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A doxastic behavioral characterization of generalized backward
induction I

Giacomo Bonanno

Department of Economics
University of California

Davis, CA 95616-8578 - USA

Abstract

We investigate an extension of the notion of backward induction to dynamic games with imper-
fect information and provide a doxastic characterization of it. Extensions of the idea of backward
induction were proposed by [1] and later by [2], who also provided a doxastic characterization
in terms of the notion of common belief of future rationality. The characterization we propose,
although differently formulated, is conceptually the same as Perea’s and so is the generalization
of backward induction. The novelty of this contribution lies in the models that we use, which are
dynamic, behavioral models where strategies play no role and the only beliefs that are specified
are the actual beliefs of the players at the time of choice. Thus players’ beliefs are modeled as
temporal, rather than conditional, beliefs and rationality is defined in terms of actual choices,
rather than hypothetical plans.

Keywords: extensive-form game, generalized backward induction, dynamic interactive beliefs,
rationality, behavioral model
2000 MSC: 91A18, 91A40
JEL: C7

1. Introduction

The notion of backward induction in dynamic games with perfect information is well known
and its epistemic foundations have been studied extensively.1 Recently [1] extended the notion
of backward induction to extensive games with imperfect information: his “backwards (rational-
izability) procedure” iteratively eliminates strategies and conditional belief vectors starting from
the end of the game and proceeding backwards towards the root. Subsequently [2] provided an
epistemic characterization of this procedure in terms of the notion of “common belief in future
rationality”.2 [2] also introduced a new algorithm, the “backward dominance procedure”, which

II am grateful to an Associate Editor and two anonymous reviewers for helpful comments and suggestions.
Email address: gfbonanno@ucdavis.edu (Giacomo Bonanno)
URL: http://www.econ.ucdavis.edu/faculty/bonanno/ (Giacomo Bonanno)

1For recent surveys of the literature see [3, 4].
2Defined as follows: players are rational and always believe in their opponents’ present and future rationality and

believe that every opponent always believes in his opponents’ present and future rationality and that every opponent
always believes that every other player always believes in his opponents’ present and future rationality, and so on.
Preprint submitted to Games and Economic Behavior August 8, 2014



differs from Penta’s procedure in that it operates only on strategies, rather than strategies and
conditional belief vectors,3 and showed that the strategies that survive the backward dominance
procedure are exactly the strategies that can rationally be chosen under common belief in future
rationality if one does not impose (common belief in) Bayesian updating.

The purpose of this paper is to offer not a novel solution concept but a novel analysis of
the notion of backward induction in games with possibly imperfect information using dynamic
behavioral models where players’ beliefs are temporal, rather than conditional, beliefs and strate-
gies plays no role. We introduce a backward-induction procedure that operates on choices rather
than strategies (we call it “generalized backward induction” in order to distinguish it from the
procedures introduced by [1] and [2]) and whose output is a set of terminal histories, rather than
a set of strategy profiles. Furthermore, we provide a doxastic characterization of it in terms of the
notion of “forward belief in rationality”, which is conceptually very similar to Perea’s notion of
common belief in future rationality. The novelty of this contribution lies in showing that strate-
gies and (objective or subjective) counterfactuals are not needed in order to obtain a doxastic
foundation for a general notion of backward induction.

The epistemic models of dynamic games used in the literature4 are static structures that pos-
tulate, for each player, a complex set of conditional belief hierarchies. In these models, at every
information set of hers a player holds a belief about (a) the opponents’ chosen strategies, (b)
the beliefs that the opponents have, at their information sets, about the other players’ chosen
strategies, (c) the beliefs that the opponents have, at their information sets, about the beliefs their
opponents have, at their information sets, about the other players’ chosen strategies, and so on.
These complex structures capture intricate subjunctive conditionals such as “if I were to move
across then he would believe that I am such-and-such a player, and he will believe that if he were
to move across then I would move across again and consequently he would move across.” ([10],
p. 276). Moreover, in the standard models, subjunctive conditionals or counterfactuals are also
implicit in the use of strategies. For dynamic games with perfect information [11] introduced a
simpler kind of models that are explicitly dynamic and make no use of counterfactuals or dispo-
sitional belief revision; furthermore, these are “behavioral” models in which states are described
in terms of the actual choices made by the players rather than in terms of hypothetical plans.5 In
these models there are no complex epistemic states (consisting of full belief revision policies):
only the actual beliefs of a player when it is her turn to move.

We extend the epistemic models of [11] to games with imperfect information (allowing for
the possibility of simultaneous moves). We use a dynamic framework where the rationality of
a player’s choice is judged on the basis of the actual beliefs that she has at the time she makes
that choice. The set of “possible worlds” is given by state-instant pairs (ω, t), where each state ω
specifies the entire play of the game. If h is the decision history reached in state ω and time t and
i is an active player there, then player i has to choose an action from the set Ai(h) of available
actions at h. In order to make this choice, player i will form some beliefs about (1) what happened
up to this point in the game (that is, which history in her information set has been reached) and

3In the first round the algorithm eliminates, at every information set of player i, strategies of player i himself that
are strictly dominated at present and future information sets, as well as strategies of players other than i that are strictly
dominated at present and future information sets. In every further round k those strategies are eliminated that are strictly
dominated at a present or future information set Ii of player i, given the opponents’ strategies that have survived up to
round k at that information set Ii. The strategies that eventually survive the elimination process constitute the output of
the backward dominance procedure.

4See, for example, [5, 6, 7, 2, 8, 9].
5Behavioral models were introduced by [12].
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(2) what will happen if she chooses action a, for every a ∈ Ai(h). These beliefs can then be used
to assess the rationality of the choice that she ends up making at state ω. We use a very weak
notion of rationality, known as “material rationality” ([13]): at every state-instant pair (ω, t) a
player is rational if (1) either she is not active there or (2) the action she ends up taking at (ω, t)
is “optimal” given her beliefs, in the sense that it is not the case that she believes that there is
another action that guarantees her a higher payoff.

The doxastic condition that we consider - which we call forward belief of rationality - is
expressed as an event and is defined as the set of states where, at every date t, the active players
(1) are rational, (2) believe that at future dates the active players will be rational, (3) believe
that at future dates the active players will believe that future players will be rational, (4) believe
that at future dates the active players will believe that future players will believe that future
players will be rational, and so on. Call this event FBR.6 We show (Proposition 1) that, in an
arbitrary model of a game, if ω is a state such that ω ∈ FBR then the terminal history associated
with ω belongs to the set of terminal histories that are the output of the generalized backward
induction algorithm, which is defined as follows. Let `max denote the depth of the game, that
is, the length of its maximal histories. The algorithm starts at information sets at depth `max − 1
(these information sets are followed only by terminal histories), deletes (possibly iteratively)
choices that are strictly dominated there and then iterates backwards towards the root. We restrict
attention to a class of games that is essentially the same as the class of games considered by
[2].7 We also show (Proposition 2) that, for any game, there exists a model of it such that, for
every terminal history z in the output of the algorithm there is a state ω such that ω ∈ FBR
and the terminal history associated with ω is z. Thus the notion of forward belief of rationality
characterizes the (non-empty) set of terminal histories that are the output of the generalized
backward induction algorithm.

Section 2 introduces the notion of dynamic, behavioral model of an extensive game, while
Sections 3 and 4 contain the definition of rationality and provide a doxastic characterization of
the output of the generalized backward induction algorithm. In order to lighten the exposition, in
Section 3 attention is restricted to games without simultaneous moves and Section 4 details the
additions that need to be made for games that have simultaneous moves. Since the word ’epis-
temic’ refers to knowledge, while we deal with the more general notion of - possibly erroneous -
belief, we use the expression ’doxastic characterization’ rather than ’epistemic characterization’.
Indeed, unlike the condition provided in [11] which involves the hypothesis of locally correct
beliefs, FBR is completely “Truth-free” (that is, purely doxastic) and thus, as a corollary, pro-
vides an alternative characterization of backward induction in perfect-information games with
no relevant ties. Section 5 concludes with a discussion of the proposed approach and of relevant
literature. The proofs are given in the Appendix.

2. State-time representation of extensive games

We use the history-based definition of extensive-form game (see, for example, [14]). If A is
a set, we denote by A∗ the set of finite sequences in A. If h = 〈a1, ..., ak〉 ∈ A∗ and 1 ≤ i ≤ k, the

6When simultaneous moves are present the description of the event FBR includes also common belief at time t that
all active players at time t are rational and that future players will be rational.

7[2] considers games where there is an unambiguous ordering of the information sets, while we restrict attention to
von Neumann games, where decision histories that belong to the same information set have the same length. As argued
in Footnote 10, the two classes of games are essentially equivalent.
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sequence h′ = 〈a1, ..., ai〉 is called a prefix of h. If h = 〈a1, ..., ak〉 ∈ A∗ and a ∈ A, we denote the
sequence 〈a1, ..., ak, a〉 ∈ A∗ by ha.

A finite extensive form without chance moves and possibly simultaneous moves is given by
the following elements:

• A finite set N of players.

• For every player i ∈ N a finite set of actions Ai. If J ⊆ N is a non-empty subset of players,
let AJ =

∏
i∈J Ai be the action profiles for players in J and let A =

⋃
∅,J⊆N

AJ be the set

of action profiles over all possible non-empty subsets of N. If a ∈ A contains only one
action (that is, a ∈ Ai for some i ∈ N), we call a a simple move, otherwise we call it a
simultaneous move.

• A finite set of histories H ⊆ A∗ which is closed under prefixes (that is, if h ∈ H and h′ ∈ A∗

is a prefix of h, then h′ ∈ H). The null history 〈〉 , denoted by ∅, is an element of H and is
a prefix of every history. A history h ∈ H such that, for every a ∈ A, ha < H, is called a
terminal history. The set of terminal histories is denoted by Z. D = H\Z denotes the set
of non-terminal or decision histories.

• A function ι : D→ 2N\∅ that assigns to each decision history h a non-empty set of players
who move, or are active, at history h. For every i ∈ N, let Di = {h ∈ D : i ∈ ι(h)} be the
set of histories at which player i is active. For every history h ∈ Di, we denote by Ai(h) the
set of actions available to player i at h, that is, ai ∈ Ai(h) if ai ∈ Ai and there is a profile of
actions a ∈ A to which ai belongs such that ha ∈ H; furthermore, we denote by A(h) the
set of action profiles for the active players at h, that is, A(h) =

∏
i∈ι(h) Ai(h).

• For every player i ∈ N, an equivalence relation ≈i on Di. The interpretation of h ≈i h′

is that, when choosing an action at history h ∈ Di, player i does not know whether she
is moving at h or at h′. The equivalence class of h ∈ Di is denoted by Ii(h) and is called
an information set of player i; thus Ii(h) = {h′ ∈ Di : h ≈i h′}. The following restriction
applies: if h′ ∈ Ii(h) then Ai(h′) = Ai(h), that is, the set of actions available to a player is
the same at any two histories that belong to the same information set of that player.8

From now on, histories will be denoted succinctly by listing the corresponding (profiles of)
actions, without brackets, without commas and typically omitting the empty history: thus instead
of writing 〈∅, a1, (a2, a3), a4〉 we will simply write a1(a2, a3)a4.

The top part of Figure 1 shows two alternative representations of the following extensive-
form: H = {∅, b, a, a(c, e), a(c, f ), a(c, g), a(d, e), a(d, f ), a(d, g)}, ι(∅) = {1}, ι(a) = {1, 2},D1 =

{∅, a},D2 = {a}, A1(a) = {c, d}, A2(a) = {e, f , g}, etc.
Given an extensive form, one obtains an extensive game with ordinal payoffs by adding, for

every player i ∈ N, a preference relation%i over the set Z of terminal histories (the interpretation
of z %i z′ is that player i considers terminal history z to be at least as good as terminal history z′).
It is customary to replace the preference ranking%i with a utility (or payoff ) function ui : Z → R
(where R denotes the set of real numbers) satisfying the property that ui(z) ≥ ui(z′) if and only if
z %i z′.

8It is common to impose a further requirement, known as perfect recall, according to which a player always remem-
bers her own past moves. Since perfect recall is not needed for our results, we are not assuming it.
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Remark 1. We will only consider ordinal payoffs and qualitative beliefs in order to highlight
the novel features of our approach in as simple a framework as possible. The analysis can be ex-
tended to the case where the players’ preferences are represented by von Neumann-Morgenstern
utility functions and beliefs are probabilistic.9

Given a history h ∈ H, we denoted by `(h) the length of h, which is defined recursively as
follows: `(∅) = 0 and if h ∈ D and a ∈ A(h) then `(ha) = `(h) + 1. Thus `(h) is equal to
the number of action profiles that appear in h; for example, if h = a1(a2, a3, a4)a5(a6, a7) then
`(h) = 4. We denote by `max the length of the maximal histories in H: `max = maxh∈H{`(h)}.
Clearly, if `(h) = `max then h ∈ Z. Given a history h ∈ H and an integer t with 0 ≤ t ≤ `(h), we
denote by ht the prefix of h of length t. For example, if h = a1(a2, a3, a4)a5(a6, a7), then h0 = ∅,
h2 = a1(a2, a3, a4), etc.

We follow [2] and restrict attention to extensive forms where there is an unambiguous order-
ing of the information sets. However, for notational simplicity, it will be convenient to restrict
attention to the essentially equivalent class of von Neumann extensive forms, which are defined
as follows.10

Definition 1. An extensive form is von Neumann if any two decision histories that belong to the
same information set have the same length: ∀i ∈ N, ∀h, h′ ∈ Di, if h′ ∈ Ii(h) then `(h) = `(h′).

Let Ω be a set of states and T = {0, 1, . . . ,m} a set of instants or dates. We call Ω × T the set
of state-instant pairs.

Definition 2. Given a von Neumann extensive form, a state-time representation of it is a triple
〈Ω,T, ζ〉 where Ω is a set of states, T = {0, 1, ...,m} is a set of instants with m ≥ `max − 1 (recall
that `max is the depth of the game) and ζ : Ω → Z is a function that assigns to every state a
terminal history. Given a state-instant pair (ω, t) ∈ Ω × T , define

ζt(ω) =

 the prefix of ζ(ω) of length t if t < `(ζ(ω))
ζ(ω) if t ≥ `(ζ(ω)).

Interpretation: the play of the game unfolds over time; the first move is made at date 0, the
second move at date 1, etc. Since the extensive form is von Neumann, whenever a player has to
move she “knows the time”, that is, she knows how many (possibly simultaneous) moves have
been made so far. A state ω ∈ Ω specifies a particular play of the game (that is, a complete
sequence of moves leading to terminal history ζ(ω)); ζt(ω) denotes the “state of play at time t”

9The traditional approach postulates that every player has a preference relation over the set of lotteries over terminal
histories that satisfies the axioms of expected utility. This is not an innocuous assumption, since the game under con-
sideration is implicitly taken to be common knowledge among the players. Thus not only is it commonly known who
the players are, what choices they have available and what the possible outcomes are, but also how each player ranks
those outcomes. While it is certainly reasonable to postulate that a player knows her own preferences, it is much more
demanding to assume that she knows the preferences of her opponents. If those preferences are expressed as ordinal
rankings, this assumption is less troublesome than in the case where preferences also incorporate attitudes to risk (that
is, the utility functions that represent those preferences are von Neumann-Morgenstern utility functions).

10Extensive forms where there is an unambiguous ordering of the information sets can be transformed into von Neu-
mann extensive forms in a trivial way by adding, along some histories, a fictitious player (the “clock”) who always has
singleton information sets and only one choice (moving the clock forward) at each history assigned to it.
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Figure 1: An extensive-form game and a state-time representation of it.

at state ω, that is, the partial history of play up to date t [if t is less than the length of ζ(ω),
otherwise, once the play is completed, the state of the system remains at ζ(ω)].

Figure 1 shows an extensive form and a state-time representation of it. For every ω ∈ Ω =

{α, β, γ, δ, ε, η, θ} and t ∈ T = {0, 1, 2} we have indicated the (partial) history ζt(ω) (recall that ∅
denotes the empty history). For example, ζ1(α) = ζ2(α) = b, ζ1(β) = a, ζ2(β) = a(d, e), etc.

We want to define the notion of rational behavior in a game (as captured by choices actually
made), rather than rational planning (as captured by strategies), and examine its implications. In
order to do so we will introduce the notion of a dynamic model of a game. First we recall the
following facts about Kripke frames. If Ω is a set of states and Bi ⊆ Ω×Ω a binary relation on Ω

(representing the beliefs of individual i), for every ω ∈ Ω we denote byBi(ω) the set of states that
are reachable from ω using Bi, that is, Bi(ω) = {ω′ ∈ Ω : ωBiω

′}.11 Bi is serial if Bi(ω) , ∅, for
everyω ∈ Ω; it is transitive ifω′ ∈ Bi(ω) impliesBi(ω′) ⊆ Bi(ω) and it is euclidean ifω′ ∈ Bi(ω)
implies Bi(ω) ⊆ Bi(ω′). Subsets of Ω are called events. If E ⊆ Ω is an event, we say that at
ω ∈ Ω individual i believes E if and only if Bi(ω) ⊆ E. Thus one can define a belief operator
Bi : 2Ω → 2Ω as follows: BiE = {ω ∈ Ω : Bi(ω) ⊆ E}. Hence BiE is the event that individual
i believes E.12 It is well known that seriality of Bi corresponds to consistency of beliefs (if the
individual believes E then it is not the case that she believes not E : BiE ⊆ ¬Bi¬E, where,

11In the economics and game theory literature the function Bi : Ω → 2Ω is called a possibility correspondence (or
information correspondence). The two notions of accessibility relation and possibility correspondence are equivalent.

12In a probabilistic setting the interpretation of the event BiE would be “the set of states where player i attaches
probability 1 to event E”.
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for every event F, ¬F denotes the complement of F in Ω), transitivity corresponds to positive
introspection (if the individual believes E then she believes that she believes E : BiE ⊆ BiBiE)
and euclideanness corresponds to negative introspection (if the individual does not believe E then
she believes that she does not believe E: ¬BiE ⊆ Bi¬BiE) (for more details see [15]).

In order to lighten the exposition, in the next section we will concentrate on extensive games
without simultaneous moves and then, in Section 4, explain the additions that need to be made
in order to accommodate simultaneous moves.

3. Games without simultaneous moves

In this section we restrict attention to extensive games where, at each decision history, exactly
one player is active.

We say that player i chooses rationally at a decision history of hers if the choice she makes
there is optimal given the beliefs that she holds at the time at which she makes that choice. These
beliefs might be different from her initial beliefs about what would happen in the game and thus
might be revised beliefs in light of the information she has at the moment. However, her prior
beliefs are not relevant in assessing the rationality of her choice: what counts is what she believes
at the time she makes the decision. Thus in order to assess the rationality of the actual behavior
of the players all we need to specify, at every state-instant pair (ω, t), are the actual beliefs of the
active player. This can be done within a state-time representation of the game, as follows. Given
a state ω and an instant t, there will be a unique player who makes a decision at (ω, t) (unless
the play of the game has already reached a terminal history, in which case there are no decisions
to be made). If ζt(ω) is a decision history, the active player is ι (ζt(ω)); denote ζt(ω) by h and
ι (ζt(ω)) by i. Then player i has to choose an action from the set Ai(h). In order to make this
choice she will form some beliefs about (1) what happened up to this point in the game (that is,
which history in her information set has been reached) and (2) what will happen if she chooses
action a, for every a ∈ Ai(h). These beliefs will be used to assess the rationality of the choice that
the player ends up making at state ω. We will describe a player’s beliefs about the consequences
of taking alternative actions by means of an accessibility relation. Thus we use Kripke frames
and represent qualitative, rather than probabilistic, beliefs.13 In order to simplify the notation,
we will assign beliefs also to the non-active players, but in a trivial way by making those players
believe everything.

3.1. Dynamic models

Definition 3. Given a von Neumann extensive form, a dynamic model of it is a tuple
〈
Ω,T, ζ,

{
Bi,t

}
i∈N,t∈T

〉
where 〈Ω,T, ζ〉 is a state-time representation of the extensive form (see Definition 2) and, for ev-
ery player i ∈ N and instant t ∈ T , Bi,t ⊆ Ω × Ω is a binary relation on the set of states
(representing the beliefs of player i at time t) that satisfies the following properties:

13We restrict attention to qualitative beliefs since we are focusing on games with ordinal payoffs. As noted above
(Remark 1), this is motivated by the desire to highlight the novelty of our approach without the more complex notation
required by probabilistic beliefs and expected utility.
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1. If i , ι(ζt(ω)), that is, if ζt(ω) is not a decision history of player i,
then Bi,t(ω) = ∅.

2. If i = ι(ζt(ω)), that is, if ζt(ω) is a decision history of player i, then
2.1. Bi,t is locally serial, transitive and euclidean

[that is, Bi,t(ω) , ∅ and if ω′ ∈ Bi,t(ω) then Bi,t(ω′) = Bi,t(ω)].
2.2. If ω′ ∈ Bi,t(ω) then ζt(ω′) ∈ Ii(ζt(ω))

[that is, ζt(ω′) belongs to the same information set as ζt(ω)].
2.3. If ω′ ∈ Bi,t(ω) then, for every a ∈ A(ζt(ω′)) there exists an

ω̃ ∈ Bi,t(ω) such that ζt+1(ω̃) = ζt(ω′)a.

Condition 1 says that a player has trivial beliefs (that is, she believes everything) at all the state-
instant pairs where she is not active. We impose this condition only for notational convenience,
to eliminate the need to keep track, at every state-instant pair, of who the active player is.14

To understand Condition 2, fix a state-instant pair (ω, t), let h = ζt(ω) and suppose that h is a
decision history of player i where she has to choose an action from the set Ai(h).
Condition 2.1 says that player i has beliefs with standard properties; note that these properties
(consistency, positive and negative introspection) are only assumed to hold locally, that is, at
state ω.15

Condition 2.2 says that every state ω′ which is accessible from ω by Bi,t (that is, every state that
player i considers possible at state ω and instant t) is such that the history h′ associated with state
ω′ at time t (that is, h′ = ζt(ω′)) belongs to the same information set to which history h belongs
(that is, h′ ∈ Ii(h)); in other words, player i at time t knows that her information set Ii(h) has been
reached (although she might have erroneous beliefs concerning the history in Ii(h) at which she
is making her choice).
Condition 2.3 says that if player i considers it possible that she is at history h′(that is, ω′ ∈ Bi,t(ω)
and h′ = ζt(ω′)) then for every action a available at h′, there is a state ω̃ that player i considers
possible at (ω, t) (that is, ω̃ ∈ Bi,t(ω)) where she takes action a at h′, that is, the truncation of
ζ(ω̃) at time t + 1 (namely ζt+1(ω̃)) is equal to h′a. This means that, for every decision history
that she considers possible and for every available action, player i has a belief about what will
(or might) happen if she chooses that action at that decision history.

Remark 2. This way of modeling beliefs is a departure from the standard approach in the lit-
erature, where it is assumed that if a player takes a particular action at a state then she knows
that she takes that action. The standard approach thus requires the use of either objective or sub-
jective counterfactuals in order to represent a player’s beliefs about the consequences of taking
alternative actions.16 In our approach a player’s beliefs refer to the deliberation or pre-choice
stage, where the player considers the consequences of all her actions, without pre-judging her
subsequent decision; in other words, in her mind each of her currently available actions is still a

14As explained below, by defining Bt =
⋃

i∈N Bi,t , we can take the relation Bt to be a description of the beliefs of the
active player at date t (whose identity can change from state to state). As noted above, the beliefs of inactive players are
not relevant and thus there is no conceptual loss in letting those players believe everything.

15Note also that transitivity and euclideanness (positive and negative introspection) are not needed for our results.
We have imposed these properties because they are considered in the literature to be necessary properties of “rational”
beliefs and because they simplify the graphical representation of beliefs.

16The role of counterfactuals in the standard approach is discussed in details in [16].
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“live possibility”.17 Since the state encodes the player’s actual choice, that choice can be judged
to be rational or irrational by relating it to the player’s pre-choice beliefs. Thus it is possible for
a player to have the same beliefs at two different states, say α and β, and be labeled as rational
at state α and irrational at state β, because the action she ends up taking at state α is optimal
given those beliefs, while the action she ends up taking at state β is not optimal given those same
beliefs.
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state ωωωω :

ζ(ω) :

 

Figure 2: An von Neumann extensive game and a model of it.

Figure 2 shows a game and a model of it. We represent a belief relation B as follows: for any
two states ω and ω′, ω′ ∈ B(ω) if and only if either ω and ω′ are enclosed in the same rectangle
or there is an arrow from ω to the rectangle containing ω′.18 The relations shown in Figure 2 are

17 An implication of this point of view is that, since - at the time of deliberation - the agent does not know what choice
she is going to make, she cannot know that her forthcoming choice is rational. Note that, while we do not endow a player
with pre-knowledge of her forthcoming choice, the player is allowed to have (possibly erroneous) beliefs about what
choice she will make at a later time. For an extensive discussion of this point see Section 4 in [11].

18In other words, for any two states ω and ω′ that are enclosed in a rectangle, {(ω,ω), (ω,ω′), (ω′, ω), (ω′, ω′)} ⊆ B
(that is, the relation is total on the set of states contained in the rectangle) and if there is an arrow from a state ω to a
rectangle then, for every ω′ in the rectangle, (ω,ω′) ∈ B.
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those of the active players: the relation at date 0 is that of Player 1 (B1,0), the relation at date 1
for states α, β, γ and δ is that of Player 2 (B2,1), the relation at date 1 for states ε, η, θ and λ is
that of Player 3 (B3,1) and the relation at date 2 for states other than δ and ε, is that of Player
4 (B4,2).19 Consider a state, say η. State η describes the following beliefs: at date 0 Player 1
believes - incorrectly - that if she takes action b Player 3 will follow (at date 1) with f (state ε)
and that if she takes action a then Player 2 will follow (at date 1) with c (state δ); at date 1 Player
3 (knows that Player 1 played b and) believes - correctly - that if he plays e then Player 4 will
follow (at date 2) with h (and if he plays f the game will end); at date 2 Player 4 considers it
possible that Player 1 played a and Player 2 followed with d and also considers it possible that
Player 1 played b and Player 3 followed with e. At state η Player 1 ends up playing b, Player 3
ends up playing e and Player 4 ends up playing h, while Player 2 is not active at any date. The
numbers marked under the rectangles in Figure 2 are the payoffs of the active player at the states
that she considers possible.

It is worth stressing that the notion of model that we are using allows for erroneous beliefs
(since the belief relations have not been assumed to be reflexive; in other words, we deal with
belief rather than knowledge).

Remark 3. Note that Definition 3 allows for “causally flawed” beliefs. For example, consider
a game where Player 1 moves first, choosing between a and b, and Player 2 moves second and
chooses between c and d without being informed of Player 1’s choice. Definition 3 allows Player
1 to have the following beliefs at time 0: “if I play a, Player 2 will play c, while if I play b then
he will play d”. Such beliefs can be considered “implausible” or “irrational” on the grounds that
there cannot be a causal link between Player 1’s move and Player 2’s choice, since Player 2 does
not get to observe Player 1’s move; thus a “causally correct” belief for Player 1 would require
that the predicted choice of Player 2 be the same, no matter what Player 1 does. When the game
does not have simultaneous moves, this restriction on beliefs is not needed for our results. We
will, however, need to rule out causally flawed beliefs within the context of a simultaneous move
(see Definition 6).

3.2. Rationality of choice

We shall use a very weak notion of rationality, which has been referred to in the literature as
“material rationality” (see, for example, [17, 13, 18, 12]). We say that at a state-instant pair (ω, t)
a player is rational if either she is not active at ζt(ω) (that is, ζt(ω) is not a decision history of hers)
or the action that she ends up choosing at ω is “optimal” given her beliefs, in the sense that it is
not the case that - according to her beliefs - there is another action of hers that guarantees higher
utility. Thus a player is irrational at a state-instant pair (ω, t) if she is active at history ζt(ω), she
ends up taking action a at ω and she believes that, at every history in her information set that she
considers possible, her maximum utility if she takes action a is less than the minimum utility that
she gets if she takes some other action b.

Note that rationality in the traditional sense of expected utility maximization implies ratio-
nality in our sense; thus anything that is implied by our weak notion will also be implied by the
stronger notion of expected utility maximization.

19Thus B1,0(ω) = {δ, ε} for every ω ∈ Ω, B2,1(ω) = {γ, δ} for every ω ∈ {α, β, γ, δ}, B3,1(ω) = {ε, η} for every
ω ∈ {ε, η, θ, λ}, B4,2(ω) = {α, β, γ, η, θ, λ} for every ω ∈ {α, β, γ, η, θ, λ}; for every remaining state ω, player i and date t,
Bi,t(ω) = ∅.
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Definition 4. Fix a state-instant pair (ω, t) and suppose that ζt(ω) is a decision history of player
i. Let a, b ∈ Ai(ζt(ω)) be two actions available at ζt(ω). We say that at (ω, t) player i believes
that b is better than a if ∀ω1, ω2 ∈ Bi,t(ω) such that ζt(ω1) = ζt(ω2) and ζt+1(ω1) = ζt(ω1)a and
ζt+1(ω2) = ζt(ω2)b, ui(ζ(ω1)) < ui(ζ(ω2)) (recall that ui : Z → R is player i’s utility function on
the set of terminal histories).

Thus, at a decision history h of hers, player i believes that action b is better than action a if,
for any history h′ ∈ Ii(h) that - according to her beliefs - might have been reached, taking action b
at h′ leads to terminal histories that she prefers to any terminal history that can be reached - again
according to her beliefs - if she takes action a at h′ [recall that, by Condition 2.3 of Definition 3,
she must consider it possible that she takes any of her available actions at h′].

Definition 5. Fix an arbitrary player i and an arbitrary state-instant pair (ω, t). We say that player
i is rational at (ω, t) if and only if either

(1) ζt(ω) is not a decision history of player i, or

(2) ζt(ω) is a decision history of player i and if a is the action chosen by player i at ω (that
is, ζt+1(ω) = ζt(ω)a) then, for every b ∈ Ai(ζt(ω)), it is not the case that player i believes at (ω, t)
that b is better than a (see Definition 4).

For example, in the model of Figure 2, Player 1 is rational at date 0 and states α, β, γ and δ
(but not at the remaining states), because she believes that if she takes action a then her payoff

will be 2 (according to her beliefs, Player 2 will follow with c) and if she takes action b her payoff

will be 1 (according to her beliefs, Player 3 will follow with f ) and at those states she actually
ends up taking action a; Player 2 is rational at date 1 and state δ (but not at states α, β and γ);
Player 3 is rational at date 1 and state ε (but not at states η, θ and λ) and Player 4 is rational at
date 2 and every state except α and λ (because she takes action k there and believes that h is better
than k; in fact, k is strictly dominated by h). Furthermore, a player is rational at any state-instant
pair where she is not active (for example, Player 2 is rational at state ε and time 1).

We denote by Ri,t ⊆ Ω the event that (that is, the set of states at which) player i is rational
at date t and let Rt =

⋂
i∈N Ri,t. Since, by definition, every player is rational at a state-instant

pair where she is not active, Rt can be described as the event that the active player (if there is
one) is rational at date t. Thus ω ∈ Rt if and only if either ζt(ω) is a terminal history [that is,
ζt(ω) = ζ(ω)] or ζt(ω) is a decision history and the active player at ζt(ω) is rational at (ω, t) (see
Definition 5). Note that, in general, the identity of the active player can vary across states, that
is, the active player at (ω, t) can be different from the active player at (ω′, t) (for example, in the
model of Figure 2, the active player at (δ, 1) is Player 2, while the active player at (ε, 1) is Player
3). In the model of Figure 2 we have that R0 = {α, β, γ, δ}, R1 = {δ, ε} and R2 = {β, γ, δ, ε, η, θ}.

Let Bi,t : 2Ω → 2Ω be the belief operator of player i at date t. Thus, for every event E ⊆ Ω,
Bi,tE = {ω ∈ Ω : Bi,t(ω) ⊆ E}. By Condition 1 of Definition 3, if player i is not active at (ω, t)
then Bi,t(ω) = ∅ and thus ω ∈ Bi,tE for every event E. Let Bt : 2Ω → 2Ω be the operator defined
by BtE =

⋂
i∈N Bi,tE (thus ω ∈ BtE if and only if

⋃
i∈N Bi,t(ω) ⊆ E). Then BtE is the event

that “the active player believes E at time t” (which, by Condition 1 of Definition 3, is trivially
equivalent to the event that “everybody believes E at time t”).

We summarize this in the following remark.

Remark 4. For every ω ∈ Ω and t ∈ T , define Bt(ω) =
⋃

i∈N Bi,t(ω) and Bt : 2Ω → 2Ω by
BtE =

⋂
i∈N Bi,tE (thus ω ∈ BtE if and only if Bt(ω) ⊆ E). It follows that if i is the active player
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at ζt(ω), then Bt(ω) = Bi,t(ω) and, for every event E, ω ∈ BtE if and only if ω ∈ Bi,tE if and only
if Bi,t(ω) ⊆ E.

For example, in the model of Figure 2, we have that B0R1 = B0R2 = Ω, that is, at every state
the active player at date 0 (Player 1) believes that the active player at time 1 (Player 2 at state
δ and Player 3 at state ε) will be rational and also believes that the active player at time 2 will
be rational (this is true trivially, because at states δ and ε there is no active player at date 2: see
Definition 5). We also have that B1R2 = B0B1R2 = Ω, that is, at every state the active player
at time 1 believes that the active player at time 2 will be rational and the active player at date 0
believes that the active player at date 1 believes that the active player at time 2 will be rational.

Note that the models that we are considering allow for the possibility that a player may
ascribe to a future mover beliefs that are different from the beliefs that that player will actually
have. In other words, a player may have erroneous beliefs not only about the future choices but
also about the future beliefs of other players (even about her own future choice(s) and beliefs, as
is the case at state ε and date 0 in the model of Figure 5 discussed in Section 5.2).

3.3. Forward belief of rationality

Fix a von Neumann extensive game and let m = `max (recall that `max is the depth of the game,
that is, the length of the maximal histories). We shall investigate the implications of a doxastic
condition that we call forward belief of rationality, defined as the intersection of the following
events:20

1. At every date the active player is rational: R0 ∩ R1 ∩ R2 ∩ ... ∩ Rm−1.
2. At every date the active player believes that future players are rational:

B0 (R1 ∩ R2 ∩ ... ∩ Rm−1)
⋂

B1 (R2 ∩ ... ∩ Rm−1)
⋂
· · ·

⋂
Bm−2Rm−1.

3. At every date the active player believes that future players believe
that future players are rational:
B0B1 (R2 ∩ ... ∩ Rm−1)

⋂
B1B2 (R3 ∩ ... ∩ Rm−1)

⋂
· · ·

⋂
Bm−3Bm−2Rm−1.

4. At every date the active player believes that future players believe
that future players believe that future players are rational:
B0B1B2 (R3 ∩ · · · ∩ Rm−1)

⋂
· · ·

⋂
Bm−4Bm−3Bm−2Rm−1.

. . . and so on, up to B0B1 . . . Bm−2Rm−1.

Remark 5. Note that it is unnecessary to go beyond t = m − 1, since, by Definition 5, for every
k ≥ m, Rk = Ω and thus Bt1 Bt2 . . . Btr Rk = Ω for every sequence 〈t1, t2, . . . , tr〉 in T (r ≥ 1,
tr < k).

The formal definition is as follows. First, for 0 ≤ k ≤ m − 1 define FBRk recursively by:

FBRm−1 = Rm−1,

and, for k < m − 1, FBRk = Rk ∩ BkFBRk+1 ∩ FBRk+1.

20For example, when the depth of the game is 3 (`max = 3), the event Forward Belief of Rationality, denoted by FBR,
is given by FBR = R0 ∩ R1 ∩ R2 ∩ B0(R1 ∩ R2) ∩ B1R2 ∩ B0B1R2 and when `max = 4 FBR = R0 ∩ R1 ∩ R2 ∩ R3 ∩

B0(R1 ∩ R2 ∩ R3) ∩ B1(R2 ∩ R3) ∩ B2R3 ∩ B0B1(R2 ∩ R3) ∩ B0B2R3 ∩ B1B2R3 ∩ B0B1B2R3.
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Thus, for example, FBRm−2 = Rm−2 ∩ Bm−2Rm−1 ∩ Rm−1 and
FBRm−3 = Rm−3 ∩ Bm−3(Rm−2 ∩ Bm−2Rm−1 ∩ Rm−1) ∩ (Rm−2 ∩ Bm−2Rm−1 ∩ Rm−1).21

Finally, define

FBR = FBR0 (1)

For example, in the model of Figure 2, FBR = R0∩R1∩R2∩B0R1∩B0R2∩B1R2∩B0B1R2 =

{δ}. Now consider the perfect information game and model shown in Figure 3 . Also for this
game FBR = R0 ∩ R1 ∩ R2 ∩ B0R1 ∩ B0R2 ∩ B1R2 ∩ B0B1R2. In this model we have that
R0 = Ω,R1 = {γ, δ, ε},R2 = {β, γ, ε}, B0R1 = B1R2 = B0B1R2 = Ω but B0R2 = ∅ and thus
FBR = ∅. On the other hand, if we change the model by modifying the beliefs of the root player
from B0(ω) = {γ, δ, ε} to B0(ω) = {γ, ε}, for every ω ∈ Ω (that is, we drop state δ from the set
of states that she considers possible), then R0 = {α, β, γ, δ} and B0R2 = Ω (while everything else
remains the same), so that FBR = {γ}. Note that ζ(γ) = a1a2b3, which is the unique backward
induction terminal history. As shown in Corollary 1 below, this is not a coincidence.

Next we introduce an algorithm that, for every von Neumann extensive-form game without
simultaneous moves, selects a non-empty set of terminal histories. We call this procedure gen-
eralized backward induction, since it coincides with backward induction in perfect-information
games with no relevant ties (if the output of backward induction is thought of as a terminal his-
tory rather than a strategy profile). The procedure starts at information sets at depth `max − 1
(these information sets are followed only by terminal histories), deletes choices that are strictly
dominated there and then continues backwards towards the root. First we give an iterative def-
inition of the set of strictly dominated choices at a decision history h, denoted by D(h). The set
D(h) is defined recursively as follows, letting i = ι(h) (recall that ι(h) is the player who moves at
h):

1. If `(h) = `max − 1 then a ∈ D(h) if and only if a ∈ Ai(h) and there exists a b ∈ Ai(h) such
that, for every h′ ∈ Ii(h), ui(h′a) < ui(h′b) [that is, if there is another choice b that yields a
higher utility than a at every history in the information set containing h; in other words, if
a is strictly dominated by some other choice at that information set].

2. Having defined D(h) for every decision history h such that `(h) = k, with 0 < k ≤ `max − 1,
define D(h) for a decision history h such that `(h) = k − 1 as follows: a ∈ D(h) if and only
if a ∈ Ai(h) and there exists a b ∈ Ai(h) such that, for every h′ ∈ Ii(h), the following holds:
ui(z′) < ui(z′′) for every z′, z′′ ∈ Z such that z′ = h′aa1 . . . ap (p ≥ 0), z′′ = h′bb1 . . . bq

(q ≥ 0), a1 < D(h′a), b1 < D(h′b) and, ∀ j = 2, . . . , p,∀k = 2, . . . , q, a j < D(h′aa1 . . . a j−1)
and bk < D(h′bb1 . . . bk−1) [that is, if there exists another choice b that guarantees a higher
utility than a at the information set that contains h, assuming that only undominated actions
are played after the choice there].

Next we define the following function fBI : H → 2Z (2Z is the set of subsets of the set Z of
terminal histories): (1) if h ∈ Z then fBI(h) = {h} and (2) if h is a decision history then

fBI(h) = {z ∈ Z : z = ha1a2...am, a1 < D(h) and a j < D(ha1...a j−1),∀ j = 2, ...,m}. (2)

Thus fBI(h) is the set of terminal histories that can be reached from h by following only undom-
inated choices.

21In the model of Figure 2, FBR2 = R2 = {β, γ, δ, ε, η, θ}, FBR1 = {δ, ε} and FBR0 = {δ}. In the model of Figure 3,
FBR2 = R2 = {β, γ, ε}, FBR1 = {γ, ε} and FBR0 = ∅.
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Figure 3: A perfect-information game and a model of it.

Finally define the event BI ⊆ Z as follows:

BI = fBI(∅). (BI)

Thus BI is the set of terminal histories that can be reached from the empty history (the root of
the tree) by following only undominated choices.

Example 1. In the game of Part A of Figure 4, D(b) = D(∅) = ∅ and thus fBI(b) = {bc, bd}
and BI = fBI(∅) = {a, bc, bd}. In the game of Part B of Figure 4, D(a) = {c}, D(b) = { f },
D(∅) = {b} and thus fBI(a) = {ad}, fBI(b) = {be} and BI = fBI(∅) = {ad}. In the game of
Part C of Figure 4, D(bd) = D(be) = D(cd) = D(ce) = {u}, D(b) = D(c) = {e}, D(∅) = {c}
and thus fBI(b) = fBI(bd) = {bds, bdt}, fBI(be) = {bes, bet}, fBI(c) = fBI(cd) = {cds, cdt},
fBI(ce) = {ces, cet} and BI = fBI(∅) = {a, bds, bdt}.22

22In the game of Figure 2, D(ad) = D(be) = {k}, D(a) = D(b) = D(∅) = ∅ and thus fBI (ad) = {adg, adh}, fBI (be) =

{beg, beh}, fBI (a) = {ac, adg, adh}, fBI (b) = {b f , beg, beh}, fBI (∅) = {ac, adg, adh, b f , beg, beh}. In the game of Figure
3, D(a1a2) = {a3}, D(a1b2) = {d3}, D(a1) = {b2}, D(∅) = {b1} and thus fBI (∅) = fBI (a1) = fBI (a1a2) = {a1a2b3} and
fBI (a1b2) = {a1b2c3}.
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Remark 6. In a model of a game, for every state ω ∈ Ω and for every date t with 0 ≤ t ≤ m − 1,
ζ(ω) ∈ fBI (ζt(ω)) if and only if (1) if a ∈ A (ζt(ω)) is such that ζt+1(ω) = ζt(ω)a then a < D (ζt(ω))
and (2) ζ(ω) ∈ fBI (ζt+1(ω)) .
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Figure 4: Three extensive games.

The following propositions state that the notion of forward belief of rationality character-
izes the output of the generalized backward induction procedure. The proofs are given in the
Appendix for the more general case where simultaneous moves are allowed (see Section 4).

Proposition 1. Fix an arbitrary von Neumann extensive game and an arbitrary model of it.
Then, for every ω ∈ Ω, if ω ∈ FBR then ζ(ω) ∈ BI.

Proposition 2. Fix an arbitrary von Neumann extensive game G. Then there exists a model of G
such that, for every z ∈ BI, there is a state ω such that ω ∈ FBR and ζ(ω) = z.

An extensive game has perfect information if and only if every information set is a singleton,
that is, if h ∈ Di then Ii(h) = {h}. A perfect-information game has no relevant ties if, ∀i ∈ N,
∀h ∈ Di, ∀a, a′ ∈ Ai(h) with a , a′, ∀z, z′ ∈ Z, if ha is a prefix of z and ha′ is a prefix of z′ then
ui(z) , ui(z′). In a perfect-information game without relevant ties BI is a singleton and consists
of the unique terminal history that is associated with the backward-induction solution.

Corollary 1. For perfect-information games with no relevant ties, FBR provides a doxastic
characterization of the backward induction outcome.23

4. Games with simultaneous moves

We now explain how the analysis can be extended to include games with simultaneous moves.

23[11] provides an alternative epistemic characterization of backward induction for perfect-information games in the
class of models considered here, which is in terms of the beliefs of the root player and involves the hypothesis of locally
correct beliefs. Thus FBR provides an alternative, “Truth-free”, characterization of backward induction (it can be shown
that the condition given in [11] is stronger than FBR and implies it).
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4.1. Definition of model
As anticipated in Remark 3, when several players move at a decision history h we need to

add a further condition to Definition 3 which rules out “causally flawed” beliefs. First some
notation. Let h be a decision history at which two or more players are active. Let i be one of the
active players at h (that is, i ∈ ι(h)) and let a ∈ A(h) be an action profile at h. Then we write
a as (ai, a−i) where ai is player i’s action in the profile a and a−i is the profile of actions of the
remaining players in ι(h).

Definition 6. Given a von Neumann extensive form (possibly with simultaneous moves), a dy-
namic model of it is a tuple

〈
Ω,T, ζ,

{
Bi,t

}
i∈N,t∈T

〉
that satisfies the properties of Definition 3 with

Condition 2.3 replaced by the following:
2.3s If i ∈ ι(ζt(ω)) (player i is one of the active players at ζt(ω)),

ω′ ∈ Bi,t(ω), (ai, a−i) ∈ A(ζt(ω′)) and ζt+1(ω′) = ζt(ω′)(ai, a−i),
then, for every bi ∈ Ai(ζt(ω′)), there is an ω̃ ∈ Bi,t(ω) such
that ζt+1(ω̃) = ζt(ω′)(bi, a−i).

Condition 2.3s (besides imposing the restriction of Condition 2.3 of Definition 3, namely
that the player consider every action of hers a “live possiblity”) rules out beliefs where player i
considers it possible that if she plays ai then the other players will simultaneously play a−i, while
if she plays some other action bi then the other players will not play a−i. As explained in Remark
3 such a belief would imply an implausible causal link between i’s choice and the choices of her
opponents. Without the restriction on beliefs given by Condition 2.3s, one could not rule out as
irrational the play of a strictly dominated choice in a simultaneous game.24

Note that, at a history h = ζt(ω) where player i is the only active player, Condition 2.3s
coincides with 2.3 of Definition 3, since A−i(h) = ∅. Hence Definition 6 reduces to Definition 3
in games where there are no simultaneous moves.

4.2. Definition of rational choice
Concerning the rationality of choice, Definition 4 needs to be reworded slightly in order to

reflect the possible simultaneity of moves,25 while Definition 5 remains unchanged.

4.3. Definition of forward belief of rationality
Concerning the notion of forward belief of rationality, we need to replace the individual

belief operators with the common belief operator. Intuitively, an event E is commonly believed if
everybody believes E and everybody believes that everybody believes E, and so on, ad infinitum.
Accordingly, we define the common belief operator at time t, denoted by CBt, as follows. Let
N∗ be the set of non-empty finite sequences < i1, ..., im > (m ≥ 1) in N (the set of players). Then,
for every event E ⊆ Ω,

CBtE =
⋂

<i1,...,im>∈N∗
Bi1,tBi2,t...Bim,tE. (3)

Thus, for example, CB0R1 is the event that (that is, the set of states at which) it is common belief
at date 0 that the active players at date 1 are rational.

24For example, it would be rational to “cooperate” in the simultaneous one-shot Prisoner’s Dilemma game if one held
the following beliefs: “if I cooperate she will cooperate and if I defect she will defect”.

25 As follows: fix a state-instant pair (ω, t) and let i ∈ ι(ζt(ω)) and ai, bi ∈ Ai(ζt(ω)). We say that at (ω, t) player i
believes that bi is better than ai if ∀ω1, ω2 ∈ Bi,t(ω) such that ζt(ω1) = ζt(ω2) and ∀a−i ∈ A−i(ζt(ω1)) if ζt+1(ω1) =

ζt(ω1)(ai, a−i) and ζt+1(ω2) = ζt(ω2)(bi, a−i), then ui(ζ(ω1)) < ui(ζ(ω2)).
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Remark 7. Let B∗,t be the transitive closure of
⋃
i∈N
Bi,t. It is well-known that the following are

equivalent: ∀ω ∈ Ω,∀E ∈ 2Ω,

1. ω ∈ CBtE,
2. B∗,t(ω) ⊆ E,
3. ωm ∈ E for every sequence 〈ω0, ..., ωm〉 in Ω and 〈i1, ..., im〉 in N (m ≥ 1) such that ω0 = ω

and, ∀k = 1, ...,m, ωk ∈ Bik ,t(ωk−1).

Furthermore, for every i ∈ N, CBtE ⊆ Bi,tCBtE.

The following remark is a consequence of the fact that inactive players believe everything (see
Definition 3).

Remark 8. In games where there are no simultaneous moves CBtE = BtE for every event E
and date t.

While in games without simultaneous moves it is sufficient to postulate that the active players
are rational at every date t, when there are simultaneous moves it is necessary to add the assump-
tion that “there is common belief among the active players at time t that they are all rational”.
This assumption cannot be expressed by the event CBtRt, because of the way in which we have
modeled a player’s belief at the time of choice: it cannot be postulated that an active player at
date t believes that she is rational at date t (see Remark 2 and Footnote 17), while such a belief
would be a consequence of CBtRt. Thus we need to modify the notion of common belief slightly
when applied to the event “player i is rational at date t”, so that the belief operator of player i at
time t is never followed by the event stating that player i herself is rational at time t.

Recall that Ri,t is the event that player i is rational at time t (according to Definition 5) and
that B j,t is the belief operator of player j at time t. The event that, at date t, there is common
belief that player i is rational at date t, denoted by CBRi,t, is defined as follows:

CBRi,t =


⋂

< j1,..., jm>∈N∗
jm,i

B j1,t...B jm,tRi,t

 . (4)

Note that (4) rules out events of the form B j1,t...B jm,tBi,tRi,t for any - possibly empty - sequence
of operators B j1,t, ..., B jm,t. Finally, let

CBRt =
⋂
i∈N

CBRi,t. (5)

Remark 9. It follows from a standard argument that CBRt ⊆ Bi,tCBRt, ∀i ∈ N,∀t ∈ T .26

Remark 10. In games where there are no simultaneous moves, CBRt = Ω and thus Rt∩CBRt =

Rt .27

26Proof. Suppose that ω ∈ CBRt but ω < Bi,tCBRt . Then ∃ω′ ∈ Bi,t(ω) such that ω′ < CBRt , that is, ∃ j ∈ N such
that ω′ < CBR j,t . Then, by (4), ∃ < k1, . . . , km >∈ N∗ (m ≥ 1, km , j) such that ω′ < Bk1 ,t . . . Bkm ,tR j,t and, therefore,
since ω′ ∈ Bi,t(ω), ω < Bi,t Bk1 ,t . . . Bkm ,tR j,t and thus ω < CBR j,t , which implies, since CBRt ⊆ CBR j,t that ω < CBRt ,
yielding a contradiction.

27This follows from the fact that events of the form Bi,tRi,t are excluded from (4) and the fact that inactive players
believe everything (see Definition 3), so that CBRi,t = Ω,∀i ∈ N,∀t ∈ T .
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The definition of forward belief of rationality remains essentially the same as in Section 3,
the only exceptions being that (1) the events Rt are now replaced by (Rt ∩ CBRt) and (2) the
operators Bt are now replaced by CBt. Thus the event FBR is defined as follows. First, for
0 ≤ k ≤ m − 1 define FBRk recursively by: FBRm−1 = Rm−1 ∩ CBRm−1, and, for k < m − 1,
FBRk = (Rk ∩ CBRk) ∩ CBkFBRk+1 ∩ FBRk+1. Finally, define FBR = FBR0.
The interpretation changes accordingly: FBR now refers not only to future but also to present
rationality. Thus the word ‘future’ should be replaced with the expression ‘present and future’.
Since in games without simultaneous moves (Rt ∩ CBRt) = Rt (Remark 10) and CBtE = BtE
for every event E and date t (Remark 8), in games without simultaneous moves the modified
definition of FBR coincides with the definition given in Section 3.

4.4. Generalized backward induction procedure

The generalized backward induction procedure defined in Section 3 needs to be modified as
follows: at every stage of the procedure instead of merely eliminating strictly dominated choices
we perform an iterative elimination of strictly dominated choices at the information set(s) under
consideration. The details are spelled out in the Appendix. As an example, consider the game
of Figure 1. The algorithm starts at decision history a and iteratively deletes first choice g for
Player 2 (strictly dominated by f ), then choice d for Player 1 (which has now become strictly
dominated by c) and finally choice f for Player 2, thus leaving only the profile (c, e). At the
second stage a is deleted for Player 1 at the root (since it is now strictly dominated by b). Thus
the algorithm yields a unique terminal history, namely b. By Proposition 1 it follows that, in any
model of this game, if ω is a state such that ω ∈ FBR then ζ(ω) = b.

5. Discussion

In this section we discuss several aspects of the proposed framework and related literature.

5.1. Models and predictions

As noted in the introduction, the standard models used in the literature are static structures
where players are modeled as choosing strategies and are endowed with complex hierarchies of
conditional beliefs. Such models incorporate a complex web of subjunctive conditionals referring
to (1) the players’ behavior (through strategies: “if I were to find myself at information set I
then I would choose action a”), (2) the players’ belief revision policies (“I do not expect that
my information set will be reached, but if it were to happen then I would have such and such
beliefs”) and (3) interpersonal hierarchical constructions involving them (“I believe that if I were
to play a then Player 2 would be surprised, would play b and would form the belief that I would
subsequently erroneously believe that she had played c and therefore I would react by playing
d”).

Is this complexity really necessary? The purpose of this paper was to show that the answer is
negative. The models proposed here are much less demanding. First of all, strategies do not play
any role: a state only specifies what moves are actually made in the game and thus is silent about
what players who were not called upon to move would have done (and would have believed)
if the play of the game had been different (those players might or might not have formulated
hypothetical plans, but those plans are not part of the description of the state). Secondly, the only
beliefs that are used in these models are the beliefs of the active players at the time of choice.
No belief revision policy is postulated or necessary (for a discussion of this point see Section 5.3
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below). Thirdly, conditionals do enter into the analysis, but they are conditionals of deliberation
for which the indicative mood seems more appropriate than the subjunctive mood (see [19]).
These conditionals are meant to capture the “exploratory” beliefs of the active player(s) (“what
will happen if I play a? what will happen if I play b?”) and are modeled by taking beliefs to be
pre-choice beliefs and thus not endowing the active player with a belief concerning what she is
about to do (see Remark 2 above and the discussion of the philosophical literature on this point
contained in Section 4 of [11]).

The fact that strategies play no role in our models reflects a different philosophy about the
nature of theoretical predictions in game theory. Proposition 1 shows that the implications of
a particular doxastic hypothesis is a set of outcomes or terminal histories, not a set of strategy
profiles. To illustrate this point, consider a game where the player who moves at the root, call her
Player 1, has two choices: choice a ends the game with a payoff of 2 for her, while choice b is
followed by several choices of her opponents, perhaps with a very complex pattern of imperfect
information; however, at every terminal history that follows choice b Player 1 gets a payoff

strictly less than 2. In a model of such a game in the sense of Definition 3, at any state where
Player 1 is rational she will end the game by playing a: there is no attempt to obtain secondary
predictions about what the other players would do, should Player 1 end up playing b. On the
other hand, Perea’s notion of common belief in future rationality is much more ambitious in that
it determines also a set of strategies for every other player. For example, while our Corollary 1
states that forward belief of rationality in an arbitrary perfect-information game with no relevant
ties implies the backward-induction outcome, the corresponding result in [2] (Theorem 6.1, p.
244) states that “every player has exactly one strategy he can rationally choose under common
belief in future rationality, namely his backward induction strategy”. Thus the prediction is in
terms not only of what will be observed, but also in terms of a set of counterfactuals about
what the various players would do in circumstances that ought not to arise given the predicted
outcome.28 It is not clear why any game-theoretic solution concept should be so ambitious in
its reach. Furthermore, there does not seem to be an obvious criterion for judging one type of
counterfactual assessment, or prediction, as better or more reasonable than another. For example,
[2] shows that in the game of Figure 1 above his notion of common belief in future rationality and
the notion of extensive-form rationalizability ([21, 22, 23, 6]) yield the same prediction in terms
of outcome (namely terminal history b, which is also the prediction of our notion of forward
belief of rationality) but different counterfactual predictions at the unreached history a. Do we
really need to settle those counterfactuals?

5.2. Comparison with [2]

As noted in the introduction, the content of this paper is closely related to the ideas put
forward in [1, 2]. We already pointed out the most important difference between Perea’s notion of
common belief of future rationality (CBFR) and our notion of forward belief of rationality (FBR),
namely that the former is expressed in terms of static hierarchies of beliefs about strategies, while
the latter is expressed in terms of temporal beliefs about choices. Here we point out further
differences.

28[17] also derives the entire backward-induction strategy profile from the hypothesis of common knowledge of ratio-
nality [as noted in [20, Footnote 4, p. 194], Aumann proves that common knowledge of substantive rationality implies
the backward-induction strategies but states the weaker claim that it implies the backward-induction path].
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Our generalized backward induction (GBI) algorithm is conceptually very similar to the
backward dominance (BD) procedure proposed by [2].29 The latter can be described as fol-
lows: “start with the decision problems at the end of the game, apply the procedure there until
we can eliminate nothing more, then turn to decision problems that come just before, apply the
procedure there until we can eliminate nothing more, and so on” ([2, p. 244]).30 The main differ-
ence is that, while the BD procedure operates on strategies and its output is a set of strategies for
each player, the GBI procedure operates on choices and its output is a set of terminal histories.31

The BD procedure yields the strategies that can rationally be chosen under CBFR if one does not
impose common belief in Bayesian updating; our GBI procedure yields the set of outcomes that
are compatible with the notion of FBR. It should be noted that the notion of CBFR is stronger
than that of FBR. First of all, the former imposes the requirement that a player, at every infor-
mation set, believes that all opponents, at all past and future information sets, believe in their
opponents’ future rationality, while the latter only requires that a player, at every information
set, believes that all future opponents, at all future information sets, believe in their opponents’
future rationality. A more important difference is a consequence of the fact that CBFR imposes
restrictions on strategies while FBR imposes restrictions only on choices. To see why this is im-
portant, consider the game shown in Figure 5, known as the “battle of the sexes with an outside
option”.32 The notion of FBR does not rule out any outcome in this game, in particular both Ibc
and Ibd are compatible with FBR. This can be seen from the model illustrated in Figure 5, where
FBR = {γ, ε, θ}.33 Thus, for example, ε is a state where there is forward belief in rationality
and the outcome is Ibc. One could argue that a rational Player 1 would not plan to first choose
I and then b, since this plan would yield her at most a utility of 1, whereas she can guarantee
herself a utility of 2 by choosing O. Any strategy-based approach would rule out strategy (I, b)
for Player 1 in this game, as it can never be optimal at time 0 for any belief that Player 1 can
hold about Player 2’s future choice. Indeed CBFR rules out strategy profiles that yield outcomes
Ibc and Ibd. The fact that Ibc and Ibd are compatible with FBR can be viewed as a weakness of
the notion of FBR. However, it is consistent with a strictly behavioral point of view according to
which, at date 0, Player 1 can only choose between I and O and cannot commit to a future choice
between a and b: she can have beliefs about what she will choose at date 1, but she cannot make
that choice at time 0. At state ε in the model of Figure 5 Player 1 is rational in choosing I because
she believes that afterwards she herself will choose a and Player 2 will follow with c; however,
she is mistaken in her belief about her future action, because at state ε she will actually choose b
(and rationally so, since at date 1 her belief about Player 2’s subsequent choice has changed from
c to d). One could make it a part of the definition of rationality that a player always correctly

29Similar procedures are the “backwards rationalizability procedure“ of [1] and the “iterated conditional dominance
procedure” of [24] (see also [25]), which selects the strategies that correspond to the notion of extensive-form rationaliz-
ability ([21, 22, 23, 6]). For a detailed discussion of how they relate to each other see [2, Section 7].

30On the other hand, the backward rationalizability procedure of [1] is applied not to strategies but to the conjunction
of strategies and conditional belief vectors. The author uses this procedure also for games with incomplete information
and applies it to issues of mechanism design and implementation.

31A further difference is that the BD procedure allows for the elimination of strategies that are strictly dominated by
mixed strategies, while the GBI procedure does not allow the elimination of choices that are strictly dominated by mixed
choices. This difference, however, is due to the fact that we only postulated ordinal payoffs and qualitative beliefs, but
it would disappear if we re-formulated the problem in terms of probabilistic beliefs, von Neumann-Morgenstern utility
functions and rationality as expected utility maximization.

32I am grateful to an anonymous reviewer for suggesting a discussion of this example.
33R0 = Ω\{β},R1 = Ω\{δ, η},R2 = Ω\{α, λ}, B0R1 = B0R2 = B1R2 = B0B1R2 = Ω and thus FBR = R0 ∩ R1 ∩ R2 =

{γ, ε, θ}.
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anticipates (that is, has no uncertainty and has correct beliefs about) her own choices at later
dates. Such a requirement would reflect the view that for a player “choosing” a plan of action
(or strategy) means nothing more than forming a precise and correct belief about her own future
actions.34 Indeed, if one adds the requirement that a player correctly anticipate her own actual
future choices,35 then, in the game of Figure 5, outcomes Ibc and Ibd become incompatible with
forward belief of rationality.
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Figure 5: The battle of the sexes with outside option and a model of it.

5.3. Belief revision and subjective counterfactuals

In this section we clarify the claim made in the introduction that in the framework proposed
in this paper belief revision and counterfactuals play no role.

34The interpretation of the notion of strategy as a belief concerning one’s own future behavior can be found, for
example, in [18, p. 391]: “A more intuitive interpretation of a strategy - in particular, the correct one in contexts where
players cannot delegate their choices to mechanical devices - is, however, that of a subjective plan describing what the
player thinks she would choose, at each history of hers, should that history occur. Under this interpretation, prescriptions
of actions to be chosen at unreached histories can only reflect a player’s belief about her own behavior, conditional on
counterfactual events.”

35Formally: if t′ > t, i ∈ ζt(ω) ∩ ζt′ (ω) and ai is the action that player i takes at ζt′ (ω) then, for every ω′ ∈ Bi,t(ω), if
ζt′ (ω′) belongs to the same information set as ζt′ (ω) then the action that player i takes at ζt′ (ω′) is ai.
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There are two possible ways of understanding the expression “belief revision”. The simplest
interpretation of “belief revision” is “a change in belief prompted by new information”. We call
this factual belief revision. In this sense belief revision is, of course, a necessary aspect of the
temporal beliefs that characterize our framework. For example, at date 0 Player 1 might believe
that she will not have to make any further choices at future dates, but then discover that she was
wrong. For instance, one can construct a model of the extensive form shown in Figure 6 where
at some state, say α, the actual play is bce and yet, at date 0, Player 1 erroneously believes that
if she chooses b then Player 2 will follow with d and then g, after which Player 3 will play m.
Since at state α Player 1 plays b and subsequently Player 2 actually chooses c, at date 2 Player 1
unexpectedly finds herself having to choose again (between e and f ). Hence such a model would
necessarily incorporate a belief change, or factual belief revision, for Player 1. Note, however,
that the model does not specify a belief of Player 1 at date 0 concerning what she would do and
believe at date 2 if - contrary to her expectations - Player 2 played c.

However, the typical interpretation of “belief revision” is in terms of a complex epistemic
state that incorporates initial beliefs as well as a set of conditional beliefs that encode the player’s
disposition to change her beliefs in response to all possible and relevant items of information,
that is, “belief revision” means a “complete belief revision policy”; we call this dispositional
belief revision. Belief revision in this sense is also referred to in the literature as “subjective
counterfactuals” and is a necessary ingredient of static analyses of dynamic games, since a player
needs to reason about her own and others’ behavior even at those information sets that are ruled
out by her initial beliefs.36
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Figure 6: An extensive form used to discuss belief revision.

Belief revision in this sense is definitely not an ingredient of the class of models considered
in this paper, where the only beliefs that are specified are those of the active players at the time
of choice and concern past moves and future possible developments in the game. For example,
the belief of Player 1 described above for the extensive form of Figure 6 (the erroneous belief, at
state α and time 0, that if she plays b then the outcome will be bdgm, while the actual play at α
is bce) does not incorporate a conditional belief of the form “what would I do and what would
I believe about Player 3’s choice if I discovered that Player 2 played c?” There will be such a

36Subjective counterfactuals are typically modeled either by means of conditional probability systems (see, for exam-
ple, [6]) or by means of subjective selection functions (see, for example, [26, 12]), or similar structures. For a detailed
discussion see [16].

22



factual belief at state α and time 2 (and it might very well involve a belief about Player 3’s future
choice that differs from the earlier one at date 0) and thus there will be “factual belief revision”,
but the more complex epistemic state encoded in dispositional belief revision is not postulated
and is not needed.

Furthermore, it is also clear that objective (sometimes called “causal”) counterfactuals are
completely absent from our framework, which is a purely subjective, doxastic framework. To
continue our example based on the extensive form of Figure 6, at state α, where Player 2 actually
plays c, there is no way of evaluating the “objective” counterfactual “if Player 2 had played d and
then g then Player 3 would have played m.” One can enrich the framework by adding a Stalnaker-
Lewis “selection function” ([27, 28]) thereby providing the necessary tools for evaluating such
counterfactuals (and beliefs about them), but it is not clear what one would gain from the added
complexity.

We conclude this discussion by stressing that we do not claim that the proposed framework
completely avoids conditionals or hypothetical thinking. What we do claim is that the analysis
is developed without the tools that are identified with the notion of “counterfactual” in the phi-
losophy literature, namely the Stalnaker-Lewis objective selection functions or their subjective
counterparts which capture dispositional belief revision (or conceptually equivalent structures,
such as conditional probability systems). The conditionals involved in the class of models con-
sidered here are much simpler: for instance, a player only forms beliefs about the choices that
her opponents (and she herself) will make at information sets she actually deems possible.

5.4. Backward induction versus forward induction

Like Perea’s notion of CBFR, the notion of forward belief of rationality captures a general
concept of backward induction. In the literature a contrasting notion has been discussed, namely
the notion of forward induction (see, for example, [22, 23, 6, 29, 21]). As noted in [30], one
cannot find a precise definition of forward induction, but the two notions represent different
types of reasoning:

“Backward induction represents a pattern of reasoning in which a player, at every
stage of the game, only reasons about the opponents’ future behavior and beliefs,
and not about choices that have been made in the past. So, he takes the opponents’
past choices for granted, but does not draw any new conclusions from these.

In contrast, forward induction requires a player, at every stage, to think critically
about the observed past choices by his opponents. He should always try to find a
plausible reason for why his opponents have made precisely these choices in the
past, and he should use this to possibly reconsider his belief about the opponents’
future, present, and unobserved past choices” [30, p. 169].

The two notions often yield different results: for example, in the game of Figure 1 Perea’s no-
tion of CBFR uniquely selects strategy e for Player 2, while forward induction (as captured by
the notion of extensive-form rationalizability) singles out strategy f for Player 2 (although the
predicted outcome is the same, namely b).

The notion of forward induction has so far been modeled in the standard static approach in
terms of strategies and conditional beliefs. Can the idea of forward induction be captured in
the class of models considered in this paper? There are two aspects of the notion of forward
induction as developed so far:
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1. The first is a “factual” aspect of beliefs: players’ beliefs reflect, if possible, the conviction
that earlier movers acted rationally.

2. The second is a restriction on players’ belief revision policy: when faced with information
that contradicts earlier beliefs, players should (if possible) switch to a new belief that does
not question the rationality of earlier movers.37

The first requirement can easily be incorporated in the class of models considered here, by adding
to the belief that future players will be rational the belief that past players acted rationally. For
example, consider the game of Figure 7 (which reproduces Figure 3 of [2]). For this game Perea’s
notion of CBFR and our notion of FBR yield the same prediction, namely the set of outcomes
{ad, ae, bd, be} (CBFR yields strategies a and b for Player 1 and d and e for Player 2). Since
choice c is strictly dominated, if Player 1 is rational at date 0, she will not choose c; hence if
Player 2 believes, at date 1, that Player 1 chose rationally at date 0 (B1R0), then he believes
that Player 1 did not choose c. Hence, if he is rational at date 1, he will not choose e; thus if
Player 1 believes, at date 0, that Player 1 will believe, at date 1, that Player 1 was rational at
date 0 (B0B1R0) and, furthermore, Player 1 believes that Player 2 will be rational at date 1, then
she will play a and the outcome will be ad. In Figure 7 two models of the game are shown.
For this game the event FBR is given by FBR = R0 ∩ R1 ∩ B0R1. In Model 1 we have that
R0 = {α, β},R1 = {β, γ, δ}, B0R1 = Ω and thus FBR = {β}; furthermore, B1R0 = B0B1R0 = Ω

and thus FBR ∩ B1R0 ∩ B0B1R0 = {β} and indeed ζ(β) = ad. On the other hand, in Model 2,
R0 = {β, δ} and R1 = B0R1 = Ω so that FBR = {β, δ} (and thus it is consistent with forward
belief of rationality for Player 1 to choose b); on the other hand, B1R0 = B0B1R0 = ∅ and thus
FBR ∩ B1R0 ∩ B0B1R0 = ∅.
Indeed it can be shown that for every model of the game of Figure 7, if ω is a state such that
ω ∈ FBR∩B1R0∩B0B1R0 then ζ(ω) = ad, thus capturing some aspects of the notion of forward
induction.

We now turn to the second view of forward induction, namely as a restriction on players’
belief revision policy: when faced with information that contradicts earlier beliefs, players should
- if possible - switch to a new belief that does not question the rationality of earlier movers.
As remarked above, the standard static approach needs to rely on subjective counterfactuals or
dispositional belief revision and the added restriction imposed by the idea of forward induction
poses a problem, namely that in a particular model there may not be “enough belief hierarchies”
to rationalize an observed deviation by an opponent. Thus the literature on forward induction has
been developed within a complete epistemic model that contains all possible belief hierarchies
(e.g. the infinite universal space of [6]) or an otherwise “sufficiently rich” model (e.g. [7]).
On the other hand, in our approach dispositional belief revision plays no role and the type of
characterization results that can be obtained are statements about the class of models, namely
statements of the form “if at a state ω of an arbitrary model of the game a certain condition
holds, then at ω fact x holds”; there may be models where the condition does not hold at any
state (e.g. Model 2 in Figure 7) and models where the condition is satisfied at some state (e.g.
Model 1 in Figure 7; for the game of Figure 7 the condition we discussed was expressed by the
event FBR ∩ B1R0 ∩ B0B1R0).

The question of how to adequately formulate and capture the notion of forward induction in
this class of models is an open one and certainly worth pursuing. It is, however, beyond the scope

37For example, [22, p. 179] writes “A player should always try to interpret her information about the behavior of her
opponents assuming that they are not implementing ‘irrational’ strategies.”
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Figure 7: Forward and backward belief in rationality.

of this paper.
We conclude by acknowledging our intellectual debt to Samet ([12]) who introduced behavior-

based models, where states are described in terms of actual choices rather than strategies. His
analysis relies on subjective counterfactuals, expressed in terms of hypothetical knowledge op-
erators (which are a version of subjective selection functions: see [26] for a detailed discussion).
Samet restricts attention to perfect-information games and provides a characterization of the
backward-induction outcome in terms of a condition that he calls “common hypothesis of node
rationality.” However, Samet’s framework differs substantially from ours: his approach is static
(“time is absent from the model - we analyze the game at a point in time before it is played”
[12, p.233]), it assumes knowledge, rather than belief, it imposes the condition that if at a state
a player considers it possible that she takes an action at a decision history then she knows that,
if that decision history is reached, she takes that action and, finally - as noted above - he makes
essential use of subjective counterfactuals.

Appendix A. Proofs

We prove Propositions 1 and 2 for the general case of von Neumann extensive games with
possibly simultaneous moves. First we recall the definitions of forward belief of rationality and
of the generalized backward induction procedure for the general case.

Recall (see Section 4.3) that when simultaneous moves are allowed the event FBR is defined
as follows. First, for 0 ≤ k ≤ m − 1 define FBRk recursively by: FBRm−1 = Rm−1 ∩ CBRm−1,
and, for k < m−1, FBRk = (Rk∩CBRk)∩CBkFBRk+1∩FBRk+1. Finally, define FBR = FBR0.
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For the generalized backward induction procedure we start by defining the set U(h) of (iter-
atively) undominated choices at decision history h: U(h) =

∏
i∈ι(h) (Ai(h)\Di(h)), where Di(h) is

the set of player i’s strictly dominated choices at i’s information set that contains h and is defined
by: Di(h) =

⋃∞
j=0 D j

i (h) and D j
i (h) is given recursively as follows (for i ∈ ι(h) and j ≥ 0):

1. If `(h) = `max − 1,
1.a. ai ∈ D0

i (h) if and only if ai ∈ Ai(h) and there exists a bi ∈ Ai(h)
such that, for every h′ ∈ Ii(h), and for every a−i ∈

∏
k∈ι(h′)\{i} Ak(h′),

ui(h′(ai, a−i)) < ui(h′(bi, a−i)) [that is, bi yields higher utility than
ai at every history in the information set containing h, when
combined with any profile of actions of the active players other
than i (if any); in other words, if ai is strictly dominated by some
other choice bi at the information set of player i that contains h].

1.b. For j > 0, ai ∈ D j
i (h) if and only if ai ∈ Ai(h) and there exists a

bi ∈ Ai(h) such that, for every h′ ∈ Ii(h), and for every
a−i ∈

∏
k∈ι(h′)\{i}

(
Ak(h′)\D j−1

k (h′)
)
, ui(h′(ai, a−i)) < ui(h′(bi, a−i))

[that is, ai is strictly dominated by some other choice bi if, at every
history in the information set containing h, the other players are
assumed to play only actions that have not (so far) been marked
as dominated; note that, ∀ j ≥ 0,D j+1

i (h) ⊇ D j
i (h)].

2. Having defined U(h) for every decision history h such that `(h) = k, with 0 < k ≤ `max − 1,
define, for h such that `(h) = k−1, U(h) =

∏
i∈ι(h)(Ai(h)\Di(h)), where Di(h) =

⋃∞
j=0 D j

i (h)
and D j

i (h) is given recursively as follows (for i ∈ ι(h) and j ≥ 0):
2.a. ai ∈ D0

i (h) if and only if ai ∈ Ai(h) and there exists a bi ∈ Ai(h)
such that, ∀h′ ∈ Ii(h),∀a−i ∈

∏
k∈ι(h′)\{i} Ak(h′), ui(z) < ui(z′)

for all z, z′ ∈ Z such that z = h′(ai, a−i)c1 . . . cp (p ≥ 0),
z′ = h′(bi, a−i)d1 . . . dq (q ≥ 0) with c1 ∈ U(h′(ai, a−i)),
d1 ∈ U(h′(bi, a−i)) and, ∀ j = 2, . . . , p, ∀k = 2, . . . , q,
c j ∈ U(h′(ai, a−i)c1 . . . c j−1) and dk ∈ U(h′(bi, a−i)d1 . . . dk−1)
[that is, ai is strictly dominated by some bi at the information
set of player i that contains h, assuming that after the move at
that information set only undominated choices are made].

2.b. For j > 0, ai ∈ D j
i (h) if and only if ai ∈ Ai(h) and there exists a

bi ∈ Ai(h) such that, ∀h′ ∈ Ii(h),∀a−i ∈
∏

k∈ι(h′)\{i}

(
Ak(h′)\D j−1

k (h′)
)
,

ui(z) < ui(z′), for all z, z′ ∈ Z such that z = h′(ai, a−i)c1 . . . cp (p ≥ 0),
z′ = h′(bi, a−i)d1 . . . dq (q ≥ 0) with c1 ∈ U(h′(ai, a−i)),
d1 ∈ U(h′(bi, a−i)) and, ∀ j = 2, . . . , p, ∀k = 2, . . . , q,
c j ∈ U(h′(ai, a−i)c1 . . . c j−1) and dk ∈ U(h′(bi, a−i)d1 . . . dk−1)
[that is, ai is strictly dominated by some bi, assuming that at
every history in the information set containing h the other
players only take actions that have not (so far) been marked as
dominated and, furthermore, after the move at that information
set only undominated choices are made].

For example, in the game of Figure 1, D0
1(a) = ∅, D0

2(a) = {g}, D1
1(a) = {d}, D1

2(a) = { f , g} and
after this no other choices are strictly dominated, so that D1(a) = {d} and D2(a) = { f , g} and thus
U(a) = {(c, e)}, so that D1(∅) = {a} and U(∅) = {b}.
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The function fBI : H → 2Z and the event BI are given by: (1) if h ∈ Z then fBI(h) = {h}
and (2) if h is a decision history then fBI(h) = {z ∈ Z : z = ha1a2...am, a1 ∈ U(h) and a j ∈

U(ha1...a j−1),∀ j = 2, ...,m}, that is, fBI(h) is the set of terminal histories that can be reached
from h by following only undominated choices. Finally, BI = fBI(∅).

Proof of Proposition 1. Fix a von Neumann extensive game (with possibly simultaneous
moves) and a model of it. Let m = `max be the depth of the game. First we prove the following:

∀ω ∈ Ω, if ω ∈ Rm−1 ∩ CBRm−1 then, ∀i ∈ ι (ζm−1(ω)), if ai

is the action taken by i at ζm−1(ω), then ai < Di(ζm−1(ω)). (A.1)

As a first step we show that

∀ω ∈ Ω, ∀i ∈ ι (ζm−1(ω)), if ω ∈ Ri,m−1 and ai is the
action taken by i at ζm−1(ω), then ai < D0

i (ζm−1(ω)). (A.2)

Let ω ∈ Ω and i ∈ ι (ζm−1(ω)) be such that ω ∈ Ri,m−1 and suppose that ai ∈ D0
i (ζm−1(ω)), where

ai is the action taken by player i at ζm−1(ω). Then there exists a bi ∈ Ai (ζm−1(ω)) such that

∀h′ ∈ Ii (ζm−1(ω)) ,∀c−i ∈
∏

k∈ι(h′)\{i}

Ak(h′), ui(h′(bi, c−i)) > ui(h′(ai, c−i)). (A.3)

Fix an arbitrary ω′ ∈ Bi,m−1(ω) (recall that, by 2.1 of Definition 3, Bi,m−1(ω) , ∅) and let
c−i ∈ A−i(ζm−1(ω′)) be the action profile played by the players other than i at ζm−1(ω′) (if any).
By 2.3s of Definition 6 there exist ω1, ω2 ∈ Bi,m−1(ω) such that ζm(ω1) = ζm−1(ω′)(ai, c−i) and
ζm(ω2) = ζm−1(ω′)(bi, c−i). Then, by (A.3), at state ω and time m − 1 player i believes that bi is
better than ai (see Footnote 25) and thus, since ai is her choice at ζm−1(ω), she is not rational at
(ω,m − 1), that is, ω < Ri,m−1, contradicting our hypothesis.

Next we show that:

∀ ∈ Ω, ∀i ∈ ι (ζm−1(ω)), if ω ∈ Ri,m−1 ∩ CBRm−1 then, if ai

is the action taken by i at ζm−1(ω), then ai < D1
i (ζm−1(ω)). (A.4)

Let ω ∈ Ω and i ∈ ι (ζm−1(ω)) be such that ω ∈ Ri,m−1 ∩CBRm−1. Fix an arbitrary ω′ ∈ Bi,m−1(ω)
and an arbitrary j ∈ ι (ζm−1(ω′)) \{i}. Since CBRm−1 ⊆ CBR j,m−1, ω ∈ CBR j,m−1 and thus, by
definition of CBR j,m−1 (see (5)) and the fact that j , i,

ω ∈ Bi,m−1R j,m−1. (A.5)

Hence Bi,m−1(ω) ⊆ R j,m−1 and thus ω′ ∈ R j,m−1; hence, by (A.2), if a j is the action taken by j at
ζm−1(ω′) then a j < D0

j (ζm−1(ω′)). Thus at (ω,m − 1) player i believes that at every history that
she considers possible the action profile taken there by the other players (if any) is not “level-0
strictly dominated”. Hence, since player i is rational at (ω,m − 1) (ω ∈ Ri,m−1), if ai is the action
taken by i at ζm−1(ω), then ai < D1

i (ζm−1(ω)).
Next we prove by induction that:

∀ ∈ Ω, ∀i ∈ ι (ζm−1(ω)), if ω ∈ Ri,m−1 ∩ CBRm−1 then, if ai is the
action taken by i at ζm−1(ω), then, ∀k ≥ 1, ai < Dk

i (ζm−1(ω)). (A.6)

The base step, namely the case k = 1, is given by (A.4). Thus we only need to prove the
induction step, that is, that if (A.6) true for k ≥ 1 then it must be true for k + 1. Let ω ∈ Ω and
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i ∈ ι (ζm−1(ω)) be such that ω ∈ Ri,m−1 ∩ CBRm−1. Fix an arbitrary j ∈ N\{i}. Then, as shown
above, (A.5) must hold, that is, ω ∈ Bi,m−1R j,m−1. By Remark 9, CBRm−1 ⊆ Bi,m−1CBRm−1 and
thus ω ∈ Bi,m−1CBRm−1. Hence

ω ∈ Bi,m−1

(
R j,m−1 ∩ CBRm−1

)
. (A.7)

Fix an arbitrary ω′ ∈ Bi,m−1(ω). Then, by (A.7), ω′ ∈ R j,m−1∩CBRm−1 and thus, by our induction
hypothesis, if a j is the action taken by player j at ζm−1(ω′) then a j < Dk

j(ζm−1(ω′)). Thus at
(ω,m−1) player i believes that at every history that she considers possible the action profile taken
there by the other players (if any) is not “level-k strictly dominated”. Hence, since ω ∈ Ri,m−1,
if ai is the action taken by i at ζm−1(ω), then ai < Dk+1

i (ζm−1(ω)). Thus (A.6) holds and hence, by
definition of Di(ζm−1(ω)), we have proved (A.1).

Next we prove that

For every t with 0 ≤ t ≤ m − 1 and for every ω ∈ Ω,
if ω ∈ FBRt then ζ(ω) ∈ fBI(ζt(ω)). (A.8)

Fix arbitrary t ∈ T and ω ∈ FBRt. If ζt(ω) is a terminal history, then ζt(ω) = ζ(ω) (see Definition
2) and, by definition of fBI(·), fBI(ζ(ω)) = {ζ(ω)} . Thus ζ(ω) ∈ fBI(ζt(ω)). The case where ζt(ω)
is a decision history is proved by induction.

Base step: t = m − 1. Fix arbitrary ω ∈ FBRm−1 = Rm−1 ∩ CBRm−1 and suppose that ζm−1(ω)
is a decision history. We need to show that if a is the action profile played at ζm−1(ω) (that is,
ζm(ω) = ζm−1(ω)a) then a ∈ U (ζm−1(ω)). But this is precisely what (A.1) states.
Induction step. Suppose that (A.8) is true for t = k with 1 < k ≤ m − 1. We want to show that it
is true for t = k − 1. Fix an arbitrary state β and suppose that

β ∈ FBRk−1 = (Rk−1 ∩ CBRk−1) ∩ CBk−1FBRk ∩ FBRk. (A.9)

If ζk−1(β) is a terminal history, then ζk−1(β) = ζ(β) and, by definition of fBI(·), fBI(ζ(β)) = {ζ(β)} ,
so that ζ(β) ∈ fBI(ζk−1(β)). Suppose, therefore, that ζk−1(β) is a decision history. Fix arbitrary i ∈
ι(ζk−1(β)). By definition of common belief (see (3) and Remark 7), CBk−1FBRk ⊆ Bi,k−1FBRk ∩

Bi,k−1CBk−1FBRk = Bi,k−1(FBRk ∩ CBk−1FBRk). Thus, since, by (A.9), β ∈ CBk−1FBRk it
follows that β ∈ Bi,k−1(FBRk ∩ CBk−1FBRk), so that, by the induction hypothesis, at state β and
time k−1 player i believes (recall that, by Definition 3, Bi,k−1(β) , ∅) that after the action profile
taken at every history that he considers possible only terminal histories selected by the function
fBI(·) can be reached (that is, only terminal histories that are reached by undominated choices)
and, furthermore, that this fact is common belief among the active players at time k − 1. If we
establish that if ai is the action played by player i at ζk−1(β) then ai < Di(ζk−1(β)) then, since
player i was chosen arbitrarily from the set ι(ζk−1(β)), it follows that if a is the action profile
played at ζk−1(β) then a ∈ U(ζk−1(β)). Then to complete the proof it is sufficient to note that, by
(A.9), β ∈ FBRk, so that, by the induction hypothesis, ζ(β) ∈ fBI(ζk(β)); by Remark 6 it follows
from this and the fact that a ∈ U(ζk−1(β)), that ζ(β) ∈ fBI(ζk−1(β)).

The proof that if a is the action profile played at ζk−1(β) then a ∈ U(ζk−1(β)) is a repetition of
the induction argument used to prove (A.1) and thus we will only highlight the key observations.
First one shows the following (which corresponds to (A.2)):

∀ ∈ Ω, ∀ j ∈ ι (ζm−1(ω)), if ω ∈ R j,k−1 ∩ CBk−1FBRk then, if a j is
the action taken by j at ζk−1(ω), then a j < D0

j (ζk−1(ω)). (A.10)
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This is done by using the fact that CBk−1FBRk ⊆ B j,k−1FBRk and thus at (ω, k − 1) player
j believes that after the profiles of actions taken at every decision history that she considers
possible only undominated choices follow and thus, since ω ∈ R j,k−1, a j < D0

j (ζk−1(ω)).
Then one shows the following (which corresponds to (A.4)):

∀ ∈ Ω, ∀i ∈ ι (ζm−1(ω)), if ω ∈ Ri,k−1 ∩ CBRk−1 ∩ CBk−1FBRk

then, if ai is the action taken by i at ζk−1(ω), then ai < D1
i (ζk−1(ω)). (A.11)

This is done by inferring fromω ∈ CBRk−1∩CBk−1FBRk that, for every j , i,ω ∈ Bi,k−1

(
R j,k−1 ∩ CBk−1FBRk

)
and using (A.10) to conclude that, at every ω′ ∈ Bi,k−1(ω), the active players at ζk−1(ω′) don’t
choose “level-0 strictly dominated actions”, that is, at ω player i believes this fact and thus, since
ω ∈ Ri,k−1, if ai is the action taken by i at ζk−1(ω), then ai < D1

i (ζk−1(ω)).
Now (A.11) becomes the base step for the proof by induction of the following claim (which

corresponds to (A.6)):

∀ ∈ Ω, ∀i ∈ ι (ζm−1(ω)), if ω ∈ Ri,k−1 ∩ CBRk−1 ∩ CBk−1FBRk then,
if ai is the action taken by i at ζk−1(ω), then, ∀m ≥ 1, ai < Dm

i (ζk−1(ω)). (A.12)

As in the case of (A.6), the proof is a straightforward adaptation of the argument used to establish
(A.11). �

a            a            a            a           b             b            b           b

time:

0

1

2

adk     adh     adg      ac       bf         beh     beg     bek

ad          ad          ad          ac         bf            be          be          be

∅       ∅      ∅      ∅       ∅       ∅      ∅      ∅

ω = ζ(ω) :

 

Figure A.8: The model described in the proof of Proposition 2 for the game of Figure 2.

Proof of Proposition 2. Fix a von Neumann extensive-form game and define the following
model of it: Ω = Z (recall that Z is the set of terminal histories), T = {0, 1, ...,m = `max − 1}
(recall that `max is the depth of the game) and ζ is the identity function (that is, ζ(z) = z, for every
z ∈ Z). Fix an arbitrary (z, t). If zt is a terminal history set B j,t(z) = ∅ for every player j ∈ N. If
zt is a decision history and ι(zt) = {i} set B j,t(z) = ∅ for every player j , i and define Bi,t(z) as
follows: z′ ∈ Bi,t(z) if and only if (1) z′t ∈ Ii(zt) and (2) z′ ∈ fBI(z′t+1). Figure A.8 shows the model
just described for the game of Figure 2. If zt is a decision history and the cardinality of ι(zt) is
greater than 1, then set B j,t(z) = ∅ for every player j < ι(zt) and for each i ∈ ι(zt) define Bi,t(z)
as follows: z′ ∈ Bi,t(z) if and only if (1) z′t ∈ Ii(zt), (2) z′ ∈ fBI(z′t+1) and (3) ∀ j ∈ ι(z′t)\{i} if a j is
the action taken by player j at z′t then a j < D j(z′t). Figure A.9 shows the model just described for
the game of Figure 1. By construction of the belief relations, at any state z and date t, if player i
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is active at zt then he is rational there if and only if the following holds: if ai is the action taken
by player i at zt then ai < Di(zt). Now fix an arbitrary z ∈ BI. Then, by construction, for every
t ∈ T , z ∈ fBI(zt), so that z ∈ FBRt. Hence z ∈ FBR0 = FBR. �

a            a            a            a           a             a            a

∅       ∅      ∅      ∅       ∅       ∅      ∅

ω = ζ(ω) :

0

1 (player 1)

1 (player 2)

time:

a            a            a            a           a             a            a

b       a(c,e)   a(d,e)  a(c,f)   a(c,g)   a(d,f)  a(d,g)

 

Figure A.9: The model described in the proof of Proposition 2 for the game of Figure 1.
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