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FOREWORD 

The philosopher Charles Sanders Peirce used the term abduction for a form of inference 
considered to be as important as deduction and induction (Peirce, 1931-1958). His description 
of abduction was basically: "The surprising fact C is observed; But if A were true, C would 
be a matter of course, hence there is reason to suspect that A is true." Peirce's abduction 
replaced his earlier theory of the "method of hypothesis" (Thagard, 1981). Abduction is 
concerned with explanatory reasoning and is closely related to the relatively modern notions 
of "backward chaining" and "inference to the best explanation" (Harman, 1965; Josephson, 
1990). 

Since explanations are important in many different aspects of intelligence, cognitive scien
tists have become interested in computer programs that construct and evaluate explanations. 
In artificial intelligence, a number of key tasks have come to be viewed in terms of abduc
tion. In expert systems, the best known abduction problem is diagnosis. In natural language 
comprehension, plan recognition is viewed as an abduction problem involving the inference 
of goals from observed behavior. In qualitative physics, postdiction is an abduction problem 
involving explaining states of the physical world in terms of processes and causal laws. In 
machine learning, explanation-based learning (EBL) strategies improve performance using 
processes that construct explanations. 

Abduction-related work has been done in different areas of AI for nearly twenty years 
(Pople, 1973), but until recently researchers working in different subfields often failed to 
recognize that they might benefit from work on abduction by people in other areas. The 
spring symposium on Automated Abduction, sponsored by AAAI and ONR and held at 
Stanford in March of 1990, aimed to facilitate cross-fertilization in the hope of accelerating 
research advances in all subfields of AI concerned with explanations. 

Researchers with interests in business, planning, diagnosis, qualitative physics, machine 
learning and discovery, and natural language processing gathered to discuss the role of abduc
tion in their disciplines. Walter Hamscher pointed out the potential for applications in busi
ness and introduced a system named after Sherlock Holmes's banker. Hamscher's CROSBY, 
based upon de Kleer and Williams's model-based diagnosis program SHERLOCK, automati
cally constructs plausible explanations for unexpected :financial results. Charles Elkan's con
tribution describe an approach to planning using abductive assumptions to generate approx
imate, incremental plans (see also Elkan, 1990). Bruce Krulwich, Lawrence Birnbaum, and 
Gregg Collins described a goal directed approach to learning strategic concepts from ex
pectation failures during plan execution (for related work, see Birnbaum, Collins, Freed, & 
Krulwich, 1990). Murray Shanahan presented abductive solutions to temporal projection 
problems such as Henry Kautz's stolen car problem and the bloodless version of the Yale 
shooting problem due to Hanks and McDermott. 

Robert Goldman and Eugene Charniak began a session on abduction and natural lan
guage understanding by presenting their work as a special case of a general probabilistic 
approach to abduction (Charniak & Shimony, 1990). Mark Stickel described a general logic 
and cost-based approach to abduction, and Jerry Hobbs provided an integrated approach to 



natural language processing and discourse interpretation based upon this abduction method. 
Elizabeth Hinkelman described her recent thesis work on abductive speech act recognition. 
Ashwin Ram sketched his recent thesis work on a program called AQUA, which builds expla
nations in order to find answers to questions that arise in the process of text comprehension 
(see Ram, 1989). Hwee Tou Ng and Raymond Mooney discussed the role of explanatory 
coherence in natural language interpretation and observed that "Occam's Razor isn't sharp 
enough" (Ng & Mooney, 1989, 1990). Preferring maximally general explanations doesn't al
ways work well. Coherence seems to be more important than generality. Peter Norvig and 
Robert Wilensky pointed out some weaknesses of the current abductive approaches to NLP 
based upon coherence, cost, and probability, listing a number of problems that still need to 
be addressed in constructing general abductive models of comprehension. 

In a session on abduction and learning, I argued that progress in research on abduction can 
be used to improve our ideas about explanation-based learning (EBL). In particular, I argued 
that replacing the theorem provers traditionally used to construct explanations in EBL with 
abduction engines enables EBL systems to deal with the conflicting plausible explanations 
that arise when theories are incomplete or incorrect. Furthermore, abductive inference makes 
it possible for EBL systems to learn at the knowledge level (O'Rorke, 1988, 1990). Steven 
Morris presented an approach to theory revision using abduction for hypothesis formation and 
illustrated the potential for learning at the knowledge level using an example based on the 
chemical revolution (O'Rorke, Morris, & Schulenburg, 1990). Bill Cohen presented another 
approach to revising imperfect theories using abductive EBL. He illustrated the performance 
of his method on the problem of learning the concept "good opening bid" in the card game 
bridge (see also Cohen, 1989, 1990). Sridhar Mahadevan presented a technique for acquiring 
rules that extend incomplete theories containing "determinations." Andrea Danyluk discussed 
the importance of contextual knowledge in constructing explanations for EBL. She described 
experiments from her thesis work testing her methods in network fault diagnosis domains. 
Steve Chien presented results from his thesis work on EBL for incremental, approximate 
planning. Gerald DeJong, the originator of EBL (DeJong, 1988; DeJong & Mooney, 1986) 
argued that narrow conceptions of abduction do not provide the kind of plausible inference 
necessary for explanation-based learning based upon imperfect knowledge. 

The workshop included sessions on task independent methods and general theories of 
abduction. A number of people working on tasks such as diagnosis and natural language 
comprehension have devoted considerable time to the development of domain-independent 
methods for constructing and evaluating explanations. I have already mentioned general 
approaches to abduction arising out of work on NLP based upon logic, cost minimization, 
coherence, "explanation patterns,'' and probability. Collaborative work such as the work of 
Harry Pople and Jack Myers has led to insights into medical diagnosis as an abduction prob
lem. Olivier Fischer and Jack Smith contributed an analysis and comparison of INTERNIST 
and the RED-2 system developed by computer scientists and M.D.s at Ohio State. The gener
alized set coveriIJ.g and parsimonious covering theories (PCT) of James Reggia and Yun Peng 
were also inspired by work on diagnostic problem solving. Reggia sketched PCT (elaborated 
fully in Peng & Reggia, 1990), described applications of PCT to non-diagnostic tasks such as 
natural language processing, and compared PCT to a general theory of explanatory coherence 
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(TEC) presented by Paul Thagard. Thagard showed how TEC could be used to provide a 
model of decision making that can be implemented in connectionist networks. Roger Hartley 
and Michael Coombs's contribution described an architecture called MGR extending gener
alized set covering methods for abduction to model generative reasoning. Raymond Reiter 
sketched abduction related work arising out of research on model-based diagnosis and the 
foundations of assumption based truth maintenance systems and emphasized the importance 
of computing prime implicants (see also Reiter, 1987; Reiter & de Kleer, 1987; de Kleer, 
Mackworth, & Reiter 1990). 

Several general, relatively formal logical approaches to abduction were discussed. David 
Poole sketched his THEORIST system for abduction, relating it to default and hypothetico
deductive reasoning and discussing its application to design. Douglas Appelt presented initial 
work on using model preferences to generalize existing approaches to abduction based upon 
Bayesian probability, minimizing abnormality, and maximizing defaults. Kurt Konolige pre
sented a theory which included a general framework for abduction and which clarified the 
relationship between abduction and diagnostic reasoning methods using closure, minimiza
tion, and consistency (see also Junker & Konolige, 1990). Luca Console, Daniele Dupre, 
and Pietro Torasso described related work providing a semantics for abduction and clarifying 
the relationship between abduction and deductive reasoning. Peter Jackson also provided a 
semantic account of abductive inference and showed how it can be done in terms of counter
factual reasoning if completeness assumptions are introduced. 

In addition to axiomatic characterizations of abduction and semantic theories of abduc
tion, several analyses of the complexity of abductive computations were presented. It is 
probably not surprising that abduction, like many other AI problems, is intractable in gen
eral, but interesting results were presented by Tom Bylander and Bart Selman which more 
exactly characterize when and why abduction is hard (see also Selman & Levesque, 1990). 
It was encouraging to see that several general formal theories of abduction have begun to 
develop and more encouraging to see these theories tied closely to each other and to the 
algorithms being used in applications. 

Lively discussions comparing different approaches, methods and implementations (e.g., 
Bayesian probabilistic reasoning vs. connectionist networks) took place both on and off-line. 
These discussions were sometimes quite heated. At one point I was asked why I had invited 
a certain speaker since it was "like inviting a creationist to a scientific meeting." Another 
participant wanted to know why Judea Pearl and Roger Schank were invited to give "back
to-back" talks presenting their views of abduction. 

Roger Schank gave an invited talk encouraging workshop participants to spend more time 
on memory-based approaches to explanation and less time on approaches based upon prob
lem solving, theorem proving and probability theory. Schank's views are described more 
fully in his book "Explanation Patterns" (Schank, 1986). In his invited talk, Judea Pearl 
made a strong case for a general probabilistic approach to abduction. He described proba
bilistic methods for defining the primitive causal relationships underlying theories of causal 
explanation. In addition, his submission discussed the relationship between probabilistic and 
qualitative approaches to abduction. Pearl's views are stated more fully in Pearl (1988). 

The sharply contrasting invited talks were a result of scheduling constraints, but they 
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highlighted the differences in the points of view of the participants. One participant stalked 
out at one point, informing me that he had "had it up to here" with the logicists' view 
of abduction. A surprisingly heated exchange occurred between a logicist and a cognitive 
scientist. On the whole, however, the differences between participants were expressed in 
friendly and valuable constructive criticism. 

Relationships between abduction and various forms of inference were explored by a number 
of participants. Brian Falkenhainer discussed analogical reasoning and argued in his contribu
tion that deduction, abduction, and analogy are closely related. John Josephson characterized 
abduction in terms of an inference schema related to Harman's notion of inference to the best 
explanation. Josephson also discussed the logical form of abduction and its relationship to de
duction and induction. Randy Goebel described abduction as a "logical method of isolating 
interesting hypotheses" and discussed its relationships to hypothetico-deductive reasoning, 
deduction, induction, analogy, probability, and non-monotonic reasoning. Hector Geffner fo
cused on the relationship to default reasoning and described a special class of default theories 
using modal causal operators (Geffner, 1990). 

The workshop provided a broad overview of the rapidly accumulating work on abduction 
and brought together a number of researchers who ordinarily operate in disjoint subfields of 
AI. Many participants found the technical exchanges and the discussions of relationships very 
valuable. If I were forced to identify weaknesses of the workshop, I would admit to the fact 
that little or no psychological data was presented about how people construct and evaluate 
explanations and few formal evaluations or comparisons of alternative approaches or systems 
were given. While there may be conferences on abduction in the future which will put a 
stronger emphasis on evaluation, the quality of the work was quite high for a workshop. The 
symposium provided a useful snapshot of an important, fundamental research area emerging 
at the intersection of several subfields of AI. 

My thanks to Hector Levesque, Carol Hamilton, and AAAI for making the symposium 
possible. Thanks also to the other organizers and members of the program committee: Eu
gene Charniak, Gerald DeJong, Jerry Hobbs, Jim Reggia, Roger Schank, and Paul Thagard. 
Caroline Ehrlich and Steven Morris helped with preparations at UCL AAAI and Alan Mey
rowitz of the AI Program in the Office of Naval Research generously provided travel support 
enabling graduate students to participate. My apologies if I have tread on anyone's toes. I 
am happy to accept corrections of any errors I may have made in giving my impressions of 
the workshop. 

AAAI policy limits distribution of symposium working notes to attendees. However, with 
encouragement from AAAI and SIG ART and with permission of the authors (who retain copy
rights) the working notes of the abduction symposium are now available as a UCI technical 
report. Enjoy! 
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Incremental Construction of Probabilistic Models for 
Language Abduction 

Work in Progress 

Robert P. Goldman and Eugene Charniak* 

Dept. of Computer Science, Brown University 
Box 1910, 

Providence, RI 02912 

For some time we have been interested in the prob
lems posed by uncertainty in story understanding. 
Our particular interest is in plan-recognition as it 
is needed in text understanding: understanding the 
meanings of stories by understanding the way the ac
tions of characters in the story serve purposes in their 
plans. Our work builds upon earlier work in script
and plan-based understanding of stories like that of 
Wilensky [1983), Charniak [1986) and Norvig [1987]. 

We see plan-recognition and text understanding as 
a particular case of the problem of abduction. 1 In 
particular, for the case of simple, declarative text, we 
view the language user as a transducer. The language 
user observes some thing (event or object) in the 'real 
world', and translates this thing into language. Our 
task is to reason from the text to the intentions of the 
language user and thence to the thing described. 

Because abduction problems involve uncertainty, 
we have adopted a probabilistic approach to the prob
lem of story comprehension. In order to make such an 
approach feasible, a number of techniques have been 
used: 

1. Simplifying assumptions 

2. A graphical representation of the probabilistic 
model 

3. Incremental construction and evaluation of the 
representation of this probabilistic model. 

We represent the plans in an isa-hierarchy of 
frames. We assume that this set of plans is exhaus-

0 This work has been supported in pa.rt by the National Sci
ence Foundation under grants IST 8416034 and IST 8515005 
and Office of Naval Research under grant N00014-79-C-0529. 

1 See [Hobbs et a.I., 1988] for a statement of this position. 
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tive. We also assume that actions are related to each 
other only through the mediation of these plans. So, 
for example, in reading stories about various people's 
day-to-day activities, we will make inferences about 
an agent's travel based on plans to achieve everyday 
tasks. We would not take into account a particu
lar person's systematic preference for walking, rather 
than driving. For simple stories this does not seem to 
be a problem. 

We have chosen to represent the resulting proba
bilistic inference problem using belief networks. 2 Be
lief networks are directed acyclic graphs that can be 
used to represent probability problems. In a belief 
network, nodes represent random variables, and arcs 
represent direct influences between random variables. 
There are three advantages to belief networks as rep
resentations for probability distributions. First of all, 
properties of conditional independence can be read 
off a belief network. Second, the probability distri
bution corresponding to a belief network may be rep
resented locally. For each node, it suffices to provide 
a conditional probability distribution for each com
bination of values of its parent nodes. Finally, while 
in general the problem of determining the posterior 
distribution of a partially-instantiated belief network 
is NP-hard [Cooper, 1987), considerable attention has 
been devoted to finding efficient approaches to evalu
ating such networks. 

A sample belief network for the story "Jack got a 
rope. He killed himself." is given as Figure 1. The 
nodes at the bottom represent the evidence, we have 
observed: three words, "kill", "get" and "rope" and 

2Judea Pearl's book [Pearl, 1988] gives a thorough account 
of the properties of such networks. 



{kill kl) 

(kill wl) (get w3) (object-of w2 w3) (rope w2) 

Figure 1: The Bayesian network for "Jack got a rope. He killed himself." 

the fact that the rope is the object of the get. Nodes 
with arcs into the words represent possible causes for 
the use of these words. E.g., one possible cause for 
using the word "rope" is that the author wishes to 
talk about a rope: {rope r2). One reason for the rope 
being the object of the verb "get" is that it is the 
patient of the getting action the word refers to. If 
the kill referred to were a hanging, that would dic
tate the presence of a getting action whose patient is 
a rope. The getting action and the rope we've postu
lated might fill those roles (the equality statements). 

This example is simplified for the purpose of clar
ity, showing only one possible interpretation for the 
input. The actual diagrams used in our program are 
more complicated. This figure also illustrates how the 
posterior distribution over a belief net can determine 
the interpretation of a text. We are concerned with 
the probability that Jack has a plan to hang himself, 
given the input we have observed. I.e., we are inter-

. ested in 

P((hang k1)1 (kill v1), (get v3), 

(object v2 v3), (rope v2)) 

Because a full probabilistic model for any utter
ance might be infinite.. we construct and evaluate 
only small pieces of this model at any given time. 
We have developed a language for writing network
building rules, and a set of such rules for our domain. 
These rules are similar to the forward-chaining rules 
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in a conventional TMS. They differ in that rules are 
not restricted to adding justifications to some derived 
statement. In fact, since we are trying to build net
works for a diagnostic problem, our rules will typ
ically be triggered by the heads of arcs they add, 
rather than by the tails. Our network-building rules 
also provide more information than simple connec
tivity: they contain information used to compute the 
conditional probability matrices of the nodes in the 
network. 

The technique of incrementally building belief net
works with production rules may be of more general 
applicability than language abduction. However, sev
eral features of this domain make this technique par
ticularly appropriate. Because our program is pas
sive, it cannot seek out new evidence. This helps us 
focus our search: we are always going to be searching 
from evidence to explanations. We do not need to 
look for new observations. Our domain also makes it 
possible to build up a model out of nodes of stylized 
types which can be parameterized. This approach 
was suggested by Pearl [1988], who suggested "noisy
or gates". We use these as well as noisy XORs, OR.s 
and ANDs. For example, our equality statements are 
parameterized noisy-ANDs: in order for the equality 
to be possible, both terms must be of the same type 
(e.g., in Figure 1, both g3 and (get-step kl) must be 
gets in order for (get-step kl) = g3 to be possible. 

There has been similar work contemporary with 
ours. [Breese, 1989], and [D'Ambrosio, 1988] de-



scribe techniques for .constructing models on an as
needed basis. [Levitt et al., 1989] discusses incremen
tal model evaluation and extension. 

This approach is being tested in a program called 
Wimp3, which works as follows: 

l. A parser reads one word of the English text. It 
produces statements which describe the words 
in the story and the syntactic relations between 
them. 

2. The output of the parser is taken by the network 
construction component. This component con
tains rules for language abduction. It builds a 
net, or extends the current net if some input has 
already been received. 

3. The resulting belief network is evaluated by a 
network-evaluation component. If certain con
clusions are overwhelmingly favored, they may 
be accepted as true to simplify further computa
tion. 

4. Return to step 1. 

This work is more fully described in three other pa
pers of the authors: [Charniak and Goldman, 1989b] 
and [Charniakand Goldman, 1989a] give a probabilis
tic account of the ·problem of story understanding. 
This provides the mathematical foundation of this 
work. [Goldman and Charniak, 1989) gives a more 
detailed account of the program. Finally, [Carroll 
and Charniak, 1989) discusses a marker-passer which 
is used to control the search of the belief network 
construction rules. Two other papers, [Goldman and 
Charniak, 1988) and [Charniak and Goldman, 1988) 
describe the authors' earlier work in this area, an at
tempt to build a logical-probabilistic hybrid program 
for story understanding. 
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Introduction 

Abductive inference is inference to the best explanation. 
The process of interpreting sentences in discourse can 
be viewed as the process of generating the best expla
nation as to why a sentence is true, given what is al
ready known [3]; this includes determining what infor
mation must be added to the listener's knowledge (what 
assumptions must be made) for the listener to know the 
sentence to be true. Some new forms of abduction are 
more appropriate to the task of interpreting natural lan
guage than those used in the traditional diagnostic and 
design synthesis applications of abduction. In one new 
form, least specific abduction, only literals in the logi
cal form of the sentence can be assumed. The assign
ment of numeric costs to axioms and assumable literals 
permits specification of preferences on different abduc
tive explanations. Least specific abduction is sometimes 
too restrictive. Better explanations can sometimes be 
found if literals obtained by backward chaining can also 
be assumed. Assumption costs for such literals are deter
mined by the assumption costs of literals in the logical 
form and functions attached to the antecedents of the 
implications. There is a new Prolog-like inference sys
tem that computes minimum-cost explanations for these 
abductive reasoning methods. 

We consider here the abductive explanation of con
junctions of positive literals from Horn clause knowledge 
bases. An explanation will consist of a substitution for 
variables in the conjunction and a set of literals to be 
assumed. In short, we are developing an abductive ex-

•This abstract is condenaed from Stickel (7]. The research was 
supported by the Defense Advanced Research Projects Agency, 
under Contract N00014-85-C-0013 with the Office of Naval Re
search, and by the National Science Foundation, under Grant 
CCR-8611116. The views and conclusions contained herein a.re 
those of the author and shollld not be interpreted as necessar
ily representing the official policies, either expressed or implied, 
of the Defense Advanced Research Projects Agency, the National 
Science Foundation, or the United States government. Approved 
for public release. Distribution unlimited. 
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tension of pure Prolog. 

Four Abduction Schemes 

In general, if the formula Q1 /\ · · · /\ Qn is to be ex
plained or abductively proved, the substitution (} and 
the assumptions P1, ... , Pm would constitute one pos
sible explanation if (P1 /\···/\Pm) :::) ( Q1 /\ · · · /\ Qn )8 is 
a consequence of the knowledge base. 

It is a general requirement that the conjunction of 
all assumptions made be consistent with the knowledge 
base. With an added factoring operation and without 
the literal ordering restriction, so that any, not just the 
leftmost, literal of a clause can be resolved on, Prolog
style backward chaining is capable of generating all pos
sible explanations that are consistent with the knowl
edge base. That is, every possible explanation consistent 
with the knowledge base is subsumed by an explanation 
that is generable by backward chaining and factoring. It 
would be desirable if the procedure were guaranteed to 
generate no explanations that are inconsistent with the 
knowledge base, but this is impossible. 

Obviously, any clause derived by backward chaining 
and factoring can be used as a list of assumptions to 
prove the correspondingly instantiated initial formula 
abductively. This can result in an overwhelming num
ber of possible explanations. Various abductive schemes 
have been developed to limit the number of acceptable 
explanations. These schemes differ in their specification 
of which literals are assumable. 

What we shall call most specific abduction has been 
used particularly in diagnostic ta.sks [4,1]. In explaining 
symptoms in a diagnostic task, the objective is to iden
tify causes that, if assumed to exist, would result in the 
symptoms. The most specific causes are usually sought, 
since identifying less specific causes may not be a.s use
ful. In most specific abduction, the only literals that can 
be assumed are those to which backward chaining can 
no longer be applied. 



What we shall call predicate specific abduction has 
been used particularly in planning and design synthesis 
tasks [2]. In generating a plan or design by specifying 
its objectives and ascertaining what assumptions must 
be made to make the objeetives provable, acceptable as
sumptions are often expressed in terms of a prespecified 
set of predicates. In planning, for example, these might 
represent the set of executable actions. 

The criterion for "best explanation" used in natural
language interpretation differs greatly from that used in 
most specific abduction for diagnostic tasks. To inter
pret the sentence "the watch is broken," the conclusion 
will likely be that we should add to our knowledge the in
formation that the watch currently discussed is broken. 
The explanation that would be frivolous and unhelpful 
in a diagnostic task is just right for sentence interpre
tation. A more specific causal explanation, such as a 
broken mainspring, would be gratuitous. 

Predicate specific abduction is not ideal for natural
language interpretation either, since there is no easy di
vision of predicates into assumable and nonassumable, 
so that those assumptions that can be made will be rea
sonably restricted. Most predicates must be assumable 
in some circumstances such as when certain sentences 
are being interpreted, but in many other cases should 
not be assumed. 

As an alternative, we consider what we will call least 
specific abduction to be well suited to natural-language
interpretation tasks. It allows only literals in the initial 
formula to be assumed and thereby seeks to discover the 
lea.st specific assumptions that explain a sentence. More 
specific explanations would unnecessarily and often in
correctly require excessively detailed assumptions. 

We note that assuming any literals other than those 
in the initial formula generally results in more specific 
and thus more risky assumptions. When explaining R 
with P :J R (or P /\ Q :J R) in the knowledge base, 
either R or P (or P and Q) can be assumed to explain 
R. Assumption of R, the consequent of an implication, 
in preference to the antecedent P (or P and Q), results 
in the fewest consequences. 

Although least specific abduction is often sufficient for 
natural-language interpretation, it is clearly sometimes 
necessary to assume literals that are not in the initial 
formula. We propose chained specific abduction for these 
situations. Assumability is inherited-a literal can be 
assumed if it is an assumable literal in the initial formula 
or if it can be obtained by backward chaining from an 
assumable literal. 

Factoring some literals obtained by backward chaining 
and assuming the remaining antecedent literals can also 
sometimes yield better explanations. When Q /\ R is 
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explained from 

the explanation that assumes Pi, P2, and P3 may be 
preferable to the one that assumes Q and R. Even if 
Q and R are not provable, it might not be necessary to 
assume all of P1, P2, and ?3, since some may be provable. 

Assumption Costs 

A key issue in abductive reasoning is picking the best ex
planation. Defining this is so subjective and task depen
dent that there is no hope of devising an algorithm that 
will always compute only the best explanation. Never
theless, there are often so many abductive explanations 
that it is necessary to have some means of eliminating 
most of them. We attach numeric assumption costs to 
assumable literals, and compute minimum-cost abduc
tive explanations in an effort to influence the abductive 
reasoning system toward favoring the intended explana
tions. 

We regard the assignment of numeric costs as a part 
of programming the explanation task. The values used 
may be determined by subjective estimates of the likeli
hood of various interpretations, or perhaps they may be 
learned through exposure to a large set of examples. 

If only the cost of assuming literals is counted in the 
cost of an explanation, there is in general no effective 
procedure for computing a minim:um-cost explanation. 
For example, if we are to explain P, where Pis assum
able with cost 10, then assuming P produces an explana
tion with cost 10, but proving P would result in a better 
explanation with cost 0. Since provability is undecidable 
in general, it may be impossible to determine whether 
the cost 10 explanation is best. 

The solution is that the cost of proving literals must 
also be included in the cost of an explanation. An expla
nation that assumes P with cost 10 would be preferred 
to an explanation that proves P with cost 50 (e.g., in a 
proof of 50 steps) but would be rejected in favor of an 
explanation that proves P with cost less than 10. 

There are substantial advantages gained by taking into 
account proof costs as well as assumption costs, in addi
tion to the crucial benefit of making theoretically possi
ble the search for a minimum-cost explanation. 

If costs are associated with the axioms in the knowl
edge base as well as with assumable literals, these costs 
can be used to encode information on the likely relevance 
of the fact or rule to the situation in which the sentence 
is being interpreted. 



We have some reservations about choosing explana
tions on the basis of numeric costs. Nonnumeric spec
ification of preferences is an important research topic. 
Nevertheless, we have found these numeric costs to be 
quite practical; they offer an easy way of specifying that 
one literal is to be assumed rather than another. When 
many alternative explanations are possible, summing nu
meric costs in each explanation, and adopting an expla
nation with minimum total cost, provides a mechanism 
for comparing the costs of one proof and set of assump
tions against the costs of another. If this method of 
choosing explanations is too simple, other means may be 
too complex to be realizable. We provide a procedure for 
computing a minimum-cost explanation by enumerating 
possible partial explanations in order of increasing cost. 
Even a perfect scheme for specifying preferences among 
alternative explanations may not lead to an effective pro
cedure for generating a most preferred one. Finally, any 
scheme will be imperfect: people may disagree as to the 
best explanation of some data and, moreover, sometimes 
do misinterpret sentences. 

Minimum-Cost Proofs 

We now present the inference system for computing ab
ductive explanations. This method applies to predicate 
specific, least specific, and chained specific abduction. 

Every literal Q; in the initial formula is annotated 
with its assumption cost c;: 

The cost c; must be nonnegative; it can be infinite, if Q; 
is not to be assumed. 

Every literal Pj in the antecedent of an implication in 
the knowledge base is annotated with its assumability 
function fj: 

P(',. . ., P/nm -:::; Q 

The input and output values for each f; are nonnega
tive and possibly infinite. If this implication is used to 
backward chain from Q~;, then the literals P1, ... , Pm 
will be in the resulting formula with assumption costs 
fi(c;), ... .fm(c;). 

In predicate specific abduction, assumptions costs are 
the same for all occurrences of the predicate. Let cost(p) 
denote the assumption cost for predicate p. The assump
tion cost c; for literal Q; in the initial formula is cost(p), 
where the Q; predicate is p; the assumption function f; 
for literal Pj in the antecedent of an implication is the 
unary function whose value is uniformly cost(p), where 
the P; predicate is p. 
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In least specific abduction, different occurrences of the 
predicate in the initial formula may have different as
sumption costs, but only literals in the initial formula 
are assumable. The assumption cost c, for literal Qi in 
the initial formula is arbitrarily specified; the assump
tion function f; for literal P; in the antecedent of an 
implication has value infinity. 

In chained specific abduction, the most general case, 
different occurrences of the predicate in the initial for
mula may have different assumption costs; literals ob
tained by backward chaining can have flexibly computed 
assumption costs that depend on the assumption cost of 
the literal backward-chained from. The assumption cost 
c; for literal Q; in the initial formula is arbitrarily spec
ified; the assumption function fj for literal Pj in the 
antecedent of an implication can be an arbitrary mono
tonic unary function. 

We have most often used simple weighting functions of 
the form fj ( c) = w; x c ( w; > 0). Thus, the imphcation 

P;:'' /\ P;'' -:::; Q 

states that P1 and P2 imply Q, but also that, if Q is 
assumable with cost c, then P 1 is assumable with cost 
w1 x c and P2 with cost w 2 x c, as the result of backward 
chaining from Q. If w1 + w2 < 1, more specific explana
tions are favored, since the cost of assuming P 1 and P2 

is less than the cost of assuming Q. If w1 + w2 > 1, less 
specific explanations are favored: Q will be assumed in 
preference to P1 and P2 . But, depending on the weights, 
P; might be assumed in preference to Q if P1 is provable. 

We assign to each axiom A a cost axiom-cost(A) 
that is greater than zero. Assumption costs 
assumption-cost(L) are computed for each literal L. 
When viewed abstractly, a proof is a demonstration that 
the goal follows from a set S of instances of the axioms, 
together with, in the case of abductive proofs, a set H 
of literals that are assumed in the proof. \Ve want to 
count the cost of each separate instance of an axiom or 
assumption only once instead of the number of times it 
may appear in the syntactic form of the proof. Thus, a 
natural measure of the cost of the proof is 

L axiom-cost(A) + L assumption-cost(L) 
Au es LEH 

In general, the cost of a proof can be determined by 
extracting the sets of axiom instances S and assump
tions H from the proof tree and performing the above 
computation. However, it is an enormous convenience 
if there always exists a simple proof tree such that each 
separate instance of an axiom or assumption actually 
occurs only once in the proof tree. That way, as the 
inferences are performed, costs can simply be added to 



compute the cost of the current partial proof. Even if 
the same instance of an axiom or assumption happens to 
be used and counted twice, a different, cheaper deriva
tion would use and count it only once. Partial proofs can 
be enumerated in ordd'of increasing cost by empfoying · 
breadth-first or iterative-deepening search methods and 
minimum-cost explanations can be discovered effectively. 

We shall describe our inference system as an extension 
of pure Prolog. Prolog, though complete for Horn sets 
of clauses, lacks this desirable property of always being 
able to yield a simple proof tree. 

Prolog's inference system--ordered input resolution 
without factoring-would have to eliminate the order
ing restriction and add the factoring operation to re
main a form of resolution and be able to prove Q, R 
from Q - P, R - P, and P without using P twice. 
Elimination of the ordering restriction is potentially very 
expensive. 

We present a resolution-like inference system, an ex
tension of pure Prolog, that preserves the ordering 
restriction and does not require repeated use of the 
same instances of axioms. In our extension, literals in 
goals can be marked with information that dictates how 
the literals are to be treated by the inference system, 
whereas in Prolog, all literals in goals are treated alike 
and' must be proved. A literal can be marked as one of 
the following: 

proved The literal has been proved or is in 
the process of being proved; in this infer
ence system, a literal marked as proved 
will have been fully proved when no lit
eral to its left remains unsolved. 

assumed The literal is being assumed. 

unsolved The literal is neither proved nor as

sumed. 

The initial goal clause Qi, ... , Qn in a deduction con
sists of literals Qi that are either unsolved or assumed. 
If any assumed literals are present, they must precede 
the unsolved literals. Unsolved literals must be proved 
from the knowledge base plus any ass~mptions)11 the in~'.'.' 
tial goal clause or made during the proof, or, in the case 
of assumable literals, may be directly assumed. Literals 
that are proved or assumed are retained in all successor 
goal clauses in the deduction and are used to eliminate 
matching goals. The final goal clause P1, ... , Pm in a 
deduction must consist entirely of proved or assumed 
literals Pi. 

An abductive proof is a sequence of goal clauses 
G1, ... , Gp for which 

• G1 is the initial goal clause. 
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• 
• each Gt+i (I $ k < p) is derived from Gt by res-, 

olution with a fact or rule, making an assumption, 
or factoring with a proved or assumed literal. 

. ~· ' 
. - '" ~ 

Predicate specific abduction is quite simple because 
the assumability and assumption cost of a literal are de
termined by its predicate symbol. Least specific abduc
tion is also comparatively simple because if a literal is 
not provable or assumable and must be factored, all as
sumable literals with which it can be factored are present 
in the initial and derived formulas. Because assumability 
is inherited in chained specific abduction, the absence of 
a literal to factor with is not a cause for failure. Such 
a literal may appear in a later derived clause after fur
ther inference as new, possibly assumable, literals are 
introduced by backward chaining. 

Inference Rules 

Suppose the current goal Gt is Q~1 , •• • , Q~· and that 
Qf• is the leftmost unsolved literal. Then the following 
inferences are possible. 

Resolution with a fact 

Let axiom A be a fact Q made variable-disjoint 
from Gt. Then, if Qi and Q are unifiable with 
most general unifier tr, the goal 

with 

cost'(Gt+i) = cost'(Gt) + axiom-cost(A) 

can be derived, where Qitr is marked as proved 
in G1:+1· 

The resolution with a fact or rule operations differ 
from their Prolog counterparts principally in the reten
tion of Qitr (marked as proved) in the result. Its reten
tion allows its use in future factoring. 

Resolution with a rule 

Let axiom A be a rule Q - P{1 , • •• , P/n"' made 
variable-disjoint from Gt. Then, if Qi and Q 
are unifiable with most general unifier tr, the 
goal 

G QCi-1 pfi(c;) pf,,.(c;) Qc; 
t+l = • •.' i-1 tr, 1 tr, ... ' m tr, i tr, .. . 

with 

cost'(G1:+1) = cost'(Gt) + aziom-cost(A) 



can be derived, where Q;rr is marked as proved 
in G1:+i and each P;rr is unsolved. 

Making an assumption 

The goal 

with 
cost'(G1:+i) = cost'(Gi.) 

can be derived, where Q; is marked as assumed 
in Gi.+i· 

Factoring with a proved or assumed literal 

If Q; and Q; (j < i) are unifiable with most 
general unifier rr, the goal · 

with 
cost'(Gi.+i) = cost'(Gi.) 

can be derived, where cj = min(c;,c;). 

ijote that if Q; is a proved literal and cj < c;, the 
assumption costs of assumed literals descended from Q; 
may need to be adjusted also. Thus, in resolution with 
a rule, it may be necessary to retain assumption costs 
Ji ( c;), ... , f m ( c;) in symbolic rather than numeric form, 
so that they can be readily updated if a later factoring 
operation changes the value of c;. 

Computing Cost of Completed Proof 

If no literal of G1: is unsolved and Q;1 , ••. , Q;.,. 
are the assumed literals of G 1:, 

cost(G1:) = cost'(G1:) + E c; 
iE{i1 1 ••• ,i,,.} 

The abductive proof is complet~ w,~~µ all literals are 
either proved or assumed. Each axiom instance and as
sumption was used or made only once in the proof. 

The proof procedure can be restrict~d to disallow any 
clause in which there are two identical proved or assumed 
literals. Identical literals should have been factored if 
neither was an ancestor of the other. Alternative proofs 
are also possible whenever a literal is identical to an 
ancestor literal. 

If no literals are assumed, the procedure is a disguised 
form of.Shostak's graph construction (GC) procedure [6] 
restricted to Horn clauses, where proved literals play the 
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role of Shostak's C-literals. It also resembles Finger's or
dered residue procedure [2], except that the latter retains 
assumed literals (rotating them to the end of the clause) 
but not proved literals. Thus, it includes both the abil
ity of the GC procedure to c9mpute simple proof trees 
for Horn clauses and the' ability of the ordered residue 
procedure to make assumptions in abductive .. proofs~ 

Another approach which shares. the idea of using least 
cost proofs to choose explanations is Post's Least Ex
ception Logic [5]. This is restricted to the propositional 
calculus, with first-order problems handled by creating 
ground instances, because it relies upon a translation of 
default reasoning problems into integer linear program
ming problems. It finds sets of assumptions, defined by 
default rules, that are sufficient to prove the theorem, 
that are consistent with the knowledge base so far as it 
has been instantiated, and that have least cost. 
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An Integrated Abductive Framework 
for Discourse Interpretation 

Jerry R. Hobbs 
Artificial Intelligence Center 

SRI International 

Interpretation as Abduction. Abductive infer
ence is inference to the best. explanation. The process 
of interpreting sentences in discourse can be viewed as 
the process of providing the best explanation of why 
the sentences would be true. In the TACITUS Project 
at SRI, we have developed a scheme for abductive in
ference that yields a significant simplifica.tion in the de
scription of such interpretation processes and a signifi
cant extension of the range of phenomena that can be 
captured. It has been implemented in the TACITUS 
System (Hobbs et al., 1988; Stickel, 1989) and has been 
applied to several varieties of text. The framework sug
gests a thoroughly integrated, nonmodular treatment of 
syntax, semantics, and pragmatics, and this is the focus 
of this paper. First, however, the use of abduction in 
pragmatics alone will be described. 

In the abductive framework, what the interpretation 
of a sentence is can be described very concisely: 

To interpret a sentence: 

(1) Prove the logical form of the sentence, 
together with the constraints that pred

icates impose on their arguments, 
allowing for coercions, 

Merging redundancies where possible, · · 

Making assumptions where necessary. 

By the first line we mean "prove from the predicate 
calculus axioms in the knowledge base, the logical form 
that has been produced by syntactic analysis and se
mantic translation of the sentence." 

In a discourse situation, the speaker and hearer both 
have their sets of private beliefs, and there is a large 
overlapping set of mutual beliefs. An utterance stands 
with one foot in mutual belief and one foot in the 
speaker's private beliefs. It is a bid to extend the area 
of mutual belief to inch1de some private beliefs of the 
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speaker's. It is anchored referentially in mutual be
lief, and when we prove the logical form and the con
straints, we are recognizing this referent.ial anchor. This 
is the given information, the definite, the presupposed. 
vVhere it is necessary to make assumptions, the infor
mation comes from the speaker's private beliefs, and 
hence is the new information, the indefinite, the as
serted. Merging redundancies is a way of gettjng a 
minimal, and hence a best, interpretation. 

An Example. This characterization, elegant though 
it may be, would be of no interest if it did not lead to 
the solution of the discourse problems we need to have 
solved. A brief example will illustrate that it indeed 
does. 
(2) The Boston office called. 
This example illustrates three problems in "local prag
matics", the reference problem (What does "the Boston 
office" refer to?), the compound nominal interpretation 
problem (What is the implicit relation between Boston 
and the office?), and the metonymy problem (How can 
we coerce from the office to the person at the office who 
did the calling?). 

Let us put, these probl~ms aside, an.d interpret the 
sentence according to characterization (1). The logical 
form is something like 

(3) (3e,x,o,b)call'(e,x) /I. person(x) /I. rel(x,o) 

/\office(o) /I. nn(b,o) /I. Boston(b) 

That is, there is a calling event e by a person x related 
somehow (possibly by identity) to the explicit subject 
of the sentence o, which is an office and bears some 
unspecified relation nn to b which is Boston. 

Suppose our knowledge base consists of the following 
facts: We know that there is a person John who works 
for 0 which is an office in Boston B. 

(4) person(J), work-for(J, 0), of fice(O), 

in(O, B), Boston(B) 



Suppose we also know that work-! or is a possible co-
ercion relation, · 

(5) (Vx,y)wo1·k-for(x,y) :::> rel(x,y) 

and that in is a possible implicit relation in compound 
nominals, 

(6) (Vy, z)in(y, z) :::> nn(z, y) 

Then the proof of all but the first conjunct of (3) is 
straightforward. We thus assume (3 e)call'(e, J), and it 
constitutes the new information. 

Notice now that all of our local pragmatics problems 
have been solved. "The Boston office" has been resolved 
to 0. The implicit relation between Boston and the 
office has been <let.ermined to be the in relation. "The 
Boston office" ha5 been coerced into "John, who works 
for the Boston office." 

This is of course a simple example. More complex 
examples and arguments are given in Hobbs et al., 1990. 
A more detailed description of the method of abductive 
inference, particularly the system of weights and costs 
for choosing among possible interpretations, is given in 
that paper and in Stickel, 1989. 

The Integrated Framework. The idea of inter
pretation as abduction can be combined with the older 
idea of parsing as deduction (Kowalski, 1980, pp. 52-53; 
Pereira and Warren, 1983). Consider a grammar writ
ten in Prolog style just big enough to handle sentence 
(2). . 

(7) (Vi,j,k)np(i,j) /\ v(j,k) :::> s(i,k) 

(8) (Vi,j,k,l)det(i,j) /\ n(j,k) /\ n(k,l) :::> np(i,l) 

That is, if we have a noun phrase from "inter-word 
point" i to point j and a verb from j to k, then we 
have a sentence from i to k, and similarly for rule (8). 

We can integrate this with our abductive framework . 
by moving the various pieces of expression (3) into these 
rules for syntax, as follows: 

(9) (Vi,j,k,e,x,y,p)np(i,j,y) /\ v(j,k,p) /\ p'(e,z) 

/\Req(p,x) /\ rel(x,y) :::> s(i,~,e) 

That is, if we have a noun phrase from i to j referring to 
y and a verb from j to k denoting predicate p, if there 
is an eventuality e which is the condition of p being 
true of some entity z (this corresponds to call'(e, z) in 
(3)), if z satisfies the selectional requirement p imposes 
on its argument (this corresponds to person(z)), and 
if z is somehow related to, or coercible from, y, then 
there is an interpretable sentence from i to k describing 
eventuality e. 

(10) ('Vi,j,k,l)det(i,j,the) /\ n(j,k,w1) /\ n(k,l,w2) 

/\w1(z) /\ w2(Y) /\ nn(z,y) :::> np(i,l,y) 
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That is, if there is the determiner "the" from i to j, a 
noun from j to k denoting predicate w 1, and another 
noun from. k to /~.denoting predicate .w.2 ,. if th~~~ •. is a 
z that w1 1s true of and a y that w2 1s tr,ue of, and if 
there is an nn relation between z and y, then there is 
an interpretable noun phrase from i to l denoting y. 

These rules incorporate the syntax in the literals like 
v(j, k,p), the pragmatics in the literals like p'(e, x), and 
the compo~itional semantics in the way the pragmatics 
literals are constructed out of the information provided 
by the syntax literals. 

To parse with a. grammar in the Prolog style, we prove 
s(O, N) where N is the number of words in the sentence. 
To parse and interpret in the integrated framework, we 
prove (3e)s(O,N,e). 

Implementations of different orders of interpretation, 
or different sorts of interaction among syntax, composi
tional semantics, and local pragmatics, can then be seen 
as different orders of search for a proof of ( 3 e )s( 0, N, e). 
In a syntax-first order of interpretation, one would try 
first to prove all the syntax literals, such as np(i,j, y), 
before any of the "local pragmatic" literals, such as 
p'(e, x). Verb-driven interpretation would first try to 
prove v(j, k, p) and would then use the information 
in the requirements associated with the verb to drive 
the search for the arguments of the verb, by deriving 
Req(p',x) before back-chaining on np(i.j,y). But more 
fluid orders of interpretation are clearly possible. This 
formulation allows one to prove those things first which 
are easiest to prove, and therefore allows one to exploit 
the fact that the strongest clues to the meaning of a 
sentence can come from a variety of sources-its syn
tax, the semantics of its main verb, the reference of its 
noun phrases, and so on. The framework is, moreover, 
suggestive of how processing could occur in parallel, in
sofar as para)lel Prolog is possible. ,, 
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Abstract 

Abduction is an important inference process under
lying much of human intelligent activities, including 
text understanding, plan recognition, disease diagno
sis, and physical device diagnosis. In this paper, we 
describe some problems encountered using abduction 
to understand text, and present some solutions to over
come these problems. The solutions we propose center 
around the use of a different criterion, called explana
tory coherence, as the primary measure to evaluate the 
quality of an explanation. In addition, explanatory co
herence plays an important role in the construction of 
explanations, both in determining the appropriate level 
of specificity of a preferred explanation, and in guiding 
the heuristic search to efficiently compute explanations 
of sufficiently high quality. 

1 Introduction 

Finding explanations for properties and events is an 
important aspect of intelligent behavior. The philoso
pher C.S. Peirce defined abduction as the process of 
finding the best explanation for a set of observations; 

"This research is supported by the NASA Ames Research 
Center under grant NCC-2-429. The first author was also 
partially supported by a University of Texas MCD fellowship. 
Thanks to members of the Explanation Group Meeting for help
ful discussion and comments. 
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i.e. inferring cause from effect. The standard formal
ization of abductive reasoning in artificial intell!gence 
defines an explanation as a set of assumptions which, 
together with background knowledge, logically entails 
a set of observations [CM85). 

We have built a language understanding system 
called ACCEL (Abductive Construction of Causal Ex
planations for Language) that is capable of construct
ing deep, causal explanations for natural language text 
(both narrative and expository text) through the use 
of abduction. ACCEL includes a generic abductive in
ference procedure, which computes abductive proofs 
by backward-chaining on the input observations using 
Horn-clause axioms in the knowledge base. The ab
ductive procedure has the choice of making a subgoal 
in a partial proof as an assumption, ifit is consistent to 
do so. An abductive proof represents an explanation, 
or an interpretation of the input sentences. 

2 Problems and Solutions 

2.1 Occam's Razor Isn't Sharp Enough 

Almost all previous work on abduction, whether ap
plied to plan recognition, language understanding, dis
ease diagnosis, or physical device diagnosis, only use 
"Occam's Razor", i.e. the simplicity criterion, as the 
basis for selecting the best explanation. For instance, 
in [Ch86), the best interpretation is one that maxi-



mizes E - A, where E = the number of explained ob
servations, and A = the number of assumptions made. 
Other related work, though not explicitly utilizing ab
duction, also relies on some kind of simplicity criterion 
to select the best explanation. For example, [KA86] 
explicitly incorporates the assumption of minimizing 
the number of top level events in deducing the plan 
that an agent is pursuing. 

Though an important factor, the simplicity criterion 
is not sufficient by itself to select the best explanation. 
We believe that some notion of explanatory coherence 
is more important in deciding which explanation is the 
best. This is especially true in the area of language un
derstanding and plan recognition. In [NM89b], we have 
used the sentences "John was happy. The exam was 
easy." to illustrate this point. Relying on the simplic
ity metric results in selecting the interpretation that 
John was happy because he is an optimist, someone 
who always feels good about life in general (Figure lb). 
This is in contrast with our preferred interpretation of 
the sentence - John was happy because he did well 
on the easy exam (Figure la). (See [NM89b, NM89a] 
for the details of the axiomatization.) 

Intuitively, it seems that the first interpretation 
(Figure la) is better because the input observations are 
connected more "coherently" than in the second inter
pretation (Figure 1 b). We manage to connect "John 
was happy" with the "easy exam" in the first interpre
tation, whereas in the second interpretation, they are 
totally unrelated. This is the intuitive notion of what 
we mean by explanatory coherence. It is clear that 
"Occam's Razor", i.e. making the minimum number 
of assumptions, is not the dominant deciding factor 
here at all. Rather, we select an explanation based on 
its coherence, i.e. how well the various observations 
are "tied up" together in the explanation.1 

The notion that sentences in a natural language 
text are connected together in a coherent way is re
flected in the well known "Grice's conversational max
ims" [Gri75], which are principles governing the pr~ 
duction of natural language utterances, such as "be 

1 Thagard [Tha89) hu independently proposed a computa
tional theory of explanatory coherence that applies to the eval
uation of scientific theories. However, his theory of expla.nAtory 
coherence consists of seven principles - symmetry, expla.nAtion, 
analogy, data priority, contradiction, genera.I coherence, and sys
tem coherence. Independent criteria like simplicity and connect
edness have been collapsed into one measure which he termed 
"explanatory coherence" . 
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Figure 1: The importance of explanatory coherence 

relevant", "be informative", etc. However, to the best 
of our knowledge, the work on abduction applying to 
the tasks of text understanding and plan recognition 
have not included this criterion in their evaluation of 
explanations. The use of explanatory coherence here 
attempts to remedy this problem. 

We have developed a formal characterization of what 
we mean by explanatory coherence in the form of a 
coherence metric, defined as follows : 

where 
l = the total number of observations 
N = the total number of nodes in the proof graph 

( ~) =l(l-1)/2 

N;,; = the number of distinct nodes n1: in the proof 
graph such that there is a (possibly empty) sequence 
of directed edges from n1: to n; and a (possibly empty) 
sequence of directed edges from nl: to n;, where n; and 
n; are observations. 

We have developed and implemented an efficient 
algorithm to compute the coherence metric[NM89b, 
NM89a]. Based on the coherence metric, ACCEL has 
successfully selected the best interpretation for a num-



ber of examples of expository as well as narrative text. 

2.2 Deciding on the Appropriate Level 
of Specificity of Explanations 

Another problem in constructing a good explanation 
is determining the appropriate level of specificity of an 
abductive proof. Previous approaches fall into one of 
three categories : most specific abduction, least specific 
abduction, and weighted abduction. 2 

In most specific abduction, the assumptions made 
must be basic, i.e. they cannot be "intermediate" as
sumptions that are themselves provable by assuming 
some other (more basic) assumptions. This is the ap
proach used in the diagnosis work of (CP87]. In least 
specific abduction, the only allowable assumptions are 
literals in the input observations. (Sti88] claims that 
least specific abduction is best suited for natural lan
guage interpretation. It is argued that what one learns 
from reading a piece of text is often close to its surface 
form, and that assuming deeper causes is unwarranted. 
In weighted abduction (HSME88], weights (or costs) 
are assigned to the antecedents of backward-chaining 
rules in order to influence the decision on whether to 
backchain on a rule. In this case, the best interpreta
tion is the one with assumptions that have the lowest 
combined total cost. 

However, none of these approaches is completely sat
isfactory. Consider the sentences "John went to the 
supermarket. He put on the uniform." Both least 
specific and most specific abduction fail to generate 
the preferred interpretation in this case, which is that 
John is working at the supermarket. Figure 2 shows 
the proof graph of the preferred interpretation of this 
example (excluding the dashed lines and boxes). (See 
[NM89a] for the details of the relevant axiomatization.) 

Note that nowhere in the input sentences is the word 
"working" mentioned at all. It has to be inferred by 
the reader. Since this preferred interpretation includes 
making the assumptions that there is a working event, 
that John is the worker of this working event, etc, it is 
evident that least specific abduction, in which the only 
allowable assumptions are literals in the input obser
vations, is incapable of arriving at this explanation. 

2 (Sti88) describes yet another form of abduction known a.s 
predicate specific abduction, which has been used primarily in 
planning and design-synthesis tasks. In predicate specific ab
duction, the predicate of any assumption made must be one of 
a pre-specified set of predicates. 
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Figure 2: The level of specificity of explanation 

On the other hand, most specific abduction will not 
do the job either. Recall that most specific abduc
tion always prefers backchaining on rules to prove a 
subgoal if possible rather than making that subgoal 
an assumption. Thus, applying most specific abduc
tion to this example results in backchaining on the in
put literal (inst sml smarket) to the assumptions (inst 
?s smarket-shopping) and (store-of ?s sml), since in 
the present knowledge base, this is the only backchain
ing rule with a consequent that unifies with (inst sml 
smarket). That is, we explain the going action, its 
agent and its destination by assuming that John is 
working there, and we are also forced to assume, by 
the requirement of most specific abduction, that there 
is some supermarket shopping event to explain the su
permarket instance! This is because most specific ab
duction requires that we have an explanation for why 
John went to the supermarket as opposed to some 
other workplace. This is clearly undesirable. 

However, determining the level of specificity of an 
explanation based on coherence produces the desired 
interpretation. That is, we backchain on rules to prove 
the subgoals in an explanation only if doing so in
creases its overall coherence, and thus we only make 
assumptions just specific enough to connect the ob-



servations. In the current example, backchaining on 
(inst sml smarket) results in a decrease in the coher
ence metric value, since the total number of nodes in 
the proof graph increases by two but there is no in
crease in the number of connections among the input 
observations. Intuitively, explaining the supermarket 
instance by assuming a supermarket shopping event 
is completely unrelated to the rest of the explanation 
that John is working there. The coherence metric has 
been successfully used in ACCEL to determine the ap
propriate level of specificity of explanations, where the 
desired specificity is one which maximizes coherence. 

The weighted abduction of [HSME88] would presum
ably arrive at the correct interpretation given the "ap
propriate" set of weights. However, it is unclear how 
to characterize the "semantic contribution" of each an
tecedent in a rule in order to assign the appropriate 
weights. In contrast, our method does not rely on 
tweaking such weights, and it produces the preferred 
interpretation with the desired level of specificity in 
all of our examples. We believe that allowing arbi
trary weights on rules is too much of a burden on the 
knowledge engineer. It also provides too many degrees 
of freedom, which can lead to the knowledge engineer 
"hacking up" arbitrary weights in order to get the sys
tem to produce the desired explanation. 

2.3 Taming the Intractability Problem 

The abduction problem has been shown to be NP
hard and so is computationally intractable [RNW85, 
BATJ89]. As such, the use of heuristic search to ex
plore the vast space of possible solutions seems to be a 
good strategy to adopt. In fact, we have implemented 
a form of beam search that has successfully computed 
the preferred interpretation of a number of,examples 
very efficiently. 

We use a beam search algorithm which uses two 
beam widths, called inter-observation beam width 
(f3inter) and intra-obervation beam width (f3intra), in 
order to reduce the explored search space. A queue of 
best explanations is kept by the beam search proce
dure, forming the "beam" of the beam search. At all 
times, explanations in the queue are sorted by coher
ence, where the best explanation is the one with the 
highest coherence.3 Only at most f3inter number of the 

3 Ties are broken based on the simplicity metric of E /A, where 
E is the number of observations explained and A is the number 
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Figure 3: Explanation Quality versus Run Time 

best explanations are kept in the queue after complet
ing the processing of each input observation. Within 
the processing of an input observation, at most !3intra 

number of best explanations are kept in the queue. 

Figure 3 shows how the quality of the best explana
tion varies with run time for the supermarket working 
example by using different values of f3intcr and f3intra· 

We use the ratio of the coherence metric value of an ex
planation over that of the optimal explanation to rep
resent the quality of an explanation. All the run times 
reported in this paper are the actual execution times 
on a Texas Instruments Explorer II Lisp machine. 

Each data point in the Figure represents a quality
time pair obtained by using some specific values of 
f3intcr and /3intra. Each curve connects all the data 
points with the same /3inter but different /3intra· Note 
that without using any heuristic search (i.e. if a com
plete search is made), it takes more than 3 hours to 
compute the optimal solution, while setting f3inter = 3 
and /3intra = 8 yields the optimal solution in 0.89 min. 
which represents a speed up of over 200 times! 

of assumptions made. 



3 Conclusion 

We are looking into the poeaibility of making the pro
cessing more incremental by keeping track of the de
pendency among the assumptions and propositions 
of various competing explanations. Assumption
based truth maintenance systems (ATMS) (dK86] have 
proven useful in device diagnostic and plan recognition 
systems. We plan to look into the potential efficiency 
gain which may be brought about by incorporating an 
ATMS into the abductive inference procedure. 

In summary, we have described some problems en
countered using abduction to understand text, and 
have presented some solutions to overcome these prob
lems. The solutions center around the use of explana
tory coherence to evaluate, the quality of explanations, 
to determine the appropriate level of specificity of ex
planations, and to guide the heuristic search to effi
ciently compute explanations of sufficiently high qual
ity. 
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Introduction 
Language interpretation involves mapping from a string of 
words to a representation of an interpretation of those words. 
The problem is to be able to combine evidence from the lex
icon, syntax, semantics, and pragmatics to arrive at the best 
of the many possible interpretations. Given the well-worn 
sentence "The box is in the pen," syntax may say that "pen" 
is a noun, while lexical knowledge may say that "pen" most 
often means writing implement, less often means a fenced 
enclosure, and very rarely means a female swan. Semantics 
may say that the object of "in" is often an enclosure, and 
pragmatics may say that the topic is hiding small boxes of 
illegal drugs inside aquatic birds. Thus there is evidence for 
multiple interpretations, and one needs some way to decide 
between them. 

In the past few years, some general approaches to interpre
tation have been advanced within an abduction framework. 
Chamiak (1986) and Norvig (1987, 1989) are two examples. 
In this paper we critically evaluate two later models, those of 
Chamiak and Goldman (1989) and Hobbs,"Stickel, Martin 
and Edwards (1988), These two models add the important 
property of commensurability: all types of evidence are rep
resented in a common currency that can be compared and 
combined. While this is an important advance, it appears a 
single measure is not enough to account for all processing. 
We present other problems for the abductive approach, and 
some tentative solutions. 

Cost Based Comme'1Surability 
Hobbs et al. (1988) view interpreting sentences as "providing 
the best explanation of why the sentences would be ttue." In 
this view a given sentence (or an entire text) is translated by 

•Sponsored by the Defense Advanced Research Projects 
Agency (DoD), A.Jpa Order No. 4871, monitored by Space and 
Naval Warfare Systems Command \Dlder Contract N00039-84-C-
0089. This paper benefitted from discussions with Michael Braver
man, Dan Jurafsky, Nigel Ward, Debi Wu, and other members of 
the BAIR seminar. 

18 

an ambiguity-preserving parser into a logical form, L. Each 
conjunct in the logical form is annotated by a number in
dicating the cost. $C, of assuming the conjunct to be true. 
Conjuncts corresponding to "new" information have a low 
cost of assumability, while those corresponding to "given" 
information have a higher cost. since to assume them is to 
fail to find the proper connection to mutual knowledge. Each 
conjunct must be either asswned or proved, using a rule or 
series of rules from the knowledge base. Each rule also has 
cost factors associated with it, and the proper interpretation, 
I, is the set of propositions with minimal cost that entails L. 

As an example, consider again the sentence ''The box is 
in the pen." The cost-annotated logical form (in a simplified 
notation omitting quantifiers) is: 

L = bo.:z:(.:z:)SlO /\ pen(y)SlO /\ in(.:z:, y)S3 

where pSz means the final interpretation must either assume 
P for $.:z:, or prove P, presumably for less. Consider the 
proof rules: 

writingpen(x)·9 :::> pen(.:z:) 
enclosure(x)· 3 /\ fenced(i;~·3 /\ etc1(z)' 3 :::> pen(z) 
female(x)· 3 /\ swan(x)·6 :::> pen(.:z:) 
enclosure(y)· 3 /\ lnside(x, y)·6 :::> in(z, y) 

The first rule says that anything that is a writing-pen is also 
a member of the class 'pen'-things that can be described 
with the word "pen". The superscripted numbers are pref
erence information: the first rule says that pen( z )s10 can be 
derived by asswning writing pen(.:z:)S9• Predicates of the 
form etci ( .:z:), as in the second rule, denote conditions that 
are stated elsewhere, or, for some natural kind terms, can not 
be fully enumerated, but can only be assumed. They seem to 
be related to the abnormal predicates, ab( .:z:) used in circum
scription theory (McCarthy 1986). 

Below are two interpretations of L. The first just assumes 
the entire logical form for $23, while the second applies the 
rules and shares the enclosure(y) predicate common to one 
of the definitions of pen(y) and the definition of in(z, y) to 
arrive at a $20.80 solution. 



i>oz(z)SlO A pen(y)SlO A in(z, y)S3. 
l>oz(z)SlO A enclosure(y)S3 A /enced(y)S3 

A etc1(11)" A enclosure(y)SO A inside(z, y)SU 

The second enclosure(y) gets a cost of $0 because it has 
already been assumed. Let me sttess that the details here are 
ours, and the authors may have a different treatment of this 
example. For example, they do not discuss lexical ambigu
ity, although we believe we have been faithful to the sense 
of their proposal. 

This approach has several problems, as we see it: 
{1) A single number is being used for two separate mea

sures: the cost of the assumptions and the quality of the ex
planation. Hobbs et al. hint at this when they discuss the 
"infonnativeness-correctness tradeoff." Consider their ex
ample "lube-oil alann," which gets translated as: 

lubeoil( o)ss A alarm( a)ss A nn( o, a)S20 

where nn means noun-noun compound. It is given a high 
cost, $20, because failing to find the relation means failing 
to fully understand the referent Intuitively this motivation 
is valid. However, the nn should have a very low cost of 
assumption, because there is very strong evidence for it
the juxtapasition of two nouns in the input-so there is little 
doubt that nn holds. Thus we see nn should have two num
bers associated with it: a low cost of assumption, and a low 
quality of explanation. It should not be smprising to see that 
two numbers are needed to search for an explanation: even 
in A• search one needs both a cost function, g, and a heuristic 
function h'. 

The low quality of explanation is often the sign of a need 
to search for a better explanation, but the need depends on 
the task at hand. To diagnose a failure in the compressor, it is 
useful to know that a "lube-oil alarm" is an alarm that sounds 
when the lube-oil pressure is low, and not, say, and alarm 
made out of lube-oil. However, if the input was "Get me ·a 
box of lube-oil alarms from the warehouse," then it may not 
be necessary to further explain the nn relation.1 Mayfield 
(1989}charactcrizes a good explanation as bein1appficable 
to the needs of the explanation's user, grounded in what is 
already known, and completely accowuins for the input. 

To put it another way, consider the situation-where a ma
gician pulls a rabbit out of his hat. One possible explana
tion is that the rabbit magically appeared in the haL This 
explanation is of very high quality-it perfectly explains the 
situation-but it has a prohibitive assumption cost An alter
nate explanation is that the magician somehow used slight of 
hand to insert the rabbit in the hat when the audience was dis
tracted. This is of fairly low quality-it fails to completely 
specify the situation-but It has a much lower assumption 

1Translating "lube-oil alann" as (3o )lubeoil( o) is suspect; in 
the case of an alarm still in the box, there is not yet any particular 
oil for which it is the alarm. 
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cost Whether this is a sufficient explanation depends on the 
task. For a casual obse.rver it may will do, but for a rival ma
gician trying to steal the ttick, a better explanation is needed. 

(2) Translating, say, "the pen" as pen(y)SlO conflates two 
issues: the final interpretation must find a referent, 71, and it 
must also disambiguate ''pen". It is true that definite noun 
phrases are often used to introduce new information, and 
thus must be assumed, but an interpretation that does not dis
ambiguate ''pen" is not just making an assumption-rather it 
is failing alU>gether. One could accomodate this problem by 
writing disambiguation rules where the sum of the left-hand
side components is less than 1. Thus, the system will always 
prefer to find some interpretation for ''pen", rather than leav
ing it ambiguous. In the case of vagueness rather than am
biguity, one would probably want the left-hand-side to total 
greater than 1. For example, in ''He saw her duck.", the word 
"duck" is ambiguous between a water fowl and a downward 
movement, and any candidate solution should be forced to 
decide between the two meanings. In contrast, "he" is vague 
between a boy and a man, but it is not necessary for a valid 
interpretation to make this choice. We could model this with 
the rules: 

duck1ow1(z)· 9 :::> duck(z) 
duckm0 ,,.(z)·9 :::> duck(z) 
male(z)·9 A adult(z)·2 :::> he(z) 
male(z)-9 Achild(z)·2 :::> he(z) 

However, this alone is not enough. Consider the sentence 
"The pen is in the box." By the rules above (and assuming 
a box is defined as an enclosure) we could derive three in
terpretations, where either a writing implement, a swan, or a 
fenced enclosure is inside a box. All three would get a cost of 
$20.8. To choose among these three, we would have to add 
knowledge &bout the lilcelihood o.f these three things being 
in boxes, or add knowledge aboQt the relative frequencies of 
the three sensel of "pen". For eWriple, we could change the 
numbers as follows: 

writingpen(z)·9 :> pen(z) 
enc/osure(z)-31 A /enced(z)· 31 A etci(z)-31 :::> pen(z) 
/emale(z)-4 Aswan(z)-1 :> pen(z) 

This has the effect of making the writing implement sense 
slightly more lilcely than the fenced enclosure sense, and 
much more likely than the female swan sense. These rules 
maintain the desirable property of commensurability, but 
the numbers are now even more overloaded. Hobbs et 
al. already are giving the numbers responsibility for both 
''probabilities" and "semantic relatedness", and now we have 
shown they must account for word frequency information, 
and both the cost of assumptions and the quality of the ex
planation, the two measures needed to control search. As 
our previous criticisms have shown, a single number cannot 
represent even the cost and quality of an explanation, much 
less these: additional factors. 



Also note that to constrain search, it is important to con
sider bottom-up clues, as in (Chamiak 1986) and (Norvig 
1987). It would be a mistake to use the rules given he.re in a 
strictly top-down manner, just because they are reminiscent 
of Prolog rules. 

(3) There is no notion of a "good" or "bad" interpreta
tion, except as an epiphenomenon of the interpretation rules. 
In the "pen" example, the difference between failing com
pletely to understand "pen" and properly disambiguating it to 
fenced-enclosure is less than 10% of the total cosL The num
bers in the rules could be changed to increase this difference, 
but it would still be a quantitative rather than qualitative dif
ference. The problem is that there are at least three reasons 
why we might want to maintain ambiguity: because we are 
unsure of the cause of an event. because it is so mundane as 
to not need an explanation, and because it is so unbelievable 
that there is no explanation. This theory does not distinguish 
these cases. The theory has no provision for saying "I don't 
understand-the only interpretation I can find is a faulty one," 
and then looking harder for a better interpretation. 

(4) There is no way to enforce a penalty worse than the 
cost of an assumption. Consider the sentence "Mary said 
she had killed herself." The logical form is something like: 

say(M ary, x)S3 /\ x = kill(M ary, M ary)s3. 

Thus, for $6 we can just assume the logical form, without 
noticing the inherent contradiction. Now let's consider some 
rules. We've collapsed most of the interesting parts of these 
rules into etc predicates, leaving just the parts relevant to the 
contradiction: 

alive(p)· 1 /\ etc2(p, x)·9 ::> say(p, x) 
-ia/ive(p)·s /\ etc3(m, p)·5 ::> kill(m, p) 

We've ignored time here, but the intent is that the alive pred
icate is concerned with the time interval or situation after the 
killing, including the time of the saying. Now, an alternative 
interpretation of L is: 

alive(Mary)S. 3 /\ -ia/ive(Mary)Sl.S 
/\ etc2(M ary, x )52 7 /\ etc3(M ary, M ary)Sl.S 

Presumably there should be some penalty (finite or infinite) 
for deriving a contradiction, so this interpretation will total 
more than $6. The problem is there is no way to propagate 
this contradiction back up to the first interpretation, where 
we just assumed both clauses. We would like to penalize that 
interpretation, too, so that it costs more than $6, but there is 
no way to do so. 

A solution to this problem is to legislate that rather than 
finding a solution to the logical form of a sentence, L, the 
hearer must find a solution to the larger set of propositions, 
L', where L' is derived from L by some process of direct, 
"obvious" inference. We do not want the full deductive 
closure from L, of course, but we want to allow for some 
amount of automatic forward chaining from the input. 

20 

(5) We would like to be able to go on and find alternative 
explanations, perhaps one where Mary is speaking from the 
afterworld, or she is lying, or the speaker is lying. One could 
imagine rules for truthful and untruthful saying, and such 
rules could be applied to Mary's speech act. However, since 
the goal of the interpretation process is "providing the best 
explanation of why the sentences would be true," it does not 
seem that we could use the rules to consider the possibility of 
the speaker being untruthful. The truth of the text is assumed 
by the model, and the speaker is not modeled. 

Probability Based Commensurability 
Chamiak and Goldman (1988) started out with a model very 
similar to Hobbs et al., but became concerned with the lack 
of theoretical grounding for the numbers in rules, much as we 
were. Chamiak and Goldman (1989a, 1989b) switched to a 
system based strictly on probabilities in the world, combined 
by Bayesian probability theory. Although this solves some 
problems, other problems remain, and some new ones are 
introduced. For example: 

(1) The approach in (1989a) is based on "events and ob
jects in the real world". As the authors point out, it cannot 
deal with texts involving modal verbs, nor can it deal with 
speech acts by characters, or texts where the speaker is un
cooperative. So problem (4) above remains. 

(2) Because the probabilities are based on events in the 
real world, the basic system often failed to find stories as 
coherent as they should be. For example, the text: 

Jack got a rope. He killed himself. 

suggests suicide by hanging when interpreted as a text, but 
when interpreted as a partial report of events in the world, 
that interpretation is less compelling. (After all, the killing 
may have taken place years after the getting.) It is only when 
the two events are taken as a part of a coherent text that we as
sume they are related, temporally and causally. In Charniak 
and Goldman (l989a), the coherence of stories is explained 
by a (probabilistic) assumption of spatio-temporal locality 
between events mentioned in adjacent sentences in the text. 
Thus the story would be treated roughly ~if it were: 

Jack. got a rope. Soon after, nearby, a male was found to 
have killed himself. 

The Bayesian networks compute a probability of hanging of 
.3; this seems about right for the later story, but too low for 
the original version. 

Perhaps anticipating some of these problems, Chamiak 
and Goldman (1989b) introduce an alternate approach in
volving a parameter, E, which denotes the probability that 
two arbitrary things are the same. They claim that in stories 
this parameter should be set higher than in real life, and that 
this will lead, for example, to a high probability for the in
terpretation where the rope that Jack got is the one he used 



for hanging. But E does a po<X' job of capturing the notion 
of coherence. Consider. 

John picked an integer from OM to ~n. Mary did so too. 

Here the probability that· they picked the same number 
should be .1, regardless of whether we are observing real 
life or reading a story, and regardless of the value of E. 

Charniak and Goldman (1989b) go on to propose a theory 
of "mention .. rather than a theory of coincidence, but they do 
not develop this alternative. 

(3) It seems that for many inferences, frequency in the 
world does not play an important role at all Consider the 
text: 

Jack wanted to tie a mattress on top of his car. He also felt 
like killing himself. He got some rope. 

Now, the probability of getting a rope to hang oneself given 
suicidal feelings must be quite low, maybe .001, while the 
probability of getting a rope for tying given a desire to secure 
a mattress is much higher, maybe .S. Thus the Chamiak
Goldman model would strongly prefer the latter interpreta
tion. With the "mention" theory, it would like both interpre
tations. Yet a sample of informants mostly found the text 
confusing-they reported finding both inteipretations, and 
were unable to choose between them. It would be useful 
to find a better characterization of when frequencies in the 
world are useful, and when they appear to be ignored in favor 
of some more discrete notion of "reasonable connection." 

Problems With Both Models 
Neither model is completely explicit on how the final expla
nation is constructed, or on what to do with the final explana
tion. In a sense, Hobbs et al.'s system is like ajustification
based truth-maintenance system that searches for a single 
consistent state, possibly exploring other higher-cost states 
along the way. Chamiak and Goldman's system is like 
an assumption-based truth-maintenance system (ATM:S) that 
keeps track of all possible worlds in one grand model, but 
needs a separate interpretation process to extract consistent 
solutions. Thus, the system does not really do interpretation 
to the level that could lead to decisions. Rather, it provides 
evidence upon which decisions can be based. 

Both approaches are problematic. Imagine the situation 
where a hearer is driving a car, and is about to enter an in
tersection when a traffic officer says "don't - stop". The 
hearer derives two possible interpretations, one correspond
ing to "Don't stop." and the other corresponding to "Don't. 
Stop ... Hobbs et al.'s system would assign costs and chose 
the one with the lower east, no matter how slight the dif
ference. A more prudent course of action might be to rec
ognize the ambiguity, and seek more information to decide 
what was intended. Chamiak and Goldman's system would 
assign probabilities to each proposition, but would offer no 
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assistance as to what to do. However, if the model were ex
tended from Bayesian networks to influence diagrams, then 
a decision could be made, and it would also be possible to 
direct search to the important parts of the network. 

Delibe.rate ambiguity is also a problematic area. In a pun, 
for example, the speaker intends that the hearer recover two 
distinct interpretations. Such subtlety would be lost on the 
models discussed here. This issue is discussed in more depth 
in Norvig (1988). 

A number of arguments show that strict maximization of 
probability (or minimiz.ation of cost) is a bad idea. First, as 
we have seen, we must sometimes admit that an input is truly 
ambiguous (intentionally or unintentionally). 

Second, there is the problem of computational complexity. 
Algorithms that guarantee a lllaximal solution take exponen
tial time for the models discussed here. Thus, a large-scale 
sy~tem will be forced to make some sort of approximation, 
usmg a less costly algorithm. This is particularly true be
cause we desire an on-line system-one that computes a par
tial solution after each word is read, and updates the solution 
in a bounded period of time. 

Third, communication by language has the pro~rty that 
"the speaker is always right". In chess, if I play optimally 
and my opponent plays sub-optimally, I win. But in lan
guage understanding, if I abduce the "optimal" interpreta
tion when the speaker had something else in mind, then we 
have failed to communicate, and I in effect lose. Put an
other way, there is a clear "evolutionary" advantage for op
timal chess strategies, but once language ·has evolved to the 
point where communication is possible, there is no point for 
a hearer to tty to change his interpretation strategy to derive 
what an optimal speaker would have uttered to an optimal 
hearer-because there are no such optimal speakers. Indeed, 
there is an advantage for communication strategies that can 
be computed quickly, allowing the participants to spend time 
on other tasks. By the second point above, such a strategy 
must be sub-optimal. 

Earlier we said that Chamiak and Goldman (I 989b) intro
duced the parameter E to account for the coherence of sto
ries. But they also provide a brief sketch of another account, 
one where, in addition to deriving probabilities of events in 
the world, we also consider the probability that the speaker 
would mention a particular entity at all. Such a theory, if 
worked out, could account for the difficulty in processing 
speech acts that we have shown both models suffer from. 

However, a theory of "mention" alone is not enough. We 
also need theories of representing, intending, believing, di
rectly implying, predicting, and acting. The chain of reason
ing and acting includes at least the following: 

H attends to utterance U by speaker S 
H infers "S said U to H" 
H infers "L represents U" 



H infers "L directly implies L'" 
H infers "S intended H to believe S believes L'" 
H infers "S intended H to believe L'" 
H believes a portion of L' compatible with H's beliefs 
H forms predictions about S's future speech acts 
H acts accordingly 

This still only covers the case of successful, cooperative 
communication, and it leaves out some steps. A successful 
model should be able to deal with all these rules, when nec
essary. However, the successful model should also be able to 
quickly bypass the rules in the default case. We believe that 
the coherence of stories stems primarily from the speaker 
presenting evidence to the hearer in a fashion that will lead 
the hearer to focus his attention on the evidence, and thereby 
derive the inferences intended by the speaker. Communica
tion is possible because it consists primarily of building a 
single shared explanation. It is only in unusual cases where 
there are multiple possibilities that must be weighed against 
each other and carried forth. 

Both models seem to have difficulty distinguishing ambi
guity from multiple explanations. This makes a difference 
in cases like the following: 

John was wondering about lunch when it started to rain. 
He ran into a restaurant. 

Here there are two reasons why John would enter the 
restaurant-to satisfy hunger and to avoid the rain. In other 
words there are two explanations, say, A :J R and B :J R, 
and we would like to combine them to yield A I\ B :J R. 
As we understand it, Hobbs et al. appear to use "exclusive 
or" in all cases, so they would not find this explanation. 
Charniak and Goldman allow competing explanations to be 
joined by an "or" node, but require competing lexical senses 
to be joined by "exclusive or" nodes. So they would find 
Av B :J R. In other words, they would find both explana
tions probable, which is not quite the same thing as finding 
the conjunction probable. Now consider: 

He's a real sweetheart. 

This has a straight and an ironic reading:' sweetheart(z) 
and -.sweetheart( z). The disjunction is a tautology and the 
conjunction is a contradiction, so in this case the Hobbs ap
proach of keeping the alternatives separate seems better than 
allowing their disjunction. Finally, consider: 

Mary was herding water fowl while dodging hostile gun
fire. John saw her duck. 

Here we do not want to combine two the interpretations into a 
single interpretation. If we amend a model to allow multiple 
explanations, we must be· careful that we don't go too far. 

Conclusions 
Abduction is a good model for language interpretation, and 
commensurability is a vital component of an abduction sys-
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tern. But the models discussed here have serious limitations, 
due to technical problems, and due to a failure to em brace 
language as a complex activity, involving actions, goals, be
liefs, inferences, predictions, and the like. We don't believe 
that knowledge of probability in the world. plus a few gen
eral principles (such as E) can lead to a viable theory of lan
guiage use. This "complicated" side of language has been 
studied in depth for over a decade (a list very similar to our 
chain of reasoning and acting appears in Morgan (1978) ), so 
our task is clear: to marry these pre-theoretic "complicated" 
notions with the formal apparatus of commensurable abduc
tive interpretation schemes. 
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Introduction 
My recent dissertation [Hinkelman, 1989] describes an 
application of automated abduction to speech act recog
nition. It includes a unification pattern matching com
ponent, which allows lexical and syntactic cues to sug
gest possible speech act interpretations, and a weighted 
heuristic search component which explores an inference 
space of plan recognition rules. Much of the interest 
of this system is that it can handle a broad range of 
examples precisely because of the integration of two ab
duction techniques. My experiences with this system 
have led to a number of conclusions about automated 
abduction. 

Speech Act Recognition 
The problem of reconstructing an agent's intentional 
structure from observed actions, or plan recognition, is a 
fundamental application of automated abduction. Plan 
recognition occurs in the domain of natural language 
processing in two forms. The more obvious is the recon
struction of plans and goals that are unrelated to lan
guage, from linguistic observations. I will refer to such 
goals and plans as domain plans. Domain plans may 
be described in texts such as stories, or discussed as in 
ordinary talk. In ordinary talk, however, it is necessary 
to know whether a described action is being suggested, 
requested, asserted, denied, forbidden, and so on. Thus 
the second type of plan recognition arises. It becomes 
useful to view the utterances themselves as actions, from 
which communicative intentions can be recognized. My 
work to date has concentrated on the recognition of such 
speech acts [Searle, 1969], and integrates general, the
oretically powerful mechanisms with a more specialized 
linguistic scheme for broad coverage of the phenomena. 

The input utterances are first processed by the purely 
linguistic scheme, which makes no use of context. The 
linguistic scheme consists of unification-based pattern 
matching. Patterns of. linguistic features are matched 
against a pre-parsed string, yielding sets of partial 
speech act descriptions. The descriptions are composed 
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using unification, producing a set of possible speech acts. 
The linguistic rules allow for the arbitrary nature of 
linguistic conventions, but treat these conventions uni
formly as incremental evidence for some range of ac
tions. This method allows the system to distinguish 
between "Can you pass me the salt?", which is likely a 
request, and "Are you able to pass me the salt?" which 
is likely a yes/no question. 

The more general method is based on Allen's [Allen, 
1983]. It takes an action as input and uses weighted 
heuristic search through a space of plan recognition in
ferences. The inference rules are obtained by inverting 
a set of plan construction rules. This general method 
is appropriate for domain plan recognition as well as 
speech act recognition, and serves as a backup to the 
more efficient, specialized linguistic scheme. It captures 
the relationship between asserting "I need X" and re
questing the hearer to provide X, making full use of 
contextual information. 

Integration between these two components is achieved 
by invoking the general method only when the linguistic 
method fails to provide a suitable interpretation. 'Suit
ability' is determined by a mechanism interesting in its 
own right; please see the accompanying papers for de
tails. The above is simply background for subsequent 
discussion points. 

Discussion 
Experience with abductive speech act recognition leads 
to several observations. 

A Question of Methodology 
The goal of this work is to provide a model of human 
language processing. It addresses the phenomenon of 
"indirect" speech acts, and as such must provide an ac
count of various classes of these acts and how they are 
identified from what is said. I therefore evaluate the sys
tem according to its ability to provide the same identi
fications of speech acts that people do. Presently "what 
people do" is as much a matter of the linguist's intu
itions as of psycholinguistic studies of subjects [Gibbs, 



1986] and one hopes that more psycholinguistic studies 
will appear. With appropriate architectural considera
tions, tasks which are easy for people should be easy 
for the system, and tasks which are difficult for people 
should be difficult for the system. Such evaluation meth
ods are clearly inappropriate for systems which seek to 
improve on human performance. 

The Two-Level Architecture 
Two-level systems such as this one are instances of a 
general principle of computer systems design [Lampson, 
1983], which specifies that the vast majority of ordi
nary tasks should be performed by an ordinary method 
which is kept simple and efficient by offloading the dif
ficult cases to a more powerful, expensive, and rarely 
invoked mechanism. Care must be taken to allow the 
two components to integrate smoothly. For those ab
duction applications in which there is a similar division 
of tasks into common, simple and uncommon, difficult 
tasks, a two-level design would be appropriate. 

In an abductive planning system, for example, the 
output plans can be viewed as an "explanation" of en
vironmental stimuli in terms of their role in meeting the 
agent's goals. One can imagine a planning system that 
has a reactive component, a production system map
ping sensory stimuli onto rather immediate actions, and 
a plan construction component, which may screen im
mediate actions or search for longer-term methods. Such 
an approach is being pursued by Feist [Feist, ]. 

Knowledge Representation 
The two-level design concept applies to the underlying 
knowledge representation as well. In the speech act 
interpreter, for example, the pattern matching compo
nent may be amenable to a stochastic, massively parallel 
treatment such as a connectionist network. Stochastic 
massive parallelism shows great promise as a form of 
knowledge representation suitable for artificial intelli
gence. However, as a methodological strategy discrete 
methods avoid certain tedious knowledge engineering 
tasks and promote clear, testable theories. They also 
avoid unresolved issues in connectionist representations, 
such as the role and method of variable binding, or the 
incorporation of the temporal continuity of input. For 
example, most connectionist models of word recognition 
must replicate their structure for subsequent time inter
vals [McClelland and Elman, 1986]. It is interesting to 
note that FOPC has the inverse problem with respect 
to variable binding, a solution to which was proposed 
by Charniak [Charniak, J. . 

The plan reasoning component requires representa
tion of very general inference patterns which are much 
more difficult to formulate in such low-level terms. Ad
vances in knowledge repr~~mtation may someday illumi
nate a relationship between a slow, serial reasoner and 
the 'lower' level, and this would make it much easier 
to explain how learning paths of reasoning could lead 
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to learning of lower level correlations, and vice versa. 
My theory of speech act recognition includes the claim 
that many of the correlations embodied in the linguis
tic component do in fact originate from extended' infer
ence; one way of doing this was described by Pazzani 
in the explanation-based learning paradigm [Pazzani, ]. 
Such learning may not be desireable in all abductive in
ference domains, but in those which model intelligent 
agents the flexibility is crucial. Serial, inference-based 
methods may be slow or brittle, but the main weakness 
of the speech act inference component is in the area of 
controlling search. 

Inference Methods 

The relationships among methods of inference for plan 
recognition have been discussed in detail by Kautz 
[Kautz, 1987]. · Kautz himself presents a deductive 
method of plan recognition, with circumscription. The 
data structure is a hierarchy of (multistep) actions, _de
fined by an abstraction (is-a) and decomposition (step 
of) relation. For each observed action, the relations are 
used to identify all possible ways for this action to par
ticipate in actions marked 88 being ends in themselves. 
A series of observed actions can be explained as the min
imal set of end actions necessary to account for these 
steps. The best explanation is defined 88 the most par
simonious, corresponding to minimization of the End 
predicate in the model theory. Further criteria for a 
best explanation are given, but without correspondence 
to a feature of the model theory. 

Kautz shows how this circumscription method can be 
applied to domain plan recognition in the cooking do
main, to medical diagnosis, and to speech act recog
nition. I cannot speak to the aptness of the medical 
diagnosis application. For speech act recognition, what 
I have found is that speech acts have a role in ordinary 
domain plans which is ad hoc rather than prototypical 
to these plans. This makes incorporation of speech act 
steps expensive because they would have to be inserted 
at every point where they may rarely be needed. And 
although it may be possible to construe the linguistic 
features as action observations, using linguistic pattern 
matching rather than the step-of relation provides more 
robustness in accounting for the variable phenomena. 
Thus we sacrifice the model-theoretic semantics, which 
in any case did not incorporate all aspects of a best 
explanation. 

Kautz's method has a clearly specified inference pro
cedure. It therefore has better-defined results than dy
namic'logic or default logic, in which the results depend 
on the order of rule application. Statistical methods 
require an acceptance rule, such as "accept the expla
nation with the highest probability", and counterexam
ples to any such rule seem inevitable in real applications. 
Thus although all of these methods show promise, they 
all have remaining difficulties. 



A Problem of Belief Revision 
A fundamental feature of abductive methods is that 
what appears to be the best explanation of some phe
nomenon may later prove to be wrong. Subsequent in
put can therefore require non-incremental changes to 
the state of knowledge, if explanations are incorporated 
into stored knowledge. Methods of truth maintenance 
have been proposed to allow retraction of explanations 
if any of their links are invalidated. But even when 
applicable, these methods too leave unspecified how to 
determine which explanation is "better". The problems 
in detecting a need for belief revision, arbitrating it, and 
updating the database can all be formidable. 

Conclusion 
Application of abduction to speech act recognition has 
used a methodology oriented toward obtaining perfor
mance analogous to that of human intuitions and be
havior. It has shown the utility of a two-level system in 
which the common cases are handled efficiently and the 
difficult ones with greater power. It raises specific prob
lems for current knowledge representation and inference 
methods. And it may yet be illuminated by reports on 
abductive methods from other areas. 
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In order to learn from experience, a reasoner must be 
able to explain what it does not understand. When a 
novel or poorly understood situation is processed, it is 
interpreted in terms of knowledge structures already in 
memory. As long as these structures provide expecta.
tions that allow the reasoner to function effectively in 
the new situation, there is no problem. However, ifthese 
expectations fail, the reasoner is faced with an anomaly. 
The world is different from its expectations. In order to 
learn from this experience, the reasoner needs to know 
why it made those predictions. It also needs to explain 
why the failure occurred, i.e., to identify the knowledge 
structures that gave rise to the faulty expectations, and 
to understand why its domain model was violated in 
this situation. Finally, it must store the new experience 
in memory for future use. Abduction, the construction 
of explanations, is a central component of this learning 
process. 

Abduction is often viewed as inference to the "best" 
explanation. However, the definition of "best" is depen
dent on the goals of the reasoner in forming the explana.
tion and not just on the correctness of the causal chain 
underlying the explanation. In situations where there is 
no one "right" explanation, the "best" explanation must 
be more than a causal chain that describes the domain; 
it must also address the reason that an explanation was 
required in the first place. This in turn determines what 
the reasoner can learn from the explanation. 

What is an explanation? 
The need for an explanation arises when some observed 
fact doesn't quite fit into the reasoner's world model, 
i.e., the reasoner detects an anomaly. An explanation 
is a knowledge structure that makes the anomaly go 
away. To illustrate the nature of such a structure, let us 
consider some candidate explanations for the anomaly 
underlying the following popular joke: 

S-1: Why do firemen wear red suspenders? 
{1) Because it is always raining in New Haven. 
(2) To keep their pants up. 
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(3) Because red, the symbol of warning, is the 
color of the fire brigade's uniform. 

( 4) Because red suspenders look funny if they 
aren't part of a uniform. · 

Consider ( 1). This does not seem like an explanation 
for S-1. The reason isn't that (1) is false, but rather that 
there seems to be no causal connection between ( 1) and 
S-1. Thus it is not sufficient for a proposed explanation 
to be true; an explanation muat be causally connected 
to the anomaly. It must contain a set of premises and 
a causal chain linking those premises to the anomalous 
proposition. If the reasoner believes the premises, the 
proposition ceases to be anomalous since the causal in
teractions underlying the situation can now be under
stood. 

However, not all causal structures are explanations. 
For example, (2) is causally relevant to S-1, but it still 
doesn't feel like an explanation. To understand why, let 
us make the anomaly in S-1 explicit. The real question 

. isn't "Why do firemen wear red suspenders?", but rather 
one of the following: 

S-2: Why do firemen wear only red suspenders? 
If firemen are a representative sample of the gen
eral population, we would expect them to wear sus
penders of various colors, and even belts. 
S-3: Why doesn't everyone wear red suspenders? 
If red suspenders are indeed attractive or desirable, 
we would expect everyone to wear red suspenders, 
not just firemen. 
The reason that the joke is funny is that (2) misses 

the point of the question. If the point is made explicit 
as in S-2, (3) is a possible explanation for the anomaly. 
Alternatively, if the real question is intended to be S-3, 
(4) is a possible explanation. The point is that, in order 
to qualify as an explanation, a causal description must 
address the underlying anomaly. 

To state this another way, an explanation must ad
dress the failure of the reasoner to model the situation 
coJTectly. In addition to resolving the incorrect pre
dictions, i~ must also point to the erroneous aspect of 



the chain of reMoning that led to the incorrect predic
tions. An explanation is useful if it allows the reasoner 
to learn;1 the claim here is that an ezplanation m11st be 
both causal and relevant in order to be uaeful. 

An explanation, therefore, muat address two types of 
questions: 

1. Why did things occur as they did in the world? 
This question gives rise to knowledge acqui8ition goals, 
which are goals to collect information or knowledge 
about the domain that the anomaly has signalled as 
being missing. 

2. Why did I fail to predict this correctly? This ques
tion gives rise to knowledge organization goals, which 
are goals to improve the organization of knowledge in 
memory. · 

The answer to the first question is called a domain 
explanation since it is a statement about the causality 
of the domain. The answer to the second question is 
called an introspective or meta-explanation since it is a 
statement about the reasoning processes of the system. 
The claim here is that an explanation must supply both 
answers in order to be useful. Let us consider the second 
one first. 

Introspective explanations: Addressing 
knowledge organization goals 
One of the questions an explanation must address is why 
the reasoner failed to make the correct prediction in a 
particular situation. This could happen in one of the 
following ways: 

1. Novel situation: The reasoner did not have the 
knowledge structures to deal with the situation. 

2. Incorrect world model: The knowledge structures 
that the reasoner applied to the situation were incom
plete or incorrect. 

3. Mis-indexed domain knowledge: The reasoner 
did have the knowledge structures to deal with the 
situation, but it was unable to retrieve them since 
they were not indexed under the cues that the situa
tion provided. 

When an explanation is built, the reasoner needs to 
be able to identify the kind of processing error that oc
curred and invoke the appropriate learning strategy. For 
example, if an incomplete knowledge structure is applied 
to a situation, the resulting processing error represents 
both the knowledge that is missing, as well as the fact 
that this piece of knowledge, when it comes in, should 
be used to fill in the gap in the original knowledge struc
ture. Similarly, if an error arose due to a mis-indexed 
knowledge structure, the explanation, when available, 

1 Lea.rning is often performed in the service of a. problem
solving task; thus knowledge goals of the type described here 
often arise from the problem-solving goals of the rea.soner. 
This issue is beyond the scope of this pa.per. 
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should be used to re-index the knowledge structure ap
propriately. 

Knowledge organization goals can be categorized by 
the type of gap that gave rise to them, or by the type 
of learning that results from their satisfaction: 

1. Missing knowledge - learn new knowledge to fill 
gap in domain model 

2. Unconnected knowledge - learn new connection 
or new index 

3. Implicit assumption - learn heuristics for when to 
check assumption explicitly 

4. Calculated simplification - learn heuristics for 
when to check assumption in detail 

5. Explicit assumption - learn new knowledge to cor
rect the assumption 

6. Conjunctive assumptions - learn new interac
tions 

Domain explanations: Addressing 
knowledge acquisition goals 
Knowledge acquisition goals seek causal knowledge 
about the domain. A domain explanation is a causal 
chain that demonstrates why the anomalous proposition 
might have occurred by introducing a set of premises 
that causally lead up to that proposition. If the reasoner 
believes or can verify the premises of an explanation, the 
conclusion is said to be explained. Explanations are of
ten verbalized using their premises. However, the real 
explanation includes the premises, the causal chain, and 
any intermediate assertions that are part of the causal 
chain. 

Domain explanations can be divided into two broad 
categories, physical and volitional. 

Physical explanations Physical explanations link 
events with the states that result from them, and further 
events that they enable, using causal chains similar to 
those of[Rieger, 1975) and (Schank and Abelson, 1977). 
Physical explanations answer questions about the phys
ical causality of the domain. 

Volitional explanations Voli
tional explanations link actions that people perform to 
their goals and beliefs, yielding an understanding of the 
motivations of the characters. Volitional explanations 
thus correspond to the filling out of the "belief-goal
plan-action" chain [Schank and Abelson, 1977; Wilks, 
1977; Wilensky, 1978; Schank, 1986], although we need 
to expand the vocabulary of this chain in order to model 
such explanations adequately [Ram, 1989). A volitional 
explanation relates the actions in which the characters 
in the story are involved to the outcomes that those ac
tions had for them, the goals, belie/a, emotional states 
and social states of the characters as well as priorities 
or orderings among the goals, and the decision process 
that the characters go through in considering their goals, 



goal-orderings and likely outcomes of the actions before 
deciding whether to do those actions. A detailed voli
tional explanation involving the planning decisions of a 
character is called a tleciaion motlel [Ram, 1989). 

Decision models provide a theory of motivationar ~ 
herence for stories involving volitional agents. When 
a decision model is applied to the actions of a given 
character in a story, it may give rise to questions based 
on faulty assumptions or inconsistencies identified in the 
application of the decision model to the story. These in
consistencies signal anomalies, which must be explained 
by determining whether different parts of the decision 
model (e.g., the goals of the agent, his beliefs about the 
outcome, or his volition in deciding to perform the ac
tion) are actually present as assumed. These anomalies 
give rise to a set of knowledge acquisition goals which 
the reasoner tries to satisfy by building volitional expl&
nations. 

Components of explanation patterns 

Standard domain explanations known to the reasoner 
are called explanation pattern1 [Schank, 1986). Explana
tion patterns (XPs) have four main components [Ram, 
1989): 

1. PRE-XP-NODES: Nodes that represent what is 
k'nown before the XP is applied. One of these nodes, 
the EXPLAINS node, represents the particular action 
being explained. 

2. XP-ASSERTED-NODES: Nodes asserted by the 
XP as the explanation for the EXPLAINS node. 
These comprise the premises of the explanation. 

3. INTERNAL-XP-NODES: Internal nodes as
serted by the XP in order to link the XP-ASSERTED
NODES to the EXPLAINS node. 

4. LINKS: Causal links asserted by the XP~ These 
taken together with the INTERNAL-XP-NODES are 
also called the internals of the XP. 

An explanation pattern states that the XP
ASSERTED-NODES lead to the EXPLAINS node 
(which is part of a particular configuration of PRE
XP-NODES) via a set of INTERNAI;.;XP-NODES, the 
nodes being causally linked together via the LINKS. 
In other words, an XP ia a causal chain composed 
of a set of nodes connected together using a set 
of LINKS (causal rules or XPs). The "antecedent" 
of this causal chain is the set of XP-ASSERTED
N 0 DES, the "internal nodes" of the causal chain are 
the INTERNAL-XP-NODES of the XP, and the "conse
quent" is the EXPLAINS node. The difference between 
XP-ASSERTED-NODES' and INTERNAL-XP-NODES 
is that the former are merely asserted by the XP with
out further explanation, whereas the latter have causal 
antecedents within the XP itself. 
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The explanation cycle 
An explanation-based understander must be able to de
tect anomalies in the input, and resolve them by build
ing motivational and ~ausal .expl~ations for ~he events 
in the story in order to understand why the characters 
acted as they did, or why certain events occurred or did 
not occur. This process characterizes both "story un
derstanders" that try to achieve a deep understanding 
of the stories that they read, as well as programs that 
need to understand their domains in service of other 
problem-solving tasks. 

The process model for the task of explanation consists 
of the following steps: 

1. Anomaly detection: Anomaly detection refers to 
the process of identifying an unusual fact that needs 
explanation. The anomalous fact may be unusual in 
the sense that it violates or contradicts some piece of 
information in memory. Alternatively, the fact may 
be unusual because, while there is no explicit contra.
diction, the reasoner fails to integrate the fact satis
factorily in its memory. 

2. Explanation pattern retrieval: When faced with 
an anomalous situation, the reasoner tries to retrieve 
one or more explanation patterns that would ex
plain the situation. The1e patterns could be abstract 
causality templates, such as those· of (Schank, 1986), 
or descriptions of causality underlying specific cases 
known to the reasoner, such as those used by case
based reasoners (e.g., [Kolodner, 1988; Hammond, 
1989]). 

3. Explanation pattern application: Once a set 
of potentially applicable explanation patterns is re
trieved, the reasoner tries to use them to resolve the 
anomaly. This involves instantiating the XP, filling 
in the details through elaboration and specification, 
and checking the validity of the final explanation. An 
XP is instantiated by unifying the EXPLAINS node 
of the XP with the de&<lription of the situation be
ing explained, and instantiating the INTERNAL-XP
NODES and LINKS. If all the PRE-XP-NODES and 
INTERNAL-XP-NODES of the XP fit the situation, 
the hypothesis is applicable: If the unification fails, 
the hypothea~ i4-.1;~je,c.ted.2" . 

4. Hypothesis verification: The final step in the ex
planation process is_ the. confirmation or refutation 
of possible explanations, or, if there is more than 
one hypothesis, discrimination between the alterna
tives. A hypothesis is a causal graph that connects 
the premises of the explanation to the conclusions v~a 
a set of intermediate assertions. At the end of this 
step, the reasoner is left with one or more alterna
tive hypotheses. Partially confirmed hypotheses are 
maintained in a data dependency network called a 

2 There is also the pouibility of modifying the hypothesis 
to fit the situation [Schank, 1986; Kasa et al., 1986]. 



hypothesis tree, along with questions (knowledge ac
quisition goals) representing what is required to verify 
these hypotheses. 

Evaluating •explanations 
There are five criteria for evaluating the goodness of an 
explanation: 

1. Believability: Do I believe the XP from which the 
hypothesis was derived? This is not an issue when all 
XPs in memory are believed, but for a program that 
learns new XPs, some of which may be incomplete, 
the believability of the XP is an important criterion in 
deciding whether to believe the resulting hypothesis. 

2. Applicability: How well does the XP apply to this 
situation? Did it fit the situation without any modi
fications? 

3. Relevance: Does the XP address the underlying 
anomaly? Does it address the knowledge goals of the 
reasoner? 

4. Verification: How definitely was the explanation 
confirmed or refuted? 

5. Specificity: How specific is the XP? Is it abstract 
and very general (e.g., a proverb), or is it detailed and 

. specific? 

Intuitively, a "good" explanation is not necessarily 
one that can be proven to be "true" (criterion 4), but 
also one that seems plausible (1 and 2), fits the situa
tion well (2 and 5), and is relevant to the goals of the 
reasoner (criterion 3). 

Conclusion 
Abduction, or inference to the best expla.nation, is a 
central component of the reasoning process. The "best" 
explanation is not one that is the most "correct," if cor
rectness is even measurable in the domain of interest, 
but one that is most useful to the process that is seek
ing the explanation. 

These ideas have been explored in the AQUA pro
gram, a computer model of the theory of question-driven 
understanding [Ram, 1989; Ram, 1987; Schank and 
Ram, 1988]. AQUA learns about terrorism by reading 
newspaper stories about terrorist incidents in the Mid<ile 
East. AQUA's model of terrorism is never quite com
plete; knowledge structures may have "gaps" in them, 
or they may not be indexed correctly in memory. When 
AQUA reads a story, these gaps give rise to questions 
about the input. The point of reading is find answers 
to these questions, to learn by filling in the gaps in its 
world model. 

Questions, therefore, .represent the "knowledge goals" 
of the understander, things that the understander wants 
to learn about. AQUA builds explanations in order to 
find answers to its questions. Thus AQUA is an exam
ple of a system based on the goal-directed explanation 
process presented in this paper. 
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Inference and Learning 

Most machine learning methods involve some form of in
duction or inference from specific to general statements, 
consequently they are often called "data-driven", "em
pirical", or "similarity-based" learning methods (see, 
e.g. (Quinlan 1979). Recently, attention has been given 
to a complementary class of "knowledge-driven", "ana
lytical", or "explanation-based" (EBL) learning meth
ods (see, e.g., DeJong 1988), but these methods have 
been characterized in terms of deduction. There is a 
third form of inference called abduction, and it is argued 
that abductive inference is at least as fundamental and 
important as inductive and deductive inference. 

I claim that the models of EBL proposed in (Mitchell 
1986) and even in (DeJong 1986) and (O'Rorke 1986) 
should be viewed as first attempts at capturing the in
formal idea of EBL. Intuitively, EBL is "learning based 
upon explanations." So it seems reasonable to expect 
EBL theories and systems to include some component 
aimed at describing or implementing processes for con
structing explanations. Weaknesses in the explanation 
component may reasonably be viewed as weaknesses in 
EBL formalizations or implementations. ,c 

I claim that the initial attempts at formalizing and im
plementing EBL can be improved upon by introducing 
more sophisticated models of the explanation process. 
A good first step in this direction is to view explana
tion as a kind of plausible inference process - one that 
is not often deductive. The particular forms of plausi
ble explanatory inference explored here are based upon 
Charles Sanders Peirce's notion of abduction. 

In the following sections, I first attempt to be a bit 
clearer about my usage of the term abduction. Then I 
briefly describe one early model of EBL and two more re
cent EBL methods integrating abduction and learning. 
I argue that incorporating improved abduction meth
ods yields specific improvements over the early model of 
EBL. 
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Abductive Inference 
Since Peirce's time, a great deal of work has been done 
on explanations and abduction. This work has taken 
place both outside of AI in fields such as philosophy 
(Harman 1965; Peirce 1958; Thagard 1981), and psy
chology (Donaldson 1986) and within AI in research 
areas such as expert systems, naive physics, and nat
ural language comprehension (Cha.rniak 1986; Joseph
son 1987; Morris 1987; Pople 1973; Reggia 1984; Reiter 
1987; Schank 1986). Within AI the term abduction is 
probably being used more broadly than Peirce originally 
intended. In many AI tasks, it must be decided which 
of several possible explanations is the best one. In these 
situations, it is often necessary to evaluate competing ex
planations. AI researchers often use the term abduction 
to mean something roughly equivalent to Harman's in
ference to the best e::planation (Harman 1965). In other 
words, in AI the term abduction is often used so as to 
cover both the generation and evaluation of explana
tions. I go along with this trend: whenever I speak of 
abduction informally I mean any method for generating 
and evaluating explanations. 

A survey of the AI literature reveals a number of dif
ferent proposals for automating abduction. I focus on a 
particular kind of automated abduction closely related 
to ideas of Peirce and Hempel. Peirce {1958) used the 
term abduction as a na.pie~ for- one _particular form of 
explanatory hypothesis generation. His description was 
basically: "The surprising fact C is observed; But if A 
were true, C would be a matter of course, hence there 
is reason to suspect that A is true." Hempel (1965) 
suggested viewing some explanations as deductive ar
guments where the thing to be explained follows from 
a set of general laws and specific facts. Hempel called 
explanatory accounts of this kind "explanations by de
ductive subsumption under general laws, or deductive
nomological (D-N) e::planations. (The root of the term 
nomological is the Greek word no mos for law.)" The ver
sions of abduction focused on here combine these ideas 
as follows. As a first approximation, Peirce's "C is a 
mattc.r of course if A is true" is represented as "A im-



plies C." Observatiom: C are explained in terms of laws 
such as "A implies C" and facts or hypotheses such as 
A. Abduction attempts to reduce observations to known 
facts by repeatedly backward chaining on la.ws cast as 
logical implications. 

It is a. commonly held misconception that "deductive 
abduction" is an oxymoron because deduction and ab
duction are fundamentally incompatible. They are com
patible in the sense that deduction may serve abduction: 
when something is shown to be true, the process of de
duction usually supplies a proof that may be considered 
to be an explanation of why the conclusion is true. 

However, deduction fails when a deductive procedure 
cannot find a proof (explanation) of a conjecture (or ob
servation) from a given set offacts. Abduction generally 
does not simply fail when no explanation of a given ob
servation can be found from given facts. Instead, abduc
tion often involves ma.king new assumptions. For exam
ple, in order to explain observed symptoms, a physician 
or a medical expert system may assume that a patient 
has an infection, even though the infection has not been 
observed, perhaps because it is internal. 

Pople's (1973) mechanization of abductive logic goes 
beyond deduction and provides an EBL model or system 
with a limited capability for ma.king assumptions in or
der to complete explanations. Pople's abduction method 
includes a synthesis operator which merges hypotheses, 
assuming the unified result. 

The major problem with this early mechanization of 
abduction is that it does not address issues that arise 
when there are many competing explanations. How 
does one avoid a combinatorial explosion of possibilities 
while searching for plausible explanations? How does 
one weigh the evidence and decide that one explanation 
is more plausible than another? 

One class of approaches to these problems involves in
troducing scoring functions that assign numeric "costs" 
to potential (partial) explanations. For example, Stickel 
(Hobbs et al. 1988) has suggested a heuristic approach 
to evaluating explanations in the context of natural lan
guage processing. O'Rorke and his students have experi
mented with a best first heuristic search program named 
AbE using several different heuristic scoring functions in 
the context of physical ( 0 'Rorke, Morris, & Schulenburg 
1989) and psychological (Cain, O'Rorke & Ortony 1989) 
explanations. 

Combining Abduction and Learning 

In the influential model of EBL presented by Mitchell 
et al (1986) and in the implementation presented in 
(Kedar-Cabelli 1987), learning is based upon explana
tions generated by a deductive theorem prover. The 
learning method is essentially a form of lemma caching 
or deductive macro-learning. 

This form of EBL has been criticized on the grounds 
that it only improves efficiency and does not involve 
"learning at the knowledge-level" (as defined by Diet-
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terich (1986)). The deductive closure of the knowledge
base does not change u a result of learning because 
the macro-learning method specializes existing general 
knowledge, even though it generalizes given examples. 

This early model of JmL~rests on a purely deduc
tive model of abduction. Integrating more sophisticated 
models of the explanation process with learning leads to 
interesting new models of EBL. 

For example, a new model of EBL can be had by in
tegrating Pople's mechanization of abduction with the 
usual EBL macro learning procedure. An implemen
tation based on this idea called AMAL was reported 
in (O'Rorke 1988). AMAL used a.bductive inference to 
"leap to conclusions" during the process of explaining 
an observation. While the macro-learning component 
of AMAL did not contribute new knowledge, AMAL's 
epistemic state could change because assumptions were 
often needed in order to explain observations. Adding 
these assumptions changed the knowledge base. This 
improved upon the EBG version of EBL by allowing a 
limited form of learning at the knowledge level. How
ever, the assumptions made by AMAL were typically 
very specific statements closely related to the observa
tion being explained in given examples. 

AMAL also suffered from the weakness of Popl~'s ini
tial mechanization of abduction, namely its inability to 
evaluate alternative explanations. Including methods 
for evaluating explanations leads to more powerful com
binations of abduction and learning. The abduction en
gine AbE, a PROLOG meta-intepreter originally based 
on AMAL, does heuristic search for plausible e)Q)lana-
tions. AbE is now in use in several case stu . 0 bduc-
tion and learning. One such study is aime . loring 
the possibility that abduction can provide a handle on 
how one might automate massive changes in systems of 
beliefs. O'Rorke, Morris & Schulenburg (1989) sketches 
this case study based on an episode in the history of 
science known as the chemical revolution. The learning 
process of interest in this study is not macro-learning. 
It is a theory revision or knowledge-base refinement pro
cess. The process starts out with an incorrect theory or 
knowledge-base·'all.d is confronted with an anomaly, an 
observation that contradicts a prediction of the initial 
theory. Abduction is used to explain the anomalous ob
servation and to form hypothel!es corresponding to cru
cial parts of a revised theory. In this study, abduction 
contributes to knowledge level learning of very general 
theoretical statements. 
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Revising theories using abductive 

hypothesis formation 

This extended abstract sketches an approach to theory 
revision using abductive hypothesis formation. The need 
for theory revision is typically recognized when a theory 
is found to be in contradiction with new observations. 
The task is then to determine what revisions will result 
in a new theory that is in accord with observation. Most 
approaches to theory revision involve direct transforma
tions producing the new theory from the original "old" 
theory. These transformations are generally very much 
like "editing" or "patching". Two combinatorial prob
lems occur in these transformations. The first involves 
the identification of the erroneous subset of the origi
nal theory. The second involves the identification of the 
correct changes in the erroneous parts of the original the
ory. In some situations, these combinatorics are likely 
to overwhelm editing approaches to theory revision. 

There seems to be some psychological evidence that 
people sometimes do not do this sort of editing. In 
Shrager and Klahr's "instructionless learning" experi
ments, subjects were asked to "figure out" devices such 
as the BigTrak toy programmable tank. Shrager (19&7) 
comments: · -

we observed that between interaetions · 
with the BigTrak, subjects change(/ their the
ory of the device. A number of empirical gen
eralizations seem to hold about the' nature of 
these changes... Instead of trying to deter
mine in detail what led to a failed prediction, 
subjects usually observed what (positive be
havior) took place and changed their theory 
according to that observation ... . ' 

When a surprising observation contradicts a predic
tion of the original theory, the approach to theory re
vision explored in the present paper involves retracting 
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questionable beliefs. However, it is not necessary to start 
by trying to identify an individual incorrect belief or 
even a small set of culprits. Instead, the approach ex
plored in this paper assumes that the initial theory has 
some internal structure and that more general funda
mental principles can be separated from relatively spe
cific, less basic statements. A "core" subset of the orig
inal theory, a set of basic statements having nothing to 
do with the anomaly, is retained while less central beliefs 
are suspended. Then the unexpected new observation is 
explained in terms of the remaining, relatively solid ba
sic principles. As we will see in the example presented, 
this explanation process can generate hypotheses, sug
gesting extensions to the basic theory that will result in 
proper explanation of the new observations. 

This approach to theory revision is sketched in Fig
ure 1 using Venn diagrams. In the first stage (a) of 
theory revision an anomaly is noted. A new observation 
contradicts a prediction of the old theory, as indicated 
by the X linking a point in the old theory and a point 
outside of it. In the next stage (b) the old theory is 
reduced to the core subset.1 Starting from this subset, 
an explanation of the new observation is abduced with 
hypotheses being introduced in the process. These hy
potheses then form the basis for extensions to the core 
theory resulting in a new theory ( c). This revised the
ory no longer makes the. errone0us prediction of the old 
theory. 

We do not explore here the initial step offalling back 
on basic principles and shrinking the original theory. In
stead, we focus on the step from Figure l(b) to Fig
ure l(c). We concentrate on the claim that the process 
of explaining unexpected new phenomena can lead by 

1 Notice that neither the prediction nor the surprising observa
tion are included in the reduced core subset of the original theory. 
The circles and ellipses designate theories closed under deductive 
inference. The figure captures the notion that neither the predic
tion nor the contradictory observation should be implications of 
the core theory. 
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Figure 1: Theory revision using abduction for hypothesis formation. 

abductive inference to new hypotheses which can form 
crucial parts of new theories. We then discuss some of 
the issues involve in arriving at a new, revised theory. 

A case study in chemistry 

Let us consider in more detail some aspects of the above 
theory revision framework by looking at a case study of 
the chemical revolution. Using the language of Qual
itative Process theory (Forbus, 1984) we have encoded 
into rules and facts a domain theory, PT, that captures a 
portion of the phlogiston theory of the :Middle Ages, in
cluding some basic knowledge concerning complex sub
stances, and some key laws of QP theory. Using an 
abductive inference system named AbE, we have done 
a case study of the shift from the phlogiston theory to 
the oxygen theory (O'Rorke, Morris, & Schulenburg, in
press). 

Phlogiston theory was developed to explain, among 
other things, the phenomenon of combustion. It explains 
combustion as an outflow of a component called phlogis
ton from the combusting material. The'lheory predicts 
that a combusting piece of substance loses weight due to 
this ou tftow. 2 

Figure 2 shows a generalized explanation of weight 
loss during combustion using our encoding of PT. This 
explanation is represented by an AND-tree with each 
line of the figure showing one tr~ node. The children of 
a node are indicated by equally indented lines following 
the node. For example, the nodes 'member(amt-in ... )' 
and 'amt(S) = .. .' are siblings. Each leaf of the tree 
is followed by a box indicating that it is an hypothesis 
H, a background fact F, or a case fact CF. (Cases facts 

2 Although the phlogiston theorists may not have originally 
taken weight into account, we exte;nd our encoding PT to include 
weight considerations. 
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are facts, usually observations, that are relevant to the 
observation being explained.) 

The root of the tree is the observation that the weight 
of a combusting piece of some substance, S, is decreas
ing. This is expressed as: The time derivative's sign, ds, 
of weight(S) is neg(ative). The nodes beneath the ob
servation have been generated by backchaining on rules, 
and unification with facts. Qprop stands for 'qualita
tively proportional'. Qprop(x,y,pos) means that as x in
creases, y increases, and vice versa; and qprop(x,y,neg) 
means that as x increases, y decreases, and vice versa. 
Phlog stands for phlogiston. _72 is a Skoiem constant 
that represents an unspecified list of amounts of compo
nents of S. These would be the portions of S left after 
burning. 

The explanation in Figure 2 is intended to reflect the 
kind of generalization a scientific theory would assert. It 
is based on specific explanations of specific combusting 
substances that would have been observed and explained 
by PT. Such generalization is one means by which a the
ory predicts. This generalized explanation predicts that 
any combusting substance loses weight. For example, 
when told that a quantity of phosphorus is combusting, 
PT predicts that the phosphorus is losing weight. The 
explanation would be that of Figure; 2 instantiated with 
S = phosphorus. 

PT predicts weight loss in that, if all the leaves of 
the explanation in Figure 2 are grounded in fact, the 
weight loss follows deductively. This generalized expla
nation is a schematic proof of weight loss, and perhaps 
the leaves should be referred to as potential facts. It 
should be noted that the various facts at the leaves of 
this explanation have different statuses. For a partic
ular instantiation of S, the facts process( combustion) 
and active( combustion,S), asserting that Sis undergoing 
combustion, would be grounded in observation, whereas 
a "fact" such as component(phlog,S) would not be an 



ds(weight(S),neg) 

qprop(weight{S),amt(S),pos) IIJ 
ds{amt{S),neg) 

qprop( amt(S ),amt-in(phlog,S),pos) 

member( amt-in(phlog,S),(amt-in(phlog,S)I-72)) IIJ 
amt(S) = sum-of-amts((amt-in(phlog,S)l-72))) 

complex(S) IIJ 
amts-components-of([amt-in(phlog,S), 1-72),S) 

amt-component-of( amt-in{phlog,S },S) 

complex{S) IIJ 
component(amt-in(phlog,S},S) IIJ 
amt-in(phlog,S)=amt-in(phlog,S) IIJ 

amts-components-of(l_72,S)),S} IIJ 
ds( amt-in(phlog,S },neg) 

process( combustion) I CF I 
active( combustion) @] 
influence( combustion, amt-in{phlog,S), neg) IIJ 

Figure 2: Why weight of burning substance S decreases. 

observation, but rather a theoretical assertion of PT. 
However, we will continue to refer to literals like com
ponent(phlog,S) as facts (a la PROLOG). 

Generating new theory elements 

We now consider the example of burning a piece of wood. 
The weight of the wood before burning will be greater 
than the weight of the ash left after burning. The phlcr 
giston theorists's model of this combustion would be 
that wood = phlogiston + ash, and that the combustion 
is the outflow of phlogiston. For a phlogiston theorist, 
the decrease in weight would make sense. 

Today we know that the burning of wood is a much 
more complex process. Not only are some of the formed 
oxides missing in the ash (for example, carbon monox
ide), but also, due to the heat of combustion, other 
weighty components such as water escape in gaseous 
form. Thus the weight increase due to oxidation is 
confounded by other loeses which result in an appar
ent weight decrease when looking only at the residual 
ash. However, if one burns an elemental substance such 
as phosphorus, such a confoundment does not occur. A 
combusting piece of phosphorus gains weight. 

Our system AbE, using PT as a domain theory, is 
presented with the observation that a combusting quan
tity of phosphorus is gaining weight, Assume that some 
mechanism has detected the contradiction between ~his 
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ds(weight(phos ),pos) 

qprop(weight(phos },amt(phos),pos) [fJ 
ds( amt( phos), pos) 

qprop(amt(phos),amt-in(-6, phos),pos) 

member(amt-in(-6, phos),(amt-in(-6, phos)j..93))'· [EJ 
amt(phos) = sum-of-amts([amt-in(-6, phos}j..93]}) 

complex(phos) [ill 
amts-components-of{(amt-in( _6,phos }j ..93) ,phos) 

amt-component-of( amt-in( _6-,phos) ,phos) 

complex(phos) [ill 
component(-6,phos) [ill 
amt-in( _6,phos )=amt-in(_6,phos) IIJ 

a mts-components-of( _93, phos) [ill 
ds(amt-in(-6, phos},pos) 

process( combustion) I CF I 
active(combustion) @] 
influence(combustion, amt-in(_6, phos), pos) [ill 

Figure 3: Why weight of burning phosphorus increases. 

observation and PT's prediction of weight loss. Further 
assume, that as a result, AbE falls back to a core sub
set of PT comprising the basic laws about Qualitative 
Processes and the basic laws about complex substances 
(a complex substance has components; the amount of a 
complex substance is the sum of the amounts of its com
ponents; etc.) This core theory excludes the law that 
states that combustion causes a decrease in the amount 
of phlogiston in a combusting substance: 

influence( combustion ,amt-in(phlog,S) ,neg). 
AbE is now asked to explain the new contradictory 

observation using only this subset. AbE does this by 
attempting to generate an explanation that reduces the 
observation to the given facts. Failing this, AbE gen
erates an explanation that has some hypotheses at its 
leaves. 

The explanation produced by AbE is shown in Fig
ure 3. It states that some some hitherto unknown com
ponent _6 of the piece of combusting phosphorus has in
creased in amount, and is thus responsible for the overall 
increase in weight. In summary, a new explanation of 
combustion involving an increase of a component rather 
than a decrease of a component is proposed. AbE ab
ductively generates the hypotheses that the piece of com
busting phosphorus. is a complex substance, and that it 
contains a component, ..6, the amount of which increases 
during combustion. This hypothesized new component 
may be ,interpreted as corresponding to oxygen. This 
demonstrates that abduction can be used to form hy-



potheses corresponding to essential parts of new theo
ries. A generalized version of the explanation in Fig
ure 3 could be proposed producing new theory com
ponents such as influence(combustion, amt-of-in(-6,S), 
pos).3 These generalized components, a.long with the 
core theory, would provide a theory of combustion tha.t 
predicts weight increase for a.ny i:ombusting substance. 

Revising the theory 

There are many possible reactions within a scientific 
community to a new contradictory observation. These 
range from questioning the observation to taking the 
new observation as a sign that a current theory is flawed 
and in need of revision. We discuss here this latter 
course. 

In the above combustion example, new theory com
ponents are hypothesized, which, in conjunction with 
the core theory, explain the new observation. However, 
the process of falling back to the core theory may have 
thrown out parts of PT that are not responsible for the 
prediction of weight loss in combustion. In order to de
termine which components of PT should be blamed, one 
may compare the generalized explanation of Figure 2 
and the specific explanation of Figure 3 to determine 
differences between each explanation that arise from the 
non-core theory components in each theory. Doing so 
identifies two such discrepancies between the explana
tions: 

• component( amt-in(phlog,S),S) 1( a) 
vs. component( amt-in( _6,phos ),phos) 1 (b) 

• influence( combustion,amt-in(phlog,S),neg) 2( a) 
vs. influence(combustion,amt-in(-6,S),pos). 2(b) 

Neither pairs of assertions are necessarily contradic
tory. However, the close parallel between the two ex
planations suggests that these pairs of theory elements 
have similar roles in their respective models of combus
tion. On this basis, one may consider l(a), 2(a), and 
their specializations as candidates for excision. For ex
ample: component(amt-in(phlog,wood), wood) and 
influence( combustion,amt-in(phlog,wood),neg). Other 
non- core components of PT not blamed in this compari
son should be considered for inclusion in the new theory. 
Thus a new theory, NT, may be obtained as: core+ hy
pothesized components + unblamed old components. 

The above revision procedure produces a candidate 
new theory that may be capable of explaining the new 
observation of weight gain during combustion. If one as
sumes that the new observation has been checked and is 

3 AbE does not currently perform this generalization. 
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considered accurate, one is still left with the question of 
the prior observations of weight loss during combustion. 
Clearly NT as it stands can not explain these observa
tions. 

One of the theories can prevail over the other if it 
can demonstrate that the other theory is misapprehend
ing the phenomena it purports to explain. The wood 
burning case with its missed confounding influences and 
missed phenomena provides an example of such misap
prehension. Arriving at an expanded NT that explains 
burning wood requires reasoning a.long the lines of: "Let 
us believe the new model of combustion. Perhaps there 
are confounding influences present in the old combustion 
events. The simplest model explaining these observa
tions would involve _6 entering and some other substance 
leaving (perhaps even phlogiston?) with a net decrease 
in weight. But what process could be responsible for the 
departing substance?" · 

Arriving at a suitable hypothesis for such a confound
ing process will usually require experiment and the gath
ering of more observations that allow the proposal of 
other active processes. By manually making such new 
data available to our system, we hope to model the sub
sequent hypothesis generation that would result in ex
planation of prior observations that are in conflict with 
the new, revision-provoking observation. 

When one admits confounding influences, the door 
opens for arbitrarily complex theorizing. One would like 
to entertain hypotheses in a conservative manner. One 
would like a heuristic that strives for simple processes 
and a minimal number of them. For example, simplicity 
argues for trying a model of combustion that involves the 
flow of only one substance, and not a model that involves 
the flow of two substances in opposite directions, with 
one flow dominating the other with respect to weight 
change. 

Thus one might consider either of two models, in 
which weight change discrepancies are explained by a 
second process acting in one subset of the observations: 

( 1) Combustion = outflow of phlogiston. Weight loss 
observations are due to combustion only. Weight gain 
observations are due to combustion plus a heavier inflow 
process. 

(2) Combustion = inflow of _6. Weight gain obser
vations are due to combustion only. Weight loss obser
vations are due to combustion plus a heavier outflow 
process. 

Heuristics that eropose such minimal revisions are 
necessary to reduce the combinatorics of hypothesis gen
eration. Another potential and difficult problem is that 
the new theory components added to NT might com
bine with old components remaining in NT, such that 
contradictions may be deduced. 



Editing versus deep rev1s10n 

One may view various types of theory revision as ly
ing on a spectrum ranging from minor corrections and 
adaptations of theory to deep, revolutionary change, as 
exemplified by major scientific shifts. We suggest that 
the above method of theory revision is appropriate for 
situations in which substantial changes are required. An 
editing approach to theory revision is at the other end 
of the spectrum. Such an approach is more oriented to
ward a theory which is slightly incorrect or incomplete, 
but can be slightly modified to explain new observations. 

One difficulty that editing approaches may have is in
troducing new relations between objects in a principled 
way. Edits that revise relationships between objects, 
or that introduce new objects, have a relatively small 
chance of being correct. Consequently, a large number 
of candidate revisions may need to be introduced and 
tested. Even then, there is no guarantee of proposing 
the right edit without guidance from first principles. On 
the other hand, theory driven approaches to revision, 
such as ours, can use relatively solid knowledge to guide 
the revision process, and thus stand a better chance of 
hypothesizing appropriate new relations and objects. 

We view these two approaches to revision as comple
mentary. If one has a theory that is essentially adequate, 
then the editing approach may be a useful technique for 
arriving at a more finely tuned, final theory. However, 
when the theory is very wrong, falling back to a core 
theory may be a necessary prelude to the type of the
ory revision processes needed to create new theoretical 
entities. We consider detecting which method of theory 
revision is appropriate to be an interesting problem. 

Conclusion 

Theory revision can profitably be viewed as a process 
that involves hypothesis formation by abduction. When 
a new observation contradicts a prediction of the theory, 
one approach is to suppress questionable details of the 
original theory and to derive an explanation of the ob
servation based on more solid, basic principles of a core 
subset of the theory. The abductive generation of this 
explanation can lead to new hypotheses that can form 
crucial parts of a new theory. Comparison of the expla
nation of the new observation, to an explanation of the 
contradictory prediction under the old theory, can pro
vide a focus for blame ass.ignment. A candidate new the
ory results from a conjunction of the core theory, the new 
hypotheses, and the unblamed non-core theory. How
ever, re-explaining old observations may require more 
sophisticated revision involving interacting processes. 
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Related work 

Falkenhainer (1988) and Rajamoney (1988) describe ap
proaches to theory revision in QP domains, including 
constrained hypothesis generation and the role of exper
imentation. Thagard (in-press) examines the concep
tual changes that occurred during the overthrow of the 
phlogiston theory, and gives a conceptual map of several 
stages of the transition. 

Acknowledgments 

Ideas in this paper have evolved in discussions with 
members of the machine learning community at the Uni
versity of California, Irvine. Special thanks to Pat Lan
gley, Deepak Kulkarni, and Don Rose for discussions of 
scientific discovery. Discussions with Paul Thagard on 
Peirce, abduction, the chemical revolution, and_ scien
tific revolutions were inspirational. This paper is based 
on work supported in part by an Irvine Faculty Fellow
ship from the University of California, Irvine Academic 
Senate Committee on Research and by grant number 
IRI-8813048 from the National Science Foundation. 

References 

Falkenhainer, B. (1988). Learning from physical analo
gies: A study in analogy and the explanation pro
cess. Ph.D. thesis (Report Number UIUCDCS-R-
88-1479). Urbana-Champaign, IL: University of 
Illinois, Department of Computer Science. 

Forbus, K. D. (1984). Qualitative process theory. Ar
tificial Intelligence, 24, 85-168. 

O'Rorke, P., Morris, S., & Schulenburg, D. (in-press). 
Theory formation by abduction: A case study 
based on the chemical revolution. Proceedings of 
the Symposium of Computational Models of Scien
tific Discovery and Theory Formation. 

Rajamoney, S. (1988). Explanation-based theory revi
sion: An approach to the problems of incomplete 
and incorrect theories. Ph.D. thesis (Report Num
ber UILU-ENG-88-2264). Urbana-Champaign: 
University of Illinois, Coordinated Science Labo
ratory. 

Shrager, J. (1987). Theory change via view application 
in instructionless learning. Machine Learning, 2, 
247-276. 

Thagard, P. (in-press). The conceptual structure of the 
chemical revolution. Philosophy of Science. 
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Summary. Deductive and abductive reasoning use 
a common representation of knowledge: a theory of 
the world that allows reasoning from causes to effects. 
This paper describes a system which performs induc
tive reasoning using knowledge represented in a similar 
form. The benefit of this approach is that a common 
knowledge base can be used for inductive, abductive 
and deductive reasoning. The similarities and differ
ences between this learning system and abductive rea
soning systems are discuued. 

Introduction 

There are three types of reasoning: deduction, abduc
tion, and induction. Broadly speaking, these types of 
reasoning can be described as reasoning from causes 
to effects, from effects to probable causes, and from 
specific facts to general cause-effect relationships, re
spectively. 

The knowledge used for deductive reasoning is al
most always represented in "cause-to-effect" form: 
that is, a theory which describes the effects of vari
ous underlying causes. While much of the' earlier work 
on abductive reasoning used knowledge in "effect-to
cause" form, most recent work baa concentrated on 
abductive reasoning techniques that use knowledge 
in "cause-to-effect" form as well (this problem has 
been called "diagnosis from first principles" or "model
based diagnosis".) It is generally agreed that knowl
edge in "cause-to-effect" form is easier to acquire and 
maintain. 

Inductive reasoning systems, in contrast, rarely rep
resent knowledge about the world in any explicit form. 
The prototypical inductive reasoning task is concept 
learning, the problem of finding an unknown concept 
given positive and negative examples of members of 
that concept. In order to make concept learning pos
sible at all, generally a concept learning system must 
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make some assumptions about the form of the un
known concept. These assumptions are usually syn
tactic constraints on the form of the concept to be 
learned; for instance, that it be expressed as a conjunc
tion of certain features, or 88 a well-balanced decision 
tree. These constraints are typically the only sort of 
world knowledge available to a concept learner. 

This paper describes a concept learning system 
which learns using examples and knowledge about the 
world written in cause-to-effect form. Due to the simi
larities between this form of knowledge and the knowl
edge used by model-based diagnosis systems, I will call 
a theory written in the appropriate format an "abduc
tive" theory. One benefit of this approach is that a 
common knowledge base can be used simultaneously 
(at least in principle) for inductive, abductive and de
ductive reasoning. Another benefit is that knowledge 
in this format is easier to acquire and maintain. 

Via a short case study, I will show that this can 
also be an appropriate and natural way of representing 
knowledge for an inductive learner. 

Space constraints preclude inclusion of proofs or de
tailed experimental results. The interested reader is 
referred to (Cohen 1989). _ 

Statement of the problem 

Preliminary Definitions 

Consider a Born clause theory_ 0. Let 0 be the set 
of all possible ground atomic formula in the Berbrand 
universe of 0. I will call these formula poaaible obser
t1ations. The target concept is some set T ~. 0. The 
target concept represents the set of observations which 
are "true" in the real world. An ezample of T is an 
element of z E 0, labeled with "+" if z E T and "-" 
if z ~ T. 

Let Pz denote any AND-OR proof of the formula z 



in the theory e, and let a. be the generalized version of 
that proof (the "explanation structure" for the proof) 
obtained by using Mitchell's goal-regression algorithm 
(Mitchell, Keller, & Kedar-Cabelli 1986). I will call a. 
,,,a.Jid if 'fly, (y provable using a.) => y E T. Finally, 
a theory is called abductne for T if 'f/z E T, 3a. : 
a. is valid. 

Intuitively, each proof in an abductive theory is a 
"tentative explanation" of the observation which it 
proves, and the generalized proof represents the "chain 
of reasoning" used to produce the proof. These chains 
of reasoning can be either "valid" - i.e., that same 
chain of reasoning always holds - or "invalid" - i.e., 
that same chain of reasoning can sometimes be used to 
support a conclusion which conflicts with reality. The 
crucial property of an abductive theory is that for ev
ery true observation, there is some valid explanation 
- in other words, one of the explanations suggested 
by the theory is correct. 

This definition seems to fit many cases of practical 
interest. For example, consider a theory that involves 
some element of plan recognition. The goals of one or 
more agents are typically unknown and must be as
sumed. Often, any of several assumptions which could 
be introduced would suffice to explain an action, but 
only explanations based on the correct assumption will 
be valid. 

The definition also fits theories for which are not 
normally considered abductive. For example, con
sider an abductive theory e for opening bids in 
the game of contract bridge. One of the predi
cates defined in this theory might be the predicate 
opening_bid(Hand, Bid), where Hand is a term de
scribing a bridge hand, and Bid describes a possible 
opening bid. 

If this theory is abductive, it need not be correct, in 
the sense that some of the opening_bid goals provable 
in the theory might be for incorrect opening bids. For 
instance, the theory might contain some overly gen
eral, heuristic rules for how to make opening bids, but 
might not contain knowledge about when these heuris
tic rules should be applied. So given a bid, the approx
imate theory could not be used to to determine if the 
bid was correct or not, but could be used to construct 
tentative explanations of why the bid was made. If the 
theory is abductive for the target concept of "correct 
opening bid", then for each correct bid, one of these 
explanations is always ,valid. 

The goal of learning 

Inductive learning and abduction are very similar 
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tasks. In both cases, the problem is to come up with a 
hypothesis which explains a particular set of observed 
effects. Ideally, the hypothesis should exactly coincide 
with the true underlying causes of the effects; how
ever, this ideal goal is not attainable except in trivial 
circumstances. Learning systems and abductive re~ 
soning systems differ in how this goal is relaxed. Ab
ductive reasoning systems typically produce as output 
the set of all poaaible hypotheses which satisfy some 
relatively weak definition of minimality (for instance, 
minimality under the partial order of set inclusion). 
The criterion of success is whether this set contains 
all of the most likely hypotheses. Learning systems, 
in contrast, usually produce a aingle hypothesis ex
plaining a set of phenomena, using a relatively strong 
definition of minimality (usually small syntactic size, 
relative to a particular encoding). Various measures of 
success have been proposed for learning systems. The 
learning goal used in this paper is Valiant's criterion 
of probably approximately correct learning (Valiant 
1984), in which a learner succeeds if future predictiona 
made by the hypothesis are correct in a probabilistic 
sense. 

More precisely, let T be a space of possible tar
get concepts, let T e T be a target concept, let D 
be a probability density function, and let aize(T) be 
some complexity measure on concepts. Define the er
ror of a hypothesis H with respect to T and D to be 
error(H, T, D)::: D(T- H) + D(H - T). A learning 
algorithm LEARN is a function which takes as input 
a sample of T containing m examples and outputs a 
hypothesis: that is, a guess as to what T is. A learn
ing algorithm is said to be polynomially probably ap
prozimately correct for T if there is some polynomial 
function m(l/E, 1/6,n) such that for any probability 
distribution function D, for any TE T 

1. LEARN runs in time polynomial in its inputs 

2. For a sample S of size m(l/E, 1/6, n) of some tar
get concept T such that ai.ze(T) $ n, 

Prob(error(LEARN(S,T,D)) > E) < 6 

In other words, LEARN probably - with probability 
at least (1 - 6) - returns an approzimately coTTect 
hypothesis - a hypothesis with error less than E -

and is constrained to run in time polynomial in l/e, 
1/6, and the size of the target concept. 

The function m(l/E, 1/6, n) is called the Mmple 
complezity of the function LEARN; it indicates how 
many examples are needed to ensure that the hypoth
esis is probably approximately correct. 



Note that the error is defined with respect to the 
same probability density function D from which ex
amples were drawn. Thia can be interpreted as say
ing that the accuracy of the hypothesis produced by 
the learner is guaranteed only for the same population 
from which the training examples were drawn. 

A learning algorithm 

The algorithm 

A simple learning algorithm is the following. 

Algorithm A-EBL(S): 

1. Enumerate all the generalized proofs azi, ... , Os-r 
of the positive examples in the sample S. 

2. Discard thoee Os-i's which can be used to prove 
some negative example. 

3. Use a greedy algorithm to find a minimal sub
set COV of the remaining Os-i's such that ev
ery poeitive example z+ can be proved by some 
Os-i E COV. The greedy algorithm always adds 
to COV an Os-i that maximizes the ratio of the 
number of uncovered examples to the size of as-i. 

4. Return the hypothesis 

H = { :z: : x is provable with some Os-i E COV} 

The aize of a generalized proof as- is defined to be 
the number of nodes in the proof tree. Further details 
of the algorithm can be found in {Cohen 1989). 

Formal Analysis 

It can be shown that this algorithm satisfies the learn
ing goal described in the previous section, and that its 
sample complexity nearly optimal. 

Let Te denote the set of all specializations T of a 
domain theory 0 such that T = G1 u ... u Grr, where 
Vi, 1 $ i $ k, there is some proof Ps-; such that G; is 
the output of EBG(p.,). In other words, Te is the set 
of all p088ible target concepts T which are explainable 
by a some set of generalized proofs: in the terminology 
introduced above, T is the set of all target concepts 
such that 0 is abductive.for T. Let the size of TE Te 
be the sum of the sizes of the abstract explanations 
which define T; finally, let 101 denote the number of 
clauses in e. 

In (Cohen 1989) is a proof of the following theorem. 
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Theorem 1 A-EBL(S) ia a pol11nomial probably ap
prozimately corm:t leaming algorithm for Te with 
aample complezity of 

( 11 ) O( (ll 1 nlogl0l(l nlogl01)2)) m -, 7 ,n = max - og7, og 
E v E v E . E 

Furthermore, there eziat theoriea 0 auch that every 
probably approzimately correct leaming algorithm for 
Te muat ha'fle a Hmple complezity of at leaat 

1 1 1 1 n 
m(-, 7 , n) = 0(- ln 7 + - ) 

E v E v E 

Discussion of the Algorithm 

Abduction is often thought of as finding the best ex
planation of a set of phenomena. When there are mul
tiple explanations, as is assumed to be the case here, 
simpler explanations are preferred. 

This is precisely the intent of the algorithm given 
above. It uses the heuristic set cover technique to 
minimize the complexity and number of explanations 
considered. The hypothesis output by this algorithm 
is the set of observations predicted by a disjunctive 
explanation of the example observations. The formal 
analysis shows that this technique works whenever the 
target concept T corresponds exactly to the set of ob
servations predicted by some set of generalized expla
nations; that is, whenever 0 is abductive for T. In 
short, A-EBL is very similar to many abductive rea
soning systems. 

The major difference between A-EBL and abduc
tive reasoning systems is that the goal of A-EBL is 
different. A-EBL is attempting to produce a hypoth
esis which will make reasonably accurate predictions 
on later problems, if these problems are drawn from 
the same population from which the training samples 
were drawn. Theorem 1 shows that the simple heuris
tics used in A-EBL are sufficient to satisfy this goal. 

Experiment-al Results 

Theorem 1 shows that effective learning algorithms 
can be designed which make use of knowledge repre
sented as an abductive theory. It remains to be shown 
that the knowledge to needed solve real-world learning 
problems can be expressed as an abductive theory. 

As an experiment, an introductory text on bridge 
play {Sheinwold 1964) was used as a source of back
ground knowledge (in the form of a theory), exam
ples, and test data. Almost all of the rules in the 
theory were clearly and explicitly presented in (Shein
wold 1964), and could be easily transcribed into a Horn 
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Figure 1: Accuracy of A-EBL's Hypothesis as a Function of Training Set Size 

clause theory. However, the resulting theory was not 
a complete and correct theory of bridge bidding. It is 
clear (from the accompanying text, if from no other 
source) that the bidding rules are overly-general. Of
ten the text explicitly states that a rule is merely a 
heuristic, and should not always be followed. In most 
of these situations, a series of examples are used to 
clarify the use of a heuristic rule. The approximate 
bidding theory can be interpreted, as in the exam
ple above, as an abductive theory: each proof can be 
thought of as a tentative explanation of why a bid 
might have been made. 

The A-EBL algorithm, and a variant of it, was then 
used to construct a hypothesis for the unknown tar
get concept "good opening bid". This hypothesis was 
tested using a sample test in (Sheinwold 1964). Both 
A-EBL and its variant scored well, at 87% correct or 
above. The original theory 0 scores at only 75% cor
rect; in 25% of the test cases incorrect bids, as well as 
the correct bids, were proposed by e. 

An additional experiment was conducted to test A
EBL 's behavior on randomly generated training exam
ples. A test set of 1000 hands was randomly generated 
and classified by the a hand-coded bridge bidding the
ory. Then a separate training set of 300 hands was 
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generated and classified by the hand-coded theory. A
EBL was then given progressively larger subsets of the 
training set, and the accuracy of each theory special
ization produced was measured by using it to classify 
the hands in the test set, and comparing the classifi
cations to the correct ones. This experiment was re
peated 10 times and the error rates were averaged, 
using the same test set in each trial. The result is 
the "learning curve" shown in Figure 1. Performance 
of the hand-coded theory is also shown for the pur
pose of comparison. This experiment shows that, as 
predicted by the theory, A-EBL has good convergence 
properties on randomly selected dat.,;. _ 

In this case, a good argument can be made that the 
knowledge used for learning was appropriate, in the 
sense that it allowed learning to proceed effectively, 
and natura~ in the sense that transcribing this in
formation into usable form was straightforward. Of 
course, to argue that this is usually (or even often) 
the case requires many more data points, in the form 
of other learning problems which can be treated in a 
similar manner. 



Related Work 

This work was motivated primarily by the multiple 
expla.na.tion problem in explanation based learning, 
which occurs when explanation based learning tech
niques are applied to approximate domain theories. 
Often these approximate theories are abductive theo
ries (at least in some informal sense.) Several other 
researchers have also addressed this problem. Hirsh 
(Hirsh 1989) has used the incremental version-space 
merging (IVSM) method to choose between multiple 
explanations. However, the IVSM method requires an 
additional source of information in the form of a con
cept description la.ngua.ge which provides an additional 
bias to the learning system. In (Pazzani 1988), Paz
zani discusses mechanisms to choose between alterna.
tive explanations in an imperfect domain theory for 
plan recognition, which is an abductive task. Pazzani 
identifies five heuristics for selecting explanations; one 
of these, the heuristic of preferring explanations which 
account for a larger number of observed changes, bears 
some similarity to the basic method of A-EBL. Sim
ilar heuristics for choosing between multiple explana
tions in the context of completing an incomplete the
ory are proposed by Fawcett in (Fawcett 1989). Our 
work extends these _techniques by giving a precise way 
of weighting the complexity of an explanation and the 
number of observations that it covers, and justifying 
this heuristic with a pac-learning analysis. 

Conclusion 

This paper describes a learning system that uses 
knowledge about the world written in cause-to-effect 
form to learn. The inputs and outputs of the learning 
system, but not its goals, are similar to those of an 
abductive reasoning system. Via a short case study, it 
was argued that this is an appropriate and natural way 
ofrepresenting knowledge for an inductive learner. 

Acknowledgements 

This paper benefitted greatly from discussions with 
many friends and colleagues, and from advice and en
couragement from my advisor, Alex Borgida. Most of 
this research was done while the author was receiving 
a Marion Johnson Fellowship. The author is currently 
receiving an AT&T Fellowship. 

42 

References 

[1] William W. Cohen. Abd uctive explanation based learn
ing: A solution to the multiple explanation problem. 
Technical Report ML-TR...26, Rutgers University, 1989. 

[2] Gerald DeJong and Raymond Mooney. EBL: An alter
native view. Machine Learning Journal, 1(2), 1986. 

[3] Tom Fawcett. Leaming from plausible explanations. 
In Proceedings of the Sixth International Workshop on 
Machine Learning. Morgan Kaufmann, 1989. 

(4] Haym Hirsh. Combining empirical and analytic learn
ing with version spaces. In Proceedings of the Sixth 
International Workshop on Ma.chine Learning. Morgan 
Kauf:ma..nn, 1989. 

(5] Tom Mitchell, Richard Keller, and Smada.r Keda.r
Cabelli. Explanation-hued generalization: A unifying 
view. Machine Leaming, 1(1), 1986. 

[6] Michael Paszani. Selecting the best explanation in 
explanation-hued lea.ruing. In Proceedings of the 1988 
Spring Symposium on EBL. AAA!, 1988. 

(7] Alfred Sheinwold. 5 Weeks to Winning Bridge. Simon 
& Schuster, 1964. 

[8] Leslie G. Valiant. A theory of the learnable. Commu
nica.tiotv of the ACM, 27(11), November 1984. 



PED: A Technique for Refining Incomplete Determination-Based 
Theories 

Sridhar Mahadevan 
IBM T.J. Watson Research Center 
P.O. Box 704, Yorktown Heights 

NY 10598; Net: sridhar@ibm.com 

Abstract 

A major limitation of expla.n.ation-ba.sed learn
ing (EBL) is that the domain theory used to 
explain training instances must be complete. 
This problem has been termed the incomplete 
theory problem [Mitchell et al., 1986). In this 
paper we present PED, a technique that ex
tends EBL to incomplete theories containing 
determinations, a type of incomplete knowl
edge. [Davies and Russell, 1987). The key 
idea underlying PED is that training exam
ples of a concept can be used to fill in gaps 
in a domain theory by propagating the in
formation that they satisfy the target con
cept. Comparing PED to abduction-based 
techniques, such as LFP [Wirth, 1988], reveals 
two constraints on the gap-filling process that 
make PED more tractable than abduction
ba.sed techniques: one, only abduce predicates 
in the RBS of a determination; and two, con
strain the search for relevant predicates to 
those in the LBS of a determination. 

1 Introduction 

A major limitation of expla.na.tion-ba.sed learning (EBL) 
is that the domain theory used to explain training in
stances must be complete. This problem has been 
termed the incomplefo-theor, pro~m [Mitchell et al., 
1986). In this paper we present one approach to the 
incomplete theory problem based on extending EBL to 
domain theories containing determinations, a type of 
incomplete knowledge proposed by Davies and Russell 
[Davies and Russell, 1987, Russell, 1986). 

In particular, we describe PED, a techique 
that extends PROLOG-ba.sed EBL implementations, 
e.g. PROLEARN [Prieditis and Mostow, 1987], to 
determination-based theories. The key idea underly
ing PED is that training examples can be used to fill 
gaps in the domain theory by propagating the informa
tion that they are instances of the target concept; in 
contrast, EBL uses training instances to focus the ex-
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pla.nation process and compute particular operational 
descriptions of the target concept. 

Comparing PED to abduction-based techniques, such 
as LFP [Wirth, 1988), reveals two constraints on the 
gap-filling process that make PED more tractable than 
abduction-based techniques. One, PED only abduces 
predicates in the RBS of a determination. Two, PED 
constrains the search for relevant predicates to thoee in 
the LBS of a determination. 

2 Determinations 

Intuitively, determinations try to capture the notion of 
relevance. We say that an attribute P is relevant to an 
attribute Q if knowing that P holds for some object tells 
us something about whether Q holds for that object. A 
more precise definition is as follows:1 

Definition 1 Let P{z,y) and Q{z,z) be any two firat
order aentencea, where z repreaenta the aet of variablea 
that occur free in both P and Q, while y and z repreunt 
the aet of free variablea that occur only in P and Q re
apectively. We aay P{z,y) totally determinea Q{z,z}, or 
P(z,y) >- Q{z,z}, if! 

\:/y, z[[3zP(z, y) /\ Q(z, z)] => '<12i[~(z, y) => Q(z, z)]] 

For example, let P(z, y) denote the predicate 
Nationality(z, y), meaning that individual z has na
tionality y. Also let Q( z, z) denote the predicate 
Langt,£q.g~(z,z), m~g that z. sp~,Jangu?'ge z. 
Then, the above definition states that if there eXlSts an 
individual z whose nalionality isc y, and wlto speaks a 
language z, then all individuals of nationality y speak 
language z. 

2.1 Determinations as a Form ofJncomplete 
Knowledge· · · 

An example will help illustrate how determinations can 
be viewed as a form of incomplete knowledge. From 

Nationality(z, y) >- Language(z, z) 

1 See [Ruuell, 1986] for a description of other types of 
total determination. 



and 

Nationality( John, U1) /\ Language(John,Engliah) 

it follows that 

(\:/z)Nationality(z, Ua) => Language(z, Engliah) 

However, just knowing that nationality determines lan
guage is not sufficient to compute an individual's lan
guage from his nationality. Examples are required to fill 
in this knowledge. 

In general, from 

P(z,y) >- Q(z,z) 

and 
P(A, B) /\ Q(A, C) 

the implication 

\:/:z:P(z, B) - Q(z,C) 

follows. This inference is a form of aingle inatance gen
eralization. We will make extensive use of this inference 
step later in the paper. 

3 One View of the Incomplete Theory 
Problem 

We begin by presenting one view of the incomplete the
ory problem, which is based on a discussion in [Russell, 
1987]. Rajamoney and Dejong [Rajamoney and DeJong, 
1987] proposed a classification of imperfect theory prob
lems in EBL. In their terminology, the problem being 
studied here is the "broken explanations" problem. In 
other words, a complete explanation cannot be given be
cause of missing rules in the domain theory. The missing 
rules manifest themselves as broken links in the expla
nation tree. 

A central assumption iii our approach is that the gaps 
in the domain theory are specifiable as total determina
tions. The domain theory is incomplete because, there 
is insufficient information to evaluate queries using the 
determinations. Examples are needed to refine th~ de
termination into a set of implicative rules. It is this 
process of refinement that we study in this paper. 

Figure 1 illustrates the general structure of the refine
ment process. Determinations may occur somewhere in 
the middle of an explanation pa_th leading from the tar
get concept to the training example description. The 
idea is to propagate the fact that the training instance 
satisfies the target concept, and show that the predicate 
P in the RBS of a determination holds. Similiarly, the 
predicates Q in the LBS" of a determination are proven 
from the training instance description. Then, using the 
single instance generalization rule described above, a 
new implication can be added to the domain theory. (Pe 
and Ph are particular subsets of the domain theory.) 
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Figure 1: General Structure of Explanation in 
Determination .. baaed Theories 

4 PED: A Technique for Refining 
Incomplete Theories 

This section describes PED, a technique for refining 
incomplete domain theories containing determinations. 
Figure 2 presents a high level description of PED. The 
top level procedure is called uaume. Given the clas
sification of the training instance Q (as an instance of 
the target concept), uau1ae tries to explain Q from the 
training instance description. The procedure explain 
in Step 3 is basically EBL, implemented in techniques 
such as PROLEARN [Prieditis and Mostow, 1987]. The 
second argument G of assume represents a generalized 
(operational) sufficient condition of the target concept 
returned by PED. 

The important steps are Step 2 and Step 4. Step 4 
is invoked when EBL fails. Step 4 first retrieves a de
termination whose RBS unifies with Q. Next, it checks 
whether two of three conditions for single instance gen
eralization hold: the query Q representing an instance 
of the RBS of the determination must be fully instanti
ated, and the instantiated LBS P (under the same vari
able bindings) of the determination must hold. At this 
point PED' bu located a possible gap in the domain 
theory, which if filled may allow the training example 
to be explained. The only remaining condition is that 
the query Q must hold. PED asserts P >- Q as a failed 
determination, and then backtracks trying other ways 
of showing that the example is an instance of the target 
concept. 

Step 2 is invoked when the explain procedure fails to 
show that the training example is an instance of the tar
get concept. PED first checks to see whether the cause 
of the failure was a failed determination, by retrieving 
the failed determination P >- D (which was stored in 
Step 4). PED now makes a type of closed world as
sumption: since all explanation paths except for the 
one using the determination P >- D failed, the RBS D 
must be .true in order for the training example to be an 
instance of the target concept. 



HSWlle(Q,G) +

expla.in(Q,G) 
% Step 1 

USW!le(Q,G) - % Step 2 
Retrieve failed detensination P ~ D 
Explain the lhs P 
Use single insta:nce generalization to 
create a nev rule Dg ,_ Pg 
.Auert the nev rule in the lmovledge bue 
USWlle(Q,G). 

uplain(Q, G) <- % Step 3 
% This step corresponds to sta:ndard EBL 

explain(Q,G) +- % Step 4 
Retrieve P ~ Q 
If the lhs P can be explained, and 

Q is ground 
Then assert P ~ Q as a failed 
determination. Backtrack and try 
other paths 

Figure 2: The PED Procedure 

PED next shows that P follows from the training in
stance. At this point, since instances of both the LHS 
and RHS of the determination have been shown, PED 
carries out the single instance generalization inference 
step, and creates a new implication. PED then adds 
the new rule to the domain theory, and recursively in
vokes the usW11e procedure. If this implication filled 
the only gap preventing the successful explanation of 
the training example, the second invocation of explain 
should terminate successfully, and return an operational 
sufficient condition for the target concept. Otherwise, 
further gaps in the domain theory may need to be filled 
using the above procedure. 

4.1 Example 

Consider the example domain theory shown in Fig
ure 3 (this originally appeared in [Russell, 1987]). The 
target concept is stack(I, Y) meaning the class of pairs 
of objects that can be safely stacked on one another. 
The determination in the domain theory specifies that 
the material (mat) and construction (cons tr) of an 
object determine its fragility · ( trag). Suppose PED 
is given the query assW11e(stack(box1,box2) ,G). The 
predicates mat, constr, and vt (meaning weight) are 
assumed to be operational. 

First, the query explain(stack(box1,box2) ,G) is 
generated, which creates the goal frag(box2,lov). 
This goal fails because no information on box2's frag 
exists, and furthermore the determination for frag can
not be used analogically as there is no precedent in the 
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% target concept definition 
stack(I,Y) - frag(Y,lov) V lighter(~,Y). 

% domain theory 
mat(I,M) ~ constr(I,C) ~ frag(I,F). 
lighter(I1,12) +- vt(I1,W1), vt(I2,W2), 

Wl < W2. 
mat(I,Y) +- made_of(X,Y). 
constr(I,Y) +- body(I,Y) . 

% training ex&mple description. 
made..of(box1,lead). made_of(box2,steel). 
vt(bo:z:1,100). vt(bo:z:2,10). 
body(bo:z:1,rigid). body(bo:z:2,rigid). 

Figure 3: Example to Illustrate PED 

knowledge base. 2 Since the instantiated LHS of the de
termination 

mat(bo:z:2,steel) A constr(bo:z:2,rigid) 

can be shown from the training example, Step 4 de
clares the instantiated frag determination as a gap in the 
domain theory, which if filled could allow the example 
to be explained. PED then backtracks trying to prove 
stack through the other disjunct lighter(bo:z:l, box2). 
This fails because box1 is heavier than bo:z:2. Note that 
due to predicate completion, the sufficient condition for 
lighter is also a neccessary condition.3 

At this point, Step 2 of PED is invoked. The failed 
goal frag (box2 , lov) is retrieved, which is now assumed 
true. Note that since the sufficient condition for stack is 
also a neccessary condition (due to completion), PED's 
reasoning at this point is of the form 

"from P - Q V R and -.a and P. infer. Q"' 

which is deductively valid. Ill the next part of Step 
2, the LBS of the determination for frag is evaluated. 
The instantiated LBS and RHS of the determination are 
generalized to the rule 

mat(I,steel) A cons~r(I,rigid) ~ frag(I,lov) 

which is subsequently asserted. The procedure 
assume is invoked again on the original query. This time 
the call to explain succeeds, and PED finally returns 
with the result G = 
mat(Y,steel) A constr(Y,rigid) ~ stack(I,Y) 

2 Determinations can also be incorporated in a theorem
prover, such as PROLOG, u a form of analogy [Davies and 
Russell, 1987). 

3 PED uses predicate completion [Lloyd, 1984) to treat 
the disjunction of all the sufficient conditions of a predicate 
as a neccessary condition. 



5 PED As A Constrained Abduction 
System 

In this section we discUM the relation between abduction 
and PED, showing how PED can be viewed as doing a 
constrained form of abduction. We also compare PED 
to several techniques that are based on abduction, such 
as LFP [Wirth, 1988]. 

To see how PED can be viewed as performing a re
stricted version of abduction, we return to Example 1 
above (see Figure 3). From 

stack(I,Y) +- lighter(I,Y) V frag(Y,lov) 

two explanations for the tar-
get concept instance stack(box1, box2) follow, namely 
lighter(box1,box2) and frag(box2,lov). PED ab
duces that the latter is the best explanation because it 
is defined using a determination, even though both hy
potheses cannot be shown from the implicative portion 
of the domain theory. Therefore PED can be viewed as 
using the heuristic - GiTJen a choice, abduce predicatea 
that appear in the RBS of a determination• - to filter 
out the set of possible hypotheses that can explain a 
given fact. 

Sometimes this heuristic is not sufficiently powerful 
since there may be several predicates that are defined us
ing determinations. To deal with such situations, PED 
needs to be extended to use additional heuristics, such 
as simplicity, for selecting among competing predicates. 

Comparing PED with Abduction-based Tech
niques We now compare PED to the growing num
ber of learning techniques that are based on abduc
tion, such as LFP[Wirth, 1988], a technique used in the 
ODYSSEUS system[Wilkins, 1987], CIGOL[Muggleton 
and Buntine, 1988], and a technique described by 
O'Rorke[O'Rorke, 1989]. There are two differences be
tween PED and these other techniques: one, PED as
sumes that the gaps in the domain theory are filled 
by determinations; two, PED selectively abduces pred
icates that are defined using determinations. As a con
sequence of these two differences, PED--auifers less from 
the combinatorial explosion of possible predicates that 
can be abduced, as well as the many possible ways in 
which rules can by hypothesized to fill the gaps. On 
the other hand, abduction-based techniques are more 
powerful than PED in filling in gaps in a domain the
ory since they do not require that the determinations be 
known. 

To illustrate the point that abduction-based tech
niques are faced with a more serious combinatorial 
explosion problem, let us examine the LFP tech
nique proposed by Ruediger Wirth[Wirth, 1988, Wirth, 
1989]. LFP is based on Muggleton's idea of inverse 
resolution[Muggleton and Buntine, 1988]. LFP is si
miliar to PED in that it uses a training example to fill 

41 thank Thorne McCarty for UU. observation. 
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in gaps in an incomplete but correct Horn theory.5 

The steps behind LFP are as follows. Given a training 
instance, LFP first tries to explain the training instance 
using the partial domain theory. If a particular predi
cate fails in the proof process, for example if it is not 
defined, LFP asks an oracle if that predicate is true. If 
it is true, then LFP proceeds to the next subgoal, oth
erwise it backtracks. Eventually, the first phase termi
nates in a partial proof tree. Leaves in this partial proof 
tree that were justified by the oracle are denoted by a 
special label, since these represent gaps in the domain 
theory that need to be filled. 

To illustrate the operation of LFP, let us consider the 
domain theory in Figure 3 with the fragility determina
tion deleted. At the end of phase 1, LFP will construct 
the partial proof tree 

safe.to..stack(box1, box2) +- fragility(box2 ,lov) 

LFP will affix a special label to fragility predicate 
since the oracle was used to justify the truth of the pred
icate, and thereby bottom out the proof. 

The second phase of LFP is constructing a complete 
proof tree. Since the domain theory is incomplete, LFP 
can only approximate the complete proof tree. Basi
cally what LFP does is to examine the training instance 
description for facts that are relevant to labelled leaf 
predicates in the partial proof tree. The idea is to find 
some link between the labelled leaf nodes and facts in 
the training instance, which can be used to complete 
the partial proof tree. LFP uses heuristics to guide 
it in computing the relevant facts. Using Example 1 
again, LFP might decide that ma.de.of (box2, steel), 
veight(box2,10), and body(box2,rigid) are relevant 
because the constant symbol box2 appears in them (and 
in the labelled fragility predicate also). (This is an ac
tual heuristic used in LFP to compute relevance.) In 
contrast, PED uses determinations to compute the rele
vant facts. LFP finally hypothesizes the following com
plete proof tree: 

safe.to..stack(box1 ,box2) 
f 

fragility(box2,lov) 
f 

made.ot(box2,steel) A veight(box2.10) A 
body(box2,rigid) 

The third phase of LFP is to abstract the leaf nodes 
in the complete proof tree by forward chaining on the 
implicative rules in the domain theory. In particular, 
using the following implications in the domain theory 

6 In a subsequent paper(W"irth, 1989], Wirth describes 
an improved technique LFP2 that relies less on an oracle 
to construct pariial proof ireea, and which also can invent 
new terms using Muggleton's inverse resolution technique. 
It is more appropriate to compare here PED to LFP since 
it highlighia better the main dift"erencea between PED and 
abduction-baaed techniques. 



material(X.Y) ,_ aade_ot(X,Y) 
construction(X,Y) ,_ body(X,Y) 

LFP constructs the following modified complete proof 
tree 

aate_to_atack(box1,box2) 
T 

tragility(box2,lov) 
T 

material(box2,ateel) A veight(box2.10) A 
construction(box2,rigid) 

LFP next compares the partial proof tree and the 
complete proof tree to try to hypothesize missing rules in 
the domain theory. For Example 1, it may hypothesize 
the following rule: 

tragility(box2,lov) ,_ material(box2,steel) A 
veight (box2, 10) A 
construction(box2,rigid) 

Finally, LFP generalizes the above rule using heuris
tics. In the description of LFP, Wirth uses heuristics 
that are particular to natural language parsing, which 
is the domain of application. Subsequently, in LFP2, 
Wirth uses inductive techniques such as maximally spe
cific generalization to generalize from multiple examples 
of such instantiated rules. 

The differences between LFP and PED should be 
clearer now. First, PED uses determinations to com
pute the relevant facts, whereas LFP uses heuristics. 
The heuristic used above can easily be fooled by many 
irrelevant facts. For example, the predicate veight may 
not be relevant to fragility. In fact, if the predicate 
ovns (box2 , john) was present in the training instance 
description, LFP would have included this in the body 
of the rule hypothesized to fill the gap in the domain 
theory. Second, PED uses a justified form of single in
stance generalization, whereas LFP uses inductive learn
ing techniques whose effectiveness depend on the gen
eralization language containing the right abstractions. 
Thirdly, all the phases of LFP could potentially lead to 
a combinatorial explosion of possibilities. For example, 
the third phase of LFP involves forwarding chaining on 
the rules in the domain theory which could lead to many 
alternative possibilities for abstracting the leaf nodes in 
the proof tree. 

A detailed comparison of PED with the other 
abduction-based techniques cited above is given in 
[Mahadevan, 1990). 

6 Conclusions 

In this paper we described the PED technique, which ex
tends EBL to incomplete determination-based domain 
theories. PED uses training examples to fill gaps in 
a domain theory by propagating the information that 
they satisfy the target concept definition. Gaps in the 
domain theory are specified using determinations. PED 
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fills the gaps by extracting implicative rules from deter
minations. An example was presented that illustrated 

· PED's ability in refining the determinations in a domain 
theory. Finally, PED was compared to abduction-based 
techniques. 
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Introduction 
The process of constructing explanations is particu

larly relevant to Explanation-Based Learning research
ers. It has become clear that the notion of explana
tions as a deductive proof as manifested in EBG 
[Mitchell86] and EGGS [Mooney86] is limited in scope 
and constrains EBL systems to relatively sterile 
micro-world domains. The number of things that can 
be proved is small and the set contains little of interest 
that could not be inexpensively constructed from first 
principles as needed. Something more than truth
entailment inference is needed to drive explanation 
construction. 

When confronted with experiences from the real 
world (or even an artificial but rich domain) EBL sys
tems react with brittleness. In particular, world 
experiences often include observations which directly 
contradict deductive conclusions of the system. This 
results in the system entering some kind of internal 
should-not-occur state from which conventional EBL 
systems cannot recover. Let us (somewhat generously) 
define a non-brittle EBL system: 

A non-brittle EBL syste~ is one which tolerates 
any observation or set of observations of the 
real world. 

Of course, if a system is intentionally or uninten
tionally given contradictory experiences, it may reach a 
should-not-occur state. The observations of such 
experiences could not have been of the real world since 
the real world is always self-consistent. A non-brittle 
system need not tolerate any input; only those that are 
faithful to the real world; as long as we do not lie to it 
by faking world observations, its code must not hang. 

Now consider what such an EBL system's explana
tion structures might look like. Logical proofs must be 
rejected as explanations because of the qualification 
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problem, which is intuitively well stated (though a bit 
circular) in (Genesereth87]: 

Most universally quantified statements will have to 
include an infinite number of qualifications if they 
are to be interpreted as accurate statements a.bout 
the world. 

The problem was introduced by McCarthv as an 
aspect of the frame problem [McCarthy69] and has 
been discussed much. AB an example, consider the clas
sic implication about birds flying: 

'ef z (Bird(z) =? Flies{z)] 

This FOPC sentence overstates the case for flying 
because, after all, not all birds fly. In particular, 
penguins do not fly so to be faithful to the world the 
rule must be amended: 

'ef z {[Bird(z) /\ ..., Penguin (z] :::} Flies(x)} 

But, of course, ostriches cannot fly, nor can emu's, nor 
can kiwi's, nor can many other increasingly exotic 
birds. The rule could be patched for these, but there 
are other problems. A bird with a broken wing cannot 
fly so the rule must again be· amended. A dove missing 
more than five Bight feathers on one site cannot fly, 
nor can an eagle missing more than 12, nor can ... Once 
again the rule must be fixed. But, of course, we are not 
finished. A bird that has been appropriately condi
tioned in a Skinner box cannot fly, a bird that has been 
cooked for dinner cannot fly, a bird that is attached to 
an anvil cannot fly, etc. The list is endless. This prob
lem is not specific to birds and flying. AB pointed out 
by Genesereth and Nilsson it applies to nearly all 
universally quantified sentences intended to describe 
the real world. 

If we are to allow our system's domain knowledge 
to specify general statements about the world (i.e., 



-universally quantified sentences) those statements must 
necessarily entail some conclusions which are contrad
icted by reality. Thus, a logically sound inference pro
cedure like resolution or backward chaining through 
horn clauses, will neceuarily violate the non-brittleness 
definition. 

To achieve non-brittle EBL systems the process of 
constructing an explanation must take on more the 
flavor of imposing an interpretation on an example and 
less of theorem proving. The veracity of the explana
tion can no longer guaranteed, nor can the "generaliza
tion" of such an explanation be defined via strict inclu
sions of possible world states. To allow such inferences 
the force of logical entailment invites contradictions. 
It is highly desirable that the EBL process not be truth 
preserving. This statement would surprise many. 
However, the complexity of real-world situations and 
the impossibility of engineering a complete and correct 
domain theory dictates it. 

Unburdened by the thorny crown of truth
preserving inference, EBL systems must substitute 
some other mechanism to take advantage of existing 
background· knowledge. 

Abduction 
The obvious possibility is abductive inference. 

Abduction has long been associated with the notion of 
"explanation". Furthermore, abductive inference, as 
commonly construed, is not sound in the formal logic 
sense. Since explanation-based learning systems must 
support their explanations through some formalism, 
and since EBL systems seem to benefit from some kind 
of unsoundness, abduction may serve well as a formal 
basis for explanation-based learning. 

The standard interpretation of abduction is as an 
inference rule of the form: 

A::::}B 
B 

A 

That is, from knowing an implication and its conse
quent, hypothesize that its antecedent holds. 

A straightforward use of abduction in EBL might 
identify B with the goal concept, A::::} Bas an element 
of the the complete and correct background knowledge, 
and A as the operational sufficient condition. Abduc
tion offers a way to conjecture A as the explanation of 
B. 

While abduction has many desirable properties, I 
believe it is deficient as an underlying formalism for 
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explanation construction in explanation-based learn
ing. While abduction is not truth preserving, it is still 
too strong an inference formalism. The reason can be 
seen as an interaction between the non-brittleness 
definition and the qualification problem. 

Let us consider the source of abduction's unsound
ness. Informally, we can see that the above abduction 
rule suggests that B, which is observed in the training 
example, came about because of A. The rule is unsound 
because there there is the possibility of other implica
tion rules in the system that may have lead to B. Our 
knowledge might, for example, have included the sen
tence C ::::} B. Clearly, then, C is as good an explana
tion for B as A. Without ruling out the possibility of a 
C ::::} B rule being responsible for the truth of B, the 
inference of A from B and A ::::} B is unsound. The 
problem is that there exists enough information in the 
axiom set to make the inference sound. 

A sentence describing the conditions for the sound 
inference of A as the explanation of B is already 
entailed by the background knowledge. We simply 
include sufficient antecedents in the implication to 
insure that no other possible cause of B can apply. For 
example, if C ::::} B and A ::::} B were the only ways to 
mfer B, the resulting entailed sentence would be 
B /\ -.C::::} A. A finite such sentence can be con
structed for any explanation. Thus, the qualification 
problem does not arise and we can be sure that our sys
tem no longer applies to the real world. 

This works because there is a necessary and 
sufficient specification of B entailed by the domain 
theory. The above argument is valid only if we have 
closed the world on our domain theory. If there is no 
way to collect all sentences of the form 'l1 ::::} B, then 
the new sentence cannot be constructed. So perhaps the 
argument is not against abduction so much as against 
closing the world of our domain theory. An unsound 
inference (say abduction) along with a domain theory 
that is never assumed to be .closed, neither runs afoul 
of the qualification problem nor violates the non
brittleness principle. But such a system only 
superficially has the right properties and it has them 
for all the wrong reasons. If a world observation is 
inconsistent with a conclusion of the system, the sys
tem simply takes it back; none of its conclusions are 
particularly believable since it has an unsound 
inferencer. If a world observation is outside the scope 
of its theory it can be blamed on its admittedly incom
plete model. It avoids brittleness and the qualification 
problem by not having many opinions and not believ
ing strongly in the ones it has. 



Plau~ible Inference 
Instead, I believe that some form oC "plausible" 

knowledge and inCerence is needed, which must neces
sarily be rather difi'erent from abduction, at least in its 
normal guise. Semantics will be altered to weaken 
domain theory statement. rather than to compensate 
Cor their inaccuracies through incompleteness and 
inCerential unsoundness. Unlike [Collins86], however, 
the motivation oC this Corm oC plausible inCerence is 
entirely computational adequacy. No psychological 
claims or justifications are being advanced. 

In a theory oC plausible inCerence an explanation is 
an educated, somewhat abstract guess at why the pro
position is likely to be true given what is believed. For 
example, one might plausibly reason that since it is 
autumn in Central Illinois, tomorrow will be a windy 
day. This illustrates the two hallmarks oC our plausi
ble inferences: First, they are not certain. It is entirely 
possible that tomorrow will not, in fact, be windy in 
Central Illinois. Second, plausible inferences are often 
abstract. It is not plausible to conclude that the winds 
will be out of the north northwest at 22 mph. To be 
an acceptable rule the characterization of the wind 
must be much more abstract. 

I propose an approach to plausible inCerence where 
implication has a difi'erent semantics. I will continue to 
write sentences like: 
A=*B 
But by this I mean 
<P/\A=-*Bt\'11 
using the standard semantics for implication. 

There may be conditions under which "A" is 
satisfied but "B" is not true. <P represents a 
specification of the context in which the plausible rule 
is guaranteed. <P specifies the implicit assumptions 
built into the plausible rule "A=* B". '11, on the other 
hand, specifies those things in the world that are 
guaranteed even though there is no explicit way to con
clude them from the plausible implication. 

To be a useful rule to the plausible inference sys
tem, the conditions that make <P false should be, for 
the most part, infrequent or otherwise uninteresting. 

Much of the power of this approach is traceable to 
the fact that no attempt is made to specify the context 
conditions of a domain rule (such as "<P" in the above 
implication), while acknowledging the possibility that 
they may not be met. Such context conditions must 
not be represented or directly reasoned about. 

In this view of pli~usible inference, the requisite 
unsoundness is removed from the inference rule and 
embedded in the world knowledge itself. Thus, modus 
ponens and other sound inference mechanisms can be 
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used. This is, in a sense, the dual of the abduction 
approach in which unsoundness is introduced directly 
by the inference rule. The advantage for EBL is that 
the unsoundness of a conclusion is a function of the 
knowledge used in the explanation which is declara
tively specified in the explanation, while the inference 
rules (modus tolens, resolution, abduction ... ) are impli
cit. Schemata (or macro-operators) generalized from 
explanations can thus be independently evaluated for 
their adequacy in the real world. For some applica
tions, at least, this property supports a kind of conver
gence for the learning that would be difficult or impos
sible using abduction. 

An Example 
This notion of plausible inferencing has been imple

mented in an EBL system that learns to plan in con
tinuous. domains. Its primary domain is that of con
trolling the speed of a single gear automobile by mani
pulating the gas and clutch controls. The domain 
knowledge is in the form oC plausible qualitative pro
portionalities among quantities. For example, there is 
a quantity that represents the current position oC the 
gas control. Call it GAS-PEDAL-POSITION. There 
is another quantity that represents the rate of GAS-
FLOW. One domain theory rule specifies that these 
are qualitatively positively proportional: 

INCREASE(GAS-PEDAL-POSITION, intervaQ =* 
INCREASE(GAS-FLOW, interval) 

and 
DECREASE(GAS-PEDAL-POSITION, intervaQ =* 

DECREASE(GAS-FLOW, interval) 

which means that in some implicit context the fl.ow oC 
fuel can be increased by advancing the throttle. This is 
not always the case - the tank may be empty, the fuel 
line blocked, etc. 

The system is given the goal concept of accelerating 
the car from 0 to 30mph. It allowed to observe a train
ing episode in which an expert solves the problem by 
manipulating various controls (including the air condi
tioner temperature, the throttle, the car radio, and the 
clutch). The system pieces together a plausible expla
nation for the expert's actions from its domain theory. 
Chaining plausible implication rules together yields a 
valid conclusion only when the rules' implicit contexts 
overlap with each other and with the real world situa
tion. This overlap can never be confirmed, but it can 
be denied if a world observation contradicts the conclu
sion. The system first assembles a plausible explana
tion for the car going faster tracing the car's velocity 



through the engine t'pms, gas B.ow, and throttle posi
tion; it does not include radio, a/c, or clutch controls. 
There exist contexts in which this explanation 
corresponds to reality (e.g., a/c oft', radio volume and 
clutch set to median values). However, in the next 
planning problem the system does not stay within this 
context, the conclusion is rejected, and the next most 
plausible explanation is constructed and generalized. 
After two more tries the system constructs an explana
tion that is sufficient to control the car's speed. As it 
happens the working explanation is not completely 
correct either. It implicitly assumes, among other 
things, small accelerations and no hills. However, the 
profile of planning problems given to the system never 
violates these constraints and with experience the sys
tem continues to become more accurate and smooth in 
its velocity changes. See [DeJong89) for details. 

Conclusions 
I suggest that the problem with explanation genera

tion for EBL systems is not with the inferencer but 
with the semantics of the domain knowledge itself. 
Domain rules must not overstate their knowledge with 
regard to the qualification problem. This can be over
come by adopting a plausibility semantics for these 
rules. Each rule is logically valid only within an 
implicit context. Importantly this context can never be 
known, represented, or reasoned about. Conclusions 
inferred from such rules are not "right" or "wrong" but 
rather they have their own derived implicit context 
which any world situation may or may not satisfy. 
Experience and feedback from the world is essential. It 
is only through such world observations that the sys
tem can discover the mismatch to a conclusion's impli
cit context. EBL-acquired schemata provide a con
venient memory hook to store combined 
analytical/ experiential planning knowledge. Finally, 
while the discussion has been couched in terms of EBL 
the plausible inference approach may be useful for 
other aspect of automated reasoning. 
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Introduction 

The use of deduction as a mechanism for generating good 
explanations is appealing. It is truth-preserving and can be 
performed on an example-by-example basis. The problem 
with deduction is the reliance upon a theory, or base of 
laws, from which inferences are made. In many - or, more 
realistically, most - domains, it is not safe to assume that 
such a theory will be perfect. In the explanation-based 
learning (EBL) community, which uses deduction as a· 
basis for its method, this is now being addressed as a major 
problem. (See, for example, [Rajamoney and DeJong 
87] for a discussion of imperfect theory problems in EBL. 
The relationship between EBL and abduction was first 
described in [O'Rork:e 88).) An alternative to deduction is 
to use techniques such as statistical methods that require 
less in the way of built-in application-specific theories. 
These, however, generally require large example bases, 
which are not always readily available. 

In this paper, we take abduction to be inference to the best 
explanation. Given this, we make two claims here. The 
first is that we believe an effective mechanism for 
abduction can be found by combining elements of both 
deduction and induction. Treating inductive methods as a 
necessity stems from the belief that the domain theories 
required for deductive inference will often be imperfect 
There are three major ways in which a theory may be 
faulty: it may be incomplete; it may be incorrect; or it 
might be intractable to use. This paper does not assume 
that the theory used by deductive inference is perfect 
However, it concentrates solely on incomplete theories. 
That is, we assume that correct partial explanations can be 
generated. Although falling back on induction as a 
realistic necessity for completing partial explanations, 
much knowledge can be brought to bear from the partial 
explanations as well as from the deductive process in 
general. We refer to this-as contextual knowledge. Such 
information may be used to provide focus oo · past 
examples in order to form a set from which the kn~ 
missing from a domain theory can be learned anlf the1t 
instantiated to complete a partial explanation. 
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Additionally, it may focus attention away from attributes 
of that learned knowledge in order to make it more 
generally - yet still correctly - applicable later. 

This paper is organized as follows. Section 2 introduces 
different -types of contextual knowledge that might be 
brought to bear in completing partial explanations 
generated by deduction. Section 3 describes a mechanism 
for evaluating the effectiveness of various types of 
contextual knowledge as well as the explanations derived 
using them. In Section 4 we describe work completed to 
date. We conclude with a discussion of our further goals in 
the investigation of context. 

Contextual Knowledge: 
Identification and Application 

Consider explanation construction in the domain of 
network fault diagnosis, specifically an ethernet/token-ring 
network. In this domain, a fault is signalled by the 
inability of one user to reach another connected to the same 
network. The knowledge used by the performance system 
is encoded on a level that enables isolation of a fault to a 
particular segment of a network:, but does not allow deeper 
analysis of the problem. Given an input pair consisting of a 
diagnosis as well as a frame description of the network's 
state- at the time of diagnosis, an explanation might be 
constructed linking _.pwAcular features of the state 
description to the diagnosis, as in Figure 1. The 
explanation is drawn as a proof tree with the diagnosis, or 
goal, at its root. Leaves refer to features of the input sta~e 
description. Abbreviations are used, as the tree shown is 
system output; the tree may be read from the bottom as 
follows: 

If the target of an incomplete communication responds 
in general, while the user initiating the incomplete 
connection cannot seem to reach anything in the 
network, men the problem appears to lie with the 
source of the· incomplete connection (rather than with 
the destination). If the problem appears to lie with the 



source, and the user at. the source is on a token ring 
network, then etc. 

The explanation in Figure 1 is constructed deductively by 
backward chaining from the goal to the input state 
description using a domain theory for network fault 
diagnosis. A problem would occur if any of the 
infonnation in the domain theory were missing. An 
example of this type of problem is shown in Figure 2. In 
order to complete such a partial explanation one might 
apply an inductive method that would consider other 
examples of the concept LOOKS-UKE-SOURCE-PROB in 
order to find those features that correctly imply it 
Alternatively, one can look more closely at the domain 
theory as well as the partial explanation derived. Say this 
domain theory is constructed in such a way that input 
features are never referred to more than one time in any 
given explanation. Then in detennining those that best 
imply the uninferred subgoal, one can ignore all those 
features already used. This is an example of the use of 
contextual knowledge when completing an explanation. In 
general, contextual knowledge includes: 

• Attributes of inputs - for example, features and their 
values, combinations of features, etc. 

• Attributes of both partial, and earlier complete, 
explanations - for example, the specific explanation 
goal, parts of the domain theory used in constructing 
the explanation, structure of the explanation (i.e., shape 
of the proof tree), etc. 

POSS-FIIER-OPTIC-CAILE-PROI 

POSS-Flll.DRE-SRC-111N 

LDOES-l.IEE-SOURCE-PROl-111N 

LDOES-1.IEE-SOUJU:E-PROI 

• Attributes of the domain theory - for example the 
origin of the theory, etc. ' 

• Attributes of the history of the explanation system - for 
example, the number of explanations constructed, the 
content of explanations constructed, relationship of past 
complete explanations to a current one, etc. 

In ge~eral, this information can be used by either focusing 
attention toward or away from specific attributes. 

Criteria for Evaluating 
the Application of Contextual Knowledge 

There are many possible sources of contextual knowledge, 
as described above. Clearly, not all of this is necessarily 
useful. Two potential issues for concern are correct and 
efficient application of contextual knowledge. We ideally 
want to use this additional infonnation to generate correct 
explanations. We also want to do so in an efficient 
maimer. There is no reason to expend resources to use 
knowledge whose application, while not incorrect, does not 
provide any additional infonnation. This section addresses 
the issue of using contextual knowledge appropriately. 

Certain types of infonnation about the structure of 
contextual knowledge can guarantee the correctness of 
applying it. For example, if we know that a domain theory 
is structlll'Cd in such a way that individual input features 
are never used multiple times within a single explanation, 

ISA FAUi.TU TD-LDCll-FIR-JlPl1l-UW-LITl-IN? T 

ISl FlULT15 COND-TD-Grr5-PC-DllT-nIJ.DJIE? T 

ISl FlULT15 TD-USER-SlYS-CAlll'-INITillIZE? T 

ISl FlULT15 TD-111E-USER-IS-ON-A-111N? T 

ISl FlULT15 CONJ>--n;J'-NODE-RESPOHDS-TO-PDlG? T 

ISl FlULT15 TD-W-USER-llElCB-INO'JHER-NEI'? F 

Figure 1: An Explanation for Network 
Fault Diagnosis : 
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POSS-Filll-OP'J'IC-CAILE-PllOI 

POSS-nILllRE-SIC-DN 

LOOES-1.IEE-SOUJlCE-PROl-'IJIN 

? ma:NOWN ? 

ii 

ISA nm.ns TD-UCAJ.-na-JlP'l1l-Ln-LITl-ON'? T' 

ISA nm.ns COND-TD-GEJ'S-PC-DIIT-DILDRE? T 

Ill nm.ns TD-USlll-llYS-Clln'-INITllLIZE? T 

ISA nm.ns TD-1D-USlll-IS-ON-A-11N? T 

Figure 2: A Partial Explanation for 
Network Fault Diagnosis 

then we can prove that those already used in an incomplete 
explanation will not play a role in the part that is missing. 
This, of course, requires that we make assumptions about 
the correctness of the partial explanation derived. In 
general, we cannot expect assumptions of this type to hold 
true. Nor can we expect to have a complete theory of the 
contextual knowledge for any particular domain. 
Therefore, we are concentrating on empirically 
characterizing the performance of various types of 
contextual knowledge. 

In order to clarify the scope of our investigation, we make 
a number of assumptions. The first is that our domain 
theory, represented as a rule base, does not contain any 
incorrect rules, as indicated in the introduction. We also 
assume that the domain theory is tractable. The nature of 
the missing knowledge is that entire rules are missing. In 
our representation, this means that there is either no way to 
deduce a given subgoal with the partial domain theory. or 
that there are disjunctive ways but one or more of the 
disjuncts is missing, thus not covering all the cases in 
which a subgoal should be deducible. We assume that the 
system receives no noisy input We define noisy input to 
be any pair of a goal and an example, where the goal 
would not be deducible from the example using any correct 
theory. 

In order to generally characterize the applicability of 
contextual knowledge, we are investigating a number of 
domains. To date we have looked at network fault 
diagnosis, radio fault diagnosis, and terrorist event news 
stories. For each domain, we begin with a complete, 
correct, and tractable domain theory. We delete rules from 
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the theory in order to answer the following questions: 
1. Can the missing rules be created using contextual 

knowledge in order to complete partial explanations 
that would have been complete had the rules not been 
deleted? In order to evaluate the relative effectiveness 
of various types of context knowledge we must 
evaluate the explanations derived using them. The 
criterion we are using is the closeness of the 
explanation to the one that would have been generated 
deductively had the theory been complete. Closeness 
of the derived explanations to those specified by the 
original theory provides at least one reasonable 
measure of "goodness", assuming that the domain 
theory was designed by an expert 

2. If created rules differ from those deleted, to what 
extent do they differ? Ideally. if efficiency is one of 
our goals, we would like to find not just the correct 
instantiation of a particular rule to complete a partial 
explanation, but its correct· generalization, so that it can 
be used later. That is, we would like to learn rules for 

later use. 

3. What combinations of contextual knowledge appear to · 
lead to better rules most quickly? 

We are perfonning extensive tests varying parameters 
corresponding to the selected domain, the degree of 
completeness of the domain theory, and subsets of the 
various possible contextual types. All tests are being 
performed within a system developed by us, called Gemini. 
Gemini is described in detail in [Danyluk 89a]. 

f. 



Investigation of the EfTectiveness 
of Using Context Information: 

Results to Date 

In this section we discuss some of the results of our 
investigation into the application of contextual knowledge 
to explanation completion. Specifically, we describe some 
of the test nms performed with Gemini. All runs described 
in this section were done in the domains of network fault 
diagnosis and radio fault diagnosis. The complete rule 
base for the network fault diagnosis domain described 
above contains 56 rules. It was encoded from a prototype 
knowledge base that was extracted from experts 
maintaining the CMU campus computer network 
[Eshelman 88). 

The radio fault diagnosis domain is similar to the network 
domain in that the theory is encoded on a level that enables 
isolation of a fault to a particular major radio component, 
but does not allow deeper analysis of the problem. The 
specific radio is a military communications radio. The ·rule 
base, containing 35 rules, was encoded from 
troubleshooting charts published in the operations manual 
for the radio [Radio Manual 86). Input frames for this 
domain contain 21 slots. 

Test I was perfonned in the domain of network fault 
diagnosis. For this test a single rule was removed from the 
complete domain theory. Instantiation of this rule in a 
proof tree would always place it at the leaves. In this test, 
three separate sets of contexts were studied. The first set 
used very little contextual infonnation: to complete the 
explanation it selected common features from past 
examples that were most similar to the example being 
explained. This is essentially an implementation of 
similarity-based learning (SBL). The second set used 
additional context infonnation that removed all features 
already appearing in the partial explanation. The third set 
additionally used a third type of contextual knowledge: it 
removed from consideration input features found 
consistently in examples throughout the history of the 
system's operation. The number of past examples 
considered was varied from 2 to 10. We found that no set 
of context knowled2e produced incorrect results (i.e .• 
either explanations or rules), although the rules created in 
the second and third sets were more general, with the third 
set giving best results. As expected, the results were better 
for each test set as more past examples were considered. 
Results were averaged over ten runs. 

Test II was almost identical to Test I, except for the 
mechanism used to retrieve past examples. A less 
conservative approach was used where examples were 
selected randomly from a set of examples considered to be 
similar to the current one within a specified threshold. 
Results here were generally better than those of Test I for 
all test sets run. Results were averaged over two runs. 
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Test m was yet another variation on Tests I and II but 
here retrieval was done randomly. Results ~ere, 
unde.rstandably, most varied. They ranged from. being 
general and correct to over-general, and therefore 
incorrect 

In Test IV we used the same three context sets as for Test 
I, but instead applied them to a case where the gap in I.he 
partial explanation would be essentially in the middle of a 
proof tree, rather than at its leaves. Again, results were 
good, giving only correct explanations and rules. 
However, the rules were judged to be less generally 
applicable than those found for Test I. 

Test V was performed in the radio fault domain, using the 
same parameters as in Test I. Results here were similar to 
Test I in that better results were obtained when more 
contextual knowledge was used. With as few as three 
examples being retrieved from the system's memory, 
however, the explanations derived using the largest context 
set were identical to those that would have been found by 
the initial complete theory. That is, at that point essentially 
"perfect" explanations and rules were being found. 

The results of the test runs may be summarized briefly as 
follows. Applying explicit contextual knowledge can 
indeed result in better rules (and thus explanations) than 
can be found by an inductive method alone. They act to 
significantly reduce the number of examples that must be 
considered. Furthermore, the selection of examples -
contextual infonnation in its own right - has potentially 
significant impact on the generality of the learned rule. 
Examples too similar to each other leave less room for 
generalization, while selecting examples too different may 
result in incorrect generalization. Finally, although it is 
possible to use contextual infonnation to complete 
explanations with gaps in the middle, the new explanation 
will tend to be less good than when the gap is at the leaves. 
This occurs because less information is available from the 
partial explanation. These, as well as other tests, are 
discussed in detail in [Danyluk 89b]. 

Further Work in 
the Investigation of Context 

In this paper we have discussed the use of contextual 
infonnation to complete partial explanations that have been 
derived deductively. Contextual information is varied, 
however, and is not necessarily correct or useful to 
consider in all cases. We have performed a number of tests 
in order to detennine the relative effectiveness of some 
different types of contextual knowledge. A great deal of 
investigation remains to be done before we have a clear 
understanding of the role each type of knowledge plays. 
As a step toward a more complete characterii.ation of the 
effectiveness of using context knowledge, we are in the 
process of performing more complete and varied tests 

/: 



using Gemini. These include more tests in the domain of 
terrorist event news stories as well as an extended version 
of the radio fault domain. We have recently fonnalized 
our notion of contexts and their use so that their 
combinations may be systematically generated. This will 
assure us greater coverage in testing. 
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Abstract 
This paper analyzes the utility of using incremental 

reasoning to reduce the computational expense of construct
ing plan explanations for explanation-based learning. In 
particular this paper analyzes an approach in which an ini
tial explanation is constructed considering a limited subset 
of all possible operator effects. This limited consideration 
corresponds to a set of non-monotonic persistence simplifi
cations. Later incorrect predictions made by the explana
tions can then be used to direct consideration of previously 
unconsidered operator effects. This paper focusses upon 
comparing this incremental approach to plan explanation to 
the conventional approach of exhaustive reasoning about op
erator effects in three ways: 1) completeness and soundness 
properties; 2) computational complexity analysis; and 3) on
going empirical evaluation. 

Introduction 
In real-world domains, large amounts of knowledge are need
ed to adequately describe world behavior. With the requisite 
complex domain theory, complete reasoning becomes a com
putationally intractable task. Even in game domains, such as 
chess, the combinatorics of brute-force computation are in
tractable [Tadepalli89]. Unfortunately many AI techniques 
such as planning and explanation-based learning [DeJong86, 
Mitchell86] involve construction of explanations, and hence 
reasoning. In Explanation-based Learning, this problem of a 
domain theory with a high computational cost is called the In
tractable Domain Theory Problem [Mitchell86]. 

One method of dealing with this problem is to use simplified 
explanations. In our particular approach [Chien89a], these ex
planations are used to perform explanation-based learning of 
plans to learn a general partially--0rdered plan to achieve a 
goal. In this approach, a system is given weak methods knowl
edge and heuristic simplifying assumptions. When construct
ing plan explanations to perfonn explanation-based learning 
of plans the system uses limited inference and these potentially 
unsound (non-monotonic) simplifications to reduce the com
plexity of the explanation process. This limited inference in
volves checking only a small subset of the possible subplan 
interactions. Because of this limited inference used in explana-
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~on learned plans are not necessarily correct. Since simplifica
t10ns are caused by the limited inference, when a plan 
incorrectly predicts goal acbieverrent it must be due to limited 
inference. When the system observes or experiences a plan 
failure it constructs an explanation for the failure and uses this 
explanation to refine the plan to avoid the failure in the future. 
This refinement represents the checking of an inference path 
missed in the initial analysis due to inference limitations. 

By using feedback from plan execution as direction the sys
tem avoids the computationally intractable blind search for in
teractions inherent in explanation construction in a complex 
domain. Additionally, because the system bas a known in
stance of the failure to explain, the process of determining 
faulty simplifications is facilitated. 

While this apprpacb has a strong intuitive appeal, relatively 
little work has been directed towards concretely justifying the 
benefits of the simplification-based approach. This paper fo
cusses. upon exactly that area, namely formalizing and quanti
fying the strengths and weaknesses of our particular 
simplification-based approach to reasoning. This analysis 
compares the simplification-based approach to that of conven
tional exhaustive reasoning in three ways: 
I.completeness and soundness properties of the two ap

proaches are discussed 
2. computational complexity properties of the two approaches 

are described 
3.an ongoing empirical evaluation of the two approaches is 

outlined. 
The remainder of the paper consists of three main sections. 

In the first section, we describe our simplification-based ap
proach to reasoning, including a short example. Next our sim
plification-based approach to reasoning is compared to 
exhaustive reasoning based upon the three criteria described 
above. Finally, we discuss related work and summarize the re
sults of this paper. 

Overview 
Our incremental approach to explaining plans consists of four 
steps: 
l. lnitjal Learninf: The system learns an initial plan based 

upon a simplified explanation constructed using limited in-



ference. This initial simplified explanation can be learned 
from observation (as described in [Chien89a]) or can be con
structed using a probleorsolving component (as described 
in [Cbien89b]). 

2. fa;peC14tion Yiolatjon: Our approach uses expectation viola
tions [Scbank82J to indicate flawed plan explanations. There 
are two types of expectation violations. Unexpected failures 
can result from problem-solving or observation and occur 
when a plan explanation for goal achievement (either ob
served or constructed by the planner) is applicable but the 
goal is not achieved. An unexpected success occurs when the 
system observes a plan from its plan library and predicts fail
ure (due to an applicable failure explanation attached to the 
plan in the plan library) but observes the plan to succeed. 

3.Explanation of Ezyectation Violation: The system con
structs an explanation of the violated expectation. 

4. Know[edf,e Modification: The system analyzes the explana
tion of the violated expectation to determine which simplifi
cation from the initial explanation is incorrect and corrects 
the plan explanation via a process which removes the simpli
fication. 
This approach to constructing and refming explanations has 

been tested by implementation of a prototype refinement sys
tem This refinement system uses a representation based upon 
situation calculus which allows representation of conditional 
effects of operators similar to [Pednault88]. This system con
structs initial plan explanations considering only a reduced set 
of operator effects when checking for interactions between 
subportions of the plan. Because considering the complete set 
of operator effects is a computationally expensive task, in our 
approach, a system considers subplan interactions as directed 
by expectation violations. For a more detailed description of 
our initial learning and refinement approach see [Chien89a]. 
An Example 
In order to clarify the plan refinement process, a simple exam
ple from a mission planning domain will be described. In this 
example, the system is given the goal of getting a certain 
amount of military force to a goal location (where military 
force present depends upon the number and type of units at the 
location and their readiness and supply state). The system con
structs a plan which uses air transport for a number of ainnobile 
infantry units to move these units to an intennediate airfield 
and then moving them by ground a short distance to the goal lo
cation. A number of support units are also moved entirely by 
ground to the fmal location. The system expects that this plan 
achieves the goal of getting the goal amount of force to the goal 
location. 

This initial plan works for the current problem instance and 
correctly generalizes the plan to many other situations. For ex
ample, the exact airport used for the air transport can be gener
alized within distance constraints of the air transport, the exact 
units are not critical (although the unit types are), and the goal 
location is generalized (although it must be near the airfield and 
the starting locations of the support units). 

However, in this case incomplete checking for interactions 
causes a faulty plan. The system incorrectly believes that this 
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plan will work for any time of day of operation and only re
quires nonnal readiness and supply status for the ainnobile in
fantry. 

The system next attempts to use this plan in a case where the 
ground travel for the airmobile infantry unit takes place at 
night The plan is executed and the infantry reaches the fmal 
location but at a decreased readiness and supply status, which 
results in an inadequate amount of force level at the goal loca
tion. The system queries the simulator to determine the causes 
for this failure. The system explains the failure as follows. The 
airmobile unit suffered a reduction in readiness from prolonged 
air travel. This low readiness was further reduced by a night 
maneuver (the ground movement from the airfield). The night 
maneuver additionally caused greater than expected supply ex
penditures because it took place at night. The factors together 
produced a readiness reduction in the infantry unit sufficient to 
cause the goal to fail. 

This failed plan is then repaired by an analysis of bow the 
causes of the failure could be prevented. First, the system notes 
that the failure depends upon the fact that the ground movement 
occurred at night. In cases where the movement can be sched
uled during daylight hours the failure can be prevented. Sec
ond, the system notes that the failure is a reduction in the 
strength at the fmal location and notes that using a unit with a 
higher intrinsic strength will still allow the goal of having the 
desired strength at the final location to be achieved. Conse
quently the plan is modified to state that when a night ground 
movement is specified by the plan a higher strength unit is re
quired. 

Evaluation 
This section contrasts the incremental planning approach de
scribed in this paper with the more conventional exhaustive 
planning approach. This comparison examines three aspects of 
each approach: 1) soundness/completeness guarantees of each 
approach, 2) computational complexity evaluations of compu
tational cost, and 3) ongoing empirical evaluations of computa
tional cost 
Soundness and Completeness 
In general, planning involves constructing an explanation/ 
proof that a set of actions will achieve a goal state. Because we 
assume a correct domain theory,,soundness of a planning pro
cedure means that any plans constructed using this procedure 
are guaranteed to work. In order to produce a sound explana
tion a system must search all of the potentially relevant rules 
and check them For example, proving that a fact F persists 
from situation A to situation B through the execution of opera" 
tor 01 would involve checking that all of the possible effects of 
01. This would include performing all of the inferences to 
compute the new situation B. For example suppose Fis (alive 
Fred) and 01 is (drive Fred home work). Exhaustively proving 
the persistence of (alive Fred) would require proving that nu
merous unlikely events do not occur. Due to the lack of com
mon sense knowledge, an exhaustive reasoning system would 
have to prove that the car seats would not explode when 
warmed by the body heat of a passenger. And investigating just 
one of the.Se possibilities is computationally quite expensive. 



Consider investigating the exploding car seat possibility. Dis
missing this possibility requires determining the maximwn 
temperature of the seat caused by the body temperature and the 
passenger compartment temperature, the combustion tempera
ture of the seat, and many other factors. In general because the 
exhaustive reasoning approach examines every possible rea
soning path it must follow many potential reasoning paths that 
do not influence the final explanation. However, due to this ex
haustive consideration of possible proofs an exhaustive reason
er can guarantee soundness of its plans. 

Next consider the property of completeness which we de
fme as guaranteeing that if a solution exists the planning proce
dure will fmd it. This means that a procedure attempts every 
method of goal achievement so it considers every spot in the 
search space. Exhaustive reasoning planners [Chapmao87, 
Pednault88J can guarantee completeness in planning as we 
have defined it. 

While conventional exhaustive reasoning planners guaran
tee completeness and correctness our incremental planning ap
proach cannot guarantee soundness of an initial explanation 
because our procedure intentionally does not check all poten
tial inferences. However, it can guarantee convergence upon 
soundness defined as follows: 

Sound Model Convergence (soundness I: As an initial plan is 
refined the predictiveness of the plan will eyentµally become 
exactly that ofthe exhaustive reasonin2 explanation and refine
ment will cease. Because refinements are triggered by incor
rect plan predictions, the refinement process will occur as long 
as the incrementally learned plan makes incorrect predictions 
(i.e. predictions contradicting those made by the exhaustive 
reasoning plan). An initial plan is constructed using the same 
analysis process as the exhaustive reasoning approach except 
that it considers only a subset of the possible operator effects. 
With each refinement it adds for consideration the set of opera
tor effects whose previous omission caused the incorrect pre
dictions. When the set of operator effects considered becomes 
the set of actual relevant operator effects for the plan (i.e. those 
appearing in the exhaustive analysis) the predictions made by 
the plan will be the same as those made by the exhaustively 
derived plan. Because the plan contains a finite number of op
erators and each operator has a finite number of effects the total 
possible set of operator effects for the plan must be finite. Since 
the total possible set of operator effects is an upper bound on the 
set of actually relevant operator effects, the set of actually rele
vant operator effects must also be finite. Because each refine
ment adds a non-empty set of operator effects to the plan 
analysis and the number of operator effects needed for correct 
prediction is finite, eventually the refinements will lead to a 
plan predicting the same as the exhaustive reasoning plan. 

Completeness: for a 2iven class of input examples E. if 
there exists an explanation whose complete model correctly 
predicts 2oal achievement over E. the system will eventually 
2enerate such an e~lanation. This property relies upon the 
sound model convergence property described above. Our plan 
explanation method considers all of the methods of goal estab
lishment (i.e. via direct operator effect, conditional operatoref-
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feet, persistence from initial state). Our method also considers 
all of the operator effects for goal establishment. Hence any ex
planation for goal achievement can be generated in incomplete 
form as an initial explanation. Because there are a fmite mun
ber of operators in the domain theory, a finite number of effects 
per operator, and a finite initial state, there are a fmite number 
of plans to achieve a goal using a plan of a set number of opera
tors. LetN be the number of operators in the shortest plan cor
rectly predicting goal achievement over our set of examples E. 
Generate plans explaining goal achievement in increasing 
number ofoperators. If a plan cannot be refined to correctly ac
count for an example it predicts identical to an exhaustive ex
planation which does not cover E. This will eventually happen 
for any incorrect choice of initial explanation as guaranteed by 
the sound model convergence property. Discard this plan and 
generate the nextlargerplan. Because there are a fmite number 
of plans for goal achievement of size less than or equal to N we 
will eventually anive at the shortest plan which can correctly 
predict for E and refme it to the sound predictiveness. 

As a result of these properties, a system using our refine
ment approach is guaranteed to eventually produce a correct 
solution if one exists. 

Computational Complexity Analysis 

As shown above, our approach guarantees convergence upon 
soundness and completeness. However, because the main mo
tivation for our approach is computational efficiency, a direct 
comparison of the computational expense of incremental rea
soning and exhaustive reasoning is now discussed. 

In general the cost of constructing a plan explanation con
sists of two parts: establishments - ensuring that facts that you 
want true are true at or before the time that you need them to be 
true; and protection -ensuring that facts st.ay true from the time 
they are established until the time they are needed. Because our 
approach performs exhaustive reasoning about establishments 
in order to retain completeness, the computational expense of 
reasoning about establishments is the same in the incremental 
and exhaustive reasoning approaches. 

The cost of checking protections is the cost of checking each 
possible effect of an operator to see if it negatively affects any 
facts pertaining to the successful completion of the plan. These 
facts pertaining to the successful completion of the plan are 
called protected facts and include facts used as preconditions of 
operators (including conditional preconditions for conditional 
effects used in the plan) and facts used to satisfy the goal in the 
fmal state. Any effect that could potentially falsify a protected 
fact requires that the plan be constrained to prevent such a falsi
fication. Because we use a partially-ordered plan representa
tion, each of these checks is a expensive action. This is because 
determining the exact context iu which the operator will be ex
ecuted involves determining the truth value of facts in a partial
ly ordered plan with conditional effects (an NP-hard problem 
[Chapman87]). Let: 
E be the average number of effects per operator 
C be the cost of determining whether an effect e cau occur in 

a particular context of a given plan and if so under exactly 

I: 



what conditions 
P be the number of preconditions per operator 
G be the number of items in the goal criterion 
N be the number of operators in the plan 

The number of protected facts in a plan is proportional to the 
number of preconditions of operators in the plan plus the num
ber of facts in the goal specification or O(NP+G). The number 
of effects to check against these protected facts is O(NE). The 
total cost of checking protections in the exhaustive approach is 
the product of the protected facts and the effects times the cost 
of checking a single protection for a total expense of: 

O(ENC(NP+G)) 
In the worst case C will be the cost of constructing a separate 
explanation for each possible ordering of each possible set of 
operators preceding the operator whose effect we are detennin
ing. This is at worst 0(2NN!) explanations. The cost of con
structing a support explanation for a single ordering would be 
O(KN) where K is the branching factor of the domain theory. Io 
general the numberof possible contexts to investigate would be 
much less than 0(2NN!KN) as this presumes totally unordered 
operators. Additionally, heuristics for preferring certain order
ings [Drurnmood88] offer promise in reducing the number of 
orderings for consideration. 

In contrast, the computational cost of our incremental ap
proach depends upon the actual number of interactions occur
ring in the plan. This is because in our approach a protection is 
not checked until an incorrect plan prediction upon an example 
indicates that a protection violation can actually occur for a giv
en effect-protection pair. Let 
X be the actual number of interactions occurring in the plan. 

Note that X ::; EN(NP+G). 
C'be the cost to determine the exact circumstances under which 

an effect e will occur in a plan given an example of the effect 
occurrence. Note that in most cases C' will be less that C be
cause we can construct an explanation using the particular 
concrete failure example we have observed. If this explana
tion of the effect is of size S, the cost of constructing the ex
planation without guidance (as required by the exhaustive 
approach) is O(ks) where k is the branching factor in the do
main theory. This is because there are S choices ofk alterna
tives in the search space. In contrast, if there are T relatively 
unifonnly spaced intermediate points in the concrete exam
ple to constrain the explanation process the cost of deriving 
the same explanation in the simplify and refine approach is 
O(TkSII')_ 
Thus the computational cost of the simplify and refine ap

proach is: O(XC'). 
However, the simplify and refme approach also requires a 

number of examples to converge upon a correct plan. Because 
we assume that the system has the capability to isolate a faulty 
simplification in a single example the simplify and refine ap
proach will fail on X examples( where again X is the actual 
number of interactions) before convergence upon a correct 
concept. If multiple isolatable failures occur in single exam-
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ples the system can refine all of them and the system will re
quire less than X failures. 

To summarize the computational complexity results, the in
cremental reasoning approach provides significant computa
tional savings over the exhaustive approach if: either 1) the 
actual number of effect-protection interactions is much less 
than the potential number of effect-protection (e.g. X « 
EN(NP+G)) m: 2) the examples of actual interactions provide 
significant guidance through intermediate points in the expla
nation (e.g. C' is significantly less than C). However, these 
savings are contingent upon the ability to use failure instances 
to isolate faulty simplifications. 

Empirical Evaluation (in progress) 

This section describes ongoing empirical evaluation of the 
computational savings from using incremental reasoning in ex
planation construction. This evaluation consists of using a 
planner to solve mechanically generated problems. The first 
set of experiments involves using hand-coded domain tfieories 
operating in: 1) a simple workshop domain involving a drill, 
roller, and oven; and2) a mission planning domain involving 
simple logistics. The second set of experiments involves the 
use of machine-generated domain theories from the parame
ters ofE =#of effects peroperator and PIE= #of preconditions 
per operator effect. These experiments will provide empirical 
figures on: 

The# ofpotentjal interactions jn a plan and the# of actual 
interactions and how this fiirure is affected by E and P/E. We 
have shown analytically that increasing P or E increases both 
the potential and actual# of interactions. Additionally, increas
ing PIE should decrease the percentage of potential interactions 
which tum out to be actual interactions. 

the# of nodes searched in verifyin2 an interaction via the ex -
haustive approach & the# of nodes searched in verifyin2 an in
teraction via the incremental a1212roach. This will empirically 
measure the values of C and C'. 

the# of examples requjred by the jncrernental approach to 
conver2e upon a sound concept and the relation of this to the 
error rate of the concept. 

One goal of these empirical tests is to attempt to derive a 
static test which will indicate the expected performance of an 
our incremental reasoning approach to an arbitrary domain 
theory. This static test would use the E and PIE properties of the 
domain theory to predict the expected costs of applying the in
cremental and exhaustive reasoning approaches. 

Because these tests are not yet complete, we can offer only 
tentative empirical results. These results indicate that increas
ing PIE strongly influences the ratio of potential to actual inter
actions (the ratio X/(EN(NP+G)). These initial empirical 
results also indicate that the number of intermediate guidance 
points gained by the incremental reasoning approach in investi
gating an actual interaction is O(N). This infomliltion is of in
terest because it determines the ratio of C' to C. 



DiscussiQn and Summary 
While there have been a number of problem-solvers based 
upon the approximate and refine approach to probl~solving 
[Gupta87, Hammond86], relatively little work bas addressed 
directly comparing the approximate and refme approach to the 
exhaustive approach. Unruh and Rosenbloom [Unruh89] pres
ent interesting empirical results but do not provide a computa
tional complexity analysis. Tadepalli presents an analysis of 
his partial reasoning approach to constructing explanation for 
EBL [Tadepalli89] and compares it to an Alpha-Beta ap
proach. However, Tadepalli 's approach is designed for a two
player adversarial game situation whereas our work concerns 
single-agent planning. Simmons [Simmons88] also uses an 
approximate reasoning approach to problem solving which he 
calls Generate-test-debug. However, the complexity of cer
tain types of reasoning within Simmons' approach makes a di
rect analysis of GTD versus an exhaustive problem-solver 
difficult. However, Simmons does provide a characterization 
of which domain be feels bis approach will be applicable 
([Simmons88] Section 6.3). Despite this relatively sparse inci
dence of detailed analyses we feel that the type of analysis we 
have performed on our approach to incremental reasoning can 
be performed, in principle, upon the other incremental reason
ing approaches mentioned. 

One interpretation on this work is that it addresses The 
Frame Problem [McCartby69] in that it deals with efficiently 
reasoning about the myriad of possible changes caused by the 
execution of operators in a complex environment. Our ap
proach to incremental reasoning indicates that by using experi
ence to guide the investigation of relevant effects the 
computationally intractable blind search of potentially rele
vant effects can be avoided. 

Conventional exhaustive planners for conditional effects 
are another area of related work. However, these systems must 
use carefully crafted restricted representation languages or 
face serious computational complexity problems. For exam
ple, Pednault's approach [Pednault88] requires that all of the 
conditions under which a fact is known to persist through the 
execution of an operator be explicitly stated (preservation con
ditions). Consider attempting to state all of the conditions un
der which driving your car does not end the fact that the driver 
is alive (and the difficulty of reasoning about the large number 
of disjuncts). These representational restrictions are a major 
factor reducing the usefulness of these systems. 

This paper bas analyzed the computational gains of an incre
mental reasoning approach applied to constructing plan expla
nation. In this incremental reasoning approach the system 
performs limited considerations of operator effects when con
structing a plan explanation. The system uses later incorrect 
predictions by the plan to direct expansion of the initial plan 
into a correct-predicting plan. Our analysis showed that our 
approach guarantees convergence upon a sound plan and com
plete coverage of the solution space. A computational com
plexity analysis then showed the computational gains of the 
incremental reasoning approach to be in cases where: 1) the 
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number of actual interactions is small but the nwnber of poten
tial interactions is large; and 2) the direction given by the incor
rect prediction provides significant guidance in determining 
the cases in which a previously unconsidered effect is relevant 
Finally, we discussed an ongoing empirical evaluation of our 
approach to incremental reasoning which is directed at provid
ing strong infonnation upon the applicability of our approach. 
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Introduction 

We present a general theory of abduction. This theory 
is intended to formalize a notion of abduction within a 
logical framework that is general enough to represent 
the typical uses of abduction in Artificial Intelligence, 
e.g., diagnosis, explanation, plan recognition, and so 
forth. The main features of the theory are: 

l. The generaliza.tion of the logic of abduction to in
corporate default assumptions. 

2. A clear separation of the role of default assump
tions from the abductive assumptions .necessary to 
explain observations. 

3. Analysis of the relation of the theory to nonmono
tonic formalisms that have been ·used for abduc
tion; in particular we show that a subset of the the
ory can be treated as a closure and minimization 
operation, using default logic or circumscription. 
This result shows the relation between consistency 
and abduction-based treatments of diagnostic in
ference. 

4. Implementation of the theory by a Doyle-style 
(justification-based) TMS. The implementation is 

· exact only for a restricted form of the theory. We 
show how the TMS generalizes the ATMS in an 
abductive framework. 

Prediction and Explanation 

The general framework we assume is that there are 
causal relations among events in the world, and we can 
model the world by representing and reasoning about 
these relations. There are two basic types of reasoning 
operations: 

1. Prediction of effects from causes, and 

2. Assumption of causes from effects. 
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For example, in reasoning a.bout action, we may know 
that the sprinklers were turned on last night, and so 
predict that the lawn will be wet in the morning. This 
is the so-called temporal projection problem: how to 
infer the consequences of a set of actions in an initial 
situation. On the other hand, we may observe that the 
lawn is wet, and so infer that the sprinklers were turned 
on. This assumption explains the observation by giving 
a cause for it. 

The prediction of effects from causes often demands 
the use of defaults, since the knowledge of a situation 
may be imperfect. The lawn may not be wet even af
ter the sprinklers are turned on, because they may fail 
to work properly. Through the use of defaults, it is 
possible to state the conditions that normally would be 
caused by an action: the best we can do in complex do
mains. Such defaults are obviously defeasible, because 
if better information becomes available, the initial de
fault conclusions may be retracted. 

The assumption of causes from effects is abductive 
in nature. Roughly speaking, we seek the best expla
nation for the observed effects. Abductive reasoning is 
obviously defeasible: knowing the lawn is wet might be 
sufficient evidence to conclude that the sprinkler was 
on as the best explanation (especially in a dry climate). 
Further knowledge that it had rained would make this 
conclusion unfounded. 

The fact that both prediction of effects and assump
tion of causes are defeasible can lead to a confusion of 
the two in a formal account of reasoning. The approach 
we take in the next section distinguishes them clearly. 

A Logical Theory of Abduction 

The account of abduction that we are interested in has 
been termed "logic-based". That is, the causal rela
tions among events in the world are treated as a theory 
in some logical framework, and observations and as-



sumptions are expressed a.s sentences in the logic. This 
approach is weaker than probabilistic accounts in its 
ability to order the plausibility of assumptions; it is 
stronger in its ability t.o represent complex domains. 

Within the logical approach, there have been many 
different accounts of abduction, some with respect to 
particular domains (e.g., (Reiter, 1987) for diagnosis), 
others of a more general nature (e.g., [Poole, 1988]). 
The account we give here draws on ideas from these, 
and formalizes them in a general way. The abductive 
inference problem is stated with respect to an abductive 
frame giving the appropriate language and background 
theory. 

DEFINITION 1 An abductive frame is a tuple 
{£, I:,A, 0), where 

• C is a logical system. 

• E is a set of sentences of C, the background 
theory. 

• A is the assumption vocabulary. 

• 0 is the observation vocabulary. 

The logical system is arbitrary, as long as it has a 
well-defined notion of consequence, which we express 
by r f-c <P. that is, the sentence <P follows from the set 
of sentences r in the system £. The background theory 
expresses knowledge of the causal relations of the world. 
The observation and assumption vocabularies are used 
to express what we observe about the world and what 
we are willing to assume to explain these observations. 

For example, consider the domain of reasoning about 
action. We'll choose the logical system to be default 
logic. The background theory expresses knowledge of 
the way in which actions change the world. For the 
lawn example, we might have: 

Vt rain(t) ::> wet-lawn(suc(t)) 
Vt rain(t) ::> wet-road(suc(t)) 
'Vt sprinkler(t) ::> wet-lawn(suc(t)) 
'Vt sun(t) ::> dry-road(suc(t)) 

wet-lawn(t): wet-lawn(suc(t))/wet-lawn(suc(t)) 
dry-lawn(t): dry-lawn(suc(t))/dry-lawn(suc(t)) 
wet-road(t): wet-road(suc(t))/wet-road(suc(t)) 
dry-road(t): dry-road(suc(t))/dry-road(suc(t)) 

Vt dry-lawn(t) :: -.wet-l&wn(t) 
Vt dry-road(t):: -.wet-road(t) 

This is a simple situation-calculus theory, with proper
ties like wet-lawn being true in a given situation, and 
events like rain occuring at a given situation and having 
effects in the succeeding' one. The persistence of prop
erties from one situation to the next is represented by 
the default rules. Given an initial situation in which 
the lawn is dry and no events occur, for example, we 
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would conclude that the lawn is still dry in succeeding 
situations. 

In a simple form of temporal projection, the sequence 
of events and (perhaps) some information a.bout the 
initial situation is given. The assumption vocabulary 
consists of properties of the initial situation, since these 
are the causes (a.long with the events) of properties in 
subsequent situations. The ob.servational vocabulary 
contains the properties of situations after the initial one, 
since these are to be explained. 

In a typical case, we might know: 

suc(O) = l,suc(l) = 2 given 

rain(l) given 

dry-roa.d(O) given 

dry-lawn( I) observation 

From this initial information, we can predict from the 
background theory alone that the road will be dry in 
situation 1 and wet iii situation 2. To explain the ob
servation of the lawn being dry in situation 1, we will 
have to assume that it was dry in situation 0. 

We now state the general form of abductive reason
ing. 

DEFINITION 2 Let(£, E, .A, 0) be an abductive frame. 
Let S, the situational facts, be a finite set of sen
tences not containing the vocabulary of 0. Let 0, 
the observations, be a sentence from the vocabulary 
ofO. 

An explanation of the observations is a finite set 
A C A such that 

J. E U S U A f-c 0. 
2. A is consistent with E. 
9. A is minimal. 

A cautious explanation ii the disjunction of all the 
explanations, that is, Vi A;. 

For the ex8J!lple above we have 

S = {rain(l); dry-road(O),suc(O) = 1, suc(l) = 2} 
0 = dry-lawn( 1) 

The only possible explanation is dry-lawn(O), which 
thus must be the cautious explanation. From the 
background theory the conclusions are dry-Jawn(l), 
dry-road(l), wet-road(2), and wet-Jawn(2), and corre
sponding negative literals. 

Remarks. The situational facts are meant to include 
any knowledge of the particular situation at hand that 
does not need to be explained. We could include such 
information as part of the background theory, but it 
is more convenient to separate it, since a.n abductive 
frame will be useful over many particular situations. 



The restrictions on the form of A deserve comment. 
A must be a minimal set of expressions from the as
sumption vocabulary A; by minimal is meant there is 
no other explanation that is a proper s11 bset. The idea 
is that these expressions constitute valid causes of the 
observed effects, and if there is an explanation which 
contains fewer causes, it should be preferred. Other 
than this we say nothing about preferences among mul
tiple explanations. It is obvious that oft en such prefer
ences will be required for reasoning, e.g., we may want 
the most specific explanation, or the most. probable, or 
the X-est, where X is some measure on explanations. 
The preference could be expressed mathematically by 
a partial order on the subsets of A. Since such an or
der will be closely related to the domain of application, 
and we have no way of making any general statements 
about the order, we omit it from further consideration 
here. 

In a given problem domain, we may he interested in 
the best explanation, or the cautious explanation, or 
even any (satisficing) explanation. For example, if we 
want to predict the possible states of the world under a 
series of events, then the cautious explanation might be 
most appropriate. Tasks like plan recognition usually 
require the best explanation. And for some problems, 
like the N-queens problem, there is no ordering of solu
tions, and any one would be acceptable. 

This theory of abduction presented here is a general 
one because the logical system [, and the background 
theory are not restricted to a particular type of first
order theory, as is often done. In particular, we are 
free to use a nonmonotonic logic for C., to express de
fault predictive conclusions in a causal theory, as in the 
example above. 

Implementation using a TMS 

The definition of abduction just given is very general, 
and if it is to be used as the basis for building reasoning 
systems, there must be a proof theory and· implemen
tation. In the general case, the problem of deriving 
explanations is (a) r.e. when [, is first-order, and (b) 
non-r.e. when£ is default logic. For finite propositional 
languages, both these cases are decidable, although the 
complexity may be high. What we will do here is relate 
the abductive theory (in a. restricted propositional case) 
to the ATMS [de Kleer, 1986] and TMS [Doyle, 1979], 
and then show how this relationship can be generalized 
to yield an approximate procedure for the general case. 

From the results of [Reiter and de Kleer, 1987], it 
is easily shown that the ATMS can compute all expla
nations of observations 0 for a background theory and 
situational facts EU S, when 0 is a single (positive) 
atom and I: and S can be expressed as Horn clauses. 
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In fact, even without the restriction to Horn clauses, 
the ATMS could be used to compute explanations, as 
long as a.II the Horn clauses relevant to the observat.ions 
were derived from the background theory and added to 
the ATMS. 

The ATMS is not sufficient when £ is default logic. 1 

Recent work with Ulrich Junker [Junker and Konolige, 
1990) has shown that the TMS can be regarded as ·an 
implementation of default logic. In particular, when 
the first-order part of a default theory is Horn, there is 
a simple mapping to a TMS such that the extensions 
of the default theory correspond to the extensions (ad
missible labelings) of the TMS. We will use this results, 
and show how to generalize the notion of extension of 
a TMS to generate explanations. 

We take the TMS to be the formal version given in 
[Reinfrank and Freitag, 1988]. but extend it by adding a 
special symbol J.. for contradiction. Nodes of the TMS 
are atoms (including J..). A justification is of the form 
(MIN - c), where Mis a set of nodes (the monotonic 
antecedents), N is a set of nodes (the nonmonotonic 
antecedents), and c is a node (the conclusion). A TMS 

· theory is a set of justifications. 
Informally, a node n is provable from a set of nodes 

E in a theory J if there exists a non circular application 
of justifications of J, leading to n, that are valid in E. 
E is grounded if every node in it is provable from it. 
It is closed if it contains the conclusion of every valid 
justification of J. An extension of J is any set that is 
both grounded .and closed. 

From the results of [Junker and Konolige, 1990), we 
can show the following connection between extensions 
of a default theory and a corresponding TMS theory. 

DEFINITION 3 Let W be a set of Horn clauses of 
the form P1 I\ · · · I\ Pn :::> q, where q may be 
J... Let D be a set of defaults a1 I\ · · · f\ am : 
b/c where a;, b, and c are atoms. The de
fault theory {W, D) is called a 'Horn default the
ory. The corresponding TMS theory is given by 
the set of justifications {{P1, .. ·,Pn}l0- q) and 
({01, · · ·, am}lb- c} formed from W and D. 

THEOREM 1 Let (W, D} be a Horn default theory, and 
J the corresponding TMS theory. Let Cn(E) be 
the propositional consequences of the set E. Then 
E is an extension of J if and only if Cn(E) is an 
utension of the default theory (W, D}. 

1There have been recent attempts to generalize the 
ATMS algorithm to the nonmonotonic case [Reinfrank et 
al., 1989, Junker, 1989], but there are still problems; in par
ticular, the language is restricted so that contra.diction is 
excluded. Here we view the TMS a.s a generalization of the 
ATMS, and a.llow contra.diction (or NOGOODS in the ter
minology of [de Kleer, 1986]). 



The TMS, while able to compute default extensions 
for Horn default theories, differs from the ATMS in that 
it does not compute the minimal assumption sets for 
which a given conclusion would hold in the theory. This 
is what we require. We generalize the definition of ex
tension along the lines of [Reinfrank et al., 1989), by 
introducing a set A C A of assumptions that are unjus
tified. E is an A-extension of J if EU A is closed and 
every node of E has a proof in EU A. Note that this 
differs from the previous definition of extension only in 
that the nodes of A do not. need proofs. An explanation 
of a node n in theory J is a minimal assumption set A 
such that n is a member of some A-extension of J. The 
following theorem shows the essential equivalence of ab
ductive theory explanations and TMS explanations. 

THEOREM 2 Let (C, r:, A, 0) be an abductive frame, 
and let I: US be a Horn default theory with J its 
corresponding TMS theory. Then A is an explana
tion for o E ('J if and only if A is an explanation 
for o in J. 

To pursue the example given in the last section: al
though it is not in the form of a Horn default theory, 
minor modifications will make it so. First, replace all 
the univer~ally-quantified statements with their instan
tiations for situations 0, 1, and 2, e.g., 

rain(O) ::> wet-Jawn(l). 

Next, change the equivalences to simple contradiction, 
e.g., 

dry-lawn(O) /\ wet-lawn(O) ::> .L. 

Now the theory is Horn, and can be translated into a 
justification network. The only explanation containing 
dry-lawn(l) has A= {dry-Jawn(O)}, just as for the ab
ductive theory. 

At this point, we have shown that a suitably defined 
TMS is a generalization of the ATMS, allowing non
monotonic justifications. We are left with two tasks: to 
extend the TMS translation to non-Horn default the
ories, and to construct algorithms for computing ex
planations of TMS theories. In [Junker and Konolige, 
1990], the first results on extending the translation to 
less restricted default theories are given; in general the 
translated TMS will be only an approximation of the 
default theory. 

For the second ta.Bk, we can take advantage of a 
large body of research on constraint-satisfaction meth
ods. We have been using a type of forward:.checking 
algorithm. Although in a preliminary stage of analysis, 
this algorithm has proven to be efficient in a variety of 
tasks, especially where only a satisficing explanation is 
necessary. We have concentrated mostly on problems in 
which the constraints are difficult to satisfy, but where 
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the abduction is straightforward. A typical example is 
the N-queens problem. Here the algorithm produces a 
solution to the 10-queens problem every 0.1 seconds, 
and a solution to the 500-queens problem every 12 sec
onds. 

Closure + Minimiza~ion implies 
Abduction 

In this section we prove a result about the relation 
of general abduction to closure and minimization for 
causal theories. There are two distinct logic-based ap
proaches to diagnosis, a type of abductive task using a 
causal theory. In one, the abductive approach, a system 
is diagnosed by finding causes for the observed symp
toms. This type of diagnosis is readily represented in 
the general abduction formalism presented here: the 
background theory contains the relation between causes 
and symptoms, and explanations give the diagnosis of 
observed symptoms. On the other hand, accounts of 
diagnostic reasoning have also been given in terms of 
minimization and logical consistency. For example, in 
[Reiter, 1987], a diagnosis is a minimal set of abnormal
ities that is consistent with the observed behavior of a 
system. 

At first glance, these two approaches seem fundamen
tally different in at least two respects. First, as we 
noted already, the form of inference is distinct, since 
abduction from the background theory E to observa
tions 0 is not the same as the consistency of E and 
0. Second, they encode knowledge of the domain in 
different ways: in the abductive framework, there are 
implications from the causes to the effects, while in the 
consistency-based systems, the most important infor
mation seems to be the implication from observations to 
possible causes. For example, in Reiter's reconstruction 
of the set-covering model of diagnosis [Reiter, 1987], he 
uses axioms of the form: 

OBSERVED(m) :J PRESENT(d1) V · · · V PRESENT(dn), 
··r._ ~ ;~1 

where m is the observed symptom and d; are diseases 
that cause the symptom. 

While these differences exist, from a more abstract 
point of view there is a clear connection between the 
two approaches: they are different implementations of 
causal abduction. To see this, consider a particular el
ement o of the observation vocabulary. In terms of the 
general abduction theory, o will have a set of explana
tions A 1 , A2, · · ·, An relative to a background theory 
E. Let us call these the causes of o. Now suppose we 
add to the background theory a statement 

o ::> Ai v A2 V · · · V An , 



where we understand ea:ch A; to be the conjunction of 
its elements. This expression says that whenever o is 
present, it must have been caused by one of the A;. Let 
I:' be the result of adding to E one such statement for 
each o. As a background theory, E' is much stronger 
than E, since it contains the closure over all possible 
causes for each observation. , 

Now suppose we observe o. This observation is con
sistent with E', and A1 V A2 V · · · V An is true in all 
consistent models of o and E'. If we now try to mini
mize causes, that is, to assert -.A; (again understanding 
A; as a conjunction) for as many causes as possible, we 
will eliminate possible causes from the disjunction, un
til we are left with a single cause. Thus we can perform 
abductive reasoning in the consistency-based approach, 
given closure over causes and minimization of causes. 
We make this more precise with the following theorem. 

THEOREM 3 Let (C, E, A, O} be an abductive frame, 
with C first-order. Construct E' :::> E as described 
above, by adding the closure of all causes for each 
observation. If A is an explanation for the obser
vation sentence 0, then for some maximal subset 
X = {-.aja EA} such that XUE is consistent with 
0, A is a logical consequence of E' U X and 0. 

The converse of this theorem is not true in general, 
since closure and minimization is a more powerful tech
nique than abduction. For example, if a particular ef
fect o is not observed and is not a consequence of the 
background theory, then the consistency-based system 
concludes its negation, while abduction does not. 

The relation of general abduction to consistency
based approaches should now be fairly clear. In the 
latter case, for example with diagnostic systems such as 
Reiter's, or Kautz's theory of plan recognition [Kautz, 
1987), abductive inferences are obtained by adding clo
sure axioms to the background th~oryy and minimiz
ing causes. From among the resulting explanations, 
still further refinements are possible: in Kautz's system 
causes which are minimal in cardinality ar.e preferred; 
this corresponds to choosing a preference criterion on 
explanations in general abduction. 

Whether it is preferable to use one or the other ap
proach depends on the nature of the domain and the 
task. In those cases where reliable closure knowledge is 
not available, the consistency-based approach will force 
conclusions that are incorrect. Where this knowledge 
is available, it can lead to stronger conclusions than 
the abductive approach.· Finally, the general abduction 
framework presented here has the advantage of inte
grating default reasoning about causation; to do the 
same for the consistency-based approach it would be 
necessary to introduce an ordering on defaults and the 
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minimization of causes. 
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1 Introduction 

A number of different frameworks for abductive reason
ing have been recently advanced. These frameworks ap
pear on the surface to be quite different. These different 

approaches depend on, for example, statistical Bayesian 

methods (see Pearl [4] for a survey), minimization of 
abnormality (Reiter [6]), default-based methods (Poole 
[5]), or assumption-based methods, in which unproved 

literals may be added to the theory as assumptions dur

ing the course of a proof (Stickel [9], Hobbs et al. [2]). 

Although these abduction methods are grounded in 
the particular theories on which they are based, e.g., 

probability or default logic, there has not yet been a 
completely satisfactory theory of abduction in general 

that can account for the variety of reasoning and repre

sentation schemes encountered in all of these methods. 

The best effort to date in this direction has been under

taken by Levesque [3], who characterizes an abduction 
problem as finding all sets of explanations o for an ob

servation /3 within a theory T. A proposition o is an ex

planation for /3 if T I= (o ::> /3) and T ~ -.o. Levesque 
alters this definition slightly by the introduction of a 
belief operator to T, which allows him to abstract from 
the particular rules of inference that may be used to 

conclude ¢. He considers two possible definitions of the 

belief operator, each with different algorithms for com

puting assumptions that have different computational 
properties. 

Within any abduetive reasoning method there will 

generally be a set of assumptions, which could be used 

together with the theory to derive the desired eon-
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clusions. Levesque convincingly demonstrates that no 
purely semantic criterion can be used to distinguish 
competing assumptions, and proposes a syntactic met
ric based on the number of literals comprising the syn
tactic representation of the assumptions. This criterion 
will admit a number of competing explanations, each of 

which is minimal according to this criterion. Certainly 
in a large number of practical problems, one is very 

much interested in distinguishing a "best" explanation 
among all those that meet the syntactic minimality cri

terion. Typically such preferences depend on particular 
facts about the domain in question. It would there
fore be desireable if there was some way of expressing 

domain-specific preference information within the the
ory so that syntactically minimal alternatives could be 
compared. 

A number of proposals have been advanced for se

mantic criteria for comparing different sets of assump
tions .. For example, if the theory of a domain can be 

expressed naturally in terms of the normality and ab

normality of the individuals in that domain, as is often 
the case with diagnostic problems, an obvious ~riterion 
to distinguish assumption alternatives is the number of 

abnormal individuals that are implied by the assump
tions. Minimization of abnormality is a very natural · 
preference criterion in such domains. However, not all 

abduction problems are best viewed in terms of abnor
mality of individuals. In fact, in natural-language pro

cessing, minimization strategies are quite inappropri
ate. If a speaker says, "My watch is broken," minimiza

tion strategies would consider why a typical speaker's 

own beli~ might support such an utterance. For exam-



pie, he might believe that the mainspring wa.s broken, or 

perhaps a dozen different equally likely mental states. 

However, the hearer of such an utterance is really trying 
to infer what the speaker intends him to believe. In this 

ca.se the intention is most likely reflected by the con

tent of the utterance itself, i.e., the speaker's watch is 

broken, and not by any more specific cause that would 
support such a belief for the speaker. Stickel (9) pro

poses a different comparison criterion, which he calls 

least specific abduction, which is argued to be more ap

propriate for natural-language interpretation problems. 

An alternative to abnormality-based approaches is 

to encode information about the desirability of differ

ent a.ssumptions in the theory itself. In a Bayesian 

framework, this is expressed by the prior probabilities 
of the causes, and the probabilities of observations given 

causes. Another alternative, proposed by Hobbs et al. 

[2} involves encoding preferences among assumptions as 

weighting factors on antecedent literals of rules. 

In this paper, I propose a model-theoretic account of 

abduction that represents domain-specific preferences 

among assumptions as preferences among the models 

of the theory. This proposal is directed toward the goal 

of developing a theory of abduction which character

izes domain-specific preference information abstractly, 

and which hopefully can be unified at some point with 

model theoretic accounts such as Levesque's. It is work 

in progress, and at this point consists more of definitions 

than theorems, but I believe the proposal is worthy of 

consideration in the search for a unified theoretical ap

proach to abduction. I shall use the weighted abduction 

theory of Hobbs et al. [2} a.s an example of a possible 
computational mechanism to realize this approach. 

2 A Theory of Abduction Based on 
Model Preference 

Shoham [8] introduced the idea of model preference as 

a general way of expressing various forms of nonmono

tonic inference. He postulates a partial preference order 

on the underlying model~ of a theory, and the desired 

conclusions of the theory are those propositions that are 

satisfied in all the maximally preferred models of the 

theory. In contrast with this global notion of preferen

tial entailment, Selman and Kautz [7] introduce a logic 
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they call model preference default logic, in which the 

individual default rules of the theory are interpret~d a.s 

local statements of model preferences. For example, the 
default rule p-> q is interpreted model-theoretically as 

a preference for models that satisfy q among all mod~ls 
that satisfy p. 

If abductive rea.soning is to be done within a the
ory, it is possible to give an interpretation to impli

cations within that theory a.s expressing local prefer
ences among models in a manner similar to Selman 

and Kautz's default rules. For example, if p :) q is 
a rule, and q is an observation, then the fact that p can 

be assumed as an explanation for q suggests an obvi

ous model-preference interpretation of the rule: Among 

models satisfying q, models that satisfy p are "by and 

large" preferred to models satisfying -ip. 

The reason the hedge "by and large" is used in the 

above definition is that it cannot be the ca.se that the 

abductive interpretation of p :) q is that, for all models 

that satisfy q, every .model that satisfies p is preferred 

to every model that satisfies -ip. It may be the case that 

other rules in the theory imply preferences that may be 

consistent with tJ, but inconsistent with p. In general, 

this criterion is too restrictive to permit the existence of 
a consistent model preference ordering for many theo

ries of practical interest. A weaker interpretation of the 

relation between a rule and the model preference or

der is that every model satisfying p is prefered to some 

model satisfying -ip/\q. Adding an assumption to a the

ory restricts the models of the theory. If this restriction 

is such that it rules out some models that are known 

to be inferior to every model of the theory plus the as

sumptions, and the theory plus the assumptions entails 
the observations, theil> the assumptions are a potential 

solution to the abduction problem. A set of assump

tions A1 is preferred to a set of assumptions A2 for a 

given theory T, if every model ofTUA1 is preferred to 

some model ofTUA2. Abduction can thus be regarded 
as a problem of finding a set of assumptions that imply 

a greatest lower bound on the model-preference relation 

among other competing sets of assumptions. 

A further possibility that needs to be considered is 

that, once an assumption set is found, there may exist 

models satisfying sets of assumptions that are inconsis-



tent with the assumption set under consideration, and 

every one of their models are preferred. Interpreted in 

terms of domain specific preferences, this, would be a 

situation in which pis a possible explanation for q, but 

p and r cannot be true simultaneously, and r is almost 

always true. In such a situation, we say that the as

sumption of p is defeated, unless r can be ruled out by 
further preferred assumptions. 

The following is a precise definition of abduction in 
terms of model preference. 

Given a theory T, a total, antireflexive, antisymmet
ric preference relation >- on models of T, and an obser
vation ¢>, an abduction problem consists in deriving a 
set of assumptions A that satisfies the following condi
tions: 

1. Adequacy. TU A f= ¢i 

2. Consistency. TU A IC= ...,q, 

3. Syntactic minimality. If t/; E A then TU A -

{lP}IC=<P 

4. Semantic greatest lower bound. There is no 

assumption set A' such that: 

(a) TU A' is adequate, consistent, and syntacti
cally minimal 

(b) There exists M f= TU A such that for every 

M' F TUA', M' >- M 

5. Defeat condition. There is no set A" such that 

(a) There is some t/; EA such that TUA" f= -,.,p 
and there is some M f= T U A such that for 

every model M" f= TU A", M" >- M. 

(b) Defeat exception. There is no set of as

sumptions A'" such that 

i. if M f= TUA"', then M f= TUA, and 

ii. there exists M" I= TU A" such that for 

every M"' I= TU A"', M 111 >- M". 

The adequacy and consistency requirements of this 

definition should be obvious. Because it may be possi
ble to restrict the models of a theory to a favored subset 

by making assumptions·'that have nothing to do with 
the observation, the syntactic minimality problem im

poses the requirement on the assumption set that every 

assumption must actually contribute to the solution of 
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the problem. The greatest lower bound condition guar
antees that the assumption set that constitutes the so

lution to the problem is one that is preferred to other 
assumption sets, provided that it is not defeated. An 

assumption_.set that is potentially defeated is still ad

missable as a solution, provided that it meets the defeat 

exception condition, i.e., that assumptions can be added 
to the set so that every model is superior to some model 

. of the potentially defeating assumption set. Of course 
this extended assumption set will no longer be syntac
tically minimal, and hence will not be a solution to the 
abduction problem. However, its existence guarantees 
the admissibility of the original assumption set. 

3 An Algorithm for Computing 
Abduction 

Hobbs et al. [2] propose an abduction theory character
ized by horn-clause rules in which antecedent literals are 
associated with weighting factors. I shall refer to such 
a theory as a weighted abduction theory; it provides a 

candidate for a computational realization of a model
preference abduction theory outlined int the previous 

section. A weighted-abduction theory is characterized 
by a set of literals (facts) and a set of rules expressed 

as implications. A general example of such a rule is 

p~l /\ ... /\ p~"' :::> q. 

Each rule is expressed as an implication with a sin
gle consequent literal, and a conjunction of antecedent 

literals Pi, each associated with a weighting factor Wi. 

The goal of an abduction problem is expressed as a con
junction of literals, each of which is associated with an 

assumption cost. When proving a goal q, the abductive 
theorem prover can either assume the goal at the given 

cost, or find a rule whose consequent unifies with q, 

and attempt to prove the antecedent rules' as subgoals. 

The assumption cost of each subgoal is computed by 
multiplying the assumption cost of the goal by the cor
responding weighting factor. Each subgoal can then 

be either assumed at the computed assumption cost, or 
unified with a fact in the database (a "zero cost proof''), 
or unified with a literal that has already been assumed 
(the algorithm only charges once for each assumption 

instance); or another rule may be applied. The best 



solution to the abduction problem is given by the set of 

assumptions that lead to'the lowest cost proof. 

A solution to an abduction problem is admissible 

only when all the assumptions made are consistent with 

each other, and with the initial theory. Therefore, a 

correct algorithm requires a check to filter out poten

tial solutions that rely on inconsistent assumptions. 1 

Another possibility that must be accounted for {and 
which was ignored in Stickel's original formulation) is 
that in the frequent case in which the goal and its nega
tion are both consistent with the theory, it will be possi
ble to prove both the goal and its negation abductively, 

in the worst case by assuming them outright. This ab

duction algorithm guarantees that it is impossible defeat 

a proof by proving the negation of any of its assump

tions at a cost that is cheaper than the cost of the proof 

itself. 

The complete abduction algorithm can be described 

as follows: Given an initial theory T and a goal¢>, gen

erate all possible candidate assumption sets { A1 ... An} 
and sort them in order of increasing cost. Then for each 

successive assumption set A; = {¥11 , ... , l/Jm}, for each 

assumption 1/Ji in A;, attempt to prove -.1/Ji given as

sumptions l/J1, ... , l/Jj-1, l/Ji+1, ... , tPm· If this proof fails 
(or succeeds only by assuming -.i!J;) for each j, then A; 
is the best assumption set. If any -.i!J; is provable with 

zero assumptions, then A; is inconsistent and must be 

rejected. The remaining possibility is that -.1/J; is prov
able by making some assumptions. If the cost of the 

best proof of any -.t/J; is less than the cost of A;, then 

A; is defeated because its assumptions can be defeated 

at a lower cost than they can be assumed, and A; is re

jected in this case as well. Otherwise, A; is contested, 

but not defeated, and we accept it as the best assump

tion set. 

This algorithm can be viewed as computing solutions 

to an abduction problem according to the definition in 

the previous section, if the weighting factors on the lit

erals can be interpreted as constraints on the model-

1 A version of this algorithm has been implemented in the 
TACITUS text understanding system [2]. A version of this 
algorithm tha.t is more fa.thful to the theory presented in this 
pa.per ha.s been employed in pla.n recognition a.pplica.tions 
[l]. 
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preference relation. 

A candidate interpretation of the weighti~i factors in 

terms of model preference relations is that if the weights 

on the antecedent lite~a.ls of~ rule sum to less than one 
' 

then eveff model that satisfies the antecedent is pref-
ered to some model that satisfies the conjunction of 

the negation of the antecedent together with the conse
quent. 

The relative magnitudes of the assumption weight

ings can be viewed as establishing preferences among 
the conclusions of different rules of the theory, provided 
that they obey certain constraints. If a theory contains 
the following two rules: 

per :::> q 
a</3<1, 

rfi :::> q 

it expresses a. preference for models satisfying p over 

those satisfying r among those models that satisfy q. 

Note that if r entails p, then there will be no models 

that satisfy r /\ ....,p, and therefore, the preference rela

tion must be circular. If the abduction algorithm were 

to operate on such a theory, in would incorectly com

pute {p} as the best assumption set, whereas { r} is 

clearly superior by the model preference criterion, be

cause it entails p, therefore excluding every model ex

cluded by assuming p, and other less-preferred models 

as well. In general, weighted abduction theories must 
be constrained so that the assigned weights do not im

ply any circularities in the model-preference relation. 

4 Conclusion 

The idea of characterizing domain-dependent pref

erence among abductive assumptions as preferences 

among models of a theory is worthy, q( further inves

tigation. What remains to be done is a full character

ization of the relationship between weighted abduction 

and model-preference abduction, including a full speci
fication of the relationship between rule weightings and 

model preferences. The incorporation of a belief opera

tor to abstract away from particular rules of inference, 

following Levesque's proposal, is another interesting ex

tension. This could lead to a knowledge-level charac

terization of abduction theories with domain-dependent 

preferences. 
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Introduction 

Many logical formalizations of abductive reasoning 
have been proposed over the last few years. Most of 
these approaches provide meta-level definitions of the 
notion of abductive explanation and introduce (different) 
procedures to compute the causes for a set of events 
(see, for example, [1, 5, 7, 9, 10, 12, 13, 15]). 
We believe that all these approaches are grounded on 
some implicit assumptions on the "abductive meaning" 
of a domain theory and we claim that a very clean 
semantics for abduction can be provided if these assump
tions are made explicit. In this paper we introduce an 
object-level definition of abduction which is proved to be 
equivalent to the other definitions proposed in the litera
ture. The object-level definition allows us to characterize 
abduction in a very simple way and to single out quite 
clearly the relationship between abduction and deduction 
[4]. 

On the Abductive Meaning 
of a (Causal) Theory 

In order to discuss the assumptions which are impli
cit in most of the definitions of abduction, let us first 
introduce a characterization of abductive explanation 
which generalizes in some way those proposed in the 
literature: given a theory T and a formula 'i', an explana
tion for '¥ in T is a set E of formulae such that 
- T u E is consistent, 
- Tu E I-'¥, 
- E has some properties that make it an interesting expla-

nation. Typical properties are non-triviality (i.e. E hL 
'¥) and minimality (i.e •. no subset of E is an explana
tion). 

Let us consider now a causal theory T (we assume 
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that the cause-effect relationship between A and B is 
represented in the theory as the implication "A --+ B"; 
the suitability of implication to model causation is 
beyond the scope of the paper, see [17) for an in-depth 
discussion) and the problem of determining an explana
tion for an atom "q". Suppose that the theory T contains 
the following formulae having "q" as their consequent 

Pt --+ q 
P2--+ q 

Pn--+ q 
(where each Pi is a formula). 

If we consider the "classical" (meta-level) definition of 
abduction, the process to determine the explanations for 
"q" (i.e. to explain why "q" is present) is based on the 
implicit assumption that if "q" is present, then at least 
one of its causes must be present and must be involved 
in the explanation. In particular, since "p1, "1>2", ... , "pn" 
are the only direct causes of "q" in T, then, in order for 
T to explain "q", at least one of them must be present. 

Notice that this assumption does not mean that 
knowledge about "q" must be complete, but simply that 
one is reasoning at best of the given knowledge; i.e. it 
means that abduction is a de(easible form of reasoning 
(see [5, 6] for more commentS). 

If one agrees that the assumption above expresses 
the actual abductive meaning of a domain theory T (we 
shall prove that this is the case, at least as far as the 
definitions of abduction up to our knowledge are con
cerned), an interesting problem is that of looking for a 
syntactic transformation of T that makes such an abduc
tive meaning explicit. Such a transformation, in fact, 
would provide a new semantics for abductive reasoning 
and would allow us to provide a clean definition of the 
notion of abductive explanation. The discussion above 
suggests that the kind of transformation that is needed is 
some form of circumscription (completion) of the 



explainable atoms; we shall elaborate on this in the fol
lowing sections. 

An Object-level Account of Abduction 

In this section we introduce a fonnal object-level 
account of abduction (see also [4] for a more accurate 
discussion). In the following, for the sake of simplicity, 
we shall assume that the domain theory T is a set of pro
positional definite clauses with acyclic dependency graph 
(the extension to the first-order case is straightforward 
and also the extension to more complex clauses requires 
only some more technicalities, see [3]). We shall 
assume, moreover, that: 

the set of predicate symbols in T is partitioned into 
the two disjoint subsets of the abducible symbols 
(those that can be accepted as explanations of 
observed data) and the non-abducible symbols; 

the abducible symbols are exactly those not occur
ring in the head of any clause1• 

Definition 1. An abduction problem is a pair <T,'P> 
where: 
- T (the domain theory) is a set of propositional 

non-atomic definite clauses whose atoms are parti
tioned into the sets of abducible and non
abducible atoms (and whose abducible atoms are 
exactly those not occurring in the head of any 
clause); 

- 'P is a consistent conjunction of literals with no 
occurrence of abducible atoms ('P represents the 
observations). 

Let us consider a set T of definite clauses: the comple
tion [2] of non-abducible atoms in T is a set of 
equivalences {Pi ~ Ei I i•l,..,n }, where Ph··•P11.. are all 
the non-abducible atoms (notice that on the class of 
theories we are considering the completion is equivalent 
to parallel circumscription, see [11]). 

Definition 2. Let P-<T, 'P> be an abduction problem 

1 A complete discussion about the criteria to partition the 
set of symbols into the subsets of abducible and non abducible 
symbols is beyond the seope of the paper. We regard this prob
lem as task or domain dependent (see also the discussion in 
[18]): the criteria to be adopted in causal diagnostic reasoning 
(where the symbols not occµrring in the head of any clause are 
abducible) are discussed in (4, 5]; the criteria to be adopted in 
the planning framework are discussed in [8] while the criteria 
to be adopted in natural language interpretation are discussed in 
(18]. 
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and Tc the completion of non-abducible atoms in T. 
The explanation formula for 'P given T is the most 
specific formula F in the language of abducible 
atoms such that 

Tc, 'PI- F 

where F is more specific than F' ill' I- F -+ F'. 

Notice that the explanation formula characterizes all the 
solutions to an abduction problem P. We are interested 
in the most specific formula since it is the one having 
the highest information content among those that can be 
obtained from the observations 'P. The concept of 
explanation formula is well defined since it can be 
proved from the definition that such a most specific for
mula exists and is unique (up to equivalence). In the fol
lowing we give a procedure to determine it 

Procedure ADDUCE. 
Rewrite 'P using the equivalences in Tc (from left 

to right) 
until a formula F containing only abducible atoms is 

obtained. 

This procedure halts since the dependency graph of T 
does not contain cycles. The follo't;Ving correctness pro-

perty can be proved2: 

Theorem 1. Given an abduction problem P = <T,'P>, 
procedure ABDUCE determines the explanation for
mula F for P. 

We do not argue that procedure ABDUCE is the most 
efficient way to obtain the set of explanations: we regard 
it as a simple specification of such a set 

Some comments on the definitions above are 
worthwhile before moving to discuss the equivalence 
between our definition and the meta-level definitions pro
posed in the literature. First of all, notice that completing 
the non-abducible atoms in the theory T corresponds to 
making explicit the "abductive meaning" (abductive 
power) of T as discussed in the previous section. Such a 
completion should be automatically performed by the 
abductive reasoning system. The designer of a 
knowledge base (theory), however, should have in mind 
that the abductive process is based on a completion 
semantics, i.e. that the abductive process is based on the 
assumption that all the causes of each non-abducible 
atom are present in the model. The fact that abduction is 
based on a completion semantics suggests that: 

2 The complete proof of this and the following theorem 
can be found in [3]. 

!; 



(1) the "plausibility" of an abductive explanation is 
related to the completeness of the model; 

(2) one should represent explicitly the fact that some 
part of the model is incomplete. 

In particular, the fact that not all the causes of an event 
A have been explicitly modeled in a theory T can be 
represented by adding to Ta formula "a-+ A", where a 
is an abducible atom and denotes some unknown or 
unspecified cause of A (see [S, 6] for more comments on 
the possibility of dealing with incomplete models within 
abductive reasoning). 

Abducible atoms are not completed since their 
causes are not modeled in the theory (but this does not 
mean that they are false as their completion would sug
gest). 

Correspondence between 
the Object-level Definition 
and the Meta-level Ones 

Let us consider now the problem of drawing the 
correspondence between the object-level definition of 
abduction presented in the previous section and the clas
sical meta-level definitions. We shall refer, in particular, 
to the following meta-level definition of explanation: 

Definition 3. Let P=<T, 'P> be an abduction problem, 
the set (conjunction) E of abducible atoms is a m
explanation of 'P iJT 
(a) for every positive literal f occurring in 'P, we 

have that T u E I- f 
(b) for every negative literal ...,f occurring in 'P, we 

have that T u E ~f 

The following theorem shows a one to one correspon
dence between m-explanations for an abduction problem 
P and assignments of truth values to abducible atoms 
satisfying the explanation formula for P. 

Theorem 2. Let P-<T,'P> be an abduction problem 
having F as the explanation formula. Let E be a set 
of abducible atoms and v an assignment of truth 
values to the abducible atoms of T such that 

v(a) • true iff a e E 
Then E is an m-explanation for P iff v I= F. 

Theorem 2 is our fun~ental result showing that the 
meta-level definitions of abduction are indeed based on a 
completion semantics and highlighting the bridge 
between abduction and deduction through the completion 
semantics. 
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Each v such that v I= F can be considered as an expla
nation for P (notice that the case where there is no m
explanation to a problem P corresponds to the case 
where the explanation formula is inconsistent). If one 
wants to give a syntactic characterization of the notion of 
object-level explanation, one should consider the disjunc
tive normal forms of the explanation formula, as in the 
following definition. 

Definition 4. Given an abduction problem P, each con
sistent disjunct of any disjunctive normal form of 
the explanation formula for P is an explanation for 
P. 

From the practical point of view, the interesting disjunc
tive normal form is the minimum one (i.e. the one 
obtained by applying the equivalences "X v false = X" 
and "X v (X /\ Y) • X"): it can be proved that there is a 
one-to-one correspondence between the positive parts of 
the disjuncts in the minimum disjunctive normal form of 
the explanation formula and the minimal (wrt set inclu
sion) m-explanations. 

Interestingly the object-level definition we propose 
is more explicit than the meta-level ones in the sense 
that it allows us to obtain explanations in terms of both 
positive and negative pieces of information. Negative 
pieces of information are not provided explicitly by 
meta-level approaches (each m-explanation is a set of 
abducible atoms): given an m-explanation E, negative 
information about an abducible atom a is implicit in 
whether it can be consistently added to E (i.e. whether E 
u {a} is an m-explanation too). However, it could be 
important to distinguish clearly between 

redundant hypotheses, which appear only in non
minirnal m-explanations; 

hypotheses which do not appear in any m
explanation, because they can be explicitly ruled 
out on the basis of a set of observations. 

This may be particularly useful in diagnostic applications 
to determine the corrections (repair or therapy) to be 
applied to the system. 

Ranking Explanations 

Given an abduction problem P, in general there is 
more than one explanation for P. An interesting prob
lem, therefore, is that of defining some criteria to single
out the "best explanation" to a problem or to rank alter
native explanations. Many researchers suggested that 
such a problem is just a matter of pragmatics and that no 
logical criterion can be used to support the choice (see, 



for example, the comments in [13, 16]). Our object level 
characterization, on the other hand, allows us to intro
duce a logical criterion (homogeneous to the definition of 
explanation) to compare alternative explanations and to 
single out the best explanation for a problem P. From 
the intuitive point of view, the criterion we use is the 
one of minimal information: we prefer those explanations 
which involve a minimal number of abducible literals 
(those that are necessary to explain the observations). 
The following definition characterizes which abducible 
atoms are necessarily true or false in a given case. 

Definition 5. An abducible literal L (i.e. an abducible 
atom ex or its negation -.a) is confirmed for an 
abduction problem <T,'l'> having F as the explana
tion formula itr F. ~ L 

This is an expression of the fact that L is necessary in 
order to explain the observations (see [3] and [4] for 
more comments and for the proof of the fact that if L is 
confirmed then L is a necessary assumption in order to 
explain 'I'). The notion of confirmation can be easily 
extended to explanations as follows: 

Definition 6. An explanation E is confirmed iff F ~ E 

This corresponds to the case where the minimum dis
junctive normal form of F has E as the unique disjunct 
(i.e. F = E) and E contains only confirmed abducible 
literals. It should be clear that, given a problem P, there 
is at most one confirmed explanation for P. 

The following relationships can be proved to hold 
(as a corollary of our main theorem): 

given the confirmed explanation, the set of its posi
tive literals is the minimum m-explanation; 

conversely, each atom in the minimum m
explanation is confirmed. 

In case the minimum disjunctive normal form of the 
explanation formula has more than one disjunct, then 
there is a similar correspondence between the positive 
parts of the disjuncts and the minimal (wrt set inclusion) 
m-explanations (as observed also in the previous section 
while commenting definition 4). 

Notice that the correspondence is not exact since 
our object-level framework treats in the same way posi
tive and negative inforQtation about abducible atoms 
while the criterion to prefer a minimal set of abducible 
atoms (intended as abnormality assumptions) is asym
metric. 

In conclusion, it is important to notice that the cri
terion to rank explanations has been logically supported 
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and is homogeneous with the definition of explanation. 

An Example 

Let us consider, as an example, a simple interpreta
tion problem borrowed from [14]. Consider the follow
ing theory Ti: 

Ti • { rtrined last night -. grass is wet, 
rained- last night-. road-is -wet 
sprinkler_was_on-. gras"iji_wet, 
grass is wet -. grass is cold and shiny, 
grass=is=wet-. shoes=a~_wet} -

The atoms rtrined _last_ night and sprinkler_ was_ on., 
which do not appear in the head of any clause, are 
regarded as "abducible" atoms that can be accepted as 
explanations of observed data. 

In this case the completion gives: 

Tf = {grass_is_wet +---+ rained_last_night v 
sprinkler was on, 

grass_ is_ cold_ and _shiny H g;ass _is _wet, 
rtrined last night +---+ road is wet 
shoes_~e_;et +---+ grassjs_w-et} 

Let us consider the following abduction problem: 

Pi = <Ti. '1'1> 
where 'l'i = grass_is_cold_and_shiny /\ 

-.road is wet 

By applying the procedure "ABDUCE", we obtain the 
following explanation formula (and explanation since the 
formula contains only one disjunct): 

Fi• sprinkler_was_on /\ -.rtrined_last_night 

The example points out that our object-level approach 
allows us to obtain explanations in terms of both positive 
and negative pieces of information. Negative explana
tions are not provided explicitly by meta-level 
approaches (some approaches cannot deal at all with 
negative literals in the observation formula) most of 
which would return the explanation: 

Ei • {sprinkler_ was_ on} 

(the negative part of the explanation is implicit in the 
fact that rained_last_night cannot be consistently added 
to any explanation). 

Conclusions 

In this paper we have introduced an object-level 
characterization of abduction and we have proposed a 



completion semantics for abductive reasoning. Such a 
new characterization has several advantages since it 
allows us to make explicit the abductive meaning of a 
theory, to define abduction using very simple forms of 
reasoning, to obtain more explicit (precise) explanations 
and to introduce a logical criterion (homogeneous with 
the definition of explanation) to compare alternative 
explanations. The most interesting consequence of our 
definition, however, is that it highlights the relationship 
between abduction and deduction showing that there is a 
deductive solution to any abductive problem, provided 
that the abductive meaning of the domain theory is made 
explicit. 
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Abduction and Counterfactuals 
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Ginsberg (1986) showed how counterfactual logic could be 
used to model a kind of diagnostic inference known as 
'Diagnosis From First Principles' (see e.g., Genesereth, 
1984; Reiter, 1987). Reiter subsequently showed that 
there was a close correspondence between Ginsberg's 
counterfactual-based method of generating diagnoses and 
his own consistency-based method. However, both 
approaches assume a complete structural description of the 
device under diagnosis, i.e., axioms which describe all 
components of the device and the relationships between 
them. The present paper concentrates on an alternative 
application of counterfactual logic to diagnosis which 
assumes only a causal theory of the domain, i.e., axioms 
which link cause and effect. The logic employed also 
corrects a number of problems with Ginsberg's original 
formulation. The main result is a model-theoretic 
demonstration of how reasoning from effects to causes 
(abduction) can be systematically related to belief revision 
using counterfactuals. Such a comparison requires precise 
definitions of abductive and counterfactual consequence. 
These are derived from the definitions in Jackson (1989a) 
and Jackson (1989b) respectively, each of which are 
primarily semantic accounts based on propositional logic. 

Abductive consequence 

Our notation is as follows. Letters in the range p, q, r, ... 
are variables ranging over atomic formulas (atoms) of the 
propositional calculus (PC), while letters in the range cj>, 
x. 'If, ... are variables ranging ov~r arbitrary PC formulas. 
Upper case letters in the range A, B, C, ... denote sets of 
literals (atoms or their negations), while letters in the 
range S, T, U, ... denote sets of arbitrary formulas. 

Letters in the range, w, v, u range over possible 
worlds. A possible world w will be represented by a set 
of atomic propositions, [p Jo .•. , Pnl; the square brackets 
will serve to distinguish possible worlds from syntactic 
objects, such as sets of atoms. If p is an atom, then w 
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satisfies p, written w I= p, if and only if p e w, and if p e 
w then w I=,,. Such worlds are essentially propositional 
calculus models, as specified in Chang & Keisler (1973, 
Ch. l). Satisfaction conditions for a compound stalcmem 
'I' follow the normal truth-functional recursion on the 
complexity of 'I'· 

We assume the existence of a causal theory, 
consisting of a set of proper axioms constructed over a 
finite alphabet and having the general form: fault 1 " ... " 
faultm :::> symptom1 v ... v symptomn. The axioms are 
used to predict how faults will manifest themselves as 

defective behaviour or unusual instrument readings. 
However, the theory may not be complete, and it will not 
norma11y amount to a full description of the device. We 
also assume the existence of case data, consisting of a 
finite set of literals representing such things as 
measurements, properties of objects (such as components) 
and relationships between them. 

The account of propositional abduction to be found in 
Jackson (1989a) is most easily described in terms of 
model-theoretic forcing (Keisler, 1977). In the 
terminology of forcing, a condition C for a theory T is a 
finite set of literals consistent with T, and C 11-r Q 
denotes that c forces Q. i.e., that r, c 1- Q. where 1-
denotes logical implication. In abduction, we are most 
interested in those minimal conditions which force the 
data to be true, where minimality is defined in tenns of set 
inclusion. 

Pefinition I. An explanation E for a data set D in tenns 
of causal theory T is a condition for T such that E forces 
D, i.e., E 11-r D. Eis minimal iff there is no E' c E such 
that E' 117 D; non-trivial iff E n D = 0, and less trivial 
than E' iff (E n D} c (E' n D}. If E is minimal, and 
less trivial than any other explanation, then E is a 
preferred explanation. II 

!: 



Defmition 1 is consistent with many other definitions 
of the term 'explanation' that can be found in the literature 
(e.g. Reggia, Nau, & Wang, 1984; Cox & 
Pietryzykowslci, 1986). However, the formulation in 
terms of forcing leads naturally to a semantic account of 
abductive inference. In forcing theory, G is a generic set 
for Tiff each C 1: G is a condition for T and G 111 P or G 
11-r-J' for all P. In other words, the deductive closure of 
T u G is a maximal consistent set of PC formulas. As 
such, it characterizes a PC-model, or possible world. 
Given incomplete knowledge, we are most interested in 
sets of such worlds, and we shall call these situations. 
Intuitively, a situation for some theory is the set of all 
PC-models that satisfy the theory. 

Definition 2. A situation, ar. D• for theory T and data D 

is a set of maximal consistent sets 

(Th(T u G) I G is a generic set for T that forces D}. 

aT, D is a set of models ( w 1, ... , wnJ such that wi I= T 

and wi I= D foe all wi e ar D· II , 

We shall instantiate Shoham's (1988) notion of a 
preferential model to capture our preference for minimal, 
non-trivial explanations in the semantics. The following 
definition will be useful for characterizing preferences. 

Definition 3. A set of literals Ew is a canonical 
explanation of a world we ar, D iff Ew satisfies the 
following conditions: 

(i) w I= Ew; 
(ii) Ew 11-r F for all F such that w I= F and F 11-r D. 

The trivial residue, Rw 1: Ew• of w is Ew n D. II 

The canonical explanation of a world is the smallest 
set of assumptions from which all explanations of D 
satisfied by that world follow, while the trivial residue 
represents the unexplained data. 

Definition 4. A preference for. non-trivial, minimal 
explanations of D in terms of a t"heory T is a strict partial 
order, v, on "T. D• such that. for w, w' e "T. D• (w, w') 
e v iff Ew c Ew• and Rw c Rw·· The preferred models 
of ar, D are given by the .set 
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J. 
A world w e "T. D v-satisfies Ew• written w l=v Ew, iff 
w I= Ew and there is now' e ar. D such that w' I= Ew 
and (w', w) e v. · · 

The subsumption relation Ew c Ew· indicates tltat 
the rival world w' overexplains the data explained by w. 
The subsumption relation Rw c Rw· indicates that the 
rival w' underexplains the data, in that its canonical 
explanation is wholly or partly trivial. Finally, we can 
show that all (and only} the preferred explanations are v
satisfiable (see Jackson, 1989a, Theorem 6). 

Theorem I. E is a preferred explanation of D in terms of 
Tiff w 1-y E for some w e ar, D· 

This logistic system has been dubbed PABLO, 
standing for 'Propositional Abductive Logic.' The 
following example will illustrate the method and later 
serve as a basis for comparison with counterfactual logic. 

Example 1. Let our causal theory T be 

(/::J -.r, d ::J .....,,.,f::J-iS, g ::J-iS} 

and let our data set D be 

(-.r,.r}. 

Imagine that the propositional constants in T have 
the following meanings: f = 'flat-battery', r = 'radio 
working', d ='radio disconnected', s ='car starts', and g = 
'the car is out of gas'. Then 

ar, D = (0, ft], [d,J], ff, g], [d, g], [d,f, g]} 

with v-ordering 

ft], [d, g] > [], [d,.f], ff, g], [d,f, g]. 

The preferred models are [fl and [d, g], representing the v
satisfiable explanations VJ and ( d, g}. 

Counterfactual consequence 

The following account assumes a propositional language 
L, defined over a finite alphabet A. We can construct z1A1 
interpretations over this alphabet. and consider each as a 
possible world. Let this set of interpretations be W. A 
theory S c L describes a situation, W s e 2 W. Thus W s 
c W is the set containing just those possible worlds in W 
which satisfy S. 



The semantics that we shall give for counterfactuals 
of the form 'I' > 41 with respect to a theory S depends 
upon a very simple ide.a. We consider 'ljf: 2W-+ 2W as a 
revision function that we can apply to S to return those 
worlds where 'I' holds which are close, or most similar, to 
some world in W S· 'fl > 41 is then a consequence of S just 
in case 4> holds in each of these worlds. 

Definition 5. If B !:: A, then A8 = (2B, c) is a world 

lauicefor B. II 

Definition 6. If A9 = c2B, c) and w. v ~ 2B, then v E 

Vis a world close to we W, written v=w, iff 

Bv,w v (3u e 2B)(u e V /\ Bu,w" v ==u), 

where Bv,w iff glb(v, w) or lub(v, w), 

glb(v, w) iff {v' e 2B Iv c v' cw} = 0, and 
lub(v,w)iff {v'e 2B1wcv'cv} =0. 

The set of all worlds in V that are close to worlds in W, 
written V<=W, is given by 

V<=W = {v e VI (3w e W)v•w}. II 

We need to complicate the picture slightly by 
introducing 'bad worlds', i.e., worlds which do not satisfy 
certain propositions that we shall deem to be protected 
from revision. 

Definition 7. If B ~A, and X c 2B, then A9,x = (2B, 
c, X) is a world lattice for B w.r.t. 'bad worlds' X. II 

Definition 8. If A8 ,x = (2B, c, X) and W, V !:: 2B, then 
v e V is among the closest worlds to w e W avoiding 
worlds in X, written v=xw. iff 

(Bv w /\ v e (V - X)) v . 
[-.(3v' E (V -X))(Bv',w) /\ 

(3u e 28 )(u e (V-X)" Bu,w" v==xu)]. 

The set of closest worlds in V to W avoiding X, written 
V<=xW. is given by {11 e VI (3w e W)v •xw}. II 

Definition 9. If S* c S c L, where S* is a set of 
protected propositions,. 'I' e L, B ~A contains those 
members of the alphabet of L occurring in either S or 'fl, 
and ABX is a world lattice for B w.r.t. X = 2B - W S*• 
then the semantic revision of S by 'If w.r.t. X, written 
'ljl(Ws). is given as follows 
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\jl(Ws)= {W1111}nW5,ifW1111}nWs ;e0 
else Wc111 }<=xWs. II 

Definition 10. 'If > 41 is a counterfactual consequence of S 
iff w I= • for all w E 'lj/(W s>· II 

This construction has been dubbed BERYL: a failed 
acronym for 'Belief Revision Logic.' 

It is easy to demonstrate the following result, which 
does not hold for Ginsberg's construction (see Jackson, 
1989b, Theorem 1). 

Theorem 2. If S and T are logically equivalent 
propositional theories and S* and T* are equivalent, then 
for all propositions 'If and 41, 'I' > 41 is a counterfactual 
consequence of S iff 'I'> 4> is a counterfactual consequence 
of T. 

Syntax independence is obviously a good property for 
a belief revision function to possess. Gllrdenfors (1988) 
identifies a number of other criteria for the classification 
of belief revision functions, two of which are the 
preservation criterion (K*P) and the monotonicity 
criterion (K*M). The former states that if cp follows from 
S and 'I' is consistent with S, then 4> will still follow 
from the revision of S by 'If. The latter states that if S 
and Tare theories and T contains S, then the revision of T 
will contain the revision of S. We can show that the 
revisions sanctioned by BERYL are always preservative 
but not always monotonic. 

Theorem 3. BERYL satisfies the preservation criterion: 
If S l;e -.\jl and S I= cj>, then 'I' > cj>. 

This result holds for Ginsberg's PW A but does not 
hold for Winslett's (1988) 'Possible Models Approach' to 
belief revision, known as PMA (see Jackson, 1989b, 
Theorems 3 and 4). This distinction is important if one 
wishes to extend a belief revision system to incoporate a 
probabilistic model, since Bayes' Theorem endorses the 
preservation criterion. Thus the revision functions of 
BERYL and PW A are amenable to a Bayesian extension, 
while that of PMA is not. 

BERYL is a genuinely nonmonotonic logic because, 
unlike PMA, it does not satisfy the monotonicity 
criterion (see Jackson, 1989b, Theorem 5). 

Theorem 4. BERYL does not satisfy the monotonicity 
criterion: If WT!:: w5, then 'lj/(Wr) !:: v(Ws). 

i' 



FiKure I. Part of the world lattice for Example 2. Dark shading indicates models of S; light shading 
indicates models of (--.r" -,s); and dark borders indicate models of (--.r" -,s)(Ws). 

Finally, we redo Example l, using counterfactual 
logic to perform the causal reasoning required for 
diagnosis. The fundamental operation involved is belief 
revision. We revise our original theory that the device is 
fault-free by the data to obtain a set of models representing 
diagnoses. 

Example 2. First we transform the causal theory with the 
assumption that we know all the possible causes of the 
symptoms -.rand -.s. We write the transformed theory, 
S*, as 

(-,r::Jfv d, -,s ::Jfv g), 

and protect every proposition in it Then we augment S* 
by assuming that all is well with the device. Thus we add 
the negation of all literals denoting faults or symptoms to 
derive 

S = T' u (r, s,-.d, -{.-.g). 

These literals are not protected, however. We revise S by 
the data (-.r" -.s), as follows. 

(--.r" -.s)(Ws) = ([fl, [d, g]). 

The relevant fragment of the world lattice for this 
problem is reproduced in Figure 1. [] is the closest world 
to [r, s J in W {..,, ,... -.s l , b~~ this world does not satisfy the 

protected propositions, s•. The closest worlds to [] in 
W {-,r,... -.sJ that satisfy S* are [fJ and [d, g]. Note that 
these are precisely the preferred models of PABLO (see 
Example 1). 
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The procedure whereby we transform the causal theory 
T to the augmented theory T' resembles that outlined in 
Reiter (1987, 7.1) for effecting a 'logical reconstruction' of 
the GSC (Generalized Set Covering) model of Reggia, 
Nau, & Wang (1984). The crucial thing to notice is that 
this transformation amounts to the assumption that all the 
causes of symptoms are known. Suppose that we don't 
make this assumption, and attempt to revise the 
augmentation of the untransformed theory 

S' =Tu (r, s,-.d,-{. -.g) 

by (-,r" -.s). Then the only model of (-.r" -.s)(Ws·) is 
[], and the minimum revision of our beliefs is to atuibute 
the symptoms to causes unknown! 

Conclusions & related work 

In the work of Reiter and Ginsberg, we saw that there was 
a connection between diagnosis from first principles using 
a complete structural description and counterfactual 
reasoning. Essentially, Reiter showed that you could do 
the former in terms of the latter. The present work 
establishes a connection between abductive reasoning from 
an incomplete causal theory and counterfactual logic. 
Again we show that the former can be done in terms of 
the latter, but that a particular kind of completeness 
assumption is required in the latter (counterfactual) 
treatment which is not present in the former (abductive) 
case. Further integration of abductive and counterfactual 
styles of reasoning could perhaps be achieved by a closer 
study of the modal foundations of conditional logic 
(Chellas. 1975; Segerberg, 1989). 

I; 



Our counterfactual approach to causal reasoning does 
not require that propositions be ordered in any way, unlike 
Simon & Rescher's (1968) account, for example. 
However, this is not to say that the introduction of such 
orderings would not be beneficial for certain applications. 
The introduction of probabilities may also be highly 
desirable, e.g., along the lines explored in Gardenfors 
(1988). 
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Abstract 

Reiter and DeK!eer (1987) give a precise def
inition of what constitutes an explanation as 
computed by an ATMS. We analyze the inher
ent computational complexity of finding such 
explanations. 

When our underlying logical theory consists 
of arbitrary clauses, the task of finding any 
non-trivial explanation is easily shown to be 
NP-hard. However, when the theory contains 
only Horn clauses, we show that some non
trivial explanation can be found in time poly
nomial in the size of the theory, but that find
ing certain other explanations is NP-hard. We 
also show that the use of an assumption set in 
the ATMS renders the generation of an ex
planation computationally intractable. These 
results hold even for acyclic Horn theories. 

Our analysis suggests that when searching for 
certain explanations, the method of simply 
listing all of them, as employed in the ATMS, 
cannot be improved upon. Moreover, these 
results show that there may not exist ~ ap
propriate restriction on the general fo~m of 
the underlying theory to allow for efficient ab
duction. What seems to be required is some 
notion of an "approximate" explanation or a 
well-defined notion of incomplete abduction. 

1 Introduction 

Formal characterizations of abduction, i.e., the task of 
finding explanations, can be divided into two camps: the 
set-based approaches (e.g., Reggia 1983) and the logic
based ones {e.g., Poole 1988). Here we will only be con
cerned with the latter. In particular, we will consider 
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the type of explanation as computed by an ATMS (de 
Kleer 1986a; Reiter and de Kleer 1987). 1 

An ATMS computes all possible explanations for a 
given query. Since there may exist exponentially many 
such explanations, the worst-case complexity of the 
ATMS task is clearly exponential. However, there are 
situations in which one is interested in finding only one 
explanation or possibly a few of them. We will explore 
the complexity of this task. 

2 Definitions 

In this section, we will repeat the main definitions of 
the logical reconstruction of the ATMS as given by Re
iter and de Kleer (1987). We will assume a standard 
propositional language .C. We will use p, q, r, and s 
(possibly with subscripts) to denote propositional let
ters. A clause is a disjunction of literals (a literal is 
either a propositional letter, called a positive literal, or 
its negation; called a negative literal). We will represent 
a clause by the set of literals contained in the clause. 
A clause is Horn if and only if it contains at most one 
positive literal. A set of Horn clauses will be called a 
Horn theory. c 

Central to Reiter and de Kleer'a analysis is the notion 
of prime implicant: 

Definition: Prime Implicant 
A prime implicant of a set of clauses E is a clause C such 
that: 

l. E F C, and 

2. For no proper subset C' of C does E F C'. 

Example: Let E be the set { {p}, { q}, {p, r, s}}. The 
prime implicants of E are {p}, {q}, {r, s}, {r, r}, and 
{s,i}. 

1The various forms of logic-based a.bduction are closely 
rela.ted (Levesque 1989). 



Definition: Formal Specification of the ATMS 
Given a set of Hom clauses E and a letter p, the ATMS 
procedure computes the following set:2 

.A[E,p] = {(q1 I\ ... I\ f1) I k;:: 0 and {q1, ... , q,1:,p} 
is a prime implicant of E} 

Since E together with any element from .A logically im
plies p, the elements of .A are called explanations for p 
given E. 

Example: Let E again be the set {{p}, { q}, {p, r, s}}. 
With query s the ATMS returns the following explana
tions for s: r and s. We call s the trivial explanation 
for s; our interest lies of course in the other, non-trivial 
explanation. 

3 Computational Complexity 

Given a query p, the ATMS returns the set .A[E, p) of 
all explanations for p. It is well-known that even when 
E contains only Horn clauses, there may exist exponen
tially many of such explanations (McAllester 1985; de 
Kleer 1986b). And thus, the worst case complexity of 
the ATMS is exponential. However, this leaves open the 
question of what the complexity of finding some expla
nation is. In particular, what is the complexity of finding 
a non-trivial one? 

In case E contains arbitrary clauses, finding any non
trivial explanation is easily shown to be NP-hard.3 How
ever, the following theorem shows that when E is Horn, 
a non-trivial explanation (if one exists) can be computed 
efficiently. 

Theorem 1 Given a set of Horn clauses E and a let
ter p, a non-trivial explanation for p can be computed 
in time O(kn), where k is the number of propositional 
letters and n is the number of occurrences of literals in 
E. 

Here we only give an outline of the algorithm. Consider 
a Horn clause in E of the following form: {q1, .•. , q,1:,p} 

2 De Kleer identifies & subeet A of the set P of proposi
tional letters in .E, and requires that each element in .A[!:, p] 
contains only elements from A. For.now, we will assume that 
A = P. This does not a.ired the notion of explanation. We 
will retum to this issue later on. 

3 We haven't actually defined the notion of explanation 
given a non-Horn theory. However, the definition follows 
from a straightforward generalization of the ATMS, in which 
we simply allow arbitrary cla11.1es in E. Since non-trivial 
explanations can only exist when Eis consistent, satisfiability 
testing of CNF formulas can be reduced to the problem of 
finding a non-trivial explanation. 
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with k ;:: 0 (if no such clause exists, return "no non
trivial explanation"). Now, clearly a = (qi I\ ... A q,1:) 
with E implies p. Subsequently, try removing a letter 
from a while ensuring that the remaining conjunction 
together with E.. implies p (testing can be done in lin
ear time, using the procedure by Dowling and Gallier 
(1984)). Repeat this process until no more letters can 
be removed. H the remaining conjunction is non-empty 
and combined with E is consistent, retum that one; oth
erwise consider another clause containing p and repeat 
the above procedure. When all clauses containing p have 
been explore and no explanation is found, return "no 
non-trivial explanation." 

From the algorithm, it is clear that we find only cer
tain, very particular explanations - which ones will 
strongly depend on the particular form in which the 
background knowledge E is written down. This raises 
the question whether there is an efficient procedure to 
generate other explanations. In particular, suppose one 
is interested in only those explanations for p that con
tain a given set of letters S, can one efficiently find such 
explanations? The set S could be used, for example, to 
identify components that have a high failure rate when 
doing circuit diagnosis. We will term this form of rea-
soning goal-directed abduction. · 

Note that the notion of goal-directed abduction is es
pecially relevant in light of the fact that there are often 
exponentially many explanations; simply listing them all 
would be prohibitive. One therefore has to be selective 
in generating explanations. Goal-directed abduction al
lows one to consider only certain subsets of explanations 
that are of particular interest.4 But what is the compu
tational cost of such reasoning? 

Unfortunately, the following theorem shows that there 
is no efficient algorithm for goal-directed abduction. 

Theorem 2 Gi~~n· a set of Horn clauses ~. a letter p, 
and a set of letters s, the problem of generating an expla
nation for p th.at contains the letters from Sis NP-hard. 

The proof of this theorem is based on a reduction from 
the NP-complete decision problem "path with forbidden 
pairs" defined by Gabow, Maheshwari, and Osterweil 
(1976) (see also Garey and Johnson 1979). We will give 
the details of this reduction in the full paper. 

Intuitively speaking, theorem 2 shows that certain ex
planations will be hard to find, even if our background 
theory E is Horn. This result also holds when S contains 

'For IL. related approach, see De Kleer and Williams 
(1989). 
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only a single letter and when E consists of an acyclic 
Horn. theory. 5 

Finally, we consider the in:ftu~ce of the use of an as
sumption set in the ATMS. An assumption set A is a 
distinguished subset of the propositional letters in E. 
Given a query p, the ATMS will generate only explana
tions that contain letters from among those in A. Note 
that the assumption set again allows one to select a cer
tain subset of all possible explanations. An assumption 
may represent a hypothesis that one is willing to consider 
as part of an explanation of the query. 6 The following 
theorem shows that the use of such an assumption set 
dramatically increases the complexity of finding a non
trivial explanation (compare with theorem 1): 

Theorem 3 Given a set of Horn clauses E, a letter p, 

and a set of assumptions A ~ P, finding a non-trivial 
explanation for p with letters among A is NP-hard. 

The proof of this theorem is based on a modification of 
the reduction used in the proof of theorem 2 (details will 
be given in the full version of the paper). 

This theorem shows that apart from the fact that the 
ATMS (with A ~ P) may have to list an exponential 
number of explanations, merely finding one of them may 
require exponential time. 

Our reductions are based on a theory with exponen
tially many prime implicants for the query p. Therefore, 
our analysis does not give us the complexity of gener
ating explanations given a background theory that has 
only polynomially many prime implicants containing p. 
Since such theories may have practical significance, we 
are currently investigating the complexity of such theo
ries. 

4 Conclusions 

We have shown that given a Hom theory and a letter 
p, some non-trivial explanation for p can be· computed 
in polynomial time. However, goal-dir~ted abduction 
or the use of an assumption set renders the problem of 
computing an explanation intractable, even for acyclic 

5 Given a Horn theory E, let G be a directed graph con
taining a vertex for each letter in E and an edge from any 
vertex corresponding to a letter on the left-hand side of a 
Horn rule to the vertex corresponding to the letter on the 
right hand-side of that rule. A Horn theory is acyclic if and 
only if the associated graph G is a.cyclic. 

8 This way of selecting certain explanations is closely 
related, but not identical, to the notion of goal-directed 
abduction. 
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Hom theories. Thus, the exponential worst-case com
plexity of the ATMS is not just a consequence of the fact 
that the ATMS may have to list an exponential number 
of explanations; even if we insist only on the generation 
of one or a few explanations that contain letters from 
the given assumption set, the task remains inherently 
intractable. Thus, it appears unlikely that the efficiency 
of the ATMS algorithm can be significantly improved. 

Our results show that abduction is inherently hard. 
In fact, there may not exist appropriate restrictions on 
the general form of the underlying theory to allow for 
efficient abduction. This situation should be contrasted 
with that for deductive and default reasoning: there ex
ists a linear time procedure for dealing with proposi
tional Horn theories (Dowling and Gallier 1984); and 
there are polynomial algorithms for dealing with certain 
acyclic default theories (Selman and Kautz 1988; K~utz 
and Selman 1989). What seems to be required is some 

. notion of an "approximate" explanation or a well-defined 
notion of incomplete abduction (a proposal for the latter 
is given in Levesque 1989). 
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Introduction 
We have formally analyzed several classes of abduction 
problems, which fall into the following three categories: 
(1) intractable (NP-hard) because of combinatorial in
teractions among hypotheses; (2) "trivially" tractable 
because a polynomial hypothesis space is guaranteed; 
or (3) tractable by hypothesis assembly (Josephson 
et al., 1987) within a "nontrivial" hypothesis space. 
While our analysis does not exhaust all possible classes 
of abduction problems, it strongly suggests that effi
cient and effective abduction in nontrivial domains is 
possible only by satisfying the constraints required for 
hypothesis assembly .. 

In this extended abstract, we describe our model of 
abduction and the above classes of problems. Consid
erably more detail and the historical progression of our 
analysis can be found in Allemang et al. (1987) and 
Bylander et al. (1989a; 1989b). 

The Model 
Our model of abduction characterizes the abductive 
task as finding the most plausible explanation of a set of 
data. We use the following notational conventions and 
definitions. d will stand for a datum, e.g., a symptom. 
D will stand for a set of data. h will stand for an indi
vidual hypothesis, e.g., a hypothesized disease. H will 
stand for a set of hypotheses, which can itself be con
sidered a composite hypothesis, e.g., an hypothesized 
set of diseases. 

An abduction problem is a tuple (Da11, Hall, e, pl), 
where: 

Dau is a finite set of all the data to be explained, 

Hall is a finite set ofi!-11 the individual hypotheses, 

e is a map from subsets of Hau to subsets of Dau 
(H explains e(H)), and 

pl is a map from subsets of Hau to a partially or
dered set (H has plausibility pl(H)). 
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We require that pl satisfies a weak version of Occam's 
Razor: 

'r/H, H' E Ha11(H ~ H' - pl(H) 2:: pl(H')) 

That is, a composite hypothesis cannot be more plau
sible than any of its subsets. 

H is complete iff: 

e(H) =Dau 

That is, H explains all the data. 
H is parsimonious iff: 

~H' C H(e(H) ~ e(H')) 

That is, no proper subset of H explains what H does. 
H is an explanation iff 

complete(H) /\ parsimonious(H) 

That is, H explains all the data and has no superfluous 
elements. 

H is a best e%planation iff: 

explanation(H) /\ 
~H' ~Hall (explanation(H') /\p/(H') > pl(H)) 

In other words, no other explanation has a higher plau
sibility than H. Because the range of pl is permitted 
to be a partial ordering, there might be several "best 
explanations." 

Our model leaves e and pl virtually unconstrained. 
We exploit this freedom below by defining and analyz
ing natural constraints one and pl without considering 
the representations-logical, causal, or probabilistic
underlying the computation of e and pl. 

We do assume, though, the tractability of e and pl, 
as well as an "inverse" function, denoted as e- 1 , from 
Dall to subsets of Ha11, defined as: 

e- 1(d) ={hi 3H C Hau(d ¢ e(H) /\ d E e(HU{h})) 

That is, e-1 (d) is the set of individual hypotheses that 
can contribute to explaining d. We denote the time 



complexity of e, e- 1 , and pl with respect to the size 
of an abduction problem as Ce, Ce-1 1 C,,1, respectively. 
These functions are not necessarily tractable (Pearl, 
1987; Reiter, 1987), but making the assumptions sim
plifies our analysis. 

These definitions and 888umptions simplify several 
aspects of abduction. For example, we define composite 
hypotheses as conjunctions of individual hypotheses. In 
reality, the relationships between the parts of an abduc
tive answer can be much more complex, both logically 
and causally. Despite this and other simplifications, 
our analysis provides powerful insights concerning the 
computational complexity of abduction. 

Using our model of abduction, we discuss, in or
der, trivial classes of abduction problems, intractable 
classes, and tractable, but nontrivial, classes. 

The Trivial 
A trivial class of abduction problems is when some 
constraint guarantees a polynomial hypothesis space. 
There are several ways this can occur. 

The single fault constraint. If the individual hypothe
ses are mutually exclusive, then no multi-part hypothe
ses need to be considered. More generally, if the size of 
composite hypotheses is limited by a constant k, then 
there are 0( nk) composite hypotheses. 

The rule-out constraint. Let pl0 be the lowest possi
ble plausibility value. Let H = {hi pl(h) = plo}, i.e., 
His the set of individual hypotheses that are ruled out 
from consideration in any composite hypothesis. If all 
but O(log n) individual hypotheses are ruled out, then 
only O(n) composite hypotheses need to be considered. 

The pathognomonic constraint. A datum might have 
only one individual hypothesis that can explain it, i.e., 
the datum is pathognomonic for that hypothesis. Let 
H, ={hi 3d E Dall (e-1(d) = {h})}. That is, His the 
set of hypotheses that are indicated by pathognomonic 
data. If e(H) =Dall, then His the only explanation. 
More generally, if only O(log n) individual hypotheses 
can contribute to explaining the remaining data Dall\ 
e(H), then only O(n) composite hypotheses need to be 
considered (assuming no cancellation effects). 

The pathognomonic-after-rule-otd constraint. A da
tum might have only one plausiOle individual hypoth
esis that can explain it, i.e., the other individual hy
potheses explaining the datum are ruled out. The same 
analysis as in the previous paragraph applies if only 
non-ruled-out individual hypotheses are considered. 

These constraints trivialize complexity analysis be
cause exhaustive search over the possible composite hy
potheses becomes a tractable strategy, hence the label 
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"trivial." Trivial does not imply unimportant, though. 
To the contrary, knowledge engineering of abdu<:tive 
systems should try to satisfy, if possible, the above con
straints because they guarantee efficient and effective 
abduction. However, for complex domains, it is un
likely that such knowledge can be engineered. 

The Intractable 
First, we shall consider different constraints on e, and 
then consider properties of pl. 

Independent Abduction Problems 
In the simplest problems, an individual hypothesis ex
plains a specific set of data regardless of what other 
individual hypotheses are being considered. Formally, 
an abduction problem is independent iff: 

VH ~Hall (e(H) = LJ e(h)) 
hEH 

That is, a composite hypothesis explains a datum if 
and only if one of its elements explains the datum. 
This constraint makes explanatory coverage equivalent 
to set covering (Reggia et al., 1983). Many other ab
duction approaches make similar assumptions (de Kleer 
and Williams, 1987; Eshelman et al., 1987; Miller et al., 
1982; Pearl, 1987; Peng and Reggia, 1987; Reiter, 
1987). 

One way to find a best explanation would be to gen
erate all explanations and then sort them by plausibil
ity. Unfortunately, for the class of independent abduc
tion problems, generating all explanations is NP-hard. 
If this task were tractable, then the minimal set cover 
problem (Garey and Johnson, 1979) could be tractably 
solved by first generating all parsimonious set covers 
and then selecting the smallest one. But minimal set 
cover is known to be NP-hard; thus, so is generating all 
explanations. However, the definition of best explana
tion does not require that all explanations be explicitly 
enumerated, a fact that we shall later rely on. 

Monotonic Abduction Problems 
A more general kind of problem is when a composite 
hypothesis can explain additional data that are not ex
plained by any of its elements. Formally, an abduction 
problem is monotonic iff: 

VH, H' ~ H0 11 (H ~ H'-+ e(H) ~ e(H')) 

Since the class of monotonic abduction problems is a 
superset ofindependent ones, for the class of monotonic 
abduction problems, generating all explanations is NP
hard. 



Incompatibility Abduction Problems 

So far we have assumed that any collection of individ
ual hypotheses is possible. In general, however, the 
negation of a hypothu can also be considered a hy
pothesis. 

Formally, an incompatibility abduction problem is a 
tuple (Da11, Ha11, e,pl,I), where Da11, Ha11, e, and pl 
are the same as before and I is a set of two-element 
subsets of Hau, indicating pairs of hypotheses that are 
incompatible with each other. No composite hypothesis 
containing an incompatible pair can be an explanation. 

Even if an abduction problem is otherwise indepen
dent, it is difficult to even find a single explanation. For 
the class of incompatibility abduction problems, deter
mining whether an explanation exists is NP-complete. 
This is because it can be difficult to choose between in
compatible hypotheses. Only 0( n) incompatible pairs 
are needed for this result. 

Cancellation Abduction Problems 

Another interaction not allowed in independent or 
monotonic abduction problems is cancellation, i.e., 
when one element of a composite hypothesis "cancels" 
a datum that another element would otherwise explain. 
Cancellation can occur when one hypothesis can have 
a subtractive effect on another (Patil et al., 1982). 

Formally, we define a cancellation abduction problem 
as a tuple (Da11, Ha11, e,pl, e+, e_). e+ is a map from 
Hall to subsets of Dall indicating what data each hy
pothesis "produces." e_ is another map from Hall to 
subsets of Dall indicating what data each hypothesis 
"consumes." d E e(H) iff the number of hypotheses 
in H that produce d outnumber the hypotheses that 
consume d. That is: 

d E e(H) +-+ 

l{hl h EH Ad E e+(h)}I > l{hl h EH Ad E e_(h)}I 

Admittedly, this is an oversimplified model of cancel
lation effects, in the sense that it captures only one kind 
of cancellation interaction. Nevertheless, for the class 
of cancellation abduction problems, it is NP-complete 
to determine whether an ezplanation exists. Even if a 
complete composite hypothesis is found, for the class 
of cancellation abduction problems, it is NP-complete 
to determine whether a complete composite hypothesis 
is not parsimonious. The difficulty arises when sev
eral data each has several consumers. Either a difficult 
choice between the consumers of each datum must be 
made, or sufficient producers must be added for each 
datum, possibly violating parsimony. 

88 

The Best-Small Plausibility Criterion 
Clearly, finding a best explanation for incomp~tibil
ity and cancellation abduction problems is NP-hard. 
To determine the complexity of finding a best expla.
nation in independent and monotonic abduction prob
lems, properties of plausibility must be analyzed. 

Everything else being equal, smaller explanations are 
preferable to larger ones, and more plausible individual 
hypotheses are preferable to less plausible ones. Thus, 
in the absence of other information, it is reasonable 
to compare explanations based on their sizes and the 
relative plausibilities of their elements. 

The best-amall plauaibility criterion formally charac
terizes these considerations as follows: 

pl(H) > pl(H') +-+ 

3m: H-H' (mis 1-1 A 
't/h E H (pl(h) 2: pl(m(h))) A 
(IHI= IH'l-
3h EH (pl(h) > pl(m(h))))) 

That is, to be more plausible according to best-small, 
the elements of H need to be matched to the elements of 
H' so that the elements of H are at least as plausible 
as their matches in H'. If H and H' are the same 
size, then in addition some element in H must be more 
plausible than its match in H'. Note that IHI> IH'l -
pl(H) "$ pl(H'). 

Even for independent abduction problems, it is dif
ficult to find any best explanations according to best
small. For the class of independent abduction problems 
using the beat-amall plauaibility criterion, given an ex
planation, it ia NP-complete to determine whether a 
better ezplanation eriats. This class of problems is hard 
because it is difficult to choose between individual hy
potheses with equal or similar plausibility. 

The Tractable 
What if the individual hypotheses all have different 
plausibilities? We call such an abduction problem or
dered, formally defined as: 

't/h, h' E Hall (h #- h' -
(pl(h) < pl(h') v pl(h) > pl(h'))) 

It turns out that this condition permits tractable ab
duction. For the class of ordered independent abduc
tion problema using the best-small plausibility criterion, 
there is an 0( nC.+nCe-1 +nC,1+n2) algorithm for find
ing a best explanation. Algorithm 1 performs this task 
within this order of complexity. The explanation found 
by this algorithm is a best explanation because it al
ways cho<>ses the most plausible individual hypotheses 



W stands for the working compoaite hypotheais. 
Nil is returned if no eqlanation ezi1t1. 

Find a complete compoaite hypothe1i1. 
More plausible individual hypothesi1 are preferred. 
W+-0 
For each d E Dau 

If e- 1(d) = 0 then 
Return nil 

else W +- WU{ h} such that 
h E e- 1 (d) A 
't/h' E e- 1 (d) (pl(h)?: pl(h')) 

Find a parsimonious subset. 
Try to remove less plausible hypotheses first. 
For each h E W from least to most plausible 

If e(W\{h}) = e(W) then 
W +- W\{h} 

Return W 

Algorithm 1: Finding a Best Explanation in Ordered 
Independent Abduction Problems 

to keep, and the least plausible individual hypotheses 
to remove. This algorithm is a variant of the hypothesis 
assembly strategy described in Josephson et al. (1987). 

Because best-small in general imposes a partial or
dering on the plausibilities of composite hypotheses, 
there might be more than one explanation. Suppose 
that an ordered independent abduction problem had 
only one best explanation according to best-small. Be
cause Algorithm 1 is guaranteed to find a best explana
tion, then it will find the one best explanation. For the 
class of ordered independent abduction problems using 
the best-small plausibility criterion, if there is exactly 
one best explanation, then Algorithm 1 finds the best 
explanation. This can be informally restated as: In a 
well-behaved abduction problem, if it is known that some 
explanation is clearly better than any other explanation, 
then it is tractable to find it. 

Unfortunately, it is difficult to determine if there 
is exactly one best explanation. For the class of or
dered independent abduction problems using the hest
small plausibility criterion, it is NP-complete to deter
mine whether there is more than one best explanation. 
The reason for the difficulty is that any other best ex
planations will be smaller than the one found by Algo
rithm l. Consequently, determining that no other best 
explanation exists is equivalent to determining that the 
explanation found by the algorithm is a minimal set 

89 

cover. Thus, even for ordered independent abduction 
problems, it is intractable to generate all the best ex
planations. 

From these results, we can describe what kinds of 
mistakes will be made by Algorithm 1. While the expla
nation it finds will be able to match up qualitatively to 
any other explanation, there might be smaller explana
tions that are better based on quantitative information. 
Similar results hold for ordered monotonic abduction 
problems. 

Conclusion 
Based on these results, we propose that one of the fol
lowing properties must be satisfied for abduction to be 
effective and efficient. 

The domain is trivial in the sense described above. 
In other words, sufficient knowledge exists to engi
neer abduction problems so that exhaustive search 
is tractable, i.e., by selecting appropriate data and 
hypotheses and by constructing powerful e and pl 
functions. 

The domain satisfies the monotonic and ordered 
properties, and there exists one best explanation 
according to best-small. This, too, might call for 
considerable knowledge engineering. Hypothesis 
assembly is directly applicable to such domains. 

Incompatibility relationships, cancellation interac
tions, and unordered hypotheses must be sparse 
(5 O(log n)), and otherwise the domain satisfies 
the monotonic, ordered, and one-best-explanation 
properties. In these domains, the best explana
tion can be found by invoking hypothesis assem
bly a polynomial number of times, i.e., by varying 
the choices from incompatible pairs of hypotheses, 
consumers of each datum, and unordered hypothe
ses. 

Of course, if more than one property can be satisfied, 
so much the better. 

Our analysis supports the following thesis: if hypoth
esis assembly cannot he used to find the best explanation 
in a complex domain, then the domain is intractable. 
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Introduction 

In this abstract we will summariz.e some of the results 
of our knowledge and symbol level analysis of two 
medical AI systems: RED-2 [Josephson, eL al.1987] 
[Smith, eLal. 1986] and IN1ERNIST-l [Miller, eL al. 
1982], [Pople, et al .. , 1975] , [Pople, 1977]. RED-2 
and IN1ERNIST- l were both intended to encode an 
abductive problem-solving method for different kinds 
of domain problems and with different problem-solving 
methods. 
For this analysis we adopted Newell's view of what a 

knowledge vs. symbol level analysis should address 
[Newell, 1981]. In this view, a knowledge level analy
sis of a system should focus on a representation 
independent description of the system's goals and the 
bodies of knowledge it brings to bear to satisfy these 
goals. At the symbol level, the analysis should center 
on the representations that attempt to realize this 
knowledge level. For this purpose we adopted a similar 
analysis methodology and set of terms to Clancey 
[Clancey, 1985]. In particular, we use his taxonomy 
of kinds of problems and his method Qf ~ifying the 
content of a knowledge base by describing die methods 
and knowledge applied. We also borrow the, concept. 
types and conceptual relations he used in describing the 
heuristic classification method. 
Clancey performed such an analysis on a wide variety 

of rule-based systems with interesting results. Similar
ly, interesting similarities and differences emerged in 
our analysis when the two systems we studied were de
scribed using the same framework and a common 
vocabulary. 
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Knowledge Level Analysis of Two 
Abductive Systems 

We will now individually describe the two systems in 
terms of the type of domain problem they solve and 
their problem solving methods. We describe their 
methods in terms of their abstract goals, subgoals, and 
the kinds of knowledge they attempt to apply to 
achieve them. We will then compare the two systems · 
along several dimensions. We argue that they encode 
in different forms very similar goals, methods, and 
kinds of knowledge. We then suggest that general 
characteristics of their respective domain problems and 
similar assumptions 1D1derlying their methods are the 
reason why the designers ofRED-2 and IN1ERNIST-
1 made similar content but different form decisions. 

INTERNIST ·1 

Following Clancey, the problems IN1ERNIST-l tries 
to solve are diagnostic. In his problem taxonomy diag
nosis problems are a kind of interpretation problem 
requiring the ·identification as faulty some part of the 
system that is being diagnOsed with respeetto a pre-
f med model of the system. Interpretation is concerned 
with making assertions about a worlcing system in· some 
environment while identification requires taking 
descriptions of input/output behavior and mapping it 
onto a system. More specifically, a solution to IN1ER
NIST-l's problems is a combination of diseases(faulls 
of the human body) which are the cause of the patient's 
manifestations (data). INTERNIST-1 is designed to 
search for these diseases using a method which selects 
the best explanation found for the manifestations using 
the subgoals shown in Figure 1. The two top subgoals 
are to select the diseases(solutions) which explain all 

;; 



Cons1:111ct the Best Explanation 
for the Manifestations(Data) 

Construct a Nonredundant Explanation 
for the Manifeswiom (Data) 

Select the Disea.ses(Solution) That Explain 

the Important Manifestations (Data) 

I 
Select the Best of these Diseases( Solution) to 

Explain the Manifestations (Data) 

Prefer the Disease(Solution) that Explains 
the Important Manifestations (Data) Prefer Disease(Solution) thac was 

most Frequently the Explanation for 
Prefer the Disease(Solution) with the Manifestations(Dw.) 
Least Unsatisfied Expectations 

Prefer the Disea.se(Solution) I 
that Fits Together With the . . 
Currently Selected Diseases Determine the Unsausfied Expecta-

tions of Disease( Solution) Determine the Satisfied Expectations 

1 ~ of Disease (Solution) 

Determine the Manifestations(Oata) Expected to ~ 
be Present if the Disease(Solution) Is Present 

Figure 1. Problem-Solving Method Goal/Subgoal Structure in INTERNIST-! 

the important manifestations( data) and construct a 
nonredundant explanation. 
Determining that all the important mani- festations 

are explained is achieved by encoding for every 
manifestation a qualitative importance of it being 
explained by the final diagnosis. INTERNIST-I will 
attempt this goal until all the important data above a 
certain importance value is explained. The goal of 
explaining the important manifestations is decomposed 
into a series of instances of the goal of selecting the 
best individual disease to explain the manifestations 
that remain unexplained. This goal decomposition is 
justified assuming tha1 the causal processes underlying 
the diseases have minimal interactions . More 
precisely, the designers of INTERNIST-I explicitly 
assume the diseases defined in the system are mutually 
exclusive causes of any datum. This allows for 
explaining the manifestations by performing a 
succession of single-disease diagnoses. 
The goal of choosing the best single disease 

is then decomposed into four subgoals to prefer the 
single disease thac explains the remaining 
manifestations best, most frequently was the best expla
nation for the manifestations in the past ( in their 
terminology has the highest evoking strength), that fits 
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best with the currently selected diseases, and has the 
least unsatisfied expectations. The combined degrees 
of satisfaction of a disease to these criteria determines 
the degree of satisfaction of the individual disease to 
explain the data. 
INTERNIST-I explicitly encodes for every individual 

manifestation qualitative knowledge regarding the fre
quency with which disease(s) are found to be the best 
explanation for the manifestation. This knowledge is 
used to prefer the disease with the highest value for the 
manifestat1ons at hand. The goal "of selecting the 
disease that best explains the ritanif estations is achieved 
by selecting the disease whose expeatld manifestations 
match the most important manifestations in the case at 
hand. Also, for each disease INTERNIST-I has 
knowledge encoded regarding the frequency with 
which a manifestation occurs if the disease is present. 
Selecting the disease with the least unsatisfied 
expectations can be accomplished by selecting the 
disease whose expected manifestations are the most 
completely matched by the case at hand. Knowledge is 
encoded to allow for diseases to be preferred that are 
known to predispose or be causally related IO another 
diseases that has already been determined IO be part of 
the solution. This knowledge is used to determine the 



degree of fit of a diSease to the current solution. 
The top-level goal of comtructing a non-redundant 

rmat diagnosis is achie'Ved partly by discarding the 
manifestations related-IO diseases alttady included in 
what will become the final diagnosis. This is consistent 
with the assumption of exhaustivity and mutual 
exclusivity of the diseases which we have already noted 
as a basic premise ofINTERNIST-1. Therefcn the 
knowledge applied to avoid redundant explanations in 
the final diagnosis is knowledge indicating what 
manifestations each disease can account for and the 
knowledge of what diseases have already been 
established as parts of the final solution. In addition, 
there is the assumption that once a disease is selected 
as pan of the solution to the problem, the 
manifestations it explains do not need an explanation 
anymore and cannot help in selecting other diseases. 

RED-2 

By contrast, RED-2 does not solve medical diagnosis 
problems but a medical identification problem. RED-2 
solves problems which involve interpreting laboratory 
tests to identify red cell antibodies in the serum of 
patients in order to safely transfuse red cells. The pres
ence of these antibodies do oot indicate malfunctions of 
the human body. A combination of antibodies which 
are the cause of the test reactions is considered a 
solution to this problem. Using Clancey's terminology, 
the systems to be described are the test tubes where the 
potential recipient's serum is mixed with the other 
components of the test system(lilce standardiz.ed red 
cells). Abstractly, the problem involves taking 
descriptions of the output behavior of the test system in 
the form of test reactions and mapping it back onto the 
test system by determining what antibodfes in the 
serum give rise to the reactions. 
The problem-solving method RED-2 is designed to 

apply is shown in Figure 2. To select the best 
explanation found dming this search, RED-2 prefers. 
combinations of antibodies(solution) which non- -
redundantly explain all the test reactions( data) explain
able, are compatible, and that have the highest fre
quency of occmrence of expected reactions which 
match the test reactions. · 
Many of these goals and the kinds of knowledge that 

are used to attempt to achieve them are quite similar to 
those in the INTERNIST-I method. For example, 
knowledge of the test reactions( data) expected to be 
present if a particular antibody (solution) is present are 
used to determine what test reactions the presence of an 
antibody would explain. INIERNIST-1 encoded 
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similar knowledge of the manifestations( data) expected 
if an individual disease(solution) were presenL 
These expectation are then used to achieve many · 
similar goals to those in INTERNIST-1 's method. For 
example, in a manner similar to INTERNIST-I the 
match of expectations to the test reactions is combined · 
in RED-2 with koowledge of the frequency of 
occurrence of these reactions to evaluate an individual 
antibody as a solution . 

The similarities in the koowledge which maps expec· 
tation associated knowledge to evaluations of solutions 
is interesting because of the difference in encoding 
used. For example, degrees of plausibilities derived 
from matching individual manifestation expectations 
are dynamically combined using a fixed non-linear 
weighting scheme in INTERNIST-I. INIERNIST-I 
therefore includes a set of operations and functions to 
utilize and manipulate these plausibilities. In RED-2, 
the knowledge mapping from the frequency of 
occurrence of matched expectations and plausibility of 
a solution is also static. However, in RED-2 this fixed 
weighting is represented as numerous instances of 
specific production rules. This evaluation knowledge is 
of the same kind and fills the equivalent evaluation 
role to knowledge that INTERNIST-I utilizes to 
evaluate diseases, although a cursory view of the form 
of the knowledge would lead one to conclude 
otherwiSe. The difference is more form then content, 
INIERNIST-1 computes a static mapping whereas 
RED-2 matches static structures to accomplish the 
mapping. On the one hand, INTERNIST- I seems 
more flexible than RED-2 as it can combine the contri
bution of data patterns to solution evaluations 
dynamically. However, it is just a shorthand for the 
same static view of how knowledge related to various 
frequency measures of expectations can be mapped to 
solution evaluati0ns. · · 
This encoding difference is, we believe, related to the 

characteristics. qf die data in the ·two domains. In the 
RED-2 domain, the discriminable effects of the under
lying processes giving rise to the test reactions are of a 
limited number Types of processes which could give 
rise to non-discriminable patterns can largely be ig
nored without effecting problem-solving accuracy. This 
makes it practical to pre-enumerate data patterns, 
frequency measures, and their desired effect on plausi
bility of a solution. In the INTERNIST-I domain on 
the other hand, the possible combinations of datum are 
numerous given the more then 4,000 potential 
individual manifestations. It is therefore less practical 
for the INTERNIST-I knowledge base to be created by 
pre-enumerating all the data patterns and their desired 
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Consttuc:t !he Best Explanation for the 
Test Reactions (Data) 

Consttuc:t the Most Nomedundant 

Explanation for the Tat Reactions (Data) Prefer the Antibody(Solution) Whose 

~fer the Most Complete Mau:hing Expectations Frequency of 

R::i;:o;;,:~~ Ex~::e:es~tiOOdies ~~of is Grelater 
Select the Antibodies(Solutions) Essential most Compatible with the 
for a Complete Explanation of the Test Presence of ea.c:h other 
Reactions(Data) Determine the Unsatisfied 

Determine the Satisfied Expectations Expectations of Antibody 

Find the Antibodies(Solution) "c:h of AnuDodies~) (Solutions) 

Explain the Most Significant Test ---- ~ -------
Reaction(Data) Determine the Reac:tions(Data) Expec:ted------

to be Present If Antibody (Solution) Is 
Present 

Figure 2. Problem-Solving Method: Goal/Subgoal Structure in Red 

effect on plausibility. This route would translate into a 
large knowledge base without a clear means to exclude 
know ledge from application for a particular case. 
RED-2, like INTERNIST-I, decomposes into possibly 

numerous instances the subgoal of constructing !he best 
explanation into selecting !he best individual antibod
ies. This decomposition is justified for !his domain 
since the effect on the test reactions( data) of causal 
interactions between concurrently present antibodies is 
always additive, predictable, and easily computed. 
The search for a complete explanation is decomposed 
into possible numerous instances of explaining the 
most significant individual test reaction remaining to be 
explained. RED-2, like INTERNIST-I, encodes 
know ledge to detennine the importance of explaining 
each test reaction value.· The goal of non-redundant 
explanations is pursued by applying the kno..vl~ge of 
what each individual antibody can explain <Utd 
knowledge of what combinations of antibodies can 
explain. As in INTERNIST-I, the data that are·account
ed for by the expectations of the current combination of 
accepted solution elements are considered explained 
and additional candidate solution elements are generat
ed based on the remaining data left to explain. 
This similarity in method is striking given the 

differences in the characteristics of the causal processes 
underlying the problems in the two domains. In the 
RED-2 domain, the causal processes giving rise to !he 
test reactions are causally independent and give rise to 
largely discriminable patterns of data on the tests. This 
mtles it justifiable to apply problem-solving melhods 
which assume that overall goals can be decomposed as 
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above. In the INTERNIST-! domain. on the other 
hand, causal interactions are frequent and potentially 
numerous. It is therefore much less justifiable for the 
INTERNIST-! designers to adopt such a decomposi- · 
lion strategy. There may be a robustness to the decom
position of such goals in !he context of !he multiple di
mensions used for evaluation of potential candidate so
lutions that has not been previously appreciated. 
Anolher apparent exceptions to the similarity in IN

TERNIST-I and RED turns out to be more fonn then 
content. In RED-2 there is nothing that on the surface 
is comparable to INTERNIST-1 's evoking strength that 
is used to evaluate a solution element. However, RED-
2 searches for antibodies which are essential for 
explaining som~ reaction. Selecting essentials does 
not appear as an explicit subgoal in INTERNIST- I. It 
is interesting to see this notion does exist, implicitly, in 
INTERNIST-I. Let us assume we have a symptom that 
can be explained by only one disease. If the import of 
the symptom is below tbe threshold, it might never get 
explained and therefore lhe corresponding essential 
disease would not be included in the diagnosis. If the 
import is above the threshold however, it will be 
explained. As soon as the disease explaining this 
finding is ranked the highest, the system will consider 
it Since there is only one disease to explain !he given 
manifestation, the partitioning algorithm will isolate it 
(it has no competitor since it explains a datum no olher 
disease can explain). INTERNIST-I will eilher 
integrate the disease in the final diagnosis or will list it 
as a likely present next to the final diagnosis. 
Therefore, we can conclude that INTERNIST-1 has the 



knowledge to qualify the essentials and that its prob
lem-solving method will make sure that these e~ntials 
are included in the rma1 diagnosis if at least some of the 
data they account for has an impon greater than the 
threshold. 

Conclusion 

Our analysis of the knowledge content and problem
solving methods encoded in RED-2 and INTERNIST-I 
has allowed us to characterize both systems in similar 
terms. Having couched both systems in the same 
vocabulary, we have been able to compare them more 
precisely. This comparison has yielded interesting 
insights on how similar each system's knowledge and 
goal structure are. We have argued that some goals 
and knowledge explicitly pan of one system were im
plicit in the other. We can also clearly see how the 
form this knowledge is encoded in was influenced by 
characteristics intrinsic to the domains of blood 
banking and internal medicine. The impracticality of 
manually enumerating knowledge exhaustively in 
INTERNIST-I motivated a finer goal decomposition 
and the application of different kinds of knowledge to 
different goals. For example, INTERNIST-I explicitly 
includes the subgoals of preferring the most evoked 
disease and the disease with the least unsatisfied 
expectations. RED-2 does not explicitly include the 
these goals but only one equivalent goal of preferring 
the best hypothesis based on expectation frequencies. 
On the other hand, the form of representation in 
RED-2 does allows for the direct representation of the 
composition of general mappings of expectations with 
specific knowledge about expectations. Form does not 
follow content is the lesson we take away. 
. We believe such an analysis could be applied to other 

systems encoding abductive problem-solving with the 
goal of producing a taxonomy of abductive 
problems.problem-solving methods, and represe~t'.a
tions. Such a taxonomy would be usc;f,ul in generaliz
ing theoretical and experimental results and improving 
knowledge engineering practice for domain problems 
approached from the perspective of abductive problem
solving. For example, such a taxonomy would help the 
knowledge engineer in selecting the appropriate 
methods and knowledge representations when 
confronted with a domain problem. 
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1 Motivation 

We wish to automatically construct plausible, parsimo
nious, and adequate explanations for unexpected finan
cial results. We also wish to generate leading questions 
to help disambiguate among alternative explanations. 

Figures 1-3 show a very simple example, abbreviated 
from that in [Kosy and Wise, 1984). Figure 1 shows five 
equations relating eight financial and operational vari
ables. Of these eight, we take the variables Unit Cost, 
Unit Price, and Volume to be exogenous. 

Figure 1: Sample Financial Relations 

Gross Margin 
Sales 

Variable Cost 
Production Cost 

Indirect Cost 

= Sales - Production Cost 
= Volume x Unit Price 
= Volume x Unit Cost 
= Variable Cost +Indirect Cost 
= Variable Cost x 15% 

Suppose we observe that Gross Margin has decreased 
since last period. Some plausible explanations are shown 
in Figure 2. All three of the explanations propose dis-

Figure 2: Potential Explanations 

Unit Price decreased 
- Sales decreased 

- Gross Margin decreased 

Unit Cost increased 
- Variable Cost increased 

- Production Cost increased 
- Gross Margin decreased 

*Volume increased 
- Sales increased 
- Variable Cqst increased 

- Indirect Cost increased 
- Production Cost increased 

turbances in the exogenous variables Unit Price, Unit 
Cost, and Volume. All three are parsimonious: one dis-
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turbance to each exogenous variable is hypothesized in 
each, they mention only the variables through which the 
disturbance propagates, and they do not mention any 
irrelevant variables. The first two are adequate, in the 
sense that the hypothesized disturbance entails the re
sult. The third (*) is inadequate because it does not 
entail what we wanted explained: if both Sales and Pro
duction Cost increased, then Gross Margin might have 
either increased, decreased, or stayed the same. 

Because there are multiple explanations, we need to 
know what to ask next in order to disambiguate among 
them. Figure 3 shows four relevant queries. All four 

Figure 3: Disambiguating Queries 

Did Sales increase, decrease, or remain steady? 
*Did Production Cost ... ? 

**Did Variable Cost ... ? 
**Did Indirect Cost ... ? 

queries are equally discriminating, since we could use 
the query result to rule out two of the explanations in 
Figure 2. However, we find the last two(**) to be un
desirable, because neither quantity appears directly in 
the computation of Gross Margin, the anomaly that we 
are trying to explain. Also, the second query (*), like 
the last two; are~ undesffab1e queries because financial 
reports seldom report these quantities directly. 

Protocol analysis has shown that this abductive style 
of reasonin~ manifests itself in tasks such as financial 
assessment lBouwman, 1983), going concern evaluation 
[Selfridge et al., 1986), and auditing [Dhar et al., 1988, 
Pete~s, 1989). Informal study indicates that it also plays 
a role in variety of other settings, such as tax planning, 
in which much of the effort is devoted to analyzing dif
ferences between prior cases and the case at hand. Fa
cilities for abductive reasoning will play a key role in the 
Business Understander, the embodiment of a vision of a 
next generation knowledge-based computerized facility 
for supporting the understandin_g of client businesses by 
Price Waterhouse practitioners lHamscher et al., 1989). 

The current example shows an essentially financial 

i. 
I• 



model, in which all of the parameters are quantitative 
and most of them refer to amounts of money. Expla
nations referring only to dollar quantities may be ade
quate in a technical senae, but often unsatisfying for the 
tasks we envision; in the example above, a more satisfy
ing explanation would refer to (say) increased competi
tion to account for decreasing Unit Price. To generate 
such explanations requires operational models, in which 
the parameters refer to aspects of business such as the 
quality of the products, the lead time for new products, 
the brand loyalty of customers, and so forth [Hamacher, 
1989]. We believe that the essential features of the ab
ductive reasoning will remain unchanged in spite of the 
resulting shift in the character of the model. 

The next two sections elaborate on the construction 
of explanations and discriminating queries in this do
main. First, we present CROSBY, a reimplementation of 
the diagnosis engine SHERLOCK [de Kleer and Williams, 
19891. Next, we discuss approaches to the challenges en
countered. These difficulties include the traditional is
sues arising from the interaction of a domain model with 
our abductive reasoning engine, as well as some nontra
ditional issues encountered arising from the difficulty of 
modeling business operations. 

2 Implementation 

The current implementation of CROSBY follows the tra
ditional architecture of a model-based diagnosis program 
[Davis and Hamscher, 1988]: 

Prediction There is a domain model that supports 
predictions about the behavior of the system under 
study; that is, given some facts about its behavior, the 
model predicts what behavior will be observed subse
quently. In CROSBY this is based on local propagation 
of constraints [Sussman and Steele, 1980] over the do
main of signs of each quantity and its first derivative 
with respect to time, as in many qualitative reasoning 
systems lBobrow, 1985, Williams, 1988]. For example, if 
Unit Cost increases (denoted [8 UnitCost] =[+])while 
Volume is constant ([8 Volume] = [O]) and both are pos
itive ([UnitCost] = [Volume] = [+]) then Variable Cost 
will increase ([8 VariableCost] = [+]). 

Hypothesis Space Definition The space of poten
tial explanations is defined by the cross product of values 
that can be taken on by eelected key variables. In other 
domains these key variables may be boolean-valued and 
refer to diseases [Reggia et al., 1983], states of compo
nents in designed artifacts [de Kleer and Williams, 1987, 
Reiter, 1987J, or they may be multiple-valued and re
fer .to behavioral modes of comr.onents [de Kleer and 
Williams, 1989, Hamscher, 1990. In CROSBY the key 
variables are simply the signs of the exogenous param
eters of the financial model and their first derivatives. 
A prior probability is estimated for each variable assign
ment, with independence assumed among the parame
ters, and the resulting distribution summing to unity. 
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For example, the parameter [8 Unit Cost] may take on 
the values [O], [+], or [-] with prior probabilities .80, .15, 
and .05 respectively. 

Conflict Detection Some combinations of key vari
able assignments are inconsiStent and need to be ruled 
out. In CROSBY, as in SHERLOCK, each value in the 
domain of each key variable ilJ associated with an ATMS 
assumption [de Kleer, 1986]. Each new deduction is 
given a label corresponding to the sets of minimal sets 
of assumptions needed to deduce that value. As pointed 
out in [Levesque, 1989], the construction of a label for 
a proposition constitutes an abductive inference for that 
proposition with respect to implicit beliefs (that is, the 
underlying assumptions). Hence by propagating labels 
through a network of the Horn clauses resulting from 
inferences made by the constraint propagator, . explana
tions are constructed for every explicit belief (that is, 
the assignments of values to variables). When values 
deduced using different assumptions -disagree, the set of 
underlying assumptions is declared to be in conflict. All 
supersets of that conflict set are inconsistent. 

Interpretation Construction An interpretation is a 
consistent set of assumptions that is maximal in the 
sense that no assumption can be added to it without 
making it inconsistent. SHERLOCK performs heuristic 
best-first search through the space of interpretations. 
The evaluation function for each interpretation is the 
upper bound of its prior probability, assuming indepen
dence among its key variables, conditioned on any ob
servations made so far, normalized with respect to all 
interpretations, and with an evaluation of 0 assigned to 
any interpretation discovered to be inconsistent. 

For each set of assumptions ("environment"), there is 
a network of Horn clauses whose conclusions are sup
ported in that environment. These are called the "ac
tive" clauses of that environment. Each network of ac
tive clauses supports some observations that the user 
may wish to see an explanation for given a certain en
vironment'. Each fact (such as [8 Sales] = [-]) may be 
supported by several active clause1,1, and for clarity it is 
best to select just one to display to the user. Three local 
criteria are used to make this choice among the support
ing clauses of the fact: (i) The clause chosen must be 
active in the interpretation that the user is examining 
(ii) the clause must be that which is active in the envi
ronment of smallest cardinality, and (iii) the clause must 
have the fewest antecedent facts. Recursive application 
of these local criteria within an interpretation yields a 
directed graph of active clauses that forms an explana
tion structure. There is no guarantee of global economy 
in terms of facts or clauses, but the results are easily 
comprehensible in practice. Examples were shown in 
Figure 2. CROSBY displays the directed graph omitting 
facts in which variables are asserted to be unchanged, 
such as [8' Volume] = [O]. 



Query Generation Some set of model parameters are 
declared to be observable. The model will have deduced 
one or more values for each such parameter, depend
ing on different sets of .. umptions. Since a probabil
ity is associated with each interpretation, and ideally 
each interpretation assigna a value to each observable 
parameter, a conditional probability for each value given 
each interpretation can be computed, and Bayesian di
agnosis can be used to select the observation with the 
most information [de Kleer and Williams, 1987). Let 
p;i. = p(Vj = OH,), the probability that the observation 
of Vj has outcome 0;1: conditioned on all observations 
made so far. Then the best observation on average is that 
with the minimum Shannon entropy E; = L1: Pil: log p;1:. 

In this domain, variables corresponding to financial 
statement items (Sales, Gross Margin) are easily observ
able, certain operational variables (Volume) can be ob
served with varying degrees of difficulty, and the remain
der are virtually impossible to observe directly because 
normal accounting systems to not record them as such. 
An extension of the entropy-based scheme estimates the 
desirability of observations having varying costs. The 
program selects the observation with minimum expected 
total cost T; = c; + C;(E; - D), where: 

• c; is the cost of observing Vj , 

• D is the entropy of the current set of interpretations 
I, that is, D = L; p(l;) logp(l; ), 

• (E; - D) estimates the residual uncertainty after 
observing V;, 

• C; is the average cost of observing the remaining 
unobserved variables, C; = L1:~; c1:. 

As intended, CROSBY generally selects observations 
with minimum c;, except when there is a more expen
sive observation that would discriminate more strongly 
among competing interpretations. 

3 Discussion 

Test cases run with CROSBY highlight some issues both 
familiar to those working in the area of automated diag
nosis, as well as some that are unique to the domain. 

Ambiguity and Incompleteness Qualitative rea
soning has the advantage of allowing a discrete range 
of values for key parameters and hence a finite space 
of explanations. However, it sometimes fails to detect 
inconsistent interpretations. For example, the interpre
tation corresponding to the *'d explanation in Figure 2 
is inconsistent with (8 Gross Margin) = [-] if (Volume] 
= [+], but the propagator fails to detect this. There are 
numerous known approaches to this problem involving 
quantity spaces, integrated numeric and qualitative ap
proaches, and so forth. In the short term CROSBY uses 
the straightforward approach of employing multiple for
mulations of the same underlying model. For example, if 
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the additional constraints in Figure 4 are added, the in
consistency would be discovered upon observing [8 Unit 
Margin). ·. 

Figure 4: Additional Financial Relations 

Gross Margin = 
Unit Margin = 

Volume x Unit Margin 
Unit Price - Unit Cost 

Combinatorics It is worrisome that the number of 
interpretations is exponential in the number of key vari
ables, since the SHERLOCK procedure can in principle 
explore them all. However, since they are explored in 
the order of the likeliest interpretations first, we believe 
that the performance will be acceptable in practice, and 
this is supported by some empirical evidence. The Sym
bolics 3645 implementation of SHERLOCK by its origi
nal authors already diagnoses combinational digital cir
cuits with up to a hundred gates in a matter of seconds 
(B. C. Williams, personal communication). CROSBY is 
also implemented on a Symbolics 3645, but its under
lying ATMS is not as fast. Its largest example to date 
involves 15 variables, 6 of them exogenous, and com
pletes in 82 seconds. This 82 seconds does not include 
the 1/0 time to solicit four observations from the user. 

Incoherent Lines of Questioning In the applica
tions that we envision, the role of the abduction engine 
is to help the human user formulate elausible theories 
and subsequent lines of investigation LHamscher et al., 
1989). Bayesian diagnosis is notorious for giving the 
user an uncomfortable sense of "jumping around" be
tween different hypotheses [Szolovits and Pauker, 1978, 
Pople, 1982). We plan to explore several different ap
proaches to this latter issue: 

Use Guided Probe Perhaps Bayesian diagnosis 
is simply irrelevant when the goal is comprehensibility 
rather than optimality. For example, in the domain of 
digital circuit troubleshooting, the "guided probe" algo
rithm involves a methodical step-by-step upstream trac
ing of causal paths; while -the resulting sequences are 
suboptimal, it requires that little state be retained and 
as a result is easy to follow. 

Use More Layers Perhaps the sense of ''jumping 
around" is simply an artifact of having constructed ex
planations with too many steps, which in turn is an arti
fact of having descended to too low a level of detail. Sup~ 
pose that the abductive engine were extended to perform 
hierarchic diagnosis, and consider the earlier example: if 
the model had several layers, each one involving only a 
small increase in the number of variables, then as long as 
the abductive engine stayed at a single level there would 
be less jumping around - simply because there would 
be fewer variables of interest at any given level, hence 
fewer places to jump to. Thus, perhaps the problem is 
not Bay~ian diagnosis, but rather that the models used 
are not richly enough layered. 



Dynamically Bias Observation Costs Perhaps 
Bayesian diagnosis could yield the same sense of con
trolled focus as the guided probe algorithm. The esti
mated coat of each new observation could be dynami
cally adjusted to prefer ihoee observations that are more 
closely related to the moet recent observations made. For 
example, having observed the variable [8 Gross Margin], 
the next observation would be biased toward [Gross Mar
gin], and toward [8 Production Cost] or [8 Sales] because 
these variables appear in a relation with Gross Margin 
(Figure 1). 

The current implementation of CROSBY strikes a 
balance between (myopic) guided probing and (global) 
Bayesian diagnosis. CROSBY defines the cost of observ
ing V; to be c~ = (1- a )ci + adi, where c'1 is the number 
ofrelations intervening between V; and the most recently 
observed variable, and a is a "locality bias" parameter 
ranging between 0 (global) and 1 (myopic). For compu
tational simplicity, the obse.rvation is selected to mini
mize T/ = ~ + Ci(Ei - D). However, the models con
structed up to this time have not been large enough to 
provide a useful test of this scheme. 

Finance is Not Enough As noted earlier, an expla.
nation of declining gross margins that simply refers to 
prices, costs, and volumes is fundamentally unsatisfying. 
What explains them? Most current Artificial Intelligence 
work in model-based reasoning is grounded in classical 
physics. Reasoning tasks involving business operations 
are not grounded in physics, but rather in the disciplines 
of economics, accounting, marketing, human resource 
management, and so forth. These disciplines are rich 
in quantitative methods, and appeal to similar types of 
assumptions (continuity, linearity, closed worlds, and so 
forth), but do not approach the breadth and predictive 
power of classical physics. 

A short term technical issue that thus arises is that 
discrepancies between predictions and observations (or 
between alternative predictions) should not necessarily 
have the status of conflicts (in the ATMS sense). For ex
ample, the factor of 15% mentioned in Figure 1 is merely 
an estimate of the relationship between Variable and In
direct costs, and variations are to be expected. In gen
eral, some discrepancies are much more significant than 
others, and the abductive engine should take this into 
account in focusing its efforts. 

The long term technical issue arises from the need for 
comprehensive behavioral models of businesses, and the 
fact that many predictive theories in economics are cur
rently based on regression analysis. Some would claim 
that the proposed use of regression based schemes is mis
guided, according to the following argument: building 
such a model requires one to have some kind of causal 
theory before one can write the equations down. An 
extremely important reason for choosing carefully the 
structure of the equations is to reduce the effects of in
terdependencies among factors. Hence causal assertions 
like "the number of potential customers and their ability 
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to purchase was considered an important external deter
minant of sales" [Elliott and Uphoff, 1972) justify the 
inclusion of one or another factors in a given equation, 
in this case the inclusion of GNP as a contributing fac
tor to the sales of a given firm. Unfortunately, achieving 
a completely independent set of parameters is impossi
ble in general and in any specific case leaves much room 
for debate: for example, the equation for prices in [El
liott and Uphoff, 1972] is a function of capital expendi
tures, rather than production costs, even though the lat
ter seem to be more directly related to the way firms set 
their prices. Assuming that the model can be justified, 
subsequent regression will tell one what the parameters 
are, and tell one how well the historical data fit them. 
But what does one do if the fit is poor - conversely, 
what does it really mean if the fit is good? The causal 
story is no longer explicit in the equations, yet that was 
the background against which one must do all debugging 
and interpretation. In other words, if one uses the result 
of a regression (or related techniques such as smoo~hing) 
to make a prediction, how should one interpret data that 
either agrees or disagrees with the prediction? These 
difficulties argue against the use of regression-based ex
trapolation, but it appears that the field of economics 
currently offers few alternatives. 

4 Conclusion 

We wish to automatically construct plausible, parsimo
nious, and adequate explanations for unexpected finan
cial results. We have constructed an initial prototype ab
ductive engine based on a model-based diagnosis engine 
and are exploring several issues in modeling, diagnosis, 
and explanation. 
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Introduction 

After Hanks and McDermott demonstrated that 
formalising default persistence to overcome the frame 
problem was less straightforward than it at first seemed 
[Hanks and McDermott. 1987], several authors developed 
more robust formalisations, such as Lifschitz (1987) who 
uses circumscription, Shoham (1988) who uses model 
preference, and Evans (1989) who uses negation-as-failure. 
These formalisations can describe the so-called Yale 
shooting scenario which Han1cs and McDermott introduced. 
and they yield the intended predictions. However, these 
formalisations of default persistence need to be modified to 
cope with Kautz's stolen car problem [Kautz, 1986), and the 
bloodless variation of the Yale shooting scenario. A few 
authors have proposed solutions to these problems, such as 
[Morgenstern and Stein, 1988), [Lifschitz and Rabinov, 
1989) and [Shanahan, 1989a]. 

In [Shanahan, 1989a], a solution to Kautz's stolen car 
problem is suggested which uses abduction. However, the 
paper concentrates on the issue of explanation in temporal 
reasoning, and the proposed solution is not discussed in 
depth. Also, the proposed solution uses negation-as-failure 
to achieve default persistence. This apparently restricts the 
solution to extended Hom clause representations of change, 
such as the shortened version of Kowalski and Sergot's 
Event Calculus used in the paper. But the principle behind 
the solution is equally applicable to full rnt-order predicate 
calculus representations. This paper seeks to present the 
abductive solution to both Kautz's stolen car problem and 
the bloodless Yale shooting problem, using a version of the 
Event Calculus which employs circumscription rather than 
negation-as-failure. 

1. A Circumscriptive Event Calculus 

The different versions of the Event Calculus presented in, 
for example, [Kowalski and Sergot, 1986], [Kowalski, 
1986) and [Shanahan, 1989a], all use negation-as-failure to 
achieve default persistence. This paper uses a variation of the 

101 

Event Calculus axioms, and employs circumscription to 
achieve default persistence. The axioms are as follows. All 
variables are universally quantified llllless otherwise shown. 

holds-at(P,T2) f- (E.l) 
3E,Tl [happen.s(E) I\ .ruccess(E) I\ time(E.Tl) I\ 
Tl < T2 I\ initiates(E,P) I\..., clipped(Tl ,P,T2)] 

clipped(Tl ,P,T3) • (E.2) 
3E,T2 [happen.s(E) I\ .ruccess(E) I\ time(E,T2) I\ 
terminates(E,P) I\ Tl ST2 I\ T2 < T3] 

.ruccess(E) • (E.3) 
time(E,T) ~ "t/P[precond(,E,P) ~ holds-at(P,T)J 

time(E,Tl) "time(E,T2) ~ Tl=T2 

act(E,Al)" act(E,A2) ~Al=A2 

(E.4) 

(E.5) 

These axioms are very similar to those used in 
[Shanahan, 1989a]. The basic ontology includes events, 
time points and properties. The predicate happens(E) 
represents that event E occurs, time(E,T) represents that E 
occurs at time T, act(E,A) represents that event Eis of type 
A and holds-at(P,T) represents that property P holds at time 
T. The predicate clip~d(Tl ,P,Tl) represents that property P 
is terminated at some time between times T 1 and T2. The 
domain is represented by the predicates initiates and 
terminates. Respectively, initiates(E,P) and terminates(E,P) 
represent that the property P is initiated by the event E and 
terminated by the event E. The predicate precond(E,P), 
which is taken from [Lifschitz, 1987), represents that P 
must hold at the time of event E for it to have any effect. 

To achieve default persistence, whereby a property, once 
initiated, persists by default until an event occurs which 
terminates it, we circumscribe the theory E v D v H, where 
Eis the theory comprising (E.l) to (E.5) (and including an 
implicit equality and inequality theory), D is a set of axioms 
defining initiates, terminates and precond and H is a set of 
axioms describing a history of events in tenns of happens, 
act and time. The circumscription policy minimises 

r: 



happens, initiates, terminates and precond, and also holds-at 
with a lower priority. 

Circum(E u D u H ; holds-at < happens, initiates, 
terrninaJes,precond) 

As in [Lifschitz, 1987], the introduction of the precond 
predicate allows the preconditions of axioms to be 
minimised independently of anything which varies over 
time. Lifschitz also introduced a causes predicate for the 
similar reasons, and the initiates and terminates predicates of 
the Event Calculus serve the same purpose. An alternative 
formulation results if holds-al is not minimised, and Axiom 
(E.l) is written as an equivalence rather than an implication. 
But this form of Axiom (E.l) excludes the possibility of 
discovering other ways in which a property can hold. In 
(Shanahan, 1989b], for example, an addditional holds-at 
axiom is introduced to cope with continuous change. But I 
will return to this alternative formulation later, because it 
also yields an apparently straightforward solution to the 
bloodless Yale shooting problem and Kautz's stolen car 
problem. 

There is a potentially serious problem with this 
circumscriptive formulation of the Event Calculus which I 
don't propose to tackle in this papec, but which needs to be 
pointed out. As well as extra holds-at axioms to describe 
continuous change, most domains require the addition of 
extra holds-at axioms defining non-primitive properties, that 
is, properties which are not initiated and terminated 
themselves, but which are derived from those which are. For 
example, in the Blocks World, we might define the property 
clear(X) to hold if nothing is on top of the block X, where 
the property on(Y XJ. representing that block Y is on top of 
X, is a primitive property initiated and terminated by events. 
Unfortunately, whilst the formulation given will work well 
with many axioms defining non-primitive properties, some 
such axioms will give rise to unexpected models. This 
difficulty also arose for Lifschitz [1987], who proposes a 
solution which may carry over in some form to the 
formulation given here. 

2. The Yale Shooting Problem 

The simple domain of the Yale shooting problem 
comprises only three types of event - load, wait and shoot 
- and three properties - alive, dead and loaded. A fourth 
type of event - birth - is introduced to comply with the 
basic intuition behind the Event Calculus that all properties 
which hold must have an explanation in terms of events. 
These events and properties are axiomatised as follows. Note 
that there are no axioms for the wait event, since it has no 
effect 

initiares(E.loaded) ~ act(EJoad) 
initiates(E.dead) ~ ac1(E,shoo1) 
initiates(E.alive) ~ act(E,birth) 
terminates(E,alive) ~ act(E ,shoot) 
precond(E,loaded) ~ acl(E,shoot) 

(Dl.l) 
(Dl.2) 
(Dl.3) 
(Dl.4) 
(Dl.5) 
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Now, the Yale shooting scenario can be represented by 
the following history, comprising four events - birth then 
load then wait then shool 

happens( tO) (Hl.1) happens( el) (Hl.4) 
time( eO .tO) (Hl.2) time( e 1 ,tl) (Hl.5) 
acl(tO.binh) (Hl.3) act( el ,load) (Hl.6) 
tl > tO (Hl.7) 

happens( e2) (Hl.8) happens( e3) (Hl.12) 
time( e2 ,t2) (Hl.9) time(e3,t3) (Hl.13) 
act( e2, wait) (Hl.10) act(e3.shoot) (Hl.14) 
t2 > ll (Hl.11) t3 > t2 (Hl.15) 

t4 > t3 (Hl.16) 

In all models of the circumscription of E u D 1 u H 1, 
minimising happens, initiates, terminates and precond, and 
then minimising holds-at with a lower priority, we have 
holds-at(loaded,t3) and therefore holds-at(dead.t4) and --Jwlds
at( alive,14 ). Anomalous models, in which the gun is 
unloaded by the wait event or by some other event. do not 
arise because they are less minimal in either happens or 
terminates than models in which the loaded property 
persists. 

3. The Bloodless Yale Shooting Problem 

In the bloodless variation of the Yale shooting problem, 
we have the same history of events - namely load then 
wait then shoot - but we are also told that alive holds 
afterwards. Somehow, the addition of this fact must block 
the inference that dead holds as a result of the shoot event. 
There are two ways to view this problem. We might 
consider ~ the addition of this new fact simply results in a 
different prediction problem, which understandably produces 
different predictions. Since the predictions rely on default 
persistence, which is non-monotonic, there is nothing 
strange about the fact that the addition of a new fact results 
in the rettaction of a previous prediction. Alternatively, we 
might regard the new fact as requiring an explanation. On 
this latter view, it is not sufficient simply to derive new 
predictions from the new fact. Rather, we have to seek 
possible explanations for the new fact, and only derive new 
predictions from these explanations. 

The first approach might be realised by expressing 
Axiom (E.l) as an equivalence rather than an implication. 
Then, the addition of holds-at(alive,t4) to HJ implies that 
nothing happened before 14 to clip alive. But since the shoot 
event e3 happened before 14, and since shooting terminates 
alive, either the shooting was unsuccessful, or a second birth 
event took place which isn't mentioned in the history, or a 
completely new type of event took place which initiates 
alive, say a resurrection event The first possibility - that 
the shooting was unsuccessful - implies that either the 
wait event unloaded the gun, or that some other event 
happened to unloa<fthe gun which wasn't mentioned in the 



history. In short. as well.as requiring an ammendment to the 
axioms which could tmn out to be false, adding holds
at(alive,t4) to HJ yields only a very weak disjunction. 
Incidentally, this disjuncdm does not exclude the possibility 
that dead also holds at Pl, but this could be rectified by 
adding a suitable axiom flJDl. 
·· The second approach regmds the problem as having an 
explanation component as well as a prediction component It 
is not appropriate simply to add holds-at(alive,t4) to HJ and 
then to derive new predictions. Rather, holds-at(alive,t4) has 
to be explained. The set of possible explanations of this fact 
can then be added to HJ, generating a set of ammended 
histories, and new predictions can be made with these new 
histories. From a logical point of view, the problem 
involves an abductive component for the explanation and a 
deductive component for the prediction. The abductive 
component is to find an explanation ..1 which is consistent 
with E v DJ v HJ such that holds-at(alive,t4) is in all 
models of the circumscription 

Circum(E v DJ v HJ v ..1 : holds-at < happens, 
initiates, terminates, precond) 

and the deductive component is to make predictions by 
finding those sentences which are in all models of the such 
circumscriptions. Of course, there may be many .d's to 
explain any given facL So the definition of an acceptable 
explanation is further refined. A set of predicates is 
distinguished as the abducibles. In general, given a domain 
theory D and a history H, an acceptable explanation ..1 for a 
fact G is a set of atomic sentences involving only abducible 
predicates, such that G is in all models of the 
circumscription 

Circum(E v D v H v ..1: holds-at< happens, initiates, 
terminates, precond) 

and there is no ..1 * comprising atomic sentences 
involving only abducible predicates such that ..1 ::;, ..1* and 
G is also in all models of the circumscription 

Circum(E v D v H v ..1* ; holds-at < happens, 
initiates •. terminates, precond) 

There may still be many acceptable .d's to explain a 
given fact The set of sentences which is the intersection of 
all such ..1 's is called the set of defeasibly necessary 
conditions for the fact. Each individual .d is a set of 
defeasibly sufficient conditions for the fact Finally, a further 
preference relation<< can be defined on .:i's, which captures 
the idea of a good explanation. For example, .d's may be 
preferred which introduce fewer new events - .dJ < < ..12 iff 
the set of all happens sentences in ..:iJ is a proper subset of 
the set of all happens ·sentences in ..12. A preferred 
explanation is any acceptable explanation ..1 such that there 
is no acceptable explanation .d* where .d* << ..1. Note that 
an explanation may introduce constants which do not appear 
in E v D v H, to name new events for example. 
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Explanations which differ only in the symbols they use for 
new constants are considered the same. 

This formal apparatus allows us to tackle a variety of 
temporal explanation problems. For the bloodless Yale 
shooting problem, we want explanations for holds
at(alive,t4). But the question arises, which predicates do we 
make abducible. For many explanation problems, it is 
appropriate to make the temporal ordering predicates 
abducible along with the predicates happens, time and act. 
That is, the only abducible predicates arc those which can 
feature in a history of events. If these are the only abducible 
predicates, then given the domain DJ which does not include 
any types of event which can unload the gun, the only 
preferred explanation for holds-at( alive ,t4) involves a 
reincarnation: {happens(e), time (e,t), act(e,birth), t < t4, t3 
< t}. Making domain predicates abducible gives a different 
result In particular, if we make terminates abducible, the 
only preferred explanation is {tenninates(e2Joaded)}, that is 
the wait event unloads the gun. 

4. The Stolen Car Problem 

Kautz [1986] posed the following problem. Suppose that 
I park my car in the morning and go to work. At lunch 
time, without going to look at my car, I might reasonably 
apply default persistence and inf er that the car is still where I 
left iL However, when I return to the car park in the evening 
I find that it has been stolen. My previous conclusion that 
the car was still there at lunch time is clearly now open to 
question. The car may have been stolen at any time after I 
parked it and before I observed that it was gone, so I cannot 
say anything about its whereabouts at lunch time. Any 
formalisation of default persistence should deal satisfactorily 
with this kind of scenario. 

The domain can be trivially formalised as follows, using 
two types of event - parlc and steal - and the single 
property in-car-parlc. 

initiales(E,in-CIJl'-park) if act(E.parlc) 
terminates(E,in-car-parlc) if act(E,steal) 

(D2.1) 
(D2.2) 

There is only one event, that of parking the car, which 
we can represent as follows. 

happens( eO) 
act( eOpar/c) 
time( eO ,morning) 

We also have 

morning< lunch-time 
lunch-time < evening 

(H2.1) 
(H22) 
(H2.3) 

(H2.4) 
(H2.5) 

With these axioms alone, in all models of the 
circumscription of E v D2 v H2, minimising according to 
the policy in Section l, default persistence gives us holds
at(in-car•parlc,lullch-time) and holds-at(in-car-parlc,evening). 
Howevei:, if we now seek an explanation for -.holds-at( in-



car-pa:rk,evening), we fi;l1d dW the only prefcrn:d explanation 
is .6 = {happens(e), act(e,steal), time(e,t), morning < t, t < 
evening). Circumscribing E v D2 v H2 v .d yields only 
models in which we have-Jtolds-at(i1N:ar-parlc,evening), but 
because the relative ordering of t and lunch-time is not 
known, we have some models which include holds-at(in-car
park,lunch-time) and others which include holds-at(in-car
parlc,lunch-time ). In other words, we cannot conclude 
anything about the whereabouts of the car at lunch time. 

Does this constitute a solution to Kautz's stolen car 
problem, or is it cheating? The accept.ability of the abductive 
approach to such problems hinges on a view of knowledge 
assimilation which goes beyond the idea of simply adding 
new facts directly into the knowledge base. Suppose that we 
have a knowledge base in the form of a set of sentences T. 
Under a classical view of knowledge assimilation, new facts 
are added directly to T. With an abdoctive view of knowledge 
assimilation, new facts are added to the set of logical 
consequences G of the knowledge base, demanding the 

addition of a set of sentences .1 to T such that T v .1 Ja G. 
That is, each new fact must be explained. Using abduction 
with the Event Calculus, assimilating a new holds-at fact, 
such as the fact that my car is not in the car park in the 
evening, demands the addition of a whole set of happens, 
time, act and temporal ordering sentences, so that the new 
fact becomes a logical consequence of the knowledge base. 
With the stolen car problem, there is a unique preferred 
explanation, but this is not necessarily the case. 
Complications arise when there are many preferred 
explanations for a fact, but I will not address this problem 
here. One approach is to add the disjunction of all the most 
preferred explanations to the knowledge base. 

5. Discussion 

There are two important issues ansmg from the 
abductive approach to temporal projection which merit 
further discussion. The first concerns the relationship 
between approaches which· mix circumscription (or some 
other fonn of default reasoning) for default persistence with 
abduction for explanation, and approaches which employ 
abduction both for default persistence and explanation. The 
second concerns the viability of an approach which uses 
only deduction plus circumscription (or some other form of 
default reasoning). 

Some authors have recommended abduction as an 
approach to default reasoning in general [Poole, 1988), 
[Eshghi and Kowalski, 1989], [Kakas and Mancarella, 
1989). So it would seem to be possible to define an 
abductive framework which can deal with both default 
persistence and explanation. In addition to making happens, 
time, act and temporal ordering predicates abducible, we can 
define persists as -.clipped, and make persists abducible 
[Eshghi, 1988]. It may tum out that this or a similar 
abductive approach to default persistence (such as [Goebel 
and Goodwin, 1987]) is equivalent to the circumscriptive 
approach, but this is a topic for further work. Even if 
abduction can be used for both default reasoning and 
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explanation, it may still be important to keep these two 
uses of abduction conceptually distinct 

As discussed above, another approach to the temporal 
projection problems tackled in this paper is to use deduction 
with circumscription or some other form of default 
reasoning [Morgenstern and Stein, 1988], [Lifschitz and 
Rabinov, 1989]. This might be achieved by writing Axiom 
(E.l) as an equivalence instead of an implication. There are 
several objections to this approach, but none of them seem 
overwhelming. First. it might require writing equivalences 
which are, strictly speaking, false and should be written as 
implications. Second, it seems counter-intuitive to view 
explanation problems like the bloodless Yale shooting 
problem and the stolen car problem as deductive. But then 
again, any method which uses circumscription can't really be 
viewed as purely deductive anyway. Third, the large 
disjunctions which can result from this approach don't 
convey as much information as the set of defeasibly 
necessary conditions plus the set of sets of defeasibly 
sufficient conditions which are obtained with abduction. A 
thorough exploration of the relationship between these two 
approaches is another topic for further work. 

Finally, it is worth adding a few words about 
implementation. Axioms (E.l) to (E.6) were derived from 
the axioms presented in [Shanahan, 1989a], which are all 
extended Hom clauses. It is quite straightforward to c0mpile 
Axioms (E.1) to (E.6) back into extended Hom clauses, and 
we might expect this to be true of most extensions to the 
axioms. When they are expressed in extended Hom clause 
form, a simple extension to resolution will perform 
abduction, and a Prolog interpreter will suffice for deduction 
[Shanahan, 1989a]. 
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Abstract 
Is a default more than just an aasumed premise in a 
logical argument of what to predict? Is recognition 
just conjecturing causes that can be used as premises 
to imply the observations? Is design just choosing 
components that can provably do the job? An on
going research programme by this author and others 
is to try to answer these questions. Rather than advo
cating complex sophisticated theories, we are trying to 
find out where simple solutions break down and only 
add complexity where it is needed. In this paper, I 
argue for this "minimalist" approach to Al, argue for 
a particular representational theory as an appropriate 
starting point, and then report on what we have found 
by such an endeavour. The starting point is a simple 
form of hypo-deductive reasoning where the user pro
vides the forms of· hypotheses they are prepared to 
accept as part of a logical argument. 

1 Minimalist Al 

As in any scientific endeavour we have to come up with 
theories. What should an Al theory look like? What 
should a theory of representation look like? This paper 
is an attempt to justify one representational theory. 

A reasonable way to proceed is to do what could 
be called "minimalist Al". We only use tools that are 
demonstrably required, and only augment them when 
they are proven inadequate for the sort of reasoning 
we want to do. In this way many people have argued 
that any reasoning system should incorporate at least 
the first order predicate calculus. 

One problem with this is that even a very weak logic 
(e.g., Horn clauses with function symbols) can repre
sent any computable function. Therefore a theory that 
says all we need is logic is, at one level, vacuous. We 
already know, if AI is poesible, we can represent intel
ligent reasoning with a Turing machine. 

Just as a hammer is not just a piece of steel we 
can buy at a hardware store (we can use a rock as a 
hammer), an AI theory is more than the invention of 
a new logic, new formalism or even a new system. AI 
is about how to use tools to reason intelligently. 

Ideally an AI theory must come up with a limited 
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repertoire of tools and methodologies for using these 
tools. Under this analysis, research should consist of 
learning how to use this set of tools and only adding 
to it when it can be shown to be inadequate. We don't 
make advances by increasing the number or complexity 
of tools, but rather we make advances when we have 
fewer and simpler tools together with useful ways to 
use these tools. 

2 Logic and Monotonicity 
One of the primary arguments for using logic is that 
the notion of semantics is important (see discussions 
in [Levesque88]). The notion of logical consequence 
( P F= c) is usually taken to mean that c is true in all 
models of P. In other words there is no way that P 
can be true with c being false. If the conclusion c is 
false, then the premises P must be false. This primary 
tenet of logic can be summed up procedurally in the 
statement: 

If you don't like the conclusion of a logical 
argument, don't criticise the logic, criticise 
the premises. 

Suppose we have a logical argument that Tweety 
flies based on Tweety being a bird, and "birds fly" . If 
we subsequently learn that Tweety is an emu, then the 
conclusion (that Tweety flies) is wrong, but the logical 
proof is still valid. This problem of the "monotonic
ity" of logic has lead to many new "logics" to handle 
exceptions. 

The logical argument is valid; we don't like the con
clusion, so we should criticise the premises. What is 
the wrong premise? The wrong premise is ''birds fly". 
This is a premise we don't want to use when the object 
under consideration is an emu. The idea that there are 
premises that we want to use some of the time, but not 
all of the time is the basis behind Theorist [Poole88a]. 

Logic tells us the consequences of our assumptions, 
it doesn't tell us where the assumptions come from. 
What should be the premises of a logical argument? 
The example above shows that they should be what 
we know (our "facts" - what we are not prepared to 
give up) together with hypotheses we are prepared to 
accept as part of an argument. 

:: 



The Theorist conjecture is that we don't need any
thing more than this. We don't need new logics, new 
rules of inference, new semantics, we can do all rea
soning in terms of theory formation using normal logic 
(the idea is independent o{ the logic, but we 888ume 
the first order predicate calculus as we can also argue 
that we need at least this if we want to represent in
directly described individuals, disjunction and explicit 
negation). 

Where should our "hypotheses" come from? The 
answer to this is "I don't know". How should we go 
about answering this question? It seems as though 
the simplest idea is to allow the user to be able to 
provide the forms of 888umptions they are prepared 
to accept as part of an explanation. By using such a 
system we can learn the principles behind such possible 
hypotheses. There seems to be no way, a priori, to say 
that something should or should not be a hypothesis; 
it is only by gaining experience that we will learn this. 
For a start we let the user provide the form of the 
hypotheses. 

3 Theorist 

Theorist [PGA87, Poole88a] is defined in terms of: 

F a set of closed formulae, called the "facts"; these are 
regarded as true of the domain under considera
tion. As such, they are assumed to be consistent. 

H a set of possible hypotheses, instances of which can 
be used as premises of a logical argument. 

Definition: A scenario is F U D where D is a set 
of ground instances of elements of H such that FUD 
is consistent. 

A scenario is a possible partial description of the 
world based on what we know and what we are allowed 
to assume. Consistency means that we do not want to 
make assumptions that we know are false; this seems 
like a minimal requirement for rationality. 

Definition: If g is a closed formula, an explana
tion of g is a scenario that implies g. 

Definition: an extension is the set of logical con
sequences of a maximal (with respect to set inclusion) 
scenario. 

Theorist is an attempt to be a minimalist system. 
It is an attempt to see how far we can go with a very 
simple hypothetical reasoning framework. It is also 
of interest because exactly the same formal definition 
provides a definition for default reasoning [Poole88a] 
abductive reasoning ( wh~re we want an explanation of 
an observation in terms of clauses [PGA87, Poole88b]), 
and also a definition of design (where we want to hy
pothesize a system which provably fulfils some design 
requirements [Finger85]). 
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4 Representational Methodology 

4.1 Abduction, Default Reasoning and 
Design 

Different uses o{ Theorist can be characterised by (a) 
who chooses the assumptions and (b) whether the goal 
is known or not. The first considers whether the sys
tem is free to choose any hypothesis that it wants or 
whether "nature" has already chosen the hypothesis 
and the system has to try to guess the hypothesis cho
sen. The second is whether the goal is known to be 
true or whether it is something that has to be deter
mined. 

Abduction is where the system knows that the goal 
(the observation of the world) is true, but it is not free 
to choose just any hypotheses. Which object is in a 
scene, or which disease a person has, has already been 
determined; all we can do is to guess what is in the 
world based on our observations of the world. We thus 
consider all explanations of the observations as being 
possible descriptions of the world. We only need to 
consider the minimal and least presumptive explana
tions, as if the set of all explanations is covering, the 
set of minimal and least presumptive explanations will 
be as well [Poole89a]. 

Default reasoning can be seen as where the sys
tem does not know whether the goal is true, and is 
not free to choose any defaults it likes. One appeal
ing framework is to predict something only if is ex
plained even when an adversary chooses the hypothe
ses [Poole89a], which corresponds to membership in 
all extensions (which corresponds, propositionally at 
least, to circumscription [Etherington88]). This is a 
very sceptical sort of default prediction. 

Design can be defined as when the system can 
choose any hypothesis it wants. For example, a sys
tem can choose the components of the design in order 
to fulfill its design goal, or choose utterances to make 
in order to achieve a discourse goal. The consistency 
check is used to rule out impossible designs. All other 
sets of components that fulfil the goal are possible, 
and the system can choose the "best design" to suit 
its goal. Design can be done in an abductive way to try 
to hypothesise components in order to imply a design 
goal. Alternatively, design can be done in a default 
reasoning way to prove a design from goals and any 
hypotheses we care to choose. 

Note that these frameworks are different ways to 
use the same formal system for different purposes. All 
ways to use the system may be present in the same 
system [Poole90]. 

4.2 Recognition 
We have divided the sorts of assumption based reason
ing considered here into 3 sorts.1 To fully define the 

1 Note tha.t lea.ming a.nd scientific theory forma.tion a.re 
conspicuous by their absence. This is in order to simplify 

: : 



theory it remains to specify how such reasoning should 
be used. 

Suppose the problem is a recognition task: given an 
observation about the world to find out what could 
be the underlying reality that it corresponds to. This 
problem can be cm into the hypothetical reasoning 
framework of Theorist in at leut two different ways 
(Poole88b, Poole89c]: 

1. We can treat recognition as an abductive problem, 
where we find a set of hypotheses that can be 
added to the knowledge base in order to prove 
the observations. 

2. We can treat this as a prediction problem where 
the problem is to find what follows from the 
knowledge base and the observations, perhaps be
ing able to hypothesise defaults. 

We can think of recognition as finding the "causes" 
of the observations. For abduction we have to axioma
tise cause - ef feet knowledge. For prediction we 
have to axiomatise ef feet --+ cause knowledge. Note 
that the axiomatization of the knowledge does not de
pend on the problem domain but rather in the way 
that the knowledge is to be used. 

For the propositional case, suppose ci, ... , Cn to be 
the possible causes2 of symptom s, where c1, ... , c1: are 
those causes that always produce s. There are a num
ber of ways this knowledge can be represented: 

1. For the abductive systems, we need c; * s as a 
fa.ct for 1 $ i $ le (as we want ~s to rule out 
Ci). We need c; * s to be a possible hypothesis 
for le < j =:; n (we don't want to rule out c; by 
finding out ~s). We also need c, for i = l..n to be 
a possible hypothesis that can be hypothesised if 
we observe s [Poole90]. 
We have to be able to anticipate all possible things 
that can be observed, as we need to be able to find 
an explanation of all observations, even observa.
tions of normality for which "sis acting normally" 
may be a reasonable hypothesis. 

2. For the prediction representation we have a 
choice: 

(a) We can write the closure of the causes explicitly. 
Thus we can write the formula 

•*c1V ... Ven (1) 

the development of the theory a.nd also is following a. com
mon theme in AI that we should try to understand the 
process of reasoning before we consider the problems of 
how such reasoning can be learnt. 

2 This notion of causality is very wea.k, for example one 
cause may be "it just happened that •", or "the normal 
state of affairs for a" (in· which cue we don't really want 
a deeper explanation of why a occurred). Causality is not 
to be regarded as anything deep; it is regarded here as a 
view that is imposed on the world, a.nd is not necessarily 
intrinsic in the world. 
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so that ifs is observed we can conclude that one of 
the possible causes was responsible. We also. need 
the facts c; * s for l $ i $ le in order to be able 
to rule out causes if we know the symptom is not 
observed. Formula 1 forms a.n explicit statement 
of complete knowledge (i.e., that these are all Of 
the possible causes). 

(b) We ca.n write down local causal rules 

81\ d; * c.; 

for i = l..n as facts, and have d, as defaults. 
Again, we also need the facts c.; ~ s for 1 $ i =:;le. 
There are a number of problems with such a rep
resentation including 

- Given s we can conclude the conjunction of 
the c, as opposed to the disjunction of the 
Ci. When we have multiple observations we 
do not group the causes together in a natu
ral manner (for example, instead of conclud
ing (cold I\ exercise) V flu when we observe 
aching_limbsl\sneezing, we find we can con
clude coldl\ezercisel\flu. There is, however, 
no evidence for the conjunction) 

- There is a problem pointed out by Pearl 
[Pearl87a] of cascading causal conclusions 
with evidential reasoning. For example, from 
exercise concluding achingJimbs, and using 
this as evidence for flu. 

There seems to be two solutions to these prob
lems: 

(i) To solve the second problem we can add extra 
preconditions to the rules to ensure the evidential 
rules is only used if the effect has been concluded 
by virtue of evidential reasoning and not by causal 
reasoning [Pearl87a]. It is, however, not so obvi
ous how to use this idea to solve the first problem. 
There is also a problem that arises when we have 
both causal and evidential reasons for a particular 
effect. The preconditions will allow us to hypoth
esise extra causes for the evidence. 

(ii) We can add disabling rules to the knowledge base. 
In order to get the same answers (in all exten
sions) as the completion case 2(a), we need to add 
the rules i-:/: j I\ di - ~d;. Then di V ... V dn is 
in all extensions, from which we can derive equa
tion 1. To make sense of these cancellation ax
ioms, the default d, should be read as "Ci is the 
primary cause of symptom a" (and we only want 
one primary cause). 
If we are considering what is in any extension, 
we can still get into the second problem above. 
From c1 we can use causal rules to conclude s 
and then assume d2 to allow us to conclude c2. 
To fix this problem we can add the cancellation 
axiom c.; => ~d; for i # j. This, however, lets 



us conclude. -.ci by assuming d;. Concluding the 
negation of causes may not seem like a problem, 
however it is if eome proposition and its negation 
can be a cauae. For example, getting an "A" in 
a course may be the cause of some actions, and 
its negation may be the cause of other actions. 
Peculiar side effect. may follow from assuming the 
negation of got.A. 

One of the important differences between the first 
and the second is in the level of detail required of the 
result. In the abductive case the explanation needs 
to be at the detail to logically imply the observation. 
The detail of the explanation is thus determined by 
the observation. For the second case the level of detail 
is determined by the knowledge base and not by the 
observation. 

4.3 Hybrid Abduction-Prediction system 
One intuitively appealin_g architecture we have consid
ered [Poole89a, Poole90j is where the different modes 
of reasoning ar combined, and reasoning proceeds by 
first abducing causes and then using membership in all 
extensions to see what is predicted from these causes. 
The major advantage of this architecture is that we 
only need cause - effect rules, and these same rules 
can be used for both explanation and prediction. 

In order to make this work we need to distinguish 
two types of possible assumptions; those used for ab
duction and those used for prediction. In most do
mains there are possible hypotheses that we want to 
use for abduction that we do not want to use for pre
diction. 

See [Poole90] for a detailed examination of a repre
sentational methodology for this architecture. 

4.4 Design-Recognition Duality 

Another piece that we have to fit into this jigsaw is our 
notion of design. I want to argue that there is a du
ality between the design· problem and the recognition 
problem. 

To understand this duality consider a discourse 
where the speaker is designing her utterances and the 
hearer is trying to recognise the beliefs or goals under
lying the utterance. A useful assumption may be that 
they share their assumptions. 

If the speaker is using assumption-based reasoning 
to derive an utterance (i.e., he proves an utterance 
based on assumptions), in order to share the assump
tions, the hearer should do abductive reasoning to find 
what assumptions were needed to imply the utterance. 

Suppose, however, the speaker did a form of abduc
tive reasoning where he hypothesised actions (in this 
case utterances) that would allow him to conclude his 
goal. In this case to share the forms of assumptions 
the hearer would need to do prediction. That is, she 
tries to see what follows from the utterances based on 
assumptions that the speaker may be using. 
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If the speaker can choose any assumptions then the 
best the hearer can do is conclude what is in all ex
tensions. If however the hearer follows some rules to 
restrict his assumptions, then the hearer can also fol
low the rules in order to give a more refined sense of 
prediction {thus effectively broadening the band-width 
of the communication channel). 

What is important about this is that we need both 
abductive reasoning and prediction style reasoning in 
each case, but we still have a choice as to which we 
use for generation and which we use for recognition. 
What trade-offs are involved is a question we are still 
investigating [Csinger90]. 

4.5 Problems with cancellation axioms. 

We have considered a number of choices that we can 
make in our representational methodology, and have 
discussed some alternatives that do not seem to work 
for various reasons. When building the represent~ 
tional methodology it is important to keep trying 
break the system and determining what ideas do not 
work. Although we have only very limited experience, 
there are a couple of problems that we have found 
arise with the naive system presented so far (and many 
other systems too). 

The first has to do with the facilities available to 
prevent the applicability of defaults. In this discussion 
we have used a form of cancellation axioms. If we want 
c :::;. s to be a default that is not applicable under 
condition e, then we "name" the default [Poole88a), 
with name d, make d a possible hypothesis, make d /\ 
c :::;. s a fact, and make e :::;. -.d a fact. It is interesting 
to know that, while this works for simple examples, it 
runs into problems for larger problems. 

As an example, consider representing the defaults 
"birds fty" , "emus are birds that don't fty" and "if 
something looks like an emu it is an emu". Suppose 
the first default is named 6/(X), so we have the axiom 
6/(X) /\ 6ird(X) :::;. flies(X). If we want to conclude 
that an emu files, we need to cancel this default for 
emus and use the axiom emu(X) => -.6/(X). Using 
this axiom we can conclude that any individual not 
known to be an emu is not an emu by assuming 6 f for 
that individual. For something that looks like an emu 
we need to cancel the defaults that lets us conclude 
the object is not an emu. We thus need the axiom 

looksJike..emu(X) => -.6/(X) 

This knowledge base gets the "right" answer for most 
simple examples, but it doesn't work for the case where 
some object looks like an emu, is not an emu, but 
is a bird. In this case we cannot conclude that the 
object fties. The reaaon is that we were forced to add 
the above cancellation axiom which blocks the correct 
conclusion. 

Brewka [Brewka89] gives other arguments based 
on complexity as to why simple cancellation doesn't 



work. He suggested prioritisation of defaults, but un
fortunately, no one has suggested a representational 
methodology to say how to choose the priorities. 

Another problem arises when we can derive that· 
there is no individual of a certain sort that is nor
mal in every respect (e.g., when we know that every 
bird is peculiar in a some way). In this case we get 
a qualitative version of the lottery paradox. The con
junction of the defaults cannot be used, so membership 
in all extensions does not let us use any of the defaults 
[Poole89b]. 

4.6 Tractability 

To test our representational conjecture we don't try 
to find examples where it works, but rather we try to 
show that it is false. We could show that it is false by 
showing that it is incapable of representing the sort of 
reasoning we need for real problems, by showing that 
it is not able to be implemented, or by showing that 
it is inherently inefficient. 

Showing Theorist is intractable or undecidable do 
not prove it is useless. These indicate that it is pow
erful, not that it is inefficient. The property that we 
would like, is that representing a problem in Thee>
rist does not increase the computational complexity 
of the problem. We want the ability to solve simple 
problems simply, while preserving the ability to solve 
difficult problems. 

5 Conclusion 

One of the aims of this paper was to convince the 
reader that Theorist is a natural and commonsense 
way to reason with defaults. The Theorist research is 
interesting, I believe for a number of reasons: 

It is simple, powerful, and can be motivated in a 
very natural way. 

It can be simply and efficiently implemented3 

[PGA87]. It has been used for many applications. 
Exactly the same formal system can be seen as a ba

sis for default reasoning, abductive reasoning and for 
design. Thus there are independent ways of motivating 
the same system. · 

There is a conjecture that the Theorist framework 
is a.II that is needed for all forms of reasoning. By 
showing how this conjecture is false we will have found 
a principled reason to add more advanced features to 
our repertoire. 

Theorist is probably most important for what it is 
not. It is not a new logic, it does not need a new 
semantics, there are no new opera.tors or rules of in
ference. I have tried to be careful in arguing that we 
should consider useful ways to use normal logic to build 
AI programs and applications rather than inventing 
formalisms that we may not need anyway. 

3 A compiler from Theorist to Prolog is available elec
tronically from the author. 
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ABSTRACT: This paper presents an abductive strat
egy for discovering and revising plausible plans. Can
didate plans are found quickly by allowing them to de
pend on unproved assumptions. The formalism used for 
specifying planning problems makes explicit which an
tecedents of rules have the status of default conditions, 
and they are the only ones that may be left unproved, so 
only plausible plans are produced. Candidate plans are 
refined incrementally by trying to justify the assump
tions on which they depend. The new planning strat
egy has been implemented, and the first experimental 
results are encouraging. 

1 Introduction 

Because of uncertainty and because of the need to re
spond rapidly to events, the traditional view of planning 
(deriving from STRIPS [Fikes et al., 1972] and culminat
ing in TWEAK [Chapman, 1987]) must be revised dras
tically. That much is conventional wisdom nowadays. 
One point of view is that planning should be replaced 
by some form of improvisation [Brooks, 1987]. However 
improvising agents are doomed to choose actions whose 
optimality is only local. Jn many dom~, .goals can 
only be achieved by forecasting the consequences of ac
tions, and choosing ones whose role in achieving a goal 
is indirect. Thus traditional planners must be improved, 
not discarded. 

This paper addresses the issue of how to design a plan
ner that is incremental and approximate. An approxi
mate planner is one that can find a plausible candidate 
plan quickly. An incremental planner is one that can 
revise its preliminary plan if necessary, when allowed 
more time. 

•For correspondence: Department of Computer Science, Uni
versity of Toronto, Toronto M5S 1A4, Canada, (416) 978-7797, 
cpelai.toronto.edu. 
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It is not clear how existing planning strategies can be 
made approximate and incremental. We therefore first 
outline a strategy for finding guaranteed plans using a 
new formalism for describing planning problems, and 
then show how to extend this guaranteed strategy to 
make it approximate and incremental. 

Our approach draws inspiration from work on abduc
tive reasoning. A plan is an explanation of how a goal 
is achievable: a. sequence of actions along with a proof 
that the sequence achieves the goal. An explanation is 
abductive (as opposed to purely deductive) if it depends 
on assumptions that are not known to be justified. We 
find approximate plans by allowing their proofs of cor
rectness to depend on unproved assumptions. Our plan
ner is incremental because, given more time, it refines 
and if necessary changes a candidate plan by trying to 
justify the assumptions on which the plan depends. 

The critical issue in abductive reasoning is to find 
plausible explanations. Our planning calculus uses 
a nonmonotonic logic that makes explicit which an
tecedents of rules have the epistemological status of 
default conditions. The distinguishing property of a 
default condition is that it may plausibly be assumed. 
These antecedents are those that are allowed to be left 
unjustified in an approximate plan. Concretely, every 
default condition in the planning calculus expresses ei
ther a claim that an achieved property of the world 
persists in time, or that an unwanted property is not 
achieved. Thus the approximate planning strategy only 
proposes reasonable candidate plans. 

Sections 2 and 3 below present the formalism for spec
ifying planning problems and the strategy for finding 
guaranteed plans. In Section 4 the strategy is extended 
to become approximate and incremental. Section 5 con
tains experimental results, and finally Section 6 dis
cusses related and future work. 



2 The planning formalism 

Different formal frameworks for stating planning prob
lems vary widely in the complexity of the problems they 
can express. Using modal logics or reification, one can 
reason about multiple agents, about the temporal prop
erties of actions, and about what agents know [Moore, 
1985; Konolige, 1986; Cohen and Levesque, to appear in 
1990]. On the other hand, the simplest planning prob
lems can be solved by augmented finite state machines 
[Brooks et al., 1988], whose behaviour can be specified 
in a propositional logic. The planning problems consid
ered here are intermediate in complexity. They cannot 
be solved by an agent reacting immediately to its envi
ronment, because they require maintaining an internal 
theory of the world, in order to project the indirect con
sequences of actions. On the other hand, they involve 
a single agent, and they do not require reasoning about 
knowledge or time. 

Our nonmonotonic first-order logic for specifying 
this type of planning problem is called the PERFLOG 

calculus.1 The formal aspects of the calculus will be 
discussed elsewhere; for the purposes of this paper PER

FLOG axioms can be understood intuitively as logic prcr 
gram rules, and we shall just use the Yale shooting prob
lem [Hanks and McDermott, 1986] to introduce the cal
culus by example. 

Two "laws of nature" are central. In the following 
rules, think of Sas denoting a state of the world, of A as 
denoting an action, and of do(S, A) as denoting the state 
resulting from performing the action A in the initial 
state S. Finally, think of P as denoting a contingent 
property that holds in certain states of the world: a 
fluent. 

causes( A, S, P) - holds(P, do(S,A)) (1) 

holds(P, S) /\..,cancels( A, S, P) 

- holds(P, do(S, A)). (2) 

Rule ( 1) captures the couimonsense notion of causation, 
and rule (2) expresses the commonsense "law of inertia": 
a fluent P holds after an action A if it holds before the 
action, and the action does not cancel the fluent. Note 
that since in addition to A, one argument of causes 
and of cancels is S, the results of an action (that is, the 
fluents it causes and cancels) may depend on the state 
in which the action is performed, and not just on which 
action it is. 

1 PERFLOG is an abbreviation for "performance-oriented perfect 
model logic": the formal meaning of a set of PERFLOG axioms is 
its perfect model as defined in [Przymuslliski, 1987). 
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Given rules (1) and (2),.a particular planning domain 
is specified by writing axioms that mention the actions 
and fluents of the domain, and say which actions cause 
or cancel which ftuents. In the world of the Yale shoot
ing problem, there are three fluents, loaded, alive, and 
dead, and three actions, load, wait, and shoot. The re
lationships of these fluents and actions are specified by 
the following axioms: 

causes(S, load, loaded) (3) 

holds(loaded,S) - causes(shoot,S,dead) (4) 

holds( loaded, S) - cancels( shoot, S, alive) (5) 

holds( loaded, S) - cancels( shoot, S, loaded). (6) 

The initial state of the world so is specified by saying 
which fluents are true in it: 

holds( alive, so). (7) 

According to the nonmonotonic semantics of PERFLOG 

collections of rules, 

holds( dead, do(do(do(s0 , load), wait), shoot)) 

is entailed by rules (1)-(7). The Yale shooting problem 
is thus solved. 

3 Finding guaranteed plans 

The previous section showed how to state the relation
ships between the actions and fluents of a planning do
main as a P~RFLOG set of axioms. This section describes 
a strategy for inventing plans using such a set of axioms; 
the next section extends the strategy to be approximate 
and incremental. 

A PERFLOG set· of axioms is a set of general logic 
program clauses, and the str~tegy presented here is in 
fact a general procedure for answering queries against a 
logic program. 

Iterntive deepening. The standard PROLOG query
answering strategy is depth-first exploration of the 
space of potential proofs of the query posed by the user. 
Depth-first search can be implemented many times more 
efficiently than other exploration patterns, but it is li
able to get lost on infinite paths. Infinite paths can be 
cut off by imposing a depth bound. The idea of itera
tive deepening is to repeatedly explore the search space 
depth-first, each time with an increased depth bound 
[Stickel and Tyson, 1985]. 

Iterative deepening algorithms differ in how the depth 
of a node is defined. One depth measure that performs 
well, called conspiracy depth, is presented in [Elkan, 

; 



1989]. Informally, this measure says that a subgoal is 
unpromising if its tn~th is only useful in the event that 
many other subgoals are also true. 

Negation-as-failure. Given a negated goal, the 
negation-as-failure idea is to attempt to prove the un
negated version of the goal. H this attempt succeeds, the 
negated goal is ta.ken u false; otherwise, the negated 
goal is ta.ken as true. Negation-as-failure is combined 
with iterative deepening by limiting the search for a 
proof of ea.ch un-negated notional subgoal. If this search 
terminates without finding a proof, then the original 
negated subgoal is ta.ken as true. If a proof of the 
notional subgoal is found, then the negated subgoal is 
taken as false. If exploration of the possible proofs of the 
notional subgoal is cut off by the current depth bound, 
it remains unknown whether or not the notional subgoal 
is provable, so for soundness the actual negated subgoal 
must be taken as false. 

Negation-as-failure is only correct on ground negated 
subgoals, so when a negated subgoal is encountered, it 
is postponed until finding answers for other subgoals 
makes it become ground. This process is called freez
ing [Naish, 1986]. If postponement is not sufficient to 
ground a negated subgoal, then an auxiliary subgoal is 
introduced to generate potential answers. This process 
is called constructive negation [Foo et al., 1988]. 

The performance of the planning strategy just de
scribed could be improved significantly, notably by 
caching subgoals once they are proved or disproved 
[Elkan, 1989]. Nevertheless it is already quite usable. 

4 Finding plausible plans 

This section describes modifications to the strategy of 
the previous section that make it approximate and in
cremental. In the same way that the guaranteed plan
ning strategy is in fact a general query-answering proce
dure, the incremental planning strategy is really a gen
eral procedure for forming and revising plausible expla
nations using a default theory. 

Any planning strategy that produces plans relying on 
unproved assumptions is ipso fac#o unsound, but by its 
incremental nature the strategy below tends to sound
ness: with more time, candidate plans a.re either proved 
to be valid, or changed. 

Approximation. The idea behind finding approximate 
plans is simple: an explanation is approximate if it de
pends on unproved assumptions. Strategies for forming 
approximate explanations can be distinguished accord
ing to the class of approximate explanations that each 
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• 
may generate. One way to define a class of approximate 
explanations is to fix a certain class of subgoals as the 
only ones that may be ta.ken as assumptions. Looking 
at the PERFLOG formalism, there is an obvious 'choice 
of what subgoals to allow to be assumptions. Negated 
subgoals have the epistemological status of default cqn
ditions: the nonmonotonic semantics makes them true 
unless they a.re forced to be false. It is reasonable to 
assume that a default condition is true unless it it is 
provably false. 

There is a second, procedural, reason to allow negated 
subgoals to be assumed, but not positive subgoals. 
Without constructive negation, negated subgoals can 
only be answered true or false. Negation-as-failure never 
provides an answer substitution for a negated subgoal. 
Therefore unproved negated subgoals in an explanation 
never leave "holes" in the answer substitution induced 
by the explanation. Concretely, a plan whose correct
ness proof depends on unproved default conditions will 
never change because those defaults a.re proved to hold. 

. Incrementality. An approximate explanation can be 
refined by trying to prove the assumptions it depends 
on. If an assumption is proved, the explanation thereby 
becomes "less approximate". As just mentioned, prov
ing an assumption never causes a plan to change. On 
the other hand, if an assumption is disproved, the ap
proximate plan is thereby revealed to be invalid, and it 
is necessary to search for a different plan. 

Here are the details of the modifications made to 
the planning strategy of the previous section. When 
a negated subgoal becomes ground, the proof of its no
tional positive counterpart is attempted. If this attempt 
succeeds or fails within the current depth bound, the 
negated subgoal is ta.ken as false or true, respectively, 
as before. However, if the depth bound is reached dur
ing the attempted proof, then the negated subgoal is 
given the,stattis of an assumption: -·-

Initially any negated subgoal is allowed to be as

sumed. Each iteration of iterative deepening takes place 
with an increased depth bound. For each particular 
(solvable) planning problem, there is a certain minimum 
depth bound at which one or more approximate plans 
can first .be found. Each of these first approximate plans 
depends on a certain set of assumptions. In later iter
ations, only subsets of these sets a.re allowed to be as
sumed. This restriction has the effect of concentrating 
attention on either refining the already discovered ap
proximate plans, or finding new approximate plans that 
depend on fewer assumptions. 



5 Experimental results 

Implementing the planning strategies described above is 
straightforward, becauae the PERFLOG calculus is based 
on definite clauses. In general, it is insufficiently real
ized how efficiently logic.a baaed on definite clauses, both 
monotonic and nonmonotonic, can be implemented. 
The state of the art in PRO LOG implementation is about 
nine RISC cycles per logical inference [Mills, 1989). Any 
PERFLOG theory could be compiled into a specialized 
incremental planner running at a comparable speed. 

The experiment reported here uses a classical plan
ning domain: a lion and a Christian in a stadium. The 
goal is for the lion to eat the Christian. Initially the 
lion is in its cage with its trainer, and the Christian is 
in the arena. The lion can jump from the cage into the 
arena only if it has eaten the trainer. The lion eats a 
person by pouncing, but it cannot pounce while it is al
ready eating. The following PERFLOG theory describes 
this domain formally. 

7. 
% rules for hov the world evolves 

holds(P,do(S,!)) :
cauaea(!,S,P). 

holds(P,do(S,!)) :-
holds(P,S), not(cancela(!,S,P)). 

7. 
% the effects of actions 

causes(pounce(lion,I),S,eata(lion,I)) ·
can(S,pounce(lion,X)). 

can(pounce(l,Y),S) :-
holds(in(I,L) ,.S), holda(in(Y ,L) ,S), 
not(call(I • Y)), 
not(Z,holda(eata(X,Z) ,S)). 

causes(jump(X),S,in(I,arena)) :
can(jump(I),S), holda(in(I,cage),S). 

can(jUJ1p(lion),S) :
holda(eata(lion,trainer),S). 

cancels(drop(X,Y),S,eata(I,Y)) ·
can(drop(I,T),S). 

can(drop(X,Y),S) :-
holds(eata(I,Y),S). 

holds(in(X,H),S) :-
holds(eats(lion,I),S), holds(in(lion,H),S). 

7. 
7. the initial state of the world 

holds(in(christian,arena),sO). 
holds(in(lion,cage),aO). 
holds(in(trainer,cage),sO). 
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Using the guaranteed planning strategy of Section 3, the 
query holda(eats(lion,chriatian),P)? is first solved 
with conspiracy depth bound 19, in 4. 75 seconds. 2 The 
plan found is 

P • do(do(do(do(aO,pounce(lion,trainer)), 
juap(lion)) , 
drop(lion,trainer)), 
pounce(lion,chriatian)). 

Using the approximate planning strategy of Section 4, 
the same query is solvable in 0.17 seconds, with conspir
acy depth bound 17. The candidate plan found is 

P • do(do(do(aO,pounce(lion,trainer)), 
juap(lion)), 
pounce(lion,chriatian)). 

This plan depends on the assumption that no Z exists 
such that 

holda(eata(lion,Z),do(do(aO,pounce(lion,trainer)), 
juap(lion))). 

Although the assumption is false and the plan is not cor
rect, it is plausible. Note also that the first two actions 
it prescribes are the same as those of the correct plan: 
the approximate plan is an excellent guide to immediate 
action. 

6 Discussion 

The work reported here ties together ideas from a num
ber of different research areas. 

Approximate planning. From a knowledge-level point 
of view, the strategy for finding plausible plans is search
ing in an abstraction space where the available actions 
are the same as in the base space, but they are stripped 
of their difficult-to-check preconditions. Compared to 
other abstraction spaces [Knoblock, 1989), this space 
has the advantage that the execution of a plan invented 
using it can be initiated without further elaboration, if 
immediate action is necessary. 

Incremental planning. An incremental approximate 
planner is an "anytime algorithm" for planning in the 
sense of [Dean and Boddy, 1988). Anytime planning al
gorithms have been proposed before, but not for prob
lems of the traditional type treated in this paper. For 
example, the real-time route planner of [Korf, 1987) is 
a heuristic graph search algorithm, and the route im
provement algorithm of [Boddy and Dean, 1989] relies 
on an initial plan that is guaranteed to be correct. 

2 All ti~es are for an implementation in CProlog, running on 
a Silicon Graphlcs machlne rated at 20 MIPS. 



Abductive reasoning. Abduction mechanisms have 
been investigated a great deal for the task of plan recog- . 
nition, not so much for the task of inventing plans, and 
not at all for the task of inventing plausible plans. These 
three different tasks lead to different choices of what 
facts may be assumed. In the work of [Shanahan, 1989) 
for example, properties of the initial state of the world 
may be assumed. In our work, the facts that may be 
assumed say either that an established property of the 
world persists, or that an unestablished property does 
not hold. 

Directions for future work. One important problem 
is to quantify how an approximate plan is improved by 
allowing more time for its refinement. Another problem 
is to find a planning strategy that is focused as well as 
approximate and incremental. A focused strategy would 
be one that concentrated preferentially on finding the 
first step in a plan-what to do next. 
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ABSTRACT 

Expectation failure diagnosis involves explaining 
why a faulty belief was inferred. Typical ap
proaches to failure diagnosis have taken this prob
lem to be an independent task, ignoring the goals 
of the system desiring the diagnosis. This paper 
discusses the effect that such higher-level goals 
can have on the process of failure diagnosis, and 
suggests that failure-driven learning should be 
viewed explicitly as a goal-directed planning task. 

Expectation failure diagnosis 
Expectation failure diagnosis is the problem of determin
ing why a problem-solving system has inferred a faulty 
belief, usually in the service of fixing the system so that 
the same mistakes won't be repeated in the future (see, 
e.g., [Sussman, 1975; Schank, 1982]). The most common 
approach to this problem is to start from a description of 
the failure and perform a more or less undirected search 
for a causal chain showing why it occurred. In addition 
a number of diagnosis systems have been proposed that 
utilize knowledge of the assumptions that the system 
used in initially inferring the belief [deKleer, 1987; Sim
mons, 1988; Chien, 1989; Collins, Birnbaum, and Krul
wich, 1989]. Such knowledge can constrain the search for 
a failure explanation to beliefs and inferences that were 
relevant to the original faulty belief. 

Very few systems, however, take the higher-level 
goals of the system into atcount in performing expla
nation, and those that do (e.g., [Kedar-Cabelli, 1987; 
Leake, 1988]} treat this as a seperate step that occurs 
before or after the explanation component is invoked. 
We will see that the actual process of constructing a 
functionally useful explanation will be affected by these 
goals. Further, we will propose that the process of di
agnosing and correcting failures can best be viewed as 
a planning task, since a consideration of the impact of 
goals on the explanation process leads to a concern with 
standard planning problems such as goal interaction. 

To understand the effect of higher-level goals on the 
diagnosis process, consider the situation of a person who 
decided to leave his car outside on a snowy night when 
the temperature went below zero. Upon leaving his 
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house in the morning, he finds that the car won't start. 
A skeletal explanation for this problem is that the car 
isn't starting because it was left outside overnight on 
a cold night, and cold weather is bad for cars. With
out elaborating the explanation further, it can be seen 
that, if the explanation is correct, the problem can be 
prevented in the future by not leaving the car out on 
cold nights, e.g., by garaging it. If the person is con
cerned only with making sure that the car will work in 
the future, this plan will suffice to meet his needs, and 
no further explanation is necessary. 

If, on the other hand, it is crucial that the car be re
stored to working condition immediately, more explana
tory effort will be required. In particular, the explana
tion will have to be elaborated far enough to pinpoint 
a problem that can be quickly corrected, such as a run
down battery or a frozen gas line. To generate such 
an explanation, the person will have to search through 
a large space of causal knowledge about cars, involving 
qualitative reasoning about the car's engine, quantitative 
knowledge of fluid freezing points, and electrical poten
tials, and knowledge of the precise weather conditions. 
This search is potentially very expensive. 

Most aspects of a car are not, however, accessible to 
our person, assuming that he is not an auto mechanic. 
Thus, his aim in elaborating the explanation should not 
be to search the entire space, but rather to determine as 
quickly as possible whether what is wrong is something 
that he is able to fix on his own. As soon as it becomes 
clear that the problem is not going td be fixable, further 
effort expended on explanation is useless as far as the 
goal of getting the car going is concerned. A good strat
egy might, therefore, be to consider whether the problem 
can be fixed by adding a fluid, recharging the battery, 
or getting the car rolling, and, if not, suspending further 
effort and calling a mechanic. 

There are several points made by this example. First, 
the extent to which an explanation must be elaborated 
will depend upon whether it is currently sufficient to ful
fill the planner's overall goal in carrying out the explana
tion process. Explantions aimed at suggesting plans of 
action, for example, can be halted as soon as a workable 
plan is found. Second, the order in which the explainer 
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searches the space of possible explanations will critically 
depend upon the goals being addressed. In particular, 
the planner should focus effort on determining quickly 
whether the result of the explanation is likely to be use
ful for the explainer's purposes, or, as in the case of a 
mechanical explanation of a car problem that does not 
suggest a fix, will represent a wasted effort. Third, deci
sions regarding when the explainer should stop explain
ing and what parts of the explanation it should elabo
rate first cannot be made a priori, but must be made 
in the course of explaining the failure, since the decision 
depends upon the precise nature of the explanation sug
gested. In short, this example demonstrates the need for 
explicit consideration of higher-level goals in the process 
of diagnosis. 

A fourth point, which is not our main thrust in this 
paper, but which arises from our analysis, is that an 
explanation process can take full advantage of the con
straints offered by the consideration of the explainer's 
goals only if the explanation is generated hierarchically. 
In our example, for instance, it is critical that the ex
plainer generates the explanation that the car is the vic
tim of cold weather before it attempts to elaborate the 
precise causal mechanism through which the weather af
fected the car. An explanation process that tried to pro
ceed at a single, predefined level of granularity would risk 
missing the fact that, for some purposes, the explanation 
blaming cold weather is good enough. 

Let's look now at an example within the domain of 
our system, which learns strategic concepts from expec
tation failures that arise in plan execution, in the domain 
of chess [Krulwich, Collins, and Birnbaum, 1989]. Our 
system constructs its explanations by searching through 
explicit justification structures that are maintained for 
its beliefs by examining these justifications in light of a 
description of the failure that occurred. It is designed to 
start out playing chess at a novice level and improve by 
learning strategic concepts. Suppose that our system has 
a set of threat detectors that cannot detect en passant 
pawn captures [Birnbaum, Collins, and Krulwich, 1989]. 
These threats, which are unknown to many novice chess 
players, involve a pawn that has just made a two-square 
forward move being captured by another pawn moving 
(diagonally) into the square that the first pawn skipped 
over. Such a system may have a pawn which it expects 
to be safe from attack even though it is in fact suscep
tible to an en passant capture. The justification for the 
expectation that the piece is safe from attack would be 
that there is believed to be no threat against the pawn, 
which would in turn be justified by the fact that none of 
the system's threat detectors signal a threat against it. 
The expectation that the piece is safe from attack will 
fail if the opponent takes the piece using an en passant 
capture, and the system will need to explain why this 
expectation failed. A skeletal explanation of the fail
ure is simply that the computer advanced the pawn two 
squares, thinking that there were no threats against it, 
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while the opponent was able to make a move with his 
pawn that captured it. The computer could decide that 
it's sufficient to merely satisfy the higher-level goal of 
ensuring that pawns will not be taken in this manner in 
the future. For this goal, the skeletal explanation will 
suffice as it stands, because the fact that the computer's 
advancing its pawn two squares enabled the computer's 
move can lead the computer to decide never to advance 
its pawn two squares. On the other hand, the computer 
could decide to elaborate the explanation further. To 
do this completely involves explaining why the computer 
advanced the pawn, why the threat detection mechanism 
failed to signal a threat, and how the opponent was able 
to execute the undetected threat. If the computer's goal 
is specifically to prevent the incorrect expectation from 
being made in the future, the system should focus on ex
actly why its threat detection mechanism didn't signal a 
threat. This will lead to the explanation that there did 
not exist a threat detector that could detect the threat 
that the opponent made. 

Each of these two explanations will be used to learn 
from the failure, and the way in which the system will 
avoid making the mistake after learning will depend on 
the goal that was assumed by the diagnosis mechanism. 
If the system sufficed to ensure in the simplest way that 
pawns are not taken in this manner in the future, the 
explanation will be that the computer had advanced its 
pawn and the opponent had captured it. This explana
tion could lead to the computer's decision never to ad
vance its pawns two squares at a time. Alternatively, this 
explanation could lead the computer to modify the plan 
it was in the process of executing to include a counter
plan that eleminates the threat. This would only handle 
en passant threats when the computer is executing the 
same plan, but this is the cost of not performing the de
tailed diagnosis of the system's detection mechanism. If. 
however, the system decided to pursue the general case 
of not expecting the pawn to be safe in similar situations, 
the explanation will be that there did not exist a threat 
detector that detected the opponent's move. This expla
nation will lead the system to add a new threat detector 
for en passant captures. 

Several of the points made about the car example 
should be clear from this example as well. First, a hierar
chical diagnosis mechanism is needed so that the system 
can focus on aspects of the explanation that are relevant 
to the active higher-level goal. Second, the decisions 
regarding which aspects of the explanation should be 
elaborated must be made with respect to the higher-level 
goals of the system. If the goal is not to expect the pawn 
to be safe, it's irrelevant why the computer advanced the 
pawn in the first place, while if the goal is to ensure the 
pawn's safety in the future it may be irrelevant why the 
computer was unable to detect the threat. Third, the 
constraints of the goals on the explanation can only be 
determined in the process of diagnosis, because they de
pend on the usefulness of the specific components of the 



skeletal explanation. 

Goal-directed diagnosis 

Let's now consider a diagnosis mechanism that is capable 
of performing these diagnoses. This mechanism will ex
plain failures in two steps. The first step is to develop a 
skeletal explanation of the failure which will be a deduc
tively correct explanation but will lack explanations for 
any of the details. In the car example above this skele
tal explanation was the car isn't starting because it was 
left outside overnight on a cold night and cold weather is 
bad for cars. In the example of en passant captures, the 
skeletal explanation was the computer advanced its pawn 
two squares, having not detected any threats against it, 
and the opponent was able to make a move with his pawn 
that captured it. These skeletal explanations do in fact 
explain their respective failures, but they are at too high 
a level of granularity to be useful in most situations. 
The second step in the diagnosis, therefore, is to elab
orate the aspects of the skeletal explanations that are 
considered important for the higher-level goals of the 
system. This is achieved using diagnosis methods, which 
give a method of furthering the explanation for a given 
aspect of an explanation and a higher-level goal. This 
mechanism makes the simplifying assumption that the 
higher-level goals are available a priori and can be used 
to direct the search for an explanation. Components of 
a skeletal explanation are maintained along with their 
own subgoals, which reflect how they relate to the fail
ure being explained. Each component of the top-level 
skeletal explanation is tagged with the same goal as the 
higher-level goal given to the diagnosis system. As the 
explanation is elaborated the lower level aspects of the 
explanation may have different goals, reflecting how they 
relate to the failure. 

To demonstrate the workings of such a diagnosis sys
tem, consider the first of the possible higher-level goals 
in the en passant example: 

• Don't expect the pawn to be safe in future similar 
situations 

The system should realize that the most important 
aspect of the skeletal explanation to elaborate is that 
the threat detection mechanism didn't detect ~y threats 
against the pawn. Its goal in explaining why this was the 
case is to make it untrue in the future, because this will 
lead to the higher-level goal's being achieved. This sub
goal is equivalent to the subgoal to have it be true in 
similar future situations that the threat detection mech
anism detects a threat. The diagnosis mechanism should 
then use the explicit justification structures to elaborate 
the statement the detection mechanism didn't detect a 
threat into no threat detectors detected a threat. The 
goal in explaining this is also elaborated, becoming the 
goal to have a threat detector detect a threat in similar 
future situations. This aspect .of the skeletal explanation 
does not have to be elaborated any further, because it 
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• Explanation aspect: Negation referring to the 
system's decision-making "' 
Goal: Make the implied belief not be inferred in 
the future 
Method: Explain why the aspect was true, wi:th 
the goal of having it not be true in the future 

• Explanation aspect: Negated bounded existen
tially quantified expression 
Goal: Make the bounded existentially quantified 
expression true 
Method: Done, with aspect as instruction to add 
to quantified-over set 

Figure 1: Explanation methods for higher-level goal pre
vent inference 

can be directly used to achieve the goal. The learning 
component of the system will handle this by taking the 
statement "there does not exist a threat detector that 
detects a threat in this situation" as a command to add 
a threat detector. 

To complete this failure diagnosis, the system still has 
to explain exactly how the opponent moved his pawn to 
capture the computer's. The diagnosis system should 
attempt to elaborate on this aspect of the explanation, 
but it will be unable to do so because the system doesn't 
know about the en passant move used by the oppo
nent. At this point it can try to use general notions of 
move enablement along with standard explanation-based 
generalization techniques [DeJong and Mooney, 1986; 
Mitchell, Keller, and Kedar-Cabelli, 1986), but it may 
have to ask the user for help in correctly characterizing 
the move. 

In diagnosing the failure with respect to this higher
level goal, the system used the diagnosis methods shown 
in figure I. Now consider the second of the possible 
higher-level goals in the example: 

• Ensure that the pawn will be safe in future similar 
situations 

The system should realize here that the aspect of the 
explanation that says the computer advanced its pawn 
two squares is under the control of the computer, and 
that if it is avoided in the future the opponent will not be. 
able to make the move that it did. The learning system 
should realize from this that if it avoids this being the 
case in the future, that is, if it never advances a pawn 
two squares, the opponent will not be able to capture 
pieces in this way. This diagnosis method is shown in 
figure 2. 

We saw in the examples above that particular aspects 
of a skeletal explanation are likely to have several meth
ods to elaborate on them, each of which is applicable in 
a different: situation. The potential complexity of choos
ing among and combining different diagnosis methods 



• Explanation aspect: Proposition referring to the 
computer's actions 
Goal: Make the implied belief be true in the future 
Method: Done, with the aspect as something to 
be avoided in the future 

Figure 2: Explanation methods for higher-level goal 
make inference true 

has led us to propose viewing goal-directed diagnosis as 
a planning process, where the diagnosis module will be 
given an expectation failure (along with its associated 
justification) and a higher-level goal, and will decompose 
this goal to get a diagnosis process that will construct 
an explanation useful for achieving the given goal 1. This 
view of learning as planning is predicated on the fact that 
typical planning issues, such as interactions between sub
goals and choice of alternative goal-satisfaction methods, 
will arise when an explanation system is given a diagno
sis goal and a set of possible methods for explaining the 
failure given the goal. Viewing diagnosis in this way ne
cessitates explicit representation of diagnosis goals and a 
theory about the explanations that will be functionally 
useful in achieving each goal. Within a system of goal
directed failure diagnosis, learning from a failure involves 
the following steps: (1) Detecting the failure and deter
mining the goal of learning; (2) Explaining the failure 
in light of the goal; (3) Using the explanation to derive 
a modification of the system; and ( 4) Instant.iating the 
modification to learn from the failure. 

In the en passant example given above, this involves 
first determining that the expectation that the piece was 
safe failed, and that the system has a goal of not expect
ing it to be safe in the future. Second, the system should 
spawn a goal to explain the pawn's not being safe with 
the goal of not making the inference in the future. This 
explanation should be that there did not exist a threat 
detection rule that detected the threat of the opponent's 
pawn again the computer's pawn. Third, this explana
tion gives a fix of adding a threat detector to detect the 
threat, and instantiating this fix adds the detector. 

Conclusion 

We have illustrated the effect that goals have on the 
process of diagnosing expectation failures, and the con
sequent need to explicitly represent and reason about 
these goals in a complete model of explanation. We have 
proposed viewing failure diagnosis and repair as a plan
ning task. Future work will determine the effect this will 
have on other areas of explanation and learning. 

1This is different from Hunter's knowledge acqui1ition 
planning [Hunter, 1989], which .deals with a system's plan
ning globally the types of things that it needs to learn. 
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Parsimonious covering theory (PCT) is a 
mathematical model of abductive reasoning for 
diagnostic problem-solving [Reggia et al, 1983, 
1985; Peng & Reggia, 1990). It provides a for
mal, application independent theory of the under
lying causal knowledge and the reasoning 
processes involved in diagnostic inference, as 
well as criteria for plausibility (coherence, accep
tability) of explanatory hypotheses. This paper 
begins to examine the extent to which the princi
ples and results of PCT, originally formulated for 
diagnostic reasoning, can be applied to non
diagnostic tasks. A brief introduction and sum
mary of PCT is given first. Then, PCT is com
pared to a theory of explanatory coherence in 
abduction and related to various aspects of 
natural language processing. 

Parsimonious Covering Theory (PCT) 
In the simplest form of PCT there is a set of 
disorders D and a set of manifestations ("symp
toms") M. For each disorder di, there is a con
nection (association) between d1 and_ each man
ifestation mi that can be caused by di. A subset 
of M, denoted M•, represents the set of all man
ifestations known to be present. A set of disorders 
o, is called a cover of the given M+ when the 
disorders in 0 1 can cause all of the manifestations 
in M•. A set of disorders 01 is an explanatory 
hypothesis if 1) o, is a cover of M•, and 2) 01 is 
parsimonious. A difficult ·issue in diagnostic rea
soning theories in general, including PCT, has 
been precisely defining what is meant by the 
"best", "most plausible", "simplest" or "most par
simonious" explanation for a given set of facts 
[deKleer and Williams, 1986; Josephson et al, 
1987; Pople, 1973; Peng and Reggia, 1987; 
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Reggia et al, 1983, 1985; Reiter, 1987]. Previous 
notions of plausibility have largely been based on 
subjective criteria; we consider two of these here. 

An early criterion of plausibility used in PCT 
and by others is called minimal cardinality: expla
natory hypotheses with the fewest number of 
hypothesized components are preferable. In 
applying PCT to specific diagnostic problems, it 
quickly becomes evident that minimal cardinality 
is an inadequate measure of plausibility. For 
example, in medical diagnosis two common 
diseases may together be more plausible than a 
single rare disease in explaining a given set of 
symptoms [Reggia et al, 1985), and in electronic 
diagnosis analogous examples exist [Reiter, 
1987). For this reason, PCT as well as other 
models of diagnostic inference have adopted a 
more relaxed criterion of plausibility which we call 
irredundancy: a set of disorders 0 1 that covers 
(causes all of) the manifestations in ~is irredun
dant if it has no proper subsets which also cover 
M•. Although this criteria does not directly favor 
the smallest set of propositions, irredundancy is a 
preferable criterion because it handles cases like 
the medical and electronics examples referenced 
above while still constraining the number of 
disorders in an hypothesis. However, irredun
dancy has the problem that in applications it may 
identify many implausible hypotheses as well as 
the plausible ones, and as indicated below, may 
in some cases still fail to identify the most reason
able hypothesis. 

These criteria, used in most theories of expla
natory plausibility, including PCT, are subjective. 
An important issue is whether one might devise 
objective measures of plausibility and then ask 
under what conditions various subjective criteria 
would work or fail according to the objective 



criteria. Recently, we generalized Bayes' 
Theorem to apply to diagnostic problems formu
lated in PCT [Peng and Reggia, 1987]. Each 
disorder d1 is associated with its prior probability 
p1• Each causal link is associated with a number 
cii• the causal strength from d1 to r11j representing 
how frequently di causes mi. Under assumptions 
less restrictive than those traditionally made with 
Bayesian classification, the relative likelihood 
L(Di.M+) of any potential explanatory hypothesis 
0 1 given the presence of M+ can be calculated 
using relevant Pi and cii values. L(Di. M+) can be 
proven to differ from the posterior probability 
P(DdM+) by only a constant. Using the objective, 
albeit limited, measure L(Di.M+), one can ask 
under what conditions various plausibility criteria 
such as minimal cardinality, irredundancy, and 
others would be guaranteed to identify the most 
probable hypothesis. 

Analytical treatment of this question leads to a 
number of interesting results [Peng and Reggia, 
1987]. For example, minimal cardinality is only an 
appropriate criterion when, for all disorders dj, the 
prior probabilities are very small and about equal, 
and the cii are fairly large in general. Otherwise, 
it may be that the most probable explanation does 
not have minimal cardinality, supporting the con
clusion above that counting is not sufficient. In 
fact. there are situations where the most probable 
explanation does not even satisfy irredundancy. 

With this brief background, we now turn to the 
issue of whether the principles and results in PCT 
can be adapted for use in non-diagnostic prob
lems. The general area of theory formation is 
considered first, followed by some aspects of 
natural language processing. 

Theory of Explanatory Coherence (TEC) 
The Theory of Explanatory Coherence (TEC) is a 
general framework for considering the plausibility 
of explanatory hypotheses [Thagard, 1989). TEC 
is intended to apply to both scientific reasoning 
and "reasoning in everyday life", which certainly 
includes diagnostic inferences. Its foundations 
are a set of seven heuristic principles that 
describe the "coherence" and "acceptability" of 
explanatory hypotheses. TEC differs from PCT in 
its informal (as opposed to mathematical) formula
tion and TEC's boader orientation towards general 
abductive reasoning rather than diagnosis. 
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Roughly speaking, asserting the 
presence/absence of manifestation mi or disorder 
d1 in PCT corresponds to a proposition in TEC, 
and a parsimonious cover represents specification 
of the function which defines system coherence 
(TEC Principle 7). Because of its restricted appli
cability to diagnostic problem-solving, PCT does 
not address some issues of TEC (e.g., analogy). 
However, like TEC, PCT precisely defines the 
notion of explanatory hypotheses and what makes 
them plausible, has been applied to specific appli
cations, and has been formulated as a connec
tionist model [Peng & Reggia, 1989; Wald et al, 
1989]. 

We now focus on comparing some of the fun
damental principles or assumptions underlying 
TEC and PCT. The first observation is that, to 
the extent they can be compared, these two 
independently-developed theories are in broad 
and general agreement. Starting from elementary 
hypothesis elements, both theories are concerned 
with the construction of composite hypotheses 
that can account for observed data. Both theories 
give priority to observational data, and both adopt 
some notion of parsimony in judging the plausibil
ity of competing hypotheses. This broad, top
level correspondence between the basic principles 
in TEC and PCT allows one to conclude that, 
whatever the impreciseness in our current 
definition of abduction, there is at least the begin
nings of a concensus on some of the fundamental 
properties of an abductive inference system. 

However, the differences between TEC and 
PCT are more interesting. Two of them are 
briefly considered here. Consider first one of the 
central principles of TEC: 

TEC Principle 2c: 
"If P1, ..• , Pm explain Q, then ... 
the degree of coherence is inversely 
proportional to the number of 
propositions P1, ••• , Pm." 

TEC's measure "degree of coherence" is related 
to the notions of plausibility and probability of 
explanatory hypotheses in PCT. As noted above, 
our experience with PCT and diagnosis suggests 
that counting propositions (TEC Principle 2c) can 
be an inadequate measure of "coherence" or 
plausibility. 

It has been pointed out [Thagard, 1989] 
correctly that in some nondiagnostic domains the 
probabilities do not exist. They do not really exist 



in most diagnostic applications either. However, 
since TEC and PCT are intended to be theories 
that encompass diagnostic reasoning, they cannot 
ignore measures of likelihood that go beyond 
counting, be they numeric probabilities or other 
nonnumeric, subjective measures. Some meas
ure of "prior plausibility" or "intrinsic merit" and 
"conditional plausibility" of causation is essential 
in diagnosis, and seems to be just as important in 
scientific and legal reasoning as well. Basing 
coherence on counting propositions as in TEC 
Principle 2c would therefore need revision. 

Another TEC principle states that if many 
relevant observations are unexplained, then the 
coherence of a hypothesis component is reduced. 
Specifically, 

TEC Principle 6b: 
"If many results of relevant experimental 
observations are unexplained, then the 
acceptability of a proposition P that 
explains only a few of them is reduced." 

This seems to imply that the plausibility of a 
hypothesis element increases when new evidence 
supporting it is given. However, a consequence 
of the Bayesian analysis of PCT [Peng & Reggia, 
1987] is the conclusion that this apparently rea
sonable heuristic is not always correct. A new 
observation may sometimes cause a decrease in 
the likelihood of a hypothesis component that can 
cause/explain that observation if that observation 
supports a rival hypothesis element more strongly 
at the same time. 

It can be concluded that the general heuristic 
principles of TEC and the diagnosis-specific 
framework of PCT are in agreement about central 
issues. However, the experiences with PCT sug
gests that some of the details of TEC will need to 
evolve further if it is to serve as a general theory 
of abduction. 

Natural Language Processing 
Recently, a growing number of Al researchers 
have been working with the assumption that 
abductive inference underlies natural language 
processing. For example, natural language pro
cessing involves context-sensitive disambiguation 
of word senses and inferences about plausible 
explanations at a low level (e.g., garden path sen
tences, ellipses, and anaphora resolution). Simi
lar examples exist for high level natural language 
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processing such as inf erring the plans of the parti
cipants in a dialog. 

As an example, an analogy between diagnostic 
problem-solving as formulated in PCT and word 
sense disambiguation in natural language pro
cessing can be identified: 

Word·Sense 
PCT Disambiguation 

manifestation word 
disorder sense 
causal relation word-sense assoc. 

In terms of the knowledge used, both tasks 
involve the use of associative knowledge. like 
disorders and manifestations associated by causal 
relations in diagnostic problems, natural language 
processing involves associations between lingui.s
tic entities (e.g., word senses) and their manifes
tations (e.g., words). Such associative knowledge 
in both tasks is ambiguous. Similar to a manifes
tation having multiple possible causative disord
ers, a word (e.g., fly) may also have multiple pos
sible senses or meanings (e.g., small insect, 
baseball hit high in the air, perform a task rapidly, 
etc.). The similarity also exists in problem
solving. Like an explanation for a set M+ of 
present manifestations, the "meaning" of a 
sequence w+ of words as a multiple-component 
hypothesis must be constructed from individual 
elementary semantic concepts such as word 
senses. Disambiguation of a word is context
sensitive, and thus a parsimony principle may 
play a role in this disambiguation. Probabilistic 
knowledge about the uncertainty of associations 
and about the average frequency of occurrence of 
entities may also play some role in disambigua
tion (e.g., the word "ball" is more likely to be 
associated with the "toy"' sense than with the 
"dance" sense). 

There are some substantial differences, of 
course, between diagnostic inference and natural 
language processing. For example, the order of 
manifestations in diagnostic problem-solving is 
often insignificant to a plausible solution, but the 
order of words in a sentence is usually an impor
tant piece of information used in word sense 
disambiguation. Also, in diagnosis, if several 
hypotheses cannot be further discriminated, they 
may all be accepted as a tentative problem solu
tion. In natural language processing a single 
coherent explanation is generally desired. 



Despite these differences, the strong similarities 
between these two categories of problems sug
gest the possibility of applying parsimonious cov
ering theory to solve certain natural language pro
cessing problems. 

An exploratory study was undertaken to exam
ine this issue [Dasigi & Reggia, 1989). This work 
focused on an experimental prototype which 
automatically generates natural language inter
faces for expert systems. The prototype is 
domain-independent in the same sense that a 
generic expert system shell is domain
independent. Given a knowledge base for a 
specific application, a vocabulary extractor 
extracts and indexes the linguistic information 
which it contains. In addition, an indexed domain
independent knowledge base that contains linguis
tic knowledge common to many domains is used. 
A natural language interface is generated for the 
specific application domain defined by the 
knowledge base using this knowledge plus a par
simonious covering inference mechanism. 

Several modifications to PCT were introduced 
to handle some of the aspects of natural language 
processing that differ from diagnosis. By choos
ing representations in terms of descriptions for 
words that take the order of the words into 
account, the lack of sensitivity of PCT to word 
order is significantly improved. Unlike the entities 
in PCT, the different roles of words is taken into 
account in the hypothesis construction process. 
The syntactic (e.g., noun/adjective, subject/object) 
and semantic (word senses) aspects of covering 
are integrated in a mutually cooperative manner. 
In this system, a hypothesis is required, on the 
one hand, to parsimoniously cover words so that 
the syntactic descriptions in the linguistic 
knowledge base are satisfied, and on the other 
hand, to concurrently cover the words semanti
cally with one or more domain-specific entities. 

The prototype implementation suggests that it 
may be possible to combine effectively concurrent 
syntactic and semantic covering of natural 
language processing in the framework of an 
extended PCT. It remains to be seen if, ulti
mately, PCT can be extended to model abductive 
inference occurring in natural language processing 
in its full generality, namely, where the intentions 
and plans of the discourse participants and sub
jects are complex and play a significant role in 
understanding the discourse. 
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Conclusion 
This paper has briefly considered some ways in 
which PCT, a formal model of abductive inference 
in diagnosis, can be related to abductive inference 
in general. It seems likely that the methods and 
principles used in PCT, extended to encompass a 
more general knowledge representation, could 
provide a fairly general theory of abductive infer
ence. Such a theory would encompass not only 
diagnosis but also inference in natural language 
processing, legal inference, scientific discovery, 
etc. Producing a generalized PCT of this breadth 
would require a major research effort. We have 
indicated some of the significart generalization 
that would be needed elsewhere [Chu & Reggia, 
1990; Peng & Reggia, 1990). 

In its current form, PCT can still be useful to 
those attempting to develop other models/theories 
of abductive inference. As illustrated for the 
heuristics in TEC, PCT can serve as a useful 
"test case", suggesting potential limitations of a 
more general theory. 
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This abstract briefly describes a theory of explana
tory coherence and its implementation using a connection
ist program called ECHO. I show how explanatory coher
ence considerations can play a large role in decision mak
ing in cases where decisions depend on evaluation of 
competing hypotheses. The abstract discusses the deci
sion made in July 1988 by Captain Rogers of the USS 
Vincennes to shoot down what appeared to be an attack
ing aircraft ECHO has been used to simulate the reason
ing underlying this decision. 

Explanatory Coherence 
A theory of explanatory coherence (TEC) can be 

stated using the following seven principles (Thagard 
1989). S is a system of propositions P, Q, and P1 ... P . 
Local coherence is a relation between two propositions. ~ 
coin the tenn "incohere" to mean that two propositions are 
incoherent, which is stronger than saying that they do not 
cohere. 

Principle 1. Symmetry. 

(a) If P and Q cohere, then Q and P cohere. 
(b) If P and Q incohere, then Q and P incohere. 

Principle 2. Explanation. 

If P 1 ••. Pm explain Q, then: 

(a) For each P. in P1 ••• P , P. and Q cohere. 
l m I 

(b) For each P. and P. in P1 ... P , P. and P. 
l J m I J 

cohere. 

(c) In (a) and, (b) the degree of coherence is 

inversely proportional to the number of propositions 
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Principle 3. Analogy. 

If P1 explains Q1, P2 explains Q2, P 1 is analogous to 

P2, and Q1 is analogous to Q2 , then P1 and P2 

cohere, and Q1 and Q2 cohere. 

Principle 4. Data Priority. 

Propositions that describe the results of observation 
have a degree of acceptability on their own. 

Principle 5. Contradiction. 

If P contradicts Q, then P and Q incohere. 

Principle 6. Acceptability. 

(a) The acceptability of a proposition P in a system 
S depends on its coherence with the propositions in 
s. 
(b) If many results of relevant experimental obser
vations are unexplained, then the acceptability of a 
proposition P that explains only a few of them is 
reduced. 

Principle 7. System coherence. 

The global explanatory coherence of a system S of 
propositions is a function of the pairwise local 
coherence of those propositions. 

Principle 2, Explanation, covers cases where 
hypotheses explain evidence or are themselves explained 
by higher level hypotheses. Clauses 2(a) and 2(b) state 
that hypotheses that explain a proposition cohere with that 
proposition and with each other. Clause 2(c) is a simpli
city principle, suggesting that the greater the number of 
hypotheses needed to explain a proposition, the less they 
cohere with it and with one another. Principle 3, Analogy, 
says that similar hypotheses that explain similar pieces of 
evidence cohere. The fourth principle, Evidence, is 
straightforward. Principle 5, Contradiction, marks com
peting hypotheses as incoherent with each other if they 



are contradictory. The last two principles state that the 
previous five principles establishing local relations of 
explanatory coherence are all that is needed to determine 
the overall coherence of a set of propositions and the 
acceptability of particular propositions. These contentions 
have been put to the test by development of a computer 
program that allows simulation of judgments of explana
tory coherence. 

ECHO 
Connectionist networks consist of units, roughly 

analogous to neurons, that are connected by excitatory 
and inhibitory links (Rumelhart and McClelland, 1986). 
ECHO is a Common LISP program that constructs net
works for evaluating the explanatory coherence of sets of 
propositions. Propositions that cohere are represented by 
units connected by excitatory links, while ones that 
incohere have units connected by inhibitory links. For 
input, ECHO is given formulas describing the explanatory 
relations of propositions. If two hypotheses Hl and H2 
together explain a piece of evidence El, ECHO is given 
the LISP input: 

(EXPLAIN '(Hl H2) El). 

In accord with the second principle of explanatory coher
ence, ECHO then sets up symmetric excitatory links 
between units representing HI and El, H2 and El, and Hl 
and H2. If HI and H3 are conuadictory, ECHO gets the 
input: 

(CONTRADICT 'HI 'H3). 

This sets up a symmetric inhibitory link between Hl and 
H3. That El and E2 are to be treated as pieces of evi
dence is represented by the input: 

(DATA '(El E2)) 

In accord with principle 4, Evidence, links are then set up 
from a special evidence unit to El and E2. 

Connectionist networks make decisions by repeat
edly updating the activation of units in parallel until the 
whole network settles into a stable state in which the 
activation of each unit has reached asymptote. ECHO 
adjusts the activation of a unit u. by considering all the 
units to which it is linked. An Jexcitatory link with an 
active unit will increase the activation of u., while an inhi
bitory link with a unit with positive Jactivation will 
decrease it. Activation of units starts at 0 and is allowed 
to range between 1 and -1. Repeated adjustments of 
activations results in a stable state where some units end 
up with high activation and others with activation below 
0. Equations and algorithms are fully presented elsewhere 
(Thagard 1989). Parallel constraint-satisfaction tech
niques similar to ECHO's have also proven useful for 
investigating analogy (Holyoak and Thagard 1989; Tha
gard, Cohen, and Holyoak 1989; Thagard, Holyoak, Nel
son, and Goc~feld, in press). 
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ECHO has been used to simulate many cases of 
scientific and legal reasoning (Thagard 1989, forthcom
ing; Thagard and Nowak 1988, forthcoming; Ranney and 
Thagard 1988; Nowak and Thagard forthcoming-a, 
forthcoming-b). I will now briefly describe its application 
to naturalistic decision making. 

Naturalistic Decision Making 
Decision making can sometimes straightforwardly 

take place using an assessment of possible actions with 
respect to probabilities and utilities of results of the 
actions. Often, however, it is necessary to form and 
evaluate hypotheses concerning the nature of the situation. 
For example, a fire chief may need to infer the source and 
nature of a fire before deciding how best to fight it. 
Although in Al it is becoming common to refer to both the 
formation and the evaluation of explanatory hypotheses as 
abduction, I shall follow the use of its inventor C.S. Peirce 
and reserve the term for hypothesis formation only (Tha-

' gard 1988). 1EC and ECHO are concerned, not with 
abduction in this narrow sense, but with hypothesis 
evaluation. 

Judges and juries are frequently called upon to 
evaluate explanatory hypotheses in criminal trials, asking, 
for example, whether the proposition that the accused 
murdered the deceased is the best explanation of the death 
and other evidence. But inference to the best explanation 
in such cases is not just a matter of considering what 
hypothesis explains the most evidence, since it is standard 
in trials to consider a motive that could explain why the 
murder was committed. The acceptability of a hypothesis 
increases on the basis of there being explanations of it, as 
well as on the basis of what it explains. Everyday deci
sions that involve other people often involve explanatory 
inferences concerning their beliefs, desires, and inten
tions. In adversarial situations such as competitive games, 
business, diplomacy, and war, it is often necessary to infer 
the plans of the adversary. Plans can sometimes be 
inferred as part of the best explanation of what the adver
sary has done so far. 

Let us now look in more detail at an actual case of a 
decision that is naturally understood in terms of explana
tory coherence. On July 3, 1988, the USS Vincennes was 
involved in a battle with Iranian gunboats in the Persian 
Gulf. A plane that had taken off from Iran was observed 
to be flying toward the Vincennes. On the basis of the 
information provided to him by his officers, Captain 
Rogers of the Vincennes concluded that the plane was an 
attacking Iranian F-14 and shot it down. Unfortunately, 
the plane turned out to be a commercial flight of Iran Air 
655. Nevertheless, the official investigation (Fogarty 
1988) concluded that Rogers acted in a prudent manner. 
An ECHO-analysis of the information available to Rogers 
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supports that concliision. 

Rogers' decision to fire a missile at the plane 
depended on evaluation of competing hypotheses con
cerning its nature and intentions. The hypothesis that it 
was a commercial flight was considered and rejected in 
favor of the hypotheses that the plane was- an F-14 and 
that it was attacking. Captain Rogers recalled numerous 
"indicators" used in declaring the plane hostile and decid
ing to engage (Fogarty 1988, p. 40). From the perspective 
of 1EC, the F-14 hypotheses were more coherent than the 
alternatives for several reasons. First, they explained why 
the plane did not respond to verbal warnings, was not fol
lowing commercial air corridors, was veering toward the 
Vincennes, and was reported to be descending. (This 
report turned out to be erroneous.) Second, the 
commercial-airline hypotheses predicted (explained) the 
negation of this evidence. Finally, the F-14 attack could 
be explained by hostile Iranian intentions for which there 
was ample evidence. 

Here is the actual input given to ECHO. Note that 
the quoted propositions are for information only: unlike a 
program that would be capable of forming the hypolheses 
and generating hypotheses about what explains what, 
ECHO does not use the content of the propositions. For 
ease of cross-reference, I have numbered propositions in 
correspondence to the list in the Fogarty report (p. 40), 
although a few of the pieces of evidence do not appear 
relevant to an assessment of explanatory coherence. 

EVIDENCE: 
(proposition 'EO "Gunboats were attacking the Vinc

ennes.") 
(proposition 'El "F-14's had recently been moved to 

Bandar Abbas.") 
(proposition 'E2 "Iranian fighters had flown coincident 

with surface engagement on 18 April 1988. ") 
(proposition 'E3 "The aircraft was not responding to 

verbal warnings over IAD or MAD.") 
(proposition 'E4 "There had been warnings of an 

increased threat over the July 4 weekend.") 
(proposition 'ES "There had been a recent Iraqui vic

tory.") 
(proposition 'E6 "The aircraft was not following the air 

corridor in the same manner as other commercial aircraft 
had been seen consistently to behave.") 

(proposition 'NE6 "The aircraft was flying in the com
mercial air corridor.") 

(proposition 'E7 "The a,ircraft was flying at a reported 
altitude which was lower than COMAIR was observed to 
fly in the pasL") 

(proposition 'NE7 "The aircraft flew at COMAIR's 
usual altitude.") 
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(proposition 'ES "Track 4131 was reported to be ~ 
increasing in speed.") 

(proposition 'E9 "Track 4131 was reported· to be 
decreasing in altitude.") 

(proposition 'NE9 "Track 4131 was reported to be 
increasing in altitude.") · 

(proposition 'ElO "Track 4131 was CBDR to USS Vinc
ennes and USS Montgomery.") 

(proposition 'Ell "Track 4131 was reported by USS 
VINCENNES' personnel squawking Mode 11-1100 which 
correlates with an F-14.") 

(proposition 'El2 "No ESM was reflected from track 
4131.") 

(proposition 'El3 "F-14s have an air-to-surface capabil
ity with Maverick and modified Eagle missiles.") 

(proposition 'E14 "The aircraft appeared to be 
maneuvering into attack position; it veered toward the 
USS Montomery.") 

(proposition 'EIS "deleted in published report") 
(proposition 'El6 "Visual identification of the aircraft 

was not feasible.") 
(data '(EO El E2 E3 E4 ES E6 E7 ES E9 EIO El 1 E12 

E13 El4 EIS El6)) 

HYPOTHESES: 
(proposition 'Al "Iran is intending to mount an 

attack.") 
(proposition 'A2 "The plane is an F-14.") 
(proposition 'A3 "The plane intends to attack.") 
(proposition 'A4 "The F-14 is flying 'cold-nose'.") 
(proposition 'Cl "The plane is a commercial airliner.") 
(proposition 'C2 "The plane is taking off.") 

EXPLANATIONS: 
(explain '(Al) 'EO) 
(explain '(Al) 'El) 
(explain '(Al) 'E4) 
(explain '(Al) 'A3) 
(explain '(Al) 'A2) 
(explain '(A2 A3) 'E3) 
(explain '(ES) 'Al) 
(explain '(A2) 'E6) 
(explain '(Cl) _'NE6) 
(explain '(A2) 'E7) 
(explain '(Cl) 'NE7) 
(explain '(A2 A3) 'ES) 
(explain '(Cl C2) 'ES) 
(explain '(A2 A3) 'E9) 
(explain '(C2) 'NE9) 
(explain '(A3) 'ElO) 
(explain '(A2) 'Ell) 
(explain '(A2 A4) 'E12) 
(explain '(Cl) 'El2) 
(explain '(A3) 'El4) 



CONTRADICTIONS: 
(contradict 'E6 'NE6) 
(contradict 'E7 'NE7) 
(contradict 'E9 'NE9) 
(contradict 'A2 'Cl) 

Missing from this analysis is the possible impact of 
analogy to previous incidents: the Fogarty report mentions 
the Stark incident that involved the sinking of an Ameri
can ship in 1987. One can easily imagine Rogers reason
ing that just as the Stark should have explained the 
behavior of an approaching Iranian plane in terms of its 
hostile intentions, so should he give an analogous expla
nation in the current case. TEC (principle 3) and ECHO 
can naturally model the impact that such analogies can 
have. 

Figure 1 displays the network that ECHO creates 
using this input, showing the excitatory and inhibitory 
links. Figure 2 graphs the activation of the units over the 
60 cycles that it takes the network of settle, showing that 
the units A2 and A3 concerning an attack by an F-14 
become activated while Cl and C2 concerning a commer
cial airliner are deactivated. 

Because the hypotheses of an attacking F-14 was 
more coherent with the available information than the 
commercial-airline hypothesis, and because F-14s were 
known to be capable of severely damaging the Vincennes, 
Captain Rogers shot the plane down. The fact that a 
tragic mistake was made does not undermine the fact that 
the evidence pointed strongly toward an F-14. The 
Fogarty report found fault with the ship's Tactical Infor
mation Coordinator and Anti-Aircraft Warfare officer for 
providing Rogers with the erroneous information that the 
plane was descending rather than ascending, but this was 
only one factor in making the F-14 hypothesis more plau
sible. 

Thus the decision on the USS Vincennes can be 
understood in terms of the theory of explanatory coher
ence. Future research will perfonn additional analyses 
and simulations to determine the applicability of 
explanatory-coherence factors to decision making in legal, 
military, and everyday contexts. 
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Model Generative- Reasoning 

At CRL, we have developed the Model Generative 
Reasoning (MGR) architecture in order to study 
the relationship between structure and semantics 
in coping with brittleness (Coombs and Hartley, 
1987; 1988). Formally, MGR is related to the 
generalized set covering (GSC) model of abduc
tive problem solving, where, given knowledge of 
a set of observations (facts), the task is to find 
the best explanatory hypothesis in terms of the 
most parsimonious "cover" of facts by hypothe
ses. However, whereas GSC deals with atomic 
explanatory hypotheses and pre-defined relevance 
relations between hypotheses and facts, it is nec
essary in a noisy or novel task environment to: (i) 
create new hypotheses from conceptual fragments, 
and (ii) identify problem facts as some subset of 
the set of available observations. 

Hypotheses, explariatioll' and 
abduction 

All problem solvers generate hypotheses, and in 
general we can classify all such mechanisms as ab
ductive. However, the use to which these subse
quent hypotheses are put separates what we might 
called logical abduction from the more pragmatic 
use of the term in scientific reasoning (Peirce, 57). 

Many authors have pointed out that abduction 
is an unsound logi~&l inference from consequent to 
antecedent, as in: 

B 

A-B 
A 
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Such a method is used extensively in backward
chaining expert systems and is the basis of Pro
log's proof technique. Most of these, however, 
set up the A's as intermediate goals to be car
ried on further in the method i.e. they are not 
asserted as true, or as possibly true. Another way 
to look at such a mechanism is that if B is true, 
and A - B, then A ezplain& B. This is the basis 
of the methods described by Levesque (Levesque, 
89) and Poole (Poole, 89). Explanations are hy
pothetical structures generated to fit some set of 
observations, (not just one, as the above simpli
fication implies) and have only possible status in 
the system. However, if they were true, then the 
consequent would follow naturally by deduction. 
Finding an explanation in a logical system then 
amounts to finding an expression, that if it were 
true would imply the input (the axioms). In order 
to find out how this works, we need to analyze the 
use of rules (logical implications) in such systems. 

There are four main uses of a rule: 
• as a selectional constraint on types, e.g. all 

U's are V's: ·-i~ 

Vz U(z)- V(z) (1) 

• as an Aristotelian definition, e.g. if something 
has properties A, B, C etc. then it is a V 

Vz A(z) /\ B(z) /\ C(z) · · · - V(z) (2) 

• as a contingent, or schematic definition, e.g. 
if something is a V, then it has properties A, 
B, C etc. 

Vz V(z) - A(z) /\ B(z) /\ C(z) · · · (3) 

• to express causality, e.g. if P, Q, Rall happen, 
f' 



then X, Y, ·Z will happen as a direct conse
quence 

P A Q /\ R .... - X A Y A Z · · · ( 4) 

To illustrate these types of rule, consider the 
following abductive inferences: 

car( a) 
'r/z ford(X) - car(z) 

possible(ford(a)) (5) 

In other words, if a car a is observed, then it 
is possibly a ford. Of course, this is not an ex
planation of why a is a car, but it does shed a 
little more light on the subject. There may well 
be other types of car ( chevrolet, subaru etc.) and 
these would be equally likely inferences. The ques
tion of the goodness of an explanation is one for 
the pragmatics of abduction. Poole has pointed 
out, however, (Poole, op. cit.) that there are sev
eral possible accounts of what constitutes the best 
explanation. 

car( a) 
'r/z hasWheels(z) /I. hasEngine(z) /I. 

hasDriversSeat(z) - car(z) 

possible( wheels( a) /I. hasEngine(a) /I. 

hasDriversSeat(a)) (6) 

This abductive inference stands a little better 
as an explanation; it at least shows why a is a 
car, based on the limited knowledge to hand about 
cars. Note that if both of the above rules were 
available and a criterion of goodness was expressed 
as the simplest explanation is the best, then the 
first would be preferred over the second. 

at( a, b) 

'r/zyz person(z) /I. car(y) A driVe(z, Yt /I. 
1 ocat ion ( z) - at(z,z) 11.at(y,z) 

possible(3y person( a)/\ car(y) /\ 

drive( a, y) /\ location(b)) 

. ;_~ t t-

(7) 

Here we infer an existential result (as pointed out 
by Poole) because we have no evidence about the 
car if we assume a is a person. The other possible 
inference is: 

possible(3y person(y) /\car( a)/\ 

drive(y, a)/\ location(b)) (8) 

It is also possible that the observations are exis
tentially quantified. e.g. with the fact: 

3zyat(a,z) /\drive(y,b) (9) 
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This, with the same rule as in 3, gives the infer
ence: 

possible(3z person(z) /\ car(b) /\ 

drive( a, b) /\ location(z)) (10) 

Finally an example that gets closer, we believe to 
the reason why abduction is important. lfwe have 
the facts: 

at( a, b) and 

hasEngine( c) 

(11) 

(12) 

which seem to be unconnected, the job of abduc
tion is to glue them together in a single hypothesis. 
The inference we might look for, and one that is 
clearly an explanation of why these two pieces of 
data are observed together is: 

person( a) /I. car( c) /\ drive( a, c) /\ 

location(b) /I. at(c,b) (13) 

This hypothesis glues the facts together, through 
the definition of a car and the driving rule. 

An operator for abduction: 
specialize 

We will describe an single operator, specialize, 
which mechanizes the process of abduction illus
trated in the above examples. It is composed of 
two more· primitive operators, cover and join that 
operate on conceptual graphs (Sowa, 84). This 
leads to the slogan: 

Abduction = cover+ jo_in . ·-

Conceptual graphs are connected, directed, bi
partite graphs where the nodes are labeled with ei
ther a concept type or ·a. relation name. There are 
restrictions on the edges, however, that are used 
to preserve semantic coherence (Sowa calls this 
canonicality). A relation node may have only one 
ingoing edge, but any number of outgoing edges. 
A concept node may have any number of edges, in 
or out .. 

The functionality of specialize is: 

specialize : r x 21' - 2'H. (14) 

where F is a set of input graphs, 1) is a set of 
definitidna (conforming to the rule types 2, 3 and 
4 above) and 'H. is the resultant set of hypotheses 
produced by cover and join. 

I: 



The operator cover 

It is the job of cover to choose an appropriate sub
set of a set of stored graphs V, that cover all of the 
concepts in a given subset of graphs taken from a 
set :F. If the conceptual content of a graph g is 
given by C(g) and the maximal common subtype 
of two concepts c1 and c2 is given by M6(ci, c2) 
then the functionality of cover is given by: 

cover: :F x 2V - 2V (15) 

where for f E :F, 'Ve E C(f)3cd, d I 
Cd E C(d) for some d EV 

and Mb(c, cd) exists 

In other words, every concept in f must have at 
least one concept in the set of graphs 'De, where 
their maximum common subtype exists i.e. is not 
bottom. There are problems with graphs contain
ing duplicate labels, but these can be solved by 
ensuring that there are sufficient quantities of cov
ering concepts from graphs in V for the concepts 
in/. 

The choice of an appropriate subset, since there 
can be many which satisfy the above condition is 
a matter for the pragmatics of the problem. The 
Maryland group (Nau and Reggia, 86) have used 
this idea of set covering (as have many others) in 
their diagnostic work, but deal with expressions at 
the propositional level rather than at the object 
level as we do here. They point out that although 
a parsimonious cover may be appropriate when 
simplicity is called for (cf. Occam's razor) there 
may be cases when less than parsimonious cover 
is safer, or simply better as an explanation. 

Parsimonious cover may be produced by mini
mizing the boolean expression:_ 

/\ V d;,where c E C(/J,'C(da) (16) 
c i 

The operator join 

Cover just produces an appropriate subset of 1J. 
The job of producing an explanatory hypothesis is 
left to the binary operation join (actually maximal 
join). As an operation on single concept nodes, 
join merges two gtaphs at a single point where 
both graphs contain the same concept label. Max
imal join (we will usually refer to this as just join) 
will not only allow restrictions in that a concept 
label can be replaced by a label of any subtype but 
also will merge the two graphs on the maximum 
number of nodes (see Sowa, op cit). An example 
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Figure l: An example of maximal JO!Il 

(Mb(D,F) = H). 

is given in Figure 1. The functionality of join is: 

maxima/join: gxg_.2a (17) 

There can be more than one maximal join, hence 
the powerset notation on the set of all graphs g. 
Join is a binary operation but multiple graphs can 
be joined by composing it with itself. Unfortu
nately, there is good reason to believe that join 
is not commutative when semantic considerations 
come into play (Pfeiffer and Hartley, 89), but for 
now we will assume there is no problem. 

Since restrictions are allowed, it is clear that 
two nodes are joinable as part of a maximal join 
operation if they contain types that have a maxi
mal common subtype. So PET can be restricted to 
DOG, and so can MAMMAL. Thus nodes contain
ing PET and MAMMAL join to produce DOG. If 
two concepts have only 1. (bottom) as their com
mon subtype, then the maximal common subtype 
is not considered to exist. The reason why the 
same constraint was placed on' .the operator cover 
was so to ensure that the covers returned are max
imallyjoinable i.e. tha.t the t~~t graph /is join able 
to the graphs that cover it. That this is an abduc
tive inference in the logical sense may be seen from 
the following equivalent presentation: 

PET( a) 
MAMMAL(a) 

'r/zDOG(z)-+ PET(x) 

VzDOG(x)-+ MAMMAL(x) 
DOG( a) 

If we now look at the last car example above, the 
facts might be represented as in Figure 2, and the 
covering graphs in Figure 3. These graphs add 
information that the logical representation leaves 
out, however these are mandated by the need to 



Figure 2: The 'driving' facts. 

Figure 3: The covering graphs for Fig. 3. 

form canonical graphs. The equivalent in a logic 
would be a full intensional logic with type restric
tions on the place-holders, but the graphs have 
not prejudiced the argument that the appropriate 
hypothesis is obtained by joining all four graphs 
together, as shown in Figure 4. The major addi
tion to the driving g~aph is the actor node· in the 
diamond-ended box. ID a extension to'" conceptual 
graphs (Hartley, forthcoming), these nodes can ex-, 
press the temporal relationship~ between states 
and events in order to represent procedures quali
tatively. However, these extra nodes play no part 
in cover or join, and will not be discussed further. 
The join will only occur if the following type relar 
tionships hold: 

Mb(CAR,PHYS-OBJ) =CAR 

Mb( CAR, TRANSPORT)= CAR 

It should be noted that a person, an engine and 
a drivers-seat are all physical-objects, in addition 
to the car. These relationships potentially give 
alternative joins. Thus instead of placing the per
son a at the place 6, the join could place any of the 
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Figure 4: The maximal join of Figs, 3 and 4. 

Figure 5: Specialize in a set diagram form. 

other objects, for instance the engine, at b. This 
sort of thing may produce a violation of canoni
cality (e.g. givillg a pipe three ends instead of two 
ends and a middle), but may also be prevented 
by knowledge of the conformity of individuals to 
types. Again, the ·FOPG form does not contain 
this information~, but a may conform to PERSON, 
but not to ENGINE. 

In essence, therefore, the resultant graphs pro
duced by join can be seen as abductive inferences 
from the facts and definitions, causal or Aris
totelian that cover them. The result is hypothet
ical in nature because the maximal conunon sub
type restriction of two types leads to the same un
sound inference rule that an logical abductive rule 
makes. Additionally, however, constraints stem
ming from canonicality and conformity increase 
the likelihood of the inference. Figure 5 contains 
a mor~ intuitive Venn-like diagram of specialize 
where· each enclosed region contains at least one 
concept node. 
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1 Introduction 

Deduction, abduction, and analogy are processes whose 
differences are normally reflected by distinct computa
tional mechanisms. In this paper, I suggest that prcr 
cedural separations between these processes are super
fluous for the purpose of constructing plausible expla
nations of a given phenomenon. A single mechanism 
that proposes explanations of phenomena by their sim
ilarity to understood phenomena is sufficient, providing 
smoother adaptability to unanticipated or underspeci
fied events and enabling transfer of knowledge from one 
domain to another. This similarity-driven view of ex
planation also lets one extend or revise imperfect thecr 
ries when they fail to produce an explanation. In this 
approach, one provides a deductive explanation if possi
ble, and extends or revises the underlying theory when 
necessary to make explanation possible. Rather than be
ing produced by separate processes, distinctions between 
the different explanation types result from the preferen
tial ordering imposed when competing hypotheses are 
evaluated. 

The plausibility of this conjecture is demonstrated by 
PHIIEAS, a program that uses a single similarity-driven 
explanation mechanism to focus its search for explana
tions using its existing knowledge and to develop novel 
theories when its existing knowledge is insufficient. 

This paper begins with a discussion of the relation
ship between abductive explanation and analogy, sug
gesting that they share a common core: the search for 
explanatory similarity. It then briefly describes PHIIEAS 
and outlines some of the examples used to test its be
havior. 

2 Similarity-Driven Explanation 

Abduction is traditionally characterized as using a fixed 
set of background theories. Assumptions needed to fill 
gaps due to incomplete knowledge of the situation are 
limited to ground atomic sentences (i.e., no new or re
vised rules are considered), as in 

gillen CAUSE(.A, C), C in/er A 
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These systems suffer from the adaptability problem: they 
are unable to revise or extend an imperfect domain the
ory to make conjectures about unanticipated events, and 
unable to apply knowledge of one domain to the under
standing of another. 

On the other hand, theory formation typically in
volves making assumptions about both the situation and 
the incompleteness or incorrectness of current theories. 
It includes inferences of the form 

given CAUSE(.A, C) 11. A~ C, A, C 
in/er CAUSE(.A, C) 

Theory formation must face the problem of generating 
theory-revising hypotheses and establishing a preference 
among a possibly infinite set of hypotheses. 

To address these problems, we note the strong com
monalities between traditional abduction and analogy, 
and develop a model that emcompasses both. For ab
duction, this unified model provides the power to ex
tend the underlying domain theory when needed. For 
theory formation, it enables existing knowledge, possi
bly of other domains, to influence hypothesis generation 
and evaluation, thus taking into account knowledge of 
the way things normally behave in the world and the 
way theories about those behaviors are normally ex
pressed. This view of explanation is based on the con
jecture that search for similarity between the situation 
being explained and some understood phenomenon suf
fices as the central process model for explanation tasks. 

In support of this view, consider the explanation sce
narios summarized below: 

Deduction scenario: Given phenomenon 1', where 1' 
represents a set of observables, a complete explanation 
of 1' deductively follows from existing knowledge. The 
only open question is whether it is the explanation, as 
there may be others. For example, suppose fluid flow is 
observed and all of the preconditions for fluid flow are 
known to hold (e.g., the source pressure is greater than 
the destination pressure, the fluid path is open, etc.). 
Then a fluid flow explanation directly follows. Given 
the observed behavior and the existing preconditions, we 
could say that the situation is literally similar (Gentner, 
1983) to 'liquid flow. 

,. 
f' 



Assumption scenario': Phenomenon Pis given, where 
P represents a set of observables. No explanation can 
be found using current knowledge because the status of 
some requisite facts- is unknown. However, a complete 
explanation follows from the union of existing knowledge 
and a consistent set of assumptions about the missing 
facts. For example, if one observes liquid flow but does 
not know if the fluid path valve is open or closed, one 
can assume the valve is open if there is no evidence to 
the contrary. 

Generalization scenario: Phenomenon P is given, 
where P represents a set of observables. Existing knowl
edge indicates that 'candidate explanation £ cannot ap
ply because condition C1 is known to be false in the 
current situation. However, £ does follow if condition 
C1 is replaced by the next most general relation, since 
C1 's sibling is true in the current situation. This is a 
standard knowledge-base refinement scenario. 

Analogy scenario: Phenomenon P is given, where P 
represents a set of observables. No candidate explana
tion £ is available directly, but £6 is available if a series 
of analogical assumptions are made, that is, if the situa
tion explained by Cb is assumed analogous to the current 
situation. For example, if heat flow is observed, but lit
tle is known about heat phenomena, an explanation may 
be constructed by analogy to liquid flow. 

Each scenario requires the interpretation-construction 
task: retrieve from memory explanatory hypotheses that 
match the current situation. Each also requires the 
interpretation-selection task: select from a set of can
didate hypotheses the one that is most probable, plau
sible, or coherent. Importantly, each scenario represents 
the same process when viewed as different forms of sim
ilarity to an existing theory: 

• Deduction scenario: complete match of identical 
features 

• Assumption scenario: partial match of identical 
features 

• Generalization scenario: matches between features 
having a close generalization 

• Analogy scenario: a range of matches between dif
ferent features and relations 

A system based on this view would offer the best ex
planation available, ranging from application of an ex
isting theory to distant analogy. It assumes that all 
interpretation-construction tasks may be characterized 
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as the search for maximal, explanatory similarity be
tween the situation being explained and some previ
ously explained scenario. It suggests using a single com
putational architecture for explanation processes. Dis
tinctions between explanation types only influence the 
weighing of evidence and the decision as to whether a 
new conjecture represents a revision of existing knowl
edge or a new separate body of knowledge. 

3 The PHINEAS System 

The similarity-driven model of explanation discussed in 
the previous section is illustrated by PHIIEAS, a pro
gram that offers qualitative explanations of time-varying 
physical behaviors. The system uses remindings of simi
lar experiences to suggest plausible hypotheses, and uses 
qualitative simulation to analyze the consistency and ad
equacy of these hypotheses. 

PHIIEAS uses three sources of knowledge during its 
reasoning process. First, its uses an initial domain the
ory consisting of a collection of qualitative theories about 
physical processes (e.g., liquid flow), entities (e.g.,,fluid 
paths), and general physical principles (e.g., mechani
cal coupling). This qualitative knowledge is represented 
using the language of Forbus' (1984) QP theory. Sec
ond, when comparing a new observation to prior experi
ence, PHIIEAS consults a library of previously observed 
phenomena (i.e., structure and behavior descriptions). 
The final source of PHIIEAS' information is the observa
tion targeted for explanation, which includes the original 
~cenario description (e.g., Open(bealter)), the behavior 
across time (e.g., Decreu ing [Amount-of (alcohol)]), 
and behavioral abstractions that apply to the observa
tion (e.g., asymptotic). 

In response to a given observation, PHIIEAS attempts 
to produce an explanatory "theory" and the envisioned 
behaviors it predicts. A theory consists of a set of pr<>
cess descriptions; entity descriptions; and atomic facts. 
The process and entity descriptions may be elements 
of the existing· domain theory or new postulated theo
ries. The system makes this distinction during hypothe
sis evaluation. The atomic facts are assumptions about 
the scenario required to complete the explanation. 

PHIIEAS operates in four stages (see Falkenhainer, 
1988 for more details): 

Access. A new observation triggers a search in mem
ory for understood phenomena that exhibit analogous 
behavior. This retrieval process involves two stages: 
First, behavioral abstractions of the observed situation 
are used to provide indices to a potentially relevant sub
set of memory. Second, each phenomenon in this sub-



set is inspected more carefully by matching its detailed 
structural and behavioral description to the current sit
uation. This partial mapping provides an indication of 
what objects and quantities correspond by virtue of their 
behavioral similarity, and will serve as an important 
source of constraint during the mapping process. The 
match also indicates where the phenomena correspond 
and thus what portion of the base analogue's behavior 
should be considered relevant. 

Mapping & Transfer. The objective of the second 
stage is to generate an initial hypothesis about the cur
rent observation. This has two components. First, the 
models used to explain analogous aspects of the recalled 
experience are retrieved and analogically mapped into 
the current domain. This mapping is guided by the 
initial correspondences found during access. Second, 
any unknown entities and properties in the hypothe
sis must be inferred from the domain theory or their 
existence must be postulated. The model of mapping 
used in this work is called contextual structure-mapping 
(Falkenhainer, 1988), a knowledge-intensive adaptation 
of Gentner's (1983) structure-mapping theory of anal
ogy. Comparisons are performed by SME (Falkenhainer, 
Forbus, & Gentner, 1989). 

Qualitative simulation. The predictions of a pro
posed model are compared against the observed behav
ior, enabling the system to test the validity of the anal
ogy and sanction refinements where the analogy is in
correct. The system generates an envisionment of the 
scenario, which it then compares to the original obser
vation. If the envisionment is consistent and complete 
with respect to the observation, then the explanation 
is considered successful. If it is inconsistent or fails to 
provide complete coverage, then revision is aimed at the 
points of discrepancy. 

Revision. If an initial hypothesis fails, or an old hy
pothesis is inadequate for a new situation, an attempt 
is made to adapt it around points of inaccuracy. Re
vision relies on past experiences to guide the formation 
and selection of revision hypotheses. It considers behav
ior analogous to the current anomaly and considers how 
the current anomalous situation differs from prior situa
tions that were consistently explained. This is the only 
component of PBIIEAS that is not fully implemented. 

3.1 Preference Criteria 

An explanation system should focus on the most promis
ing explanations first and provide a preferential ordering 
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on fully developed hypotheses. A complete account of 
theory selection requires consideration of many complex 
factors, such as a theory's plausibility, coherence', effect 
on prior beliefs, simplicity, and specificity in accounting 
for the phenomenon. However, a number of important, 
more specific preference criteria are readily available ~d 
have been found useful in PllIHAS for establishing pref
erence between competing hypotheses. These are: 

CcE Conjectured entities. Does the hypothesis conjec
ture the existence of a novel kind of entity, and if 
so, how many? 

Cv E Vocabulary extensions. Does the hypothesis re
quire the creation of new predicates, and if so, how 
many? 

CcA Composite assumptions. Does the hypothesis con
jecture the existence of new physical processes or 
new knowledge structures (e.g., schemas, etc.), and 
if so, how many? 

C AE Assumed entities. Does the hypothesis assume the 
presence of a known type of entity not mentioned 
in the original scenario description, and if so, how 
many? 

CAA Atomic assumptions. Does the hypothesis make 
additional assumptions about the properties and 
interrelationships of objects in the scenario, and if 
so, how many? 

The single preference criterion used to evaluate a hy
pothesis or compare two competing hypotheses is a func
tion of these five metrics. They are ordered according 
to an approximate measure of decreasing "cost" and ap
plied sequentially to prune the space of hypotheses: 

LEF = (CcE, CvE. CcA, CAB• CA...t) 

Thus, an explanation that postulates the existence of a 
novel kind of entity (Cc E) is at all times deemed inferior 
to one that does not. Each criterion returns a number 
(N ~ 0) as described above, where a value of zero in
dicates success and a value greater than zero indicates 
failure. The function is used to select the most prefer
able explanation(s) from a given set as follows: First, 
each proposed explanation is evaluated by criterion CcE 
and those that pass CcE are retained. The process is 
repeated with the next criterion on the set of retained 
hypotheses until only a single hypothesis remains or the 
list of criteria is exhausted. If at any point all hypothe
ses evaluated by a particular criterion fail, the process 
stops and the current set is returned in increasing order 
according to their score, N, for that criterion. 

i. 



This evaluative function produces an interesting prop
erty when viewed froJ!l the perspective of the four ex
planation scenarios described in Section 2: 

Deductive scenario: This corresponds to explana
tions passing every criterion. It occurs when all of the 
antecedent features of the base are present in the target. 

Assumption scenario: This corresponds to explana
tions passing every criterion but one of the last two, 
GAE and CAA· It occurs when some of the antecedent 
features of the base have no correspondent in the target, 
but may be consistently assumed to hold in the target. 

Generalization scenario: This corresponds to ex
planations passing the first two criteria, CcE and CvE, 
but failing Cc A, in which a knowledge structure is viewed 
as "new" if it represents a modification of an existing 
knowledge structure. It occurs when some of the an
tecedent or consequent features of the base match an 
analogous set offeatures in the target, thus mapping the 
base theory to a situation beyond its declared scope. 

Analogy scenario: This corresponds to explanations 
failing one of the first three criteria, Cc E, Cv E, or Cc A. 
It occurs when some of the features of the base match 
an analogous set of features in the target, or new vocab
ulary must be created to complete the mapping. 

All four scenarios arise as a result of the same ba
sic mechanism. The evaluative function causes P!IIEAS 
to propose standard, deductive explanations if any are 
found. In their absence, conventional abductive expla
nations will be preferred. If existing theories are insuffi
cient to provide an explanation, explanations adapting 
knowledge of potentially analogous phenomena will be 
offered. By using similarity as the single source for ex
planation generation, P!IIEAS is able to offer a "best 
guess" in the presence of an imperfect or ineoniplete do
main theory. 

:r .. 

4 Examples of PHINEAS' Behavior 

P!IIEAS has been tested on over a dozen examples in
cluding explanations of evaporation by analogy to boil
ing, liquid flow, and dissolving; torsional and LC circuit 
oscillators by analogy to a spring-mass harmonic oscil
lator; osmosis by analogy to liquid flow; and floating of 
a balloon by analogy to 'an object floating in water. For 
example, when only given knowledge of liquid flow, the 
system is able to interpret the three situations shown in 
Figure 1: 
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(a) A beaker contains more water than a vial to which it 
is connected by an unknown object. Why does the 
water level in the beaker decrease and the water 
level in the vial increase? 

(b) Two containers sharing a common wall of unknown 
substance each hold some solution. Why does one 
solution's level decrease and concentration increase 
while the other solution's level increases and con
centration decreases? 

(c) What causes a hot brick and cold water to change 
to the same median temperature when the brick is 
immersed in the water? 

In each case, P!IIEAS bases its explanation on the 
case's similarity to liquid flow. In the first, the phe
nomenon most similar to an observation of liquid flow 
is liquid flow itself, thus suggesting that the unknown 
object may be a fluid path. In this work, identicality 
is viewed as an extreme form of similarity. The second 
behavior, called osmosis, represents a close generaliza
tion of liquid flow when viewed as flow of solute under 
osmotic pressure through a selective kind of fluid path. 
In the final "heat flow" observation, PBIIEAS draws an 
across-domain analogy to liquid flow phenomena and 
conjectures the existence of a new type of fluid that af
fects an object's temperature. Its predictions based on 
this new heat flow model are shown in Figure 2. All three 
interpretations are produced by a single mechanism that 
forms its explanations from theories about phenomena 
most similar to the current situation. 

5 Discussion 

This paper has described a unified, similarity-driven method 
for explanation that seeks the best match between an 
observation to be explained and understood phenom
ena. This addresses imperfect theory problems by en
abling matching of analogous rather than identical fea
tures, reducing the nee<:I to have a precisely defined set 

...::~•.' 

~ .. 
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Figure 1: Three phenomena that P!IIEAS explains by 
their similarity to liquid flow: (a) liquid flow, (b) osmo
sis, ( c) heat flow. 
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of necessary and sufficient conditions for each theory, 
and enabling knowledge of a familiar domain to aid rea
soning about another domain. Importantly, all explana
tions are formed with a single mechanism, with distinc
tions between deductive, abductive, and novel analogical 
explanations arising out of the evaluation process. Ini
tial viability of the method has been demonstrated by 
PHIIE.!S on a variety of complex examples. 

Explanation systems rarely address problems due to 
lack of applicable knowledge about the domain. How
ever, there are a few exceptions in addition to PHIIEAS. 
These include using knowledge of abstract patterns of 
causality (Pazzani, 1987), experimentation (Rajamoney, 
1990), and meta-theoretic rules enabling abduction to 
include assumption of new causal rules (O'Rorke et al, 
1990). This work shares. much of the philosophy be
hind case-based reasoning, which uses similar past prob
lem solving experiences to solve new cases (Kolodner 
el al, 1985; Hammond, 1989). Motivated by the com
plex causal reasoning task and the concern with across
domain analogies, this work provides a more sophisti
cated notion of analogical similarity and require a deep 
causal analysis of the consistency of a hypothesis. 
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Introduction: Evidence, Inference, and 
Justification 
I take it that there is a distinctive kind of' evidential 
support which follows a pattern pretty nearly as follows: 

D is a collection of data (facts, observatiom, 
givens). 

H explain.a D (would, if' true, explain D). 
No other hypothesis is able to explain D as 

well a.a H does. 

Therefore, H is probably true. 

This ia the pattern I identify with the term "abduc
tion." Really, when we want to be precise, we should 
distinguish "abductive support" (for an evidence rela
tionship), "inference to the best explanation", "abduc
tive inference," and "best-explanation reasoning" (for 
inference processes), and "abductive justification" for 
an appeal to evidence to support a conclusion. Three 
faces of abduction: evidence, inference, and justifica
tion. 

The judgment of' likelihood a.aaociated with an ab
ductive conclusion should depend on the following con
sideratiom (and it typically does in the inferences we 
actually make): 

• how decisively H surpasses the alternatives, 

• how good H is by itself, independently of consid
ering the alternatives (e.g. we should be cautious 
about accepting a hypothesis, even if' it is clearly 
the best one we have, if' it ia not sufficiently plau
sible in itself), 

• judgmenta of the reliability of the data, and 

• how much confidence there ia that all plausible 
explanations have been considered (how thorough 
was the search for alternative explanations). 
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Beyond the judgment of likelihood, willingness to ac
cept the conclusion should (and typically does) depend 
on: 

• pragmatic considerations, including the c0&ts of 
being wrong and the benefits of being right, 

• how strong the need is to come to a conclusion at 
all, especially considering the possibility of seeking 
further evidence before deciding. 

The core intuition ia that a body of data provides ev
idence for a hypothesis that satisfactorily explains or 
accounts for the data (or at lea.at it provides evidence 
if' that hypothesis ia better than other hypotheses). 

Of course it remains to elucidate what makes a hy
pothesis explanatory relative to 10me presumed fact, 
and what makes one explanation better than another. 

The relationship between a body of given facts, and 
some conclusion for which those facts gives evidence, 
may be deductive whether we know it or not. More pre
cisely, the statements of 10me set of facts might deduc
tively entail certain other statementa of'fact, whether or 
not we are aware of that entailment. We might not hat> 
pen to make the inference from one to the other, even 
though we would be logically justified if we were to do 
so. Thus evidence relationships can be considered to 
exist as a matter of objective (logical) fact, apart from 
the making of actual inferences, and apart from actual 
attempt. to justify one's conclusions. 

In thia short paper I aasume without argument that 
abductive support really exists, that inference to the 
best explanation is common in ordinary life (and in 
diagnostic reasoning, etc.), and that abductive justifi
cations are commonly appealed to in ordinary life, in 
the law courts, and in the justifications for scientific 
conclusions. 



Deduction and .Abduction 
Deductiona aupport their concluaiona in auch a way that 
the conclusiona must be true, given the premiaee; they 
convey concluaive evidence. Other fonm of evidential 
aupport are not 10 strong, and though aignificant aup
port for a concluaion may be given, poesibility of error 
remains. Abductiona are typically of thit kind. 

To a great degree the patterns of (valid) deductive 
inference have been well characterised by formal logic, 
from the syllogistic logic of Aristotle, through modern 
mathematical logic. Yet despite the great IUcceme9 of 
modern formal logic, especially in capturing the fonm 
of justification that occur in mathematical proofs (but 
eee Goodman (1~7)), it ia neverthelem not correct to 
think that all forma of deductive inference have been 
1&tilfactorily analysed. Deductive logic ia not a finiahed 
ecience. A worse mistake ia to completely identify valid 
deductive inference with one particular mathematical 
system, auch u First Order Predicate Calculus. 

Consider the following logical form, commonly called 
•disjunctive syllogism.• 

PVQVRVSV···· 
But .., Q, .., R, .., S, .., · · · . 

Therefore, P. 

Thia form ia deductively valid. Moreover, the abduc
tion achema fits thia form, if we ueert that we have ex
haustively enumerated all of the pomble explanations 
for the data, and that all but one of the alternative 
explanationa has been deciaively ruled out. Typically, 
however, we will have :reuom to believe that we have 
considered all plausible explanatiOD.1 (i.e. thoee which 
have a significant chance of being true)t bui theee rea
IODI stop abort ol being conclusive. For example we 
may have struggled to formulate a wide variety of pa. 
Bible explanations, but cannot be aure we have covered 
all plausible1. Under U-. circumatance1 the we can a. 
sert a proposition of the folm of the first premiae, but 
aaeert it only with a kind al qualified confidence. Typ
ically, too, alternative aplanatiom can be cmcounted 
for one reason or uaoUier, but not decisively ruled out. 
The lesson to be drawn ia that abductive inferenc• can 
actually under some cUc.umstances be valid deductive 
inferences, and that abductions are deductive in the 
limit. 

It ia also worth noting tJaat abductions have an inter-
eating way of tum.in& negative evidence ( againat eome 
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hypotheses) into positive evidence (for alternative ex
planatiou). 

Another apparent CODDeCtion between deducUoll and 
abduction occurs if one lli• to give a deductive account 
of explanation. There have been two main traditional 
attempts to analyse explanationa u deductive proofs, 
neither attempt particularly auccellful (at leut in my 
judgment). Aristotle maintained that an explanation ia 
a syllogiam of a certain form (Aristotle 19-tl) (actually 
c. 330 be) that also aatiafiel various (informal) condi
tions, one of which ia that the middle term ia the came 
of the thing to be explained. More recently ( couider
ably) Hempel has moderniled the logic and propelled 
the •coverriq Jaw" or •deductive nomoJogic:al• model 
ol explanation (Hempel 1986) . For a brief summary of 
deductive and other models of explanation 1ee (Bhaskar 
1~1). The main difticulti• with theme accounts (be
sidea Hempel confounding the queation of what makes 
an ideally good explanation with the question of what 
it is to explain at all) ia that being a proof appears to 
be neither necemary nor aufticient for being an expla
nation. Consider the following: 

Why doea he have bums on hia hand? Exp!.. 
nation: Be aneesed while cooking puta and 
upeet the pot. 

The point of thit example ia that an explanation is 
given, but no proof; and while it could be t•nae4 into a 
proof by including additional propositiona, thia would 
amount to gratuitously completing what is on the face 
of it an incomplete explanation. Under the circum.
stancea (incompletely specified), aneesing and upeetting 
the pot were presumably cauallr nfficietd for the ef
fect, but that ia quite diif'erent &om being logicallr n/
jicieat. The cue that explanationa are not nec-n.Iy 
proofs becom• even stronger if we consider psycholog
ical explanations, and explanatiOD.1 which are funda
mentally statistical (e.g. w~ere quantum phenomena 
are involved), since it ia clear that cauaal determinism 
cannot be usumed, and so the antecedent conditiona 
cannot be usumed to be even causally aufticient for the 
effects. 

Convenely, there are many proofs which fail to be 
explanations of anything, for example in clulical me
chanics an earlier state of a system can be deduced 
&om a sub.equent state, but the earlier state cannot 
be said to be explained thereby. Al.a note that P can 
be deduced &om PA Q, but ii no& explained thereby. 

Thus I conclude that explanatiou are no& proofs in 
any particularly inter.ting 11en111 (of COUIM they can 
always be PUT u proofs; the point ia that thia does 
not succeed in captnring anything eeeential or especially 



useful) 

Abductiom are (or ean be) truth producing, that illl, 
at the end of u abdudive proee11111 having accepted a 
best explanation, we may have more information than 
we knew before. The abduction, 110 to speak, eiands 
upon the old information of ita premises, and mabs 
new information not previously encoded there at all. 
Th.is can be contruted with deductiom, which can be 
thought of u extracting out explicitly in their conclu-
111iona, information that wu already implicitly contained 
in the premiaes. While abductiom do not typiea.lly of
fer the truth-preserving certainty of valid deductiom, 
and are almost alwaYlll accompanied by 110me degree 
of doubt, they are capable of accomplishing 110mething 
else that deductiom cannot, namely the introduction 
of new vocabulary. Valid deductive inferences cannot 
contain terma in their conclusion that do not occur in 
their premises. Abductions can "interpret" the given 
data. in a new vocabulary. 

AbductioilB can dillplay "emergent certainty," that 
ill, the conclUBion of an abduction can have, and be 
deeerving of, more certainty than .,., of ita premiaes. 
Thill ill unlike a deduction, which ill no llltronger than 
the weakm of ita linb (though aepan.te deductioDB 
can conYerge for parallel 1upport). For example I may 
be more aure of '1le bear'111 hostile intent, than of any 
of tJae deWla ol i-. Jae.tile gestures; I may be more 
111Ure ol the meuiag ol the aenience, than of my initial 
identificatiom of any ol the word111; more sure of the 
overall theory, than of the reliability of any of the lllingle 
experimenta on which it ie bued. 

In 111UIDJJ1&ry we may 11ay that deductioDB are •truth
conserving", while abductions are "truth-producing". 

Causality and Abduction 
The rel&tiomhip of explainer to explained bi better de-
1eribed u •ca~ than u "implies.• An explana
tion ii an wignment of cauaal reepomibility; it tella 
a cauaal story. (At leut UU. Ml the lleD8e of the term 
•explanation" relevant fm abduction.) Thus abduc
tion ii buically a procem of reuoning from effect to 
cause. Finding pomible explanationa ii finding certain 
intere.ting pomible caue1 of the thing to be explained. 
(There are apparent counterexamples to thil view, but 
I cla.im they all Uade on an overly narrow view of cau
ation. -c&ue• ia thil context muat be understood 
110mewhat more broadly. than ita usual modern eenaee 
of "mechanical" or •efficient" or "event-event" causa
tion. There ia not room to argue that here, however.) 
For a well-developed hiatorical account of the connec
tiona between cauality and explanation aee (Wallace 
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1972, 1974). 

Inductive Generalization and Abduction 

Barman (1965) argued that -Werence to the belt 
explanation• (IBE) is Cle buic form of non-deductive 
inference, mbeuming "enumerative induction'" and all 
other form1 of non-<ieductive inference. Be argued 
quite convincingly that IBE is a common and important 
pattern of inference, and that it mbeumea 11&mple-to
population inferences, i.e., inductive generalisatiom, u 
a 111pecial cue. [Thia is my way of putting the mat
ter.] The weakne8111 of hill overall argument wu that 
other form1 of non-deductive inference are not 111eem

ingly subsumed by IBE, most notably population-to-
11&mple inferences, i.e., predictiona. The main problem 
ia that the conclusion of a prediction does not 111eem to 
explain anything. Nevertheleae Barman'• buic argu
ment (lllllitably augmented) aeema quite 110und1 if the 
conclusion ia rellltricted to be that inductive generaliR.
tiom are a 111pecial clue of abductiom. (See Joeephaon 
(1982) pp. 107-130 for more deta.ila.) 

Probabilities and Abduction 
Bayes'• Theorem can be viewed u a way of describ
ing how simple alternative cauaal hypotheeea can be 
weighed. Thus, if lllllitable knowledge of probabilities ill 
available, the mathematical theory of probabilities can, 
in principle, guide our abductive evaluation of explana
tory hypotheeee to determine which ia beet. In practice, 
however, it aeema that rough qualitative confidence lev
ellll on the hypotheeea are enough to support abductions, 
which then produce rough qualitative confidence levellll 
for their concluaiona. It ia certainly pcmible to model 
these confidences u continuous, and on rare oc:caaiom 
one can actually get knowledge of numerical confidences 
(e.g. for Blac]tjack), but for the moet part numerical 
confidences are unavailable and unneceaeary for reuon
ing. People are good abductive reuonen in the abeence 
of cloee estimate. of confidence. In fact it 1ee1111 that, if 
confidences need to be estimated cloeely, then it mulllt 
be that the beet hypothesis ia not much better than 
the next beat, in which cue no conclusion can be confi
dently drawn. (Recall the condition, mentioned earlier, 
that the confidence of an abductive concluaioa depend111 
on how decisively the beat explanation aurpamea the 
alternatives.) Thus it appean that confident abduc
tiona are pOlllible only if confidences do not need to be 
estimated cloeely! 

Furthermore it appears that accurate knowledge of 
probabilities is aot commonly available, because the 



probability ...ociated with an ezpected pomible event 
ia not even well-debed. Tiu. i9 what I haw been call
ing "the 1eandal of pzobabiliU..• There ia a1mon al
way• a certain arbiu.n- about which reference cJa. 
is choeen to bue the plObabilities, the larger the ref
erence cu the more reliable the ltatiatica, but then 
the lem relevant they are; while the more specille the 
clasa, the more relevant, but the lem reliable. la the 
likelihood that the next patient hu the Su best eati
mated hued on the frequency in all of the people in 
the world over the entire hiatory of medicine? It seema 
better to at least control for the aeuon and narrow the 
claaa to include just people at this particular time of 
the year. (But then causal understanding is starting to 
creep into the conaiderationa, but that isn't probabili
ties.) Furthermore each Su eeuon ia eomewhat diff'er
ent, eo we would be beet to narrow to just conaidering 
people THIS year. Then of courM the average ,.cieat 
ia not the 1&111e u the average 1&raoa, etc., etc., eo the 
claaa should probably be narrowed further to eomething 
like: people who have come LATELY to docton of this 
sort, of this particular age, race, gender, and eocial at&
tus. Now the only way the doctor could have statistics 
that ap~ific, would be to rely on hia or her own moet ~ 
cent experience, which would only allow for very rough 
estimates of likelihood. There ia a Heiaenberg-like un
certainty about the whole thing- the cloeer you try to 
measure them, the rougher the numbers get. The con
clusion to draw is that using real numbers for confidence 
levels is misplaced preciaion. "In general the problem 
faced by intelligence ian't reuoning with uncertainty, 
but reaaoning deapite uncertainty.• (Chandruebran 
1087). That is, Even If we could define 10me ideal rea-
soner who worked completely rationally on the buia of 
probabilities, and Even If 1trategies could be deviaed 
that would make it pollible to actually feuibly make 
all the computationa, then it Would Be Wuted Effort 
anyway, because almost all of the num~ w~~d only 
be rough approximationa, and all that. would still have 
to be translated into Tentative Categorical Judgment. 
in order to support hypothetical reuoning and action. 

Abduction as an Inference Process 
An abductive proce19 aima at ·a satisfactory explana
tion, one that can be confidently believed (accepted 
into memory). It. might, however, be accompanied in 
the end with eome explicit qualificationa, for example 
eome degree of aaaurance, or eome doubt. (One main 
form of doubt ia just hesitation from being aware of 
the pomibility of alternative explanat.iona.) Along the 
way an abductive process might seek further informa
tion beyond that which is presuppoeed in the data ini-
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tially to be explained. For example there may be a 
need to di8tinguiah between explanatory alternatives, 
or for help in forming hypoth-, or help in evaluating 
them. Thu often abductive p~ are not immedi
ately concluded, but rather suspend to wait for &D1Wen 

to information 1ttking queationa. 

Humana can undent.and 1entencea, form little causal 
theories of everyday eventl, and 10 on, apparently 
performing complex abductive inferences very quickly, 
even in fractiona of a second. Yet when we set out to 
form a hypothm for 10me body of data, we have in 
general no advance usurance that the beat explanation 
will tum out to be a simple hypothm. In fact it is typ
ical that an abductive conclusion be a multi-part com
posite hypothesis, with the parts playing differing roles 
in explaining diff'erent parts of the data. For example 
the meaning of a eentence mu.It be 10me kind of com
posite hypothesis, formed on the Sy u the sentence ia 
understood, including component. that function to ex
plain the word order, choice of vocabulary, intonation, 
and .0 on. 

It ia not in general a computationally feasible strat
egy for finding the beet explanation for a given bOdy of 
data to conaider all poaaible combinationa of elementary 
hypoth .. , comparing each composite hypothesis with 
each to aee which ia the best. It would be better not 
to need to explicitly generate all of the combinations, 
since the number of them ia an exponential function 
of the number of elementary hypotheses available, and 
it rapidly becomes an impractical computation unless 
almOllt. all elementary hypoth .. can be ruled out in 
advance. Thus a general strategy for abduction must 
avoid generating more than a amall number of com
posite hypotheses, either by ruling out all but a few 
elementary hypotheses, or by generating a amall num
ber of composites by methods that implicitly compare 
thoee generated to the large number of thoee that are 
not. 

We may hypothesise that the functional need.I of ab
ductive information proceming are similar aero. widely 
diff'erent domains. If thia ia IO, then there may be a 
single generic architecture for the generic information 
proceming task of forming a confident. explanation (if 
pOl8ible) for a given body of data. (Or perhape there 
are a amall number of such architect.urea.) In fact. I have 
pro~ eliewhere (Joeephlon 1989) that at a certain 
level of de1eription both "deliberative,• and "compiled• 
or "perceptual• abduct.iona, can be accommodated by a 
single architecture, and thus that the information p~ 
ceming that occun in diagnoeia, story understanding, 
viaion, ecientific theory format.ion, hearing, understand
ing spoken language, and ao on, are all accomplished 
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by variations, incomplete realisations, or compilations 
(domain-specific optimisatiou) of one buic compu~ 
tional mechanism. 

However this claim to enreme generality turu out, 
my colleagues and I at Ohio State have been developing 
a aeries of generic mecbanimw for abductive proc....;ng, 
and at least some degree of generality bu already been 
achieved (Josephson et al.1987) (Goel, Sadayapan, and 
Josephson 1988) (Punch at al. 1989) . 
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Abstract 

Abduction is an unsound rule of inference of the form 
"from P and Q - P, infer Q." To emphasize the dis
tinction between abduction and sound rules of infer
ence, Q is called a hypothesis, thus abduction provides 
the basis for hypothetical reasoning systems. 

We describe a simple system of hypothetical rea
soning whose essentials are familiar to anyone who 
has analyzed the reasoning strategy of INTERNIST, 
worked on residue resolution, done any kind of 
"explanation-based" z where z is "learning," "rea
soning," "concept formation," etc. We then provide 
terse descriptions of the system's relationship to de
duction, induction, analogy, probabilistic reasoning, 
and nonmonotoni<; reasoning. 

1 Introduction 

Abduction is an unsound rule of inference of the form 
"from P and Q - P, infer Q." To emphasize the dis
tinction between abduction and sound rules of infer
ence, Q is called a hypothesis, thus abduction provides 
the basis for hypothetical reasoning systems. 

Whether a reasoning system is actually doing ab
duction or not has a lot to do with the form of the the
ory from which reasoning proceeds. For example, the 
abductive rule of inference is indistinguishable from 
any attempt to constuct an ordinary first order de
ductive proof in a goal-directed way. From the theory 
Q, Q - P, P, a goal-directed deductive proof of Q 
necessarily proceeds to the subgoal P by using what 
amounts to the abductive rule of inference; a com
pleted derivation relies on the subgoal (hypothesis) 
being directly derivable from the initial theory. 

So, if goal-directed theorm-provers use abduc
tion to create subgoals, what distinguishes deduc
tive theorem-proving from abductive or hypothet
ical theorem-proving? Of course it is the truth
conditional status of the subgoals or hypotheses. In 

145 

deduction, subgoals in a successful derivation have 
their truth grounded in the original theory; in hypo
thetical reasoning, the hypotheses are not deductively 
established. 

The following section provides a thumbnail sketch 
of a simple hypothetical reasoning system based on 
first order clausal logic without equality. It is "hy
pothetical" or "abductive" because it explicitly dis
tinguishes formulas whose truth conditions are estab
lished (either by asserting them as axioms or demon
strating their deductive derivation) from those which 
are not. The latter are called hypotheses, which can 
participate in any derivation as long as there is suffi
cient evidence to assume them. As we shall discuss, 
the notion of what constitutes sufficient evidence is a 
central issue in drawing the boundaries between dif
ferent kinds of hypothetical reasoning. 

2 A brief description of a hy
pothetical reasoning system 

Using Prolog as a systems programming language, we 
have implemented many variations of the following 
hypothetical reasoning system specification[GFP86, 
GG87, Poo88]. "" 

The logic is full first order clausal logic without 
equality; the proof theory is a goal-directed theorem 
prover based on Prolog but modified with Loveland's 
MESON proof procedure idea to get a full clausal 
prover (see [PGA87] for details). 

The essence of the abuctive component arises from 
a simple distinction in any applied theory: every 
database DB of sentences is separated into facts F 
and hypotheses H. In the goal-directed search for 
a derivation of an alleged theorem (goal) G, an or
dinary deductive proof is attempted using sentences 
from both F and H. If the derivation succeeds with
out using any sentences from H, then the derivation is 
wholly deductive and G is a logical consequence of F. 



Otherwise, the participation of any sentences from H 
must be accompanied by some kind of rational sup
port (cf. (Isr80, Isr83, Isr88]). Although the extra 
evidence in support of hypotheses varies from imple
mentation to implementation (see below), all systems 
insist that any member of H must be consistent with 
the existing facts F and all other hypotheses partici
pating in a derivation.1 

Before continuing to address the relationship to 
other styles of reasoning, we conclude with a simple 
example. Let 

F = {bird(tweety), emu(X) - ~flies}, 
H = {bird(X) - flies(X)}, 
G =I lies(tweety). 

Note that all variables are universally quantified. The 
appropriate derivation is 

f lies(tweety) 
f lies(tweety) - bird(tweety) 
bird( tweety) 

and the use of the instance of the hypothesis is sup
ported by verifying that F does not derive the nega
tion of the hypothesis, i.e., it is consistent. We name 
the instance of the hypothesis as the "theory" T that 
explains the goal G. This use of the word "theory" is 
consistent with the notion of nomological explanation 
(e.g., (Hem65]). · 

Note that this style of reasoning is nonmono
tonic, as augmenting F with emu(tweety) will have 
~flies(tweety) as a consequence, but will not support 
flies(tweety) as the required T = {bird(tweety) -
flies(tweety)} is not consistent with the augmented 
F. 

3 Relationship to deduction 

As suggested above, it is easy to confuse some forms 
of deduction with abduction because the backward 
or goal-directed application of modus ponens is in
distinguishable from the abductive rule of inference. 
The simplest way to state the relationship between 
the two is that the truth-conditional status of ab
duced sentences is not established in any deductive 
way, and so must be supported by a variety of ratio
nalizations, including consistency, lack of evidence to 
the contrary, high probability, etc. 

1 Poole has shown how this specification provides sufficient 
expressive power for default reasoning (Poo88); Lin and Goebel 
show how Przymuainski'1 circumscriptive theorem proving 
[Prz89] is equivalent to a conservative form of prediction, based 
on this hypothetical reasoning system. 
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4 Relationship to induction 

The simplest description of induction is typically 
given as the rule of universal generalization, as fol
lows: from p(a), infer p(X), for all X. To see the 
relationship to abduction, consider the situation with 
G = p(a), F = {} and H consists of all sentences in 
the language (or at least a generator that produces 
the potentially infinite set in some well-defined order). 
The hypothetical reasoning system is doing induction 
whenever it constructs derivations of p( a) that use in
stances of any sentence of H that is more general than 
p(a). For example, selecting p(X) from H to create 
the explanation T = {p( a)} is boring, but it is still 
induction. We might consider the restriction to more 
"interesting" hypotheses, e.g., p(X) - q(X), q(X) 
if we have any rational well-defined reason for doing 
so. It is already well-known that fabricating rational 
inductive schemas (i.e., waiting for the appropriate 
member of H to be generated) is not a simple prob
lem. 

5 Relationship to analogy 

If you believe that analogical reasoning is not deduc
tive (some don't, e.g., [DR87]), then perhaps it is 
abductive? Consider 

F = {p(a)} 
H = {X = Y} 
G = p(b) 

Since everyone will admit that analogy reasoning is 
somehow related to some kind of equality (e.g., par
tial equality, partial relevant equality, etc.), we might 
simply treat various kinds of equality definitions as 
hypotheses. In this case, p(b) can be derived if we 
assume T = {a = b} as an instance of the hypoth
esis X = Y, i.e., Fu {a= b} F= p(b). As shown in 
[Goe89], there are plenty of possible equality defin
tions possible.. The essential relationship suggests 
that we are doing analogical reasoning whenever we 
do abductive reasoning that involves assuming some
thing about some kind of equality. 

In the above example, so called "source" and "tar
get" knowledge consists only of the single fact p(a), 
The only similarity assumption is the hypothesis 
schema H = {X = Y}, which we interpret to mean 
that any. X is equal to any Y. In the vocabulary of 
analogical reasoning, we have concluded p(b) on the 
basis of source knowledge p(a) and mapping a = b. 
The theory T is admittedly rather weak evidence for 
the "analogical conclusion,'' but the general struc
ture of hypothetical reasoning provides for arbitrar
ily complex justifications of arbitrary theories (e.g., 
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see [GG89]). The simple point is that assumptions 
about equality are the substance from which map
pings are made; theory preference is a generalization 
of the methods developed for ranking analogical map
pings (e.g., [Hal89]). 

Note further, that this example has no explicit ax
ioms for equality (other than the hypothesis). Be
cause of this, both the goal and the fact must be writ
ten according to the standard transformation that ex
plicitly introduces equality (cf. [Cla78, LvE84]), viz. 

p(a) becomes p(X) AX= a 
the goal p(b) becomes p(X) AX= b 

where variables in goals are existentially quantified. 
In this way the derivation can be c9nstructed without 
the explicit need for a full equality axiomatization. 
This is not fully general, as shown in (Goe89]. 

Also note that the predicate symbol = is often as
sumed to mean identity in an interpretation, as op
posed to an arbitrary equivalence relation. Many the
ories of nonmonotonic reasoning that exploit model
theoretic minimization (cf. [Rei87]) assume unique 
names axioms, viz. 

01 '# 02 A 02 '# 03 ... 

where each Oi is an individual constant of the lan
guag~, and the intended interpretation of the symbol 
= is identity. Usually, because of the proof-theoretic 
difficulties presented by equality axioms, this use of 
identity is not explicit. This specification of analog
ical reasoning based on abduction suggests an intu
itive interpretation of the symbol = is something like 
"sufficiently similar, according to what is currently 
known." 

6 Relationship to probability 

Since hypothetical reasoning is nonmonotonic, it is 
not surprising that there is a relationship between 
abduction and probability. While the debate over 
probability versus logic has been somewhat polarized 
(e.g., [Me88]), it is simple to argue that one way to 
address the rational choice of competing explanations 
is to choose the most probable. For example, if we 
have 

F = {p(a),p(b)} 
H= {X =X} 
G = p(c) 

we get two explanatio~s T1 = {a = c}, and T2 = { b = 
c}. It is desirable to have a probability measure such 
that P(a = c!F) was different from P(b = c!F) in 
order to rank explanations, 
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So abduction can produce explanations and rely 
on some system of conditional probability to help 
choose the best explanation. Two different ap
proaches to this amalgamation are provided in [LG89] 
and (GG89]. The former uses a monadic first order 
language in graphical form, and attributes a proba
bility value to each link in the network (cf. [Pea86]). 
Reasonable assumptions about independence and Io-' 
calization of probabilistic influences allow abduction 
to the most probable explanation in time that is expo
nential in the number of atomic goals (observations), 
which are usually few. The algorithm uses a Steiner 
tree algorithm to find explanations, and incremen
tally computes the accumulating probabilities during 
construction of the explanation. 

The latter approach, [GG89] uses hypothetical rea
soning directly, together with an extended metalan
guage for expressing independence relations on cate
gories of events (predicates). Inference with the in
dependence statements is combined with explanation 
generation to identify those most likely. 

7 Relationship to nonmono
tonic reasoning 

As illustrated above, hypothetical reasoning based on 
abduction is nonmonotonic. The nonmonotonicit.y 
arise because the set of explanations from a fixed H 
is not montonic with respect to a montonically en
larging F. As illustrated in the Tweety example in 
Section 2, new facts invalidate pr~viously determined 
explanations. 

It is likely that there is no domain independent 
strategy for selecting the best T (cf. [Ale88, DW89]), 
so the best one can hope for is to build systems that 
find the best domain dependent Ts as efficiently as 
possible. In this regard, we have investigated ways 
in which deductive attempts to establish consistency 
are related to truth maintenance systems(TMS), con
straint programming and general techniques for im
proving the efficiency of theorem provers [SG89]. 
Note that, despite the pessimism as regards the unde
cidability of truth maintenance systems for first order 
systems (e.g., (RJ87]), we have constructed such sys
tems that are empirically more efficient than DeKleer
style TMSs. Our empirical improvements, motivated 
by the impossibility of asymptotic analysis, exploit 
the properties of the finite failure derivation tree de
veloped in attempts to establish hypothesis consis
tency. 
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8 Conclusion 

Abduction is a logical method of isolating interest
ing hypotheses, and so is naturally applicable in ev
ery situation where- goal-directed reasoning proceeds 
within the context of-uncertain or incomplete infor
mation. Our research strategy has been to attack 
such problems with the undecidable version of a hyp~ 
thetical reasoning specification based on abduction, 
and to empirically determine necessary improvements 
in both specification and implementation, for various 
applications. 

Acknowledgements 

These ideas derive from years of interaction with var
ious people including those at the University of BC, 
the University of Waterloo, the University of Alberta. 
I doubt, however, that any one of them would com
pletely agree with this rather broad statement of the 
nature of abductive reasoning. This work was has 
been supported by Natural Sciences and Engineering 
Research Council of Canada grants A0894, G1587, 
OGP9443, and INF36861. 

References 

[Ale88] R. Aleliunas. Comments on peter cheese
man's an inquiry into computer under
standing. Computational Intelligence, 
4(1):67-69, 1988. 

[Cla78] K.L. Clark. Negation as failure. In H. Gal
laire and J. Minker, editors, Logic and 
Databases, pages 293-322. Plenum Press, 
New York, 1978. 

[DR87] T.R. Davies and S.J. Russell. A logical ap
proach to reasoning by analogy. In Pro
ceedings of /JCAI-87, pages 264-270, Mi
lan, Italy, August 23-28 1987. 

[DW89] J. Doyle and M. Wellman. -~mpediments 
to universal preference-based default theo
ries. In Proceedings of KR89, pages 94-102, 
Toronto, Ontario, May 15-18 1989. 

[GFP86] R. Goebel, K. Fu·rukawa, and D. Poole. 
Using definite clauses and integrity con
straints as the basis for a theory formation 
approach tq .diagnostic reasoning. In Pro
ceedings of the Third International Confer
ence on Logic Programming, pages 211-222, 
London, England, July 14-18 1986. Impe
rial College. 

148 

[GG87] 

[GG89] 

[Goe89] 

If• Goebel and S.D. Goodwin. Applying 
theory formation to the planning problem. 
In Proceedings of the AAA! Workshop on 
The Fro.me Problem in Aritifical Intelli
gence, pages 207-232, Lawrence, Kaitsas, 
April 12-15 1987. 

S.D. Goodwin and R. Goebel. Statistically 
motivate defaults. (manuscript), 1989. 

R. Goebel. A sketch of analogy as reason
ing with equality hypotheses. In K. Jan-
tke, editor, Analogical and Inductive Infer
ence, volume 397 of Lecture Notes in Com
puter Science, pages 243-253. Springer Ver
lag, Berlin, 1989. 

[Hal89] R.P. Hall. Computational approaches to 
analogical reasoning: A comparative anal
ysis. Artifical Intelligence, 39(1):39-120, 
1989. 

[Hem65] C.G. Hempel. Aspects of scientific explana
tion and other essays in the philosophy of 
science. The Free Press, New York, 1965. 

[Isr80] D.J. Israel. What's wrong with non
monotonic logic? In Proceedings of AAAI-
80, pages 99-101, Stanford, California, Au
gust 18-21 1980. Stanford University. 

[Isr83] D.J. Israel. The role of logic in knowl
edge representation. Computer, 16(10):37-
41, 1983. 

[Isr88] 

[LG89] 

[LvE84] 

[Me88] 

[Pea86] 

! : 

D.J. Israel. On cheeseman. Computational 
Intelligence, 4(1):85-86, 1988. 

D. Lin and R. Goebel. A probabilistic 
theory of abductive diagnostic reasoning. 
Research report TR 89-25, Department of 
Computing Science, University of Alberta, 
Edmonton, Canada, October'1989. 

J.W. Lloyd and M.H. van Emden. A logical 
reconstruction of Prolog ii. In Proceedings 
of the Second International Logic Program
ming Conference, pages 115-125, Uppsala, 
Sweden, July 2-6 1984. Uppsala University. 

M. McLeish (ed.). Taking issue: Cheese
man's an inquiry into computer under
standing. Computational Intelligence, 
4(1):57-142, 1988. 

Judea Pearl. Fusion, propagation, and 
structuring in belief networks. Artificial In
telligence, 29:241-188, 1986. 



[PGA87) D. Poole, R. Goebel, and R. Aleliunas. 
Theorist: A logical reasoning system for 
defaults and diagnosis. In N .J. Cercone 
and G. McCalla, editors, The Knowledge 
Frontier: Esaaya in the Representation of 
Knowledge, pages 331-352. Springer Verlag, 
New York, 1987. 

(Poo88] D. Poole. A logical framework for default 
reasoning. A rtifical Intelligence, 36( 1 ):27-
47, 1988. 

(Prz89) Teodor C. Przymusinski. An algorithm to 
compute circumscription. Artificial Intelli
gence, 38(1):49-73, January 1989. 

(Rei87] R. Reiter. Nonmonotonic reasoning. In An
nual Reviews of Computer Science, pages 
147-186. Annual Reviews of Computer Sci
ence, New York, 1987. 

(RJ87] R. Reiter and De Kleer J. Foundations of 
assumption-based truth maintenance sys
tems (preliminary report). In Proceedings 
of AAAI-87, pages 183-187, Seattle, Wash
ington, July 13-17 1987. 

(SG89] A. Sattar and R. Goebel. Using crucial lit
erals to select better theories. Research re
port TR 89-27, Department of Computing 
Science, University of Alberta, Edmonton, 
Canada, October 1989. 

149 



Causal theories for default and abductive reasoning 

Hector Geffner 
hector@ibm.com 

IBM T. J. Watson Research Center 
P. 0. Box 704 

Yorktown Heights, NY 10598 

1 Introduction 

We explore the relation between default and abduc
tive reasoning. Default reasoning is concerned with the 
adoption of assumptions in the absence of conflicting in
formation, while abductive reasoning is concerned with 
the adoption of hypotheses that increase the coherence 
of a set of beliefs. Formal accounts of default reasoning 
have encountered the problem of spurious arguments: 
arguments which rely on acceptable defaults but which 
support unacceptable conclusions. General accounts of 
abductive reasoning, on the other hand, have encoun
tered the problems of identifying what needs to be ex
plained, what counts as an explanation, and what hy
potheses can be postulated. 

The connection between default and abductive rea
soning lies in the notion of expectation failures or "ab
normalities." Default reasoning arises from the mini
mization of such abnormalities (e.g. [McCarthy, 1986]), 
while abductive reasoning arises from the need to ex
plain them. However, not all "abnormalities" are equal. 
Many examples illustrate that in cases of conflict, one 
abnormality may be preferred to others (e.g. the fa
mous "Yale shooting problem" [Hanks and McDermott, 
1987]). Often the source· of such preferences is related 
to the notion of erplanation: some scenarios explain 
the abnormalities they introduce, while others do not. 
As expected, among the competing scenarios that arise 
from conflicting defaults, the most coherent ones usually 
capture the intuitive default expectations, while less co
herent ones give rise to spurious expectations. 

Causal theories are default theories which explicitly 
address the distinction between erplained and unex
plained abnormalities. They embed a "causal" opera
tor 'C' in the language such that for an abnormality a, 
the literal Ca is supposed to hold when o is erplained. 
Such an operator permits to make explicit the causal 
or explanatory character of rules like "irregular ignition 
causes power decrease,"' '"being sick explains being un
able to go to class," and so on. The interpretation of 
causal theories makes use of such rules to identify most 
coherent scenarios and determine the conclusions which 
causal theories legitimat~ly support. 
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Causal theories have been analyzed in detail in 
[Geffner, 1989a] where they are shown to provide a uni
fying framework for several domains of interest to Al, 
including temporal and abductive reasoning, and logic 
programs with negation (see also [Geffner, 1989b] for re
lated ideas). In this extended abstract I will summarize 
the main concepts and results, with special emphasis on 
the application of causal theories to abductive reason
ing. Due to the distinction between erplained and un
explained expectation failures, causal theories not only 
eliminate spurious default arguments, but also permit 
to identify what needs to be explained, what counts as 
an explanation, and what hypotheses increase the co
herence of a set of beliefs. 

2 Causal Theories 

A causal theory is a classical first order theory aug
mented with the causal operator 'C', in which certain 
atoms, abnormalities, are expected to be false [Mc
Carthy, 1986]. We use the symbol a possibly indexed 
to denote abnormalities. Furthermore, for an interpre
tation M, A[M], called the gap of M, denotes the set 
of abnormalities true under M. As usual, an interpre
tation M that satisfies a causal theory T is said to be 
a model of T. A class C of T with a gap A[C] stands 
for the non-empty collection of models M of T with a 
gap A[M] ~ A[C]. Intuitively, since the negation of ab
normalities are assumptions expected to bold, a class 
C with a gap A[C] represents the collection of models 
which validate all assumptions -.o for abnormalities a 
not in A[C]. We say that a proposition p holds in a class 
C ofT, if p holds in every model in C. Proof-theoretically 
this is equivalent to require that p be logically derivable 
from T and a set of assumptions compatible with A[C]. 

The operator C is most commonly used to encode 
causal or explanatory rules of the form "if a then 6" 
as sentences of the form a ~ Cb (see [Pearl, 1988]). 
A rule such as "rain causes the grass to be wet" may 
thus be expressed as rain ~ Cgraas-'lret, which can 
be read as saying that if rain is true, then grass-Ht 
is explained. The operator C obeys certain constraints; 
here, for simplicity, we will only require o to bold when 



Ca holds (namely, a must be true when a is explained). 
The opera.tor C induces a. preference relation on 

classes of models of the theory T of interest, which is 
used to determine the propositions (causally) entailed 
by T (see [Shoha.m, 1988], for this non-classical form 
of entailment). Such preference relation depends on 
the abnormalities and the erplained abnormalities sanc
tioned by the different classes. An abnormality a is ex
plained in a. class C when the literal Co: holds in C. If 
we denote by Ae[C) the set of explained abnormalities 
in a class C of a theory T, then the preference relation 
on classes can be described as follows. 

A class C is as preferred as a class C' iff A[C]-A"[C] s; 
A[C']. A class C is preferred io a class C' iff C is as 
preferred as C' but C' is not as preferred as C. 

In other words, a class C is preferred to a class C' when 
every abnormality in C but not in C' has an explanation, 
but not vice versa. If there is no class preferred to C, 
then C is said to be a preferred class. A causal theory 
T (causally) entails a proposition p if p holds in all its 
preferred classes. 

It is simple to show that in order to determine the 
propositions which are entailed by a theory T it is suffi
cient to consider the minimal classes ofT; namely, those 
classes C of T with a minimal gap A[C]. 

Example 1 Let us consider first a simple causal theory 
T given by the single sentence -.a.b1 => Ca.b2, where ab1 
and a.b2 are two different abnormalities. Such a theory 
admits two minimal classes: a class C1 , comprised by 
the models of T which only sanction the abnormality 
ab1, and a class C2, comprised of the models which only 
sanction the abnormality ab2. Thus C1 has an asso
ciated gap A[Ci] = {a.bi}, while C2 has an associated 
gap A[C2] = { ab2}. Both classes represent the mini
mal classes of T, as there is no model of T that satisfies 
both assumptions -,a.b1 and -.a.b2, together with the 
restriction Co: => o:. The abnormalities o: explained in 
each class C can be determined by testing which liter
als Co: hold in C. As we said, this amounts checking 
whether there is a set of assumptions legitimized in C 
which together with T logically imply Co:. In the class 
C2, hence, the abnormality a.b2 is explained as the lit
eral Cab2 logically follows from T and the assumption 
..,ab1 legitimized in C2. On the other hand, the abnor
mality a.b1 is not explained in C1, as there is no set 
of assumptions validated by C1 which supports the lit
eral Cab1. It follows then, that the class C2 is causally 
preferred to Ci, as A[C2) - A"[C2) = 0 ~ A[Ci], but 
A[Ci]-A0 [Ci] = {abi} ~ A[C2) = {a.b2}. Furthermore, 
since C1 and C2 are the only minimal classes of T, C2 
remains as the single causally preferred class of T, and 
the propositions ..,a.b1 and a.b2 are (causally) entailed 
by T. 

Note the asymmetry established by the causal opera
tor in the sentence ...,a.b1 ~ Cab2; while the assump
tions -.ab1 and -.a~ are incompatible, the former is 
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legitimized while the latter is not. 

Example 2 (Reasoning about change) Let us con
sider now a bare bones description T of the Yale shoot
ing problem [Hanks and McDermott, 1987] : 

(1) loa.ded.o /\ ...,ab1 => loa.ded1 
(2) alive1 /\ -.ab2 ~ alive2 
(3) 11hoot1 /\ loa.ded1 => C-,aJ.ive2 
(4) 11hoot1 /\ loa.ded1 => Cab2 

(5) loa.ded.o /\ alin1 /\ 11hoot1 
This simplified version preserves the main features of 
the original problem and gives rise to the same anoma
lies pointed out by Hanks and McDermott. The causal 
operator, however, makes now the causal character of 
rules (3) and ( 4) explicit. In the context of T, the as
sumption -.a.b1 about the persistence of loaded is in 
conflict with the assumption ...,a.b:z about the persistence 
of alive, and thus two minimal classes of models arise: 
a class C1 of models in which the former abnormality 
holds, and a class C2 of models in which the later ab
normality hold. However, since the assumption -,a.b1 
explains the abnormality a.b2 in T, i.e. T, -,a.b1 I- Cab2, 
but not vice versa, the latter class of models is preferred. 
As a result, the expected literals loa.ded1 and ..,alive2 
are (causally) entailed by T. 

Example 3 (Logic Programs with Negation) 
Consider a logic program P given by the rules: 

c - a., -,b 

d- -.c 

a. -
and the causal theory C[P]: 

Ca. /\ ..,b => Cc 

-.c =>Cd 

t =>Ca. 
obtained by translating each rule 

-Y - 0:1, · · ·, O:n, ..,/3i, · · ·, -.f3m 
in P, into a causal rule: 

Cai /\ ... /\ Co:n /\ -i/31 /\ ... /\ -,f3m => C-y 
Provided that a.II non-causal a.toms (atoms which do 
not involve the operator C) are considered 'abnormal,' 
it can be shown that the canonical semantics of P [Apt 
et al., 1987] and the interpretation of the causal theory 
C[P] legitimize the same behavior. Moreover, the sa.me 
equivalence holds for any stratified program P [Geffner, 
1989a]. In other words, causal theories provide an alter
native semantics for characterizing logic programs with 
negation. 

3 Abductive Reasoning 
Having illustrated the generality of causal theories, we 
focus now on their application to abductive reason
ing [Peirce, 1955, Charniak and McDermott, 1985). The 



central idea is to associate a coherence measure to con
texts (theories) as opposed to classes of models, and 
to identify abduction with the adoption of hypotheses 
which render a theory more coherent. Intuitively, the 
coherence --or, for that matter, the incoherence-- of a 
context T will depend on whether the abnormalities it 
declares are explained. 

Formally, if C;, i = 1, ... , n are the preferred classes 
of T, we define the incoherence set I[T1 of T to be the 
collection of sets Au[C;] = A[C;] - Ae[C;J, i = 1, ... , n, 
where A[C;] and Ae[Ct] stand for the gap a.nd the ex
plained gap of class C; respectively. 

A context T is as coherent as as a. context T' then, 
if for every set S in I[T] there is a set S' in I[T'] such 
that S ~ S'. Furthermore, T is more coherent than T' 
if Tis as coherent as T', but T' is not as coherent as T, 

For example, a context in which Tim is known to be 
a sick non-flying bird, is more coherent than a context 
in which all that is known is that Tweety is a non-flying 
bird, as the former provides an explanation for Tim's 
unexpected feature. 

Given a pool :S: of possible conjectures that can be 
adopted as hypotheses (see [Poole, 1987]), we define be
lief states as contexts T+::: that result from augmenting 
a causal theory T with a set of conjectures :::, ::: E :S:, 
logically consistent with T. We often denote such states 
as pairs (T, ?:) to distinguish the solid evidence T from 
the hypothetical beliefs :::. The definitions below will 
permit us to derive ::: from Tin such a way that the re
sulting theory T + ::: is maximally coherent and devoid 
of unnecessary commitments. 

First, we say that a belief state B = (T, ?:) is less 
committed than a belief state B' = (T, ?:'), if ::: C 2'. 
Likewise, we say that B = (T, 2) is a maximally-coherent 
belief state if there is no other belief state B' = (T, 2') 
more coherent than 8. 

Finally, a maximally-coherent belief state B = (T, 2} 
is admissible, when there is no maximally-coherent be
lief state B' = (T, ?:') less committed than B. Intu
itively, admissible belief states (T, 2), represent belief 
states which a rational agent with the information in T 
may choose to adopt. We also say in that case that ::: is 
an admissible hypothesis set in T, and that the conjec
tures in ::: are admissible hypotheaes. 

Example 4 {Simple Abduction) Consider the cau
sal network depicted in fig. 4 describing a fragment of 
the knowledge relevant to the diagnosis of a malfunc
tioning car [Console et al., 1989). We encode such a net
work by mapping each causal link a - f3 to a causal rule 
a => C{3, and by regarding each token in the net as an 
'abnormality' that needs explanation. Furthermore, we 
assume a pool :S: of conjectures which includes only the 
top propositions pistons...rings..used, oil-cup..holed, 
old....spark..plugs, all of which are assumed to be self
explanatory; namely, for each such conjecture e we as
sume e =? ce. 
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pistons..ring111_uud oi1-cup...holed 

"'/ old..aparlt...plugs 

oil...lact J 
~ irregular ...ignition 

higluDngine-tup 

/~ / 
power ..decrease 

Figure 1: A causal network 

Let us assume now that pover..decrease is observed, 
and let T refer to the resulting context. Such context 
accepts a single preferred class of models in which the 
abnormality power ..decrease holds but is not explained. 
Any belief state B; = (T, ?:;) with a non-empty set of 
conjectures 2; will explain such incoherence away, and 
indeed, any such belief state will be maximally-coherent. 
However only those states containing a single hypoth
esis from :S: will qualify as admissible belief states. 
Thus, there are three admissible belief states, involving 
three singleton hypothesis sets {pistons.rings...naed}, 
{oiLcup...holed}, and {old....spark..plugs} respec
tively. If -.high..engine_temp is further observed, 
however, only one admissible hypothesis would re
main: old..spark..plugs; both pistons.rings.used 
and oiLcup..holed require high_engine_temp in or
der to explain pover..decrease. Note that if 
-iirregular..ignition also becomes available, no ad
missible hypothesis would remain. In such context, 
there would be a single (incoherent) belief state involv
ing no conjecture at all. Such behavior is thus different 
from the behavior sanctioned by approaches in which 
abduction is viewed as deduction in a completed model 
(e.g. [Kautz, 1987} and [Console et al., 1989)). 

It is common to find two different types of diagnos
tic tasks in the AI literature: abductive diagnosis, in 
which the search is for hypotheses that imply the obser
vations, and consistency-based diagnosis, in which the 
search is for hypotheses that render the model and the 
observations consistent (see [Poole, 1989)). The example 
above, for instance, belongs to the first category. There 
is, however, a natural way in which consistency-based 
diagnosis can also be accommodated within the present 
framework. All that is needed is to stipulate that 'ab
normalities' are self-explanatory, i.e., we need to assert 
expressions of the form a => Ca for every relevant 'ab
normality' a. In that case all minimal classes will be 
perfectly coherent, and thus, no need for abductive hy
potheses would ever arise. 



There are however 'other patterns of abductive infer
ence which cannot be accommodated so easily. For in
stance, we may wish to express above that the hypothe
sis pistons..ring•..uaed ia more like/1 than the hypoth
esis oil_eup..boled. For that we not only need to be 
able to specify the pool of conjectures, but also how 
such conjectures are suppoeed to be ordered. The ex
tension below addresses this limitation and shows how 
this additional information can be used to prune the 
space of admissible hypotheses. 

A preference relation on conjectures is a strict partial 
order on the set ::: of conjectures. We denote such an 
ordering by the symbol '>-.' The expression e >- e' is 
thus to be read as stating that conjecture e is preferred 
to conjecture e'. The preference relation is extended to 
sets of conjectures as follows. 

A set of conjectures 8 is preferred to a set of conjec
tures 8', if every conjecture in 8-8' is preferred to some 
conjecture in 8' - 8.1 Similarly, a marimally-coherent 
belief state 8 = {T, 8) is a preferred belief state in con
text T, if there is no other mazimally-coherent belief 
~.ate B' = (T, 8') with an hypothesis set 8' preferred to 

The pair formed by a causal theory and an ordered 
set of conjectures constitute an abductive causal theory. 
We illustrate the application of abductive causal theo
ries in a diagnostic task of the type considered by Reg
gia et al. [1985]. 

Example 5 Let us consider the causal network shown 
in fig. 5, We assume that di's, i = 1, ... , 5 stand for 
diseases, and that m; 's, j = 1, ... , 3 stand for mani
festations. Each link of the form er - /3 is expressed 
as a causal rule of the form er ~ C/3, except the link 
di - mi, modified by d5, which is mapped into the rule 
di A-.si ~ Cmi, where si is an exceptional state which 
can be explained by d5, i.e. d5 ~ C•t· The manifesta
tions m;, j E [1, 3], and the state s1 constitute the space 
of 'abnormalities'.2 The diseases, di, i E [1,5], on the 
other hand, represent an ordered set of conjectures such 
that d; is preferred to dj iff i > j. Such preferences may 
be available for instance from the corresponding prior 
probabilities. 

Consider now that •2 is observed. From the network 
depicted in fig. 5, it is simple to see that •2 gives rise 
to three admissible belief states 8, = ({•2}, {d;}), for 
i = 1, 2, 3. However, due to the preference order on 
hypotheses, only the belief state 81 and the hypothesis 
di remain preferred. 

Let us further assume that, refuting the hypothesis 
di, -.mi is now observed. This new observation leads 

1This preference relatiQ~ is still a simplification. Addi
tional factors like the cardinality of the hypotheses sets S 
a.nd S' are likely to play a role in the preference of S over 
:::'. 

2The same results would follow if diseases were treated 
. as abnormalities, provided that they are self-explanatory. 
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• 

Figure 2: A simple diagnostic model 

again to three admissible belief states; however, while 
conjectures d2 and d3 remain admissible singleton hy
potheses sets in new context, the third hypothesis set is 
now given by the compound hypothesis {d1 1 d5}. Fur
thermore, due to the preference order on conjectures, 
the hypothesis d2 becomes the single preferred hypoth
esis, as is preferred to d3 and d5. 

Finally, let us assume that •3 is observed. The new 
context gives rise again to three admissible belief states, 
involving the admissible hypotheses sets {di,d.i 1 d5}, 
{d2,d.i}, and {d3} respectively. However, due to the 
preferences on conjectures, this time d3 remains as the 
single leading hypothesis, followed by the compound hy
potheses {d2 1 d.i}, and only then by {d1,d2 1 d5}. 
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Abstract 

This paper discusses relations between the probabilistic and 

qualitative approaches to abduction; it then offers a proba
bilistic account of the coMection between causation and 
explanation, and proposes a non-temporal probabilistic se

mantics to causality. 

1. Introduction 

In the probabilistic approach, abduction is considered the 

task of finding the ·~most probable explanation" of the evi

dence observed, namely, seeking an instantiation of a set of 

explanatory variables that attains the highest probability, 

conditioned on the evidence observed. The qualitative ap
proaches make explicit appeal to explanatory scenarios, and 

seek scenarios that are both coherent and parsimonious. 

The major challenge fa- both the probabilistic and the 

qualitative approaches is to enforce an appropriate separa

tion between the prospective and retrospective modes of 

reasoning so as to capture the intuition that prediction 

should not trigger suggestion. To use my favorite example: 

"Sprinkler On" predicts "Wet Grass," "Wet Grass" sug

gests "Rain.'' but "Sprinkler On" should not suggest 

''Rain.'' In the probabilistic approach such separation is 
enforced via patterns of indepcndencies that are assumed to 

accompany causal relationships, cast in conditional proba

bility judgments. In the qualitative approaches the separa

tion is accomplished in two ways. One is to label sentences 

as either causally established (i.e., explained) or evidential-

• This work was supported in part by National Science Foundation 
Grant #IRI-88-21444 and Naval Research Laboratoey Grant 
#N00014-89-J-2007. 
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ly established (i.e., conjectured) and subject each type to a 

different set of inference rules [Pearl 1988a; Pearl 1988b; 

Geffner 1989]. The second method is to regard abduction 

as a specialized meta-process that operates on a causal 

theay [Poole 1987; Reiter 1987]. 

The obvious weakness of the qualitative approach is the 

lack of rating among competing explanations and, closely 

related to it, the lack of ratings of pending information 

sources. On the other hand, qualitative strategies demand 

fewer judgments in constructing the knowledge base. 

In qualitative the<ries simplicity is enforced by explicitly 

encoding the preference of simple theories over complex 

ones, where simple and complex are given syntactical 

definitions, e.g., smallest number of (cohesive) propositions 

[Thagard 1989], minimal covering [Reiter 1987; Reggia et 

al. 1983]. These syntactic ratings do not always coincide 

with the notion of plausibility. for example, two common 

diseases are often mme plausible than a single rare disease 

in explaining a given set of symptoms [Reggia 1989). In 

probabilistic theories, coherence and simplicity are 

managed together by one basic principle - maximum pos

terior probability. 

2. Explanation and Causation 

Explanations are intimately coMected to causation. When 

we say that "a explains b" we invariably assume the ex

istence of a causal theory aecording to which "a tends to 

cause b • • and, furthermore, that in the particular situation 

where b was observed. ''a actually caused b . '• The subtle 

difference between "tends to explain" and "actually 

caused'• has been the subject of much discussion in the phi

losophjcal literature, a summary of which can be found in 

r, 



Skyrms & Harper [1988].· The classical example amplify

ing this difference is that of a skillful golfer who makes a 

shot with the intention of getting the ball in the hole; the 

shot is actually quite poc:ll'. but the ball hits a tree branch 

and is deflected into the bole. Here, we are likely to say 

that the golfer's skill and attention "tended to cause," but 

did not "actually cause" the ball to get in the hole. Expla

nation is connected with the latter, not the former, the 

phrase "tends to explain" is hardly in use in the language, 

instead, we use the phrase "is normally suggested by." 

In the language of probability this distinction can be re

lated to a difference between two conditional probabilities. 

If C has a tendency to cause E , then we expect P (EI C) to 

be high. If C is identified as the event that "actually 

caused" E, then we expect P (CI E, context) to be high 

where, by context, we mean other facts connected with the 

observation of E (e.g., hitting the tree in the golfer exam

ple). 

In general, the probability P (E I C) stands for a mental 

summary of a vast nwnber of scenarios leading from C to 

E. Some of these scenarios involve contingencies such as 

trees intercepting golf balls, and some involve micro 

processes that can be articulated only at more refined levels 

of abstraction, for example, the interactions between the 

golf ball and the ground particles. When we confirm the 

sentence "C actually caused E" we normally mean that 

some path of contiguous micro events either can be 

presumed to have taken place or was actually observed. 

Such events are encoded in a knowledge strata more refined 

than the one used in the main discourse. For example, a 
pathologist may assert that the bullet was the "actual" 
cause of death only if a collection of key anatomical 

findings are observed confirming the existence of a contigu

ous physiological process leading from the bullet entry to 

death. 

3. What's in an Explanation, a Probabilistic 
Proposal 

If abduction is defined as ''inference to the best explana

tion'', a natural question to ask is how we define an expla

nation. Both the probabilistic and qualitative approaches to 

abduction have so far treat.ed the term "explain" as a given 

primitive relationship among events, from which a "best" 

overall explanation is to be assembled. Both approaches 
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have given the term "explain" a procedural semantics, at

tempting to match the way people use it in inference tasks, 

but were not concerned with what makes people believe 

that "a explains b , " as opposed to, say, "b explains a " 
or '• c explains both a and b . '' The quest for an empirical 

semantics of explanation has a long history in the literature 

of probabilistic causality, where the focus has been finding 

an operational definition of causation. (see Reichenbach 
[1956]; Simon [1957]; Good [1961]; Salmon [1984]; 

Suppes [1970]; Glymour et al. [1987]; Skynns [1988)). 

ith the exception of Simon [1957] and Glymour et al. 
[1987], temporal precedence was assumed to be essential 

for defining causation. For example, Reichenbach (1956, 

page 204) says that C is causally relevant to E if: 

(i) P (EI C) > P (E) 

(ii) There is no set of events earlier than, or simultaneous 

with, C such that conditional on these events E and C 
are probabilistically independent. 

Suppes [1970] subscribes to a similar definition, with an ex

plicit requirement that C precedes E in time. 

These criteria offer a working definition for causation 

provided that the observed dependencies are not produced 

by hid/kn causes and provided that the set of events men

tioned in condition (ii) is restricted to be "natural" events, 

excluding artificial events, syntactically concocted to meet 

condition (ii) [Good 1961; Suppes 1984]. 

I would like now to propose a non-temporal extension of 

the Reichenbach-Suppes definition of causation, one that 

determines the direction of causal influences without resort

ing to temporal information. It should be applicable, there

fore, to the organiz.ation · of concurrent events or events 

whose chronological precedence cannot be determined em

pirically. Such situations are common in the behavioral and 

medical sciences where we say, for example, that old age 

explains a certain disability, not the other way around, even 

though the two occur together (in many cases it is the disa

bility that precedes old age). Similarly, we say that an in

coming rain storm explains the falling barometer although, 

perceptually, the latter precedes the former in time. 

The intuition behind my definition revolves around the 

perception of voluntary control [Simon 1980] and its proba

bilistic formulation in terms of conditional independence 

(see Pearl [1988], page 396). The reason we insist that the 



rain caused the grass to become wet and not that the wet 
grass caused the rain is that we can aeate conditions which, 
without disrupting the namral dependence between rain and 
wet grass, can get the grass wet without affecting the rain. 
We can, of course, also create a situation where the rain 
falls and the grass remain dry, say by seeding the clouds 
and covering the grass, but under such conditions the 
dependence between rain and wet grass is disrupted, which 
violates the symmetry between the two procedures. 

As was stressed in Pearl [1988, page 396], the perception 
of voluntary control is not a necessary element in this 
asymmetry between cause and effect, but may in itself be a 
bi-product of dependencies observed among uncontrolled 
variables. In medical research, for example, we often 
search for a causal culprit of a disease much before attain
ing control over such cause. 

Articulating these considerations in probabilistic terms, 
we come up with the following non-temporal extension of 
the Reichenbach-Suppes definition. 

Definition: (non-temporal causation) An event C is said 
to be a (tentative) direct cause of E if 

(i) P(EIC) >P(E) 

(ii) There is no set of events such that conditional on 
these events E and C are independent 

(iii) There is an event C' and a set S of events not con
taining C, E and C' such that: 

P(EIS ,C') >P(EIS), and 

P(CIS ,C') =P(CIS) 

The set S in (iii) represents conditions needed for elim
inating possible spurious dependencies between C and C'. 
Event C' represents our means for gaining control over E, 
namely, an event that can cause E without affecting C, thus 
providing an alternative explanation to E. Ironically, and 
almost circularly, explanations are defined in terms of their 
very destruction by other explanations; C qualifies as an 
explanation of E only if it can be "explained away" or 
rendered superfluous by same alternative explanation of C'. 
This is not surprising in view of the fact that people often 
seek an explanation for the sole pwpose of ruling out oth-
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ers. For example, I often hope that my broker would ex
plain the falling prices of my stock in terms of investors' 
panic and other transitory phenomena, so as to allay my 
fears of more profound explanations. 

Any non-temporal definition of causation immediately 
raises the question of consistency, for example, is it possi
ble that using criteria (i) through (iii) we would generate 
two incompallble assertions: "C cause E" and "E causes 
C?" It can be shown, however, that for a larger class of 
probability distributions these criteria are safe from such in
consistencies. Moreover, for those distributions that are un
safe, we can consuain (iii) by an additional restriction: 

(iv) For every set of events S' that does not contain E and 
C, if there is an eventE (not in S') such that 

P(CIS' ,E) >P(CIS'), 

then 

P(EIS' ,E') ¢P(E IS'). 

This restriction guarantees that we certify C as a direct 
cause of E only if the criterion (iii) is violated when we in
terchange C and E. 

The definition above is a translation of that given in Pearl 
[1988b] to the language of Reichenbach and Suppes, where 
causes are propositional events having "positive" 
influence, hence the inequality in (i). In Pearl [1988b] these 
conditions were articulated in terms of variables rather than 
positively influencing ew:nts. A similar definition, in terms 
of variables, was introduced in Spirtes et al. [ 1989]. 

Another variant of this definition can be articulated using 
the graphical language of Bayesian networks, by consider
ing all n ! orderings in which such a network can be con
structed. We say that a variable C is a direct cause of vari
able£ if: 

(1) C andE are adjacent in all orderings, and 

(2) There is an ordering in which C is a free parent of E , 

i.e., non-adjacent to some other parent of E, and there 
is no ordering in which E is a free parent of C . 

This formulation reveals the type of empirical asymmetry 
that is responsible for evoking the perception of directional
ity in causal relationships. 

On the practical side we also must address the question of 

; : 



computation complexity since, in principle, conditions (ii) 

and (iii) call for testing all subsets of events. It can be 

shown that, for a larger class of probability distributions, 

effective algorithms exist lbat determine the direction of 

causal influences without resting all subsets of events 
[Geiger 1990; Verma 1990]. 

A question of a more philosophical flavor concerns the 

relation between temporal precedence and the orientations 
determined by our definition: Why is it that we never ob
serve a clash between the two? The answer, I believe, lies 

in the flexibility of our language; whenever the ftow of 

dependency-based causality seems to clash with the direc

tion of time we invent new variables (hidden causes) that 

reverse the former to comply with the latter. 
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