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S V;‘N. Gribov and I. Ya.;?qmeranchuk%fhdve”érgued‘that there‘is'an 

,V' N Gribov and I Ya. Pomer“nchum, in Proceedings'of‘1962 Internaticnal

Con¢erence on ngh Bnergy PhjolCo, . 522. :

- essential singularity in the partial-wave scattering amplitude for the s .-

7+ -channel rwhich is proportional to the Mandelstam double spectral funciion

5. Mahdelstam, Phyé;fRev. 112, 134k (1958).

L p(t,u)., In uhlg note we present an cxample of a nonlocal poucntial, sugcesué

£

ﬂ .bj the ‘Mandelstam represeptaulon, which leads to this behav or at orbital
. angular momentum minus one.
Oar proo; is based on thc raalul romentum space Schroed;nﬂer ecu tion

SR 2
.. for the eluSulC nartia]-wave amplitude at energy k

(sl | ¥) - 8<K é F) .{ 5 uin(nz l v ] &'ﬁ)dn (k'2" l k)

kW k™ o+ K +

This work was performed under the ausplces of the U. S. Atomic Energy

Comm;ssion.'
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‘In'pafticular, following H. A. Bethe and T. Kinoshita,3 we consider the

'? H. A. Bethe and T. Kinoshi%a, Phys. Rev. 128, 1418 (1962).. -

L PN R s 2

problem of finding Regge poles for large negative values of k™ . These
. -are given by finding solutions of the homogeneous part of Eq. (1). For

" the case of a Yukawa potential it is well known that

e : ro2 2 3
) ' K+ K' + i
e [V [ Rre) o~ oQ | e (2)

where Qg is the Legendre function of the second kind. A different

i

‘potential is oblained by requiring that in Born approximation the

potential reproduces. that part of the scattering amplitude which arises

from the third double spectral function of the Mandelstam representation.

T

Compare, for example, G. F. Chew, S-Matrix Theory of Strong Interactions

(W. &. Benjamin Co., New York, 1951), Ch. 7, p. 39, Eq. (7-21).

This leads in nonrelativistic approximation to

- o co 2 KQ . K'2 . 2. '}
o ' Q£ L' . 2kK’ : J
S kb V] RrE) A~ 5 5 (3)
. : KT+ K'Y 4 '
’ '/ ‘
when p(t,u)' is'assﬁmed to be a delta function in the variables % end

u ‘at u/2 in the region where it is nonvanishing.

g4
i
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" - In:the following paragraph we show that in the neighborhood of

A\

sorbital angular momentum minus one the homogeneous equation for the -

~ . . . . .

.t . Yukawa potential takes the approximate .form’

(x4 l
|

whereas in the case of the nonlocal potential of Eg. (3) in the save

v aerne S e e 12 0 -

jmrm e @i Ly one f£inds

APTLIRSRE

‘E ’ ?: < : ! —‘r>' :
j o - A / (r'f | k K 7
Con . B . 'Ko l\ = { de — e . B L
o gz a0 kT 4k o O A : o
: In these eguations
A N = =% cot x4 , - | . (6)-
i e . s P . s
E T ‘ oo ' . :
S is the eigenvalue that determines the appropriate relation between -k eand
; £ . In the first case the kernel of the integral equation is degenerate,
S0 that there is only one eigensolution for large k in the viciniiy of
minus one. The second eguation, which possesses a nondegenerate Xernel,
' has an infinite number of eigensclutions and eigenvalues, xq , wnitch
oS n n .
- imply the existence of an infinite number of Regge poles accumulating
~at orbital angular momentum minus one; thus, there is an essential

singularity at this point.
- The justification of the foregoing remarks is most easily seen

by studying the solution of the homogenecus part of Eq. (1) in the casz
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‘of a Yukawa potential. It 1s convenient to change the dependent variazbdble
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(Kﬁ T.¢) = K?(Kﬂ i,K> : ‘ | o | (1)

(66 | @) = - —F—5 | Q (s | ) .
2k o+ k7)o ‘c,/ 4 '
, 0 .
(&)
" The solution of'this_eraﬁion in the neighborhood of interest is achieved

)

s ,;'-' . )
by introducing

K

5 S : ' : , .
eo | X)) = [ a"(x"2 | @) . o o (97

¢ | o

{ ; 1 - : O .

A and performing a partial integration. This leads to an equation fox
ol N ‘ ' '

R YRS

8

PR + ] (ka || Rre) ae(es | X)

vaere the value of (k& | X) at infinity is a constant and  (xZ | RO
s | U . S . '
{7 .77 is a kerneliproporticnal to T(4 + 2) and with a complicated dependence
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tner, ‘as will be shown in a fort theoming puo¢1baulon

<‘h:

(K2‘] Ké ]-niﬁ) j (kb l K| x"g) ae™ ("2 | K | w*2)

r - . . :
l(Kﬁ [ ‘{ l K ﬁ” < JI l(Kﬁ K ] K”,@)Idk_”;l(lﬁ”‘@ l K‘ l K-',GH
< (8 K R ()

e
PR

As a reoul if Eq. (10) is considered as an inlomogeneous inteszral

The

eqﬁation for (kb ] ®) we find that the Neumann series. for
.solution is convergent and hence the solution is unique. In order that
.- . Tthe solution be,éonsisient,‘we ocotain the eigenvalue condition
A) l(u l ~> (=
: = =1, (12)
2x M2+ 3/2) :
which leads t0 a single pole in the nelghbornood of minus one. If one

m

now asks wnat

pproxlmate equaulon would lead to this same result one
Tne solutlon of Eq. (1) for the case of the nonlocal poter

vav be discusced by using an approach similar to the Yukawa case. The
e ? > (=3 s :

essential

Teature of the latter problem is that in uhe vicinity of minus
one the Legendre function becomes approximauely constant as a function '
‘of its argument. Making this same approximation in the present case, ve

This then leads to an infinity of solutions in the vicinity








