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Abstract

In the synthesis of inorganic materials, reactions often yield non-equilibrium

kinetic  byproducts  instead  of  the  thermodynamic  equilibrium  phase.

Understanding  the  competition  between  thermodynamics  and  kinetics  is

fundamental towards the rational synthesis of target materials. Here, we use

in  situ synchrotron  X-ray  diffraction  to  investigate  the  multistage

crystallization  pathways  of  the  important  two-layer  (P2)  sodium  oxides

Na0.67MO2 (M = Co, Mn). We observe a series of fast non-equilibrium phase

transformations  through  metastable  three-layer  O3,  O3’  and  P3  phases

before formation of the equilibrium two-layer P2 polymorph. We present a

theoretical  framework  to  rationalize  the  observed  phase  progression,

demonstrating  that  even  though  P2  is  the  equilibrium  phase,

compositionally-unconstrained  reactions  between  powder  precursors  favor

the formation of non-equilibrium three-layered intermediates. These insights

can guide the choice of precursors and parameters employed in the solid-

state  synthesis  of  ceramic  materials,  and  constitutes  a  step  forward  in

unraveling  the  complex  interplay  between  thermodynamics  and  kinetics

during materials synthesis. 
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Introduction

Designing  and  synthesizing  new  materials  with  tailored  properties  are

cumbersome  tasks.  When  approaching  materials  synthesis,  the

thermodynamic phase diagram is often a general starting point. Guided by it,

one should prepare precursors at a composition where a desired equilibrium

phase  is  stable,  and  obtain  it  by  holding  the  system  under  appropriate

thermodynamic conditions (temperature and pressure) for a sufficiently long

time. Both experimental and ab-initio predicted phase diagrams are guiding

tools  for  synthesis  1,  2,  3,  yet  they often become unreliable  when reaction

kinetics  plays  a  major  role.  Notably,  compounds  predicted  as

thermodynamically  stable  often cannot  be  synthesized  experimentally  4,

whereas metastable materials (i.e. higher in energy than the ground state

phases) are often observed during materials formation 5, 6. 

Several in situ studies of synthesis reactions 7, 8, 9, 10, 11, 12, 13, 14, 15 have shown

that the path towards the target phase often proceeds through multiple non-

equilibrium  intermediates.  This  pathway  is  important  as  long-lived

metastable intermediates can persist as impurity phases in the final product,

or  they  can  structurally  template  ensuing  phase  transformations  11,  12,  13.

Although kinetic factors can be exploited to guide the outcome of specific

reactions  12,  13,  currently  no  general  guiding  principles  exist  to  predict  or
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rationalize these pathways, which can be entirely thermodynamic, kinetic, or

result from the intricate interplay of the two. 

A  milestone  in  building  a  predictive  theory  of  synthesis  is  being  able  to

account for and anticipate these metastable intermediates. Understanding

the  competition  between  thermodynamics  and  kinetics  is  key  to  the

predictability of synthesis reactions. This is especially important given the

emergence  of  computational  materials-by-design  methods,  which  have

dramatically  increased  the  number  of  compelling  materials  to  be

experimentally  investigated  16.  Yet scientists  still  lack tools  to predict  the

synthetic accessibility of these novel compounds, or the pathways by which

a stable or metastable phase will form 5.

In this  paper,  we systematically investigate the non-equilibrium formation

pathways of layered Na metal oxides by means of in situ synchrotron X-ray

diffraction and ab-initio computations.  We chose these Na-based compounds

due to their technological relevance as battery electrodes 17, thermoelectrics

18 and superconducting materials 19; as well as for their structural complexity

with many competing phases 20, 21, 22, 23.  The layered NaxMO2 structures form

in two major polytypes, which can be distinguished by their oxygen stacking

sequence and Na environments (Figure 1b): P2, with a two-layer stacking;

and O3 and P3, with a three-layer stacking. Properties such as Na+ mobility

and  electronic  and  thermal  conductivity  are  highly  dependent  on  the
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stoichiometry and structure of the NaxMO2 phase under consideration.  For

example,  P2  phases  are  attractive  Na-ion  cathode  materials  exhibiting

excellent Na+ conductivity 24, 25.

Understanding practical synthesis routes to these specific NaxMO2 structures

is  essential.  The  thermodynamic  stability  of  different  NaxMO2 polytypes

varies with the Na content,  x,  as calculated in Figure 1a. In the NaxCoO2

system,  the  O3/O3’-type  stacking  (O3/O3’  are  identical  in  computation)

exhibits  octahedrally-coordinated  alkali  and  transition  metals,  and  is  the

lowest-energy  phase  at  high  sodiation;  while  at  x =  0.67,  a  two-layer

structure  with  prismatically  coordinated  Na ions  (P2)  is  the  ground  state

phase. Thus, though the DFT energy differences are small, thermodynamic

considerations imply that P2 should be the equilibrium phase for Na0.67CoO2

at  low  temperatures.  However,  the  experimentally  observed  behavior  is

different. Figure 1b summarizes the  ex situ experimental synthesis results

for the different NaxCoO2 polytypes 26. At low Na content (0.6 < x < 0.75), P2

is only synthesized above 1000 K, while P3 and O3’ are obtained at lower

temperatures.  Thus,  the  metastable  phase  three-layer  polytypes  are  the

actually observed low-temperature phases, while the two-layer P2 phase can

only be synthesized at high temperature, in apparent contradiction with the

DFT stability predictions. 
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Figure 1: a) Energy above the convex hull (Ehull) of the various polytypes of NaxCoO2 in their

lowest energy Na/vacancy configuration at x = 0.67, 0.75 and 1, calculated with the DFT-

SCAN metaGGA functional 27. b) Sodium layered oxides NaxCoO2 experimentally stabilized as

a function of their sodium content x and of the temperature at which they are commonly

synthesized in air. Areas denoted by P2, P3, O3’ and O3 in different colors are single phase

regions suggested by Lei et al.26, representing the literature prior to this work. The crystal

structure of each polymorph is shown and labeled using the notation introduced by Delmas

20: the letter stands for the type of Na environment (P: prismatic, O: octahedral), while the

number describes the oxygen stacking (e.g. in P2 Na ions occupy prismatic sites in between

ABBA oxygen stacking). Blue units represent CoO6 octahedral environments, yellow/orange

units  NaO6 octahedral/prismatic  environments.  A  prime  symbol  (e.g.  P3’)  indicates  a

monoclinic  or  orthorhombic  distortion  (note  that  P3’  is  a  monoclinic  low-temperature

distortion  of  P3.  A  P3 -  P3’  reversible  transition  occurs  at  350-370 K  28).  Note  that  the

crystallographically-distinct O3/O3’ and P3/P3’ phases are not distinguished computationally

due to the relaxation of symmetry constraints.
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Driven  by  the  need  to  understand  what  drives  solid-state  reactions  in

polytypic NaxMO2 systems, we undertake an in-depth study of the synthesis

of  NaxCoO2 and NaxMnO2.  Using  in  situ synchrotron  X-Ray diffraction  and

differential  scanning  calorimetry  (DSC),  we  observe  a  sequence  of  non-

equilibrium three-layer phases during the solid-state ceramic synthesis of P2

layered sodium metal oxides. We rationalize our findings using an  ab-initio

thermodynamic framework based on a powder precursor interfacial reaction

model,  and  suggest  a  unifying  principle  that  governs  the  initial  phase

formation in solid-state synthesis. Our work elucidates the subtle competition

between  thermodynamics  and kinetics,  providing  fundamental  insights

towards  a  more  rational  understanding  of  solid-state  ceramic  materials

synthesis.

Results 

In situ experimental study of P2 NaxCoO2 synthesis

High-energy synchrotron X-ray diffraction (XRD) is a powerful tool to monitor

the  structural  changes  and  phase  evolution  during  inorganic  materials

synthesis 11, 12, 13, 14, 15. To understand the formation of P2-NaxCoO2, we use in

situ synchrotron XRD, observing the evolution of different phases from the
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mixture of precursors to the final compound.  We perform a set of  in situ

synthesis  experiments,  varying  precursors,  heating  rate  and  annealing

temperature, as described in the Methods and Supplementary Information

(SI).  CoO and Na2O2 are used as initial precursors, while Co3O4 and Na2CO3

are introduced later (see Figure S1 for a discussion on Co(OH)2). 

Figure 2 shows the result of a typical synthesis experiment: the formation of

Na≈0.7CoO2 from  a  ball-milled  mixture  of  CoO  +  0.35  Na2O2,  with  a  fast

heating rate (36  C/min) up  to 850  C in air.  Only CoO is observed in the

initial XRD scan, as Na2O2 amorphizes during ball-milling. The O3 phase with

composition NaCoO2 forms rapidly at 637 K (364 °C), about 7 minutes after

the beginning  of the synthesis (which starts at  ≈100 °C). Figure 2b shows

that,  despite  having  a  precursor  ratio  designed  to  target  a  Na0.7CoO2

stoichiometry, nearly all of the Na reacts with Co in a 1:1 ratio, represented

by the reaction:

CoO + 0.35 Na2O2 = 0.7 NaCoO2 + 0.3 CoO 
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Figure 2: a) Solid-state synthesis of P2 Na0.7CoO2 monitored by in situ synchrotron XRD. The

contour plot highlights the evolution of the Bragg peaks. A sequence of layered compounds

is observed (O3  O3’  P3  P2). b) and c) Parameters obtained from Rietveld refinement

of the XRD patterns. b) Evolution of the molar % of the observed crystalline phases and c)

interlayer spacing and Na content of each NaxCoO2 polytype.

The reaction is extremely fast – it is complete in 1 scan (≈75 s) – and yields a

crystalline O3-NaCoO2 at nearly full sodiation (x = 0.95(1)). The rapid phase

formation suggests a very fast oxygen uptake and diffusion of Na cations

into the rock salt-type CoO framework, supported by rapid reorganization of

the Co cations into layers 29. Over the next fifteen minutes (T = 665 C, ≈940
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K), the evolution of interlayer spacing and Na occupancy show that the Na

fraction in O3-NaxCoO2 decreases from 0.95 to approximately 0.8 (Figure 2c),

after  which  a  new  monoclinic  O3’  phase  with  Na0.65(3)CoO2 composition

appears.  This  change  in  NaxCoO2 stoichiometry  results  from  a  reaction

between the residual CoO precursor with O3-NaCoO2, as the system evolves

towards the target composition.  The O3  O3’ transition takes ≈6 minutes,

after which O3’ undergoes a rapid transition (< 75 s) to a P3 phase with

large interlayer spacing (5.55 Å) and low Na content (0.61(2)). We speculate

that the low Na content in the P3 phase indicates that some sodium may

segregate from the layered oxide during the O3’  P3 phase transformation,

likely as Na2O. As P3 forms, the amount of CoO decreases rapidly, indicating

that it reacts quickly with the O3’ phase. Interestingly, this O3-O3’-P3 phase

transformation  sequence  observed  upon  heating  is  similar  to  the  phase

evolution when an O3 oxide is desodiated electrochemically.30 

Finally, when the temperature is maintained constant at 850 C (≈1123 K),

P3  transforms  into  P2-  Na0.67(2)CoO2.  Even  though  this  is  the  highest

temperature, the transition is the slowest: only 14.5(5)% of P2 has formed

after 160 minutes. For this reason, we increased T to 950 C and then 1050

C,  and finally obtained  a single-phase P2 compound. As evidenced also by

its  smaller  interlayer  spacing,  P2 accommodates a  larger  sodium content

than P3, confirming that the Na formerly segregated was still available in the

mixture. 
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In  the  SI  we  report  complementary  in  situ experiments,  showing  that

annealing at 550 C results in a similar series of transformations, but without

the formation of P2 (Figure S2). Moreover, the heating rate or choice of Co3O4

as precursor does not significantly influence the results of the experiment

(Figure S2 to S5), proving that in the NaxCoO2 system this pathway is robust

to  synthesis  variations.  We  show later  that  this  is  not  the  case  when a

Na2CO3 precursor is used.
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Figure 3: a)  DSC curve of pure P3’-Na0.67CoO2 powder (12.67 mg). An exothermic peak is

observed at ≈624 C. The amount of heat released in this phase transition is calculated by

integrating  the  shaded  area.  b)  Phase  fraction  vs.  time  during  the  P3  to  P2  transition

obtained from Rietveld refinement and the corresponding fitting by the Avrami equation for

3 temperature ranges (850℃, 950℃ and 1050℃) independently. Note that P3 (Na0.61CoO2)

to P2 (Na0.67CoO2) is not a constant-composition phase transition: it is limited not only by

reaction kinetics  but  also  by Na diffusion,  which can explain  the  deviation  from perfect

Avrami fitting near the end of the transition.

According  to  the  DFT  stability  calculations  of  NaxCoO2 in  Figure  1a,  P2-

Na0.66CoO2 is the equilibrium phase at low temperature. To confirm that the

observed P3 to P2 transition is indeed an irreversible transformation from a

metastable to a stable phase, as opposed to a reversible temperature-driven

first-order phase transition, we performed differential scanning calorimetry

on  a  sample  of  P3’-Na0.67CoO2.  Figure  3a  shows  that  upon  heating,  an

exothermic peak is observed at  ≈624  C and no transition is present upon

cooling. After the measurement, we verified by XRD that the P3’ sample had

become P2, meaning P2 is indeed lower in energy than P3’, confirming the

DFT stability calculations. Furthermore, we confirm that P2 obtained from P3’

via annealing at 750 C never reverts back to the initial P3’ structure upon

annealing  for  long  times  at  lower  temperatures  (Figure  S6).  Finally,  the

phase fraction evolution during the P3-P2 transition follows a characteristic

S-shaped  profile  for  which  the  transformation  rate  is  low  at  both  the

beginning and the end, but rapid in the middle of the reaction. This profile
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can be explained and fit by a nucleation-growth-saturation model which is

qualitatively expressed by an Avrami equation (Figure 3b) 31. The Avrami-like

behavior  together  with  our  DSC  result  confirms  that  P3  → P2  is  an

exothermic,  irreversible  phase  transformation  driven  by  crystallization

kinetics.

Rationalizing the phase evolution of NaxCoO2

The observed multistage phase evolution in Figure 2 can be classified into

two  major  reaction  sequences.  First,  there  are  a  series  of  fast

transformations that  occur within 30 minutes,  which proceed through the

non-equilibrium  three-layer  phases  O3-O3’-P3,  with  decreasing  Na

concentration  from O3-Na0.95CoO2 to  P3-Na0.61CoO2.  Second,  we observe a

slow polymorphic transformation from the metastable P3 phase to the target

equilibrium P2 polytype, which proceeds over the next 150 minutes. 
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Figure  4: a) Evolution of the grand potential open to an external oxygen reservoir of the

total system in the reaction vessel normalized by the number of metal cations (Na, Co). Two

different scales are used in the time axis to highlight the multiple phase transitions in the

first 30 minutes (same as figure 2b). b) Cartoon suggesting a physical model of the reaction

pathway via interfacial reactions. c),d) High-angle annular dark-field scanning transmission

electron microscopy (HAADF-STEM) and energy-dispersive X-ray (EDX) images showing the

pristine CoO+0.35Na2O2 powders mixture (c), and the same mixture recovered after a brief

annealing  at  400  °C  for  90  minutes  (d).  The  STEM-HAADF  and  EDX  images  show  an

imperfect  core-shell  reaction,  with  sodiation  proceeding  inwards  from  the  cobalt  oxide

particles surface.

To  understand  the  thermodynamic  evolution  of  the  system,  we  plot  the

grand canonical free energy of the entire reaction vessel as a function of

14



time,  shown  in  Figure  4,  accounting  for  open  boundary  conditions  with

respect to oxygen as controlled by its chemical potential μO2(Methods). The

energy  cascade  shows  that  nearly  all  of  the  reaction  free  energy  is

consumed within the first  30 minutes of  the solid-state reaction.  Notably,

≈85% of  the  available  reaction  energy  is  consumed  6  minutes  into  the

reaction to form O3-NaCoO2. The transformations from O3 to O3’ and then P3

consume much of the remaining reaction energy, leaving < 2% of the total

reaction energy for the polymorphic transformation from P3 to P2. 

Our energy cascade rationalizes the observed reaction sequence. The fast

transformations that occur in the first 30 minutes are  thermodynamically-

driven by large reaction driving forces. The highest energy reaction is in the

formation of O3-NaCoO2, which then transforms to the non-equilibrium O3’

and P3 phases.  It  is  well-known that displacive transformations are facile

between  the  three-layer  polytypes;  O3’  is  a  monoclinic  distortion  of  O3-

NaCoO2  associated  with  Na removal,  and  P3  can  be  formed  from O3  by

sliding the oxygen layer across the Na layer by (1/3, 1/3, 0) 17, 26, 32. On the

other hand, deriving the P2 phase from O3 requires sliding of the oxygen

layer across the Co layer, which has too large an energy barrier to occur by a

diffusionless  transformation  (Figure  S7  and  S8),  likely  proceeding  by  P2-

nucleation  instead.  However,  after  30  minutes,  there  is  so  little

thermodynamic driving force remaining that higher temperatures are needed
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to  accelerate  the  Avrami  (JMAK)  kinetics  of  the  P3P2  polymorphic

transformation. 

Despite  preparing  a  Na:Co  precursor  ratio  to  target  the  Na0.7CoO2

composition, the first phase to form is O3-NaCoO2. The early formation of this

three-layer  intermediate  consumes  a  significant  fraction  of  the  reaction

energy, and it seems to determine the reaction path by setting the system

up  for  the  kinetically-facile  topotactic  transformations  through  the

metastable  O3’  and  P3  three-layer  phases.  Thus,  rationalizing  the  initial

formation  of  the  O3  phase  is  crucial  towards  understanding  the  phase

evolution in this system.

What is the mechanism driving this initial O3-NaCoO2 phase selection? We

can achieve some insight towards this question by considering that under

slow  diffusion  conditions,  as  is  the  case  in  solid-state  ceramic  synthesis,

reactions  between  precursors  initiate  at  the  precursor  powder  interfaces

(Figure 4b). While Na0.7CoO2 is the composition of the entire reaction vessel,

powder  precursors  of  Na2O2 and  CoO locally  at  their  interface  have  no

knowledge  of  the  total  stoichiometric  composition  of  the  system.  Under

these local interfacial boundary conditions,  the first nucleus to form has, in

principle,  a compositionally-unconstrained reservoir of  Na and Co to form

from, for a given applied  μO2 .We demonstrate here that the first phase to

form at  this  interface  is  the phase,  or  set  of  phases,  with the maximum
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reaction  energy  from  the  precursors.  The  stoichiometry  of  this  reaction

product  is  compositionally-unconstrained;  in  other  words,  this  maximum

reaction energy compound could have any Na/Co ratio—regardless of  the

prepared  precursor  ratio.  When  oxygen  transport  is  fast,  the  oxygen

stoichiometry  of  the  product  will  be  set  by  the  μO2 of  the  reaction

atmosphere.

The reaction energies to various NaxCoO2 phases in a reaction between CoO |

Na2O2 precursors  in  air  is  shown  in  Figure  5,  calculated  from  a

thermodynamic grand potential open to an external oxygen reservoir  1,  33,

using a methodology as described in Richards et al.  34.  The temperature-

dependence of the free-energy is dominated by the entropy of gaseous O2,

and can be approximated without consideration of the entropy in the solids

(Methods). Figure 5a shows that at all temperatures, the NaCoO2 composition

has the most negative reaction energy of all layered NaxCoO2 compositions

at  the  Na2O2|CoO  interface,  and  is  therefore  the  composition  with  the

strongest  driving force  to form.  The crucial  observation  is  that  structure-

selection  of  the  first-phase  to  form  is  largely  governed  by  composition-

selection of  the  maximum compositionally-unconstrained  reaction  energy.

Specifically,  the O3 polytype is the ground-state structure for the NaCoO2

composition  (Table  S1,  Figure  1  and  S9),  which  itself  has  the highest

negative reaction energy under open-system boundary conditions. 
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Figure 5: Reaction energies for the formation of the lowest-energy NaxCoO2 polytype as a

function of x: (a) for the reaction (1) x/2 Na2O2 + CoO + z O2(g)   NaxCoO2 and (b) for the

reaction (2) x NaCoO2 + (1-x) CoO + z O2(g)  NaxCoO2. NaCoO2 and Na0.75CoO2 are O3-type

structures, while Na0.67CoO2 is P2. The temperatures indicated in the legend correspond to

pO2 =  1  atm,  and  are  approximate  (Methods). Red  arrows  indicate  the  most  negative

reaction energy bars, for each given μO2 .
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Since the precursors were prepared at a Na0.67CoO2 composition, the initial

formation of O3-NaCoO2  at  ≈600 K leaves remaining CoO precursor in the

reaction  vessel  (Figure  2b).  The  nucleation  of  P2-Na0.67CoO2 around  30

minutes  can  further  be  rationalized  by  computing  the  compositionally-

unconstrained μO2-dependent reaction energy between CoO and O3-NaCoO2.

As shown in  Figure 5b,  at  high temperatures it  is  increasingly  difficult  to

make layered oxides of low Na content, whereas at lower T they become

favorable.  At  the  CoO|O3-NaCoO2 interface  (Figure  5b),  above  900  K  the

most favorable composition to form is Na0.67CoO2, for which the ground state

structure  is  the  P2  polytype  (Table  S1).  Thus, there  is  a  thermodynamic

driving  force  towards  nucleating  the  P2  compound  during  the  multistage

phase evolution. However, while the lowest energy structure at Na0.67CoO2

composition  is  P2,  the  computed  P2/P3  energy  difference  is  small  (1

meV/atom) so that the reaction sequence O3O3’P3 and O3O3’P2 are

both thermodynamically competitive.  The fact that the P3 intermediate is

observed experimentally  is  due to the kinetically-facile layer-shifting from

O3’P3,  versus  O3’P2.  Indeed,  we  find  that  O3’  and  P3  are  already

observed even below 550 °C (Figure S2 and Figure S3). Our results show that

when thermodynamic driving forces are small,  kinetically-viable  structural

transformations  drive  structure-selection  along  the  phase  transformation

pathway. The nucleation of the P2 polytype also likely occurs at low T (near

27 minutes, Figure 2), providing the germ nuclei for the Avrami reaction in
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the slow polymorphic transformation regime, but such nuclei can only grow

at a measurable rate at high temperature.

We conduct similar reaction analyses starting from a Co3O4 precursor (Figure

S4,  S5  and  S10),  and  arrive  at  similar  conclusions:  we  experimentally

observe  an  analogous  phase  formation  sequence  O3O3’P3P2  when

annealing at 850 °C, while at 550 °C the formation of P2 from P3 does not

occur.  The initial  formation of  O3 appears  to  be  even faster  when using

Co3O4. Like in the CoO case, our calculations illustrate that such initial O3

formation  is  driven  by  the  fact  that  it  has  the  most  negative  formation

energy (Figure S10a). Then, at the Co3O4|O3-NaCoO2 interface (Figure S10b),

low  temperatures  close  to  600  K  are  needed  to  reach  the  Na0.67CoO2

composition.  

Validation in the NaxMnO2 system and effect of precursors

To validate our hypothesis that the first phase to form at powder precursor

interfaces  is  the  compound  with  the  maximum  compositionally-

unconstrained  reaction  energy,  we  next  conduct  analogous  in  situ

experiments  in  the  NaxMnO2 system  with  varying  sodium  precursors,

including Na2CO3.  This  has  particular  relevance  considering  that  different

synthesis  outcomes are obtained when using Na2CO3 vs. Na2O2 is  several
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systems  including  α-NaFeO2 35 and  NaNixMn1-xO2  
36. Figure  6  shows  the

observed phase evolution and reaction energetics for NaxMnO2 using Mn2O3

and either Na2O2 (Figure 6a - c) or Na2CO3 (Figure 6d - e). When Na2O2 is

used, the  fully  sodiated  phase  O3’-NaMnO2 is  observed  first  (Figure  6a),

before it quickly transforms into a Na-deficient P3 phase, similar to the phase

evolution in the NaxCoO2 system. Figure 6b shows that the initial O3’-NaMnO2

phase has the maximum reaction energy in the Na2O2|Mn2O3 compositionally-

unconstrained reaction, consistent with the principle we derived from the Co

system. 

The subsequent nucleation of P3-Na0.42(1)MnO2,  finally transforming into P2,

can also be explained by the reaction model between NaMnO2 and excess

Mn2O3, as shown in Figure 6c. The final P2 is a pure hexagonal phase at 1050

°C,  while  after  cooling  it  yields  a  mixture  of  hexagonal  P2  (with  Mn

vacancies) and distorted orthorhombic P2´ (Figure S11), in agreement with

the literature  37, 38. Interestingly, after the formation of P3, O3’ forms again

and coexists with P2 (Figure S12). This behavior is the result of the influence

of μO2 on the O3’-P3 equilibrium, and can be well explained by our reaction

energy calculation (Figure S13 and supplementary notes). In short, initially

μO2 is  high  (low  T)  and  P3  is  the  favorable  product.  When  T  increases

sufficiently (low μO2) the situation is reversed and O3’ may form again. This

can only occur if a sufficient amount of Na is available, which is the case for
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NaxMnO2 because the formed P3 phase is found to have a lower Na content

(x = 0.42) than P3 in the Co phase (Figure S14).

Figure 6: a) In situ XRD pattern of the reaction between 1/2 Mn2O3  +1/3 Na2O2. Note that

fully sodiated NaMnO2 has a monoclinic distortion because of Jahn-Teller active Mn3+, thus it

is  indicated  as  O3’. b)  Reaction  energies  between  Mn2O3 and  Na2O2,  according  to  the

reaction x/2 Na2O2 + 1/2 Mn2O3 + z O2(g) NaxMnO2.  O3’-NaMnO2 has the most negative

formation  energy  at  the  beginning  of  the  synthesis  (≈600  K,  orange  bar).  c)  Reaction

energies between Mn2O3 and O3’-NaMnO2,  according to the reaction x NaMnO2  + (1-x)/2

Mn2O3 + z O2(g) NaxMnO2 。  d) In situ XRD pattern of the reaction between 1/2 Mn2O3+1/3

Na2CO3; e)  Reaction  energies  between Mn2O3 and Na2CO3,  according  to  the  reaction x/2

Na2CO3 +  1/2  Mn2O3 +  z  O2(g)  NaxMnO2  +  x/2  CO2(g). P3-Na0.5MnO2 has  the  most  negative

formation energy at the beginning of the synthesis (≈600 K, green bar). f) Reaction energies

between  Mn2O3 and  various  sodium  precursors at  fixed  μO2
(0  eV) according  to
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1
2

Mn2O3+x μNa+
1
4

μO2
Nax MnO2.  The  temperatures  in  b),  c)  and  e)  are  approximate

(Methods).

Figure 6d shows that Mn2O3 reacts differently with Na2CO3 than it does with

Na2O2. Instead of initially forming O3’-NaMnO2, the sodium deficient P3 phase

(P3-Na≈0.4MnO2) appears. As the temperature increases, P3 transforms into a

mixture of P2 and a phase with a 3D tunnel structure (3D-Na≈0.4MnO2)  39.

Figure 6e shows the reaction energies between Mn2O3 and Na2CO3. Unlike the

case when Na2O2 is the precursor, the sodium deficient phase P3-Na0.5MnO2

now has the most negative formation energy at intermediate temperatures

(for example T = 600 K), explaining the different phase evolution observed

experimentally. Again, the first phase to form in the NaxMnO2 systems is the

compound  with  the  most  negative  compositionally-unconstrained  reaction

energy. 

Finally,  we  further  revisit  the  CoO  system  with  a  Na2CO3 precursor,

performing the in situ synthesis reaction of CoO + 0.35 Na2CO3, reported in

Figure S15. We find that Na2CO3 is poorly reactive at low temperature, thus

CoO oxidizes fully to Co3O4, which can then sodiate at higher temperature.

Interestingly, the first phase to form is not O3-NaCoO2: a P3 polymorph forms

first, followed by P2. This is consistent with the results we obtained for the

Mn system above and with our calculations (Figure S16). 
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In conclusion, despite the short in situ reaction times (< 1 hour), we are able

to  capture  the  first  phase  to  form,  and  we  validate  the  theory  that  the

compound  with  the  most  negative  compositionally-unconstrained  reaction

energy governs the composition and structure of  the first  phase to form.

Additionally, our theory can rationalize how changing precursors influences

this first phase. Different Na precursors (Na2O2 vs. Na2CO3) exhibit different

sodium chemical potentials, which in turn create a different dependence of

the reaction free energy as function of  x in NaxMO2.  In Figure 6f, we show

that the higher the Na chemical  potential  in the precursor,  the more the

reaction free energies will  tilt  favorably towards compounds with high Na

content. For the precursors with ‘loosely-bound’ sodium with high μNa (Na2O:

-2.06 eV, Na2O2: -2.379 eV), a fully sodiated O3 phase has the most negative

formation energy, while as Na is ‘locked up’ in the stable Na2CO3  phase (

μNa=¿  -3.69 eV), the trend is reversed, resulting in the preferable formation

of sodium deficient phases. 

Discussion and Outlook

Understanding the role of thermodynamics versus kinetics during materials

formation is a foundational question in materials processing and synthesis
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science.  Although qualitative  heuristics  for  navigating these concepts  are

commonplace,  it  has  been  difficult  to  establish  a  quantitatively  rigorous

understanding of the competition between thermodynamics and kinetics for

real  synthesis  reactions.  This  has  been due to  two reasons:  1)  reactions

occur in a ‘black box’, meaning that the initial phase evolution often remains

unknown. 2) the energies of these reactions are difficult to measure as a

function of reaction progress. 

In  this  work,  we  leveraged  in  situ synchrotron  X-ray  diffraction  to

characterize the early stages of phase evolution for NaxCoO2 and NaxMnO2

materials  during  solid-state  ceramic  synthesis.  Despite  the  traditional

intuition that solid-state reactions are slow, we observed a number of fast

reactions that take place within minutes of initiating synthesis. By combining

the  observed  reaction  pathways  with  ab-initio  thermodynamics, we were

able to show that the first phase to form can consume a majority of the total

reaction free energy. Furthermore, this first phase may also topotactically

template the structural evolution through further non-equilibrium phases. To

rationalize the structure-selection mechanism of the first phase to form, we

proposed a model where the first phase to nucleate at the interface between

solid-state powder precursors is the compound, or set of compounds, with

the  maximum  compositionally-unconstrained  reaction  energy.  This  first

phase to form has the  composition with the most negative reaction free-

energy, and its structure is governed by the ground-state crystal structure at
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this  composition.  We note  that  this  mechanism is  particularly  relevant  in

reactions where thermodynamic driving forces are large, such as these solid-

state chemical reactions. In synthesis methods at lower temperatures and

with smaller driving forces (on the order of kBT), such as in hydrothermal

synthesis,  structure-selection  may  instead  be  driven  by  size-dependent

thermodynamics and competitive nucleation kinetics 14, 40, 41, 42, 43. 

The  compositionally-unconstrained  powder  reaction  model  has  two  major

consequences:  1)  the  first-phase  to  form  does  not  necessarily  have  the

composition corresponding to the summed precursor composition, and 2) the

first  phase  to  form  can  be  engineered  by  varying  the  precursors,  as

demonstrated by switching from a Na2O2 to a Na2CO3 precursor in both Co

and Mn systems. This  rationalization of  the first  phase to form creates a

valuable  design  handle  by  which  reaction  paths  can  be  tailored  to  go

through, or circumvent, specific metastable intermediates.  

While  we  often  separate  thermodynamics  and  kinetics  conceptually,  our

analysis here shows that they are intimately coupled during the early stages

of materials formation. Fast reaction kinetics during multistage crystallization

are a consequence of large thermodynamic driving forces,  whereas small

driving forces lead to slow kinetics, requiring high reaction temperatures for

reactions  to  complete.  Moreover,  the  first-phase  to  form  can  be  largely

rationalized  from  thermodynamic  arguments,  when  analyzed  under  the
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appropriate reaction boundary conditions. While thermodynamics seems to

drive the initial composition selection, the ensuing transformations can often

be kinetically-selected by simple composition variations, or by topotactically-

facile layer shifting, as is the case in the layered compounds that we studied.

By better understanding the intricate relationship between thermodynamics

and kinetics during materials formation, this work facilitates the design of

more sophisticated strategies towards the targeted synthesis  of  inorganic

materials. 

Methods

Synthesis and experimental characterization

O3  NaCoO2 was  synthesized  using  a  conventional  solid-state  method.

Stoichiometric  amounts  of  Co3O4 (Aldrich,  99.5%,  nanopowder)  and Na2O2

(Aldrich, 97%) were mixed thoroughly by a Spex Mixer/Mill 8000M for 90min.

The precursors were then pressed into pellets before annealing at 450C for

16h  under  flowing  oxygen.  P3’  Na0.67CoO2  was  prepared  by  chemically

desodiating O3 NaCoO2. Stoichiometric amounts of O3 NaCoO2  and NO2BF4

(Aldrich,  95%) were added to acetonitrile (Aldrich, 99.8%, anhydrous) in an

Argon-filled glove box. NO2BF4 dissolves while NaxCoO2 remains as a solid
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phase. The solution was then stirred for 2 days before the resulting black

powder was filtered and washed three times with acetonitrile. The sample

was then dried at 70 C in vacuum overnight and stored in the Argon-filled

glovebox.

The differential  scanning calorimetry (DSC) measurement were performed

using  a  SDT  Q600  system (TA  Instruments).  12.67  mg of  P3’  Na0.67CoO2

powder was heated from room temperature to 750 C at a heating rate of 5

C/min under flowing Argon, then cooled at the same rate. The powder after

DSC was recovered and used for XRD analysis using a Rigaku diffractometer,

in Bragg–Brentano geometry with Cu Kα radiation.

For  the  in  situ synthesis,  we  target  the  formation  of  Na0.7CoO2 by  using

different oxide precursors (CoO (Alfa,  99.995%) and Co3O4)  with Na2O2 as

sodium source. Two sets of precursors were mixed (Spex Mixer/Mill 8000M

for  90min),  pelletized  and  then  annealed  at  550  and  850  C in  air,

respectively. Two heating rates were used, one fast (36 C/min) and one slow

(0.5 C/min). A synthesis experiment was also done using a mixture of CoO

and  Na2CO3. For  the  in  situ synthesis  of  Na-Mn-O  system,  two  sets  of

precursors,  0.67Na2O2+Mn2O3  and  0.6Na2CO3+Mn2O3  were  mixed  (Spex

Mixer/Mill 8000M for 90min), pelletized and then annealed at 900  C in air,

respectively,  with a heating rate of  (36  C/min).  In situ synchrotron X-ray

diffraction was performed at F2 (CHESS) and 28-ID-2 (NSLS-II, BNL) for the
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experiment in the main text. 28-ID-2 (NSLS-II, BNL), F2 (CHESS) and 17-BM-B

(APS, ANL) were used for experiments in the Supp. Info. Each scan takes ≈12

seconds and the interval between the end of a scan and the beginning of the

next one is one or three (varying from experiment to experiment) minutes

(for data processing). The in situ synthesis experiment using Na2CO3 and CoO

was  performed  in  a  Bruker  D8  diffractometer  using  Bragg-Brentano

geometry (starting from 200 °C, a 1 hour-long XRD scan is taken every 50

°C).

For TEM, the powder samples were diluted in hexane and sonicated to obtain

good particle dispersion. The TEM samples were prepared by drop casting

the solution onto a standard 400 copper mesh TEM grid with lacey carbon

support. The samples were loaded into a Gatan 648 vacuum-transfer holder

to transfer the sample from the glovebox to the microscope in an inert Ar

atmosphere.  The  HAADF-STEM  and  EDX  maps  were  performed  on  a  FEI

TitanX  60-300  microscope  equipped  with the  Bruker  windowless  EDX

detector at an acceleration voltage of 200 kV.  The particles size for the Co

and Mn oxides used in our experiments is found to be of  a few hundred

nanometers (100-400 nm) after ball-milling  of  the precursors  mixture.  Na

precursors retain instead little crystallinity and have smaller particles size.

 

Rietveld  refinement  was  carried  out  using  Fullprof.  Multiple  phases  were

included  in  each  refinement.  A  point-by-point  background  was  manually

29



selected. Zero-shift value was refined in the first scan and then kept constant

for all subsequent scans. Peak shapes were modeled with a 

Thompson-Cox-Hastings pseudo-Voigt function (Npr=7). U, V, W, X, Y values

were  kept  constant  as  possible  between scans,  although the  subsequent

nucleation of different phases induced peak width variation and thus made it

necessary  to  refine  them  (mostly  X).  Unit  cell  parameters  were  always

refined for all phases. Fractional atomic coordinates, site occupancy factors

and Debye-Waller factors, as a rule of thumb, were refined whenever the

relative  phase is  more  than  ≈10 wt% to  avoid  divergence.  Debye-Waller

factors  were refined as a common value for  all  atoms (Boverall)  in  a given

phase. Refinements were deemed acceptable only when Rbragg of the main

phases were consistently < 10.

First principles calculations 

Spin-polarized density functional theory (DFT) calculations 44 were carried out

using the Vienna Ab Initio Simulation Package (VASP)  45 and the projector-

augmented wave (PAW) method 46. Each calculation used a reciprocal space

discretization  of  25  Å-1 and  consisted  of  two  sequential  structural

optimization steps, where both lattice parameters and atomic positions were

relaxed  in  the  absence  of  symmetry  constraints.  The  threshold  energy

difference for self-consistent field (SCF) convergence in the total free energy

was set to 1 x 10-3 eV, and a Gaussian-type smearing of the Fermi level was
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applied.  We  note  that  the  relative  stability  of  various  P2-NaxCoO2

configurations obtained using total energy convergence criteria of 1 x 10-3

and  1  x  10-5 eV  yielded  very  similar  results,  so  that  the  less  stringent

convergence  criterion  was  deemed  sufficient  here.  A  plane  wave  energy

cutoff of 520 eV was used throughout. The choice of the SCAN meta-GGA

exchange-correlation functional was motivated by its accurate prediction of

the  energy  and  structure  of  materials  with  diverse  bonding  and  its

comparable efficiency to that of standard LDA and GGA functionals 27, 47, 48.

Construction of finite-temperature phase diagrams

To determine the energy above the convex hull of NaxCoO2 structures and

construct a ternary Na-Co-O phase diagram, calculations were performed on

O2, CoO, Co3O4, Na2O2 and NaxCoO2 structures (0 ≤ x ≤ 1) using analogous

parameters  as  those  described  above.  The  ground  state  Na/vacancy

configurations of the various O3, P2 and P3 NaxCoO2 (0 < x < 1) phases

considered in this work were determined in two steps. First, the energy of

several hundred possible Na/vacancy orderings at different Na content was

computed using the fast GGA+U functional.  For all structures with energy

below 50 meV/atom from the convex hull (between 60 and 300 Na/vacancy

configurations, depending on the Na content) the ground state configuration

was recalculated using the more accurate SCAN meta-GGA functional. 
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Finite temperature phase stability was evaluated by including the entropy of

O2 gas, while neglecting the entropy of all solid phases, as is common for

equilibria against oxygen  1. For a discussion of the role of entropy on the

solid  phases  we  refer  the  reader  to  the  SI. The  free  energy  of  O2(g)  is

obtained as: 

EO 2=HO2−SO2×T ,                             (1)

where  HO2 is the 0 K formation enthalpy obtained for an isolated O2 dimer

using SCAN, and SO2 is the experimental entropy at the temperature (T ) of

interest obtained from the JANAF thermochemical tables 49. Likewise, the free

energy of CO2(g) was calculated as: 

ECO 2=HCO2−SCO2×T . (2)

Grand canonical reaction energy calculations 

Reaction energies to form the ground state NaxCoO2 polytypes at various  x

contents  were  obtained  from  a  grand-canonical  ensemble  description  at

different oxygen chemical potentials,  μO 2. As described by Ong et al.1,  μO 2

takes the form: 
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μO2 (T ,pO2 )=hO2 (T , p0)−T (sO2 (T ,p0 )−k × ln(
pO2

p0
))                   (3),

where p0 is the reference pressure, pO2 is the O2 partial pressure and k is the

Boltzmann  constant.  Lower  case  hO2 and  sO2 denote  the  enthalpy  and

entropy  of  oxygen  gas  per  O2 molecule.  In  this  work,  μO2 values  are

referenced  such  that  μO2=  0  eV  /  O2 under  standard  conditions  of

temperature and pressure (T = 298.15 K, and pO2=p0=1 atm). So while the

trends we observe are meaningful, as proven in similar recent work  3, the

exact  temperature  values  may  be  offset  with  respect  with  experimental

ones.

The  relative  chemical  potential  of  Na  in  a  particular  Na  precursor  (for

example  Na2O2)  in  Figure  6f  is  defined  as  the  difference  between  the

precursor’s  formation  energy  and  the  chemical  potential  of  all  other

elements in  the precursor  (¿Na2O2: μNa=
1
2

(μNa2O 2−μO2)).  For  sodium binary

oxides,  the  free  energy  of  O2(g) at  ambient  temperature  is  taken  as  the

reference  μO2.  For Na2CO3,  the chemical potential of the CO2(g) at ambient

temperature is taken as reference.

Constructing the Energy Cascade
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The energy cascade is constructed by multiplying the in situ XRD observed

phase fraction of each phase at a given time by its grand canonical  free

energy, Φ = G – nOμO, using the μO value discussed above. The number of Na

and Co ions are conserved throughout the entire reaction, while oxygen is in

exchange with the open air reservoir, so the grand canonical free energy is

normalized to the overall metal concentrations throughout the reaction; Na =

0.66,  Co = 1.  The Na2O2 phase is  amorphous (XRD not well  suited to its

quantification), so we infer its phase fraction in the early stages of synthesis

from the concentrations of CoO and NaCoO2, where we assume that all the

Na2O2 is consumed in this initial reaction. In the O3’P3 transformation, the

Na concentration in the layered phase decreases from approximately 0.66 to

0.6. We assume the Na is ejected from the layer phase in an oxide form,

whose grand free energy can be approximated by the energy of solid Na2O.

For the energy cascade,  Φ = 0 eV/metal is set to the grand free-energy of

P2-Na0.67CoO2, which is the equilibrium phase at all temperatures throughout

the reaction. Formation energies for intermediate x in O3-NaxCoO2 from 0.8

< x < 1.0 are derived from the ordered structures in Kaufman and Van der

ven 50.
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