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W
e draw on mathematical results from topology to develop quantitative methods
for polymeric materials to characterize the relationship between polymer chain
entanglement and bulk viscoelastic responses. We generalize the mathematical

notion of the Linking Number and Writhe to be applicable to open (linear) chains. We
show how our results can be used in practice by performing fully three-dimensional
computational simulations of polymeric chains entangled in weaves of a few distinct
topologies and with varying levels of chain densities. We investigate relationships
between our topological characteristics for chain entanglement and viscoelastic re-
sponses by performing Lees-Edwards simulations of the rheology over a broad range
of frequencies. Our topological measures of entanglement indicate the global topology
is the dominant factor in characterizing mechanical properties. We find an almost lin-
ear relation between the mean absolute Writhe Wr and the loss tangent and an almost
inverse linear relation between the mean absolute Periodic Linking Number LKP and
the loss tangent. These results indicate the potential of our topological methods in
providing a characterization of the level of chain entanglement useful in understanding
the origins of mechanical responses in polymeric materials.

1 Introduction

A fundamental problem in material science is to understand the relationship between molecular-level
interactions and resulting bulk material properties. We consider polymeric materials and develop
mathematical approaches for investigating the relationship between topology of the polymeric chains
and bulk viscoelastic mechanical responses. A key feature is the nature of the entanglements that
arise between polymeric chains from the inherent sterics of the polymers comprising the material.
The collective configurations of the chains can result in complex entangled structures that greatly
restrict chain motions and transmission of mechanical stresses within the material [11, 12, 53].
Characterizing these intuitive physical notions in a quantitatively precise mathematical way poses a
number of interesting and significant challenges. In practice entangled polymer melts or gels often
involve kinetics over a broad range of time-scales with collective responses that often depend on
both the frequency and duration of mechanical perturbations. In addition, the polymer chains often
exhibit friction with respect to one another or coupling from immersion within a solvent fluid that
can result in varied viscoelastic responses that may show a significant frequency dependence [2–4,64].

* Work supported by DOE ASCR CM4 de-sc0009254, NSF DMS - 1616353,
and NSF CAREER Grant DMS-0956210.
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A common approach to entanglement involves considering two different length and time scales.
First, there is the length scale of the entire chain, where global entanglement occurs as the chains
get knotted and linked to each other [5, 12–14,28,29]. Second, one has local entanglement arising
from the local constraints, obstacles, that a chain feels at a small length scale. This length scale, also
called the entanglement length, plays an important role in models of entangled polymer dynamics
and is related to the tube diameter in tube model theories [24, 31,53, 56, 58]. The relation between
these two is poorly understood. Even experimentally, different methods for the determination of
the plateau modulus and the entanglement molecular weight can give different results [37]. Since
Edwards’ tube model, several improvements of this theory have emerged, but inconsistencies are
still present [18,35]. Moreover, an even shorter length scale, that of the packing length, has been
shown to have an influence and should be incorporated in theories of polymer viscoelasticity [63].

The relation between entanglement and viscoelastic properties of materials has been studied
indirectly by varying the density or molecular weight of the chains and, therefore, varying the
number of contacts between neighboring chains [20, 27, 30, 54, 62]. A measure of entanglement
that is very helpful in the study of polymers is the number of kinks per chain. This is a quantity
that is usually derived from the application of a contour reduction algorithm on a polymer melt
[7, 20,30,62]. However, the global entanglement complexity cannot be assessed by only measuring
the number of contacts. This has led to the use of tools from knot theory to study entanglement in
polymers [13,14,19–21,32,50]. The difficulty in using tools from knot theory is that they are defined
on simple closed curves in space (rings) while the polymer chains can have various architectures,
often those of linear chains. In order to deal with this, a statistical definition of knotting has been
introduced [39]. This method can determine the principal knot type of a fixed configuration of an
open chain. However, the polymer chains move in time and this method may have problems when
applied to study entanglement in non-equilibrium conditions. Moreover, the tools from knot theory
cannot yet be applied to systems employing three-dimensional Periodic Boundary Conditions (PBC)
since the corresponding theory is missing [42].

In this study, we take another complimentary approach where we use mathematical ideas from
topology and geometry to provide additional quantities we refer to as the collective “linking number”
and “Writhe” to quantify the level of polymer entanglement complexity [44–46]. The advantage
of the Gauss linking integral is that it can be applied to both linear and ring polymers and it is a
continuous function of the chain coordinates. Moreover, in [44] it has been shown that it can be
extended to systems with 1,2 or 3 PBC to provide a new continuous measure of entanglement. These
measures have been applied to both equilibrium and non-equilibrium conditions. More precisely, our
proposed measures have been used to understand the disentanglement of chains and to provide a new
estimator of the entanglement length which indicates they can be useful in polymer theories [45–47].
In order to incorporate these measures in theories of polymer entanglement, input of atomistic
simulations for the interplay between applied deformation and system structure is required. In
this work measures from topology and geometry are used to understand the interplay between
entanglement and mechanics. In particular, they are applied to the viscoelastic mechanical responses
of the polymeric material.

We carry-out our studies of mechanical response by using a precisely controlled global topology that
we then vary. Our computational model consists of polymeric chains represented by bonded steric
beads having Weeks-Chandler-Andersen (WCA) interactions and harmonic bonds. We simulate a
sample of the polymeric material using a model based on three-dimensional PBC with our fixed
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global topology arising from the chains extending through the boundary of the periodic box. We also
simulate corresponding systems whose topology is allowed to vary by considering weaves composed
by short linear polymer chains. We examine the mechanical response of such systems ranging
from weakly entangled to strongly entangled under oscillatory shear deformation (Lees-Edwards
boundary conditions [33]) and report the local and global entanglement effects measured using our
topological tools. All computational simulations were performed using the LAMMPS molecular
dynamics package and our custom extension packages (http://lammps.sandia.gov).

We organize the paper as follows. In Section 2 we introduce tools from knot theory to precisely
characterize the topology of the polymeric chains. In Section 3 we describe a class of polymeric
materials based on weave-like topologies that we consider throughout our investigations. In Section
4, we discuss the details of our computational methods and simulation approaches. In Section 5, we
present our results and discuss interesting features of the relationship between polymer entanglement
and bulk material response.

2 Characterizing Polymer Entanglement

We measure the degree to which polymer chains interwind and attain complex configurations using
the Gauss linking integral:

Definition 2.1. (Gauss Linking Number). The Gauss Linking Number of two disjoint (closed or
open) oriented curves l1 and l2, whose arc-length parametrizations are γ1(t), γ2(s) respectively, is
defined as the following double integral over l1 and l2 [23]:

L(l1, l2) =
1

4π

∫
[0,1]

∫
[0,1]

(γ̇1(t), γ̇2(s), γ1(t)− γ2(s))
||γ1(t)− γ2(s)||3

dtds, (1)

where (γ̇1(t), γ̇2(s), γ1(t)− γ2(s)) is the scalar triple product of γ̇1(t), γ̇2(s) and γ1(t)− γ2(s).

This can also be expressed alternatively in terms of line integration as

L(l1, l2) =
1

4π

∮ ∮
γ1(t)− γ2(s)
‖γ1(t)− γ2(s)‖3

· (dγ1(t)× dγ2(s)) . (2)

The Gauss Linking Number is a topological invariant for closed chains and a continuous function of
the chain coordinates for open chains.

We also define a one chain measure for the degree of intertwining of the chain around itself:

Definition 2.2. (Writhe). For a curve ` with arc-length parameterization γ(t) is the double integral
over l:

Wr(l) =
1

4π

∫
[0,1]

∫
[0,1]

(γ̇(t), γ̇(s), γ(t)− γ(s))

||γ(t)− γ(s)||3
dtds. (3)

The Writhe is a continuous function of the chain coordinates for both open and closed chains.
For systems employing Periodic Boundary Conditions (PBC), the linking that is imposed from

one simulated chain on another chain propagates in three dimensional space by the images of the
other chain. In other words, for a system with PBC each simulated chain gives rise to a free chain
in the periodic system which consists of an infinite number of copies of the simulated chain. We call
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each copy of a chain an image of the free chain. It has been shown that a measure of entanglement
that can capture the global linking in a periodic system is the periodic linking number LKP [44]:

Definition 2.3 (Periodic Linking Number). Let I and J denote two (closed, open or infinite) free
chains in a periodic system. Suppose that Iu is an image of the free chain I in the periodic system.
The Periodic Linking Number, LKP , between two free chains I and J is defined as:

LKP (I, J) =
∑
v

L(Iu, Jv), (4)

where the sum is taken over all the images Jv of the free chain J in the periodic system.

The Periodic Linking Number is a topological invariant for closed chains and a convergent series
for open chains that changes continuously with the chain coordinates. For its computation, we use
a cutoff, the local Periodic Linking Number [44, 47].

3 Polymeric Materials with Weave-like Entanglements

We study polymeric materials having a few different initial topologies. We make two specific
distinctions between when the global topology is fixed and when the global topology can change. We
consider four distinct types of polymeric materials having polymeric chains with topological structures
corresponding to different types of weaves. For each of these materials, we vary their entanglement
conformation and density. We do this for each of two different architectures corresponding to either
infinite or open chains.

The infinite chains have no endpoints inside the simulation box and, therefore, extend periodically
throughout the simulation to create an infinite weave. The open chains also cross the periodic
boundary but have distinct starting and endpoints, thereby creating an open weave. The weave
complexity ranges from trivial (w0), orthogonal non-interlaced at different densities (wI, wII) and
alternating interlacing (wIII). For details see Table 1 and Figures 1, 2. The weave w0 has trivial
global topology. The weaves wI and wII have the same global topology. The weave wIII has the
same density as wII, but it has non-trivial global topology, more complex than that of wII.

The open systems are created by deleting one bond from each chain in the simulation box in the
original conformation and the infinite and corresponding open systems start from the same original
conformations (except for one bond). Due to the uncrossability contraint, the global topology of
the infinite systems cannot change without breakage of the bonds, while the global topology of the
systems of open chains can change by slippage of the chains past entanglements. Notice that in both
infinite and open cases, the local geometry and topological constraints of the chains can change.

By subjecting the material to oscillatory shear deformations, we can measure the extent the
density or the topological complexity affect mechanical responses. Concerning the use of polymeric
weave configurations, let us note that, in addition to providing a simple characterization of polymer
entanglement for the purpose of this study, they also appear in the study of metal organic frameworks
and crystals (see [17] and references therein).
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Figure 1: The different weaves we consider in our studies labelled as weave0 (w0), weaveI (wI), weaveII
(wII) and weaveIII (wIII). Shown from top (left to right), bottom (left to right).

Weave Topology Density MW (open)

Weave 0 (w0) parallel, non-interlaced 0.0625 (15 amu/nm3) 20 m0

Weave I (wI) orthogonal (non interlaced) 0.1875 (45 amu/nm3) 20 m0

Weave II (wII) orthogonal (non interlaced) 0.33 (80 amu/nm3) 15 m0

Weave III (wIII) alternating interlaced 0.35 (84 amu/nm3) 21 and 17 m0

Table 1: Density of the different weaves shown in Figure 1
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Figure 2: Projection of chains of weaveIII. WeaveIII is an alternating interlaced weave. For example, the
chains in the x direction, alternatingly go over and under chains in the y perpendicular direction, as shown
for the orange curve and three chains it meets in a perpendicular direction.

4 Dynamic Model for Polymeric Materials and Computational Methods

We consider entangled macromolecules that we simulate using LAMMPS [49] (http://lammps.sandia.gov).
The polymers are treated as elastic macromolecules modeled with harmonic bond potential of energy
E = Kb(r − r0)2, Kb = 250, r denotes the length of extension of the polymer bonds and r0 = 1
denotes the rest length of the bond. The polymer bending stiffness is controlled with a harmonic
angle potential with energy E = Kθ(1− cos(θ− θ0)), with Kθ = 8, where θ is the angle between two
consecutive bonds. The rest angle is θ0 = π. With this choice of Kθ, the chains have persistence
length approximately 1/5 of the length of the simulation box. With these potentials, there is no
maximum permitted length or bond angle constraints, but there is a high energy penalty for large
deviations from the rest length. This does not exclude the possibility of chains crossing through
each other, especially for large deformations. Our results however, show that chain crossings are
rare enough so as to not influence the qualitative effects of entanglement observed here (see Section
5). Therefore, our systems simulate stiff macromolecules which do not cross each other. We use the
Lennard-Jones potential with energy

E = 4ε

((σ
r

)12
−
(σ
r

)6)
(5)

with cutoff 2.5σ using Lennard Jones units.
The dynamics are simulated throughout using the Langevin Thermostat:

m
dV

dt
= −γV −∇Φ(X) +

√
2kBTγ

dBt
dt

, (6)

where X denotes the position of the atoms, V = dX
dt is the velocity, −∇Φ(X) denotes the force

acting on the atoms due to interaction potentials, γ is the friction coefficient and
√

2kBTγdBt/dt is
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the random force.
To study the mechanics of the polymeric fluid, we investigate the response of the material to

oscillatory shear stress (Lees-Edwards boundary conditions [33]) applied with rate γ̇ = γ̇0 cos(ωt).
We place the specimen in minor, sinusoidal oscillation by changing the specified box length to
L(t) = L0 +A sin(2π t

Tp
).

As a measure of material response, we consider the dynamic complex modulus G(ω) = G1(ω) +
iG2(ω). The components are defined from measurements of the stress as the least-squares fit of
the periodic stress component σxy by the function g(t) = G1(ω)γ0 cos(ωt) +G2(ω)γ0 sin(ωt). This
offers a characterization of the response of the material to oscillating applied shear stresses and
strains as the frequency ω is varied. The G1 is referred as the Elastic Storage Modulus and G2 is
described as the Viscous Loss Modulus. These dynamic moduli are motivated by considering the
linear response of the stress components σxy to applied stresses and strains. At low frequency the
polymer stresses appear to have sufficient time to equilibrate to the applied shear stresses. At high
frequencies, the polymer stresses do not appear to have sufficient time to equilibrate to the applied
shear stresses. This is manifested in σxy(t) which is seen to track very closely the applied stress. A
phase lag 0 is representative of solids and π/2 is representative of liquids. This delay is caused by
propagating the stress through the domain via the chain topology. The increase of G2 indicates
that the mechanics arises effectively from chains’ resistance to more rapid motions, such as sliding,
while the increase of G1 indicates in the mechanics a resistance to direct deformation represented
by increases in the elastic bond lengths or from the bending stiffness of chains.

To estimate the dynamic complex modulus in practice, the least-squares fit is performed for
σxy(t) over the entire stochastic trajectory of the simulation (after some transient period). In our
simulations, the maximum strain over each period was chosen to be half the periodic unit cell in
the x-direction, corresponding to a strain amplitude γ0 = 1

2 . A description of the parameters and
specific values used in the simulations can be found in Tables 2 and 3.

The effective stress tensor associated with the polymers at a given time is estimated using the
Irving-Kirkwood method [12,26]

σl,k =
1

V

∑
n

n−1∑
j=1

〈
f
(l)
j · (x

(k)
qn − x

(k)
qj )
〉

(7)

where V is the volume of the periodic box, x
(k)
qv is the k-th coordinate of the qv-th atom (the

minimum image convention is used for the difference) and f
(l)
j is the l-th coordinate of the pairwise

interaction between the two atoms.
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Parameter Description Value

σ monomer radius 1.0 nm
ε energy scale 2.5 amu · nm2/ps2

m0 reference mass 1 amu
wc energy potential width 2.5σ
m monomer mass 240 m0

τ LJ-time-scale σ
√
m0/ε = 0.6 ps

kBT thermal energy 1.0 ε
ρ solvent mass density 39 m0/σ

3

µ solvent viscosity 25 m0/τσ
Υ drag coefficient 476 m0/τ

Table 2: Parameterization for the polymer weave models.

Parameter Description Value

Eb harmonic bonds potential constant 619.5 amu/ps2

b harmonic bonds rest length 1.0 nm
Eθ harmonic angle potential constant 19.8 amu · nm2/ps2

θ0 harmonic angles’ rest length 180o

Table 3: Parameterization for the stiffness and connectivity of the polymer chains.

Table 4 shows how the simulation time and oscillation period range compare to characteristic
times in our systems. We use as a reference time τR for an ideal chain of length 20.

Parameter Description value

τA advection time propagation in fluid 0.0013 ps
τD diffusion time monomer moves a dist. σ 302 ps
τR Rouse time ideal chain N = 20 6937 ps
τ0 critical time cross-over reference time 598 ps
T period of oscillation 6ps < T < 3600ps
t simulation time timescale of longest simulation 150ps < t < 90000ps

Table 4: Characteristic time scales
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5 Bulk Mechanical Responses of the Polymeric Materials

5.1 Complex modulus

Figure 3: Polymer Weave Frequency Response: Dynamic Moduli. The Elastic Storage and Viscous Loss
Moduli of the infinite chain weaves are shown on the left and those of the open chain weaves on the right.
The infinite weaves behave like crosslinked polymers with a primarily elastic behavior throughout the range
of frequencies simulated. The exponents 1/2 and 1/4 are similar to those in the Rouse model [15]. The
open weaves transition from an elastic to a viscous behavior as frequency is varied. The exponents 3/4 and
3/2 indicate the predicted scaling for semi-dilute solutions of semi-flexible chains and for the BEL model
respectively [15]. The slope increases with decreasing topological complexity.

We show the log-log plot of the Elastic Storage Modulus G1 and Viscous Loss Modulus G2 for all
the infinite and open weave polymeric materials as the shear response frequency is varied in Figure
3. The frequency of oscillation is normalized by ω0 = 2π/τ0 where τ0 = 943τ = 598ps = 1.98τD is a
time-scale on the order of the diffusion time τD (see Table 4).

Comparing G1, G2 for the infinite weaves we see that, in the range of frequencies studied, we have
G1 > G2 for all the simple weaves. The crossover of G1 and G2 is absent for those systems within
this range of frequencies, which indicates no behavioral transition in the samples which exhibit solid
properties. When G1 is larger than G2 the elastic response is dominant indicating there is relatively
few polymer rearrangements (reptation) within the network structure. This indicates that energy
is mainly stored elastically in the stretching and bending of bridging polymeric chains. This can
be verified by our Writhe quantity for the chains as it reaches a minimum at the extrema of the
oscillatory strain period within this regime (see Section 5.2).

The systems with large G1 behave like stiff materials having strong entanglements similar to
imperfect networks having transient covalent crosslinking [9,25,34,41,51,52,61]. This indicates that
polymer solutions of long linear semiflexible chains can behave like crosslinked networks, even in the
absence of explicit crosslinks. This feature could be useful in understanding some of the viscoelastic
properties exhibited by collections of microtubules and the responses of the cytoskeleton [36].

Initially, G1 and G2 are independent of the frequency of oscillation and we see a crossover at
frequency ω0 that corresponds to period τ0. At frequencies higher than ω0 (period times shorter
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than τ0) there is a significant dependence of moduli on the frequency which increases with increasing
topological complexity. This is in agreement with predictions for polymeric networks [15]. The
line segments shown in the figure indicate a scaling between ∼ ω1/4 and ∼ ω1/2, respectively, to be
compared with that of Rouse chains.

The alternate interlacing weave, wIII, is the only infinite weave for which G1, G2 intersect and
for which G1 and G2 both seem to scale as ω1/2 in the intermediate frequencies. Moreover, for wIII,
G1 ≈ G2, with G1 < G2 for low frequencies. We find that the original configuration of wIII is not
favorable to the stiffness of the chains and the chains need to stretch resulting in a larger G1. This
causes extra collisions with other chains which results in larger values of G2 as well.

Comparing G1, G2 for the open systems we find that both G1 and G2 are initially constant up
to ω ≈ ω0 and then increase and intersect at ω ≈ 10ω0. We have G2 < G1 for ω < 10ω0 and
G1 < G2 for ω > 10ω0. This suggests two critical times in the polymer chain dynamics. The first is
τe = τ0/10 and the second is τ0 at which we find have a trend of slightly increasing with decreasing
density of the systems as predicted in [38]. We find that with increasing frequency the response
tends to become dissipative.

At low frequencies G1 ∼ ω1/2 we find the trends follow the Rouse model. For larger frequencies
we find that G1 ∼ ω3/2, G2 ∼ ω3/4 and then G1, G2 tend to a plateau value. Similar scalings were
reported in [65]. We remark that the empirical model of Barlow et al (BEL model, [6]) predicts
G1 ∼ ω3/2 at low frequencies for low molecular weight liquids and G2 ≈ ω3/4 corresponds to
the terminal response of semiflexible unentangled chains, similar to semidilute solutions of actin
and tubulin [8]. Similar behaviors have also been observed in the transition region between the
plateau and the glassy region of linear polymer melts of high molecular weight [48]. We find a
decreasing slope of G1 for increasing entanglement which suggests a slower relaxation mechanism.
Considering the complex modulus as an effective sum of that for low molecular weight liquids and
the Rouse model, these results indicate there is an effective Rouse mode for the alternating weave
wIII polymeric material and for the dense orthogonal weave wII material, but none for the simple
weave materials w0 and wI. This suggests that there exists a threshold level of entanglement for the
Rouse model to apply. Similar findings have also been reported in [10,40,63,66].
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Figure 4: Polymer Weave Frequency Response: Loss Tangent. The infinite systems behave like crosslinked
polymers with a loss tangent less than 1 at all frequencies. The open chains transition from a liquid-like
behavior to that of a solid-like behavior as the frequency increases. The inset plot shows the log-log plot for
open chains. These results show that the crossover frequency increases with decreasing topological complexity.
Similarly, the slope of decrease increases with decreasing topological complexity.

We show the loss tangent as a function of the frequency of oscillation in Figure 4. We remark that
tan δ can be interpreted as reflecting the strength of what is sometimes called “colloidal forces”. In
other words, if tan δ < 1 then the particles are highly associated and sedimentation could occur. If
tan δ > 1, the particles are highly unassociated. The loss tangent is almost constant, close to 0, for
all the simple infinite weaves (w0,wI,wII). The values of the open weaves are greater than one and
then decrease to the values of the corresponding infinite weaves. The asymptotic ordering of the
phase lag of the systems is w0 < wI < wII < wIII. We find that, our data at larger frequencies
that all the materials behave like elastic solids, as is often seen in large frequency responses. The
inset graph shows the corresponding log-log plot only for the open systems. It reveals a cross-over
at approximately ω0, which corresponds to times on the order τ0. This time-scale could be related
to the entanglement time as in [16,60]. This characteristic time-scale, seems to decrease with the
topological complexity of the weave. The large frequency tail of tan δ decreases more slowly with
increasing topological complexity and density indicating a substantial dissipation effect related to
entanglement.

5.2 Conformational analysis

We show configurations of the polymer weaves at different times during deformation in Figures 5, 6,
7, 8. For the small oscillation frequencies, the infinite chains follow the deformation of the defining
box, attaining an s-shape conformation. The open chains, significantly rearrange in time and tend
to avoid the boundary by aligning with the orientation of the deformation. This process happens
more slowly for wI and even more slowly for wII and wIII systems due to topological obstacles. We
note that the chains tend to form bundles of chains, giving an inhomogeneous material, suggesting
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that the inhomogeneity decreases with increasing density and entanglement complexity. Similar
phase separation of polymer solutions in oscillatory shear has been observed experimentally in [55].
We find the transition from bundle-dominated structures to entanglement dominated structures is
related to the entanglement length of the chains as has been also reported in [57]. The chains bundle
together in order to decrease their deformation. As the chains bundle, they form tubes of chains.
A larger diameter tube resists the deformation stronger than the individual chains. This larger
tube structure is apparent in the w0 infinite system. The same happens in two and three directions
respectively for wI, wII and wIII. This also happens transiently at initial times for the open systems.
At first the open chains form these bundles then they keep rearranging and entangling further until
finally forming globules.

Figure 5: Polymer weave0 subject to oscillatory shear. Configurations at the end of the simulation for the
infinite and corresponding open system. In both cases, the chains tend to form bundles. By forming tubes of
larger radius the chains decrease their individual deformation. The open chains can significantly rearrange
their conformations to those of random coils and the system becomes inhomogeneous, disconnected accross the
periodic boundary.
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Figure 6: Polymer weaveI subject to oscillatory shear. Configurations at the end of the simulation for the
infinite and corresponding open system. In both cases, the chains tend to form bundles. The open chains can
significantly rearrange their conformations, forming lamellar structures in one direction. The reason for the
tube and lamellar formations in the infinite and open chains, respectively, is that this reduces the individual
deformation of the chains.

Figure 7: Polymer weaveII subject to oscillatory shear. Configurations at the end of the simulation for
the infinite and corresponding open system. In both cases, the chains tend to form bundles to reduce their
individual deformation. The open chains can significantly rearrange their conformations to form lamellar
structures in one direction which tend to become 2 dimensional.
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Figure 8: Polymer weaveIII subject to oscillatory shear. Configurations at the end of the simulation for
the infinite and corresponding open system. In both cases, the chains tend to form bundles to reduce their
individual deformation. The open chains are trapped by entanglements, resembling the corresponding infinite
weave. The open system retains the percolation of entanglement in 3 dimensions.

Our topological methods can be used to more precisely characterize the conformational features
of the chains. We do this by measuring the Writhe and the Periodic Linking Number topological
quantities that we introduced in Section 2. We remark that the chains in our system are loosely
entangled relative to highly knotted systems yielding, as a consequence, Periodic Linking Numbers
and Writhe that are less than one. While the quantities appear small relative to those of highly
knotted systems, they still provide a useful characterization of the collective configurations of the
polymeric chains of the material and their rearrangements. As our results indicate these are useful
in understanding the connection between topology and mechanical responses.

We show the time evolution of the Writhe for the weave of type w0 for the fixed frequency of
oscillation, T = 12τD in the cases of infinite and open systems in Figure 9. We find a very different
behavior between the open and infinite systems (the situation is similar for wI and wII). In the case
of the infinite periodic systems, the mean absolute Writhe of the chains shows a sinusoidal behavior.
This is seen most clearly when the frequency of oscillation is small. This reaches a minimum and a
maximum each δt = T/4. During the shearing cycle of the unit cell in our simulations, the Writhe
is maximum when the shear deformation is the least and the Writhe reaches a minimum when
the shear deformation is at its greatest. This behavior is indicative of the chains stretching at the
maximum deformation and relaxing to a more entagled state when the shear deformation is relaxed.

The formation of bundles causes a small decay of Writhe over time. This manifests once the
chains have formed bundles with their Writhe following a sinusoidal behavior with a lower average
amplitude. In the case of open systems, the mean absolute Writhe of the chains also follows a
sinusoidal behavior, but it changes significantly in time. This happens because the chains are free
to attain any possible configuration and tend to disentangle and relax to configurations similar to
those of random coils. Indeed, the final values are similar to those of a semiflexible random coil of
comperable length as reported in [46]. This behavior becomes less pronounced as we increase the
density and complexity of the weave because the disentanglement time increases and the chains do
not have sufficient time to rearrange. Indeed, in the case of wIII, the Writhe of the open chains
does not vary significantly, behaving similarly to the infinite chains, indicating that the chains are
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constrained by entanglements (see Figure 9). We also notice that, for wIII, the Writhe of the open
chains is smaller than that of the infinite chains. A reason for this appears to be that the chains
attain more stretched and straightened conformations in order to decrease their bending energy in
the arrangements inherited from the original chain configurations.

Figure 9: The evolution of the mean absolute Writhe as a function of time during an oscillatory shear
experiment. Data shown for weave0 (above) and weaveIII (below) for period of oscillation T = 12τD, for
total time 5T . Left: infinite weaves, Right: open weaves. The Writhe is a fingerprint of the motion of the
chains. The infinite chains stretch and relax according to the shear motion of the cell. The open chains
re-arrange their conformation to reduce the stress. The behavior is different for w0 and wIII. In the absence
of constraints, the chains behave like random coils increasing their Writhe. In the presence of constraints,
the chains relax at conformations that reduce their bending and, therefore, their Writhe, in order to escape
entanglements.
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Figure 10: The evolution of the mean absolute Periodic Linking Number as a function of time during an
oscillatory shear experiment. Data shown for weaveIII for period of oscillation: Above: T = 12τD, for total
time 5T , Below: for period T = 6τD, for total time 20T . Left: infinite weave, Right: open weave. The
absence of an abrupt change in the data is indicative of no chain crossings, even at high frequencies. The
Periodic Linking Number of the infinite chains fluctuates around a value. The Periodic Linking Number
of the open chains increases, indicating that the chains create stronger contacts as they try to escape their
original constraints, similar to what was observed for linear FENE chains in a melt under elongation in [45].

The presence of topological constraints in weave wIII is also supported by our results concerning
the Periodic Linking Number. We show the time evolution of the mean absolute Periodic Linking
Number for a fixed frequency of oscillation, T = 12τD, for weave wIII in Figure 10. We see that the
values of the Periodic Linking Number are similar for infinite and open wIII systems, confirming that
in these time scales the entanglement dominates. These results also show that any chain crossing
that might occur due to the use of the harmonic bond potential is not significant (or even absent).

To further examine the latter, we analyze the the Periodic Linking Number of wIII chains, both
infinite and open, at a higher frequency of oscillation, T = 6τD, and for a longer time, t = 20T , see
Figure 10. We note that the Periodic Linking Number does not show a trend that would imply a
significant disentanglement due to chain crossings. For open chains, we see that the mean absolute
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Periodic Linking Number initially increases. A reason for this appears to be that as the chains tend
to straighten out to reduce their bending energy they also tighten up their contacts with the other
nearby chains. This results in an increase in the effective chain-chain linking. A similar behavior for
the linking number was observed for polymer melts of linear FENE chains in an elongational flow
in [45]. In view of these facts, we believe that the effect of the use of the harmonic bonds does not
alter the qualitative analysis of our data.

5.3 Topology and Mechanical Responses

Figure 11: Writhe and Loss Tangent. We find a linear behavior of the Writhe as a function of the Loss
Tangent. The data points corresponding to the different weaves form clusters. For open chains as the
topological complexity of the weave decreases both the Writhe and Loss Tangent increase. As the oscillation
frequency increases, the chains transition to the values of corresponding infinite weaves. The infinite weaves
w0, wI and wII have very similar Writhe, indicating steady-state similar collective configurations of the
polymer chains. The inset plot shows the log-log plot of small frequency responses which have characteristic

scaling 〈|Wr|〉 ∼ (tan δ)
6/5

.

We show the mean absolute Writhe of the chains as a function of the loss tangent in Figure 11.
We find a decay of the mean absolute Writhe with the loss tangent and a clustering of the data
for each system. We see that, as the frequency increases, the Writhe of the open systems tend to
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meet the values of their corresponding infinite chain versions. This occurs since the chains cannot
escape their original configuration as readily at large oscillation frequencies. The infinite systems of
similarly almost trivial topology show the same response to deformation and only the weave with
higher topological complexity (threading) gives a different response. It is notable that the proposed
Writhe measure groups together the systems of similar material response.

The inset of Figure 11 shows a log-log plot of responses for small frequencies of oscillation.
These results show a relationship between Writhe and tan δ that scales like 〈|Wr|〉 ∼ tan δ6/5.
The responses at small frequencies are clustered and ordered with their Writhe increasing as:
w0 ≈ wI ≈ wII < wIII for the infinite chains and decreasing as w0 > wI > wII > wIII for the
open chains. For the wIII case, approximately the same values for open and infinite chains are
found.

For the infinite systems, we observe that the Writhe does not change significantly. This is expected,
since without breakage of bonds the topology must remain close to that of the original configuration.
Since w0,wI and wII start with individually straight chains, their Writhe remains close to 0. The
original configuration of wIII has larger individual Writhe values and remains at the level 0.15. This
is another indication that there is no change in chain entanglement.

For the open chains, there is the potential for significant rearrangements of polymer chain
configurations and topology. The open chains tend to attain configurations similar to those of
random coils of comparable stiffness. However, attaining this state is significantly obstructed by
entanglements. This results in a decrease of the Writhe with entanglement complexity and density.
The clustering observed for these systems indicates that the global entanglement of the chains
imposed by the original conformation affects the response of the material significantly. The clustering
shows that these distinct behaviors arising from topology can be characterized by our mean absolute
Writhe of the chains.

Previous studies have shown that there is almost a linear relationship between the number of
kinks per chain and the mean absolute Writhe of a chain in a melt in the case of linear FENE chains
as a function of molecular weight in equilibrium conditions [46]. In non-equilibrium conditions
however, the relation becomes more complex [45]. The viscosity, can be obtained as the limit
η = limω→0G2(ω)/ω. Our results for the smallest frequencies indicate that the Writhe of the open
chains decreases with G2/ω, suggesting a decrease of the Writhe with viscosity, see Figure 12. The
number of kinks has been shown to increase with viscosity [5,28]. A similar inverse behavior between
the Writhe of the chains and the number of kinks was observed in the initial times of elongation of
the chains [45].
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Figure 12: Left: Writhe and G2/ω for open weaves at small frequencies (log-log plot). The viscosity can be
obtained as the limit η = limω→0G2(ω)/ω. We find an indication that the Writhe decreases with viscosity,
while Z shows the opposite relation to viscosity [5]. Right: Periodic Linking Number as a function of G1

for open chains for small frequencies (log-log plot). The equilibrium modulus can be obtained as the limit
Geq = limω→0G1(ω). We find an indication that Geq increases with increasing linking, similar to what was
reported for rings in [19].
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Figure 13: Periodic Linking Number and Loss Tangent. We find that the responses corresponding to
the different weaves form clusters. The Periodic Linking Number of the open chains increases with weave
complexity and decreases with loss tangent. As the frequency increases the open chain values transition to
those of the corresponding infinite weave. The linking numbers of weaves wI and II are very similar indicating
similar behaviors. The inset plot shows the log-log plot of small frequency responses which have characteristic

scaling 〈|LKP |〉 ∼ (tan δ)
−5/4

.

We show the mean absolute Periodic Linking Number as a function of the loss tangent in Figure
13. We find that the mean absolute Periodic Linking Number decreases with the loss tangent for
tan δ > 1. We find significant clustering of the data corresponding to the different systems. With
increasing frequency, the open systems tend to the value of the corresponding infinite systems. This
occurs because, at large frequencies, the open chains cannot escape their original configurations.

The inset graph shows the corresponding log-log plot for the smallest frequencies. For tan δ > 1
the responses are fitted to a relation of the form 〈|LKP |〉 ∼ tan δ−5/4. The increase of the linking
number implies the presence of persistent entanglements. Persistent entanglements are tight contacts
between chains that significantly restrict their motion [1]. Such contacts are likely to cause significant
bond stretching under deformation that is followed by a decrease of the Loss Tangent. The clustering
of the responses indicates that the imposed global topology of the initial configuration affects
significantly the response of the material. This persists for long durations even in the cases we
considered, in which the topology is allowed to change over time. These results show that interactions
underlying mechanical responses can be effectively captured by the Periodic Linking Number.
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From our results we obtain information about the equilibrium modulus. The equilibrium modulus
is defined as the limit Geq = limω→0G1(ω). We show the storage modulus for the smallest frequencies
in Figure 12. Our results suggest that the equilibrium modulus increases with the linking of the
chains. Interestingly, a similar linear relation between the entanglement density as obtained from
the Gauss linking integral and the shear modulus for ring polymers was reported in [19].

Our results on the Writhe and Periodic Linking Number show a competing relation between these
two with respect to the Loss Tangent. We provide a brief explanation for this effect in the case of
open chains. If the Writhe is large and the Periodic Linking Number is small, this can be interpreted
as meaning the chains attain random conformations with no significant topological constraints. This
would result in a behavior that is primarily dissipative. This suggests that interchain contributions
to stress dominate through collisions of molecules induced by Brownian motion.

In contrast when the Writhe is small and the Periodic Linking Number is large, we expect that
the chains get stretched by the presence of persistent entanglements. In this case, intrachain
contributions to stress would dominate. As the ratio 〈|LKP |〉/〈|Wr|〉 increases, the persistence of
entanglements increases. This implies that the bond stretching increases, which decreases the Loss
Tangent. Therefore, we expect the loss tangent to increase with such decreasing ratio of Periodic
Linking Number versus Writhe. In fact, this is confirmed in our results as seen in Figure 14. Our
results show, for the open systems at small frequencies, such a trend of the ratio of the Periodic
Linking Number over the Writhe as a function of the Loss Tangent. This indicates that one can
control the viscoelastic properties of a material by controlling the ratio of the Writhe and Periodic
Linking Numbers of the constituent chains. This also suggests that 〈|LKP |〉/〈|Wr|〉 is a measure
of the interchain contribution versus the intrachain contribution to the stress, a finding that may
contribute to our understanding of the interplay between these two contributions [59] .

Figure 14: The ratio of the Periodic Linking Number over the Writhe as a function of the loss tangent for
open systems at low frequencies (inset: double logarithmic plot). We notice that the ratio 〈|LKP |〉/〈|Wr|〉
decreases with the loss tangent. The inset plot shows the log-log plot of small frequency responses which have
characteristic scaling 〈|LKP |〉/〈|Wr|〉 ∼ (tan δ)

−2.6
.
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6 Conclusions

We have introduced for polymeric materials topological measures for quantifying the relationship
between polymer chain entanglement and viscoelastic responses. We investigated the link between
molecular-level interactions and mechanical responses for polymeric materials having weave-like
topologies using non-equilibrium molecular dynamics simulations. We found that our proposed
measures in conjunction with the mechanical Storage and Loss Moduli resulted in significant
clustering distinguishing the different polymeric materials considered. Our results indicate that our
topological measures provide a useful quantity for understanding how the molecular-level polymer
chain entanglements contribute to aggregate mechanical responses. Our results can be used more
generally as topological tools to further develop polymer theories to understand the interplay
between entanglement and mechanics. It would be interesting also to explore in future work how our
topological measures could be included to improve mean field theories and related formalisms [22,43]
and when incorporating additional effects such as hydrodynamic coupling [2–4,64].
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