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Abstract 

The energy consumption of air-conditioning systems has gained increasing attention as it 

contributes significantly to the global building energy use. The variable refrigerant flow (VRF) 

system is a common air-conditioning system applied widely in residential and office buildings in 

China. Understanding the actual operation and performance of VRF systems is fundamental for 

the energy-efficient design and operation of VRF systems. Previous research on VRF system 

operation used either limited field data covering certain building types and climate zones or used 

a questionnaire to obtain a larger dataset. However, they did not capture the wide applications 

of VRF systems quantitatively across all building types, climate zones, and operating conditions. 

To fill this gap, statistical and clustering analysis was conducted on the newly proposed key 

performance indicators of approximately 287,000 VRF systems for residential and commercial 

buildings in all five climate zones in China. The main findings are: (1) VRF systems are mainly used 

for cooling in all climate zones in China; (2) among all building types, the duration of use is lowest 

in residential buildings and highest in hotels and medical buildings; (3) the distribution of the ideal 

VRF cooling coefficient of performance (COP) is similar across all climate zones and building types; 

whereas the COPs of ideal VRF heating in the Severe Cold region and Cold regions are lower than 

those in other climate zones; and (4) partial load operations for VRF systems are common in 

residential buildings and office buildings due to the part-time-part-space operation mode. These 

findings can  inform the  actual application  of VRF  systems in  China,  supporting the  design, 

operation, industry standard development, and performance optimization of VRF systems. 

mailto:yanda@tsinghua.edu.cn
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Highlights: 

 New key performance indicators were proposed to benchmark actual application of 287,000 
VRF systems in all five climate zones in China. 

 Data mining on a large-scale dataset is a powerful tool to obtain statistical distributions of VRF 
systems for different types of buildings and climate zones. 

 Cluster was applied to analyze typical operating load patterns of VRF systems for residential 
and office buildings. 

 Partial load operations are common for VRF systems in residential buildings and office 
buildings. 

 Findings inform the design, operation, industry standard development, and performance 
optimization of VRF systems. 

 
 
 

1 Introduction 

Cooling buildings is the fastest growing end use of energy and comprises 6% of overall building 

energy use because of global warming and increases in population and economic growth [1]. 

Therefore, there is a strong need to reduce cooling energy use by improving energy efficiency and 

energy conservation in buildings [2]. 
 

The variable refrigerant flow (VRF) system is widely used for space cooling, which is a kind of 

ductless multi-split systems providing cooling for multiple rooms using one or more outdoor units 

and multiple indoor evaporator units. In air conditioning market, mini- and multi-ductless splits 

accounted for 77% of total capacity in the world [1]. The VRF systems are widely applied in China 

with a 50.35% share of the central air conditioning market [3]. The VRF systems can easily operate 

indoor units to meet occupant’s comfort demand and different rooms’ loads [4]. 
 

Owing to the flexible adjustability and controls of VRF systems, their operation and performance 

are complicated. The actual operation and performance of VRF systems are fundamental to their 

design and operation. Due to the stochastic nature of occupant behavior in buildings with VRF 

systems, there are wide variations in their operation and performance, e.g., use duration, 

performance, and load ratio [5]. It is important to get the actual operation and performance of 

VRF systems. In order to capture the actual operation of VRF systems, various measured cases are 

necessary by reflecting stochastic and diverse occupant behavior. Previous research has already 

conducted field test for VRF systems operation in office buildings [6]. Large amount of 

questionnaires is a good tool to get various occupant behavior of using air conditioning. The 

design and sampling of questionnaire can affect the quality of reflecting the actual use of air 
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conditioning [7]. However, there is still a significant gap between the questionnaire results and 

real operation of air conditioning. For VRF energy performance, laboratory tests and field 

measurement are traditional methods to get actual VRF systems energy performance in buildings. 

Laboratory test is measuring the performance of air conditioning equipment and system by 

controlling rating conditions [8]. However, the previous research pointed that rating conditions in 

laboratory are far different from the actual operation conditions in buildings. Therefore, several 

previous research conducted field measurements to get actual operation performance of air 

conditioning systems. Zhang et al. applied new method for measuring field performance of VRF 

systems to a VRF system in an office building over four weeks during the heating season [9]. The 

field measurements are always conducted on a limited number of buildings and certain period 

because of high cost of field measurement. The actual operation performance of air conditioning 

is also influenced by the uncertain occupant behavior and changing outdoor weather conditions 

[10]. Therefore, a large amount of actual field measurements is important to capture the actual 

operation and performance of VRF systems. 
 

It has been previously observed that a large amount of measured data in real buildings is 

becoming available in recent years, which is benefited from the wide deployment of low-cost 

sensors, meters, as well as the internet of things [11]. Mathew et al. established United States’ 

national building performance database based on energy data from more than one million 

commercial and residential buildings [12]. Environmental data is another common type of 

measured data in real buildings from indoor environmental monitoring system or smart 

thermostat. Stopps and Touchie collected data from 56 thermostats installed in two multi-family 

residential buildings [13]. Cetin obtained ON–OFF operation patterns and energy consumption of 

air conditioning system in 189 homes from energy-management systems [14]. Other systems in 

buildings such as internet of things (IoT) devices and Wi-Fi systems may also record occupant data, 

which can help the research of air conditioning operation. Rafsanjani et al. collected data of ten 

occupants in an office building during a six-week period in summer by IoT devices [15]. The 

increasing amount of actual field measurements makes it possible to get the actual operation and 

performance of air conditioning systems. 
 

The existing body of research suggests that data mining methods can help capture new knowledge 

from big data sets [16] and have been applied to different fields of HVAC. For occupant behavior 

of HVAC, D'Oca and Hong derived occupancy patterns in buildings based on a data set of 16 offices 

using a data mining framework [17]. For energy performance of HVAC, Kontokosta and Tull used 

linear regression (OLS), random forest, and support vector regression (SVM) algorithms for city's 

energy benchmarking data and developed a predictive model to predict electricity and natural gas 

use for every property in the city [18]. For HVAC load pattern analysis, unsupervised method 

clustering is a common way to conduct load profiling [19]. Clustering is one of the most popular 

descriptive data mining techniques because it consumes less time and needs less supervision. 

Quintana et al using load shape clustering to detect uncharacteristic electricity use behavior [20]. 

Li et al. proposed clustering analysis and association rules mining to identify and interpret the 

power consumption patterns and associations for VRF systems [21]. Lu et al. conducted a new 

Gaussian Mixture Model (GMM) clustering to identify temperature related sub-pattern and 



4  

people behavior related sub-pattern, and the clustering result is further utilized to improve the 

accuracy of prediction models [22]. 
 

Several attempts have been made to conduct data mining and machine learning method on VRF 

system modeling, control, and fault detection and diagnosis studies [23]. VRF system’s energy 

consumption and modeling is a main researching topic for data mining. Qian et al. got 344 samples 

of operating data from real residential buildings to calculate the performance of a large-scale 

VRF [24]. Guo et al. proposed a virtual VRF power sensor to get energy consumption of VRF 

systems [25]. Liu et al. proposed a data-mining-based method to benchmark VRF system energy 

performance [26]. Li et al. used multiple linear regression (MLR) and non-linear support vector 

regression (SVR) to improve the prediction for refrigerant charge [27]. Learning VRF system’s 

operation mode for control is another research point by data mining. Moon developed an artificial 

neural network (ANN) model to predict the heating energy cost during the next control cycle for 

VRF systems [28]. Liu attempted to get typical operation mode of VRF systems in residential 

buildings through clustering analysis [29]. Fault detection and diagnosis is also the research hit 

conducted by machine learning and data mining. Liu et al. proposed a data mining method for 

fault detection and diagnosis of VRF systems [30]. Sun et al. proposed a hybrid model combined 

support vector machine (SVM) with wavelet de-noising (WD) for diagnosing refrigerant charge 

faults [31]. 
 

Data from several studies suggest that most AC systems in China operate in a part-time-part-space 

mode. An et al. [32] and Qian et al. [33] found that the main AC operation mode is a part-time- 

part-space mode for fan-coil-unit (FCU) systems in residential communities. Yu et al. conducted 

field test in five office buildings to compare VAV and VRF systems and founded the part-time-part- 

space mode for office buildings with VRF systems [10]. Hu et al. used large scale of questionnaires 

to conclude that AC systems in China are operated in a part-time-part-space mode [7]. The data 

used by previous research is limited field test and questionnaires, which may need more real 

measured data to support the conclusion. A large VRF dataset may further support the reality of 

part-time-part-space mode for AC systems in China. 
 

Although, some research has been carried out on operation and performance on VRF systems and 

AC systems operating modes, all the data used by previous research is usually small scale, covering 

only a single building type and one climate zone. The diverse loads and operation performance of 

wide-scale adoption of VRF systems have not been revealed. 
 

The contributions of this paper is proposed new key performance indicators of 287,000 VRF 

systems in China by conducting statistical and clustering analysis, which cover various building 

types, climate zones, and operating conditions. This research contributed a large amount of VRF 

systems and high coverage for different climate zones in China. The remaining of the paper is 

organized as: Section 2 describes the dataset and the analysis method, Section 3 presents the key 

performance indicators, Section 4 illustrates potential applications of the outcomes, Section 5 

discusses the policy implications and limitations of the current study, and Section draws the 

conclusion. 
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2 Dataset and Methods 
2.1 Dataset introduction 

 

The VRF dataset was established using the operation data of VRF systems monitored at the 

outdoor units. The VRF dataset includes two types of data: The installation information of the VRF 

systems, e.g., the building type, climate zone, and cooling and heating capacity, where users’ 

information has been anonymized, and the operational data, e.g., operation duration of outdoor 

units. 

2.1.1 Installation information of VRF systems 

 

The dataset contained 287,992 VRF systems installed in China; 93% of the samples have location 

(climate zone) information. There are five climate zones in China: Severe Cold region, Cold region, 

Hot Summer and Cold Winter zone, Hot Summer and Warm Winter zone and Mild region [34]. The 

climate zone is defined by average temperature of the coldest month(ATCM) and of the hottest 

month(ATHM), which are listed in Table 1. 
 

Table 1 China’s climate zone classification 
 

Climate zone Main indices Typical cities 

Severe Cold ATCM ≤ -10 °C Harbin, Huhehaote, Changchun, Shengyang, Urumqi 

Cold -10 ≤ ATCM ≤ 
0 °C 

Beijing, Tianjin, Jinan, Qingdao, Shijiazhuang, Xi'an 

 
Hot Summer and 

Cold Winter 

0 ≤ ATCM ≤ 

10 °C 

25 ≤ ATHM ≤ 
30 °C 

 

Shanghai, Chongqing, Wuhan, Nanjing, Hangzhou 

Hot Summer and 

Warm Winter 

ATCM ≥ 10 °C 25 ≤ ATHM ≤ 
30 °C 

 
Fuzhou, Guangzhou, Shantou, Xiamen 

 

Mild 

0 ≤ ATCM ≤ 

13 °C 

18 ≤ ATHM ≤ 
25 °C 

 

Guiyang, Kunming, Tengchong 

 

In addition, 12% of the samples have information about the building type (one of the nine building 

types). All VRF systems in the dataset are heat pump type system without heat recovery, i.e., 

these VRF systems can only provide either cooling or heating to a group of zones at a time, no 

simultaneous cooling and heating. The distributions of VRF systems across different climate zones 

and building types are shown in Figure 1 and Figure 2. Most VRF systems are applied in the Cold 

climate region, the Hot Summer and Cold Winter climate zone, and the Hot Summer and Warm 

Winter climate zone. The Hot Summer and Cold Winter climate zone has the most VRF 

applications for residential buildings mainly due to the need of cooling in summer and heating in 
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winter. The main building types in the dataset are residential buildings (more than 50%) and office 

buildings. 
 

 
 

Figure 1 VRF application distribution in different climate zones 

 

 
 

Figure 2 Distribution of VRF systems in different building types and climates 

 

For the capacity of outdoor units in these VRF systems, there is a large difference between the 

VRF systems in residential buildings and those in commercial buildings. VRF capacity distribution 

across building type is shown in Figure 3. The capacity of VRF systems for most residential 

buildings is less than 20 kW (5.7 ton). The distributions of VRF capacity for commercial building 

types are similar, with most VRF system capacity greater than 60 kW (17 ton), except for those in 

government buildings. 
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Figure 3 VRF capacity distribution for different building types 

 

For residential and office buildings, the VRF system distributions in all climate zones are presented 

in Figure 4. The distributions of VRF within residential buildings are similar to each other. VRF 

systems are more likely to be less than 20 kW (5.7 ton) in the Severe Cold region for office 

buildings compared with other climate zones. 
 
 
 
 
 
 
 
 
 
 

 

Residential buildings Office buildings 
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Severe Cold 
region 

  

Cold region   

Hot 
Summer 
and Cold 
Winter 
Zone 

  

Hot 
Summer 
and Warm 
Winter 
Zone 

  

Mild region   

 

Figure 4 VRF system capacity distribution of residential, office, hotel, and government buildings in different climate 
zones 
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2.1.2 Operational data of VRF systems 

 

For the operational data, the dataset covered the period from December 2017 to December 2018. 

The operational data was measured by sub-meters installed in VRF systems, which can help insure 

the normal operation of VRF system. The direct measured data was stored in local outdoor unit 

hourly. The accumulated operating hour data under different conditions was calculated from the 

direct measured data, which intend to help protect user’s privacy. The accumulated operating 

hour data was remotely logged to the cloud, which is the data source of this research(Table 2). 

Each temperature range and load ratio range were decided by the manufacturer. The main 
operation data used in this research include the evaporation temperature (𝑇𝑒),  condensing temperature (𝑇𝑐), and load ratio (LR). 𝑇𝑒 and 𝑇𝑐 are directly measured at the outdoor units. Load 
ratio(LR) is calculated based on Indoor units on-off state and the name plate rated capacities. LR 

is defined as the ratio of the name plate rated capacities of the running indoor units to the name 

plate capacities of all installed indoor units. LR is calculated using equation (1). 
 

𝐿𝑅 = 

∑𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑟𝑢𝑛𝑛𝑖𝑛𝑔 𝑖𝑛𝑑𝑜𝑜𝑟 

𝑢𝑛𝑖𝑡𝑠 

∑𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑎𝑙𝑙 𝑖𝑛𝑑𝑜𝑜𝑟 𝑢𝑛𝑖𝑡𝑠 

 

(1) 

Table 2 Main operation data of VRF systems of this research 
 

Direct measured data 
(Store in local VRF) 

Calculated data 
(Log to cloud) 

Evaporation temperature (K) Accumulated hours under different evaporation temperature range (hour) 

Condensing temperature (K) Accumulated hours under different condensing temperature range (hour) 

Indoor units on-off state Accumulated hours under different Load ratio range (hour) 

2.2 Methodology 

 

The overall methodology is illustrated in Figure 5. First, the original accumulated use/operating 

hours were pre-processed into the use duration for different operating conditions of the VRF 

systems. Second, to obtain the real use status and evaluate the performance of the VRF system, 

three key performance indicators (KPIs) —use duration (representing operating time in a cycle), 

ideal coefficient of performance (ICOP, representing the theoretical efficiency), and load ratio 

pattern (representing part load operating conditions) — were proposed. Statistical and clustering 

analyses were conducted to determine the distribution of three KPIs in different building types 

and climate zones. Finally, a recommendation on VRF system design was proposed based on the 

data analysis. 
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Figure 5 Methodology roadmap 
 

2.2.1 Preprocessing the collected VRF dataset 

 

The data preprocessing contained data formulation and data cleaning. The calculated data logged 

to the cloud of VRF dataset is the accumulated operating hours of VRF systems under different 

operation conditions for 3–4 months. The data was processed to determine the use duration at 

different operation conditions. Example data is presented in Table 3. Then, data cleaning was 

conducted, such as removing erroneous or missing data. For example, if the calculated use 

duration is negative or larger than the record time, the data sample will be removed from the 

dataset. 
 

Table 3 Use duration sample data 
 

 

LR = (0,25%) 
use duration 
(h) 

LR = [25,50%) 
use duration 
(h) 

LR = [50,75%) 
use duration 
(h) 

LR = [75,100%) 
use duration 
(h) 

LR  =  100% 
use 
duration 

Record 
time 
(h) 

  (h)   
 

Dec. 2017–Feb. 2018 286 90 75 51 39 1728 

Feb. 2018–Apr. 2018 60 1 0 0 0 1416 

Apr. 2018–Jul. 2018 754 71 101 62 64 2496 

Jul. 2018–Sept. 2018 328 86 67 63 40 888 

Sept. 2018–Dec. 2018 0 0 0 0 0 1896 

 

2.2.2 Key performance indicators of VRF systems 

 

In order to evaluate the performance of VRF systems, three key performance indicators (KPIs), 

namely, the use duration, ICOP, and the load-ratio, were proposed. 
 

Use duration is a key indicator of how occupants operate/use the VRF systems. Use duration is 

defined as the running/operating time of VRF systems, which is determined by the users of VRF 

systems. It was calculated by summing the running time at different load ratio conditions, as 

shown in Table 3. The statistical analysis of the use duration of VRF was conducted for different 

climate zones and building types. The accumulated proportion of VRF systems with various use 

durations was calculated. 
 

ICOP was proposed to evaluate the ideal performance of VRF systems in different climate zones 

and building types. Different cities have totally different heating and cooling periods. In order to 

compare different cases in different periods, ICOP here was uniformly defined as the evaporation 

efficiency. 𝐼𝐶𝑂𝑃𝑇𝑐,𝑇𝑒  for different evaporation and condensation temperature was calculated as 

shown in equation (2). 
 

𝑇𝑒 

𝐼𝐶𝑂𝑃𝑇𝑐,𝑇𝑒  = 𝑇𝑐 ‒ 𝑇𝑒
 

 

(2) 
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where 𝑇𝑒 and 𝑇𝑐 are the evaporation and condensation temperatures (K), respectively. 

The original data of evaporation and condensation temperatures determine the use duration for 

operating conditions within a temperature range. Each temperature range was decided by the 

manufacturer. We used the average temperature of each temperature range to calculate ICOP. 

The ICOP for each temperature range is shown in Table 4. Finally, the ICOP for each season was 

calculated using the proportion of time for each operating condition in equation (3): 
 

𝐼𝐶𝑂𝑃 = 

∑𝐼𝐶𝑂𝑃𝑇𝑐,𝑇𝑒 
× 𝑇𝑖𝑚𝑒𝑇𝑐,𝑇𝑒

 

∑𝑇𝑖𝑚𝑒𝑇𝑐,𝑇𝑒
 

 

(3)
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𝑝 

where 𝑇𝑖𝑚𝑒𝑇𝑐,𝑇𝑒 is the use duration for the operation conditions with 𝑇𝑐 and 𝑇𝑒 (h) and ∑𝑇𝑖𝑚𝑒𝑇𝑐,𝑇𝑒 

is the use duration of the VRF systems for each period. 
 

Table 4 ICOP calculation results 
 

𝑰𝑪𝑶𝑷𝑻𝒄,𝑻𝒆
 𝑻𝒄 < 283 K 𝑻𝒄 = [283,303) K 𝑻𝒄 = [303,328] K 𝑻𝒄 > 328 K 

𝑻𝒆 < 243 K 6.1 4.9 3.4 2.9 

𝑻𝒆 = [243,263) K 8.4 6.3 4.1 3.4 

𝑻𝒆 = [263,273) K 17.9 10.7 5.6 4.5 

𝑻𝒆 = [273,280] K 42.6 16.8 7.1 5.4 

𝑻𝒆 > 280 K 93.4 21.6 7.9 5.8 
 

To determine the operating load of VRF systems, the use duration data was analyzed for the load 

ratio, as shown in Table 3. This study assumed December 2017 to February 2018 as the heating 

season and July 2018 to September 2018 as the cooling season. Clustering analysis is common 

unsupervised method to conduct load profiling [19]. This research used accumulated hours under 

different load ratio for heating/cooling as the input data for clustering analysis(Figure 6). 
 

 
 

Figure 6 Clustering input data example: Accumulated hours under different load ratio for heating 

 

Clustering analysis of the VRF load-ratio pattern for heating and cooling was conducted by the K- 

means algorithm, which is a common method for curve clustering [35]. Lavin and Klabjan [36, 37] 

and Green et al.[37] found that using the core K-means clustering algorithm for load profiling is 

efficient. Euclidean distances were used to conduct the clustering, as shown in equation (4). 
 

𝑑(𝑥,𝑦) = 

(∑5
 

|𝑥 
1 

‒ 𝑦 |𝑝) , (4) 

𝑖 = 1    𝑖 𝑖 

where 𝑥 = (𝑥1,𝑥2…,𝑥5), 𝑦 =  (𝑦1,𝑦2…,𝑦5) are accumulated hours under different load ratio, two 
objects in a Euclidean n-space and p = 2. 
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In order to get typical load profile, on one hand, the research used the Davies–Bouldin index (DBI), 

a metric that is used for evaluating clustering algorithms [38]. A lower DBI represented better 

clustering, which is calculated by Equation (5), and can help to determine the number of clusters. 

Through the calculation, we found best cluster number for different climate zones are different, 

ranging from 4 to 6. On the other hand, this research intended to get typical load pattern, which 

may need accounted for at least 10% of samples and to compare different climate zones’ results. 

So the cluster number was set as 5 for each climate zones. 
 

  

𝐷𝐵𝐼 =  𝑁∑
𝑖 =  1𝑚𝑎𝑥 ( ) (5) 

1     

𝑁 

𝑗  ≠ 

𝑖 𝑆𝑖 + 𝑆𝑗 

𝑀𝑖,𝑗 

where 

𝑆𝑖 

is a measure of scattering within the cluster; 𝑀𝑖,𝑗 is a measure of separation between 

cluster i and cluster j; and N is the number of clusters. 
 

3 Analysis of key performance indicators of VRF 

systems 
3.1 Use duration of VRF systems 

3.1.1 Use duration of VRF systems in different climate zones 

 

The cumulative probability of use duration in different climate zones are calculated based on the 

dataset. Figure 7 provides the cumulative probability curves of use duration in different climate 

zones for the same each time period in 2018. From December 2017 to February 2018, the use 

duration of 90% of the systems among all climate zones was less than 950 h (64% of the whole 

time, 1488 h). The use duration in the Hot Summer and Warm Winter zone was shorter than that 

of other climate zones, and more than 58% of systems were not used during these three months. 

The cumulative probability curves of the Severe Cold region are almost the same as those of the 

Cold region. From February 2018 to April 2018, the use duration of 90% of the systems in all 

climate zones was less than 450 h (32% of the whole time, 1416 h). The cumulative probability 

curves of the Hot Summer and Cold Winter zone and Hot Summer and Warm Winter zone were 

similar, with use durations shorter than those of the other three climate zones. In addition, more 

than 68% of the systems in these two zones did not operate during this period. The curves of the 

other three zones were similar in this period. From April to July 2018, the use duration of 90% of 

the systems in all climate zones was less than 1250 h (57% of the whole time, 2184 h). From July 

to September 2018, the use duration of 90% systems in all climate zones was less than 800 h (55% 
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of the whole time, 1464 h). Both from April to July and from July to September in 2018, the use 

duration of the Hot Summer and Warm Winter zone is longer than other climate zones’, which 

may result from the higher outdoor temperature in this zone. From September 2018 to December 

2018, the use duration of 90% of the systems in all climate zones was less than 800 h (36% of the 

whole time, 2208 h). The use duration of Hot Summer and Cold Winter zone was less than that of 

other zones, and more than 50% of the systems did not operate in this period. 
 

 

Dec. 2017–Feb. 2018(1488 hours)      Feb. 2018–Apr. 2018(1416 hours)       Apr. 2018–Jul. 2018(2184 hours) 
 

 
Jul. 2018–Sept. 2018(1464 hours) Sept. 2018–Dec. 2018(2208 hours) 

 

 
 

Figure 7 Cumulative probability curve of use duration of different climate zones in same time period 

 

Figure 8 presents the cumulative probability curves of the use duration in the same climate zone 

for different time periods in 2018. The whole time for different time period is shown in Figure 7. 

Except for the Mild region, all the climate zones had longer use durations from July to Sept in 2018 

than in other time periods, which may reveal that the VRF systems were used mainly for cooling 

in this time period for these climates. In the Mild region, the VRF use duration is longest from 

December to February, which reflected that heating was the main function there. The use 

durations of transition seasons (February–April and September–December) were shorter than 

those of other time periods in 2018, except for September–December in the Hot Summer and 

Warm Winter zone. 
 

 

Severe Cold region Cold region Hot Summer and Cold Winter Zone 
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Hot Summer and Warm Winter Zone Mild region 

 

 
 

Figure 8 Cumulative probability curve of use duration in different time periods of the same climate zone 
 

3.1.2 Use duration of VRF systems in different types of buildings 

 

The cumulative probability of use duration in different types of buildings was generated based on 

the dataset. Figure 9 presents the cumulative probability curve for use duration in different types 

of buildings in the same time period. It illustrates that the use duration of residential buildings 

was shorter than that in other climate zones for the whole period. The use duration of 90% 

systems in residential buildings was less than 650 h in each period. The use duration of Hotel and 

medical were longer than most of others in each period. The use duration of 90% of the systems 

in hotel and medical buildings was less than 1700 h in each period. 
 

 

Dec. 2017–Feb. 2018(1488 hours) Feb. 2018–Apr. 2018(1416 hours) Apr. 2018–Jul. 2018(2184 hours) 
 

 
Jul. 2018–Sept. 2018(1464 hours) Sept. 2018–Dec. 2018(2208 hours) 
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Figure 9 Cumulative probability Curve of use duration in different types buildings in same time period 

 

Figure 10 provides the cumulative probability curve of use duration in different time periods for 

the same building type. The whole time for different time period is shown in Figure 9. For all types 

of buildings, the use duration from July to September is longer than that of other periods. This 

revealed that the VRF systems were mainly used for cooling for all types of buildings. The use 

durations of transition seasons (February–April and September–December) were shorter than 

those of other time periods in 2018 for all types of buildings. For residential buildings, 47% of the 

systems did not operate from December to February. For office buildings, 25% of the systems did 

were not operated from December to February. No more than 25% of the systems in hotels and 

20% of the systems in medical buildings were not operated in each period, which may reveal that 

the usage in hotel and medical buildings is high in all seasons. 
 

 

Residential Office Hotel 
 

 
Government Production Medical 

 

 
Sports 
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Figure 10 Cumulative probability curve of use duration in different time periods for the same building type 
 

3.2 ICOP of VRF systems 

3.2.1 ICOP of VRF systems in different climate zones 

 

The sample probability distributions of ICOP in different climate zones were generated from the 

dataset. Figure 11 compares the ICOP of different climate zones in same time period. The 

distributions from April to July and from July to September are similar. For other time period, 

shown in Figure 12, ICOP with peak probability of Severe Cold region was lower than other 

climates, especially from September to February, which resulted from the lower outdoor air 

temperature. This may require more attention from designers. 
 

 

Dec. 2017–Feb. 2018(1488 hours)     Feb. 2018–Apr. 2018(1416 hours)      Apr. 2018–Jul. 2018(2184 hours) 
 

 
Jul. 2018–Sept. 2018(1464 hours) Sept. 2018–Dec. 2018(2208 hours) 

 

 
 

Figure 11 Sample probability distribution of ICOP of different climate zones in the same time period 
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Figure 12 ICOP with peak probability for different climate zones 

 

For the ICOP in different time periods of the same climate zone(see Appendix A for full 

distributions), except for the Hot summer and Warm Winter zone, ICOP with peak probability 

from December to February is lower than other time period shown in Figure 12, which resulted 

from the low outdoor temperature during this period. 

3.2.2 ICOP of VRF systems in different types of buildings 

 

The sample probability distributions of ICOP in different building types were calculated from the 

dataset. Figure 13 illustrates that the distributions in the same period for different types of 

buildings are similar. The distributions from April to July and from July to September are more 

concentrated than those of other periods. This reflected that the outdoor weather is more stable 

for using VRF from April to September. ICOP distributions for different building types in different 

period are similar (see Appendix A for full distributions). It reflected that outdoor weather is the 

main influencing factor rather than building types. 
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Figure 13 Sample probability distribution of ICOP of different building types in same period 
 

3.3 Typical load-ratio pattern for residential and office buildings 

 

Through clustering, the typical load-ratio patterns in all five climate zones for residential buildings 

were generated from the large-scale dataset. Figure 14 presents the cluster centers of a typical 

load pattern of VRF systems of residential buildings for heating. For all the climate zones, one can 

conclude that the main operating condition of VRF systems was at less than 25% load ratio, which 

reflected that households used VRF for heating with only 1–2 indoor units most of the time. 

Among all climate zones, the VRF system average operating hours for heating of typical load-ratio 

patterns of Hot Summer and Warm Winter were shorter than those in other climates. 
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Figure 14 Clustering results of residential buildings for heating in different climate zones 

 

Figure 15 shows the typical load pattern of VRF systems of residential buildings for cooling. For all 

the climate zones, similar to VRF for heating, it can be concluded that VRF systems for cooling 

mainly operate under lower than 25% load ratio, which reflected that households used VRF with 

only 1–2 indoor units most of the time. Compared with VRF systems for heating, there were more 

typical load-ratio patterns (accounted for more than 10% of all systems) in VRF cooling conditions, 

which may reveal more typical-operation cooling modes than heating modes for VRF systems in 

residential buildings. 
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Figure 15 Clustering results of residential buildings for cooling in different climate zones 
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Through clustering, the typical load-ratio pattern in all five climate zones for office buildings were 

generated from large scale dataset. For office buildings in all the climate zones, it can be observed 

that VRF systems were mainly operating at a load ratio of less than 25% in heating mode, which 

may reflect that users in offices used VRF for heating with only one or two indoor units for most 

time (see Appendix B for full figure and description of typical load pattern of VRF systems of office 

buildings for heating). 
 

Similar with VRF systems in residential buildings, among all climate zones, the office VRF system 

average operating hours for heating at typical load-ratio patterns in Hot Summer and Warm 

Winter were shorter than in other climates. For Cluster0 in the Mild region, the average operating 

hours were longer than those of Cluster0 in other climate zones were. 
 

For VRF cooling in office buildings, it can be observed that, as with VRFs for heating, the main 

operating conditions of VRF systems for cooling were at a lower than 25% load ratio (see Appendix 

B for full figure and description of typical load pattern of VRF systems of office buildings for 

cooling). 
 

For all the typical load patterns of residential and office buildings, a really lower load is common. 

This is because of the part-time-part-space operation mode of users/occupants who tended to 

activate only one or two indoor units most of the time. This further confirmed same finding from 

previous study on AC use measured in residential buildings [32] and office buildings [10]. 
 

4 Potential applications of outcomes 

Based on the data-mining results of the large VRF dataset, a few potential applications and 

recommendations can be drawn for VRF systems to improve their design and operation in China. 

4.1 Special design for VRF in specific climate zones and buildings 

 

For traditional design, the cooling and heating demands for specific climate zones with different 

schedules could be calculated for residential buildings and commercial buildings for a typical day. 

Based on the cooling and heating demand of buildings, designers would select VRF systems 

according to the peak load for a typical day. However, according to the data-mining results of this 

research, some interesting phenomenon were observed for different seasons in one year for a 

specific climate zone and building type. From the use duration analysis, the use duration of cooling 

by VRF systems is longer in the whole year except for the Mild region. It is recommended to focus 

on cooling performance in the design stage. For the Mild region, data analysis reflected that 

heating was the main function. The results recommended to focus on heating performance in the 

design stage for the Mild region. For specific building types, the usage of VRF in hotel and medical 

buildings was high among all building types year-round, even during transition seasons (February– 

April and September–December). Thus, the design of VRF systems for hotel and medical buildings 

must consider not only typical cooling and heating days, but also those for transition seasons. 

From the ICOP analysis of VRF systems, it was revealed that the ICOP with peak probability in the 

Severe Cold region from December to February was lower than that of the other climate zones 
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because of the low outdoor air temperature. This informs the optimization of VRF systems, which 

is to increase the heating performance of VRFs for cold climates with low outdoor air temperature. 

More statistical analysis of typical outdoor temperature in the Severe Cold region based on the 

dataset should be conducted for further research. 

4.2 VRF performance evaluation standard improvement 

 

Manufacturers conduct performance tests on sample VRF systems before selling them. The 

current evaluation standard in China for VRF performance is GB/T18837-2015 [39]. The evaluation 

method of the standard is to test the annual performance factor (APF) of the VRF system. The APF 

is calculated according to equation (6): 
 

𝐶𝑆𝑇𝐿  +  𝐻𝑆𝑇𝐿 

APF = 𝐶𝑆𝑇𝐸 + 𝐻𝑆𝑇𝐸, (6) 

where CSTL is the total load of the cooling season (Wh), HSTL is the total load of the heating 

season (Wh), CSTE is the total electricity consumption of the cooling season (Wh), and HSTE is the 

total electricity consumption of the heating season (Wh). 
 

The total load and electricity of the cooling and heating seasons were determined by test data 

from three cooling conditions (nominal load, medium load, and minimum load) and four heating 

conditions (maximum load, nominal load, medium load, and minimum load) combined with use 

duration from another China standard GB/T 17758-2010 [40]. The standard provided the use 

duration for different cities and outdoor temperatures, rather than that for different load 

conditions. The typical load-ratio pattern analysis in this research can help provide use duration 

for different load conditions. In addition, the typical load-ratio pattern analysis in this study also 

provided the use duration for residential buildings and office buildings. The typical use duration 

with different load ratios, based on real monitoring data, can improve the evaluation of VRF 

performance to reflect the actual operating conditions. 

4.3 Performance optimization for VRF systems 

 

From the typical  load-ratio pattern  analysis, it  revealed that  long  time low  part  load ratio 

operation is common for VRF systems in residential buildings and commercial buildings. This 

triggers two potential optimization recommendations for VRF systems.  First, for some  VRF 

systems, the frequency of full load is near zero. It is recommended to properly reduce VRF outdoor 

unit capacity, which can decrease initial investment of VRF systems and raise the operating load 

ratio to improve efficiency to save energy and increase the satisfaction level of users. Second, for 

most VRF systems, there is high frequency of both partial and full loads. In this case, a new 

optimization of VRF system design is to use multiple compressors: one highly efficient compressor 

meeting the base loads and other compressors with variable speed controls to improve the partial 

load efficiency. The typical load patterns proposed in this paper can guide the selection of 

different-capacity compressors in one VRF system for different types of buildings across each 

climate zone. 
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5 Discussion 
5.1 Policy implications 

 

VRF systems are applied widely in China, mainly for residential and office buildings. VRF systems 

have high control flexibility and can meet the comfort needs of individual spaces, which is 

supported by data in this research. Data analysis in this research revealed the high diversity of 

occupant behavior and the part-time-part-space use mode is the main operation mode of VRF 

systems in China. In addition, data-mining results indicated that partial load issue is common. All 

the phenomenon found through data mining may raise the attention of manufacturers and 

government and inform their policy making. 
 

Manufacturers may need to use data-mining results to optimize the VRF design and operation 

controls. It is better for the government to use real installation and operation data of VRF systems 

for related industry VRF standard development, especially for performance evaluation and rating 

of VRF systems. Furthermore, government may value the VRF system performance in special 

building types such as hotel and medical buildings because of their high use duration. Government 

can also take more effort to promote energy conservation (e.g., not to oversize the VRF system) 

based on data mining outcome of VRF systems. 

5.2 Limitations of the current work 

 

This research is a preliminary attempt of big data application in the HVAC field in China. The 

dataset contained 287,000 VRF systems in China. However, data type in this research is use 

duration data and data range of each parameter is defined by the VRF manufacturer. There are 

no time series data, making it hard to get deeper knowledge from the operation data. Besides, 

there is only one data source for the research, which made it hard to conduct the validation work. 

If there is other data source with a large number of VRF samples in the future, the validation work 

can be done. In addition, the information of building type is missing for most installations, making 

it impossible to analyze data in detail for different building types. With the development of sub- 

metering and data science, time series dataset with more system information will be available in 

the premise of guaranteeing users’ privacy. It will be valuable to inform HVAC design and 

operation, which can help achieve energy efficiency of VRF system thus reducing energy use, 

utility costs, and GHG emissions for the building sector in China. 
 

6 Conclusion 

This study performed statistical and clustering analysis of a large number of VRF systems for 

residential and commercial buildings in China across all five climate zones. Distributions of use 

duration and ideal performance of VRF systems across different climate zones and building types 

were derived from the actual VRF operation data. Represented load ratio patterns of VRF systems 

of residential and office buildings across all climate zones of China were developed, which can be 

used to inform VRF design, sizing and performance optimization. The main findings are as follows: 
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a. VRF systems are mainly used for cooling in all climate zones of China, except in the Mild 

climate region, where space heating is also a main function along with cooling. 

b. There is a great diversity of VRF use duration. Among all the building types, the use 

duration of residential buildings is the lowest, whereas that of hotels and medical 

buildings is the highest. 

c. The distribution of ideal VRF cooling COP is similar across all climate zones and building 

types, whereas the COPs of ideal VRF heating in the Severe Cold region and the Cold 

region are lower than those in other climate zones due to the low outdoor temperature 

conditions in the two cold climate zones. 

d. Partial load operations for VRF systems are common in residential buildings and office 

buildings. This is because of the part-time–part-space operation mode with 

users/occupants usually activating only one or two indoor units most of the time. This 

agrees with findings from previous studies on AC use in residential buildings and office 

buildings in China. 

e. Data mining on large-scale operation dataset can reveal the real application status of VRF 

systems in China. The data-mining results provide knowledge supporting the design, 

operation, industry standard development, and performance optimization of VRF systems. 
 

Based on the data-mining results of the large VRF dataset, recommendations for designers and 

manufacturers are as followed: 
 

a. In design stage, as the main function of VRF is cooling except in Mild region, it is 

recommended to focus on cooling performance. 

b. For special building types, such as hotel and medical buildings, the design of VRF systems 

must consider not only typical cooling and heating days, but also those for transition 

seasons. 

c. For manufacturers, the optimization direction of VRF systems is to increase the heating 

performance of VRFs for cold climates with low outdoor air temperature. 

d. As partial load operations for VRF systems are common in residential buildings and office 

buildings, i t is recommended to properly reduce VRF outdoor unit capacity, which can 

decrease initial investment of VRF systems and raise the operating load ratio to improve 

efficiency to save energy and increase the satisfaction level of users. 

e. Based on the typical load pattern, for most VRF systems, there is high frequency of both 

partial and full loads. A new optimization of VRF system design is to use multiple 

compressors to improve the partial load efficiency. 
 

Appendix A 

Figure 16Error! Reference source not found. presented the sample probability distribution of 

ICOP in different time periods of the same climate zone. 
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Figure 16 Sample probability distribution of ICOP in different periods of the same climate zone 

 

Figure 17Error! Reference source not found. shows that ICOP distributions for different building 

types in different period are similar. It reflected that outdoor weather is the main influencing 

factor rather than building types. 
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Figure 17 Sample probability distribution of ICOP in different periods of the same building types 
 

Appendix B 

Figure 18 provided typical load pattern of VRF systems of office buildings for heating. 
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Figure 18 Clustering results of office buildings for heating in different climate zones 

 

Figure 19Error! Reference source not found. shows the typical load pattern of VRF systems in 

office buildings for cooling. 
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Figure 19 Clustering results of office buildings for cooling in different climate zones 
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