
Lawrence Berkeley National Laboratory
LBL Publications

Title
Improving performance of sparse matrix dense matrix multiplication on large-scale 
parallel systems

Permalink
https://escholarship.org/uc/item/2sg4b98x

Authors
Acer, Seher
Selvitopi, Oguz
Aykanat, Cevdet

Publication Date
2016-11-01

DOI
10.1016/j.parco.2016.10.001
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2sg4b98x
https://escholarship.org
http://www.cdlib.org/


Improving performance of sparse matrix dense matrix multiplication on
large-scale parallel systems I

Seher Acera, Oguz Selvitopia, Cevdet Aykanata,∗

aBilkent University, Computer Engineering Department, 06800, Ankara, TURKEY

Abstract

We propose a comprehensive and generic framework to minimize multiple and different volume-based
communication cost metrics for sparse matrix dense matrix multiplication (SpMM). SpMM is an important
kernel that finds application in computational linear algebra and big data analytics. On distributed memory
systems, this kernel is usually characterized with its high communication volume requirements. Our approach
targets irregularly sparse matrices and is based on both graph and hypergraph partitioning models that rely
on the widely adopted recursive bipartitioning paradigm. The proposed models are lightweight, portable
(can be realized using any graph and hypergraph partitioning tool) and can simultaneously optimize different
cost metrics besides total volume, such as maximum send/receive volume, maximum sum of send and receive
volumes, etc., in a single partitioning phase. They allow one to define and optimize as many custom volume-
based metrics as desired through a flexible formulation. The experiments on a wide range of about thousand
matrices show that the proposed models drastically reduce the maximum communication volume compared
to the standard partitioning models that only addresses the minimization of total volume. The improvements
obtained on volume-based partition quality metrics using our models are validated with parallel SpMM as
well as parallel multi-source BFS experiments on two large-scale systems. For parallel SpMM, compared
to the standard partitioning models, our graph and hypergraph partitioning models respectively achieve
reductions of 14% and 22% in runtime, on average. Compared to the state-of-the-art partitioner UMPa,
our graph model is overall 14.5x faster and achieves an average improvement of 19% in the partition quality
on instances that are bounded by maximum volume. For parallel BFS, we show on graphs with more than
a billion edges that the scalability can significantly be improved with our models compared to a recently
proposed two-dimensional partitioning model.

Keywords: irregular applications, sparse matrices, sparse matrix dense matrix multiplication, load
balancing, communication volume balancing, matrix partitioning, graph partitioning, hypergraph
partitioning, recursive bipartitioning, combinatorial scientific computing

1. Introduction

Sparse matrix kernels form the computational basis of many scientific and engineering applications. An
important kernel is the sparse matrix dense matrix multiplication (SpMM) of the form Y = AX, where A
is a sparse matrix, and X and Y are dense matrices.

SpMM is already a common operation in computational linear algebra, usually utilized repeatedly within
the context of block iterative methods. The practical benefits of block methods have been emphasized in
several studies. These studies either focus on the block versions of certain solvers (i.e., conjugate gradient
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variants) which address multiple linear systems [1, 2, 3, 4], or the block methods for eigenvalue problems,
such as block Lanczos [5] and block Arnoldi [6]. The column dimension of X and Y in block methods are
usually very small compared to that of A [7].

Along with other sparse matrix kernels, SpMM is also used in the emerging field of big data analytics.
Graph algorithms are ubiquitous in big data analytics. Many graph analysis approaches such as centrality
measures [8] rely on shortest path computations and use breadth-first search (BFS) as a building block. As
indicated in several recent studies [9, 10, 11, 12, 13, 14], processing each level in BFS is actually equivalent to
a sparse matrix vector “multiplication”. Graph algorithms often necessitate BFS from multiple sources. In
this case, processing each level becomes equivalent to multiplication of a sparse matrix with another sparse
(the SpGEMM kernel [15]) or dense matrix. For a typical small world network [16], matrix X is sparse
at the beginning of BFS, however it usually gets denser as BFS proceeds. Even in cases when it remains
sparse, the changing pattern of this matrix throughout the BFS levels and the related sparse bookkeeping
overhead make it plausible to store it as a dense matrix if there is memory available.

SpMM is provided in Intel MKL [17] and Nvidia cuSPARSE [18] libraries for multi-/many-core and
GPU architectures. To optimize SpMM on distributed memory architectures for sparse matrices with
irregular sparsity patterns, one needs to take communication bottlenecks into account. Communication
bottlenecks are usually summarized by latency (message start-up) and bandwidth (message transfer) costs.
The latency cost is proportional to the number of messages while the bandwidth cost is proportional to
the number of words communicated, i.e., communication volume. These costs are usually addressed in the
literature with intelligent graph and hypergraph partitioning models that can exploit irregular patterns quite
well [19, 20, 21, 22, 23, 24]. Most of these models focus on improving the performance of parallel sparse
matrix vector multiplication. Although one can utilize them for SpMM as well, SpMM necessitates the
use of new models tailored to this kernel since it is specifically characterized with its high communication
volume requirements because of the increased column dimensions of dense X and Y matrices. In this regard,
the bandwidth cost becomes critical for overall performance, while the latency cost becomes negligible with
increased average message size. Therefore, to get the best performance out of SpMM, it is vital to address
communication cost metrics that are centered around volume such as maximum send volume, maximum
receive volume, etc.

1.1. Related work on multiple communication cost metrics

Total communication volume is the most widely optimized communication cost metric for improving the
performance of sparse matrix operations on distributed memory systems [21, 22, 25, 26, 27]. There are a
few works that consider communication cost metrics other than total volume [28, 29, 30, 31, 32, 33]. In
an early work, Uçar and Aykanat [29] proposed hypergraph partitioning models to optimize two different
cost metrics simultaneously. This work is a two-phase approach, where the partitioning in the first phase
is followed by a latter phase in which they minimize total number of messages and achieve a balance on
communication volumes of processors. In a related work, Uçar and Aykanat [28] adapted the mentioned
model for two-dimensional fine-grain partitioning. A very recent work by Selvitopi and Aykanat aims to
reduce the latency overhead in two-dimensional jagged and checkerboard partitioning [34].

Bisseling and Meesen [30] proposed a greedy heuristic for balancing communication loads of processors.
This method is also a two-phase approach, in which the partitioning in the first phase is followed by a
redistribution of communication tasks in the second phase. While doing so, they try to minimize the
maximum send and receive volumes of processors while respecting the total volume obtained in the first
phase.

The two-phase approaches have the flexibility of working with already existing partitions. However, since
the first phase is oblivious to the cost metrics addressed in the second phase, they can get stuck in local
optima. To remedy this issue, Deveci et al. [32] recently proposed a hypergraph partitioner called UMPa,
which is capable of handling multiple cost metrics in a single partitioning phase. They consider various
metrics such as maximum send volume, total number of messages, maximum number of messages, etc.,
and propose a different gain computation algorithm specific to each of these metrics. In the center of their
approach are the move-based iterative improvement heuristics which make use of directed hypergraphs.
These heuristics consist of a number of refinement passes. To each pass, their approach is reported to
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introduce an O(V K2)-time overhead, where V is the number of vertices in the hypergraph (number of
rows/columns in A) and K is the number of parts/processors. They also report that the slowdown of UMPa
increases with increasing K with respect to the native hypergraph partitioner PaToH due to this quadratic
complexity.

1.2. Contributions

In this study, we propose a comprehensive and generic one-phase framework to minimize multiple volume-
based communication cost metrics for improving the performance of SpMM on distributed memory systems.
Our framework relies on the widely adopted recursive bipartitioning paradigm utilized in the context of
graph and hypergraph partitioning. Total volume can already be effectively minimized with existing parti-
tioners [21, 22, 25]. We focus on the other important volume-based metrics besides total volume, such as
maximum send/receive volume, maximum sum of send and receive volumes, etc. The proposed model asso-
ciates additional weights with boundary vertices to keep track of volume loads of processors during recursive
bipartitioning. The minimization objectives associated with these loads are treated as constraints in order
to make use of a readily available partitioner. Achieving a balance on these weights of boundary vertices
through these constraints enables the minimization of target volume-based metrics. We also extend our
model by proposing two practical enhancements to handle these constraints in partitioners more efficiently.

Our framework is unique and flexible in the sense that it handles multiple volume-based metrics through
the same formulation in a generic manner. This framework also allows the optimization of any custom metric
defined on send/receive volumes. Our algorithms are computationally lightweight: they only introduce an
extra O(nnz(A)) time to each recursive bipartitioning level, where nnz(A) is the number of nonzeros in
matrix A. To the best of our knowledge, it is the first portable one-phase method that can easily be
integrated into any state-of-the-art graph and hypergraph partitioner. Our work is also the first work that
addresses multiple volume-based metrics in the graph partitioning context.

Another important aspect is the simultaneous handling of multiple cost metrics. This feature is crucial
as overall communication cost is simultaneously determined by multiple factors and the target parallel
application may demand optimization of different cost metrics simultaneously for good performance (SpMM
and multi-source BFS in our case). In this regard, Uçar and Aykanat [28, 29] accommodates this feature
for two metrics, whereas Deveci et al. [32], although addresses multiple metrics, does not handle them in
a completely simultaneous manner since some of the metrics may not be minimized in certain cases. Our
models in contrast can optimize all target metrics simultaneously by assigning equal importance to each of
them in the feasible search space. In addition, the proposed framework allows one to define and optimize as
many volume-based metrics as desired.

For experiments, the proposed partitioning models for graphs and hypergraphs are realized using the
widely-adopted partitioners Metis [22] and PaToH [21], respectively. We have tested the proposed models for
128, 256, 512 and 1024 processors on a dataset of 964 matrices containing instances from different domains.
We achieve average improvements of up to 61% and 78% in maximum communication volume for graph and
hypergraph models, respectively, in the categories of matrices for which maximum volume is most critical.
Compared to the state-of-the-art partitioner UMPa, our graph model achieves an overall improvement of 5%
in the partition quality 14.5x faster and our hypergraph model achieves an overall improvement of 11% in
the partition quality 3.4x faster. Our average improvements for the instances that are bounded by maximum
volume are even higher: 19% for the proposed graph model and 24% for the proposed hypergraph model.

We test the validity of the proposed models for both parallel SpMM and multi-source BFS kernels on
large-scale HPC systems Cray XC40 and Lenovo NeXtScale, respectively. For parallel SpMM, compared
to the standard partitioning models, our graph and hypergraph partitioning models respectively lead to
reductions of 14% and 22% in runtime, on average. For parallel BFS, we show on graphs with more than
a billion edges that the scalability can significantly be improved with our models compared to a recently
proposed two-dimensional partitioning model [12] for the parallelization of this kernel on distributed systems.

The rest of the paper is organized as follows. Section 2 gives background for partitioning sparse matri-
ces via graph and hypergraph models. Section 3 defines the problems regarding minimization of volume-
based cost metrics. The proposed graph and hypergraph partitioning models to address these problems
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are described in Section 4. Section 5 proposes two practical extensions to these models. Section 6 gives
experimental results for investigated partitioning schemes and parallel runtimes. Section 7 concludes.

2. Background

2.1. One-dimensional sparse matrix partitioning

Consider the parallelization of sparse matrix dense matrix multiplication (SpMM) of the form Y = AX,
where A is an n×n sparse matrix, and X and Y are n× s dense matrices. Assume that A is permuted into
a K-way block structure of the form

ABL =
[
C1 · · · CK

]
=

 R1

...
RK

 =

 A11 · · · A1K

...
. . .

...
AK1 · · · AKK

 , (1)

for rowwise or columnwise partitioning, whereK is the number of processors in the parallel system. Processor
Pk owns row stripe Rk = [Ak1 · · ·AkK ] for rowwise partitioning, whereas it owns column stripe Ck =
[AT

1k · · ·AT
Kk]T for columnwise partitioning. We focus on rowwise partitioning in this work, however, all

described models apply to columnwise partitioning as well. We use Rk and Ak interchangeably throughout
the paper as we only consider rowwise partitioning.

In both block iterative methods and BFS-like computations, SpMM is performed repeatedly with the
same input matrix A and changing X-matrix elements. The input matrix X of the next iteration is obtained
from the output matrix Y of the current iteration via element-wise linear matrix operations. We focus on
the case where the rowwise partitions of the input and output dense matrices are conformable to avoid
redundant communication during these linear operations. Hence, a partition of A naturally induces partition
[Y T

1 . . . Y T
K ]T on the rows of Y , which is in turn used to induce a conformable partition [XT

1 . . . X
T
K ]T on the

rows of X. In this regard, the row and column permutation mentioned in (1) should be conformable.
A nonzero column segment is defined as the nonzeros of a column in a specific submatrix block. For

example in Figure 1, there are two nonzero column segments in A14 which belong to columns 13 and 15.
In row-parallel Y = AX, Pk owns row stripes Ak and Xk of the input matrices, and is responsible for
computing respective row stripe Yk = AkX of the output matrix. Pk can perform computations regarding
diagonal block Akk locally using its own portion Xk without requiring any communication, where Akl is
called a diagonal block if k = l, and an off-diagonal block otherwise. Since Pk owns only Xk, it needs
the remaining X-matrix rows that correspond to nonzero column segments in off-diagonal blocks of Ak.
Hence, the respective rows must be sent to Pk by their owners in a pre-communication phase prior to SpMM
computations. Specifically, to perform the multiplication regarding off-diagonal block Akl, Pk needs to
receive the respective X-matrix rows from Pl. For example, in Figure 1 for P3, since there exists a nonzero
column segment in A34, P3 needs to receive the corresponding three elements in row 14 of X from P4. In a
similar manner, it needs to receive the elements of X-matrix rows 2, 3 from P1 and 5, 7 from P2.

2.2. Graph and hypergraph partitioning problems

A graph G = (V, E) consists of a set V of vertices and a set E of edges. Each edge eij connects a pair of
distinct vertices vi and vj . A cost cij is associated with each edge eij . Adj(vi) denotes the neighbors of vi,
i.e., Adj(vi) = {vj : eij ∈ E}.

A hypergraph H = (V,N ) consists of a set V of vertices and a set N of nets. Each net nj connects a
subset of vertices denoted as Pins(nj). A cost cj is associated with each net nj . Nets(vi) denotes the set
of nets that connect vi. In both graph and hypergraph, multiple weights w1(vi), . . . , w

C(vi) are associated
with each vertex vi, where wc(vi) denotes the cth weight associated with vi.

Π(G) = {V1, . . . ,VK} and Π(H) = {V1, . . . ,VK} are called K-way partitions of G and H if parts are
mutually disjoint and mutually exhaustive. In Π(G), an edge eij is said to be cut if vertices vi and vj are in
different parts, and uncut otherwise. The cutsize of Π(G) is defined as

∑
eij∈EE cij , where EE ⊆ E denotes

the set of cut edges. In Π(H), the connectivity set Λ(nj) of net nj consists of the parts that are connected
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Figure 1: Row-parallel Y = AX with K = 4 processors, n = 16 and s = 3.

by that net, i.e., Λ(nj) = {Vk : Pins(nj) ∩ Vk 6= ∅}. The number of parts connected by nj is denoted by
λ(nj) = |Λ(nj)|. A net nj is said to be cut if it connects more than one part, i.e., λ(nj) > 1, and uncut
otherwise. The cutsize of Π(H) is defined as

∑
nj∈N cj(λ(nj)− 1). A vertex vi in Π(G) or Π(H) is said to

be a boundary vertex if it is connected by at least one cut edge or cut net.
The weight W c(Vk) of part Vk is defined as the sum of the cth weights of the vertices in Vk. A partition

Π(G) or Π(H) is said to be balanced if

W c(Vk) ≤W c
avg(1 + εc), k ∈ {1, . . . ,K} and c ∈ {1, . . . , C}, (2)

where W c
avg =

∑
kW

c(Vk)/K, and εc is the predetermined imbalance value for the cth weight.
The K-way multi-constraint graph/hypergraph partitioning problem [35, 36] is then defined as finding

a K-way partition such that the cutsize is minimized while the balance constraint (2) is maintained. Note
that for C = 1, this reduces to the well-studied standard partitioning problem. Both graph and hypergraph
partitioning problems are NP-hard [37, 38].

2.3. Sparse matrix partitioning models

In this section, we describe how to obtain a one-dimensional rowwise partitioning of matrix A for row-
parallel Y = AX using graph and hypergraph partitioning models. These models are the extensions of
standard models used for sparse matrix vector multiplication [21, 22, 39, 40, 41].

In the graph and hypergraph partitioning models, matrix A is represented as an undirected graph
G = (V, E) and a hypergraph H = (V,N ). In both, there exists a vertex vi ∈ V for each row i of A, where vi
signifies the computational task of multiplying row i of A with X to obtain row i of Y . So, in both models,
a single (C = 1) weight of s times the number of nonzeros in row i of A is associated with vi to encode the
load of this computational task. For example, in Figure 1, w1(v5) = 4× 3 = 12.

In G, each nonzero aij or aji (or both) of A is represented by an edge eij ∈ E . The cost of edge eij is
assigned as cij = 2s for each edge eij with aij 6= 0 and aji 6= 0, whereas it is assigned as cij = s for each
edge eij with either aij 6= 0 or aji 6= 0, but not both. In H, each column j of A is represented by a net
nj ∈ N , which connects the vertices that correspond to the rows that contain a nonzero in column j, i.e.,
Pins(nj) = {vi : aij 6= 0}. The cost of net nj is assigned as cj = s for each net in N .

In a K-way partition Π(G) or Π(H), without loss of generality, we assume that the rows corresponding
to the vertices in part Vk are assigned to processor Pk. In Π(G), each cut edge eij , where vi ∈ Vk and
vj ∈ V`, necessitates cij units of communication between processors Pk and P`. Here, P` sends row j of X
to Pk if aij 6= 0 and Pk sends row i of X to P` if aji 6= 0. In Π(H), each cut net nj necessitates cj(λ(nj)−1)
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units of communication between processors that correspond to the parts in Λ(nj), where the owner of row j
of X sends it to the remaining processors in Λ(nj). Hereinafter, Λ(nj) is interchangeably used to refer to
parts and processors because of the identical vertex part to processor assignment.

Through these formulations, the problem of obtaining a good row partitioning of A becomes equivalent
to the graph and hypergraph partitioning problems in which the objective of minimizing cutsize relates to
minimizing total communication volume, while the constraint of maintaining balance on part weights ((2)
with C = 1) corresponds to balancing computational loads of processors. The objective of hypergraph
partitioning problem is an exact measure of total volume, whereas the objective of graph partitioning
problem is an approximation [21].

3. Problem definition

Assume that matrix A is distributed among K processors for parallel SpMM operation as described in
Section 2.1. Let σ(Pk, P`) be the amount of data sent from processor Pk to P` in terms of X-matrix elements.
This is equal to s times the number of X-matrix rows that are owned by Pk and needed by P`, which is
also equal to s times the number of nonzero column segments in off-diagonal block A`k. Since Xk is owned
by Pk and computations on Akk require no communication, σ(Pk, Pk) = 0. We use the function ncs(.) to
denote the number of nonzero column segments in a given block of matrix. ncs(Ak`) is defined to be the
number of nonzero column segments in Ak` if k 6= `, and 0 otherwise. This is extended to a row stripe Rk

and a column stripe Ck, where ncs(Rk) =
∑

` ncs(Ak`) and ncs(Ck) =
∑

` ncs(A`k). Finally, for the whole
matrix, ncs(ABL) =

∑
k ncs(Rk) =

∑
k ncs(Ck). For example, in Figure 1, ncs(A42) = 2, ncs(R3) = 5,

ncs(C3) = 4 and ncs(ABL) = 21.
The send and receive volumes of Pk are defined as follows:

• SV (Pk), send volume of Pk: The total number of X-matrix elements sent from Pk to other processors.
That is, SV (Pk) =

∑
` σ(Pk, P`). This is equal to s× ncs(Ck).

• RV (Pk), receive volume of Pk: The total number of X-matrix elements received by Pk from other
processors. That is, RV (Pk) =

∑
` σ(P`, Pk). This is equal to s× ncs(Rk).

Note that the total volume of communication is equal to
∑

k SV (Pk) =
∑

k RV (Pk). This is also equal to
s times the total number of nonzero column segments in all off-diagonal blocks, i.e., s× ncs(ABL).

In this study, we extend the sparse matrix partitioning problem in which the only objective is to minimize
the total communication volume, by introducing four more minimization objectives which are defined on
the following metrics:

1. maxk SV (Pk): maximum send volume of processors (equivalent to maximum s× ncs(Ck)),

2. maxk RV (Pk): maximum receive volume of processors (equivalent to maximum s× ncs(Rk)),

3. maxk(SV (Pk) + RV (Pk)): maximum sum of send and receive volumes of processors (equivalent to
maximum s× (ncs(Ck) + ncs(Rk))),

4. maxk max{SV (Pk), RV (Pk)}: maximum of maximum of send and receive volumes of processors (equiv-
alent to maximum s×max{ncs(Ck), ncs(Rk)}).

Under the objective of minimizing the total communication volume, minimizing one of these volume-based
metrics (e.g., maxk SV (Pk)) relates to minimizing imbalance on the respective quantity (e.g., imbalance on
SV (Pk) values). For instance, the imbalance on SV (Pk) values is defined as

maxk SV (Pk)∑
k SV (Pk)/K

.

Here, the expression in the denominator denotes the average send volume of processors.
A parallel application may necessitate one or more of these metrics to be minimized. These metrics

are considered besides total volume since minimization of them is plausible only when total volume is also
minimized as mentioned above. Hereinafter, these metrics except total volume are referred to as volume-
based metrics.
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Figure 2: The state of the RB tree prior to bipartitioning G2
1 and the corresponding sparse matrix. Among

the edges and nonzeros, only the external (cut) edges of V2
1 and their corresponding nonzeros are shown.

4. Models for minimizing multiple volume-based metrics

This section describes the proposed graph and hypergraph partitioning models for addressing volume-
based cost metrics defined in the previous section. Our models have the capability of addressing a single, a
combination or all of these metrics simultaneously in a single phase. Moreover, they have the flexibility of
handling custom metrics based on volume other than the already defined four metrics. Our approach relies
on the widely adopted recursive bipartitioning (RB) framework utilized in a breadth-first manner and can
be realized by any graph and hypergraph partitioning tool.

4.1. Recursive bipartitioning

In the RB paradigm, the initial graph/hypergraph is partitioned into two subgraphs/subhypergraphs.
These two subgraphs/subhypergraphs are further bipartitioned recursively until K parts are obtained. This
process forms a full binary tree, which we refer to as an RB tree, with lg2K levels, where K is a power of 2.
Without loss of generality, graphs and hypergraphs at level r of the RB tree are numbered from left to right
and denoted as Gr

0, . . . , G
r
2r−1 and Hr

0, . . . ,Hr
2r−1, respectively. From bipartition Π(Gr

k) = {Vr+1
2k ,Vr+1

2k+1}
of graph Gr

k = (Vr
k , Erk), two vertex-induced subgraphs Gr+1

2k = (Vr+1
2k , Er+1

2k ) and Gr+1
2k+1 = (Vr+1

2k+1, E
r+1
2k+1)

are formed. All cut edges in Π(Gr
k) are excluded from the newly formed subgraphs. From bipartition

Π(Hr
k) = {Vr+1

2k ,Vr+1
2k+1} of hypergraph Hr

k = (Vr
k ,N r

k ), two vertex-induces subhypergraphs are formed
similarly. All cut nets in Π(Hr

k) are split to correctly encode the cutsize metric [21].

4.2. Graph model

Consider the use of the RB paradigm for partitioning the standard graph representation G = (V, E) of A
for row-parallel Y = AX to obtain a K-way partition. We assume that the RB proceeds in a breadth-first
manner and RB process is at level r prior to bipartitioning kth graph Gr

k. Observe that the RB process up
to this bipartitioning already induces a K ′-way partition Π(G) = {Vr+1

0 , . . . ,Vr+1
2k−1,Vr

k , . . . ,Vr
2r−1}. Π(G)

contains 2k vertex parts from level r + 1 and 2r − k vertex parts from level r, making K ′ = 2r + k. After
bipartitioning Gr

k, a (K ′ + 1)-way partition Π′(G) is obtained which contains Vr+1
2k and Vr+1

2k+1 instead of
Vr
k . For example, in Figure 2, the RB process is at level r = 2 prior to bipartitioning G2

1 = (V2
1 , E21 ), so,

the current state of the RB induces a five-way partition Π(G) = {V3
0 ,V3

1 ,V2
1 ,V2

2 ,V2
3}. Bipartitioning G2

1
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induces a six-way partition Π′(G) = {V3
0 ,V3

1 ,V3
2 ,V3

3 ,V2
2 ,V2

3}. P r
k denotes the group of processors which

are responsible for performing the tasks represented by the vertices in Vr
k . The send and receive volume

definitions SV (Pk) and RV (Pk) of individual processor Pk are easily extended to SV (P r
k ) and RV (P r

k ) for
processor group P r

k .
We first formulate the send volume of the processor group P r

k to all other processor groups corresponding
to vertex parts in Π(G). Let connectivity set of vertex vi ∈ Vr

k , Con(vi), denote the subset of parts in
Π(G)− {Vr

k} in which vi has at least one neighbor. That is,

Con(vi) = {Vt
` ∈ Π(G) : Adj(vi) ∩ Vt

` 6= ∅} − {Vr
k},

where t is either r or r+ 1. Vertex vi is boundary if Con(vi) 6= ∅, and once vi becomes boundary, it remains
boundary in all further bipartitionings. For example, in Figure 2, Con(v9) = {V3

1 ,V2
2 ,V2

3}. Con(vi) signifies
the communication operations due to vi, where P r

k sends row i of X to processor groups that correspond to
the parts in Con(vi). The send load associated with vi is denoted by sl(vi) and is equal to

sl(vi) = s× |Con(vi)|

The total send volume of P r
k is then equal to the sum of the send loads of all vertices in Vr

k , i.e., SV (P r
k ) =∑

vi∈Vr
k
sl(vi). In Figure 2, the total send volume of P 2

1 is equal to sl(v7) + sl(v8) + sl(v9) + sl(v10) =

3s+ 2s+ 3s+ s = 9s. Therefore, during bipartitioning Gr
k, minimizing

max

{ ∑
vi∈Vr+1

2k

sl(vi),
∑

vi∈Vr+1
2k+1

sl(vi)

}

is equivalent to minimizing the maximum send volume of the two processor groups P r+1
2k and P r+1

2k+1 to the
other processor groups that correspond to the vertex parts in Π(G).

In a similar manner, we formulate the receive volume of the processor group P r
k from all other processor

groups corresponding to the vertex parts in Π(G). Observe that for each boundary vj ∈ Vt
` that has at least

one neighbor in Vr
k , P r

k needs to receive the corresponding row j of X from P t
` . For instance, in Figure 2,

since v5 ∈ V3
1 has two neighbors in V2

1 , P 2
1 needs to receive the corresponding fifth row of X from P 3

1 . Hence,
P r
k receives a subset of X-matrix rows whose cardinality is equal to the number of vertices in V − Vr

k that
have at least one neighbor in Vr

k , i.e., |{vj ∈ {V − Vr
k} : vi ∈ Vr

k and eji ∈ E}|. The size of this set for V2
1

in Figure 2 is equal to 10. Note that each such vj contributes s words to the receive volume of P r
k . This

quantity can be captured by evenly distributing it among vj ’s neighbors in Vr
k . In other words, a vertex

vj ∈ Vt
l that has at least one neighbor in Vr

k contributes s/|Adj(vj) ∩ Vr
k | to the receive load of each vertex

vi ∈ {Adj(vj) ∩ Vr
k}. The receive load of vi, denoted by rl(vi), is given by considering all neighbors of vi

that are not in Vr
k , that is,

rl(vi) =
∑

eji∈E and vj∈Vt
`

s

|Adj(vj) ∩ Vr
k |
.

The total receive volume of P r
k is then equal to the sum of the receive loads of all vertices in Vr

k , i.e.,
RV (P r

k ) =
∑

vi∈Vr
k
rl(vi). In Figure 2, the vertices v11, v12, v15 and v16 respectively contribute s/3, s/2,

s and s to the receive load of v8, which makes rl(v8) = 17s/6. The total receive volume of P 2
1 is equal to

rl(v7) + rl(v8) + rl(v9) + rl(v10) = 3s + 17s/6 + 10s/3 + 5s/6 = 10s. Note that this is also equal to the s
times the number of neighboring vertices of V2

1 in V − V2
1 . Therefore, during bipartitioning Gr

k, minimizing

max

{ ∑
vi∈Vr+1

2k

rl(vi),
∑

vi∈Vr+1
2k+1

rl(vi)

}

is equivalent to minimizing maximum receive volume of the two processor groups P r+1
2k and P r+1

2k+1 from the
other processor groups that correspond to the vertex parts in Π(G).
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Algorithm 1: GRAPH-COMPUTE-VOLUME-LOADS

Input: G = (V, E), Gr
k = (Vr

k , Erk), part, s

foreach boundary vertex vi ∈ Vr
k do1

B Compute the send load
Con(vi)← ∅2

foreach boundary vertex vj ∈ Adj(vi) and vj /∈ Vr
k do3

Con(vi)← Con(vi) ∪ {part[vj ]}4

sl(vi)← s× |Con(vi)|5

B Compute the receive load
rl(vi)← 06

foreach boundary vertex vj ∈ Adj(vi) and vj /∈ Vr
k do7

rl(vi)← rl(vi) + s/|Adj(vj) ∩ Vr
k |8

Although these two formulations correctly encapsulate the send/receive volume loads of P r+1
2k and P r+1

2k+1

to/from all other processor groups in Π(G), they overlook the send/receive volume loads between these
two processor groups. Our approach tries to refrain from this small deviation by immediately utilizing the
newly generated partition information while computing volume loads in the upcoming bipartitionings. That
is, the computation of send/receive loads for bipartitioning Gr

k utilizes the most recent K ′-way partition
information, i.e., Π(G). This deviation becomes negligible with increasing number of subgraphs in the
latter levels of the RB tree. The encapsulation of send/receive volumes between P r+1

2k and P r+1
2k+1 during

bipartitioning Gr
k necessitates implementing a new partitioning tool.

Algorithm 1 presents the computation of send and receive loads of vertices inGr
k prior to its bipartitioning.

As its inputs, the algorithm needs the original graph G = (V, E), graph Gr
k = (Vr

k , Erk), and the up-to-date
partition information of vertices, which is stored in part array of size V = |V|. To compute the send load
of a vertex vi ∈ Vr

k , it is necessary to find the set of parts in which vi has at least one neighbor. For this
purpose, for each vj /∈ Vr

k in Adj(vi), Con(vi) is updated with the part that vj is currently in (lines 2-4).
Adj(·) lists are the adjacency lists of the vertices in the original graph G. Next, the send load of vi, sl(vi),
is simply set to s times the size of Con(vi) (line 5). To compute the receive load of vi ∈ Vr

k , it is necessary
to visit the neighbors of vi that are not in Vr

k . For each such neighbor vj , the receive load of vi, rl(vi), is
updated by adding vi’s share of receive load due to vj , which is equal to s/|Adj(vj)∩Vr

k | (lines 6-8). Observe
that only the boundary vertices in Vr

k will have nonzero volume loads at the end of this process.
Algorithm 2 presents the overall partitioning process to obtain a K-way partition utilizing breadth-first

RB. For each level r of the RB tree, the graphs in this level are bipartitioned from left to right, Gr
0 to Gr

2r−1
(lines 3-4). Prior to bipartitioning of Gr

k, the send load and the receive load of each vertex in Gr
k are computed

with GRAPH-COMPUTE-VOLUME-LOADS (line 5). Recall that in the original sparse matrix partitioning with graph
model, each vertex vi has a single weight w1(vi), which represents the computational load associated with
it. To address the minimization of maximum send/receive volume, we associate an extra weight with each
vertex. Specifically, to minimize the maximum send volume, the send load of vi is assigned as its second
weight, i.e., w2(vi) = sl(vi). In a similar manner, to minimize the maximum receive volume, the receive load
of vi is assigned as its second weight, i.e., w2(vi) = rl(vi). Observe that only the boundary vertices have
nonzero second weights. Next, Gr

k is bipartitioned to obtain Π(Gr
k) = {Vr+1

2k ,Vr+1
2k+1} using multi-constraint

partitioning to handle multiple vertex weights (line 7). Then, two new subgraphs Gr+1
2k and Gr+1

2k+1 are
formed from Gr

k using Π(Gr
k) (line 8). In partitioning, minimizing imbalance on the second part weights

corresponds to minimizing imbalance on send (receive) volume if these weights are set to send (receive)
loads. In other words, under the objective of minimizing total volume in this bipartitioning, minimizing

max{W 2(Vr+1
2k ),W 2(Vr+1

2k+1)}
(W 2(Vr+1

2k ) +W 2(Vr+1
2k+1))/2
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Algorithm 2: GRAPH-PARTITION

Input: G = (V, E), K, s
Let part be an array of size |V|1

G0
0 ← G2

for r ← 0 to lg2K − 1 do3

for k ← 0 to 2r − 1 do4

GRAPH-COMPUTE-VOLUME-LOADS(G,Gr
k, part, s)5

Set volume-based vertex weights using sl(vi) and/or rl(vi)6

Bipartition Gr
k = (Vr

k , Erk) to obtain Π(Gr
k) = (Vr+1

2k ,Vr+1
2k+1)7

Form new graphs Gr+1
2k and Gr+1

2k+1 using Π(Gr
k)8

Update part using Π(Gr
k)9

return part10

relates to minimizing max{SV (P r+1
2k ), SV (P r+1

2k+1)} (max{RV (P r+1
2k ), RV (P r+1

2k+1)}) if the second weights are
set to send (receive) loads. Then part array is updated after each bipartitioning to keep track of the most
up-to-date partition information of all vertices (line 9). Finally, the resulting K-way partition information

is returned in part array (line 10). Note that in the final K-way partition, processor group P
lg2 K
k denotes

the individual processor Pk, for 0 ≤ k ≤ K − 1.
In order to efficiently maintain the send and receive loads of vertices, we make use of the RB paradigm

in a breadth-first order. Since these loads are not known in advance and depend on the current state
of the partitioning, it is crucial to act proactively by avoiding high imbalances on them. Compare this to
computational loads of vertices, which is known in advance and remains the same for each vertex throughout
the partitioning. Hence, utilizing a breadth-first or a depth-first RB does not affect the quality of the
obtained partition in terms of computational load. We prefer a breadth-first RB to a depth-first RB for
minimizing volume-based metrics since operating on the parts that are at the same level of the RB tree
(in order to compute send/receive loads) prevents the possible deviations from the target objective(s) by
quickly adapting the current available partition to the changes that occur in send/receive volume loads of
vertices.

The described methodology addresses the minimization of maxk SV (Pk) or maxk RV (Pk) separately.
After computing the send and receive loads, we can also easily minimize maxk(SV (Pk) + RV (Pk)) by
associating the second weight of each vertex with the sum of send and receive loads, i.e., w2(vi) = sl(vi) +
rl(vi). For the minimization of maxk max{SV (Pk), RV (Pk)}, either the send loads or the receive loads are
targeted at each bipartitioning. For this objective, the decision of minimizing which measure in a particular
bipartitioning can be given according to the imbalance values on these measures for the current overall
partition. If the imbalance on send loads is larger, then the second weights of vertices are set to the send
loads, whereas if the imbalance on receive loads is larger, then the second weights of vertices are set to the
receive loads. In this way, we try to control the high imbalance in maxk RV (Pk) that is likely to occur when
minimizing solely maxk SV (Pk), and vice versa.

Apart from minimizing a single volume-based metric, our approach is very flexible in the sense that it can
address any combination of volume-based metrics simultaneously. This is achieved by simply associating even
more weights with vertices. For instance, if one wishes to minimize maxk SV (Pk) and maxk RV (Pk) at the
same time, it is enough to use two more weights in addition to the computational weight by setting w2(vi) =
sl(vi) and w3(vi) = rl(vi) accordingly. Observe that one can utilize as many weights as desired with vertices.
However, associating several weights with vertices does not come for free and has practical implications,
which we address in the next section. Another important useful feature of our model is that, once the send
and the receive loads are in hand, it is possible to define custom metrics regarding volume to best suit
the needs of the target parallel application. For instance, although not sensible and just for demonstration
purposes, one can address objectives like maxk min{SV (Pk), RV (Pk)}, maxk(SV (Pk)2 +RV (Pk)), etc. For
our work, we have chosen the metrics which we believe to be the most crucial and definitive for a general
application realized in message passing paradigm.
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The arguments made so far are valid for the graph representation of symmetric matrices. To handle
nonsymmetric matrices, it is necessary to modify the adjacency list definition by defining two adjacency
lists for each vertex. This is because, the nonzeros aij and aji have different communication requirements in
nonsymmetric matrices. Specifically, a nonzero aji signifies a send operation from Pk to P` no matter whether
aij is nonzero or not, where vi and vj are respectively mapped to processors Pk and P`. Hence, the adjacency
list definition regarding the send operations for vi becomes AdjS(vi) = {vj : aji 6= 0}. In a dual manner,
a nonzero aij signifies a receive operation from P` to Pk no matter whether aji is nonzero or not. Thus,
the adjacency list definition regarding the receive operations for vi becomes AdjR(vi) = {vj : aij 6= 0}.
Accordingly, in Algorithm 1, the adjacency lists in lines 4, 7, and 8 need to be replaced with AdjS(vi),
AdjR(vi), and AdjS(vj), respectively, to handle nonsymmetric matrices. Note that for all vi ∈ V, if the
matrix is symmetric, then AdjS(vi) = AdjR(vi) = Adj(vi).

Complexity analysis. Compared to the original RB-based graph partitioning model, our approach ad-
ditionally requires computing and setting volume loads (lines 5-6). Hence, we only focus on the run-
time of these operations to analyze the additional cost introduced by our method. When we consider
GRAPH-COMPUTE-VOLUME-LOADS for a single bipartitioning of graph Gr

k, the adjacency list of each boundary
vertex (Adj(vi)) in this graph is visited once. Note that although the lines 4 and 8 in this algorithm could be
realized in a single for-loop, the computation of loads are illustrated with two distinct for-loops for the ease of
presentation. In a single level of the RB tree (lines 4-9 of GRAPH-PARTITION), each edge eij of G is considered
at most twice, once for computing loads of vi, and once for computing loads of vj . The efficient computation
of |Con(vi)| in line 4 and |Adj(vj)∩Vr

k | in line 8 requires special attention. By maintaining an array of size
O(K) for each boundary vertex, we can retrieve these values in O(1) time. In the computation of the send
loads, the `th element of this array is one if vi has neighbor(s) in Vr

` , and zero otherwise. In the computation
of the receive loads, it stands for the number of neighbors of vi in Vr

` . Since both of these operations can
be performed in O(1) time with the help of these arrays, the computation of volume loads in a single level
takes O(E) time in GRAPH-PARTITION (line 5). For lines 6 and 9, each vertex in a single level is visited only
once, which takes O(V ) time. Hence, our method introduces an additional O(V + E) = O(E) cost to each
level of the RB tree. Note that O(E) = O(nnz(A)), where nnz(A) is the number of nonzeros in A. The
total runtime due to handling of volume-based loads thus becomes O(E lg2K). The space complexity of
our algorithm is O(VBK) due to the arrays used to handle connectivity information of boundary vertices,
where VB ⊆ V denotes the set of boundary vertices in the final K-way partition. In practice |VB | and K are
much smaller than |V|. In addition, for the send loads, these arrays contain only binary information which
can be stored as bit vectors. Also note that the multi-constraint partitioning is expected to be costlier than
its single-constraint counterpart.

4.3. Hypergraph model

Consider the use of the RB paradigm for partitioning the hypergraph representation H = (V,N ) of A
for row-parallel Y = AX to obtain a K-way partition (Section 2.3) . Without loss of generality, we assume
that the communication task represented by net ni is performed by the processor that vi is assigned to.

We assume that the assumptions made for the graph model also applies here so that we are at the stage of
bipartitioning Hr

k for a given K ′-way partition Π(H). The hypergraph model for minimizing volume-based
metrics resembles to the graph model. The only differences are the definitions regarding the send and receive
loads of vertices. Recall that in the hypergraph model, ni represents the communication task in which the
processor that owns vi ∈ Vr

k sends row i of X to the processors that correspond to the parts in Λ(ni)−{Vr
k}.

So, in the hypergraph model, the connectivity set of vertex vi is defined as the number of parts that ni
connects other than V r

k , that is,

Con(vi) = {Vt
` ∈ Π(H) : Pins(ni) ∩ Vt

` 6= ∅} − Vr
k .

Hence, in the hypergraph model, the send load sl(vi) of vertex vi is given by

sl(vi) = s× |Con(vi)| = s× (λ(ni)− 1).
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Algorithm 3: HYPERGRAPH-COMPUTE-VOLUME-LOADS

Input: H = (V,N ), Hr
k = (Vr

k ,N r
k ), part, s

foreach boundary vertex vi ∈ Vr
k do1

B Compute the send load
Con(vi)← ∅2

foreach boundary vertex vj ∈ Pins(ni) and vj /∈ Vr
k do3

Con(vi)← Con(vi) ∪ {part[vj ]}4

sl(vi)← s× |Con(vi)|5

B Compute the receive load
rl(vi)← 06

foreach nj ∈ Nets(vi)− {ni} and vj /∈ Vr
k do7

rl(vi)← rl(vi) + s/|Pins(nj) ∩ Vr
k |8

Consider the communication task represented by a net nj that connects vi ∈ Vr
k , where the vertex vj

associated with nj is in Vt
` . Recall that Vt

` is a part in Π(H) other than V r
k , where t is either r or r+ 1. For

this task, the processor groups that correspond to the parts in Λ(nj) − {Vt
`} receive row j of X from P t

` .
This receive load of s words from P t

` to P r
k is evenly distributed among the vertices in Pins(nj)∩Vr

k . That
is, nj contributes s/|Pins(nj) ∩ Vr

k | amount to the receive load of vi. Hence, the receive load rl(vi) of vi is
given by

rl(vi) =
∑

nj∈Nets(vi)−{ni}

s

|Pins(nj) ∩ Vr
k |
.

The remaining definitions regarding SV (P r
k ), RV (P r

k ) and the equivalence of minimization of the above-
mentioned quantities with the defined metrics for the graph model hold as is for the hypergraph model.
The algorithm HYPERGRAPH-COMPUTE-VOLUME-LOADS (Algorithm 3) computes the send and receive loads of
vertices in the hypergraph model and resembles to that of graph model (Algorithm 1). In line 3 of this
algorithm where we compute the send load of vi, we traverse pin list of ni instead of adjacency list of vi. In
line 7 where we compute the receive load of vi, we traverse the nets that connect vi instead of its adjacency
list and in line 8, the receive load of vi is updated by taking intersection of Vr

k with Pins(nj) instead of
with Adj(vj). To compute a K-way partition of H, Algorithm 2 can be used as is by replacing its graph
terminology with the hypergraph terminology.

Complexity analysis. The computation of volume loads in the hypergraph model differs from the graph model
only in the sense that instead of visiting the adjacency lists of boundary vertices, the vertices connected by
cut nets and the nets connecting boundary vertices are visited. Again, by associating an O(K)-size array
with each boundary vertex, lines 4 and 8 in HYPERGRAPH-COMPUTE-VOLUME-LOADS can be performed in O(1)
time. In the computation of the send loads, each vertex and the vertices connected by the net associated
with that vertex are visited at most once in a single level of the RB tree. This requires visiting all vertices
and pins of the hypergraph once in a single level in the worst case, which takes O(V + P ) time, where
P =

∑
n∈N |Pins(n)|. In the computation of the receive loads, each vertex and its net list are visited once.

This also requires visiting all vertices and pins of the hypergraph once in a single level, which takes O(V +P )
time. Hence, our method introduces an additional O(V + P ) = O(P ) cost to each level of the RB tree.
Note that O(P ) = O(nnz(A)). The total runtime due to handling of volume-based loads thus becomes
O(P lg2K). The space complexity is O(VBK), where VB ⊆ V denotes the set of boundary vertices in the
final K-way partition. Observe that we introduce the same overhead both in graph and hypergraph models.

4.4. Partitioning tools

The multi-constraint graph and hypergraph partitioning tools associate multiple weights with vertices.
These tools allow users to define different maximum allowed imbalance ratios ε1, . . . , εC for each constraint,
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where εc denotes the maximum allowed imbalance ratio on the cth constraint. Recall that in our approach,
minimizing the imbalance on a specific weight relates to minimizing the respective volume-based metric.
Hence, by using the existing tools within our approach, it is possible to minimize the target volume-based
metric(s).

The partitioning tools do not try to minimize the imbalance on a specific constraint. Rather, they aim
to stay within the given threshold for any given εc. For this reason, the imbalance values provided to the
tools should be as low as to the degree how much these metrics are important for optimization. Enforcing
a very small value on εc can put a lot of strain on the partitioning tool, which in turn may cause the tool
to intolerably loosen its objective. This may increase total volume drastically and make the minimization
of target volume-based metrics pointless as they are defined on the amount of volume communicated. For
this reason, it is not sensible to use a very small value for εc.

5. Efficient handling of multiple constraints

In this section, we describe the two drawbacks of using multiple constraints within the context of our
model and propose two practical schemes which enhance this model to overcome them.

Our approach introduces as many constraints as needed in order to address the desired volume-based
cost metrics. Recall that the volume related weights are nonzero only for the boundary vertices because only
these vertices incur communication. Since the objective of minimizing cutsize with partitioners also relates
to minimizing the number of boundary vertices, only a small portion of all vertices will have nonzero volume
related weights throughout the partitioning process. So, balancing the volume related weights of parts will
have much less degree of freedom compared to balancing the computational weights of parts. That is, the
partitioner will have difficulty in maintaining balance on volume-related weights of parts because of small
number of vertices with nonzero volume-related weights.

Each introduced constraint puts an extra burden on the partitioning tool by restricting the solution
space, where the more restricted the solution space, the worse the quality of the solutions generated by the
partitioning tool. Hence, the additional constraint(s) used for minimizing volume-based metrics may lead
to higher total volume (i.e., cutsize). This also has the side effect on the other factors that determine the
overall communication cost, such as increasing contention on the network or increasing the latency overhead.

To address these shortcomings, in Section 5.1, we propose a scheme which selectively utilizes volume-
related weights, and in Section 5.2, we propose another scheme which unifies multiple weights.

5.1. Delayed formation of volume loads

In this scheme, we utilize level information in the RB tree to form and make use of the volume related
loads in a delayed manner. Specifically, in bipartitionings of the first ρ levels of the RB tree, we allow only
a single constraint, i.e., regarding the computational load. In the remaining bipartitionings which belong to
the latter lg2K − ρ levels, we consider volume-based metrics by introducing as many constraints as needed.
This results in a level-based hybrid scheme in which either a single constraint or multiple constraints are
utilized.

Our motivations for adopting this scheme are three-fold. First, we aim to improve the quality of the
obtained solutions in terms of total volume by sacrificing from the quality of the volume-based metrics. Recall
that the minimization of volume-based metrics is pointless unless the total volume is properly addressed.
Next, the total volume changes as the partitioning progresses, and the volume-based metrics are defined over
this changing quantity. As the ratio of boundary vertices increases in latter levels of the RB tree, addressing
volume-based loads in bipartitionings of these levels leads to more efficient utilization of partitioners. Finally,
utilization of volume-based loads in the latter levels rather than the earlier levels of the RB tree prevents
the deviations on these loads which are likely to occur in the final solution if these constraints were utilized
in the earlier levels rather than the latter levels.

This can be seen as an effort to achieve a tradeoff between minimizing total volume and minimizing
target volume-based metrics. If we use multiple constraints in all bipartitionings, the target volume-based
metrics will be optimized but the total obtained volume will be relatively high. On the other hand, if we use
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a single constraint (i.e., computational load), the total volume will be relatively low but the target metrics
will not be addressed properly.

5.2. Unified weighting

In this scheme, we utilize only a single constraint by unifying multiple loads into a single load through a
linear formula. Note that this scheme also refrains from the issue related with boundary vertices since the
unified single weight for each vertex becomes almost always nonzero.

In order to use a single weight for vertices, it is required to establish a relation between distinct loads
those are of interest. For SpMM, determining the relationship between the computational and commu-
nication loads is necessary to accurately estimate a single load for each vertex. In large-scale parallel
architectures, per unit communication time is usually greater than per unit computation time. To unify
the respective loads, we define a coefficient α that represents the per unit communication time in terms
of per unit computation time. This coefficient depends on various factors such as clock rate, properties
of the interconnect network, the requirements of the underlying parallel application, etc. The following
code snippet constitutes the basic skeleton of the SpMM operations from processor Pk’s point of view:
. . .
MPI Irecv()
MPI Send()
Perform local computations using Akk

MPI Waitall() // Wait all receives to complete
Perform non-local computations using Ak`, ` 6= k
. . .

In this implementation, non-blocking receive operation is preferred to enable overlapping local SpMM com-
putations AkkXk and incoming messages. Blocking send operation is used since the performance gain
from overlapping local computations and outgoing messages is very limited. The total load of a vertex vi
in this example can be captured with two distinct weights, where the first weight w1(vi) and the second
weight w2(vi) respectively represent the computational load and the send load associated with vi. The
receive loads of vertices are neglected for this implementation because of the non-blocking receive opera-
tions under the assumption that each processor has enough amount of local computation to overlap with
the incoming messages. Then, with α in hand, we can easily unify these weights into a single weight as
w(vi) = w1(vi) + αw2(vi). Note that for non-boundary vertices w(vi) = w1(vi).

6. Experiments

6.1. Experimental setting

6.1.1. Datasets

We perform our experiments on three datasets. The first dataset is used to compare the proposed
graph and hypergraph partitioning models (Sections 4 and 5) against the standard partitioning models
(Section 2.3). Note that the standard models address only total volume. The second dataset is used to
compare our models against the state-of-the-art partitioner UMPa, which addresses maximum send volume
of processors. The third dataset is used to assess the strong and weak scaling performance of our models on
multi-source breadth-first search (BFS) by comparing them against a recent two-dimensional partitioning
model [12]. Table 1 describes the basic properties of these three datasets.

The first dataset is abbreviated as ds-general and contains all the square matrices from UFL Sparse
Matrix Collection [42] with at least 5,000 rows/columns and between 50,000 and 50,000,000 nonzeros. At the
time of the experiment, UFL had 964 such matrices, so ds-general contains 964 matrices. We categorized
these matrices according to the maximum send volume of processors obtained by the standard partitioning
models when they are partitioned among 128, 256, 512 and 1024 processors. The naming for the categories
is in the format of m -Kk -Vv . Here, m ∈ {G,H} denotes the model, where m = G if the partitions are
obtained by the standard graph model and m = H if the partitions are obtained by the standard hypergraph
model. k denotes the number of processors, where k ∈ {128, 256, 512, 1024}. v denotes the lower bound
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Table 1: The properties of three datasets used in experiments. The values for ds-general are the averages
of the matrices in the respective category, while the values for the other two datasets are the individual
values for each matrix.

ds-general (for comparison against the standard models)

number
of

matrices

avg
number of
rows/cols

avg
number of
nonzeros

avg max
row/col
sparsity

number
of

matrices

avg
number of
rows/cols

avg
number of
nonzeros

avg max
row/col
sparsity

matrix
category

matrix
category

ca
te

go
ri

es
ob

ta
in

ed
b
y
G
-
T
V

G-K128-V8000 50 303K 8,903K 0.0443 G-K512-V8000 32 350K 10,279K 0.0746
G-K128-V4000 103 191K 5,513K 0.0233 G-K512-V4000 54 240K 8,296K 0.0598
G-K128-V2000 167 175K 4,328K 0.0122 G-K512-V2000 98 179K 6,083K 0.0302
G-K128-V1000 287 129K 3,067K 0.0099 G-K512-V1000 175 159K 4,304K 0.0146
G-K128-V500 462 113K 2,487K 0.0056 G-K512-V500 329 108K 2,534K 0.0134
G-K128-V250 646 83K 1,566K 0.0049 G-K512-V250 553 84K 1,769K 0.0084
G-K128-V125 808 73K 1,227K 0.0040 G-K512-V125 709 73K 1,394K 0.0055
G-K128-V0 964 60K 907K 0.0032 G-K512-V0 964 60K 907K 0.0032

G-K256-V8000 40 303K 9,832K 0.0915 G-K1024-V8000 23 312K 9,907K 0.1171
G-K256-V4000 73 195K 7,089K 0.0362 G-K1024-V4000 47 271K 8,053K 0.0867
G-K256-V2000 135 182K 5,136K 0.0154 G-K1024-V2000 78 168K 5,885K 0.0628
G-K256-V1000 200 149K 3,943K 0.0138 G-K1024-V1000 174 120K 3,216K 0.0360
G-K256-V500 404 123K 2,851K 0.0063 G-K1024-V500 313 78K 1,520K 0.0330
G-K256-V250 574 91K 1,874K 0.0057 G-K1024-V250 500 85K 1,823K 0.0105
G-K256-V125 770 74K 1,279K 0.0045 G-K1024-V125 650 75K 1,502K 0.0068
G-K256-V0 964 60K 907K 0.0032 G-K1024-V0 964 60K 907K 0.0032

ca
te
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H-K128-V8000 50 185K 8,869K 0.0686 H-K512-V8000 39 155K 8,791K 0.0852
H-K128-V4000 91 170K 6,253K 0.0250 H-K512-V4000 51 132K 7,726K 0.0848
H-K128-V2000 167 166K 4,323K 0.0142 H-K512-V2000 89 165K 6,262K 0.0351
H-K128-V1000 267 123K 3,122K 0.0133 H-K512-V1000 170 154K 4,383K 0.0135
H-K128-V500 453 112K 2,478K 0.0059 H-K512-V500 303 111K 2,895K 0.0115
H-K128-V250 624 86K 1,686K 0.0049 H-K512-V250 554 84K 1,700K 0.0078
H-K128-V125 801 72K 1,246K 0.0041 H-K512-V125 696 74K 1,412K 0.0058
H-K128-V0 964 60K 907K 0.0032 H-K512-V0 964 60K 907K 0.0032

H-K256-V8000 41 152K 9,447K 0.0893 H-K1024-V8000 38 134K 6,529K 0.1061
H-K256-V4000 69 155K 7,494K 0.0519 H-K1024-V4000 50 124K 6,564K 0.1042
H-K256-V2000 128 164K 5,191K 0.0177 H-K1024-V2000 75 151K 6,240K 0.0567
H-K256-V1000 214 135K 3,607K 0.0163 H-K1024-V1000 126 151K 5,090K 0.0267
H-K256-V500 380 117K 2,808K 0.0071 H-K1024-V500 322 83K 1,654K 0.0261
H-K256-V250 556 93K 1,965K 0.0053 H-K1024-V250 508 81K 1,644K 0.0103
H-K256-V125 753 72K 1,300K 0.0048 H-K1024-V125 653 75K 1,470K 0.0067
H-K256-V0 964 60K 907K 0.0032 H-K1024-V0 967 60K 907K 0.0032

ds-dimacs (for comparison against UMPa [32])

matrix
name

number of
rows/cols

number of
nonzeros

matrix
name

number of
rows/cols

number of
nonzerosclass class

citationCiteseer 268K 2,313K Citation rgg n 2 19 s0 524K 6,540K RandomGeometric
coAuthorsCiteseer 227K 1,628K Citation rgg n 2 20 s0 1,049K 13,783K RandomGeometric
coAuthorsDBLP 299K 1,955K Citation af shell10 1,508K 52,672K Sparse
coPapersCiteseer 434K 32,073K Citation af shell9 505K 17,589K Sparse
coPapersDBLP 540K 30,491K Citation audikw 1 944K 77,652K Sparse
caidaRouterLevel 192K 1,218K Clustering ecology1 1,000K 4,996K Sparse
cnr-2000 326K 3,216K Clustering ecology2 1,000K 4,996K Sparse
eu-2005 863K 19,235K Clustering G3 circuit 1,585K 7,661K Sparse
G n pin pout 100K 1,002K Clustering ldoor 952K 46,522K Sparse
in-2004 1,383K 16,917K Clustering thermal2 1,228K 8,580K Sparse
pref.Att. 100K 1,000K Clustering belgium osm 1,441K 3,100K Street
smallworld 100K 1,000K Clustering luxembourg osm 115K 239K Street
delaunay n17 131K 786K Delaunay 144 145K 2,149K Walshaw
delaunay n18 262K 1,573K Delaunay 598a 111K 1,484K Walshaw
delaunay n19 524K 3,146K Delaunay auto 449K 6,629K Walshaw
delaunay n20 1,049K 6,291K Delaunay fe ocean 143K 819K Walshaw
rgg n 2 17 s0 131K 1,458K RandomGeometric m14b 215K 3,358K Walshaw
rgg n 2 18 s0 262K 3,095K RandomGeometric wave 156K 2,119K Walshaw

ds-large (for comparison against 2D [12])

matrix
name

number of
rows/cols

number of
nonzeros

problem
kind

arabic-2005 22,744K 640,000K directed graph
nlpkkt240 27,994K 760,648K optimization problem
uk-2005 39,460K 936,364K directed graph
webbase-2001 118,142K 1,019,903K directed graph
it-2004 41,292K 1,150,725K directed graph
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for the maximum send volume obtained, where v ∈ {8000, 4000, 2000, 1000, 500, 250, 125, 0}. For example,
G-K512-V1000 denotes the set of matrices for which the standard graph model obtains a maximum send
volume of at least 1000 units for K = 512 processors. Here and hereafter one unit of communication refers
to an X-matrix row that contains s words. Our motivations for this categorization are two-fold: (i) to
categorize the matrices according to their likelihood for which the maximum send volume is a bottleneck for
parallel performance and (ii) to facilitate a better performance analysis of the proposed models. The top
section of Table 1 displays various important properties of the matrices in those categories as the geometric
averages. Note that the categories for the standard graph and hypergraph models are different as the
maximum send volume values obtained by them are typically different. Also note that m -Kk -V8000 ⊆
m -Kk -V4000 ⊆ · · · ⊆ m -Kk -V0 and m -Kk -V0 contains all the matrices in ds-general, for any m and k .
“avg max row/col sparsity” column in the top section of Table 1 denotes the maximum number of nonzeros
in a row or column divided by the number of rows/columns in the respective matrix, averaged over all the
matrices in the respective category.

For the comparison against UMPa, we run our models on the matrices in Table 1 of [32], the work that
propose UMPa. We use these matrices for our experiments since UMPa is not publicly available. The matrices
in this dataset are obtained from 10th DIMACS Implementation Challenge [43] and contains 38 matrices
from eight different classes. We exclude two synthetic matrices, namely 1,280,000 and 320,000, in our
experiments as the communicated items in these matrices have different sizes and the communication load
formulation utilized in our models does not support varying sizes of communicated items. We abbreviate the
resulting dataset of 36 matrices as ds-dimacs. For the matrices in this dataset, the number of rows/columns
is between 100,000 and 1,585,478 and the number of nonzeros is between 119,666 and 38,354,076. The
properties of the matrices in this dataset are given in the middle section of Table 1.

The third dataset is abbreviated as ds-large and contains five of the six largest matrices in UFL Sparse
Matrix Collection [42]. The properties of the matrices in this dataset are given in the bottom section of
Table 1. These are larger than the matrices in ds-general and ds-dimacs, with the number of rows/columns
between 22.7 million and 118.1 million and the number of nonzeros between 640 million and 1.15 billion.
We experiment with larger number of processors up to 2048 on this dataset.

6.1.2. Implementation and parallel systems

The parallel SpMM and multi-source BFS kernels are implemented within a parallel library [44] in C
that uses MPI for interprocess communication. We use two systems in our experiments. The first system
is a Cray XC40 machine. A node on this machine consists of 24 cores (two 12-core Intel Haswell Xeon
processors) with 2.5 GHz clock frequency and 128 GB memory. The nodes are connected with a high speed
Dragonfly network topology called CRAY Aries. The second system is used for scalability analysis and is
a Lenovo NeXtScale machine. A node on this machine consists of 28 cores (two 14-core Intel Haswell Xeon
processors) with 2.6 GHz clock frequency and 64 GB memory. The nodes are connected with an Infiniband
non-blocking tree network topology.

The proposed models can be realized with any graph and hypergraph partitioning tool. For models that
rely on using multiple constraints (i.e., the proposed model and its delayed version), the tool should support
multiple weights on vertices. In our experiments, we used Metis [22] for partitioning graphs and PaToH [21]
for partitioning hypergraphs, both in default settings. Metis and PaToH are respectively used to bipartition
the graphs and hypergraphs in line 7 of Algorithm 2.

6.1.3. Compared schemes and models

We evaluate six proposed schemes that address the total volume and the maximum send volume simul-
taneously. Each of these schemes considers the minimization of the maximum send volume of processors,
(i.e., maxk SV (Pk)) in accordance with the discussions given in Section 5.2. These schemes are as follows:

• G-TMV: The proposed graph partitioning model which addresses both Total and Maximum Volume
metrics (Section 4.2). This scheme utilizes two weights, one for the computational loads and one for
the send volume loads.

• H-TMV: The hypergraph counterpart of G-TMV (Section 4.3).
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• G-TMVd: The variant of G-TMV with the send loads formed in a delayed manner (Section 5.1). ρ is set
to dlg2K/2e.

• H-TMVd: The hypergraph counterpart of G-TMVd.

• G-TMVu: The variant of G-TMV with unified loads (Section 5.2). The coefficient that determines the
relation between computational and communication loads is set to α = 10.

• H-TMVu: The hypergraph counterpart of G-TMVu.

The baseline models that we compare our proposed models against are as follows:

• G-TV: The standard graph partitioning model which only addresses Total Volume (Section 2.3). Recall
that this is the most widely adopted model in the literature for sparse matrix/graph partitioning and
there exists a single weight, which is on the computational loads. This scheme refers to the use of
Metis as is for K-way partitioning.

• H-TV: The standard hypergraph partitioning model which only addresses Total Volume (Section 2.3).
This scheme refers to the use of PaToH as is for K-way partitioning.

• UMPa: The state-of-the-art partitioner that can minimize multiple communication cost metrics [32]. In
our case, we consider UMPaMSV in which the single objective is to minimize the maximum send volume
handled by a processor.

• 2D: The two-dimensional partitioning model proposed for parallel level-synchronized BFS [12]. Al-
though this method considers the single-source BFS, it is trivially extended to the multi-source BFS.

For the proposed schemes and the baseline schemes G-TV and H-TV, we use 10% as the maximum allowed
imbalance for each of the constraints. Hereinafter, we will refer to the maximum send volume of processors
simply as maximum volume.

In Section 6.2, we compare the six proposed schemes among themselves and against standard models
G-TV and H-TV. In Section 6.3, we compare the best performing proposed scheme for graph and hypergraph
models against UMPa. In Section 6.4, we compare these best schemes against 2D to analyze their scalability
on parallel multi-source BFS.

6.2. Comparison against standard partitioning models

6.2.1. Partitioning results

In this section, we provide the results of the proposed partitioning schemes for both graph and hy-
pergraph models in terms of maximum volume, total volume, maximum number of messages and total
number of messages, on dataset ds-general following the categorization described in Section 6.1.1. Al-
though bandwidth-related metrics are expected to be more important for parallel SpMM performance,
latency-related metrics such as maximum and total number of messages can still affect the performance for
certain matrices, hence we include them in our analysis. The results obtained by G-TMV, G-TMVd and G-TMVu

are normalized with respect to those of G-TV and the results obtained by H-TMV, H-TMVd and H-TMVu are
normalized with respect to those of H-TV. The obtained normalized values for K = 1024 processors are
displayed as plots for each of the four metrics seperately for graph and hypergraph models, respectively in
Figures 3 and 4. The detailed results for each K ∈ {128, 256, 512, 1024} are given in Tables 2 and 3. In
the plots in Figures 3 and 4, the x-axis denotes the eight respective matrix categories in order of increasing
maximum volume whereas the y-axis denotes the normalized values. Each value in the plots and the tables
is the geometric average of the normalized values obtained for the matrices in the respective category. For
example, the three values reported for category G-K1024-V2000 in the plot for maximum volume for graph
model (the top left one in Figure 3) denote the geometric averages of the normalized values obtained by
G-TMV, G-TMVd and G-TMVu with respect to those obtained by G-TV on 78 matrices in this category.

As seen in Figure 3, G-TMV, G-TMVd and G-TMVu perform better than G-TV in terms of maximum volume.
These three schemes perform drastically better in the matrices for which maximum volume is a bottleneck
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Figure 3: Maximum volume, total volume, maximum number of messages and total number of messages
of the proposed graph schemes G-TMV, G-TMVd and G-TMVu normalized with respect to those of G-TV for
K = 1024, averaged on matrices in each category G-K1024-Vv .

for performance. The improvements obtained by all three schemes increase with increasing significance of
maximum volume. For example, for category G-K1024-V500, G-TMV, G-TMVd and G-TMVu respectively achieve
improvements of 21%, 21% and 14%, whereas for category G-K1024-V8000, these improvements increase to
respectively, 61%, 59% and 39%. In addition, for category G-K1024-Vv with varying v values of 0, 125, 250,
500, 1000, 2000, 4000 and 8000, the improvement of G-TMV over G-TV gradually increases as 5%, 10%, 14%,
21%, 33%, 48%, 56% and 61%, respectively. The reason for this increase in the improvement is that there
exists more room for improvement in partitioning the matrices for which the standard graph model yields
high maximum volume.

When we compare G-TMV, G-TMVd and G-TMVu among themselves, G-TMV usually obtains the best im-
provements in maximum volume since it addresses this metric as a stand-alone objective during the entire
partitioning process. In this sense, it differs from G-TMVd and G-TMVu, where G-TMVd addresses maximum
volume only in latter bipartitionings and G-TMVu, in order to address maximum volume, uses a single unified
constraint that also involves the computational load. Compared to G-TV, G-TMV causes an increase of 17%
and 7% in total volume for G-K1024-V0 and G-K1024-V8000, respectively, and G-TMVd causes an increase of
15% and 4%. This is due to the additional constraint utilized in G-TMV and G-TMVd. Recall that utilizing
multiple constraints degrades the quality of the solutions obtained by the partitioner in terms of total vol-
ume. The reason for smaller degradation rates in total volume for categories with high maximum volume
can be attributed to the matrices in these categories having a high total volume, which leaves less room for
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Figure 4: Maximum volume, total volume, maximum number of messages and total number of messages of
the proposed hypergraph schemes H-TMV, H-TMVd and H-TMVu normalized with respect to those of H-TV for
K = 1024, averaged on matrices in each category H-K1024-Vv .

degradation as a significant fraction of the edges were already in the cut in the partitions obtained by the
standard model. G-TMVu, which is proposed to remedy this problem, does not increase the total volume in
contrast to G-TMV and G-TMVd, and attains comparable results with G-TV in this metric.

As seen in Figure 3, G-TMV obtains the worst results in terms of maximum number of messages, followed
by G-TMVd. These two schemes in this metric respectively cause increases of 42% and 33% in category
G-K1024-V0, and 20% and 10% in category G-K1024-V8000 over G-TV. G-TMVu on the other hand causes a
very slight increase over G-TV. The same observations hold for the total number of messages as well. Observe
that while maximum volume is substantially improved by G-TMVu, other important factors that determine
the communication time such as maximum and total number of messages and total volume are kept almost
intact.

As seen in Figure 4, most of the above observations and discussions made for the graph model hold for
the hypergraph model as well. In the hypergraph model for maximum and total volume, the improvement
and deterioration rates of the proposed schemes over H-TV are magnified compared to those of the graph
models over G-TV. For example, for category H-K1024-V500, H-TMV, H-TMVd and H-TMVu respectively achieve
improvements of 28%, 25% and 26%, whereas for category H-K1024-V8000, these improvements become 78%,
66% and 63%. H-TMV causes increases of 28% and 14% in total volume for H-K1024-V0 and H-K1024-V8000,
respectively, and H-TMVd causes increases of 25% and 11%. H-TMVu on the other hand obtains slightly smaller
total volume than H-TV. In terms of maximum number of messages, H-TMV and H-TMVd perform worse than
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Table 2: Normalized values of maximum volume, total volume, maximum number of messages and total
number of messages of the proposed graph models G-TMV, G-TMVd and G-TMVu with respect to those of G-TV
for K ∈ {128, 256, 512, 1024}.

normalized values w.r.t those of G-TV

max volume total volume max message total message

K category G-TMV G-TMVd G-TMVu G-TMV G-TMVd G-TMVu G-TMV G-TMVd G-TMVu G-TMV G-TMVd G-TMVu

12
8

G-K128-V8000 0.69 0.74 0.73 1.10 1.07 1.00 1.05 1.03 0.99 1.22 1.14 1.04
G-K128-V4000 0.73 0.82 0.76 1.12 1.09 0.99 1.09 1.04 1.00 1.27 1.17 1.03
G-K128-V2000 0.78 0.85 0.81 1.10 1.08 0.99 1.13 1.06 1.02 1.29 1.16 1.05
G-K128-V1000 0.84 0.88 0.85 1.10 1.07 0.99 1.16 1.09 1.01 1.28 1.16 1.03
G-K128-V500 0.86 0.89 0.87 1.11 1.08 0.99 1.18 1.10 1.01 1.31 1.19 1.03
G-K128-V250 0.89 0.90 0.88 1.12 1.09 0.99 1.24 1.12 1.01 1.35 1.21 1.03
G-K128-V125 0.91 0.92 0.89 1.13 1.10 1.00 1.30 1.16 1.01 1.40 1.24 1.03
G-K128-V0 0.95 0.95 0.90 1.16 1.12 1.00 1.43 1.24 1.00 1.48 1.29 1.02

25
6

G-K256-V8000 0.54 0.69 0.65 1.09 1.07 0.99 1.07 1.02 1.01 1.26 1.16 1.08
G-K256-V4000 0.63 0.73 0.68 1.12 1.08 0.99 1.10 1.05 1.00 1.31 1.18 1.04
G-K256-V2000 0.70 0.81 0.75 1.10 1.07 0.99 1.12 1.07 1.00 1.31 1.17 1.04
G-K256-V1000 0.76 0.84 0.79 1.10 1.07 0.99 1.13 1.05 0.99 1.30 1.16 1.03
G-K256-V500 0.82 0.86 0.85 1.11 1.08 0.99 1.21 1.10 1.00 1.32 1.18 1.03
G-K256-V250 0.86 0.88 0.87 1.12 1.08 0.99 1.24 1.10 0.99 1.35 1.20 1.03
G-K256-V125 0.90 0.90 0.89 1.13 1.09 0.99 1.30 1.13 0.99 1.39 1.22 1.03
G-K256-V0 0.95 0.94 0.90 1.16 1.11 1.00 1.43 1.21 0.99 1.47 1.27 1.02

5
12

G-K512-8000 0.49 0.59 0.68 1.09 1.06 0.99 1.09 1.03 1.00 1.27 1.13 1.06
G-K512-V4000 0.52 0.60 0.67 1.11 1.07 0.99 1.10 1.04 0.99 1.30 1.17 1.08
G-K512-V2000 0.60 0.70 0.73 1.11 1.08 0.99 1.13 1.07 0.99 1.35 1.21 1.06
G-K512-V1000 0.68 0.74 0.78 1.11 1.08 0.99 1.15 1.08 1.00 1.32 1.21 1.04
G-K512-V500 0.77 0.80 0.84 1.12 1.09 0.99 1.23 1.12 1.01 1.33 1.21 1.04
G-K512-V250 0.85 0.86 0.88 1.13 1.10 0.99 1.28 1.15 1.00 1.38 1.24 1.03
G-K512-V125 0.89 0.89 0.89 1.14 1.11 0.99 1.34 1.19 0.99 1.40 1.26 1.03
G-K512-V0 0.94 0.93 0.90 1.17 1.13 0.99 1.43 1.27 0.99 1.46 1.31 1.02

1
02

4

G-K1024-V8000 0.39 0.41 0.61 1.07 1.04 0.98 1.08 1.02 1.01 1.20 1.10 1.03
G-K1024-V4000 0.44 0.48 0.63 1.10 1.07 0.99 1.08 1.03 0.99 1.30 1.19 1.06
G-K1024-V2000 0.52 0.57 0.70 1.11 1.09 1.00 1.10 1.06 0.99 1.32 1.23 1.04
G-K1024-V1000 0.67 0.69 0.80 1.11 1.09 1.00 1.14 1.09 1.00 1.31 1.23 1.04
G-K1024-V500 0.79 0.79 0.86 1.12 1.10 1.00 1.15 1.09 1.00 1.32 1.24 1.04
G-K1024-V250 0.86 0.86 0.89 1.14 1.11 1.00 1.28 1.19 1.00 1.36 1.26 1.03
G-K1024-V125 0.90 0.89 0.90 1.15 1.12 1.00 1.36 1.23 1.00 1.39 1.29 1.02
G-K1024-V0 0.95 0.94 0.91 1.17 1.15 1.00 1.42 1.31 1.00 1.42 1.33 1.02

H-TV while H-TMVu performs slightly better. In terms of total number of messages, all three schemes perform
worse than H-TV.

As seen in Tables 2 and 3, the improvements of the proposed models in maximum volume increase as
the number of processors increases. For example, for category G-Kk -V2000 with increasing number of k

processors 128, 256, 512 and 1024, the improvements of G-TMVu over G-TV respectively increase as 19%, 25%,
27% and 30%. The improvements of H-TMVu over H-TV for the same setting respectively increase as 18%,
25%, 38% and 51%. The reason for the better performance of the proposed models in larger number of
processors is the increased number of bipartitions in which our model is applied throughout the recursive
bipartitioning process.

Table 4 displays the partitioning times of the compared schemes for the graph and hypergraph models.
For each K ∈ {128, 256, 512, 1024}, we present the actual time and the normalized time (with respect to
G-TV for graph schemes G-TMV, G-TMVd and G-TMVu, and H-TV for hypergraph schemes H-TMV, H-TMVd and
H-TMVu), which are both geometric averages of 964 matrices. Recall that the proposed schemes introduce
the same partitioning overhead of O(nnz(A)) in both models. This overhead can be extracted from the
normalized values of G-TMVu over G-TV and H-TMVu over H-TV, and is only 6%–10% for the graph model and
2%–8% for the hypergraph model. For the graph model, among the proposed schemes, G-TMVu introduces the
lowest partitioning overhead compared to G-TV. The worse performances of G-TMV and G-TMVd compared to
G-TMVu are expected since multi-constraint partitioning is more expensive than single-constraint partitioning

20



Table 3: Normalized values of maximum volume, total volume, maximum number of messages and total
number of messages of the proposed hypergraph models H-TMV, H-TMVd and H-TMVu with respect to those of
H-TV for K ∈ {128, 256, 512, 1024}.

normalized values w.r.t those of H-TV

max volume total volume max message total message

K category H-TMV H-TMVd H-TMVu H-TMV H-TMVd H-TMVu H-TMV H-TMVd H-TMVu H-TMV H-TMVd H-TMVu

12
8

H-K128-V8000 0.50 0.66 0.72 1.15 1.10 0.97 1.07 1.03 0.99 1.58 1.24 1.02
H-K128-V4000 0.62 0.73 0.79 1.16 1.10 0.98 1.09 1.06 1.00 1.48 1.22 1.02
H-K128-V2000 0.71 0.80 0.82 1.15 1.11 0.98 1.13 1.07 1.00 1.49 1.23 1.03
H-K128-V1000 0.78 0.85 0.85 1.17 1.12 0.99 1.15 1.09 0.99 1.46 1.24 1.02
H-K128-V500 0.85 0.89 0.87 1.19 1.15 0.99 1.21 1.11 1.00 1.48 1.26 1.02
H-K128-V250 0.89 0.91 0.87 1.21 1.16 0.99 1.25 1.13 0.99 1.49 1.27 1.02
H-K128-V125 0.93 0.95 0.89 1.24 1.19 0.99 1.30 1.16 1.00 1.51 1.29 1.03
H-K128-V0 1.01 1.01 0.90 1.28 1.23 0.99 1.35 1.20 1.00 1.54 1.32 1.02

25
6

H-K256-V8000 0.38 0.53 0.65 1.16 1.12 0.96 1.06 1.04 0.98 1.84 1.41 1.04
H-K256-V4000 0.50 0.62 0.72 1.18 1.13 0.97 1.10 1.07 0.98 1.76 1.43 1.04
H-K256-V2000 0.61 0.69 0.75 1.18 1.15 0.98 1.12 1.08 0.99 1.61 1.38 1.04
H-K256-V1000 0.71 0.77 0.79 1.17 1.13 0.98 1.16 1.09 0.99 1.54 1.36 1.04
H-K256-V500 0.79 0.83 0.82 1.19 1.16 0.98 1.19 1.11 0.99 1.52 1.36 1.03
H-K256-V250 0.84 0.86 0.84 1.21 1.17 0.98 1.24 1.14 0.98 1.51 1.36 1.03
H-K256-V125 0.90 0.91 0.86 1.23 1.20 0.99 1.27 1.16 0.98 1.52 1.37 1.03
H-K256-V0 1.00 1.00 0.88 1.28 1.24 0.99 1.35 1.22 0.98 1.55 1.40 1.03

5
12

H-K512-V8000 0.32 0.50 0.52 1.15 1.11 0.95 1.05 1.04 0.95 1.95 1.43 1.09
H-K512-V4000 0.34 0.50 0.53 1.19 1.14 0.96 1.05 1.03 0.94 2.00 1.51 1.11
H-K512-V2000 0.47 0.60 0.62 1.19 1.14 0.97 1.08 1.05 0.96 1.78 1.44 1.09
H-K512-V1000 0.64 0.74 0.73 1.18 1.14 0.98 1.14 1.08 0.96 1.60 1.35 1.05
H-K512-V500 0.73 0.79 0.76 1.19 1.15 0.98 1.17 1.09 0.97 1.56 1.34 1.04
H-K512-V250 0.83 0.86 0.82 1.21 1.17 0.98 1.20 1.11 0.97 1.52 1.33 1.03
H-K512-V125 0.87 0.89 0.83 1.23 1.19 0.98 1.25 1.13 0.98 1.53 1.34 1.03
H-K512-V0 1.00 1.01 0.85 1.28 1.23 0.99 1.33 1.20 0.98 1.55 1.36 1.03

1
02

4

H-K1024-V8000 0.22 0.34 0.37 1.14 1.11 0.92 1.02 1.01 0.92 2.12 1.61 1.19
H-K1024-V4000 0.26 0.38 0.41 1.16 1.14 0.93 1.02 0.99 0.89 2.06 1.62 1.17
H-K1024-V2000 0.36 0.46 0.49 1.18 1.14 0.95 1.03 0.98 0.89 1.87 1.53 1.12
H-K1024-V1000 0.51 0.59 0.59 1.18 1.15 0.96 1.11 1.04 0.92 1.67 1.42 1.08
H-K1024-V500 0.72 0.75 0.74 1.19 1.16 0.97 1.12 1.06 0.95 1.57 1.39 1.04
H-K1024-V250 0.79 0.82 0.78 1.21 1.18 0.98 1.18 1.11 0.96 1.54 1.38 1.04
H-K1024-V125 0.85 0.86 0.80 1.23 1.20 0.98 1.23 1.15 0.96 1.54 1.39 1.04
H-K1024-V0 1.00 1.01 0.83 1.28 1.25 0.99 1.32 1.23 0.97 1.55 1.41 1.03

because of the additional feasibility conditions. Although one expects the same for the hypergraph model,
the multi-constraint partitioning times of PaToH are surprisingly better than those of single-constraint
partitioning.

Judging from the partitioning results, G-TMVu among the graph schemes and H-TMVu among the hyper-
graph schemes always achieve significant reductions in maximum volume while keeping the change in other
three metrics as small as possible compared to G-TV and H-TV, respectively. For this reason, we only consider
G-TMVu and H-TMVu among the proposed schemes in the rest of the experimentation.

6.2.2. Parallel SpMM runtime results

We have run parallel SpMM [44] on a Cray XC40 machine for 128, 256 and 512 processors, with s = 10.
Due to the quota limitations on our core-hours on this system, we have tested the performance of G-TMVu

over G-TV and H-TMVu over H-TV for 30 test matrices. Whenever we use the phrase “parallel SpMM with
G-TMVu/H-TMVu/G-TV/H-TV”, we refer to the parallel SpMM execution when the matrices in SpMM are
partitioned with G-TMVu/H-TMVu/G-TV/H-TV.

Table 5 presents the parallel SpMM runtime results with G-TMVu and H-TMVu normalized with respect
to those of G-TV and H-TV, respectively. The 30 test matrices are a subset of dataset ds-general with 964
matrices whose partitioning results are given in the previous section.

Observe that the improvements obtained by G-TMVu and H-TMVu in maximum volume (Tables 2 and 3)
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Table 4: Comparison of partitioning times averaged over 964 matrices.

actual (miliseconds) normalized w.r.t. G-TV

model K G-TV G-TMV G-TMVd G-TMVu G-TMV G-TMVd G-TMVu
g
ra
p
h

128 597 1307 1192 636 2.19 2.00 1.06
256 801 2136 1897 865 2.67 2.37 1.08
512 1143 3148 2933 1251 2.75 2.57 1.09
1024 1073 3662 3502 1184 3.41 3.26 1.10

actual (miliseconds) normalized w.r.t. H-TV

model K H-TV H-TMV H-TMVd H-TMVu H-TMV H-TMVd H-TMVu

h
y
p
er
g
ra
p
h 128 5601 5225 5124 5939 0.93 0.91 1.06

256 6602 5973 6786 6758 0.90 1.03 1.02
512 7720 7012 8249 7933 0.91 1.07 1.03
1024 8932 7956 9161 9669 0.89 1.03 1.08

are reflected upon the parallel SpMM runtimes. In most instances, these two schemes lead to a lower
runtime compared to the standard models. On the average, parallel SpMM with G-TMVu runs 4%, 11%
and 14% faster than parallel SpMM with G-TV, whereas parallel SpMM with H-TMVu runs 14%, 13% and
22% faster than parallel SpMM with H-TV for 128, 256 and 512 processors, respectively. There are two
important observations that can be inferred from these results. (i) The improvements in parallel SpMM
runtimes attained both by G-TMVu and H-TMVu increase with increasing number of processors. This can be
attributed to the increased importance of communication costs with increasing number of processors. (ii)
H-TMVu attains higher improvements in parallel SpMM runtime compared to G-TMVu. This conforms with
the experimental finding that H-TMVu attains higher improvements in maximum volume compared to G-TMVu

as also seen in Tables 2 and 3.
We analyze the scalability of parallel SpMM with G-TMVu and H-TMVu in Figure 5 on 10 matrices by

respectively comparing them against those with G-TV and H-TV. The results of each matrix are grouped
for graph and hypergraph model. Each bar chart in the figure belongs to a different matrix and indicates
the parallel SpMM runtime obtained with the respective scheme and the number of processors. The three
consecutive bars for each scheme and each matrix denote the respective parallel SpMM runtimes obtained
on 128, 256 and 512 processors. These matrices are chosen in such a way that they illustrate and summarize
different scalability characteristics of both schemes. For matrices that already scale well with G-TV and H-TV

such as 144, 598a, bauru5727 and m14b, G-TMVu and H-TMVu almost always lead to lower SpMM runtimes for
all K values and improve the scalability. For matrices such as bcsstk25, juba40k and pattern1, which have
an elbow while moving from 256 to 512 processors, communication costs become a bottleneck and hinder
scalability. Addressing the right bottleneck for these matrices via G-TMVu and H-TMVu pays off with improved
scalability by the decreased runtimes with increasing number of processors. For harder instances such as
lhr11, although none of the two schemes scales, G-TMVu and H-TMVu are still able to reduce the parallel
SpMM runtime drastically. For example, for lhr11 on 512 processors, G-TMVu and H-TMVu respectively lead
to 48% and 50% better SpMM runtimes compared to G-TV and H-TV.

6.3. Comparison against UMPa

In this section, we compare our models against UMPa [32] and present the results in Table 6. Each instance
reported in the table is the geometric average of the results of five partitioning runs. The comparison is
performed in terms of the partition quality and the partitioning time. The partition quality is measured
in terms of the maximum volume in number of words and reported as the actual values for UMPa in the
second column (as reported in [32]). The third and fourth columns display the maximum volume values
obtained by G-TMVu and H-TMVu as normalized values with respect to those of UMPa, respectively. The last
three columns display the partitioning times of the compared models as normalized values with respect to
the runtime of the partitioner PaToH [21] in default setting. The rows of the table are sorted with respect
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Table 5: Parallel SpMM runtimes attained by G-TMVu and H-TMVu normalized with respect to parallel SpMM
runtimes attained by G-TV and H-TV, respectively, for 128, 256 and 512 processors.

matrix
name

number of
rows/cols

number of
nonzeros

problem
kind

G-TMVu H-TMVu

128 256 512 128 256 512

144 145K 2,149K undirected graph 1.08 0.78 0.78 0.81 0.89 1.01
598a 111K 1,484K undirected graph 1.02 0.85 0.88 0.81 0.89 0.84
bauru5727 40K 145K eigenvalue/model reduction 0.97 0.70 0.73 0.75 0.73 0.83
bcsstk25 40K 145K structural 1.16 1.16 0.84 0.97 0.91 0.63
big 13K 92K directed weighted graph 0.76 0.87 0.78 1.07 1.00 0.90
bips07 3078 21K 76K eigenvalue/model reduction 0.87 0.69 0.93 0.94 0.88 0.77
bodyy4 18K 122K structural 1.03 0.92 1.00 0.74 1.00 0.90
chipcool0 20K 281K model reduction 1.03 0.76 0.96 1.18 0.92 0.95
copter1 17K 211K computational fluid dynamics 0.81 0.88 1.09 1.30 1.04 0.96
ford1 19K 102K structural 0.97 1.00 0.71 0.70 0.76 1.05
fv1 10K 85K 2D/3D 1.57 0.90 1.00 1.00 1.11 1.00
hcircuit 106K 513K circuit simulation 0.96 0.93 0.80 0.64 1.01 1.02
hvdc1 25K 158K power network 0.86 0.82 0.73 1.00 1.03 1.03
jan99jac040 14K 73K economic 0.56 0.91 0.90 0.97 0.64 0.68
juba40k 40K 145K eigenvalue/model reduction 0.98 1.13 0.55 1.18 1.08 0.50
lhr11 11K 232K chemical process simulation 0.83 0.82 0.52 0.95 0.80 0.50
m14b 215K 3,358K undirected graph 1.00 0.85 0.92 0.95 0.90 0.70
offshore 260K 4,243K electromagnetics 0.98 0.93 0.80 0.92 0.87 0.91
OPF 3754 15K 142K power network 1.00 0.88 1.14 1.08 0.80 0.67
pattern1 19K 9,323K optimization 0.77 0.81 0.65 0.62 0.67 0.60
pds10 17K 150K optimization 0.93 1.09 0.94 1.21 0.83 0.75
pesa 12K 80K directed weighted graph 0.97 0.74 0.90 0.76 1.00 0.86
rail 20209 20K 139K model reduction 1.17 1.00 1.18 1.03 0.90 0.94
ri2010 25K 126K undirected weighted graph 0.95 0.83 0.85 0.83 0.96 0.83
skirt 13K 197K structural 1.42 0.78 1.10 0.80 1.04 1.00
std1 Jac2 22K 1,248K chemical process simulation 0.82 0.97 0.62 0.47 0.63 0.54
tandem vtx 19K 253K structural 1.31 0.98 1.09 0.93 0.82 1.14
TSOPF RS b2383 38K 16,171K power network 0.92 1.01 1.01 0.62 0.82 0.37
xingo3012 21K 74K eigenvalue/model reduction 0.93 0.86 0.79 0.96 1.00 0.63
Zd Jac3 23K 1,916K chemical process simulation 0.85 0.92 1.00 0.45 0.54 0.69

geomean 0.96 0.89 0.86 0.86 0.87 0.78

best 0.56 0.69 0.52 0.45 0.54 0.37

worst 1.57 1.16 1.18 1.30 1.11 1.14

to the maximum volume obtained by UMPa and are divided into two according to the matrices for which
UMPa obtains a maximum volume higher/lower than 500 words.

Both G-TMVu and H-TMVu are able to obtain better quality partitions than UMPa. On the average, G-TMVu
and H-TMVu obtain improvements of 5% and 11% in maximum volume compared to UMPa, respectively. For
the matrices for which UMPa obtains higher maximum volume, i.e., at least 500 words, the improvements
attained by G-TMVu and H-TMVu are more apparent: 19% for G-TMVu and 24% for H-TMVu. Recall that for
such matrices, maximum volume is more likely to be a critical factor in determining the overall performance.
The examples for such matrices are seen in classes such as “Citation” and “Clustering” (see the classes of
the matrices in Table 1), for which both G-TMVu and H-TMVu perform significantly better than UMPa in terms
of partition quality. These are usually hard instances that are scale-free. In the remaining classes, G-TMVu
produces slightly worse quality partitions, while H-TMVu produces comparable quality partitions.

Both G-TMVu and H-TMVu are significantly faster than UMPa. The average partitioning time of UMPa is
4.40x that of PaToH, whereas the average partitioning times of G-TMVu and H-TMVu are respectively 0.30x
and 1.31x that of PaToH. As a result, remarkably, G-TMVu is on the average 14.5x faster than UMPa. H-TMVu
is 3.4x faster than UMPa.
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Figure 5: Strong scaling analysis of parallel SpMM with G-TMVu and H-TMVu schemes compared to those
with G-TV and H-TV, respectively.
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Table 6: Comparison of G-TMVu and H-TMVu against UMPa in terms of maximum volume (number of words
communicated) and partitioning time for K = 512 processors. The matrices are sorted according to the
maximum volume values obtained by UMPa.

max volume partitioning time
w.r.t. PaToHactual norm. w.r.t. UMPa

name UMPa G-TMVu H-TMVu UMPa G-TMVu H-TMVu

eu-2005 8544 1.18 0.27 6.68 0.18 1.05
coPapersDBLP 7229 1.03 0.96 3.40 0.10 0.91
in-2004 4962 0.74 0.60 2.83 0.17 0.87
preferentialAttachment 3938 0.45 1.62 8.48 0.33 1.27
coPapersCiteseer 3927 0.83 0.78 1.56 0.07 1.06
cnr-2000 3096 0.41 0.32 6.93 0.22 1.05
caidaRouterLevel 2932 0.29 0.29 6.93 0.38 1.32
audikw 1 2655 1.04 1.04 1.57 0.09 1.03
citationCiteseer 2003 1.06 1.08 6.64 0.26 1.24
coAuthorsDBLP 1489 0.71 0.61 8.72 0.44 1.35
G n pin pout 1283 0.96 1.12 7.01 0.40 1.46
auto 717 1.22 1.17 6.96 0.21 1.34
coAuthorsCiteseer 688 0.85 0.89 7.17 0.44 1.33
af shell10 621 1.03 0.97 1.13 0.20 1.10
ldoor 582 0.98 0.98 1.61 0.14 1.07
m14b 501 1.01 0.99 6.94 0.23 1.42

max volume of UMPa > 500
avg: – 0.81 0.76 4.35 0.21 1.17

impr: – 19% 24% – 20.7x 3.7x

smallworld 497 0.93 0.93 7.84 0.50 1.35
G3 circuit 406 1.02 0.99 5.40 0.45 1.41
144 402 0.89 0.86 6.64 0.25 1.48
wave 375 1.09 1.10 6.87 0.27 1.51
af shell9 352 1.06 1.04 1.61 0.20 1.16
598a 327 1.04 1.02 6.93 0.27 1.48
rgg n 2 20 s0 253 1.17 1.02 2.31 0.30 1.25
thermal2 248 0.98 0.96 3.12 0.39 1.31
fe ocean 232 1.29 1.01 7.36 0.45 1.95
delaunay n20 209 1.02 1.01 3.49 0.43 1.36
ecology1 203 1.16 0.97 4.58 0.51 1.45
ecology2 201 1.18 1.01 4.58 0.50 1.45
rgg n 2 19 s0 172 1.17 1.01 3.51 0.31 1.26
delaunay n19 147 1.02 1.00 4.38 0.43 1.41
rgg n 2 18 s0 123 1.13 0.99 4.06 0.33 1.31
delaunay n18 108 0.99 0.97 5.15 0.42 1.46
rgg n 2 17 s0 85 1.13 1.01 5.70 0.35 1.34
delaunay n17 77 1.01 0.97 6.05 0.42 1.47
belgium osm 65 1.29 1.29 2.06 1.03 1.72
luxembourg osm 17 1.21 1.10 4.83 1.14 1.90

overall
avg: – 0.95 0.89 4.40 0.30 1.31

impr: – 5% 11% – 14.5x 3.4x

6.4. Scalability analysis

We thoroughly evaluate the scalability of the multi-source level-synchronized BFS kernel executed on
the five graphs in dataset ds-large. We compare our models G-TMVu and H-TMVu against 2D [12] in terms of
parallel runtime of multi-source BFS and communication statistics. The runtimes reported in this section are
the execution times of parallel multi-source BFS on these graphs and not the partitioning times. Whenever
we use the phrase “parallel BFS with G-TMVu/H-TMVu/2D”, we refer to the parallel BFS execution when the
vertices/edges of the input graph are partitioned using G-TMVu/H-TMVu/2D. We investigate the scalability
performance on the multi-source BFS and not on SpMM since 2D was originally proposed for the former

25



Table 7: Volume and message count statistics of it-2004 and nlpkkt240 for s = 5 and s = 40. Note that
message count statistics are the same for s = 5 and s = 40.

volume statistics (in megabytes)

s = 5 s = 40

maximum average maximum average

graph K 2D G-TMVu H-TMVu 2D G-TMVu H-TMVu 2D G-TMVu H-TMVu 2D G-TMVu H-TMVu

it-2004

256 37.71 0.83 0.75 37.45 0.16 0.11 301.70 6.63 6.00 299.61 1.31 0.84
512 21.11 0.71 0.57 20.86 0.09 0.06 168.85 5.64 4.59 166.89 0.75 0.49

1024 13.93 0.64 0.32 13.70 0.06 0.04 111.45 5.14 2.59 109.63 0.50 0.30
2048 7.70 0.50 0.52 7.48 0.05 0.03 61.58 3.98 4.15 59.81 0.38 0.27

nlpkkt240

256 54.53 0.64 0.48 54.44 0.47 0.35 436.26 5.15 3.86 435.52 3.72 2.80
512 33.45 0.39 0.31 33.38 0.29 0.23 267.63 3.10 2.50 267.07 2.32 1.83

1024 19.84 0.25 0.21 19.77 0.18 0.15 158.69 2.03 1.69 158.19 1.48 1.21
2048 11.08 0.16 0.15 11.02 0.12 0.10 88.62 1.31 1.21 88.15 0.95 0.79

message count statistics

maximum average

graph K 2D G-TMVu H-TMVu 2D G-TMVu H-TMVu

it-2004

256 30 245 240 30 172 139
512 46 463 442 46 267 184

1024 62 724 731 62 347 192
2048 94 1171 1488 94 324 231

nlpkkt240

256 30 20 22 30 12 12
512 46 23 21 46 13 13

1024 62 22 23 62 14 14
2048 94 21 25 94 14 14

and all three models exhibit similar behaviors in both. There are four different number of processors,
K ∈ {256, 512, 1024, 2048} and four different number of source vertices, s ∈ {5, 10, 20, 40} in our experiments.
Recall that the number of source vertices in the multi-source BFS is equivalent to the number of columns of
input dense matrix X in SpMM. We investigate both strong and weak scaling performances of multi-source
BFS with these three models. The experiments were performed on the Lenovo NeXtScale system.

We present the strong scaling results in Figure 6. Each row in the figure belongs to a different graph
and each column belongs to a different s value. Each plot contains three lines comparing G-TMVu, H-TMVu
and 2D for a specific graph and s. The x-axis and y-axis respectively denote the number of processors and
the runtime of the operations in a single level of parallel multi-source BFS in miliseconds. Both axes are in
logarithmic scale.

As seen from the plots in Figure 6, for all instances, both parallel BFS with G-TMVu and parallel BFS with
H-TMVu run much faster than parallel BFS with 2D. For example, for 256, 512, 1024 and 2048 processors,
parallel BFS with G-TMVu respectively runs 5.3x, 6.9x, 8.0x and 10.8x faster than 2D, for s = 20, on the
average. Again for s = 20 and for the same numbers of processors, parallel BFS with H-TMVu respectively runs
6.6x, 8.4x, 10.3x and 10.3x faster than 2D. This is simply because the communication cost of parallel multi-
source BFS is largely dominated by the bandwidth costs and our models aim at reducing bandwidth-related
metrics total and maximum volume, whereas 2D only aims to provide an upper bound on latency-related
metrics. This results in our models to achieve lower communication overhead and hence better performance.
The scalability of our models becomes more apparent with increasing s. The performance gap between 2D

and our models in terms of scalability turns into favor of our models with increasing s. For example, for
it-2004, compared to 2D, parallel BFS with G-TMVu runs 3.5x faster on 256 processors and 2.7x faster on
2048 processors for s = 5, whereas for s = 40 it runs 3.6x faster on 256 processors and 8.1x faster on 2048
processors. Similar improvements are observed for parallel BFS with H-TMVu as well, where these two values
are 4.5x and 2.4x for s = 5 and they are 4.8x and 9.0x for s = 40. The close performances of G-TMVu and
H-TMVu for nlpkkt240 are due to the regular sparsity pattern of this matrix which hides the flaw of the
graph model [39, 21] to a large extent.
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Figure 6: Strong scaling analysis of parallel multi-source BFS with G-TMVu, H-TMVu and 2D. The x-axis
denotes the number of processors.
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Figure 7: Communication times in parallel multi-source BFS with G-TMVu, H-TMVu and 2D for it-2004 and
nlpkkt240 both with s ∈ {5, 40}. The x-axis denotes the number of processors.

We investigate the communication performance of parallel BFS with G-TMVu, H-TMVu and 2D. The volume
and message count statistics obtained by these models are given in Table 7 for s = 5 and s = 40, and for
256, 512, 1024 and 2048 processors. Both the volume and message count statistics include maximum and
average values. We focus on two graphs it-2004 and nlpkkt240 since it-2004 is the largest graph in
ds-large and for the other graphs in ds-large except nlpkkt240, we observe similar findings with those
for it-2004. Figure 7 illustrates variation of the communication times with varying number of processors
for parallel BFS.

In all instances, both of our models obtain lower communication times than 2D. The significantly better
performance of our models can be explained with the significant reductions obtained in both maximum and
average volume, as seen in Table 7. For example, for 512 processors and s = 40, the maximum volume values
obtained by 2D for 512 processors and s = 40 are 168.85 MB and 267.63 MB for it-2004 and nlpkkt240,
respectively, whereas these two values are 5.64 MB and 3.10 MB for G-TMVu, respectively, and 4.59 MB and
2.50 MB for H-TMVu, respectively. There are similar significant reductions in average volume.

For it-2004, it is seen from the left two plots in Figure 7 that the performance gap between G-TMVu/H-TMVu
and 2D is much higher for s = 40 than the gap for s = 5, especially with larger number processors. This
is mainly because the volume-based metrics for s = 40 are more determinant in communication times com-
pared to s = 5, as message count statistics do not change while volume statistics increase with increasing
s. For example, the average volume obtained by 2D for 1024 processors is 13.70 MB for s = 5 while it
is 109.63 MB for s = 40 and the average message count is 62 regardless of s. For s = 5, the decrease
in the performance gap between our models and 2D for larger number of processors can be explained by
the increased importance of latency-related metrics in communication time and since 2D model provides an
upper bound on the maximum and total message counts, it achieves a lower latency overhead compared to
G-TMVu and H-TMVu.

Compared to it-2004, nlpkkt240 exhibits a more regular structure as it is obtained by PDE discretiza-
tion while it-2004 is a web graph. This can be seen in Table 7 by comparing the maximum or average
message counts obtained by our models. For example, for 1024 processors, the maximum message count
obtained by G-TMVu for it-2004 is 724 while it is only 22 for nlpkkt240. The regular structure of nlpkkt240
is successfully exploited by our models as G-TMVu and H-TMVu always obtain lower maximum and average
message counts than 2D. As opposed to it-2004, there always exists a big performance gap between our
models and 2D regardless of s and number of processors since both G-TMVu and H-TMVu perform much better
in terms of both bandwidth and latency costs.

The different behavior of G-TMVu and H-TMVu for it-2004 and nlpkkt240 can be explained by the varying
importance of latency costs in communication times. For both of these graphs, with increasing number of
processors, maximum and average volume values tend to decrease, however maximum and average message
count values for it-2004 increase while they remain the same for nlpkkt240.

We present the weak scaling results in Figure 8. To keep the computational load of each processor fixed

28



 4

 8

 16

 32

256 512 1024 2048P
a

ra
lle

l 
m

u
lt
i-
s
o

u
rc

e
 B

F
S

 r
u

n
ti
m

e
 (

m
s
e

c
) arabic-2005

 4

 8

 16

 32

 64

256 512 1024 2048

nlpkkt240

 8

 16

 32

 64

256 512 1024 2048

uk-2005

 8

 16

 32

 64

256 512 1024 2048P
a

ra
lle

l 
m

u
lt
i-
s
o

u
rc

e
 B

F
S

 r
u

n
ti
m

e
 (

m
s
e

c
) webbase-2001

 8

 16

 32

 64

256 512 1024 2048

it-2004

Figure 8: Weak scaling analysis of parallel multi-source BFS with G-TMVu, H-TMVu and 2D. The x-axis denotes
the number of processors.

when we double the number of processors, we double the number of source vertices while using the same input
graph. In this way, when we double the number of processors, we double the total amount of computation
while keeping the structure of the input graph same. Ideally, the number of edges assigned to each processor
is halved when the number of processors is doubled. In other words, we use s = 5 at 256 processors,
s = 10 at 512 processors, etc. Using different number of source vertices for the BFS enables us to seamlessly
perform weak scaling analysis. The five plots in Figure 8 show that our models exhibit superior weak scaling
performance compared to 2D. This is mainly because the communication costs incurred by our models tend
to increase less than those incurred by 2D when the number of processors is doubled. The lines that belong
to our models in these plots sometimes have a negative slope when the number of processors is doubled.
This behavior can be attributed to the following two reasons: (i) unstable computational load imbalances
in the partitions obtained with the partitioners, leading to number of edges owned by the processors to
not always halve when the number of processors is doubled, and (ii) the increased cache utilization in local
computations due to the good reorderings generated by the partitioners. Nonetheless, it can be said that
our models more than often exhibit consistently good weak scaling performance overall.
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7. Conclusion

This work aimed to improve the performance of sparse matrix dense matrix multiplication on distributed
memory systems. We addressed the high communication volume requirements of this kernel by proposing
graph and hypergraph partitioning models which can minimize multiple volume-based communication cost
metrics simultaneously in a single partitioning phase. Relying on a formulation that makes use of mul-
tiple constraints in recursive bipartitioning framework, we additionally proposed two practical schemes to
efficiently utilize the existing partitioning tools. The experiments performed with this kernel and a level-
synchronized multi-source parallel breadth-first search kernel on a large-scale high performance computing
system up to 2048 processors validate the benefits of optimizing multiple volume-based metrics via our
models by improving scalability.

As future work, we plan to try out different orders for bipartitionings in recursive bipartitioning. More-
over, we also consider using other partitioners to realize our models. Among them, Scotch [25] is the first
to consider due to its high quality partitions in terms of load balance.
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[12] A. Buluç, J. R. Gilbert, The Combinatorial BLAS: Design, implementation, and applications, Int. J. High Perform.

Comput. Appl. 25 (2011) 496–509.
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[44] B. Uçar, C. Aykanat, A library for parallel sparse matrix-vector multiplies, Technical Report BU-CE-0506, Bilkent Uni-

versity, Computer Engineering Department, 2005. Also available at http://www.cs.bilkent.edu.tr/tech-reports/2005.

31

https://software.intel.com/en-us/intel-mkl
https://developer.nvidia.com/cusparse
http://doi.acm.org/10.1145/224170.224228
http://doi.acm.org/10.1145/224170.224228
http://dx.doi.org/http://doi.acm.org/10.1145/224170.224228
http://dx.doi.org/10.1007/3-540-61142-8_588
http://dx.doi.org/10.1007/3-540-61142-8_588
http://dx.doi.org/10.1007/978-3-540-39737-3_115
http://dx.doi.org/10.1007/978-3-540-39737-3_115
http://dx.doi.org/10.1007/978-3-540-39737-3_115
http://hal.inria.fr/hal-00763563
http://dx.doi.org/10.1090/conm/588/11704
http://doi.acm.org/10.1145/582034.582062
http://dx.doi.org/10.1145/582034.582062
http://doi.acm.org/10.1145/800119.803884
http://dx.doi.org/10.1145/800119.803884
http://dl.acm.org/citation.cfm?id=646012.677019
http://www.cc.gatech.edu/dimacs10/
http://www.cc.gatech.edu/dimacs10/
http://www.cs.bilkent.edu.tr/tech-reports/2005

	Introduction
	Related work on multiple communication cost metrics
	Contributions

	Background
	One-dimensional sparse matrix partitioning
	Graph and hypergraph partitioning problems
	Sparse matrix partitioning models

	Problem definition
	Models for minimizing multiple volume-based metrics
	Recursive bipartitioning
	Graph model
	Hypergraph model
	Partitioning tools

	Efficient handling of multiple constraints
	Delayed formation of volume loads
	Unified weighting

	Experiments
	Experimental setting
	Datasets
	Implementation and parallel systems
	Compared schemes and models

	Comparison against standard partitioning models
	Partitioning results
	Parallel SpMM runtime results

	Comparison against UMPa
	Scalability analysis

	Conclusion



