], the authors need to generate a sequence of data set {(tn, Zn)}N
n=1 with different

T and N to ensure Heisenberg limit scaling of the algorithm theoretically.
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• (QPE (textbook version [1])): We provide a brief review of QPE for ground state
energy estimation. The quantum process involves a sequence of controlled time evolu-
tion operations e−iH on a state |0d⟩ |ψ⟩ = ∑M−1

m=0 cm |0d⟩ |ψm⟩. Here, |ψm⟩ represents
the eigenstates associated with eigenvalues λm. The resulting quantum state from
these operations, prior to applying the inverse Quantum Fourier Transform (QFT),
is expressed as follows:

|Ψ⟩ = 1√
Nt

Nt/2−1∑
j=−Nt/2

|j⟩e−ijH |ψ⟩ ,

where Nt = 2d. After applying the inverse QFT and measuring the ancilla register,
the probability of obtaining outcome k is given by:

P (k) =
M−1∑
m=0
|cm|2KNt

(2πk
Nt
− λm

)
, (50)

where −Nt/2 ≤ k ≤ Nt/2 − 1, and KNt is the squared and normalized Dirichlet
kernel defined as KNt(θ) = sin2(θNt/2)

N2
t sin2(θ/2) . To simulate QPE classically, we sample this

distribution NQP E times to obtain a set of samples {ki}
NQP E

i=1 . The ground state
energy can then be approximated as λ̃0 = 2π mini ki

Nt
.

We note that the original textbook version of QPE algorithm in [1, Chapter 5.2]
is designed to estimate general eigenvalues, not necessarily the ground state energy.
The version presented above is a variation specifically designed for ground state en-
ergy estimation. There are also other variations of QPE, such as the Gaussian/Kaiser
window-based QPE [37, 38], where the authors implement different resource states
to produce a more concentrated kernel and reduce Ttotal. In addition, it might be
possible to extend QPE to estimate multiple eigenvalues simultaneously: For exam-
ple, in the ideal case where ptail = 0 and {2πλm}m∈D are finite-digit numbers. In
this ideal scenario, when Nt is sufficiently large, we have

P (k) =
∑

m∈D
|cm|2 δ0

(2πk
Nt
− λm

)
.

Therefore, measuring the ancilla qubits O(poly(K)) times is sufficient to obtain all
the eigenvalues exactly. In the non-ideal case, we need to design an efficient method
to post-process the output of QPE and obtain accurate estimations of multiple eigen-
values. To the best of our knowledge, we are unaware of any such procedure that
has clear complexity analysis. Thus, for simplicity, we mainly consider the simple
version of QPE in our paper.

• (ESPRIT [14]): The dataset used in ESPRIT is similar to Algorithm 2 and is also
generated by Algorithm 1. The algorithm of ESPRIT relies on the construction and
manipulation of the Hankel matrix: Given T > 0 and an odd integer N > 0, we
first set tn = nτ for 0 ≤ n ≤ N , where τ = T/N , and construct Hankel matrix
H ∈ C

N+1
2 × N+1

2 with Hi,j = Zti+j . Here, Ztn is generated by Algorithm 1. We then
find the singular value decomposition H = UΣV † and define

U0 = U [: −1, : K], U1 = [1 :, : K] .

Here, U0 contains first N−1
2 rows and first K columns of U and U1 contains the last

N−1
2 rows and first K columns of U . Finally, we find the eigenvalues {µk}Kk=1 of
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U−1
1 U0 (U−1

1 is the pseudoinverse of U1) and define {θk = angle(µk)/τ}Kk=1. Accord-
ing to the results of classical signal processing [35], we can demonstrate that, when
K = |D| and T,N are chosen properly, {θk = angle(µk)/τ}Kk=1 is a set that is close
to the set of dominant eigenvalues {λm}m∈D.

We would like to highlight that the original ESPRIT method falls short of achieving
the Heisenberg limit scaling in the context of quantum phase estimation. In the
original ESPRIT framework, the choice of τ = 1 is imperative to mitigate aliasing
issuesviii. Consequently, this requires N = T , Tmax = T , and results in Ttotal =
Θ(T 2

max). However, according to the generalized uncertainty relation [39], there exists
a uniform complexity lower bound for phase estimation [40], asserting that the square
of the error is at least Ω

(
T−1

totalT
−1
max

)
in expectation. By combining T−1

totalT
−1
max =

O(ϵ2) and Ttotal = Θ(T 2
max), we deduce Ttotal = Ω(ϵ−4/3). The crux of the matter, as

deduced from the previous analysis, is that the necessary selection of τ = 1 to avoid
aliasing poses a significant hurdle to ESPRIT in achieving the Heisenberg limit.

More recently, [19] proposes a multilevel ESPRIT approach to circumvent aliasing
issues without enforcing τ = 1. Notably, [19] generates a sequence of datasets with
carefully chosen values for T and N , progressively refining the estimation of domi-
nant eigenvalues. The successful application of multilevel techniques enables them to
achieve Heisenberg-limited scaling and shorter circuit depth. In our numerical simu-
lations presented in Section 4, for simplicity, we only consider the original ESPRIT
and choose N = T and τ = 1 to mitigate aliasing issues associated with ESPRIT.

C Algorithm for integer-power setting
In certain phase estimation tasks, only a black box unitary U represented by a quantum
circuit can be accessed. Under this setting, querying an arbitrary real power of U is not
feasible. Instead, only integer powers of it can be acquired. To maintain consistency with
the notation used in the case where U = e−iH , we still assume U |ψm⟩ = e−iλm |ψm⟩. In
this case, we aim to recover the phases λm mod 2π. All other parameters, such as pmin,
ptail, and D, retain the same definitions as in the real-power setting unless explicitly stated
otherwise. We define the mod 2π distance of two numbers u and v as

|u− v|2π := min{|u− v mod 2π|, |v − u mod 2π|}.

The idea is similar to the real power setting, which is to leverage the Gaussian-filtered
spectral density. The difference is that we will use the periodic Gaussian

ϕp(x) = W
∑
j∈Z

e− (x+2jπ)2T 2
2 , (51)

where W < 1 is a normalizing constant such that ϕp(0) = 1. It is clear that ϕp is 2π-
periodic, and its Fourier coefficients are

ϕ̂p(k) = 1
2π

∫ 2π

0
ϕp(x)e−ikxdx = W√

2πT
e− k2

2T 2 . (52)

viiiIt is not possible to differentiate between λk and λk + 2πτ in ESPRIT, as they produce the same data.
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Therefore, we have
∑

k∈Z ϕ̂p(k) = ϕp(0) = 1. Let

a(k) =


ϕ̂p(0) +∑

|j|>σT ϕ̂p(j) k = 0,
ϕ̂p(k) 1 ≤ |k| ≤ σT,
0 |k| > σT.

be a distribution over Z, and t be a random variable sampled from this distribution. Zt

denote the unbiased estimation of ⟨ψ|U t|ψ⟩ obtained by the Hadamard test. Therefore, the
maximal quantum runtime Tmax is bounded by σT , as similar to the real-power setting.
Except for the distribution of t, the rest part of the phase estimation algorithm goes the
same as in Algorithm 2. We may also establish theorems that guarantee the performance of
this slightly modified algorithm. First, we establish a lemma that gives several properties
of the periodic Gaussian function ϕp(x).

Lemma C.1. If T ≥ 1, then ϕp(x) is increasing on [−π, 0] and decreasing on [0, π]. For
x ∈ [−2π

3 ,
2π
3 ],

e− x2T 2
2 ≤ ϕp(x) ≤ 1.01e− x2T 2

2 , . (53)

Proof. The monotonicity part is proved in [23, Lemma 2], where only some normalizing
constants differ. Without loss of generality, we will prove the rest of the lemma assuming
x ≥ 0 since ϕp(x) is an even function. For the left part of (53), we need to notice that
when x = 0, the equality holds. Moreover, when x ∈ [0, π], we have

d
dxϕp(x) = WT 2

−xe− T 2x2
2 +

+∞∑
j=1

(
−(2jπ + x)e− T 2(2jπ+x)2

2 + (2jπ − x)e− T 2(2jπ−x)2
2

)
≥WT 2

(
−xe− T 2x2

2

)
≥ −T 2xe− T 2x2

2 = d
dxe

− T 2x2
2 ,

where in the first inequality, we used the fact that each term of the summation is positive,
and in the second inequality, we used W ≤ 1. To see this, we may introduce the function
h(y) := ye− T 2y2

2 , which is decreasing when y ≥ 1 ≥ 1
T , and thus h(2jπ − x) ≥ h(2jπ + x)

for all j ≥ 1.
Next, we prove the right part of (53). This can be done by the following calculation.

ϕp(x)e
x2T 2

2 = W
∑
j∈Z

e−2T 2π(πj2+xj) ≤
∑
j∈Z

e−2T 2π(πj2+xj)

= 1 + e−2T 2π(π−x) +
+∞∑
j=1

e−2T 2π(πj2+xj) +
+∞∑
j=2

e−2T 2π(πj2−xj)

≤ 1 + e−2π(π/3) +
+∞∑
j=1

e−2πj +
+∞∑
j=2

e−2πj < 1.01.

Now, we may define the error function

E (θ) = 1
N

N∑
n=1

Zn exp(iθtn)−
M∑

m=1
pmϕp(θ − λm)

and Ej := E(θj). Then we have the following lemma similar to Lemma A.1.
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Lemma C.2. Given δ > 0 and the pair of overlap-eigenvalues {(pi, λi)}Mm=1, if σ =
Ω
(
log1/2 (1/δ)

)
, we have

∣∣∣∣∣E
(

1
N

N∑
n=1

Zn exp(iθjtn)
)
−

M∑
m=1

pmϕp(θ − λm)
∣∣∣∣∣ ≤ δ2 . (54)

Furthermore, given η > 0 and Θ = {θj}Jj=1 ∪ {λm}m∈D, if N = Ω
(

1
δ2 log

((
T
q + |D|

)
1
η

))
,

we have
P
(

max
θ∈Θ
|E(θ)| ≤ δ

)
≥ 1− η . (55)

Proof. According to Algorithm 1, when σ = Ω
(
log1/2 (1/δ)

)
, we have

∣∣∣∣∣E
(

1
N

N∑
n=1

Zn exp(iθjtn)
)
−

M∑
m=1

pmϕp(θ − λm)
∣∣∣∣∣

=

∣∣∣∣∣∣
M∑

m=1
pm

∑
|k|>σT

ϕ̂p(k)eik(θ−λm)

∣∣∣∣∣∣ ≤
∑

|k|>σT

ϕ̂p(k)e− t2
2T 2

∣∣∣∣∣
M∑

m=1
pme

ik(θ−λm)
∣∣∣∣∣ ≤ ∑

|k|>σT

ϕ̂p(k)

=
∑

|k|>σT

W√
2πT

e− k2
2T 2 ≤ 2

∫ ∞

σT

1√
2πT

e− t2
2T 2 dt =

√
2
π

∫ ∞

σ
e− s2

2 ds < e−σ2
< δ2,

(56)
where we used the fact that W < 1 and bounded the summation using integration. This
proves (54). The proof of (55) is the same as the proof of [22, Appendix B.3 Lemma 4
eqn. (B8)], thus, we omit it here.

Define the magnitude function:

G(θ) =
∣∣∣∣∣ 1
N

N∑
n=1

Zn exp(iθtn)
∣∣∣∣∣ .

and Gj := G(θj).
Finally, we have a similar theorem as Theorem 3.1. This shows this algorithm restricted

to integer powers of U can also achieve the Heisenberg limit without any gap assumptions.

Theorem C.3 (∀T ≥ 1). Assume pmin > ptail and |D| ≤ K. Given the probability of
failure η > 0, we choose the following parameters:

• Block constant: α = Ω
(
log1/2

(
1

pmin−ptail

))
,

• Searching parameter: q = O
(
log1/2

(
pmin

ptail+(pmin−ptail)/2

))
, q < α, and α/q ∈ N,

• Time truncation parameter: σ = Ω
(
log1/2

(
1

pmin−ptail

))
,

• Number of samples: N = Ω
(

1
(pmin−ptail)2 log

((
T
q + |D|

)
1
η

))
.

Then, with probability at least 1−η, we have that for each i ∈ D, there exists 1 ≤ ki ≤ |D|
such that

|λi − θki
|2π ≤

α

T
. (57)
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In particular, for any ϵ > 0, to achieve

{λm}m∈D ⊂ ∪k[θk − ϵ,θk + ϵ] mod 2π,

it suffices to choose

Tmax = Θ̃
(1
ϵ

)
, Ttotal = Θ̃

( 1
(pmin − ptail)2ϵ

)
,

where the logarithmic factor is omitted.

Proof. Similar to the proof of Theorem 3.1, we only need to prove

max
θj /∈∪m∈D[λm− α

3T
,λm+ α

3T ]
Gj < min

θj∈∪m∈D[λm− q
T

,λm+ q
T ]
Gj (58)

under the assumption Ej <
pmin−ptail

8 . The rest of the proof is the same as in Theorem 3.1.
We also consider two classes of candidates:

• When θj ∈ ∪m∈D
[
λm − q

T , λm + q
T

]
mod 2π, we obtain

Gj = G(θj) ≥
∣∣∣∣∣

M∑
m=1

pmϕp (λm − θj)
∣∣∣∣∣− Ej

> pmin exp
(
−q

2

2

)
− pmin − ptail

8

≥ ptail + pmin − ptail
2 − pmin − ptail

8 ≥ ptail + 3(pmin − ptail)
8 .

where we used (53) and Ej <
pmin−ptail

8 in the second inequality, and the condition
of q in the last inequality.

• When θj /∈ ∪m∈D
[
λm − α

3T , λm + α
3T

]
mod 2π, we obtain

Gj ≤
∣∣∣∣∣ ∑
m∈D

pmϕp (λm − θj)
∣∣∣∣∣+

∣∣∣∣∣ ∑
m∈Dc

pmϕp (λm − θj)
∣∣∣∣∣+ Ej

≤ 1.01 exp
(
−α

2

18

)
+ ptail + pmin − ptail

8 ≤ ptail + pmin − ptail
4 ,

where we used Lemma C.1 and Ej < pmin−ptail
8 in the second inequality and the

condition of α in the last inequality.

Therefore, (58) is proved, and we complete the proof of the theorem.
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