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ABSTRACT OF THE DISSERTATION 

 

 

Computational approaches for metagenomic  

analysis of the microbiome 

 

by  

 

Leah Pritnapah Briscoe  

Doctor of Philosophy in Bioinformatics  

University of California Los Angeles, 2023  

Professor Nandita Garud, Co-Chair 

Professor Eran Halperin, Co-Chair 

 

The microbiome is a community of microorganisms living in our bodies and throughout 

the environment. The genomic data researchers can extract from microbiomes, known as 

metagenomic data, can be used to predict traits about a host or environment. By identifying 

microbiome biomarkers associated with disease or health, researchers can develop better 

therapeutics for microbiome-associated diseases. However, metagenomic data is commonly 

affected by technical variables unrelated to the phenotype of interest, such as sequencing 

protocol, which can make it difficult to predict phenotype and find biomarkers of disease.  Here, 

we evaluate methods to remove background noise due to technical variables unrelated to the 

phenotype of interest, such as sequencing protocol, and thereby improving our ability to find 

accurate biomarkers of human disease. Also crucial in understanding host health is elucidating 

the sources of their microbiomes, as it allows researchers to understand the dynamics behind 

how microbial communities form and how they respond to changing environments. In this work, 



 iii 

we introduce a method to use metagenomic variants obtained from hundreds of species in 

microbiome data to perform source tracking, which is a method of estimating colonization 

sources for a sample of interest. These analyses shed light on phenomena like the colonization of 

the early infant gut microbiome, or spatial patterns in the ocean microbiomes around the world. 

Lastly, we analyze metagenomic data to understand how genetic diversity changes along the 

human gut on the species, strain and gene level. In sum, this work leverages the genomic 

information contained in our microbiomes to find universal patterns in microbiomes, allowing us 

to better understand the relationship between microbiome and phenotypes, the colonization 

sources of microbiomes, and also the colonization dynamics on the species and strain level. 
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CHAPTER 1: Introduction 

 

Scope of Research  

The human gut microbiome is associated with a number of host phenotypes including colorectal 

cancer1, obesity2,3, and antibiotic consumption4,5, among other traits6. Despite the promise of 

leveraging the microbiome as a diagnostic of disease, significant challenges still remain in 

accurately predicting human phenotypes and consequently identifying underlying causal 

mechanisms of disease. Among these challenges are that biological and technical covariates can 

confound the ability to detect associations between the microbiome and human  phenotypes7.  

It is well known that major components of microbiome variability can often be attributed to 

technical or biological factors. Some of these factors introduce unwanted, systematic variability 

in the data that is unrelated to the biological variable of interest, e.g. body mass index and 

colorectal cancer status.  Technical factors include differences in preservation 8, storage9,10, the 

kit11, lysis12,13, extraction of DNA13, primer14, and several others 15–18. Biological, or host-related 

factors can include diet, sex, age and medication use7.  When these factors are correlated to the 

phenotype of interest, they can act as confounders of the phenotypic effects and correcting for 

such factors is crucial to improve the prediction accuracy of phenotypes.  

There have been several efforts to address confounders in other domains including gene 

expression19,20 and methylation21,22. Existing approaches to covariate correction are often 

inappropriate for microbiome data because features are often sparse23,24, non-independent25, and 

non-Gaussian26. Additionally, applying statistical methods that are not appropriate for 

microbiome data can yield spurious results that are not reproducible in follow-up studies. This 

calls for the development of microbiome-specific methods to correct for confounders.  
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Moreover, discerning the major contributors of a person’s microbiome may reveal a large 

environmental influence that cannot be explained by health alone. Elucidating the sources of a 

microbiome can provide insight into the ecological dynamics responsible for the formation of 

these communities, and further understanding host health. 

The gut microbiome is a dynamic ecosystem that changes with time and also along the tract 

of the gut. It is important that scientists understand how to adequately sample the gut to 

understand how the gut microbiome is actively changing in response to our health and our 

environment. 

 

 

Contributions and Overview 

 

In this dissertation, we propose quantitative and computational approaches to analyze 

metagenomic data from the human gut microbiome. Key advantage in our work is leveraging the 

high-specificity of metagenomic data that is missed in most studies that focus on amplicon 

sequencing data such as 16S. 

In chapter 2, we comprehensively evaluate supervised and unsupervised approaches to 

remove background noise from microbiome data that is due to technical variables unrelated to 

the phenotype of interest, such as sequencing protocol, and thereby improving our ability to find 

accurate biomarkers of human disease.  We perform our evaluation on four broad categories of 

datatypes: 16S taxa abundance, k-mers from 16S reads, metagenomic taxa abundance, k-mers 

from metagenomic data. Using a series of benchmarks, we show that the combination of certain 

data transformations and correction procedures can maintain and in some cases improve 
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phenotype prediction accuracy and reduce false positive associations. We demonstrate this with 

prediction of colorectal cancer using one 16S [cite] and one metagenomic dataset [cite], 

prediction of BMI using the Hispanic Community Health Cohort [cite], and lastly prediction of 

antibiotic history using the American Gut Project [cite]. Using another benchmark, we 

demonstrate that correction suppresses false positive associations when performing biomarking 

discovery for colorectal cancer.  

 In chapter 3, we propose a novel method to find single nucleotide variants for source 

tracking using metagenomic data. Previously, source tracking has been primarily done using 

species abundance and not single nucleotide variants, which may be more informative because of 

their high specificity to certain sources. Utilizing all SNVs for all sinks and sources of interest 

would exact a heavy computational burden, for that reason we design a signature SNV scoring 

method to produce features for input into a previously designed source tracking algorithm, 

FEAST. We apply our signature SNV method combined with FEAST to simulated infant 

microbiomes produced from mixtures of maternal microbiome data and find that our method 

accurately estimates mixture proportions compared to FEAST applied to species abundance. We 

then apply the approach to three case studies, infants over the first year of life, infants in the 

NICU, and ocean microbiome samples.  

In Chapter 4, we study a novel dataset of humanized mice to understand how species, 

strain, and gene diversity change along the gut. We assess these levels of diversity using 

metagenomic data sampled along the tract of the gut from 6 genetically identical mice that are 

gavaged with a human decal sample and then raised on either a standard rodent diet or fiber-rich 

diet. Previously, most studies of diversity have used stool data. We show that diversity as 

represented in the stool may not represent the diversity in the gut. We also find that species 
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composition differs substantially between the upper and lower gut as well as between diet 

regimes. By contrast, strain composition is more uniform between segments of the gut. In 

comparing different hosts, we frequently find different sets of strains despite hosts being 

provided with the same inoculum of strains, suggesting that colonization is a stochastic process. 

Further, hosts that are cohoused are more likely to have the same strain, illustrating how shared 

environments can constrain strain diversity across individuals. Strains tend to be at more similar 

(although still variable) abundances within the same host, and less similar frequencies between 

hosts. Even when a mouse harbors only a single strain, gene content can differ predictably along 

the tract of the gut. In sum, we show that diversity in the gut microbiome is shaped by tissue, 

diet, and shared environments.  
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CHAPTER 2: Evaluating supervised and unsupervised background 

noise correction in human gut microbiome data  
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Abstract 

 

The ability to predict human phenotypes and identify biomarkers of disease from metagenomic 

data is crucial for the development of therapeutics for microbiome-associated diseases. However, 

metagenomic data is commonly affected by technical variables unrelated to the phenotype of 
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interest, such as sequencing protocol, which can make it difficult to predict phenotype and find 

biomarkers of disease. Supervised methods to correct for background noise, originally designed 

for gene expression and RNA-seq data, are commonly applied to microbiome data but may be 

limited because they cannot account for unmeasured sources of variation. Unsupervised 

approaches address this issue, but current methods are limited because they are ill-equipped to 

deal with the unique aspects of microbiome data, which is compositional, highly skewed, and 

sparse. We perform a comparative analysis of the ability of different denoising transformations 

in combination with supervised correction methods as well as an unsupervised principal 

component correction approach that is presently used in other domains but has not been applied 

to microbiome data to date. We find that the unsupervised principal component correction 

approach has comparable ability in reducing false discovery of biomarkers as the supervised 

approaches, with the added benefit of not needing to know the sources of variation apriori. 

However, in prediction tasks, it appears to only improve prediction when technical variables 

contribute to the majority of variance in the data. As new and larger metagenomic datasets 

become increasingly available, background noise correction will become essential for generating 

reproducible microbiome analyses.  

 

1. Keywords: Batch correction; microbiome; metagenomics 

 

Author Summary 

The human gut microbiome is known to play a major role in health and is associated with 

many diseases including colorectal cancer, obesity, and diabetes. The prediction of host 

phenotypes and identification of biomarkers of disease is essential for harnessing the therapeutic 

potential of the microbiome. However, many metagenomic datasets are affected by technical 
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variables that introduce unwanted variation that can confound the ability to predict phenotypes 

and identify biomarkers. Currently, supervised methods originally designed for gene expression 

and RNA-seq data are commonly applied to microbiome data for correction of background noise, 

but they are limited in that they cannot correct for unmeasured sources of variation. 

Unsupervised approaches address this issue, but current methods are limited because they are ill-

equipped to deal with the unique aspects of microbiome data, which is compositional, highly 

skewed, and sparse. We perform a comparative analysis of the ability of different denoising 

transformations in combination with supervised correction methods as well as an unsupervised 

principal component correction approach and find that all correction approaches reduce false 

positives for biomarker discovery. In the task of predicting phenotypes, different approaches 

have varying success where the unsupervised correction can improve prediction when technical 

variables contribute to the majority of variance in the data. As new and larger metagenomic 

datasets become increasingly available, background noise correction will become essential for 

generating reproducible microbiome analyses.  

 

Introduction 

The human gut microbiome is associated with a number of host phenotypes including 

colorectal cancer 1, obesity 2,3, and antibiotic consumption 4,5,27,28, among other traits 6,29. Despite 

the promise of the microbiome as a diagnostic tool, significant challenges remain for predicting 

phenotypes and finding reproducible biomarkers of human phenotypes from microbiome data. 

One major challenge is that technical covariates, including sample storage 9, cell lysis protocol 

14,15, extraction method 13,30, DNA preservation and storage protocol 8, preparation kit 11,31, and 
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primer choice 14, are known to introduce unwanted variation and systematically bias the relative 

abundances of taxonomic features in microbiome samples 15–18,32–35.  

These covariates, when differentially distributed across phenotypes, can act as 

confounders. There are two potential outcomes of confounding in prediction accuracy: increased 

accuracy when confounders are consistently correlated with the phenotype, or decreased 

prediction accuracy when the confounder is oppositely correlated with phenotype from one 

subset of the data to another. In either scenario, confounding is problematic for detecting true 

associations between the microbiome and phenotype. The pooling of datasets is a major 

contributor of confounding yet combining datasets is an increasingly common 1,36–39 and 

powerful means to validate associations 6,40 in a discovery dataset with held out datasets 1,41,42. 

Recent studies have shown that confounding covariates are widespread in genomic datasets. 

Gibbons et al. 43 found that combining datasets to detect members of the microbiome that are 

associated with colorectal cancer resulted in false positive detection of differentially abundant 

taxa. Confounding covariates were also pervasive 7 in one of the largest metagenomic datasets 

available, the American Gut Project (AGP) 44. 

Despite the widespread effects of background noise in microbiome data, there is currently 

a dearth of methods specially equipped for removing unwanted variation in microbiome data. 

Initial steps in processing microbiome data often involve addressing differences in library sizes 

across samples by applying the variance-stabilizing transformation (VST) from DESeq2 45 or the 

log2-counts per million (logCPM) from EdgeR 46 on taxonomic counts data 47–52. However these 

transformations do not sufficiently address other contributors of unwanted variance such as 

study-specific covariates, which neccessatates explicit methods for correction. Existing methods 

repurposed from other domains for this purpose, including gene expression39,40 and methylation 
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53–55, generally fall into two categories: supervised methods, where the sources of variation must 

be explicitly specified, and unsupervised methods, where the sources of variation are first 

inferred and then removed before association or prediction analyses. The most popular 

supervised methods are batch mean centering (BMC)43, which centers data batch by batch, and 

ComBat44 and limma45, which both use empirical Bayes. Many studies will apply a supervised 

method after applying one of the above transformations in microbiome data . However, since 

many sources of variation may be unknown, and moreover, the extent of variation they introduce 

may vary from dataset to dataset 17,43,56–58, unsupervised approaches 59–61 for covariate correction 

may be more effective in removing background noise. Among the unsupervised approaches are 

ReFactor 61, Surrogate Variable Analysis (SVA) 59, and Remove Unwanted Variation (RUV) 60 

which were designed for methylation or gene expression data. These methods quantify 

“surrogate variables” that represent study-specific effects and regress them out of the data.  

Despite their promise, the repurposed supervised and unsupervised approaches 59–61 are 

not suitable for microbiome data because most of them rely on assumptions that the data is 

normally distributed. However, taxonomic features are often sparse 23,24 due to taxa having 

abundances below the detection limit of sequencing 23, or taxa being absent in certain samples, 

resulting in skewed non-normal distributions. Additionally, because the microbiome data is 

usually transformed into measures of relative abundances, the data is compositional, or in other 

words, represented as relative frequencies of taxonomic features within a sample that sum to one. 

This representation also causes non-normal distributions. 

Supervised methods proposed explicitly for microbiome data to reduce background noise 

include percentile normalization 38, Partial Least Squares Discriminant Analysis 62, and 

multiplicative bias correction 33. Both percentile normalization 38 and Partial Least Squares 
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Discriminant Analysis 62 aim to find predictive features in fully labeled data with known batches 

and known phenotypes, and are not designed for prediction of phenotypes in unlabeled data, 

while multiplicative bias correction 33 requires either a reference sample in which the species 

abundance distribution is known or a term specifying the experiment label, and thus cannot 

account for multiple sources of background noise simultaneously. Given that these methods are 

supervised and thus cannot be applied to unlabeled data, there still remains a need in the 

microbiome field for unsupervised approaches that can adjust for both measured and unmeasured 

variables. Additionally, there is little published research comparing adapted approaches head-to-

head in microbiome data. 

To address the need for unsupervised approaches applicable to microbiome data, we 

examined a popular approach used in the field of population genetics known as Principal 

Components Analysis (PCA) correction. Population structure is often strongly reflected in the 

first principal components (PCs) calculated from genotype data 63–65. By removing the effect of 

the first few PCs in a regression approach, association testing can be done to find potential 

genetic biomarkers of phenotype rather than biomarkers of population structure 63–65. PCA 

correction has been effective in correcting for confounding covariates in human genetic data 63,65 

and morphological data66, but to date has not been applied to microbiome data. Yet, we and 

others find that top principal components in multiple datasets are correlated with numerous 

confounding variables like host genetics 67, ethnicity of the host 68, and also abiotic factors like 

temperature 69, suggesting that PCA correction may be an effective unsupervised correction 

approach.  

In this paper, we evaluated the ability of PCA correction to remove background noise in 

microbiome data and compared its performance to supervised background noise correction 
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approaches 70–72 that are commonly used for microbiome data. Specifically, we tested the impact 

of regressing out principal components (PCs) from microbiome data featurized as abundances of 

taxonomic features or k-mers. Abundance of taxonomic units are determined by aligning or 

binning reads based on reference genomes, whereas k-mer abundances are calculated by 

counting appearances of short substrings of length k in raw sequences. While taxonomic features 

have immediate biological interpretability, the use of k-mers is beneficial because they do not 

rely on a reference genome. Additionally, we assess the impact of applying a variance stabilizing 

transformation (VST) or logCPM (log counts per million), and compare this to application of the 

centered log ratio (CLR). CLR is more widely used for compositional data, particularly in 

microbiome contexts 25,40,73–77, and is a suggested transformation prior to factor analysis such as 

PCA because it breaks the dependence between features 25 and makes data more normally 

distributed 62. This transformation can make the PCs more interpretable because the transformed 

value is the abundance relative to the mean value for a sample.  

By performing a comparative analysis of PCA correction and existing supervised 

correction approaches, we evaluate the merits of repurposing the PCA correction approach from 

the field of population genetics to the microbiome, as well as assess the strengths and limitations 

of various methods. Throughout this study, we highlight important considerations for phenotype 

association studies from large cohort and cross-study metagenomic analyses, which we hope 

paves the way for higher reproducibility across microbiome studies. 

 

Results 
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We analyzed four metagenomic datasets for evidence of technical covariates that could 

introduce noise or confounding that, as a result, interfere with biomarker discovery and 

prediction accuracy. We evaluated the ability of three popular supervised approaches for 

microbiome data (ComBat 72, limma 71, and batch mean centering (BMC) 70), three 

transformations (CLR, VST from DESeq2 45 and logCPM from EdgeR 46), and an unsupervised 

approach, PCA correction, to correct for noise and confounding. We focused on three phenotypes 

of interest: body mass index (BMI), colorectal cancer (CRC), and antibiotic consumption (Table 

1). The datasets we analyzed included: (i) the American Gut Project 44 (AGP), which has known 

confounding variables 7, (ii) a pooled dataset composed of three 16S datasets with healthy and 

CRC individuals (hereafter referred to as ‘CRC-16S’) 38, (iii) a pooled dataset composed of 

seven whole metagenome sequenced datasets (WGS) with healthy and CRC individuals 

(hereafter referred to as ‘CRC-WGS’) 1,78, and (iv) the Hispanic Community Health Study 

(HCHS) 79 consisting of 16S samples from over one thousand individuals from several Hispanic 

countries. These datasets allowed us to assess noise and confounding both within datasets (AGP 

and HCHS) and across pooled datasets (CRC-16S and CRC-WGS). 

 

Phenotype Joined dataset 

Number of 

samples 

Number of 

studies 

Sequencing 

method 

Published 

Sources 

Body mass index 
American Gut Project 

(AGP) 
6,722 

1 ( multiple 
sequencing 

batches) 
16S McDonald et al. 

Antibiotic history 
American Gut Project 

(AGP) 
12,619 

1 ( multiple 
sequencing 

batches) 
16S McDonald et al. 

Body mass index 
Hispanic Community 
Health Study (HCHS) 

1,769 
1 ( multiple 
sequencing 

batches) 
16S Kaplan et al. 

Colorectal Cancer CRC-16S 574 3 16S 
Baxter et al. 
Zeller et al. 

Zackular et al. 
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Colorectal Cancer CRC-WGS 813 7 WGS 

Feng et al. 
Yu et al. 

Vogtman et al. 
Hannigan et al. 
Thomas et al. 
Zeller et al. 

T 1 Table 1. Datasets used in this study. Two pooled datasets composed of multiple studies are 

abbreviated as CRC-16S 80–82 and CRC-WGS 1,81,83–86, whereas the American Gut Project (AGP) 44 and the 

Hispanic Community Health Study (HCHS) 79 are each from a single source study and have several 

potential confounders 7. 

 

Background noise detected by principal component analysis 

To assess the extent of microbiome variation attributable to technical covariates, we performed 

PCA on CLR-transformed (see Methods) taxonomic abundance profiles and short k-mers 

(between sizes 5 and 8) derived from the raw metagenomic reads (see Methods). In most cases, 

for the first two PCs, samples cluster by dataset and not the primary phenotype of interest (Fig 1 

and Fig S1), consistent with previous findings 13 that technical factors have a strong effect on the 

microbiome.  

 



 14 

 

  1 Figure 1. First two principal components of across datasets. PCA applied to CLR-transformed 

taxonomic abundance data from the four datasets of the study. Each point represents a single microbiome 

sample colored by either study or batch and by phenotype group. 

 
More generally, the top 15 PCs in each dataset are more correlated with technical 

variables than the phenotypes of interest (Fig 2A and Fig S2). For example, in the CRC-WGS 
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dataset, PCs one through five on average have a 0.28 mean correlation with dataset label but only 

0.072 mean correlation with CRC status (Fig 2A).  It is worth noting that these first five PCs 

collectively explain 84% of the variance in the CRC-WGS data and that the strongest 

correlations with CRC status are in the first five PCs. In the HCHS dataset, the top 5 PCs have 

significant correlation with demographic information such as place of birth (0.13 mean 

correlation of top 5 PCs) and sequencing center (0.09 mean correlation of top 5 PCs), but only a 

mean 0.04 correlation with BMI. In this dataset, the first five PCs collectively explain 59% of the 

variance in the HCHS dataset but only the first PC is significantly correlated with BMI, where 

PC1 explains 24 % of variance (Fig 2D).   

 We next assessed the impact of CLR-transformation on the correlation of top PCs with 

technical and biological covariates, and compare the correlations using a two-sample Wilcoxon 

signed-rank test. Firstly, across all datasets, CLR-transformation of taxonomic abundance and k-

mer data results in more normally distributed data (Fig S3), making the data more suitable for 

PCA. However, the change in correlation of the top PCs with technical and biological covariates 

after application of the CLR transformation varies from dataset to dataset. In the case of both 

AGP and CRC-WGS datasets, the CLR transformation results in siginificantly increased 

correlation of the top PCs with both biological and technical covariates (Fig 2A and 2B, Fig S4) 

(in the CRC-WGS dataset, median correlation of PCs with CRC increased from 0.05 to 0.14 with 

Wilcoxon signed-rank p-value = 0.03 and median correlation with technical covariates increased 

from 0.19 to 0.32 with Wilcoxon signed-rank p-value < 2.22 x 10-3  ; in the AGP dataset, median 

correlation of PCs with BMI and antibiotic history increased from 0.16 to 0.31 with Wilcoxon 

signed-rank p-value = 1 x 10-4 and median correlation with technical covariates increased from 

0.05 to 0.07 with Wilcoxon signed-rank p-value = 8.7 x 10-3  ) (Fig 2B and 2C). In the CRC-16S 
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dataset, neither biological or technical variates showed significantly increased correlation after 

CLR transformation variables (CRC median correlation increased from 0.05 to 0.10 with 

Wilcoxon signed-rank p-value 0.084; technical covariate median correlation changed from 0.09 

to 0.08 with Wilcoxon signed-rank p-value 0.12). Unlike all the other datasets, application of the 

CLR transformation to the taxonomic abundances of the HCHS dataset results in a significantly 

increased correlation with technical variables, but not biological variables (BMI median 

correlation increased from 0.029 to 0.033 with Wilcoxon signed-rank p-value = 0.36; technical 

covariate mean correlation increased from 0.03 to 0.07 with Wilcoxon signed-rank p-value < 

2.22 x 10-3) (Fig 2E and 2F). These correlations are all the more striking given the high 

percentage of variance explained by the first five PCs alone: 80% of variance in the CRC-WGS 

dataset, 64% of variance in the AGP dataset, and 65% of variance in the HCHS dataset. We 

similarly assessed the impact of logCPM and VST transformations on the correaltions of the top 

15 PCs with technical and biological variables in Fig S6 and found that correlations with study 

covariates also increase. 
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  2 Figure 2. Microbiome data is affected by technical and biological variables. (A-D) Heatmaps of 

canonical correlations between the first 15 PCs and study covariates in CRC-WGS with (A) no 

transformation and (B) after CLR transformation; and in HCHS with (C) no transformation and (D) after 

CLR transformation. (E,F) Histograms of the correlations in (A-D) where the distributions were 

compared using a paired Wilcoxon signed-rank test to test whether the distribution of correlations from 

PCs of CLR-transformed are greater than the untransformed. The size and color of the circles in each cell 

in A-D indicate the magnitude of correlation and black asterisks indicate the significance of the Pearson 

correlation of the PCs with each of the variables. The color bar at right represents the range of 

correlations observed across all datasets. [*,**,*** indicate Wilcoxon signed-rank p-values as follows: 

10-2 < p < 0.05, 10-3 < p < 10-2, p < 10-3]. See Figs S2 and S5 for similar analyses for the other datasets, 

and Fig S6 for other transformations. 

We also assessed the impact of k-merization on the correlation of variables with top PCs.  

Unlike for taxonomic abundances, CRC-WGS does not show significant change as a result of 

CLR transformation on k-mers (Fig S5).  In the AGP dataset, median correlations with BMI and 

antibiotic history increase from 0.55 to 0.57 (Wilcoxon signed-rank p-value = 8 x 10-4), and in 

the HCHS and CRC-16S datasets, correlations with technical variables increase from a median  
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of 0.04 to 0.07 (Wilcoxon signed-rank p-value = 0.001) and a median of 0.1117 to 0.1125 

(Wilcoxon signed-rank p-value = 0.0498) after the CLR transformation. Through these analyses 

on taxonomic abundance and k-mers, we show that technical variables introduce considerable 

variation in microbiome data sets, that this variation is often larger than variation explained by 

phenotypes of interest. Transformations like CLR can additionally make this variation explained 

by technical variables more apparent.  

 

Reduction of false positive biomarker discovery as a metric of background noise correction  

Pooling of datasets is frequently done to augment power to detect associations with or 

make predictions about host phenotype 1,36,37,39,78. However, this practice can also result in false 

positive associations due to confounding between study-specific variables and phenotype 38. 

Thus, we tested the ability of different background noise correction methods to reduce false 

positive biomarker discoveries. To do so, we performed a titration experiment similar to that 

described in Gibbons et al. 43 in which control groups from two different studies in the CRC-

WGS dataset were mixed at different proportions to create a new control group of equal size that 

was then compared with cases to identify taxa significantly associated with disease using a 

Wilcoxon rank sum test with false discovery rate correction (q-value < 5%). Without correction, 

spurious associations are expected to increase with increasing proporion of control samples 

coming from a different study (Fig 3). We compare correction approaches by ascertaining the 

number of likely false positive associations at different titration levels (proportions of control 

samples from another study) ranging from 0% to 100%. In the scenario where 100% of controls 

are from a second study, the study variable is a complete confounder for case-control status.  

To assess the efficacy of transformations to reduce false positive associations, we first 

compared the untransformed and uncorrected relative abundance data to each of three data 
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denoising transformations: logCPM, VST and CLR applied to feature counts. As expected, when 

the data is untransformed, the number of new taxa identified that are likely false positives 

steadily increases as the number of control samples added from a second study increases, 

reaching 42 when 100% of controls are from the second study. When the data is transformed 

with logCPM, VST, or CLR, the number of likely false positives reaches 20, 52, and 44, 

respectively (Fig 3A and 3B, Fig S7 and Table S1), indication that transformation alone does not 

always reduce false positives. 

Next, we assessed the ability of supervised background noise correction methods to 

suppress false positives. These methods included percentile normalization 38, BMC 70, ComBat 

72, and limma 71 which require a batch variable to be specified. Thus, in these cases we corrected 

for the variables that are the most correlated with the top PCs in each dataset: sequencing 

instrument in the AGP dataset, processing robot in the HCHS dataset, and source study in the 

CRC dataset. We additionally included a supervised correction approach in which these same 

primary contributors of heterogeneity were directly regressed out, an approach we term in this 

paper as Direct Covariate Correction (DCC) (see Methods). When 100% of controls are from the 

second study, the number of likely false positives drops to 5, 0, 5, and 6 respectively for the 

DCC, percentile normalization, ComBat, and BMC methods (Fig 3C and 3D, Fig S7 and Table 

S1). 

Next, we evaluated the effectiveness of applying the logCPM, VST, and CLR 

tranformations in combination with the supervised approaches ComBat, limma, and BMC (Fig 

3E and F), a practice which is currently done in the literature for microbiome studies 47–52. We 

also compared these approaches to two variants of unsupervised correction in which PCA 

correction is applied after CLR: one in which the optimal number of top PCs are identified via 
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cross-validation and regressed out from the data and another in which data is corrected for a 

fixed and arbitrary number of PCs. We refer to these two variants as tuned PCA and fixed PCA, 

respectively (see Methods). Tuned PCA uses a validation set to determine the optimal number of 

PCs that maximize prediction accuracy while fixed PCA correction corrects for the first three 

PCs (Methods). The choice of three PCs for this analysis was arbitrarily selected to avoid 

completely throwing away the signal associated with the phenotype of interest.  

When 100% of controls are from the second study, logCPM applied prior to ComBat, 

limma, or BMC results in 1, 2, and 2 likely false positive associations, respectively (Fig 3D and 

3E, Fig S7 and Table S1). When the VST transformation is applied prior to ComBat, limma, or 

BMC, we find 45, 55, and 25 likely false positive associations (Fig 3D and 3E, Fig S7 and Table 

S1). When the CLR transformation is applied prior to ComBat, limma, or BMC, we find 26, 35, 

and 173 likely false positive associations (Fig 3D and 3E, Fig S7 and Table S1). Lastly, when 

Fixed PCA and Tuned PCA is applied along with CLR, we find 14 and 11 likely false positive 

associations, respectively.  

Overall, these results suggest that data transformations should not be applied alone and 

that a transformation like logCPM can be applied before applying a supervised correction in 

order to reduce the appearance of false positive associations. Alternatively, unsupervised 

approaches where CLR is applied prior to PCA correction can also reduce false positive 

associations. 
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  3 Figure 3. Spurious association of taxa with case-control status without appropriate correction. 

(A) We tested the number of associations identified after replacing the controls from the CRC-WGS study 

sequenced by 1 referred to as Thomas et al. 2018a with controls from Feng et al. at increasing proportions 

and vice versa. (B) Similarly, controls in the CRC-WGS study Hannigan et al. 86 were replaced with 

controls from Zeller et al.81 and vice versa (S7 Fig). BMC + CLR was an outlier and excluded for clarity 

of visualization, but the summary of mean associations of BMC + CLR is in Table S1.  

 

 

Cross-study prediction after background noise correction 

A successful predictive model is transferable across datasets. To assess the impact of 

background noise correction on phenotype prediction, we performed a leave-one-dataset-out 

(LODO) analysis. For this analysis, we utilized a nested cross-validation scheme where one 

dataset was set aside for testing of a prediction model that was trained and validated on the 
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remaining datasets using either a Random Forest classifier or linear regression model (see 

Methods). We evaluated the impact of supervised and unsupervised background noise correction 

approaches, with and without data transformations, on prediction of host phenotype using 

taxonomic abundance profiles and k-mers (see Methods), where binary phenotype prediction 

accuracy is assessed by Area Under the Curve (AUC) and continuous phenotype prediction 

accuracy is assessed by Pearson correlation. 

We first compared the effect of the different transformation and corrections on prediction 

of BMI, a continuous phenotype. When applying a transformation only to taxonomic 

abundances, logCPM and CLR resulted in significantly better Pearson correlations between the 

true and predicted BMI (0.04 under uncorrected increased to 0.14 and 0.13 median Pearson 

across batches with one-sided Wilcoxon rank-sum p-value = 0.014 for both), but VST did not 

show any significant improvement (one-sided Wilcoxon rank-sum p-value = 0.443) (Fig 4A, Fig 

S8). When applying supervised correction approaches without transformations to taxonomic 

abundance data, we found that ComBat and limma significantly improved prediction to 0.13 

median Pearson (one-sided Wilcoxon rank-sum p-value = 0.014 for both) while DCC and BMC 

did not (one-sided Wilcoxon rank-sum p-value = 0.557). Finally, applying a transformation 

followed by supervised correction, logCPM or CLR followed by ComBat, limma, or BMC 

resulted in significantly improved prediction (one-sided Wilcoxon rank-sum p-value = 0.014 for 

all). Applying Fixed or Tuned PCA correction, which includes a CLR transformation prior to 

regressing on PCs, also significantly improves prediction (one-sided Wilcoxon rank-sum p-value 

= 0.014 for both). Because DCC is the only method that explicitly adjusts for primary 

confounders, we also compared Fixed PCA correction directly to DCC and found that Fixed PCA 

is significantly better than DCC with median Pearson increasing from 0.045 to 0.089 (one-sided 
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Wilcoxon rank-sum p-value = 0.014) suggesting that unsupervised correction may more broadly 

correct for noise that interferes with BMI prediction.  

We next assessed the prediction performance using k-mers instead of taxonomic 

abundances. Uncorrected k-mer abundances have worse prediction accuracy than taxonomic 

abundances. However, when k-mer abundances are transformed with logCPM, CLR, ComBat or 

limma alone, or a combination of VST or CLR with a supervised correction, the prediction 

improves significantly compared to using taxonomic abundance with the highest median Pearson 

of 0.21 resulting from applying CLR alone (one-sided Wilcoxon rank-sum p-value = 0.014) (Fig 

4A, Fig S8 and S9). In particular, the use of k-mers with a CLR transformation and any 

correction method, supervised or unsupervised, surpasses prediction accuracy using taxonomic 

abundance. CLR combined with supervised correction results in a median Pearson correlation of 

0.21 and CLR combined with Tuned PCA correction results in a median correlation of 0.17 (one-

sided Wilcoxon rank-sum p-value = 0.014 for comparison with uncorrected k-mers) (Fig 4A, Fig 

S8 and S9). As with taxonomic abundance, Fixed PCA is significantly better than DCC applied 

to k-mers with median Pearson increasing from 0.018 to 0.13 (one-sided Wilcoxon rank-sum p-

value = 0.029).  

Next, we evaluated prediction ability with two binary phenotypes: whether an individual 

had consumed an antibiotic in the previous year and whether an individual has been diagnosed 

with colorectal cancer (CRC). For the taxonomic abundance profiles of the AGP, CRC-WGS and 

CRC-16S datasets, applying a data transformation alone did not significantly change the AUC 

results with the exception of logCPM in the CRC-WGS dataset where accuracy decreased 

significantly (median AUC went from 0.80 to 0.66, one-sided Wilcoxon rank-sum p-value = 

0.0055) (Fig 4B-D, Fig S8). Applying any supervised correction method by itself or after a data 
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transformation did not result in any change in prediction ability, except when logCPM was 

applied with any supervised correction method to the CRC-WGS dataset, resulting in decreased 

accuracy (median AUC went from 0.80 in uncorrected to 0.76 for all supervised methods, one-

sided Wilcoxon rank-sum p-value = 2 x 10-3, 3.5 x 10-3, 2 x 10-3 for ComBat, limma, BMC) (Fig 

4c, Fig S8).  

Unlike for the BMI phenotype, k-mers showed significantly lower prediction accuracy 

than taxonomic abundances irrespective of correction method in the CRC-WGS and AGP 

datasets (Fig 4C, S8). Fixed and Tuned PCA correction on k-mers were able to maintain 

prediction accuracy of uncorrected k-mers for all three binary phenotype datasets (Fig 4B-D, Fig 

S8). For the CRC-16S dataset, application of both data transformation and correction methods to 

k-mer abundances resulted in increased accuracy of CRC prediction, but there is insufficient data 

to find significant increases, with both PCA corrections resulting in the highest accuracy (Fig 

4D).  

The benefit of utilizing k-mers is most apparent in predicting BMI in HCHS, whereas in 

other datasets, taxonomic abundance data is better.  These results indicate that for some 

phenotypes, correction can improve prediction accuracy, and in most cases accuracy is at least 

maintained.  
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  4 Figure 4. Phenotype prediction models generalize across studies after application of noise 

correction methods. Cross-study prediction of (A) body mass index (BMI) in the HCHS dataset across 

different extraction robots (B) antibiotic consumption in the past year in the AGP dataset across different 

Illumina sequencing models, (C) CRC status in the CRC-WGS dataset across different studies and (D) 

CRC status in the CRC-16S dataset across different studies. The boxplots in (A) indicate leave-one-

dataset-out Pearson correlation between true and predicted BMI, for each batch. (B-D) indicate leave-one-
dataset-out AUC for each held-out study or batch. p-values comparing each boxplot were computed using 

a one-sided Wilcoxon signed-rank test. A red * indicates a significant difference in prediction ability 

compared to uncorrected data in the respective taxonomic or k-mer group. A grey * indicates a significant 
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difference in prediction between the k-mer (k) and taxonomic abundance (t) groups for a given approach. 

A green * indicates a significant difference in prediction between the Fixed PCA correction and DCC for 

a given data type. Due to the low number of folds in LODO prediction (3 to 7 values per box plot), many 

tests did not yield a p-value. 

 

 

 

Discussion 

 The ability to predict human phenotypes from metagenomic data is important for the 

discovery of biomarkers of disease and the subsequent development of therapeutics. However, a 

major issue that impacts prediction and biomarker discovery is the presence of confounders and 

systemic background noise both within 7 and across studies 33,38. In this paper, we investigated 

the ability of different denoising transformations in combination with supervised correction 

methods to correct for sources of background noise in microbiome data and evaluated the utility 

of an unsupervised approach – PCA correction on CLR-transformed data. We recognize that 

fully correcting for background noise and population-specific factors, particularly in an 

unsupervised manner, is extremely difficult if not impossible. Further, biological variables 

associated with population-specific factors can be helpful for prediction of phenotype and 

applying correction approaches can potentially remove the effect of these variables. For that 

reason, we do not advocate for one approach over the other, but instead we highlight the issues 

that can arise when study-specific effects are not appropriately accounted for and demonstrate 

several approaches to combat these effects. 

In this study, we analyze four datasets: AGP, HCHS, CRC-WGS, and CRC-16S. The 

AGP and HCHS datasets provided the opportunity to evaluate intra-study heterogeneity, whereas 

the CRC-WGS and CRC-16S datasets provided the opportunity to evaluate inter-study 
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heterogeneity. These are particularly unique datasets because they are either very large (AGP and 

HCHS), or they are comprised of several datasets measuring the same phenotype (CRC-WGS 

and CRC-16S), which is uncommon. For example, our decision to focus on CRC-WGS was 

motivated by important findings in Wirbel et al. 78 and Thomas et al. 1, two studies which 

compiled a collection of metagenomic samples from healthy and CRC individuals across a total 

of seven cohorts. Both these studies were able to find a core set of CRC-associated microbes 

despite differences in ethnicity, diets, and other host factors across studies. Both Wirbel et al. 78 

and Thomas et al. 1 found that CRC classification models generalized effectively across studies 

and reported similar mean LODO AUCs of 0.81. We were able to also predict CRC with a 

similar accuracy of AUC 0.79 both before and after correction. In addition to CRC, we found 

prediction of BMI to be a useful analysis because it is notoriously difficult to predict accurately 

87–89. 

Given the diverse range of datasets available, there is not one data denoising 

transformation or correction method that outperforms the others universally, and multiple 

methods should be tested for phenotype analysis. This motivated a broad comparison of popular 

transformations and correction approaches. PCA correction has been effective in correcting for 

unwanted variation in human genetic data and morphological data 63–66, but to date has not been 

evaluated for correction of such noise in microbiome data. Yet, we and others have shown that 

top principal components in multiple datasets are correlated with numerous potential sources of 

unwanted noise such as host genetics 67, ethnicity of the host 68, and also abiotic factors like 

temperature 69, suggesting that PCA correction may be an effective unsupervised correction 

approach. We found that regressing out the top PCs after applying a CLR transformation may 

address multiple issues simultaneously: first, this approach can prevent inflation of false 
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positives associations (Fig 3), second, can maintain and, in the case of BMI, increase prediction 

accuracy of host-associated phenotypes in a LODO analysis (Fig 4).  

Our comparison of correlations between PCs and study covariates sheds light on which 

datasets are good candidates for PCA correction. In the HCHS dataset, where PCA correction 

was most successful, correlation of technical covariates and not biological covariates with the top 

PCs increased significantly after CLR transformation (Fig. 2, Fig S2, and Fig S4). This 

potentially allowed for removal of technical noise without sacrificing phenotype signal, perhaps 

even enhancing the phenotype signal. The result was that application of CLR along with any 

correction method to both taxonomic abundances and k-mers was successful in increasing 

prediction accuracy (Fig 4A). On the other hand, the CRC-WGS and AGP datasets had an 

increased correlation of both biological and technical covariates with the top PCs after CLR 

transformation (Fig S4), making the removal of technical noise without removing phenotypic 

signal difficult. In these cases, applying any transformation or correction approach did not 

improve accuracy and instead in most cases resulted in similar performance to uncorrected data. 

Thus, the extent of background noise differs from one dataset to another, and the success of an 

unsupervised versus supervised method varies for each dataset (Table 2).  

Despite correction approaches having limited effect on prediction ability for most 

datasets, these same correction approaches had a large impact on reducing false positive 

biomarker associations in our titration analysis. Specifically, we found that when performing 

association analyses, a supervised correction applied after a denoising transformation may be 

best and that transformations alone are insufficient to reduce false positive discoveries (Fig 3).  

 In this work, we show that CLR has comparable ability to other denoising 

transformations both when used alone and in combination with other correction approaches.  The 
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application of CLR transformation can address many attributes of microbiome data that make it 

difficult to model including sparsity and non-normality, which existing unsupervised approaches 

designed for non-microbiome data 59–61 are ill-equipped to deal with (Table 2). As PCA assumes 

features are normally distributed, we produced Q-Q plots (Fig S3) showing that the quantiles of 

CLR-transformed data are close to the quantiles of a theoretical normal distribution. The 

application of CLR to microbiome data has been broadly recommended 25,90 and is part of a suite 

of methods known as Compositional Data Analysis (CoDA) 91,92 to address the dependency 

between features inherent to compositional data. However, the adoption of CLR in the 

microbiome field has not been uniform. Recently, McLaren at al. 33 discussed that CoDA 

methods’ ability to make microbiome data invariant to multiplicative bias has been 

underappreciated within the field. Specifically, McLaren et al. 33 found that that ratio-based 

analyses could remove intra-study bias, though did not address its effect on multiple datasets that 

are pooled together or large datasets with heterogeneous sampling procedures such as the AGP. 

Here, we provide the first systematic investigation into the effect of how CLR in combination 

with PCA can remove inter-study and intra-study bias. We hypothesized that applying CLR 

transformation will more readily reveal the covariates that introduce technical background noise 

across and within heterogeneous datasets because these contributors of bias (e.g. DNA extraction 

method, sequencing instrument, etc.) have a multiplicative effect on relative abundances 33. We 

found that indeed relationships between the microbiome and such variables is more apparent 

after CLR transformation, our observation of this in taxa abundance profiles makes sense in the 

context of multiplicative bias expounded by McLaren et al. 33 because the multiplicative bias 

becomes additive in log space, such that PCA is able to capture the bias in the top PCs as a shift 

in the centroid of samples plotted for a given dataset (Fig 2). Just as we found CLR 
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transformation can significantly effect PC correlations with covariates, the application of data 

transformations like variance-stabilizing from DESeq2 45 and the log counts-per-million 

(logCPM) transformation from EdgeR 46 applied to taxonomic abundance also affect the 

correlation of variables with top PCs (Fig S6). Simiarly, these transformations can be helpful for 

phenotype prediction (Figs S8 and S9). 

We also compared the impacts of correction on k-mers and taxonomic features (Table 2). 

K-mers are a useful way to featurize data because they are not dependent on reference genomes. 

Moreover, short k-mers of size 5-8 have the added benefit of a Gaussian-like distribution (Fig 

S5) and low sparsity, unlike taxonomic features. However, k-mers have inherent limitations 

because they are usually not directly interpretable biological features. This limitation may be a 

reason why taxonomic feature abundance outperforms k-mers in phenotype prediction accuracy 

(Fig S9). It is crucial to note however, that k-mers may provide a better signature of technical 

artifacts like PCR bias 93,94 and are also known to be protocol specific 95. Thus, this may explain 

why for both 16S and WGS data, k-mers had higher correlations with technical variables 

compared to taxonomic features (Fig 2, Figs S2 and S5). This aspect of k-mers offers a potential 

explanation for why PCA correction was particularly effective with k-mers for the HCHS dataset. 

Of note, these correlation analyses may reveal associations between linear effects of PCs and 

covariates, but not for non-linear effects. Other have also found that k-mers performed poorly 

compared to counts of reads aligned to reference genomes 96. In predicting CRC and antibiotic 

consumption status, species profiles were more predictive whereas in predicting BMI, k-mers 

were more predictive under the majority of correction approaches when compared to application 

of the same approach to taxonomic abundance. 
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The supervised approaches 70–72 are beneficial in that they directly remove known 

confounding, potentially at the cost of phenotype prediction, while unsupervised approaches are 

can correct for both measured and unmeasured factors of microbiome (Table 2). Correcting for 

confounders and PCs both can result in the removal of phenotype signal, as is the case in 

ComBat 72 and fixed PCA (Fig 4 and Fig S9). Tuned PCA may reduce the removal of 

phenotypic variance by removing up to, but not including, the first PC that would significantly 

impact phenotype signal. However, caution must be taken when using tuned PCA in the presence 

of strong confounding as it may not remove all confounding to protect the phenotype effect. In 

these scenarios, one should consider either a liberal correction of confounding by correcting for 

more PCs or subsampling the data such that cases and controls are matched for known 

confounders as is done in Vujkovic-Cvijin et al. 7. 

Background noise correction is becoming increasingly important as the microbiome field 

matures and new datasets become available. One exciting future application of correction that we 

foresee is in microbiome wide association studies in which microbiome genomic polymorphisms 

are associated with human phenotypes 97,98. Such a scenario may benefit from background noise 

correction since population structure may play a considerable confounding role 99. As researchers 

consider the best approach for background noise correction for their specific research questions, 

they must weigh the tradeoffs between addressing confounding while also maintaining as much 

of the phenotype signal as possible. There is no single solution that will address all problems, but 

at minimum researchers should perform careful forensics to investigate the nature and 

pervasiveness of confounders in their data. In this manner, consistent and robust inferences can 

be made across multiple studies, moving us towards the goal of accurate phenotype prediction 

from microbiome data.  
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Taxonomic features K-mer features 

• Pro: Find directly interpretable 
biomarkers of phenotype 

• Pro: May be better for prediction 
of binary phenotypes like 
colorectal cancer 

• Con: features are often rare, 
resulting in a sparse feature 
matrix unless features we are 
grouped to genus or family level 

• Pro: Not reliant on reference 
genomes  

• Con: Features not immediately 
interpretable 

• Pro: May be better for prediction 
of certain continuous phenotypes 
like BMI 

• Pro: Short k-mer sizes are more 
Gaussian distributed and non-
sparse 

No transformation of features CLR transformation of features 

• Pro: Useful for compositional 
analysis. Sufficient when feature 
distribution meets assumptions 
regarding normality 

• Con: Compositional data does 
not meet assumptions of many 
types of differential abundance 
analyses. 

• Pro: Useful to apply to 
compositional data before PCA 
for interpretability100 

• Pro: Produces a Gaussian-like 
distribution (log transformation 
may also accomplish this) 

• Con: May be problematic for 
correlation-based analyses101  

• Note: Other transformations 
(edgeR and DESeq2) may be 
useful 

Supervised Correction Unsupervised Correction 

• Pro: Correction is targeted and 
most influential batch effects are 
explicitly accounted for  

• Con: Need metadata on 
experimental setup (batches or 
study-effect groups) 

• Pro: Do not need information on 
batches or study-effect groups, 
but helpful for assessing signal of 
study effects 

• Pro: Multiple sources of noise can 
be corrected for simultaneously 

• Con: Correction is less targeted 
and biological signal may be 
sacrificed. 

T 2 Table 2. Key considerations when performing background noise correction in metagenomic data. 

Methods 

 

Datasets 

Raw 16S fastq files were downloaded from the NCBI Sequence Read Archive (SRA) 

with study accessions PRJEB11419 for the American Gut Project, and PRJNA290926 (Baxter et 

al.80) and PRJEB6070 (Zeller et al.81) for CRC-16S. Fastq files for Zackular et al.82 from CRC-

16S were obtained from http://mothur.org/MicrobiomeBiomarkerCRC/. The raw WGS fastq files 

http://mothur.org/MicrobiomeBiomarkerCRC/
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for CRC-WGS were downloaded from SRA with study accessions PRJEB12449 (Vogtmann et 

al.84), PRJEB10878 (Yu et al.85), PRJEB7774 (Feng et al.83), PRJNA447983 (Thomas et al. 

Italian validation cohorts1), PRJEB6070 (Zeller et al.81), and PRJNA389927 (Hannigan et al.86). 

Processed OTU data for the AGP was obtained from Qiita study id 10317 (EBI submission 

ERP012803). OTU profiles from CRC-16S were obtained from the MicrobiomeHD database 

(Duvallet et al.6). Taxonomic profiles for CRC-WGS were obtained through the R package 

curatedMetagenomicData41 which used MetaPhlAn2102. In both ‘MicrobiomeHD’ and 

‘curatedMetagenomicsData’, taxonomic abundances were computed in the same pipeline for 

each set of studies. 

 

k-mer Processing  

Features in metagenomic data can be defined in two broad ways, both high-dimensional: 

reference-based approaches and reference-free approaches. Reference-based approaches cluster 

sequenced reads based on a defined threshold and assign taxonomy by aligning reads to 

reference genomes. Reference-free approaches, sort reads into bins that are defined 

independently of known genomes, i.e. k-mers, short strings of length k that can be obtained 

directly from read sequences, which are increasingly popular in microbiome data analyses and 

have been used by several studies to do prediction . K-mers offer a powerful alternative approach 

to more commonly used taxonomic features, because they do not rely on a reference database of 

genomes and do not require identifying a set of parameters to determine taxonomic features .  

 

To compute k-mer abundances, raw sequences from either 16S or whole metagenome 

sequencing were input into the k-mer counting algorithm Jellyfish 2.3.0103 with default 

http://www.ebi.ac.uk/ena/data/view/ERP012803
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parameters except for a hash of 10 million elements and canonical k-mers with size of 5, 6, 7 or 

8. Prior work has shown that k-mer sizes of 6 and 7 are predictive of phenotype76. The resulting 

k-mer abundance table is then converted to a composition such that each sample sums to 1 to 

account for different reads depths across samples. Taxonomic profiles were similarly converted 

to compositions. 

 

Centered log ratio transformation 

The centered log ratio (CLR) transformation is a compositional data transformation that 

takes the log ratio of between observed frequencies and their geometric means. This is done 

within each sample where relative frequencies of different taxa are measured and sum to 1. This 

can be written in mathematical form as: 

clr(𝑥) =   [log
x1

G(x)
, log

x2

G(x)
, … , log

xn

G(x)
]

= [𝑙𝑜𝑔𝑥1– 𝑙𝑜𝑔 𝐺(𝑥), 𝑙𝑜𝑔𝑥2– 𝑙𝑜𝑔 𝐺(𝑥), … , 𝑙𝑜𝑔𝑥𝑛– 𝑙𝑜𝑔 𝐺(𝑥)] 

G(𝑥) = (∏ 𝑥𝑖

𝑁

𝑖=1

)

1/𝑁

 

Here, 𝒙 is a vector representing the abundance of microbiome features in a single sample, and 

𝐺(𝒙) represents the geometric mean. The Gaussian-like distribution of CLR-transformed 

microbiome compositional data is shown in Figure S3. We added a pseudocount equal to 0.65 

times the minimum non-zero relative abundance, following zero-replacement strategies as 

suggested by , prior to applying the CLR transformation. 
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Background noise correction methods 

The existing supervised approaches for background noise correction compared in this 

study include percentile normalization43, batch mean centering (BMC)70, ComBat72, and limma71 

applied to relative abundance data. ComBat72 assumes data is cleaned and normalized prior to 

batch effect removal. We added a pseudocount equal to 0.65 times the minimum non-zero 

relative abundance, following zero-replacement strategies as suggested by . It’s common to add a 

pseudocount to 0 relative abundance observations so that one can apply a log transform in the 

normalization prior to ComBat72 (as described in Gibbons et al.38). We followed this same 

procedure with both OTU and k-mer, and applied ComBat72 and limma71 to the log of relative 

abundance data. For percentile normalization, batch mean centering (BMC), and Direct 

Covariate Correction (DCC) we used the relative abundance.  

For phenotype prediction and titration analysis, a relative-abundance feature is needed. 

ComBat, limma, and PCA corrected data will often produce non-positive data that does not 

resemble counts. To create count-like data we took the exponent of the resulting ComBat and 

limma corrected data produces count like features.  

The CLR transformation and PCA-Correction used the relative abundance of k-mers and 

taxonomic features. The equation used to regress out confounding covariates in DCC is as 

follows: 

𝑋𝑚×𝑛~βm×b𝐶𝑏×𝑛 + ϵm×n 

Where the original feature matrix 𝑋 with m features and n samples is the outcome of a linear 

model with covariate associated coefficient matrix 𝛽, dummy matrix 𝐶 with each row 

representing one of the 𝑏 possible values of the confounding covariate, and 𝜖, the residual 

matrix. The residual matrix 𝜖 is the covariate-corrected feature matrix. To perform titration and 
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downstream prediction analysis on PCA-corrected data, we performed an inverse-clr as 

implemented in the compositions R package  to convert data to relative abundance.  

In PCA correction, top PCs computed from the CLR transformed k-mer or OTU relative 

abundance tables are regressed out. The CLR transformation cancels out the multiplicative bias  

within each study by taking a ratio of features to the geometric mean of features that are all 

impacted by the same study-specific multiplicative bias. The transformation accentuates the 

difference in bias across studies by smoothing out the intra-study bias, thereby allowing PC 

regression to account for the confounding across studies. In the fixed PCA correction, a set 

number of PCs are regressed out from the microbiome data. In the main figures we show results 

after regressing up to three PCs. Alternatively, the tuned PCA correction uses a train-validation-

test approach to tune two hyperparameters: the optimal number of PCs to regress out p, and, 

when using k-mers, the optimal k. The same portion of data used for validation in the Random 

Forest tuning is used for tuning the PCA correction hyperparameters, where the tuned Random 

Forest hyperparameters are fixed before tuning p and k. To determine the number of PCs that 

optimize phenotype prediction, PCs 1 through p were regressed out of the input data with p 

ranging from 1 to 20. The p that produces the highest AUC or Pearson correlation in phenotype 

prediction (method of prediction model described below) in validation was selected. The same 

procedure is done with k where values between 5 and 8 are tested (only k-mer sizes 6 and 7 were 

tested for CRC-WGS) The reported performance is based on the remaining 20% set aside for 

testing.  
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Correlation analyses 

To compute the correlation of PCs with covariates before and after CLR correction, we used 

canonical correlation analysis using the ‘canCorPairs’ function in the R package 

variancePartition104. We used canonical correlation because several covariates were categorical, 

with the result that only positive correlation values can be calculated. The distribution of 

correlations before and after CLR transformation were statistically compared using the two-

sample Wilcoxon signed-rank test.  

 

Phenotype prediction 

In CRC-16S and CRC-WGS, we predicted whether a sample comes from a host with colorectal 

cancer or a healthy host. For the American Gut Project, we predicted whether a sample comes 

from a host who took antibiotics in the previous year or a host who has not taken antibiotics in 

the previous year. We also use the American Gut Project to predict body mass index (BMI).  

We performed prediction of binary traits using Random Forest implemented in Scikit-

learn105, which has been previously employed successfully for predicting binary outcomes from 

microbiome data1,41,106,107. We tuned four hyper-parameters of the Random Forest model in a grid 

search using a train-validation-test strategy. In the LODO framework, one study was reserved for 

testing while the remaining studies were split such that 70% of samples were used for training 

and 30% for validation of model hyper-parameters. In the non-LODO framework, 56% of 

samples in the meta-cohort were used for training, 24% for validation of model hyper-

parameters, and 20% reserved for testing, where the distribution of studies or sub-cohorts were 

similar in the test, train, and validation sets. Six hyperparameters where four were tuned in a grid 

search: estimator trees (100, 1000, or 1500), criterion (entropy only), minimum samples per split 
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(2, 5, or 10), minimum samples per leaf (1, 5, or 10). Two hyperparameters were trained using 

the following settings: max depth of trees was set at ‘None’ (nodes are expanded until all leaves 

contain only one class or until all leaves contain less than min_samples_split samples105) and 

maximum features was set to “auto” (set to square root of number estimator trees105), and default 

parameters otherwise. This was performed in five-fold cross validation repeated ten-times to 

obtain confidence intervals on the area under the ROC curve (AUC), our metric of prediction 

accuracy. A similar train-validation-test strategy was used for the linear regression model to 

select coefficients of the model where accuracy was measured using Pearson correlation of the 

true BMI to the predicted BMI. The difference in the distribution of prediction accuracy for both 

prediction tasks was quantified statistically using a Wilcoxon rank-sum test.   

Titration  

Following the procedure from Gibbons et al.43, samples from different studies were 

pooled together to assess the inflation of false positive associations. The minimum class 

membership across two studies was used as the set sample size drawn from the case and controls 

for each study for a given titration experiment. A fraction of 0, 25, 50, and 100% controls in the 

first study were replaced with controls from a second study. The filtering of features as 

implemented in Gibbons et al. required features resembling relative abundance, and we 

therefore, applied the appropriate transformations to convert ComBat, limma, and PCA-corrected 

data to relative abundance. For ComBat and limma, we applied the natural exponent of the 

matrix. For CLR-transformed data (including PCA-corrected data), we applied the ‘inverse clr 

transform’ as implemented in the ‘compositions’ package in R77. 
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Abstract 

Elucidating the sources of a microbiome can provide insight into the ecological dynamics 

responsible for the formation of these communities. Source tracking approaches to date leverage 

species abundance information, however, single nucleotide variants (SNVs) may be more 

informative because of their high specificity to certain sources. To overcome the computational 

burden of utilizing all SNVs for a given sample, we introduce a novel method to identify 

signature SNVs for source tracking. Signature SNVs used as input into a previously designed 

source tracking algorithm, FEAST, can more accurately estimate contributions than species and 

provide novel insights, demonstrated in three case studies. 

 

 

2. Keywords: Source tracking, microbiome, single nucleotide variants, transmission, 

strains 
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Background 

Understanding the sources that could contribute to the formation of a given microbiome 

is of great interest in elucidating the ecological processes that give rise to these complex 

communities and the impact of these communities on human and environmental health. For 

example, a hospital environment may introduce antibiotic resistance genes to an infant gut 

microbiome, and local selective pressures may result in vastly different microbial compositions 

in different parts of the ocean. Approaches for determining the proportion of a microbiome of 

interest (the “sink”) that is attributed to different microbiomes (the “sources”) is known as 

“source tracking” 108,109. Source tracking is useful for forensics, categorization of samples, 

detecting contamination, and tracing transmissions between different hosts or environments. 

While source tracking was developed as a way to quantitatively characterize a sample based on a 

set of samples with known origin, in most studies, the true source of samples may never be 

collected. In these cases, source tracking approaches are useful in identifying similarities 

between microbiome samples even if they cannot be used to definitively identify the true source 

of origin.  

Current approaches for source tracking include the Bayesian approach, SourceTracker 108 

and more recently the expectation-maximization approach, FEAST 109. These source tracking 

methods use species abundance profiles of the sample of interest (the sink) and of potential 

sources and compute percentages of sinks that are attributable to each potential source. However, 

species abundance profiles miss important sub-species single nucleotide variants (SNVs), which 

may provide higher resolution information than species about transmission patterns. For 

example, Nayfach et al. 2016 110 found that the sharing of microbiome SNVs private to mothers 

and their infants decreases over the first year of the infant’s life while species sharing increases. 
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This suggests that while the infant microbiome increasingly resembles the adult microbiome 

ecologically, sources other than the mother also colonize the infant. Thus, species-level 

resolution may obscure true sources of microbes while SNVs can reveal actual transmissions to 

the infant.  

While tracking strain transmissions with SNVs has been highly successful in a number of 

studies 110–116 current approaches to strain tracking are limited. These methods provide binary 

information by inferring whether or not a strain transmission has occurred per species but they 

do not shed light on the relative proportions of microbiomes that are similar. A specific example 

of this is inStrain 113 which computes a pairwise population-level average nucleotide identity 

(popANI) between two samples. If an infant harbors several strains derived from the mother at 

low frequency, these shared strains will have high popANI values, but they will represent a 

relatively small proportion of the infant’s microbiome. By contrast, source tracking allows us to 

simultaneously infer the putative proportions for multiple sources contributing to a given sink, 

integrated over all community members in the sink. As shown in Fig. 1, one may be able to 

estimate that an infant microbiome is explained 25% by their mother, 10% by their dog, and 30% 

by unknown sources 108,109. In other words, source tracking with SNVs leverages not only the 

genetic variants within species, but also the relative abundances of the species that carry the 

SNVs.  

Here, we evaluate whether source contributions estimated with SNVs are more accurate 

than with only species when they are provided as input to FEAST 109 (hereafter referred to as 

SNV-FEAST and species-FEAST, respectively). FEAST 109 is faster and more accurate than 

previous source tracking tools 108 and therefore, is ideal for adaptation to SNV source tracking 

since it can accept larger numbers of features and input sources. Despite this improved 
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computational efficiency, the potentially millions of single nucleotide variants across all 

microbiome species in a given host still can computationally overwhelm FEAST. To address this, 

we introduce a novel approach to determine signature SNVs that can be used as input to FEAST. 

This both reduces memory requirements and computation time in the FEAST estimation, 

allowing us to optimally estimate the source contribution of a sink. We find that SNV-FEAST 

and species-FEAST yield different outcomes when applied to simulated data, with SNV-FEAST 

frequently out-performing species-FEAST. We apply SNV-FEAST to three real-world case 

studies, including source tracking between infants and their mothers in the first year of life, 

between infants and the neonatal intensive care unit (NICU), and between oceans around the 

world. We confirm the ability of SNV-FEAST by recapitulating several previously published 

findings in our case studies, as well as discover new source tracking patterns across oceans. In 

sum, we show that SNVs can be used to estimate potential transmissions across hosts and across 

environments. 

 

Results 

 

SNV-FEAST algorithm 

Here we adapt FEAST to accept SNV abundance instead of species abundance as input. A 

computational challenge in using SNVs instead of species as input to FEAST is that SNVs 

contribute a significantly larger feature space. The number of different species comprising a 

microbiome can range from a few hundred to a few thousand, while the number of possible 

SNVs for a given species alone can be in the thousands 117. This difference in number of input 
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features can result in FEAST runtimes that last several hours instead of a few minutes and 

memory intensive storage of read counts at all sites of variation.   

We devised a likelihood-based approach for selecting a set of informative or “signature” 

SNVs for a given source tracking analysis, allowing us to overcome the time and memory 

intensive challenges of utilizing SNV-level data. We identify these informative SNVs by 

computing a signature score (Fig. 1A) (see Methods) that quantifies the extent to which SNVs in 

the sink are most likely derived from one of the potential sources. This is analogous to 

identifying SNVs private to sources and their sinks, but more generalized to include SNVs that 

may be found in multiple sources, albeit at higher frequency in one of the potential sources (see 

Methods).  

To compute a signature score for a given SNV, two hypotheses are compared for each 

potential source: (1) that one source solely explains the observed allele counts in the sink and (2) 

all sources except that one source collectively explain the observed allele counts in the sink. For 

each hypothesis, we calculate the binomial log-likelihood for the estimate of the allele frequency 

in the sink, . 

Hypothesis 1: Source i with allele frequency 𝑝𝑖 explains the allele counts in the sink.  

θ̂ = 𝑝𝑖 

Hypothesis 2: A combination of all other sources except i (sources 𝑗 ≠ i) explain the observed 

allele count distribution in the sink. The estimate of the sink allele frequency is computed using a 

mixture of the allele frequencies 𝑝𝑗from those sources. The mixing parameter α𝑗 is learned using 

Sequential Least Squares Programming with the constraint that ∑ α𝑗𝑗≠𝑖 = 1. 
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θ̂ = ∑ α𝑗𝑝𝑖

𝑗≠𝑖

 

The binomial log-likelihood is calculated as follows, where there are n reads with the reference 

allele and m reads with the alternative allele in the sink. 

 

𝐿𝐿(θ̂) = 𝑛 𝑙𝑜𝑔 θ̂ + 𝑚 𝑙𝑜𝑔(1 − θ̂) 

 

A log likelihood ratio representing the support for hypothesis 1 relative to hypothesis 2 is 

calculated per site per potential source. The maximum log likelihood ratio per site is the 

signature score for that SNV, representing how favorably one of the sources explains the sink 

over all other sources. Signature SNVs are those with scores greater than two standard deviations 

over the mean signature score computed for all SNVs (Methods). 

 

 

 

  5 Figure 1. Signature SNV selection and SNV-FEAST. (A) A signature SNV is present in one or few but 

not all sources. By contrast, a non-signature SNV is generically present in multiple sources and thus 

provides little discriminating information. (B) SNV-FEAST estimates the proportion a given sink derived 

from various sources using the read counts for each allele in sinks and sources. 

 



 47 

 

Evaluation of SNV-FEAST in simulations 

To compare the accuracy of species-FEAST and SNV-FEAST, we performed simulations 

mimicking mother-infant transmissions with the goal of estimating contributions of different 

sources to an infant sink. Our simulations tested the ability of SNVs and species to recapitulate 

the true source composition in synthetic samples comprised of a mixture of reads drawn from 

multiple real fecal adult samples. To construct these synthetic infant microbiomes, we mixed 

metagenomic data from mothers sampled in a mother-infant dataset 118 at various proportions as 

described below (Methods). 

The difficulty of source tracking increases with the number of contributing sources 109. 

Thus, we simulate infants that have a small (<=5) versus large (6 – 10) number of contributing 

sources (Additional file 1: Table S1), including an unknown source (e.g. a randomly selected 

unrelated mother). Known source contributions to the simulated gut microbiome sample of the 

infant were varied between 1 and 90% while the unknown contribution varied between 10 and 

90%. The unknown source was not presented to FEAST as a potential known source. 

Additionally, not all species in a mother are transmitted to the infant 111,112,114,119,120.  

Thus, in our simulations, species transmission rates were determined using a beta distribution, 

which is a natural model for values between (0,1) and often proposed for microbial abundance 

data 121–124 (see Methods). We therefore consider four simulated scenarios: a combination of low 

versus high number of sources and low versus high transmission rates (see Methods).  

Fig. 2 compares the performance of SNV-FEAST and species-FEAST in estimating the 

true contribution of sources. FEAST using SNVs has equal if not better performance than species 

in most scenarios and performs especially well when transmission rates are low and unknown 

source proportions are high. SNVs have a lower root mean squared error (RMSE) compared to 
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species in three of the four scenarios and higher Pearson correlation between true and estimated 

contributions in all four scenarios. The difference in these correlations for SNVs versus species is 

significant in all four cases when using a paired Wilcoxon signed rank test (high transmission: p-

value = 0.00560, 0.00251 for small and large number of sources, low transmission: p-value = 

0.00024, 0.002340 for small and large number of sources). These results suggest that SNVs may 

offer useful signatures of transmission.  

 

 

 

  6 Figure 2. Ability of SNV and species-FEAST to recapitulate true contributions in simulations. 

Estimated known and unknown source proportions for infant microbiomes simulated with in silico 
mixtures of real maternal fecal microbiomes under different scenarios: either low number of contributing 

sources (<=5) or high number of sources (6-11), and high transmission rate of species or low transmission 
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rate. The transmission rate is the probability of an infant being colonized by a given species, simulated 

using a beta distribution centered on the relative abundance of species in sources (Methods). 23 infants 

were simulated with five or fewer sources and 19 infants were simulated with a large number of sources 

(Table S1). The black line indicates the ground truth for proportions. For each simulated infant, there are 

11 points plotted, whereby 10 correspond to known sources (some of which have zero contribution), and 

one corresponds to an unknown source which are indicated by hollow circles in the plot. 

 

 

To assess whether all species and all signatures SNVs in the sink are needed for accurate 

source tracking, we varied the proportion of species (10%, 50% or 100%) and SNVs (10%, 50% 

or 100%) included as inputs to the algorithm (Additional file 1: Fig. S1). We used Pearson 

correlation between the true and estimated proportions to represent accuracy of SNV-FEAST. 

When decreasing the percentage of SNVs used, there is no statistically significant change in the 

performance. However, when decreasing the percentage of species used, there are statistically 

significant decreases in the performance (Additional file 1: Fig. S1).  

To illustrate the advantage of SNV-FEAST over traditional strain tracking approaches 

such as inStrain 113, we used the same synthetic communities produced in the above simulation 

for inStrain profiling between each infant and each of their potential contributing sources 

(Additional file 1: Fig. S2).  InStrain computes a popANI score, which represents the average 

nucleotide identity between two different metagenomic samples for a given species. As per the 

inStrain paper, popANI values > 99.999% represent the same strain being shared between 

samples for a given species (Methods). However, this approach provides a binarization as to 

whether or not a strain was transmitted and does not account for the relative abundance of the 

strain in the sink. Thus, we computed the fraction of each infant’s species that have popANI 

≥99.999%, with each potential source.  

As expected, both SNV-FEAST and inStrain produce estimates of sharing that correlate 

positively with the ground truth mixture proportions of the contributing source samples in each 
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infant (Additional file 1: Fig. S2). We found inStrain results yielded a 0.742 Pearson correlation 

(p-value < 1x10-12) with the true mixture proportions, whereas SNV-FEAST has a 0.866 Pearson 

correlation (p-value < 1x 10-12) with the true proportions. The higher correlation values for SNV-

FEAST likely reflect that relative abundances of strains and their genomic identities are 

simultaneously taken into account for source tracking, whereas inStrain only accounts for 

genomic identities. Finally, several of the shared species in the simulations had popANI values < 

99.999%, reflecting the complex mixtures from multiple sources.  

We next compared SNV-FEAST with the strain tracking procedure in Nayfach et al. 2016 

110. Again, we used the same synthetic communities produced in the simulation to determine 

marker alleles as defined in Nayfach et al. 2016 (Methods). Here a marker allele is determined 

to be a SNV that is private to mother, infant, or the mother-infant dyad, and absent from the 

background population, which consisted of other samples in the dataset as well as samples from 

United States adults in the Human Microbiome Project 125,126 (Methods). Species with ≥ 5% 

marker allele sharing between mother and infant were deemed to share a strain (Methods). We 

found a high correlation between the true mixture proportions (on x-axis) and the percentage of 

species with transmission events (y-axis) (Pearson correlation 0.915, p-value < 1 x 10-16) 

(Additional file 1: Fig. S3A). The higher correlation for the Nayfach et al. 2016 approach 

compared to the inStrain approach possibly reflects horizontal gene transfers between lineages 

residing in infants and mothers. By contrast, there was a lower correlation between the true 

mixture proportions (x-axis) and the sharing for all marker alleles across species present in the 

infant (y-axis) and (0.575 Pearson correlation, p-value < 1 x 10-16) (Additional file 1: Fig. S3B). 
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Source tracking in infants over the first year of life 

Having assessed the abilities of SNV-FEAST in synthetic data, we next estimated the 

contribution from the true mother over time to the true infant with SNV and species-FEAST in 

the Backhed et al. 2015 dataset. This dataset is composed of metagenomic samples from infants 

collected at four days, four months, and 12 months after birth, as well as their mothers at the time 

of delivery.  Previous analyses on this data have shown that even while species similarity 

increases, infants and their mothers share fewer proportions of strains over time as revealed by 

sharing of SNVs private to mother-infant dyads 110. Thus, SNVs belonging to strains shared only 

by the infant and their mother may be more informative of the true source compared to species. 

Here we sought to test whether SNV and species-FEAST recapitulate these results (Methods).  

In applying FEAST to the Backhed et al. 2015 dataset, we estimated the proportion of the 

infant sample at birth attributable to their own mother. For 4 month-old infants, we estimated the 

proportion attributable to the mother and itself at birth. For 12 month-old infants, we estimated 

the proportion attributable to the mother and itself at birth and four months 109. This allowed 

“unknown” to be more strictly defined as the component of the infant microbiome that could not 

be explained by the mother. It also allowed us to better discern if completely new strains were 

acquired at the 4th and 12th months of life (that were not already acquired during previous life 

stages).  

First, consistent with previous findings made with species and SNVs 110, species-FEAST 

estimates an increasing contribution of the mother over time (t-test p-value = 5.1 x 10-4), but 

SNV-FEAST estimates a decrease over time (p-value = 0.063) (Fig. 3).  

Second, we assessed the ability of species and SNV-FEAST to distinguish the true mother 

from three randomly selected unrelated mothers. Species-FEAST estimates an increasing 
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contribution of unrelated mothers over time (t-test p-value = 0.014) while SNV-FEAST estimates 

no significant change over time (t-test p-value = 0.59) (Fig. 3). The increase in contribution from 

unrelated mothers with species-FEAST does not suggest that these particular unrelated mothers 

are seeding the infant. Rather, the opposing trend observed with SNVs suggests that similarity at 

the species level is consistent with the maturation of the infant microbiome over time.   

Finally, we estimated contributions from unknown sources, i.e. the proportion of the 

infant microbiome not explainable by the true mother, the three randomly selected unrelated 

mothers, or any previous time point. Species-FEAST estimates a sharp decline in contribution of 

unknown sources over the first year of life (t-test p-value =7.1 x 10-12) (Fig. 3). This significant 

decrease in unknown at the species level reflects the infant microbiome maturation over the first 

year of life. By contrast, SNV-FEAST estimates little change in the contribution of unknown 

sources (t-test p-value = 0.49) (Fig. 3). Note that this unknown component reflects what was 

gained since a previous time point. In other words, at 12 months, the infant on average acquired 

the same fraction of unknown as it did at 4 months and birth. When source tracking is run 

without including previous time points as sources, the unknown component increases over the 

first year of life for SNVs only (Additional file 1: Fig. S5).  

Next, we sought to understand the effect of swapping sink and source in the re-analysis of 

Backhed et al. 2015 data. In Fig. 3G and H, the infant at birth is the potential source and mother 

is the sink. The estimated contribution from baby to mother is significantly smaller (species-

FEAST: 11.9 difference, Wilcoxon rank sum test p-value = 0.013; SNV-FEAST: 16.0 difference, 

p-value = 2.2 x 10-5) compared to that of mother to baby. This trend may be suggestive, but is not 

conclusive, of directionality, whereby a less diverse source is seeded by a more diverse source. 
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  7 Figure 3. Source tracking in the infant gut microbiome over the first year of life. Species- and 

SNV-FEAST were applied to Backhed et al. 2019 data to estimate the contribution of (A, B) mother, (C, 

D) unrelated mothers and (E, F) unknown sources to infants sampled at birth, four months, and twelve 

months. The black line and inset statistics pertain to the linear regression fit for the source estimates as a 

function of age of the infant. (G, H) are swapped source tracking analyses with mother and infant 

swapped when using species-FEAST and SNV-FEAST, respectively. Additional file 1: Fig. S4 shows the 

species that were included in species-FEAST and species that had SNVs included in SNV-FEAST. 

Additional file 1: Fig. S5 shows the estimate of the unknown component when previous time points of the 

infant are excluded from the sources. 

Contribution of the NICU built environment to infant microbiomes 

Next, we re-analyzed a metagenomic dataset studying the contribution of the hospital 

environment to the infant gut microbiome in the neonatal intensive care unit (NICU) (Brooks et 
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al. 2017). This dataset is composed of microbiomes of infant stool, as well as the NICU rooms of 

the same infants at frequently touched surfaces, sink basins, the floor, and isolette-top sampled 

over an 11-month period 127. We applied SNV and species-FEAST to assess the contribution of 

the infant’s own NICU room as well as a different NICU room in the vicinity to the infant’s gut 

microbiome (see Methods). 

Concordant with the findings of Brooks et al., both SNV and species-FEAST detected that the 

most common source contributing to the infant microbiome was the floor and isolette-top from 

the infant’s own room (Figures 4A and B). SNV-FEAST found Infant 18 also had large 

contributions from their own room’s touched surfaces at multiple time points (Fig. 4B), which is 

consistent with a finding by Brooks et al. that three strains found in Infant 18 perfectly matched 

(> 99.999% average nucleotide identity) strains found in the touched surfaces samples of Infant 

18’s own room. Lastly, both species-FEAST and SNV-FEAST found Infant 6’s microbiome was 

explained almost entirely by samples from a different room with SNV-FEAST finding a sizeable 

contribution from both the floor and isolette top and the sink basin in this different room. This is 

concordant with Brooks et al.’s finding of multiple cases of strain sharing across rooms of Infant 

6 and 12 for the different surfaces. FEAST with both data types can quantify the extent to which 

Infant 6’s microbiome was influenced by strains present in the built environment.  

Through application of SNV and species-FEAST, we can quantify any time trends for the 

influence of the built environment on the infant microbiome (Figures 4A and B). SNV-FEAST 

more consistently finds that contribution from the infant’s own room exceeds contributions from 

a different room over time (paired Wilcoxon signed rank test for same room > different room: 

Infant 3: p-value = 1.95 x 10-9, Infant 6: 1.0, Infant 12: 3.05 x 10-5, Infant 18: 3.81 x 10-6) as 

compared to species-FEAST (Infant 3: p-value = 0.41, Infant 6: 1.0, Infant 12: 5.8 x 10-4, Infant 
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18: 3.81 x 10-6). Interestingly, species-FEAST assigns one dominant source primarily, whereas 

SNV-FEAST more often finds a combination of sources for a given sample.   

Additionally, both SNV and species-FEAST estimated a large unknown component for all four 

infants, with Infant 18 showing the largest mean unknown component across the NICU stay 

based on SNVs (Additional file 1: Fig. S6). This unknown component is important because it 

signifies the extent to which other sources such as the mother and diet impact infant gut 

colonization.  

We then asked the question is the infant more explained by the built environment rather than 

vice-versa, the built environment is more explained by the infant. We tested this by swapping the 

infant and each of the three built environment sources (Fig. 4C and D). The estimated 

contribution of room to infant is significantly higher than the estimated contribution of infant to 

room, but this asymmetry is more pronounced with SNV-FEAST. SNV-FEAST showed 

significantly higher contribution of room to infant for two of the three surface types (floor and 

isolette top: Wilcoxon rank sum test p-value = 7.00x 10-9, touched surface: p-value = 0.0058, 

sink basin: p-value = 0.274) while species-FEAST found this to be true for one of the three 

surface types (floor and isolette top: Wilcoxon rank sum test p-value = 7.1x 10-5, touched 

surface: p-value = 0.968, sink basin: p-value =  0.998). Interestingly, the built environments of 

different rooms highly resemble each other. This is especially apparent with species-FEAST, 

suggestive of similar ecological forces operating in similar built environments. By contrast, 

SNV-FEAST reveals a higher diversity of contributing sources of the built environment samples 

to other NICU built environments, once again highlighting the utility of performing source 

tracking with SNVs.  
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  8 Figure 4. Source tracking of infant gut microbiome in the NICU. (A) species-FEAST and (B) 

SNV-FEAST applied to infants in the NICU. Each bar represents one sampling day in the NICU stay of 

an infant. Infants 3 and 6 stayed in the same room, but at different times. The same applies to Infants 12 

and 18. The contribution of a different room was determined by using samples from Infant 12’s room for 

Infants 3 and 6, and samples from Infants 6’s room for Infants 12 and 18 for each of the categories of 

surfaces per infant: touched surface, sink basin, or floor and isolette top surface. The asterisks represent 

the result of a paired Wilcoxon signed rank test indicating whether the total contribution of surfaces from 
the infant’s own room were higher than contributions from the other room. Iterative swapping of the 

infant sink and each potential source for source tracking with (C) species-FEAST and (D) SNV-FEAST. 

The first column shows source tracking results in which the infant was treated as the sink. In each column 
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after the first column, a different environmental source was swapped with the infant and considered as a 

sink. The brackets indicate the pairs of results that are compared using a paired Wilcoxon signed rank test. 

For all results, the following symbols represent the results of the statistical test:  **** for p-value < 

0.0001, *** for p-value < 0.001, ** for p-value < 0.001, * for p-value < 0.05, and n.s. for p-value > 0.05. 

 

Global source tracking of ocean microbiomes 

The ocean microbiome is a complex community that displays biogeography at the species 

and functional levels 110,128. To further understand global patterns of ocean microbiomes, we 

applied SNV and species-FEAST to the Tara Oceans microbiome dataset 128. In the source 

tracking context, rather than defining sharing as evidence of a transmission event (which is more 

likely in mother-infant data), estimated source contributions at best explain the extent to which a 

given ocean sample resembles other ocean samples. On one extreme, an ocean sample might be 

entirely explainable by a single ocean’s samples, and at the other extreme, an ocean sample 

might be explainable by multiple oceans at the same time. Another alternative is for an ocean 

sample to not be explainable by any of the provided sources, resulting in a high unknown 

component and potentially suggesting high endemism. These source tracking estimates could be 

indicative of the extent to which oceans mix or may be reflective of similar niches.  

 Tara Oceans is composed of 182 whole metagenomic sequencing samples derived from 

64 stations at multiple depths. Previous research indicates that temperature is one of the highest 

drivers of variability in microbial composition in the ocean 128,129. For this reason, we restricted 

the source tracking analysis to sinks and sources from the same temperature and depth range: 

above 20 degrees Celsius and within an average of 5 meters below the surface.  
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  9 Figure 5. Microbial source tracking in the Tara Oceans dataset with SNV and species-FEAST. 

World map indicating the location of sampling sites (A). Source tracking estimates for the contribution of 

different oceans to the South Pacific (n=16) (B) and Indian Oceans (n=16) (C) are depicted with vertical 

bars. In each experiment, all stations around the world excluding those from the “sink” ocean are 

considered potential sources. Light blue, for example, represents the total contribution of the four stations 

from the Mediterranean Sea that had samples in the surface layer that were also greater than 20C in 

temperature. 

 



 59 

 

  10 Figure 6. Source tracking with ocean samples.  Distance decay in contribution of a “source” ocean 

to a “sink” ocean when using (A) species-FEAST and (B) SNV-FEAST. In each experiment, only stations 

from one ocean were considered as sources for a given sink station. For example, when performing source 

tracking between the Mediterranean and North Atlantic, for each Mediterranean station, the 10 available 

North Atlantic stations were considered as potential sources. Thus, plotted are 10 points for a given 

Mediterranean sink, where each point represents the contribution of a source station from the North 

Atlantic to the Mediterranean sink station in question. Shown in inset text are the slope and t-test p-value 

for the slope. (C) and (D) are flipped source tracking analysis with the Red Sea and Mediterranean, as 

well as the South Pacific Ocean and North Atlantic Ocean using species-FEAST and SNV-FEAST, 

respectively. 

 

First, we performed source tracking between oceans using SNV and species-FEAST. We 

treated each station around the world as a sink and estimated the contribution of different oceans 
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around the world to that sink (Methods). Unknown represents any portion of the microbiome in 

these sink samples that cannot be explained by any of the provided source samples. We found 

that species and SNV-FEAST estimate different amounts of sharing between oceans, where 

SNVs estimate a higher unknown on average, potentially indicative of endemism. The finding 

that SNV-FEAST estimates a higher unknown contribution on average is most evident in the 

North Pacific, North Atlantic, South Atlantic, and Mediterranean oceans (Additional file 1: Fig. 

S7). Additionally, in some oceans, SNVs identify contributions from oceans that species-FEAST 

does not detect (Fig. 5, Additional file 1: Fig. S7).  For example, in applying FEAST to Indian 

Ocean samples we find that there is measurable sharing of microbes with the Mediterranean Sea, 

but this is not detected with species (Fig. 5C). Such differences were found in samples from 

other oceans as well (Additional file 1: Fig. S7).  

Next, we assessed whether source tracking estimates display a distance-decay 

relationship. Previous studies found that genetic distance, such as that represented by fixation 

index FST, increases with geographic distance between populations 130,131. Based on these 

findings, our expectation was that samples that are further away from a given station will have 

reduced resemblance to that station. To assess this distance-decay relationship, we plotted 

pairwise source tracking results across all possible pairs of ocean samples (Fig. 6A and B). We 

found that indeed as the distance increases, the % explainability of a given source ocean 

decreases -0.23 % per thousand km according to species-FEAST (t-test p-value < 1 x 10-16), and 

-0.5% per thousand km according to SNV-FEAST (t-test p-value = 0.0018). The steeper slope for 

SNV-FEAST suggests that SNVs may be more sensitive to distance decay signals on a global 

level. 
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Finally, we investigated whether some oceans have higher estimated contributions to 

other oceans than vice versa, potentially indicative of the directionality of transmissions (though 

see Discussion).  Specifically, we investigated the relationship between the Red Sea to the 

Mediterranean Sea (Fig. 6C and D). Migration from the Red Sea to the Mediterranean, known as 

Lessepsian migration, is well-documented for not only microorganisms but also macroorganisms 

like fish 132–134. Additionally, recent studies may suggest that anti-Lessepsian migration of 

bacteria (Mediterranean to Red Sea) is more common than Lessepsian migration 135. Studies find 

that Mediterranean has brine pools that produce a similar environment to the Red Sea’s 136, 

allowing for bacteria from the MS to potentially thrive in the RS.  

By swapping the Red Sea and Mediterranean as source and sink, we found that there was 

indeed a significant difference in the estimated contribution from one direction to another with 

SNVs but not species (Fig. 6C and D). SNV-FEAST found the Mediterranean explained an 

average of 15% of the Red Sea, while the Red Sea explained an average of 1.8% of the 

Mediterranean (Wilcoxon rank sum test, p-value =0.02), consistent with anti-Lessepsian 

migration.  Meanwhile, a similar analysis with species-FEAST found the Mediterranean 

explained 2.5% of the Red Sea and the Red Sea explained 4.9% of the Mediterranean (Wilcoxon 

rank sum test, p-value = 0.25). In a similar analysis between North Atlantic and South Pacific we 

found that both species and SNVs supported significantly greater contributions from the North 

Atlantic to the South Pacific, with SNV-FEAST estimating a greater contribution (17%, 

Wilcoxon rank sum test p-value = 5.1 x 10-11) than species-FEAST (10%, Wilcoxon rank sum 

test p-value =1.8 x 10-4). The same analysis performed in the other oceans is presented in 

Additional file 1: Fig. S8. 
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Together, these results suggest that on average, SNV and species FEAST generate similar 

source tracking results in the Tara Oceans dataset, with SNVs displaying stronger signals of 

endemism, distance-decay relationships, and potential directionality of transmission.  

Discussion 

Source tracking provides insight into potential source contributions to a metagenomic 

sample as well as similarities between metagenomic samples. While species abundances have 

been informative in source tracking in several studies 108,109,137–139, they may be limited in their 

resolution. SNVs provide a potential alternative because of their ability to distinguish sources of 

strain transmissions. Here we compared the ability of a previously published source tracking 

algorithm FEAST using species versus SNVs as input data. In application of species and SNV-

FEAST to simulations as well as three case studies, we demonstrate that the two input types can 

provide distinct insights into microbial sharing and similarities across different environments. As 

a hypothetical example, two unrelated samples may have very similar species composition due to 

similar colonization processes and similar environmental influences without any actual microbial 

sharing. It would be unlikely for these two unrelated samples to share rare SNVs, however. This 

distinction suggests that SNVs indeed can provide insight into the ecological processes shaping 

microbial communities that species information alone cannot, and our three case studies are able 

to demonstrate this. 

In the first case study, we confirmed previous findings that SNV sharing between mothers 

and infants decreases over the first year of life while species sharing increases 110, suggesting that 

while the infant microbiome matures to resemble adults at the species level, sources other than 

the mother may seed the infant over time. In the second case study, we confirmed source 

contributions from the NICU built environment to the infant microbiome 127, and found that 
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SNVs detect a more consistent estimate in source contributions over time compared to species as 

well as detecting contribution from sources not detectable by species-FEAST.  

In the third case study, we perform source tracking in the Tara oceans dataset 128 and 

found SNVs display a stronger distance decay relationship than species. These distance-decay 

results parallel recent findings made with gene content 140. While previous studies have 

examined the biogeography of the ocean using species profiles, genes 110,140 or amino acid 

variants from a single species (SAR11) 141, for the first time, we leverage the use of SNVs across 

all detected prevalent species in the ocean microbiome to identify proportions of sharing across 

oceans. A benefit of using SNVs in the ocean microbiome is that SNVs can track fragments of 

DNA that have moved due to horizontal gene transfer in the distant past rather than relying on 

inference of whole genomes or presence of private SNVs that may been transmitted in the recent 

past. This global-level source tracking is analogous to admixture estimation with human 

genotypes 142,143.  

We note that source tracking provides insights into similarities between microbiomes and 

potential transmissions, though the directionality is less conclusive. It is possible that increased 

contributions in one direction but not the other is suggestive of directionality of transmission. For 

example, in the case of the mother-infant data from Backhed et al. 2015, FEAST predicted 

higher contribution from mother to baby than vice versa. This is consistent with work done on 

crAss-like phage transmissions between mother and infant in the same dataset that showed 

evidence of directionality by tracking the accumulation of mutations over time that are private to 

the infant and absent from the mother 144.  But in the case of the ocean, it is possible that over 

longer time periods, differences in relative contributions from one part of the world to another 

(e.g. Mediterranean to Red Sea) are more reflective of local selection pressures that permit 
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certain species and genotypes 141. Thus, source tracking in certain instances, such as the ocean 

microbiome, at best reflects the extent of similarity between samples and is less conclusive about 

directionality.   

A popular approach used to track strain transmissions is by detecting high average 

nucleotide identity (ANI) for species shared between source and sink. For example, inStrain 113 

identifies a match between samples for a given species when ANI exceeds 99.999%. However, it 

is to be noted that inStrain provides distinct and complementary information from FEAST given 

its binarization of whether or not a strain is shared. For illustration purposes, if an infant harbors 

100 species, of which only 1 came from their mother, but that species’ strain’s relative abundance 

is 50% of the infant’s microbiome, SNV-FEAST would infer that the mother’s contribution is 

50%, while inStrain would infer that only 1/100th of the infant’s species are derived from the 

mother.  

Other studies rely on tracking transmissions of strains with private SNVs shared only 

between the sink and putative source 110,114,116,118. The private marker allele tracking approach in 

Nayfach et al. 2016 provides an improved estimate of true percentage of species that share some 

portion of their genome with putative sources compared to inStrain (Additional file 1: Fig. S2, 

S3). It is possible that requiring only 5% of marker alleles to be shared rather than a 99.999% 

ANI permits detection of horizontal gene transfers between lineages residing in mothers and 

infants 145,146. However, in FEAST, by using any SNV with an informative distribution across 

sources as determined by our signature scoring method, we are able to quantify the relative 

contribution of all the sampled environments and assign a proportion to these putative sources. 

Another advantage to FEAST is that the contribution of unknown sources can be quantified. For 
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example, the significant fraction of marine biodiversity estimated to be ‘unknown’ may be 

endemic, as previously noted in the Mediterranean 147.  

A drawback, however, with using SNVs over species is deeper, whole genome 

sequencing is required to accurately call SNVs. Moreover, even when there is sufficient 

coverage, there is still the challenge of a large number of SNVs that make FEAST 

computationally prohibitive. We demonstrate one way to subset SNVs that uses a scoring method 

for informativeness, but there may yet be other methods for filtering SNVs to the most 

informative set. Another potential caveat of SNV filtering is that not all species present will be 

represented in the final signature SNV set (Additional file 1: Fig. S4).  Species with higher 

abundance are more likely to be represented in the signature SNV set. However, we show that 

not all species need to contribute signature SNVs in order to make accurate inferences, and 

likewise, not all SNVs are needed to make accurate inferences (Additional file 1: Fig. S1).  

Ascertainment of SNVs from metagenomic data in a high-throughput manner, especially 

common SNVs with microbiome genotyping technology 148, is becoming an increasing priority 

for the field as metagenomic datasets become more abundant. A genotyper for prokaryotes has 

already been developed and tested on a catalog of over 100 million SNVs in order to characterize 

population structure 148. Such a catalog of informative SNVs could be invaluable for source 

tracking. With source tracking enabling us to characterize samples by their relationship to known 

samples, we have a powerful tool to explore samples in new contexts we have yet to discover. 

 

 

Conclusions 
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SNV-FEAST is a novel approach to accurately perform source tracking using metagenomic data. 

By using our algorithm for determining signature SNVs, one can identify relevant SNVs that can 

be directly provided to FEAST, an existing source tracking approach that can successfully 

estimate sources using species abundance data. We demonstrate that SNV-FEAST not only 

accurately quantifies ground truth proportions in simulations but can also recapitulate previous 

findings in real-world infant datasets. In each test scenario, SNV-FEAST and species-FEAST 

yield different outcomes, with SNV-FEAST frequently out-performing species-FEAST. Finally, 

in applying SNV-FEAST to ocean metagenomic data, we uncovered distance-decay relationships 

between putative sources and sinks. With low computational cost, SNV-FEAST is able to 

leverage the increasing availability of shotgun metagenomic data to ask fascinating questions 

about microbiomes in the environment and hosts.   

 

Methods 

Data 

For simulations and analyses of infant microbiomes in the first year of life , we downloaded the 

raw shotgun metagenomic sequencing reads from public read archives under accession number 

PRJEB6456 118. We downloaded the raw sequence reads for the NICU analysis from accession 

number PRJEB323631 127, and the equivalent for the Tara Oceans analyses were downloaded 

from accession number PRJEB402 128. Data from the HMP Consortium 149 and Lloyd-Price et al 

126 was downloaded from the following URL: https://aws.amazon.com/datasets/human-

microbiome-project/ 125. 

 

https://aws.amazon.com/datasets/human-microbiome-project/
https://aws.amazon.com/datasets/human-microbiome-project/
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Estimation of species and SNV content of metagenomic samples 

We used MIDAS (Metagenomic Intra-Species Diversity Analysis System, version 1.2, 

downloaded on November 21, 2016 110 to estimate species abundance and SNV content per 

species in each metagenomic shotgun sequencing sample. The database we used to apply 

MIDAS consisted of 31,007 bacterial genomes that are clustered into 5,952 species. The 

parameters we used to estimate species abundances and SNVs were described in 150. A species 

was considered present if there are at least 3 reads mapping to a set of single copy marker genes 

on average. To call SNVs, we used the default MIDAS settings in order to map reads to a single 

representative reference genome. The mapping was done with Bowtie 2 151: global alignment, 

MAPID≥94.0%, READQ≥20, ALN_COV≥0.75, and MAPQ≥20, where species with reads 

mapped to less than 40% of the genome were excluded from the SNV calls. We excluded 

samples with depth lower than 5 reads, and excluded genetic sites using the default site filters of 

MIDAS (e.g. ALLELE_FREQ≥0.01, with the exception of SITE_DEPTH which was set to 3. 

 

Application of FEAST algorithm 

FEAST, originally introduced by Shenhav et al. 109, is an R-based method that models the 

mixture proportions for various “source” microbial samples for a given “sink” 109. This method 

utilizes expectation maximization to estimate the proportions when given any sort of count-based 

feature matrix representing the potential sources and sinks. The intuition behind the estimation 

process is that a source with a similar species distribution to the sink would have a higher 

contribution estimate to the sink. A species with non-zero counts only in source j and the sink 

would increase the estimated contribution of source j. However, in many cases, the same species 

are found in multiple sources simultaneous. The algorithm does not uniquely assign a species to 

a source but rather simultaneously utilizes all species information to infer the source 
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contributions. The method was originally tested and evaluated on species and not on more fine 

scale genetic data such as SNVs. The number of different species, on average, range in number 

from a few hundred to a few thousand, while the number of possible nucleotide sites that vary 

across different sources can number in millions. For this reason, a SNV-filtering process is 

necessary so that the algorithm can run within a reasonable time and with reasonable memory 

requirements.  

 

Application of FEAST to the Backhed et al. 2015 dataset 

For both species and SNV-FEAST, the same set of sources and sinks were fed into the 

FEAST algorithm. In the case study of infants in the first year of life 118, the sink consisted of the 

infant fecal sample at either four days, four months, or 12 months and the potential sources 

consisted of fecal samples from the true mother, three randomly selected mothers from the same 

dataset, and also any previous time points for the infant. 

Species-FEAST utilized all species present in the infant whereas SNV-FEAST used 

signature SNVs from the subset of species that had signature SNVs. Shown in Additional file 1: 

Fig. S4 are the distribution of species included in species and SNV-FEAST. 

 

Application of FEAST to the Brooks et al. 2017 dataset 

For the case study of infants in the NICU 127, the sink consisted of the fecal sample of the 

infant at a given time point and the potential sources consisted of pooled reads from the touched 

surfaces, the sink basin and the floor and isolette top from both the infant’s own room as well as 

a different room. The different room was Infant 12’s room for Infants 3 and 6, Infants 6’s room 

for Infants 12 and 18. 
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Application of FEAST to the Sunagawa et al. 2015 dataset  

For the Tara Ocean 128 samples, the sink consisted of the surface water sample from the 

ocean station of interest while the sources consisted of surface water samples from every other 

station from every other ocean in the world. To study the relationship between source tracking 

estimates and geographic distance, we analyzed all oceans as either a sink or source against all 

other possible oceans. To compute geographic distance between stations, we applied the 

Haversine distance to the longitude and latitude of the sampling sites provided by 128 using the 

package “geosphere” 152. Source tracking estimates were computed as described above using 

either SNV-FEAST or Species FEAST. The regression line for the distance decay analysis was 

computed using a linear mixed model “contribution ~ distance + (1| sink_ocean)”.   

 

Determining the signature SNV set 

Signature SNVs were identified as described in the main text. We provide specific steps for 

determining signature SNVs: 

(1) Filter sites: only sites of the genome with at least the required number of reads mapping 

to the site are considered. In the case study of infants in the first year of life 118 and 

infants in the NICU 127, the minimum coverage requirement is 10 across the sink and J 

sources. For the Tara Ocean 128 samples, the minimum coverage is five reads 128. 

Additionally, sites that are biallelic must have more than one read mapped to each allele 

to be considered.  

(2) Perform per site per source parameter estimates: for each potential source compute the 

estimated allele frequency in the sink  under two different hypotheses: 
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Hypothesis 1: Source i with allele frequency 𝑝𝑖 explains the allele counts in the sink.  

θ̂ = 𝑝𝑖 

Hypothesis 2: A combination of all other sources except i (sources 𝑗 ≠ i) explain the 

observed allele count distribution in the sink. The estimate of the sink allele frequency is 

computed using a mixture of the allele frequencies 𝑝𝑗from those sources. The mixing 

parameter α𝑗 is learned using Sequential Least Squares Programming (scipy.minimize() ) 

with the constraint of summing to 1 with bounds of 0 to 1 inclusive: ∑ α𝑗𝑗≠𝑖 = 1.  

 

θ̂ = ∑ α𝑗𝑝𝑖

𝑗≠𝑖

 

(3) Compute per site per source log likelihoods: Compute the binomial log-likelihood under 

hypotheses 1 and 2, given n reads with the reference allele and m reads with the 

alternative allele in the sink: 

 

𝑙(θ̂) = 𝑛 𝑙𝑜𝑔 θ̂ + 𝑚 𝑙𝑜𝑔(1 − θ̂) 

(4) Compute per site per source log likelihood ratio: 

𝑙1(𝜃) − 𝑙2(𝜃)  

 

(5) Compute per site summary signature score: The maximum log likelihood ratio per site is 

the signature score for that SNV, representing how favorably one of the sources explains 

the sink over all other sources 

(6)  Filtering of SNVs using signature score: One signature score for that SNV represents 

how favorably one source explains the sink better than all other sources. All the scores 
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are ranked across SNVs and SNVs with scores that are greater than two standard 

deviations over the mean signature score within each 200 kbp window of the genome are 

retained as signature SNVs. This window size was chosen for to optimize run time and 

memory requirements. 

 

Note, if only one source passes minimum coverage filtering, 𝑙2(𝜃) = 0  resulting in a 

very high likelihood ratio as represented by 𝑙1(𝜃) for the one source. These SNVs are 

more likely to pass the signature score filtering. One exception for SNVs that are 

included in the signature SNV set without passing signature score filtering are SNVs with 

an allele that is completely unique to the infant, as these represent SNVs that are 

potentially derived from an unknown source. Signature SNVs are obtained from the SNV 

profile of every species for which there is MIDAS output.  

 

Simulating mother to infant transmission 

The mixture proportions for 28 simulated infants is shown in Table S1. Four possible 

scenarios are simulated using a combination of either low or high number of sources and low or 

high transmission probabilities of species. High transmission of species was simulated by 

drawing separate transmission probabilities for each species in each contributing source based on 

a beta distribution with a mean equal to the species relative abundance and variance equal to 0.1, 

a value selected to emulate Backhed et al.’s mean relative abundance and variance. For the low 

transmission scenario, transmission probabilities were drawn from a beta distribution with mean 

0.1 times the relative abundance of that species in the source sample and variance at 0.1. To 

determine if a species from each source was transmitted to a given infant, a binomial draw was 
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performed J times, where J = number of sources, and the probability of a mother transmitting the 

species is pj based on the beta-drawn transmission probability. If any of the draws yields value 1, 

that species is transmitted to the infant from all sources. The same simulated data under these 

scenarios is used for both SNV and species source tracking.  

The source tracking estimates are compared to the true mixing proportions using 

Spearman correlation. The significance of correlation is calculated using the stat_cor function in 

the ‘ggpubr’ package 153.  

 

Comparison to inStrain 

We ran inStrain 113 on the same synthetic samples as described above. InStrain “profile” 

113  and inStrain “compare” 113 were run for every possible infant-source pair. For example, for 

simulated infant 1 there were 10 putative sources, therefore inStrain compare was run 10 times 

for each putative source. InStrain reports popANI calculated per scaffold for a given species. To 

compute a single statistic per species, we computed the average popANI across scaffolds for a 

given species. The percent infant microbiome species that had strains shared with mother was 

computed as the number of species in which popANI was >= 99.999% divided by the total 

number of species with coverage >= 5. PopANI was only calculated in scaffolds that had >=5 

coverage in both samples of the pair.  

 

Comparison with strain tracking approach in Nayfach et al. 2016  

We applied the strain tracking approach in Nayfach et al. 2016 110 on the same synthetic 

communities described above. In Nayfach et al. 2016, strain transmissions are tracked by 

identifying ‘marker alleles’ which are private to the infant, mother, or infant-mother dyad, and 

absent from the broader population. A strain is considered to be shared if at least 5% of all 
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marker alleles for a mother-infant dyad are shared. Note that the approach for strain tracking 

proposed in Nayfach et al. 2016 utilizes SNV information outputted by MIDAS, but is not a part 

of MIDAS.  

Each simulated infant had up to 10 sources that were real maternal samples from 

Backhed et al. 2015 For each possible pair of infants and maternal sources (10 pairings per 

infant, with 48 infants), we found the set of infant-only marker alleles, mother-only marker 

alleles, and mother-infant dyad marker alleles. As described in Nayfach et al, 2016, only sites 

with minimum 30 reads and only alleles that were supported by at least 10% of the total reads 

aligned to that site were considered.  The infant marker allele and mother marker allele were 

defined as alleles that were present only in the focal sample and absent from the background 

samples (or below 3 reads = 10% * 30 reads). For the infant, the background consisted of all 

mothers (including mothers that were used to simulate the infant), real infant samples (excluding 

infants of mothers used to simulate the infant), and 337 samples of adults from the United States 

in the HMP (which includes 180 unique adults) that were obtained from the metagenomics 

repository of HMP under project ID SRP002163 and SRP056641 126,149. For the mother, the 

background consisted of all mother and infant samples in addition to the HMP samples. For 

computing shared marker alleles, an allele must be present in both the mother and infant but 

absent from the background, which consisted of all mothers and the HMP samples. 

 To compute sharing, two quantities were considered: “total sharing”, defined as % shared 

marker alleles/ (infant marker alleles + mother marker alleles + shared marker alleles) and 

proportion of infant marker alleles that are shared: % shared marker alleles/ (infant marker 

alleles + shared marker alleles). The first quantity compared to FEAST estimates was the 

percentage of infant species in which the “total sharing” was at least 5%.  The second quantity 
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compared to FEAST was the pooled proportion of infant marker alleles that are shared across all 

species.  

 

Availability of Data and Materials 

SNV-FEAST signature SNV selection is implemented in Python and available for pip installation 

via https://pypi.org/project/Signature-SNVs 154. It’s source code as well as analyses in this paper 

are available at https://github.com/garudlab/Signature-SNVs 155, licensed under GPL3. The 

version used in this manuscript is permanently available at  

https://doi.org/10.5281/zenodo.7515044 156. 

 

All metagenomic data was obtained from public repositories. The applicable accessions numbers 

are PRJEB6456 for Backhed et al. 2015 (mother-infant) 118, PRJEB323631 for Brooks et al. 2017 

(NICU) 157, PRJEB402 for Sunagawa et al. 2015 (Tara Oceans) 81, and SRP002163 and 

SRP056641 for HMP 126,149.  
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Abstract 

 

The species and genetic diversity of the human gut microbiome has been extensively quantified 

from stool and associated with important host phenotypes. However, it remains unclear whether 

diversity measured from stool reflects the spatial heterogeneity of the microbiome along the tract 

of the gut. Here, we quantify species, strain, and gene diversity along the tract of the gut from 6 

humanized, genetically identical mice gavaged with feces from the same healthy human donor, 

and then maintained on either a standard rodent diet or a fiber-rich diet. We found that species 

composition differs substantially between the upper and lower gut as well as between diet 

regimes. By contrast, strain composition is often, but not always uniform across locations along 

the gut. When two or more strains of the same species colonized the gut, the strains could be 

found at roughly similar frequencies in the majority of cases, but occasionally strain frequencies 

mailto:ngarud@ucla.edu
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varied dramatically along the gut. After controlling for strain structure, gene content still differed 

predictably based on spatial location within the gut. Finally, although the mice were provided the 

same inoculum strain composition varied considerably between mice, indicating stochasticity in 

colonization success. Cohoused mice were generally found to have much more similar strain 

compositions except in some cases, illustrating the effect of a shared environment. To understand 

if humans display similar patterns, we investigated strain occupancy and genetic diversity in a 

human cohort sampled along the gut and found that strain frequencies are also relatively constant 

along the gut. In sum, we show that diversity in the gut microbiome is shaped by diet, gut region, 

and co-housing. 

 

 

Introduction 

The human gut is a complex environment colonized by hundreds to thousands of microbial 

species. The composition of the gut microbiome has been associated with numerous phenotypes 

including intestinal diseases 158–161 and extraintestinal diseases including autoimmune disease 

160,162, cardiometabolic disease 163,164, liver disease 165 and many others 166. 

 

Typical studies on the gut microbiome focus on data collected from fecal matter and not along 

the gastrointestinal tract directly. However, the gut microbiome is not spatially homogeneous: 

many studies have found that microbiome species composition varies considerably along the 

tract of the gut 167–171. This spatial heterogeneity has been shown to be widespread in other 

animals such as mice 172, wild rodents 173, hummingbirds 174, zebrafish 175, pigs 176 and rhesus 

macaques 176. 
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While stool has been used as a proxy for the species that exist in the gut at large, there are a 

growing number of studies that indicate that the spatial organization of species along the gut has 

important health implications 158,171,177–180. This between-site variation, which is functionally and 

pathogenically relevant, is potentially lost by examining the stool microbiome alone 

158,169,170,173,174,181–183.  

 

While many studies have quantified community composition between segments of the gut at the 

species level, there is potentially important heterogeneity at the strain, gene, and single 

nucleotide level along the gut that remains to discovered 116,181,184. For example, Yang et al. 2022 

found genetic adaptations that arise in one region of the gut, enabling bacterial translocation to 

liver and inducing inflammation 184. Shalon et al. 2023 found that carbohydrate active enzyme 

and antimicrobial resistance gene abundances can differ along the gut 185. Montassier et. al. 2021 

found that antibiotics increase the number of antimicrobial resistance genes in the lower gut tract 

whereas probiotics can reduce the number of such genes 170. 

 

There are a number of questions about the sub-species spatial organization of gut microbiota that 

have not yet been thoroughly investigated. First, how do strain frequencies compare across 

locations along the gut and across hosts? Second, are these strain frequencies generic across 

species? Finally, controlling for strain structure, does gene content vary spatially and with diet? 

 

To effectively evaluate sub-species variation along the gut, direct sampling of the microbiome 

along the gastrointestinal tract is important. Due to the difficulty of obtaining and sequencing 

samples collected along the human gut, humanized mice serve as a useful model of the human 
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gut due to the ability to control for extraneous variables while testing bacteria transplanted from 

human fecal samples 172,186. Mice and their microbial communities respond to high-fat, high-

sugar diets in much the same way humans do 172, and they additionally show different changes in 

species composition along the gut with respect to diet 172. Validating findings in a murine system 

with what can be collected from humans allows us to understand the generalizability of our 

findings.   

 

In our study, we evaluate how spatial location, co-housing, diet and drug treatments affect 

species, gene, and nucleotide differences along the mammalian gut. We first study whole 

metagenome shotgun data collected from five different gut regions of six humanized mice on a 

standard murine diet or fiber-rich diet consisting of guar gum. Guar gum is a galactomannan 

polysaccharide that is not digestible by the mammalian host 187,188(Fettig et al. 2022, Ohashi et al. 

2015) and will pass into the large intestine where it can be readily fermented by bacteria, which 

then decreases pH. We employ an array of analyses to understand how location in the gut, co-

housing, and diet drives differences. We then evaluate species and strain diversity using 

previously published data collected from endoscopy and stool collection in humans. 

 

We find that species composition differs drastically between the upper and lower gut as well as 

between diet types. Within a host, the same strains are often colonizing different regions of the 

gut and usually at similar frequencies at the regions in which the species is detected. However, 

we detect similar spatial organization patterns of B. wexlerae strains in three of our mice, 

indicating that some species can display replicable strain-level spatial organization along the gut. 

Despite being provided with the same inoculum of strains and, in some cases, we found that 
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hosts that weren’t cohoused were more likely to harbor different strains.. Even when strains are 

shared, they may be present at different frequencies. Despite the same strain backbone appearing 

throughout the gut of a host, gene content differed along the upper versus lower gut axis. We 

quantitatively show that the differing environmental conditions within the mammalian gut shapes 

variation of gut microbiomes. 

Results 

Data   

To understand the effect of spatial location and diet on diversity along the gut, we analyzed six 

gnotobiotic mice that were orally gavaged with the same human stool sample (Figure 1). Mice 

were equilibrated for six weeks on a standard rodent diet and then divided into two treatment 

groups: one group (mice 1, 2, and 3) continued on the same diet, and a second group (mice 4, 5, 

and 6) was placed on a diet with 30% guar gum, both for two weeks (Ng et al. 2022). The mice 

on each diet were sacrificed and shotgun metagenomic sequencing was performed on five 

intestinal segments: duodenum, jejunum, ileum, cecum, and colon (Methods, Table S1). In our 

analyses, we classify duodenum, jejunum, and ileum as regions of the upper gut, and cecum, and 
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colon as regions of the lower gut. 

 

  11 Figure 1. Schematic of humanized mouse experimental design.  Six germ-free Swiss Webster 

mice humanized over a period of 8 weeks. In the last 2 weeks, half the mice were switched to a guar gum 

diet. 

 

 

 

Species diversity differs along the tract of the gut and in different diet regimes   

 

The gut environment can vary considerably in terms of pH and osmolality (Figure S1), thereby 

having a significant impact on species relative abundances (Ng et al. 2022). As shown 

previously, guar gum diets significantly decrease pH in the cecum and colon (Wilcoxon rank sum 

test, p-value = 0.00033), and in the upper gut, pH is decreased to a lesser extent (Wilcoxon rank 

sum test, p-value = 0.042 ) (Figure S1) (Ng. et al. 2022). Microbial fermentation of complex 

carbs in the cecum and colon is known to produce short chain fatty acids which acidify the gut 

189. As a potential explanation for the lower pH in the lower regions of the gut (cecum and 

colon), Ng et al. 2022 found that mice on guar gum had a three fold increase in levels of 
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butyrate, a short chain fatty acid 189. With 16S rRNA sequencing, Ng et al. 2022 detected family-

level shifts in the composition of microbiota in the colon, suggesting that microbial communities 

can differ spatially within the gut and across different environmental regimes (e.g., diet).  

 

Here we assessed the impact of diet and gut region on the species abundances ascertained from 

shotgun sequencing data instead of 16S data (Figure 2A). Diet is a major driver of species 

diversity, with guar gum mice displaying lower alpha diversity compared to control mice across 

all regions of the gut (paired Wilcoxon signed rank test, p-value = 0.036).  Gut region is also a 

major driver of species of diversity, with the colon displaying significantly more diversity than 

all regions in the upper GI tract (paired Wilcoxon signed rank test, p-value = 0.016, 0.016, 0.031 

for duodenum, jejunum and ileum respectively), irrespective of diet. We found similarity alpha 

diversity across the upper gut.  

 

A principal coordinate analysis (PCoA) using beta diversity (Bray-Curtis dissimilarity index) 

computed on the species relative abundances in all samples further revealed the impact of diet 

and gut region on species diversity (Figure 2B). Control mice 1, 2, and 3, separate from guar 

gum-fed mice 4, 5, and 6 along axis 1 of the PCoA plot, indicating that diet is a key driver of 

species composition. This is consistent with findings from Ng et al. 2022 that diet drives changes 

in taxa composition primarily by altering pH and osmolality within the gut. While these results 

could in principle be due to a cage effect since mice 1, 2, and 3 were cohoused, this is unlikely 

because guar gum-fed mice 4 and 5 were in a different cage from mouse 6 and yet clustered on 

the PCoA plot (Figure 2B, Bray-Curtis values shown in Figure S2A). Additionally, samples 

separate along axis 2 of the PCoA plot by gut location (i.e., upper gut or lower gut) irrespective 
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of diet, indicating that gut region is also a major driver of species composition  (Figure 2B, 

Bray-Curtis values shown in Figure S2C-D). 

 

Diet and tissue community composition changes along the gut are also apparent at the family 

level (Figure 2C). For example, Verrucomicrobiaceae is enriched in the upper gut and 

Bacteroidaceae in the lower gut.  This latter finding is consistent with Ng et al. 2022 findings 

with 16S data, where the expansion of the Bacteroidaceae family in the cecum and colon was 

thought to be the result of more acid-tolerant Bacteroides in the same niche. Additionally, like in 

Ng et al. 2022, guar gum mice experienced an increase in Lachnospiraceae in relative to control 

mice, which may reflect increase in butyrate producer Blautia as a result of the fiber rich diet. 

Unlike the Ng et al. 2022 16S findings, however, we did not observe a loss of the 

Erysipelotrichaeceae family on the guar gum diet. Additionally, the fiber-rich guar gum diet 

seems to suppress members of the Lactobacillaceae, resulting in Lactobacillaceae being at lower 

abundance in mice 4, 5, and 6. Together, our results show that diet and tissue drive broad-scale 

shifts in community composition that are evident at various taxonomic levels. 
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  12 Figure 2. Species diversity along the gut (A) Shannon diversity estimates in different gut 

regions and diet regimes (two-sided Wilcoxon rank sum test between tissues using all mice 

across both diet groups, * for p-value < 0.05, ** for p-value < 0.01) (B) PCoA using species beta 

diversity shows that samples cluster by gut region and diet. Beta diversity was calculated using 

the Bray-curtis dissimilarity index between relative species abundance of all samples. Samples 

are colored by diet and gut region. Each point is labeled with the corresponding host ID (1-6). 

(C) Relative abundance of taxa at the family-level at the five gut regions. 

 

 

Nucleotide diversity along the gut within versus between hosts 

 

We next asked whether sub-species diversity at the single nucleotide level also varies spatially 

along the gut. To do so, we calculated nucleotide diversity (pi) within and between mice 

(Methods) for each of the 36 most prevalent and abundant species (Figure 3).  

 

First, to understand diversity within the guts of individual mice, we computed diversity within 

gut regions and between gut regions for each species observed in a host. Within a single gut 
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region in a given host, distributions of nucleotide diversity ranged from as small as 1.2 x 10-5 /bp 

in Guyana massiliensis (mouse 5’s cecum) to as large as 1.1 x 10-2 /bp in Bacteroides vulgatus 

(mouse 1’s colon). 

 

As previously argued 150 high nucleotide diversity values (>1 x 10-3/bp) are inconsistent with a 

single strain diversifying within a host over the course of 8 weeks given conservatively high 

mutation rates (μ~1 x 10-9)190 and generation time estimates (~10 generations/day ) 191. Instead, 

these high diversity values are most consistent with multiple, genetically distinct strains co-

colonizing the host. Previous work has shown that human commensal gut bacteria are well-

described by an oligo-colonization model in which some small number (~1 x 10-4) of strains of 

the same species co-exist 150,192. 

 

Next, to understand whether diversity within a mouse for a given region of the gut resembles 

overall diversity in the broader community, we computed diversity between pairs of mice. 

Between host distributions of pairwise nucleotide diversity showed a large range from 1.1 x 10-

5/bp in Clostridiales bacterium to 1.3 x 10-2/bp in Adlercreutzia equolifaciens. Similar to our 

conclusion that within-host pi > 1 x 10-3/bp is inconsistent with diversity levels arising from a 

single strain, we reasoned that pairs of samples from different hosts with pi>10^-3/bp is also 

indicative of multiple strains present across the mouse cohort. We conclude that five of the 36 

species—B. vulgatus, A. equilofaciens, C. bacterium, B. uniformis, and B. wexlerae—have 

patterns consistent with multiple strains across the mouse cohort. This also implies the presence 

of multiple strains of these species in the original inoculum.  
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We hypothesized that mice were likely to be colonized by multiple strains when exposed to 

multiple strains, which would be reflected by high within-host nucleotide diversity.  The average 

within- and between-host pi values were highly positively correlated (spearman correlation = 

0.98), such that species with higher between-host pi values tended to have higher within-host 

pairwise pi values. The five samples with the highest mean between-host pairwise pi values 

greater than 1 x 10-3 also had mean within-host pairwise pi values greater than 1 x 10-3, 

supporting the idea that oligocolonization is common in the mouse gut when exposure to 

multiple strains occurs. 

 

We next asked whether pairs of locations along the gut display similar distributions of nucleotide 

diversity compared to a single location. Indeed,  species-level averages of within-host pairwise pi 

values were highly positively correlated with the corresponding average pi values within a gut 

segment (spearman correlation = 0.97). All species with mean within-host pairwise pi > 1 x 10-3 

also had mean within gut region pi> 1 x 10-3. This indicated that multiple strains were often able 

to colonize and persist in the same gut segment.  The species with the highest average within 

host pi was B. vulgatus (pi across gut regions  = 5.6 x 10-3 ,pi within gut regions = 5.5 x 10-3 ), 

likely reflecting the presence of multiple strains in most hosts and gut regions. Whereas the 

species with lowest within host pi was B. intestinihominis (pi across gut regions  = 2.3 x 10-5 ,pi 

within gut regions = 2.6 x 10-5), likely reflecting monocolonization across most hosts and gut 

regions.  Importantly, this finding does not exclude the possibility that these strains display finer 

grain spatial segregation that our sampling could not detect. 
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  13 Figure 3. Nucleotide diversity within and between pairs of  samples. Nucleotide diversity (pi) 

computed for 36 species within each tissue for each mouse (see Methods for selection criteria for these 

species). Inter-sample pi was computed between pairs of samples either from the same host or different 

host. Asterisks for intra sample calculations represent the mean sample-specific pi, whereas asterisks for 

inter sample comparisons represent the mean of pi values for multiple intersample calculations. Species 

appear in descending order according to their between-host pairwise pi. 

 

 

Strain sharing across gut segments and across hosts given the same inoculum 

 

Given that mice were exposed to the same inoculum, we next hypothesized that different mice 

would be colonized by the same strains. To test this hypothesis, we estimated rates of strain 

sharing within hosts between gut regions and between hosts using population average nucleotide 

identity (popANI) 113. PopANI quantifies the proportion of fixed differences between 

populations, with values below 99.999% indicative of at least one strain not shared between two 

populations 113. 

 

PopANI was calculated for all species between all pairs of samples (Methods). We examined the 

distribution of popANI for the five species with mean pairwise pi values exceeding 1 x 10-3, as 

these would allow us to explore the dynamics of strain colonization when mice were potentially 
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exposed to multiple strains. As a control, we also examined the five sufficiently high coverage 

species (see Methods) with the lowest mean inter-host pi values, which we assumed had only 

one strain across the mouse cohort and would therefore have much simpler colonization 

dynamics (Figure S3).  

 

Inter-segment popANI  

Species with low mean inter-sample pi almost always had popANI values above the 99.999% 

strain sharing threshold both between segments along the gut and between mice, indicating that 

all samples for these species shared the same strain. Species with high average pi between 

segments pi also overwhelmingly had popANI values close to or above the 99.999% strain 

sharing threshold between segments along the gut (Figure 4A). However, unlike the low 

diversity species, a few instances were observed in which popANI values were below the 

99.999% cutoff, indicative of different strain occupancies along the gut.  

 

B. wexlerae shows an excess of intra-host comparisons yielding low popANI values, indicating 

that the strains of this species could exhibit spatial partitioning along the gut. We found that for 

this species in particular, within-host comparisons involving the ilea and jejuna of mouse 1 and 2 

(and ilea of mouse 3 and 6) had disproportionately low popANI values (Figure 4B). This 

indicates that ileal and jejunal samples harbor strains not present elsewhere in the control mice 

(mice 1, 2, and 3).  B. wexlerae is thus an example of a species that displays strain-level spatial 

variation along the gut. Notably, B. wexlerae species is found at relatively high abundances 

throughout the gut, while the other species specialize in the upper or lower gut, such as B. 

uniformis and B. vulgatus which are primarily in lower gut respectively (Figure S4). 
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Inter-host popANI 

Species with high mean inter-segment pi have distributions of popANI values that extend well 

below the strain sharing threshold, unlike species with low mean inter-segment pi values. This 

points to comparatively lower rates of strain sharing between hosts (Figure 4A). This indicates 

that mice are not necessarily colonized by the same strains, even when exposed to an identical 

inoculum.  

 

Because several mice were co-housed, we asked whether the lower inter-host popANI values 

were primarily driven by pairs of mice in different cages. Coprophagy has been shown to 

facilitate transmission of gut microbiota between cohoused mice (citation). This led us to 

hypothesize that mice in the same cage would share all strains, whereas those not cohoused 

together would exhibit drastically lowered rates of strain sharing. We plotted popANI values for 

the same tissue in different mice either co-housed or not co-housed (Figure 5). Predictably, the 

rate of strain sharing was unaffected by cohousing (or diet) among species with a single strain in 

the metapopulation. However, certain tissue-matched samples from cohoused mice did have 

popANI values below 99.999% indicating that mice in the same cage did not necessarily harbor 

the same strains. Mice that were housed separated tended to have comparatively lower rates of 

strain sharing than those housed together. Given the limits of our dataset, however, it’s 

challenging to disentangle the effects of differential diet from cohousing: all mice except for 

mouse 6 were cohoused with the other mice on the same diet.  
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  14 Figure 4. PopANI values within versus between hosts. (A) Results are partitioned based on mean 

inter-sample pi values, whereby >10^-3/bp are more consistent with multiple strains present in the 

innoculum and <10^-3 is more consistent with a single strain present. PopANI was computed  between 

pairs of samples from different gut regions from the same host (“Within host”) or between different hosts 

(“Between hosts”). The 99.999% strain sharing threshold is marked in red. Points below this threshold 

indicate that at least one strain is not shared between the two populations being compared. (B) Within-

host popANI values are plotted for B. wexlerae. An excess of comparisons involving jejunum (blue) and 

ileum (yellow) in mice 1 and 2 have popANI values below 99.999%, indicating the presence of a strain 

not shared elsewhere in the gut. 

 

 

B. producta, Coprococcus sp. 62244, and C. bacterium—3 of the 5 species with mean inter-

sample pi < 1 x 10-3—exhibit between-host comparison popANI values below 99.999%, 

although these popANI values are much higher than those observed in species with mean inter-

sample pi ≥ 1 x 10-3 (Figure S5). Two of these species (B. producta, Coprococcus sp. 62244) 

also exhibited within-host comparison popANI values below 99.999% in mouse 1. This could 

represent noise introduced by low coverage (Figure S4) or that these species do in fact have 

multiple strains despite having low inter-sample pi values. 
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  15 Figure 5. PopANI between the same gut segments in different hosts either co-housed or not co-

housed  PopANI between mice for species with either multiple strains (left) or a single strain (right) in the 

population, further separated by whether the two mice being compared were cohoused or not. The 

99.999% strain sharing threshold is marked in red, with points below this line signifying that at least one 

strain is not shared between the two samples being compared. 

 

 

Strains colonize distinct locations of the gut at similar frequencies  

 

Our results indicated that strains successful in colonizing a host are present  throughout that 

host’s small and large intestines. However, previous work has shown that environmental 

gradients exist along the gut 189(Figure S1). Thus, we hypothesized that strains may exist at 
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different frequencies along the gut, reflecting either stochastic processes or their differential 

fitness in the context of distinct ecological niches found along the tract of the gut.  

 

To ascertain whether strains are colonizing the gut at similar or different frequencies , we plotted 

site frequency spectra (SFS) for B. wexlerae in all samples (see Methods). An SFS represents a 

distribution of allele frequencies. An enrichment of loci with alleles at intermediate frequency 

alleles is inconsistent with diversity arising from a single strain present in the gut, and instead is 

consistent with  the presence of multiple strains, as these represent variant sites that are fixed 

between the strains 150,192. Assuming that samples carry the same mixture of strains, differing 

distributions of allele frequencies can indicate varying strain abundances across samples.We 

focused on B. wexlerae and B. uniformis, giving us the opportunity to observe strain dynamics in 

species with high (B. wexlerae) and low (B. uniformis) levels of subspecies spatial structure, as 

inferred from popANI results.  
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  16 Figure 6. Site frequency spectra for B. wexlerae and B. uniformis.  (A) SFS for B. wexlerae in all 

samples in mouse 1. (B) SFS for B. uniformis in all samples in Mouse 4. (C) SFS for B. wexlerae in 

jejunal samples from all mice (i.e., between). (D) SFS for B. uniformis in colonic  samples from all mice. 

SFS samples are colored by tissue type. 
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Qualitatively, allele frequency distributions for B. wexlerae and B. uniformis are more similar 

within mice 1 and 4 (Figure 6A-B) than they are within the same tissue across mice (Figure 6C-

D). Note that B. uniformis was not found at high abundances in the upper gut (particularly in the 

duodenum and colon), which prevented high-fidelity SFS from being plotted for those samples. 

Despite how relatively similar within-host allele frequency distributions could be, the strain-level 

spatial variation we identified in mouse 1 (Figure 4B) is evident in the within-host SFS shown 

here (Figure 6A). Generally, many samples for both species harbor multiple strains 

simultaneously, as evidenced by the frequent enrichment in intermediate alleles. 

 

To quantify the similarity between strain abundances both within and between mice, we plotted 

2D SFS for B. wexlerae and B. uniformis (see methods). 2D SFS show the corresponding allele 

frequencies for loci in two samples on the x and y axes, respectively. An enrichment of loci at the 

same or similar allele frequencies indicates that the same mixture of strains exist in both samples 

at similar abundances. For each 2D SFS, we fit an OLS linear regression between the allele 

frequencies in the samples being compared (see Methods). Regression slopes closer to 1 provide 

strong indication for similar strain abundances between samples.  
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  17 Figure 7. Comparison of  allele frequency distributions between pairs of samples within and 

across mice. Each plot compares allele frequency distributions of B. wexlerae subpopulations in pairs of 

samples, at select loci (see Methods). (A) Pairwise comparisons of B. wexlerae allele frequencies between 

colon versus other tissues in mouse 1 (control diet). (B) Pairwise comparisons of B. uniformis allele 

frequencies between colon versus other tissues in mouse 4 (guar gum diet). (C) Pairwise comparisons of 

B. wexlerae allele frequencies in jejunal samples of mouse 1 versus other mice. (D) Pairwise comparisons 

of B. uniformis allele frequencies in colonic samples of mouse 1 versus other mice. 

 

 

We hypothesized that allele frequencies would be at similar abundances within hosts, and 

between hosts that were cohoused. Allele frequencies between samples tended to be more similar 

within hosts than between them for both B. wexlerae and B. uniformis, suggesting that strain 

abundances are relatively more similar within hosts than between them (Figure 7). Nonetheless, 

the strain differentiation between jejunum and ileum in mouse 1 that was detected using popANI 

is evident here from the incongruent allele frequencies distributions between colon and the two 

upper gut samples (Figure 7A), supporting the notion that ileum and jejunum do not share one or 

more B. wexlerae strains present elsewhere in mouse 1. All three mouse 4 samples in which B. 

uniformis was present with sufficiently high coverage had highly concordant allele frequency 

distributions, indicating that B. uniformis was present at similar abundances throughout the lower 
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gut of mouse 4 (Figure 7B). Contrastingly, allele frequencies were less concordant between 

samples taken from different mice for both B. wexlerae and B. uniformis (Figure 7C-D), with 

none reaching the levels of agreement observed between B. uniformis subpopulations in mouse 

4. Allele frequencies were not more similar between cohoused mice than those housed 

separately. This suggests that although hosts sharing an environment are likely to share similar 

strains, the strains are not necessarily present at the same abundances between hosts. 

 

Host diet is a stronger driver of gene-copy-number differentiation between species in 

different samples than gut location or individual 

 

Given that nucleotide variation tends to not vary significantly along the tract of the gut (Figure 

S6), we hypothesized that that gene content would also be relatively constant along the gut. To 

control for the effect of strain structure, which could significantly drive gene copy number 

differences, we limited our analysis to the five aforementioned species with likely a single strain 

present (or, in other words, had pi < 1 x 10-3 /bp). Gene copy numbers were calculated for all 

genes in the pangenome of these species (see methods). For each species, PCoA was performed 

using Bray-Curtis dissimilarity indices calculated from these gene copy numbers (Figure 8A-E, 

Bray Curtis values shown in Figure S7). PCoA was also performed using genetic distance as 

represented by F-st values (see Methods for Fst calculation, Figure 8F-J), another pairwise 

metric that measures the degree of genetic differentiation between two samples (see Methods). 

Because we selected five species with no strain structure, we hypothesized that genetic variants 

would not exhibit spatial organization along the gut or between mice.  
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  18 Figure 8. PCoA on gene copy number and genetic variation Species-level PCoA was performed 

on samples using gene copy numbers (A-E) and genetic differentiation (F-J). PCoA plots are shown for 

(A, F) B. cellulosilyticus, (B, G) B. producta, (C, H) B. bacterium, (D, I) Coporococcus (sp. 62244) , and 

(E, J) P. distasonis all of which are assumed to have a single strain across mice. 

 

Counter to our expectation, gene content did vary along the tract of the gut for all five of the 

species examined. Specifically, samples clustered based on whether they were from the upper or 

lower gut, respectively. While it is unclear if these differences in gene copy number have 

implications for community function, they do suggest that gene duplication and loss events may 

provide a mechanism for bacterial populations to adapt to the different environmental conditions 

found in the mammalian gut. We also used genetic distance computed using the fixation index 

Fst, to perform PCoA on the samples. Three of the five species (B. cellolosilyticus, B. producta, 

and P. distasonis) exhibited a spatially organized distribution of genetic variation along the gut, 

with populations of species within a segment of the gut (upper or lower) being more similar to 

each populations from a different segment. This demonstrates that both genetic variation and 

gene content can vary spatially along the gut, but that gene content can also vary independent of 

there being genetic variation. Notably, we rarely detected differences in gene copy number 

driven by diet/cohousing. When using inter-sample pi for PCoA, Coprococcus (sp. 62244) 
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clustered subtly by cohousing group, suggesting that genetic differentiation could be occurring as 

a result of physical separation of mouse populations or differing diet regimes.  

 

Source tracking 

We sought to quantify sharing across tissues and mice on using inference on the collective set of 

species and SNVs. Source tracking has been previously used to discern the influence of family 

members on a host’s microbiome 109,193, or the environment on the host’s microbiome 127,194. If 

we considered the colon a sink for microbes in other parts of the gut, we asked which tissues are 

the highest contributors to the colon. We applied source tracking with FEAST 109 using two 

approaches, either species abundance as input or a set of signature SNVs (see Methods, 193). We 

observe that the species content of tissues mostly resemble the nearest tissue in the gut, 

particularly the tissue that preceded that tissue within the lower and upper gut (Figure S8). For 

example, jejunum most resembled duodenum, and ileum most resembled jejunum. Cecum and 

Colon most resembled one another. Using SNVs, we find that multiple neighboring tissues 

contribute to the tissue of interest with the strongest contributors being the nearest tissues 

(Figure S8).  

 

We next asked how much mice resembled one another. Indeed, mice that cohabitate show the 

highest source tracking estimates (Figure S9). Interestingly, SNVs are able to trace higher 

estimates of sharing across mice of the same diet but different cages (Figure S9).  

Discussion 
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Studies in a wide range of host species have been informative in understanding the gut 

microbiome of mice and humans. For example, Kokou et al. 2019 found habitat filtering in the 

gut of seabass was primarily by gut segment and less by diet 198. Studies in honeybees 199 and 

plant rhizospheres 200 give further evidence that spatial organization along the “gut” may likely 

be more a norm than an exception. In a study of humanized mice, Turnbaugh et al. 2009 found 

that mice were stably colonized along the gut by the microbes from a human donor, and also that 

diet could rapidly alter the spatial structure of the microbiome 172. Our observation that the 

regions of the upper GI tract in mice had similar diversity levels to each other has also been 

demonstrated canines and emu where the duodenum, jejunum and ileum on average have lower 

diversity than the cecum or colon 201,202. 

 

Although many of these studies do not investigate composition at a strains level, strain dynamics 

is likely playing some sort of role in the initial colonization and stability of the microbiome. 

Vega et al. 2017 found that the heterogeneity in strain colonization is primarily stochastic where 

bistability was observed in C. elegans that were given dilute inoculums of an even mixture of 

two identical but differently colored bacterial strains 203.  

 

Understanding the extent to which stochastic versus deterministic forces shape colonization is 

important for therapeutic design. Stochasticity may be an underlying reason why FMTs and 

probiotics are variable in efficacy 204–209. As an example, mother to infant transmission is highly 

variable, with many maternal strains unsuccessful in colonizing the infant and infant guts 

showing a high rate of strain turnover 146. 
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From these studies, it is evident that controlling for genetics, diet and environment is important if 

we are to discern microbiome colonization at the species and strain levels. In humans, we cannot 

fully control for genetics even in family studies, and environment and diet will often be variable 

even with careful study design. Mice are a powerful model organism to understand bacterial 

strain colonization differences due to the ability to control for genetics and environment. The 

differences in colonization patterns even with genetically identical hosts are consistent with 

findings in other studies that found that bacterial strains colonize the gut stochastically 203. 

 

Other forces acting on the gut are operating simultaneously with stochasticity to shape 

colonization. Gut colonization can be very context dependent, where results differ depending on 

which other species are co-colonizing 210and environmental factors like host diet 189,211,212. 

Sharing of environments is also important 213–215. We found that shared environment leads to 

higher rates of strain sharing between hosts, possibly because strains present in one host have 

repeated opportunities to colonize other hosts when they live in proximity. Previous research has 

shown that coprophagy facilitated similar strain composition of barcoded Escherichia coli 

between cohoused mice through migration 216. Similar migration patterns could explain the high 

rates of strain sharing we observe between cohoused mice for 5 other species in this study. 

Additionally, the biochemical environment can favor the presence of certain species. We 

observed evidence for the colonization of different strains of B. wexlerae in the ilea and jejuna of 

mice, which are also the two segments with the highest pH (Figure S1).  

 

We must also consider intrinsic qualities of the microbes that shape the stochasticity. For 

example, a strain’s ability to adhere to the gut impacts its colonization success. Dodge et al. 2023 
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found that primary colonizers were particularly successful at binding to the foregut of drosophila 

and could outcompete secondary colonizers 210. In this case and in others, a strain can preclude 

another strain from the same species from successfully colonizing. 

 

In certain species (e.g., B. uniformis), we observed evidence for the same set of strains being 

present at similar frequencies everywhere the species was found within the gut. However, we 

also observed evidence that other species (B. wexlerae) can exhibit spatial variation that is 

replicated across hosts. Our findings raise two questions: why do certain species maintain stable 

strain abundances across the species’ range, while others exhibit strain-level spatial organization 

along the gut? Notably, B. wexlerae was found throughout the gut, whereas B. uniformis and the 

other three species were most abundant in either the upper or lower gut, respectively. This raises 

the possibility that B. wexlerae’s extended ecological range (all along the length of the gut) is 

due to the fact that B. wexlerae strains monopolize different tissues in the gut. Contrastingly, 

species that exhibited more homogeneous strain mixtures across samples often seemed to be 

specialized for survival in the upper or lower gut, but not both.  

 

Without high coverage sequencing, it was difficult to definitely confirm the absence of a 

bacterial strain. Additionally, we lacked stool samples from the mice study. To truly evaluate 

variation along a spatial axis, more fine-grained sampling along the gut may be needed, 

particularly because previous studies found that variation in occupancy happened at the 

micrometer scale 203,210,217. It is therefore conceivable that strains, like species, display a more 

small-scale spatial organization than could be assessed by the sampling strategy in this study, 

warranting further research. Deeper sequencing will also allow us to assess whether the same 
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strains of species that are highly abundant in one region of the gut are present everywhere in the 

gut. 

 

Our findings point to a number of future research avenues to more definitely understand 

colonization. Disentangling the effect of diet and cohousing will be important in future work to 

understand how these two forces affect strain colonization patterns independently of one another. 

It may also be useful in a future study to systematically introduce different combinations of 

strains in a similar fashion to Jones et al. 2022’s introduction of different combinations of species 

212, which would allow us to infer how species and different strains within a complex community 

interact to shape strain-level colonization patterns. In addition, horizontal gene transfer between 

strains of the same species could have affected the strain colonization strain colonization 

dynamics we observed in our mouse cohort, including through the transfer of adaptive alleles 

between strain backbones. Thus, developing methods to detect horizontal gene transfer events in 

this metagenomic dataset and others is warranted. Recently, Dubinsky et al. previously studied 

strain colonization along the guts of a cohort of humans for which gut endoscopy and stool 

metagenome data was collected over 5 weeks, but only looked at MAGs in 3 species (B. fragilis, 

Ruminococcus gnavus, and E. coli). popANI could be used to identify strain occupancy 

differences in probiotics and antibiotics patients before and after treatment in this same cohort. 

Understanding how diet impacts strain and gene composition will require sequencing a larger 

cohort more deeply, and a cohousing setup that provides more opportunity to disentangle 

cohousing and diet effects. 

 

Methods 
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Sequencing 

Samples were whole metagenomic shotgun sequenced to a average depth of 30M reads (see 

Table S1).  

 

Alpha diversity of samples 

Species richness was computed using the Shannon diversity metric as implemented by the vegan 

package in R (cite vegan package). Stacked barplots were produced by summarizing species 

across taxonomic families but excluding species with less than 0.1 % abundance. To compute 

significance of differences in Shannon diversity, all mice sampled at a given tissue were pooled 

together and compared against a different tissue using the Wilcoxon signed rank test (paired = 

TRUE). 

 

Pairwise Bray-Curtis Dissimilarity Index between samples within and across host 

 

Relative species abundances were calculated from single-copy marker gene coverage as part of 

the MIDAS analysis 110. For each sample, relative species abundances add to 1. These species 

abundances were used to calculate Bray-Curtis dissimilarity indices between all samples using 

the Vegan package in R. These indices were plotted for within-host and between-host 

comparisons, respectively (Figure S2). Bray-Curtis dissimilarity indices were used as the 

proximity matrix in principal coordinate analysis (PCoA), and samples were visualized on two 

axes.  
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For each species, gene copy numbers were estimated from the read counts assigned to a gene 

relative to the median coverage of 15 known single copy genes 110. Bray-Curtis dissimilarity 

indices between samples were calculated using the gene copy numbers of all species deemed 

present in two or more samples. Species were deemed present if they had a mean genome-wide 

coverage greater than equal to 3, and dissimilarity indices were only calculated between samples 

when the species was present in both. Within- and between-host Bray-Curtis dissimilarity 

distributions were plotted. For five species, PCoA analysis was performed using gene-copy-

number-based Bray-Curtis dissimilarity indices as the proximity matrix, and samples were 

visualized on two axes based on the similarity of their gene composition for each species. 

 

Filtering of genetic loci 

A site was considered in Pi and Fst calculations only when there were at least 4 reads. In the 

presence of variation, an additional requirement was imposed: each allele needed to have at least 

2 reads supporting that observation. This was imposed to reduce the effects of singletons from 

sequencing error. Additionally, sites lying in genes that are known to cause unusual read 

mapping, often due to multicopy genes, were excluded. 

 

Pi computation 

 

Pi represents the probability of randomly choosing two different alleles at a randomly chosen 

base pair in the genome. Pi was computed for each sample and pair of samples using the 

formulas for nucleotide diversity applied in Schloissnig et al. 2013 117, which accounts for total 
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read counts in each sample. This formula is an extension of a previously proposed pi estimator 

on NGS data devised by Begun et al. 195.  Mean pi was computed by summing the pi values 

across all  considered sites and dividing by the number of such sites. Pairwise pi was computed 

by pooling reads from two samples, calculating the pi values across all considered sites and 

summing them. 

 

Distributions of pi were plotted for 36 species. These species were selected based on the criteria 

that they had a minimum coverage of 4 reads in at least 3 samples taken from at least 2 hosts. We 

used pi to select 5 species with high between-host pairwise pi (pi ≥ 1 × 10 −3) and low between-

host pairwise pi (pi < 1 × 10 −3). These two groups would allow us to examine strain 

colonization dynamics in scenarios where (1) mice are potentially exposed to multiple strains of 

a species in the original inoculum or (2) mice are exposed to only a single strain in the original 

inoculum. For the former group, we chose the only 5 species with between-host pairwise pi that 

exceeded pi ≥ 1 × 10 −3  (Adlercreutzia equolifaciens, Bacteroides uniformis, Bacteroides 

vulgatus, Blautia wexlerae, and Clostridiales bacterium). When selecting 5 species with low pi, 

we imposed a more stringent filter of requiring species to have a minimum coverage of 20X in at 

least 2 samples in 3 hosts, as low coverage was found to produce artificially low and high 

nucleotide diversity estimates (Figure S10). From the resulting list of species, we selected the 5 

with the lowest between-host pairwise pi values (Bacteroides cellulosilyticus, Blautia producta, 

Burkholderiales bacterium, Coprococcus sp. 62244, and Parabacteroides_distasonis_56985). 

 

Pairwise Fst between samples within and across hosts 
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For each pair of samples of interest, a summary Hudson F-st was computed using the methods of 

Bhatia et al. 2013 196 and Hudson 1992 197. Each sample was considered a “population”. The 

Hudson’s F-st was computing by taking the divergence between the two samples minus the 

average diversity within each sample and dividing this value by the divergence between the two 

samples. To get a mean F-st across variants, the numerator was added up across all considered 

sites (see filtering of genetic loci above) and then divided by the denominator added up across all 

considered sites. Computation was done using the scikit-allel package. 

 

PopANI analysis 

 

popANI is a pairwise metric developed as a part of the inStrain pipeline (inStrain reference). As 

input, inStrain takes FASTA files and BAM files, the latter of which were produced using 

samtools mpileup (samtools reference) as a part of the MIDAS workflow. inStrain produced 

counts of the number of loci per scaffold that were fixed for different alleles between samples 

(i.e., “substitutions”). By default, inStrain only considered loci if they had coverage of 5 or 

greater in both samples being compared and passed a false discovery threshold of 1 × 10 −6 

predetermined by inStrain developers. A global popANI value was generated by aggregating 

scaffolds by species and dividing the pooled substitution count by the total number of genomic 

positions considered in the popANI calculations. Based on a benchmarking analysis, inStrain 

developers determined that popANI values exceeding 99.999% indicate that identical strains are 

shared between samples, which is the threshold used in this study for determining strain sharing. 

Here, comparisons were retained only if the number of loci across all scaffolds for a given 
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species that passed popANI filters was greater than or equal to 5 × 10 5. Samples with only 

5 × 10 5.  comparable sites between them would need to have at least 5 fixed substitutions 

between them to detect a strain or strains that are not shared between the two samples. 

 

Distributions of popANI values were plotted for the 5 species with mean inter-host, inter-sample 

pi values exceeding 1 × 10 −3)  and 5 species with mean inter-host, inter-sample pi values below 

1 × 10 −3. popANI distributions were plotted for within-host and and between-host comparisons, 

as well as between-host comparisons across mice that were and were not cohoused together. In 

addition, we take a closer look at the within-host distributions of popANI for B. wexlerae.  

 

1- and 2-dimensional Site Frequency Spectra 

 

1-dimensional site frequency spectra (1D SFS) were produced for B. wexlerae, B. uniformis, and 

other species by counting the number of loci with at least 20X coverage that fell into each of 200 

equally sized allele frequency bins ranging from 0 to 1.  

 

2-dimensional site frequency spectra (1D SFS) were produced for the same species by polarizing 

alleles such that the allele that is the minority allele in over 50% of samples was designated the 

alternate allele. After polarization, polymorphic loci in each sample were extracted. Loci were 

fully removed from the analysis if they failed to be polymorphic in at least a quarter of samples. 

Finally, loci filtered out if they did not have at least 10X coverage in a given sample. For a given 

species, the 2D SFS was produced by selecting pairs of samples and plotting the allele 

frequencies of a locus in both samples on the x and y axes, respectively.  
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Source Tracking 

For source tracking with species, the relative abundance computed from marker gene abundance 

as computed by MIDAS was input into the source tracking software FEAST 109. For source 

tracking with SNVs, the software Signature SNVs 193 was applied to determine a signature SNV 

set, with the parameters for minimum reads per site set at 5. The alternative and reference allele 

counts from the resulting signature SNVs were input into FEAST.  
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Supplementary Material 1: Evaluating supervised and unsupervised 

background noise correction in human gut microbiome data  
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  19 Fig. S1. First two principal components from microbiome dataset studied. PCA was applied to 

taxonomic abundance profiles and 6-mer data from the AGP, CRC-WGS merged dataset, CRC-16S merge 
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datasets, and Hispanic Community Health Cohort. Samples were plotted along the first 2 PCs with colors 

indicating (A) dataset or batch membership and (B) phenotype label. 

 

  20 Fig. S2. Top principal components from the CRC-16S dataset correlate with technical and 

biological covariates. The first 15 PCs in the CRC-16S taxonomic abundance joined datasets are 

correlated with variables measured in each of the studies, including phenotype, sex, age, race, dataset 

label, sequencing method, library size and several others in (A, B) AGP, (C, D) CRC-16S. The size and 

color of the circles in each cell indicate the magnitude of correlation while black asterisks indicate the 

significance of the Pearson correlation of the PCs with each of the variables. The color bar at right of each 

plot represents the range of correlations observed across all datasets. [*,**,*** indicate p-values as 

follows: 10-2 < p < 0.05, 10-3 < p < 10-2, p < 10-3]. 
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  21 Fig. S3. Quantile-Quantiles plot for AGP, CRC-WGS, and CRC-16S before and after the CLR-

transformation. The quantiles of 100 randomly-selected taxonomic features or k-mers, that were 

converted to z-scores, ranked against the expected quantiles from a normal distribution of mean 0 and 

variance 1. The R-squared values are reported in the annotated text. 

 

 

  22 Fig. S4. Histogram of correlation between top 15 PCs and various measured variables. 

Histograms show the distribution of correlation values computed between the top 15 PCs of taxonomic 

features in each dataset and the phenotype covariates and technical covariates. Shown in black text are the 

Kolmogorov-Smirnov test p-values for the test of the null hypothesis that the distribution of correlations 

in the non-transformed data is no different from the correlations in the CLR-transformed data.  HCHS is 

the only dataset with significant increase in correlation in the technical covariates but not the phenotype 

of interest. 
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  23 Fig. S5. Top principal components from 6-mers correlate with technical and biological 

covariates. The first 15 PCs before (a, c, e, and g) and after (b, d, f, and h) the CLR-transformation are 

correlated with variables measured in each of the studies, including dataset label, library size, DNA 

extraction kit used, country of origin, age, body mass index (BMI), sex, and colorectal cancer status 

(CRC). The size and color of the circles in each cell indicate the magnitude of correlation while black 

asterisks indicate the significance of the Pearson correlation of the PCs with each of the variables. The 

color bar at right of each plot represents the range of correlations observed across all datasets. [*,**,*** 

indicate p-values as follows: 10-2 < p < 0.05, 10-3 < p < 10-2, p < 10-3]. 
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  24 Fig. S6.  Top principal components from LogCPM and VST transformed taxonomic abundance 

correlate with technical and biological covariates. The first 15 PCs from data transformed with the (A) 

EdgeR log counts per million (LogCPM) transformation46 and (B) DESeq2 Variance Stabilizing (VS) 

transformation are correlated with variables measured in each of the studies, including dataset label, 

library size, DNA extraction kit used, country of origin, age, body mass index (BMI), sex, and colorectal 

cancer status (CRC). The size and color of the circles in each cell indicate the magnitude of correlation 

while black asterisks indicate the significance of the Pearson correlation of the PCs with each of the 

variables. The color bar at right of each plot represents the range of correlations observed across all 

datasets. [*,**,*** indicate p-values as follows: 10-2 < p < 0.05, 10-3 < p < 10-2, p < 10-3]. 
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  25 Fig. S7. Titration analysis for new false positive associations. For each study in CRC-WGS, an 

equal number of cases and controls were drawn to determine significant taxa associated with CRC. Then, 

at proportions of 25%, 50% and 100%, control samples were replaced with controls from a second study. 

This experiment was repeated after applying (A) transformations, (B) corrections, or (C) a combination of 

both (including unsupervised methods) to compare the extent to which new false positive associations 

arise with increasing confounding between CRC and study label. 
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logCPM + limma 0 1 1 1 2 

logCPM + BMC 0 1 1 1 2 

VST + ComBat 0 2 7 25 44 

VST + limma 0 3 10 32 55 

VST + BMC 0 3 5 11 25 

CLR + ComBat 0 2 4 13 26 

CLR + limma 0 3 6 20 35 

CLR + BMC 0 16 36 94 173 

Fixed PCA correction 0 1 3 7 14 
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Tuned PCA correction 0 1 2 6 11 

T 3 Table S1. Mean number of new associations in titration experiment. Shown is the mean number 

of likely false positive associations with respect to the original study 1 case and controls before adding 

control samples from study two, across all pairs of studies within CRC-WGS and across all five-fold 

replicates of titration at each mixing proportion of 0 %, 25%, 50%, 75%, and 100% controls from study 

two. 
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Supplementary Material 2: SNV-FEAST: microbial source tracking 

with single nucleotide variants 
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Source 
1 

Source 
2 

Source 
3 

Source 
4 

Source 
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Source 
6 

Source 
7 

Source 
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Source 
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Source 
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Unknown 

 

Unknown 
C
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k
  

Trial 1 0.2 0.15 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.25  0-30% 

Trial v2 0.3 0.1 0.08 0.08 0.08 0.06 0.05 0.05 0.05 0.05 0.1  30-70% 

Trial 3 0.16 0.12 0.07 0.05 0.04 0.04 0.03 0.03 0.02 0 0.44  70-90% 

Trial 4 0.21 0.18 0.11 0.1 0.1 0.05 0.05 0.05 0.05 0 0.1   
Trial 5 0.23 0.07 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0 0.35   
Trial 6 0.17 0.13 0.05 0.05 0.05 0.05 0.05 0.05 0 0 0.4   
Trial 7 0.24 0.16 0.13 0.1 0.05 0.05 0.05 0.05 0 0 0.17   
Trial 8 0.2 0.17 0.06 0.06 0.06 0.05 0.05 0 0 0 0.35   
Trial 9 0.4 0.16 0.06 0.06 0.06 0.06 0.05 0 0 0 0.15   
Trial 10 0.09 0.03 0.03 0.02 0.02 0.02 0 0 0 0 0.79   
Trial 11 0.17 0.15 0.12 0.1 0.1 0.05 0 0 0 0 0.31   
Trial 12 0.17 0.15 0.12 0.1 0.1 0.05 0 0 0 0 0.31   
Trial 13 0.2 0.17 0.1 0.1 0.1 0.05 0 0 0 0 0.28   
Trial 14 0.25 0.15 0.11 0.06 0.05 0.05 0 0 0 0 0.33   
Trial 15 0.37 0.12 0.1 0.09 0.09 0.07 0 0 0 0 0.16   
Trial 16 0.42 0.11 0.1 0.09 0.09 0.07 0 0 0 0 0.12   
Trial 17 0.42 0.11 0.1 0.07 0.06 0.06 0 0 0 0 0.18   
Trial 18 0.45 0.1 0.1 0.09 0.09 0.07 0 0 0 0 0.1   
Trial 19 0.22 0.2 0.11 0.08 0.05 0 0 0 0 0 0.34   
Trial 20 0.23 0.05 0.04 0.03 0.02 0 0 0 0 0 0.63   
Trial 21 0.29 0.1 0.04 0.04 0.03 0 0 0 0 0 0.5   
Trial 22 0.37 0.03 0.03 0.03 0.03 0 0 0 0 0 0.51   
Trial 23 0.41 0.26 0.1 0.05 0.05 0 0 0 0 0 0.13   

S
im

p
le

 S
in

k
 

Trial 24 0.2 0.18 0.09 0.09 0 0 0 0 0 0 0.44   
Trial 25 0.37 0.26 0.21 0.05 0 0 0 0 0 0 0.11   
Trial 26 0.19 0.06 0.04 0 0 0 0 0 0 0 0.71   
Trial 27 0.32 0.2 0.07 0 0 0 0 0 0 0 0.41   
Trial 28 0.55 0.14 0.08 0 0 0 0 0 0 0 0.23   
Trial 29 0.75 0.15 0.05 0 0 0 0 0 0 0 0.05   
Trial 30 0.85 0.05 0.05 0 0 0 0 0 0 0 0.05   
Trial 31 0.06 0.04 0 0 0 0 0 0 0 0 0.9   
Trial 32 0.13 0.1 0 0 0 0 0 0 0 0 0.77   
Trial 33 0.16 0.04 0 0 0 0 0 0 0 0 0.8   
Trial 34 0.36 0.23 0 0 0 0 0 0 0 0 0.41   
Trial 35 0.72 0.14 0 0 0 0 0 0 0 0 0.14   
Trial 36 0.1 0 0 0 0 0 0 0 0 0 0.9   
Trial 37 0.17 0 0 0 0 0 0 0 0 0 0.83   
Trial 38 0.31 0 0 0 0 0 0 0 0 0 0.69   
Trial 39 0.4 0 0 0 0 0 0 0 0 0 0.6   
Trial 40 0.48 0 0 0 0 0 0 0 0 0 0.52   
Trial 41 0.5 0 0 0 0 0 0 0 0 0 0.5   
Trial 42 0.61 0 0 0 0 0 0 0 0 0 0.39   

T 4 Table S1. Mixing proportions for simulated infants. To simulate complex (N sources > 5) and 

simple (N sources <= 5) sinks, we mixed varying proportions of reads from the FASTA files of real adult 

mothers extracted from the Backhed et al. 2015 dataset. Proportions shown represent the proportion of 10 

million reads in infants that are taken from each source. 
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  26 Figure S1: Performance of SNV-FEAST as a function of fraction of species and SNVs included 

for analysis. To assess whether all species and all signatures SNVs in the sink are needed for accurate 

source tracking with SNV-FEAST, we varied the proportion of species (from 10%, 50% or 100%) and 

SNVs (from 10%, 50% or 100%) included as inputs to the algorithm. The y-axis values are Pearson 

Correlations between the estimated and true source tracking proportions. The errors bars represent the 

standard error of the mean. (A) Simulations with small number of contribution sources. (B) Simulations 

with a large number of contributing sources. 
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  27 Figure S2: Comparison of SNV-FEAST with inStrain. Application of SNV-FEAST and inStrain 

on simulated infant gut microbiomes in which the number of contributing sources was varied from 2 to 11 

and the percentage of those contributing sources was varied from 1% to 90%. The x-axis represents the 

true proportion of the infant seeded by the source. Each point represents an infant-source pair. In the case 

of SNV-FEAST, the y-value represents the source tracking estimate. In the case of inStrain, the y-value 

represents the fraction of species in the infant that have at least 99.999% popANI with the source. Shown 

in the inset text is Pearson correlation and corresponding p-value and RMSE for both approaches. 
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  28 Figure S3: Comparison of SNV-FEAST with the strain tracking approach in Nayfach et al. 

2015. Application of SNV-FEAST and Nayfach et al. 2016 on simulated infant gut microbiomes in which 

the number of contributing sources was varied from 2 to 11 and the percentage of those contributing 

sources was varied from 1% to 90%. The x-axis represents the true proportion of the infant seeded by the 

source. Each point represents an infant-source pair. In the case of SNV-FEAST, the y-value represents the 

source tracking estimate. In the case of Nayfach et al. 2016, the y-value in (A) represents the fraction of 

species in the infant have at least 5% marker allele sharing while the y-value in (B) represents the fraction 

of all marker alleles in the infant that are shared with a given mother. Shown in the inset text is Pearson 

correlation and corresponding p-value and RMSE for both approaches. 
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  29 Figure S4: Species with signature SNVs. Number of infants in which certain species are detected in 

microbiome samples (whole bar) and in the signature SNV set obtained from those samples (teal bar) 

while the remained represents infants in which the species was only utilized in species-FEAST (salmon 

bar). Displayed are the 100 most prevalent species based on samples obtained from infants at birth. 
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  30 Figure S5: Unknown component in microbial source tracking with infants in the first year of 

life. Contribution of only unknown sources to the infant’s gut microbiome at birth, four and 12 months 

when previous time points of the infant are excluded as sources. Note this is a different experiment from 

the one shown in Figure 3. 
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  31 Figure S6: Microbial source tracking with infants in the NICU and their built environment. 

Contribution of samples from either the infant’s own NICU room or a different room from the study 

estimated using (A) species-FEAST and (B) SNV-FEAST. This is the same data that is plotted in Figure 

4A, except all potential sources are stacked. This permits visualization of proportion unknown. 
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  32 Figure S7. Microbial source tracking in the Tara Oceans dataset with SNV and species-FEAST. 

Source tracking estimates for the contribution of different oceans are depicted with vertical bars for the 

North Pacific (n=4), South Pacific (n=16), North Atlan 
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  33 Figure S8. Flipped source tracking for all ocean pairs Shown are (A) species-FEAST and (B) 

SNV-FEAST estimates for contribution of one ocean to another. Each dot represents the contributions of 

each samples from the source ocean to the sink ocean of interest. 
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Supplementary Material 3: Effects of diet, spatial location, and 

shared environment on microbiome diversity along the mammalian 

gut 

 
 
 

v Tissue 
 Paired-end reads per 

sample  

Mouse 1 

Duodenum       34,126,263 

Jejunum       34,729,946 

Ileum       45,325,529 

Cecum       33,057,592 

Colon       32,374,899 

Mouse 2 

Duodenum       30,911,961 

Jejunum       34,871,836 

Ileum       34,789,365 

Cecum       32,920,833 

Colon       29,564,608 

Mouse 3 

Duodenum       36,008,731 

Jejunum       44,174,370 

Ileum       31,686,124 

Cecum       32,002,846 

Colon       30,546,791 

Mouse 4 
Duodenum       23,398,036 

Jejunum       30,787,783 
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Ileum       33,305,802 

Cecum       29,389,586 

Colon       32,240,930 

Mouse 5 

Duodenum       33,612,764 

Jejunum       33,446,740 

Ileum       39,828,361 

Cecum       31,864,259 

Colon       30,393,912 

Mouse 6 

Duodenum       23,235,658 

Jejunum       31,781,992 

Ileum       51,606,729 

Cecum       34,283,821 

Colon       33,540,305 

Average        33,660,279 

  34 Table S1 Sequencing reads per sample The total number of raw reads are shown for each gut 

segment in each of the six mice. 

 

 
  35 Figure S1. pH and osmolality measurements at each gut segment Each point represents the 

measurement at a single segment in a single host for (A) pH and (B) osmolality. 
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  36 Figure S2. Beta diversity of species abundance between gut segments and between hosts. Beta 

diversity (Bray-Curtis dissimilarity index) was calculated between all samples using relative species 

abundances.  In A-D, beta diversity measures are presented for both within- and between-host 

comparisons. 
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  37 Figure S3. Site frequency spectrum in the metapopulation  Shotgun sequencing data for all 

samples were pooled and processed in MIDAS. Genetic level data was used to plot unfolded site 

frequency spectra, whereby the number of sites with that fall in each allele frequency bin (200 bins, each 

of width 0.005) are counted. Enrichment for very low and high frequency alleles indicates the presence of 

only a single strain in the metapopulation, while an enrichment in intermediate frequency alleles indicates 

the presence of multiple strains. 

 

 
  38 Figure S4 Abundance of select high and low diversity species across hosts Relative abundances 

were plotted for (A) species with mean between-host pairwise pi > 1 × 10 −3
 and (B) species with mean 

between-host pairwise pi < 1 × 10 −3
. 
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  39 Figure S5 popANI within and across hosts popANI distributions are plotted for species with pi 

≥1 × 10−3
 for (A) within-host and (B) between-host comparisons, as well as for species with pi 

<1 × 10−3
 for (C) within-host and (D) between-host comparisons. 
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  40 Figure S6 Intra-Sample Nucleotide Diversity Along the Gut Nucleotide diversity (pi) for each 

segment in each mouse on either a control or guar gum diet. Each point represents the mean pi for a given 

species observed in a segment sample. 

 

 

 
  41 Figure S7. Beta diversity of gene copy number abundance between gut segments and between 

hosts. Beta diversity (Bray-Curtis dissimilarity index) was calculated between all samples using gene 
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copy numbers. Gene copy number is calculated by dividing the coverage of a gene by the median 

coverage of 15 universal single copy genes. In A-D, beta diversity measures are presented for both within- 

and between-host comparisons. 

 
  42 Figure S8 Source tracking for tissues Within each mouse, we estimated the source contribution of 

each tissue to a tissue of interest. Each dot represents the source tracking experiment for one of the 6 mice 

 
  43 Figure S9 Source tracking for mice Each dot represents the source tracking experiment for 

each of the 5 tissues  
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  44 Figure S10 Coverage and sample pi Each dot represents a sample. Sample coverage is 

plotted on the x axis and log transformed pi is plotted on the y axis. 
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