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ABSTRACT OF THE THESIS

Decomposition of Synechococcus elongatus transcriptomics data to reveal its regulatory
modules through Independent Component Analysis

by

Tahani Al Bulushi

Master of Science in Bioengineering

University of California San Diego, 2021

Professor Bernhard Ø. Palsson, Chair

Synechococcus elongatus is a tractable model cyanobacterium for circadian studies and

a platform for bioproduction. The organism’s adaptation response to conditional changes in

aquatic environments is orchestrated through the transcriptional regulatory network (TRN).

Despite the previous characterization of constituent parts of the S. elongatus TRN, a

system-level characterization and analysis of the interactions between major transactional

regulators have yet to be established. Here, we demonstrate the utility of unsupervised machine

learning to compartmentalize and describe the characteristics of the different regulatory

modules of the model strain S. elongatus PCC 7942, enabling a complete reconstruction of its

TRN in response to environmental stresses and changes in intracellular states. Through the

application of Independent component Analysis (ICA) to a collection of 317 transcriptomic

samples, we obtained 51 independently modulated gene sets called “iModulons'', each of which

explained a portion of the variance in the organism’s transcriptional response. iModulons serve

as a knowledge tool to elucidate the transcriptional function and activation dynamics of

previously undefined regulons while also describing the interaction between transcription factors

in the TRN. Our data-driven analysis also provides, for the first time, a complete TRN

xi



reconstruction for S. elongatus with valuable functional context to expand the annotation of

many hypothetical genes captured in our iModulon structure. This transcriptome-wide analysis

of S. elongatus TRN informs future research on areas of possible genetic perturbations to

manipulate its transcriptional regulation and optimize the engineering of this organism. A

knowledge-driven database of all published high-quality RNA-seq data for S. elongatus to date

is now available in iModulonDB.org.

xii
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Chapter 1
Introduction

1.1 Background

Microbes have the ability to adapt to diverse environmental changes by coordinating

their gene expression state through a complex system called the transcriptional regulatory

network (TRN). In bacteria, a TRN constitutes a wide range of transcriptional regulatory units,

including proteins like transcription factors (TF) (Ishihama, 2000) and sigma factors, and RNA

fragments like riboswitches (Nudler & Mironov, 2004), small RNAs (Gottesman & Storz, 2011),

and transcriptional attenuators (Yanofsky, 1988). Biological methods such as chromatin

immunoprecipitation (ChIP )(Rhee & Pugh, 2012) are capable of identifying the binding sites of

transcription and sigma factors for genome-wide discovery. The TRN behaves similarly to a

signal processing unit. It participates in signal transduction pathways by sensing environmental

and intracellular signals, processing signal information, then applying appropriate adjustments

to gene expression to optimize bacterial growth and survival (Figure 1.1). The most well-studied

TRN in bacteria is that of Escherichia coli, an intestinal bacteria that modulates its gene

expression depending on levels of nutrient and oxygenation present in the host environment

(Jones et al., 2007). RegulonDB documents over 7,000 interactions between transcription

regulators and E coli’s genetic material (Santos-Zavaleta et al., 2018). The development of high

throughput RNA sequencing (RNA-seq) technologies has facilitated the collection of high-quality

microbial gene expression datasets, or transcriptomes, that can be analyzed to reconstruct

microbial TRN and elucidate their functional involvement. The reconstruction of or reverse

engineering of the TRN components informs the means to how an organism responds to

diverse environmental stresses and unfamiliar conditions (Buescher et al., 2012). Once the TRN

is reconstructed, it can be characterized to enable data-driven predictions that elucidate the

dynamics of the different adaptation responses as a result of environmental and genetic
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alterations. To enable TRN reconstruction, a substantial amount of experimental transcriptomic

data is needed to exploit all the binding sites for each DNA-binding regulatory and study their

condition-dependent (Sastry et al., 2019).

The TRN provides an important window to understanding many issues surrounding

health care and biotechnology. Transcription factors have been shown to control antibiotic

resistance in Salmonella spp. (Bailey et al., 2010), Salmonella Typhimurium (Abouzeed et al.,

2008; Alekshun & Levy, 1997), and Neisseria gonorrhoeae (Zalucki et al., 2012), virulence in

pathogenic bacteria like Mycobacterium tuberculosis (Raghavan et al., 2008), and the

development of engineered strains for bioproduction processes (Choe et al., 2019; Mohamed et

al., 2017). Therefore, a comprehensive understanding of TRN structures would enable the

prediction and elucidation of transcriptomic changes in response to multiple environmental cues

and intracellular states.

Figure 1.1: A visual representation of the TRN function. The TRN receives extracellular
and intracellular signals to influence transcriptome dynamics through gene expression as an
important method for cellular adaptation. Shown by the yellow arrow is the only exception in
TRN regulation observed in most cyanobacteria; where the activity of the endogenous clock,
or circadian oscillator, is directly influenced by light and dark cycles.
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1.2 The TRN of Synechococcus elongatus PCC 7942

Similar to E. coli, cyanobacteria also incorporate a responsive TRN to fluctuating

environmental conditions such as osmolarity (Paithoonrangsarid et al., 2004; Shoumskaya et

al., 2005), salinity (Marin et al., 2003), and temperature (Suzuki et al., 2001) variations.

Compared to many well-studied heterotrophic bacteria, such as E. coli or Bacillus subtilis,

cyanobacteria remain relatively understudied. These microorganisms are a photoautotrophic

prokaryotic group capable of performing oxygenic photosynthesis. Because of their high

dependency on photosynthetic precursors such as light and carbon dioxide (CO2), their TRN

significantly differs from previously characterized heterotrophs. The majority of cyanobacterial

transcription regulators are influenced by its light-sensitive circadian clock mechanism, which

governs fundamental cellular processes such as central metabolism, photosynthesis, and

growth. Therefore, it is expected that most TF in cyanobacteria is regulated either directly or

indirectly by the circadian clock (Figure 1.1) (Nair et al., 2001; Tu et al., 2004).

A model strain for prokaryotic circadian studies in cyanobacteria is Synechococcus

elongatus PCC 7942 (henceforth referred to as S. elongatus) because of its tractable and small

genome size (approximately 2.7 Mb), efficient homologous recombination, and its viability of

saturation mutant screens (Andersson et al., 2000). Its main circadian oscillatory protein (KaiC)

has been shown to physiologically change its composition in response to light-dark (LD) cycles

every 24 hours, regulate gene expression through clock output proteins, and influence

metabolic shifts such as that between glycolysis and gluconeogenesis (Diamond et al., 2015).

Despite this, S. elongatus lacks a comprehensive TRN structure that encompasses the majority

of its cellular processes (Minezaki et al., 2005). For example, the BioCyc Database Collection

reports nine TFs for S elongatus, which is not updated with recent literature findings in terms of

observed or proposed regulatory units.

Since S. elongatus base their metabolism on photosynthesis, almost all cellular

processes are affected by the presence or absence of light, which presents a unique
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engineering challenge for industrial applications. S. elongatus have gained increasing attention

from the field of biotechnology due to their efficiency as photoautotrophs in converting CO2 to

useful industrial biochemicals, tolerance to high temperatures, and ability to harness solar light

as their main source of energy, reducing production costs. Because of these desirable

characteristics, S. elongatus has been engineered to produce ethanol (Deng & Coleman, 1999),

isobutyraldehyde (Atsumi et al., 2009), alkanes (Schirmer et al., 2010), hydrogen (Kruse &

Hankamer, 2010), and free fatty acids (Ruffing & Jones, 2012) as biodiesel precursors in

large-scale applications. Other studies also show the important role of S. elongatus in limiting

biological contaminants by using phosphite in outdoor cultivation systems (National Research

Council et al., 2013). However, since most of these desired features are affected by LD cycles, it

is important to understand how the TRN coordinates gene expression to optimize metabolic

goals.

1.3 Machine Learning and Transcriptomic Datasets

The Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/) is a public

repository for high-throughput functional genomic datasets, maintained by the National Center

for Biotechnology Information (NCBI) (Barrett et al., 2012). RNA-seq data availability for S.

elongatus has increased within recent years, (Figure 1.2) motivating us to utilize the public data

to investigate the TRN structure for S. elongatus. We processed the downloaded data using our

RNA-seq processing pipeline followed by our quality control (QC) pipeline to generate 317

high-quality RNA-seq expression profiles for S. elongatus (see chapter 3 for Methods).

In the era of big biological data, the demand for robust computational tools using

statistical and machine learning techniques is on the rise. The complexity of biological data can

be made comprehensible for downstream analysis through computational tools to derive new

biological knowledge. Unlike supervised machine learning, which requires an expected

outcome, unsupervised machine learning distinguishes hidden structures from an unlabeled

dataset. One of the major categories of unsupervised learning is matrix decomposition, which
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applies the blind signal separation approach to decompose a high-dimensional matrix into two

lower-dimensional feature-describing matrices of the separated signals. Common matrix

decomposition algorithms include principal component analysis, independent component

analysis, non-negative matrix factorization, and singular value decomposition. This thesis

applies independent component analysis on the gene expression dataset to produce two

matrices as described in the next section.

Figure 1.2: Publically available RNA-seq data for S. elongatus and quality control. (a) A line chart
representing the accumulation of publicly available RNA-seq dataset for S. elongatus in NCBI (total 323)
as of August 2020 (b) The dataset was processed using our quality control (QC) pipeline that applies five
statistical criteria (Figure A.1a, see chapter 3 for more details). 56% (or 177 samples) of the dataset
passed the QC pipeline and 44% (or 140 samples) of the dataset was discarded.

1.4 Independent Component Analysis (ICA)

Independent Component Analysis (ICA) is a decomposition algorithm. It is used to

decompose the original mixed signal into their constituent individual elements and determine

their relative strengths. A common analogy to describe ICA is the “cocktail party problem” which

refers to the ability to follow a single auditory signal from one person while filtering out other

sources of noise from the party room (Brown et al., 2001). If ICA was applied to the recording of

linear mixed auditory signals produced by a set of sources, the algorithm exploits a statistical

discriminant to differentiate these sources and separate them in a “blind” manner. The

mathematical formula for this decomposition is represented by the equation X = MA, where

5
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multiplying both A and M matrices will result in the reconstruction of the X expression profile

matrix. ICA is built on the assumption that individual source signals are statistically independent

of each other, meaning that every signal shows no effect on other signals and that the values in

each source signal have a non-Gaussian distribution. With this, ICA maximizes statistical

independence through the measure of non-Gaussianity using kurtosis and negentropy, which

measures the distance from normality (Hyvärinen et al., 2004). With ICA gaining a lot of

attention, the algorithm was heavily used in the disciplines of signal processing and neural

computation which led to the development of FastICA.

Recently, ICA has been applied to a high-quality RNA sequencing (RNA-seq) gene

expression compendium (Poudel et al., 2020; Rychel et al., 2020; Sastry et al., 2019) to isolate

independently regulated transcriptional modules (named “iModulons”) for E. coli. This method

was then applied to expand the current understanding of the Bacillus subtilis and

Staphylococcus aureus TRNs. As described in the previous section, ICA decomposes a

compendium of gene expression data into two matrices: the iModulon matrix (M) describing the

relationship between gene affected by an underlying biological signal, and the Activity matrix (A)

containing condition-specific activity levels for each iModulon (Figure 1.3). Each iModulon

comprises a set of genes whose expression varies collectively, but independently of other genes

not present in the given iModulon. Thus, iModulons represent functionally-related coexpressed

gene sets across multiple conditions. The activities encoded in the A matrix elucidate the

changes in expression levels for the collective genes comprising a single iModulon under

different conditions.

Prior studies have applied similar techniques to cluster significantly expressed genes in

clusters or networks to map out the transcriptional topology in cyanobacteria (Singh et al., 2010;

Yang et al., 2015). For example, Context-Likelihood of Relatedness (CLR) was used to create a

network of co-expressed genes organized in graph neural networks (McClure et al., 2016).

6
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Methods like CLR and ICA are extremely beneficial in characterizing understudied

photoautotrophs because of their lack of operon-based genetic organization.

Figure 1.3: General structure of ICA decomposition. ICA decomposes the RNA-seq eXpression profile
matrix (X) into two matrices: the iModulon (M) and Activity (A) matrices. The M matrix describes the effect
of an underlying biological signal that induces transcriptional activation or repression. The A matrix
describes the activity levels of the genes included in each iModulon. Each resulting independent
component (column of M) contains a coefficient for each gene in the genome. These coefficients are then
scaled by the condition-specific activities (row in A) to describe the contribution of each component to the
expression or transcriptomic compendium. The summation of all iModulons and their activity will in return
reconstruct the original X matrix. Both top and bottom panels convey a similar description of the main
matrices involved in ICA.

1.5 Thesis Outline

In this thesis, we present the iModulon decomposition of S. elongatus in chapter 2

though (1) revealing iModulons with high regulon coverage to validate previous literature

findings, (2) provide new functional insights to a few transcriptional regulators in S. elongatus,

(3) propose putative transcription factors, and (4) provide activity-based analysis though

clustering to study differentially expressed iModulons. Chapter 3 discusses the computational

methodologies used to fulfill this project’s objectives.
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Chapter 2
Results
2.1 The S. elongatus transcriptome consists of regulatory and functional iModulons

To discover the transcriptional regulatory landscape of S. elongatus, we extracted 323

publicly available RNA-seq expression profiles from 12 individual studies, see Table 1, (Fleming

& O’Shea, 2018; Markson et al., 2013; Piechura et al., 2017; Puszynska & O’Shea, 2017a,

2017b; Ruffing, 2013) as found in NCBI’s Sequence Read Archive (SRA). Each dataset was

processed using standardized RNA-seq and quality control protocols to produce a final

compendium consisting of 262 expression profiles for S. elongatus (see chapter 3 for Methods).

ICA of this compendium resulted in 51 iModulons, each of which describes a gene cluster that is

expressed independently from other clusters across all conditions in the compendium (Sastry et

al., 2019). The discovered 51 iModulons capture 41% of the genes in the genome and explain

73% of the variance in the transcriptome. 1108 unique genes were enriched in the iModulons,

and 305 appeared in more than a single iModulon, indicating the presence of multiple controlling

regulators.

While a few iModulons recapitulate predefined regulon structures, other iModulons might

capture a portion of a given regulon or show no regulon enrichment. This implies that the

regulon-iModulon relationship is complementary and can be described using two measures

(Rychel et al., 2020): iModulon recall (MR) and regulon recall (RR), referring to the fraction of

shared genes given iModulon genes and regulon genes, respectively (Figure 2.1a). iModulons

are not only interpreted through regulon enrichment, but can also be characterized through

statistical enrichments between their constituent genes and other knowledge tools such as

KEGG pathway, GO annotations, or other knowledge types found in the literature (Kanehisa et

al., 2021; The Gene Ontology Consortium & The Gene Ontology Consortium, 2019). In total, we

categorized the 51 iModulons into five main categories: Regulatory, Functional, Genomic,
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Uncharacterized, and Single Gene (Figure 2.1b). ‘Regulatory’ iModulons are enriched in a

transcriptional regulator, whereas ‘Functional’ iModulons are related to a particular biological

function. ‘Genomic’ iModulons represent the effect of genomic changes, such as gene

knock-outs. ‘Single Gene’ iModulons track the expression of a single gene and are likely

decomposition artifacts from ICA (McConn et al.). Finally, ‘Uncharacterized’ iModulons are those

that do not fall into any of the previous categories, likely due to the presence of many

uncharacterized genes. We also further characterized these categories to obtain a deeper

understanding of their systems-level metabolic roles (Figure 2.1c). iModulons can also be

ranked based on their explained variance in the data, which helps to construct a hierarchical

understanding of their regulatory contributions to the adaptive response machinery in S.

elongatus (Figure 2.2).

Figure 2.1: iModulon and regulon relationship and iModulon categories. (a) Regulon enriched
iModulons are those that recapitulate or show enrichment to well-defined regulons. iModulon recall (MR)
and regulation recall (RR) are two measures used to describe enrichment overlap. The size of the scatter
dots is indicative of iModulon size (i.e. number of genes contained in the iModulon) and the color is
indicative of its corresponding function. The top-right quadrant (highlighted in light orange) means
well-matched enrichments with high MR and RR. (b) Pie chart dividing iModulons into five major
categories deepening on their function and/or properties: Functional, Regulatory, Genomic,
Uncharacterized, and Single Gene. (c) A treemap illustrating subcategories of the main five categories for
each iModulons. Functional iModulons are marked with asterisks (“*”) after iModulon name (ex.
Cytochrome C Oxidases), and Regulatory iModulons are distinguished with a diagonal pattern (ex.
RpaA). Legends for the treemap are included under the pie chart.
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Apart from the iModulon matrix (M), the other output of ICA is the activity matrix (A)

which enables condition-dependent comparison studies across multiple iModulons (Figure 1.3),

demonstrating the tractability of iModulons as compared to traditional differential expression

analysis (DEGs) since the number of iModulons is significantly fewer than the number of genes

in the organism’s genome. This feature facilitated quantifiable comparisons of iModulon

activities between contrasting data points, such as light versus dark exposures, wildtype versus

genetic perturbation, and adverse environmental stressors. iModulon activities can also be

clustered to identify similar iModulons that compose core biological phenomenons. To mitigate

batch effects between the expression profiles gathered from the six independent datasets,

activity levels were centered to a reference condition within each dataset. Table 1 lists all

samples extracted from NCBI’s SRA with a description of each study and other metadata.

Figure 2.2: iModulon explained variance distribution. iModulons that explain a large portion of the
data are those that are regulated by the endogenous clock or are responsible for major metabolic shifts
and expression changes. Together, all iModulons explain 73% of the variance in the transcriptomic data.
The legend shows iModulon categories (Regulatory, Functional, Genomic, and Uncharacterized).
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The ICA framework also enables simultaneous analysis of TRNs at the gene and

genomic scales by quantitatively capturing complex regulatory behaviors describing

coregulation of a single gene by multiple regulators, regulation of multiple genes by the same

regulator, and coordinated expression levels of multiple iModulons under various conditions. We

will demonstrate these complex regulatory cases when discussing individual iModulon in this

section. Another attractive quality of ICA is its ability to compute condition-dependent activity

levels, indicative of the underlying transcription factory activity, for each iModulon across every

sample in the compendium. This enables efficient condition-dependent comparison studies

across multiple iModulons or samples of interest, giving it an advantage over differentially

expressed genes studies since the number of genes in a given organism is larger than the

number of iModulons. The reported activity levels are centered on a reference condition for

each collected RNA-seq bioproject. A detailed section is dedicated to elucidating the different

activity-based analyses enabled through the use of ICA.

16



Table 1. Original studies of all RNA-seq data extracted from NCBI’s SRA repository
BioProject Project

name
#n GEO

Accessions
Study Description Reference

Condition

PRJNA140271 RNA 3 GSE29264 Global transcriptome architecture of S.
elongatus PCC 7942 (Vijayan et al., 2011)

wt

PRJNA354335 RpaA 24 GSE89999
Gene expression analysis in clock rescue and
RpaA mutant clock rescue strains during dark
and light (Puszynska & O’Shea, 2017a).

wt_dusk_0
00

PRJNA196229† FFA 17 GSE45762
RNA-seq analysis of targeted mutagenesis to
improve the secretion of free fatty acids in
engineered S. elongatus strains (Ruffing,
2013)

wt_100h

PRJNA372989 S72 19 N/A
Analysis of changes in salinity, temperature
and pH levels on S. elongatus to address
different stress acclimation (Billis et al., 2014)

ref

PRJNA401742†
PRJNA404081†
PRJNA403840†
PRJNA415380†

ppGpp 94
GSE45762
GSE103463
GSE103704
GSE103644
GSE105774

Analysis of gene expression between
wild-type and rel- strains under constant light
to study the role of ppGpp in S. elongatus
(Puszynska & O’Shea, 2017b).

0wt_dawn_
000

PRJNA412032† Light 60 GSE104203
Measurement of genome-wide gene
expression grown under simulated natural
light conditions (Piechura et al., 2017).

CD_0.5h

PRJNA221220† Clock 18 GSE51112
Understanding the extent of RpaA in
controlling circadian gene expression
(Markson et al., 2013)

WT_24h

PRJNA472248† Sigma
Factors

72
GSE114693

A deep analysis of RpaA-dependent sigma
factor cascade in S. elongatus (Fleming &
O’Shea, 2018)

del_rpoD2_
0h

PRJNA506580 H2O2 4
GSE122841

Compare hydrogen peroxide stress tolerance
through gene expression of wild type and
OsTPX-expressing S. elongatus under the
normal and stress conditions (Kim et al., 2018)

wt_normal

PRJNA588336 DHAR 4 GSE140121
Expression of heterologous OsSHAR gene
improved glutathione-dependent antioxidant
system and redox balance in S. elongatus

wt_normal

PRJNA642094 RNA-2 1 N/A RNAseq Co-culture comparison of two
species

N/A

N/A RNA-3 1 N/A No trace of the original study N/A

Total 317

† Bioprojects that passed the quality control (QC) pipeline and are included in the ICA analysis.
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All results generated from the analysis of this study are deposited in the form of

interactive dashboards and are included in iModulonDB for S. elongatus (see chapter 3 for

Methods). The presented TRN covers all available public RNA-seq datasets gathered as of

August 20, 2020. We encourage researchers to use the website to refer to the discovered

iModulons, including their regulators and gene sets, in this study.

In this section, we discuss three regulon-enriched iModulons to confirm the validity of our

TRN composition, the discovery of hypothetically new regulons and their associated TFs, the

functional insights that might expand current knowledge concerning different metabolic and

ecological processes in S. elongatus, and the annotation of functionally-obscure iModulons

through differential activity analysis.

2.2 iModulons capture predefined transcriptional regulators

We first describe two iModulons whose structures significantly overlap with

well-characterized regulons from the literature: RpaA and CmpR. We evaluate the activity levels

of the RpaA iModulon to show that its regulator activity is in agreement with existing knowledge

and provide additional insight into the CmpR regulon.

RpaA, the regulator of phycobilisome association A, is a master transcription factor that

binds to 170 downstream gene targets (Markson et al., 2013). 68 of these gene targets were

captured in an iModulon, which led us to name it the RpaA iModulon (Figure 2.3a). The

incompleteness of the RpaA iModulon is likely a result of other confounding regulators affecting

the remaining genes in the RpaA regulon, or maybe because iModulons sometimes identify

multiple dynamic subsets of a single regulon (Lamoureux et al., 2021; Sastry et al., 2020). The

RpaA iModulon was most active in the moments leading to and during dusk (PRJNA:412032),

which is consistent with previous findings for its constituent genes (dusk peaking class I genes)

(Diamond et al., 2015; Markson et al., 2013) (Figure 2.3b). In addition, rpaA null-mutants
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exhibited negative iModulon activity, indicating under-expression of genes in the iModulon as

compared to wildtype samples during dark conditions (PRJNA:412032). This clearly confirms

that the RpaA iModulon behaves similarly to the expected RpaA TF.

The TF CmpR regulates the acquisition of inorganic carbon in response to cellular CO2

levels. The regulon contains the transcripts of the bicarbonate transport system (cmpABCD) and

its own gene (Omata et al., 1999, 2001). Speculations regarding a repressive role for CmpR

have been made to influence the expression of BicA (some mnh genes), SbtA, NDH-I3

(ndhF3-ndhD3-cupA-cupS), and NDH-I4 (0307-ndhF4-cupB and ndhD4) under high CO2

conditions(Pan et al., 2016) (Figure 2.3c). We identified two iModulons with significant overlap

with each other and the CmpR regulon and (Figure 2.3d a-f). The CmpR-1 iModulon contained

15 genes, including both cmpABCD and ndhF3-ndhD3-cupA-cupS operons. The expression of

the latter operon encodes the high-affinity CO2 uptake system NDH-I3 and is induced in low-CO2

conditions (Maeda et al., 2002; Ohkawa, 1998). The CmpR-2 iModulon captured 14 genes

regulated by CmpR, such as sbtA encoding a sodium-dependent bicarbonate uptake system

(Shibata et al., 2002), mnhCD encoding the NDH-1 complex-associated Na+/H+ antiporter

(Price, 2011), and the cmpR gene. Based on the regulon coverage for the CmpR-2 iMdoulon,

we believe an additional TF jointly regulates the CmpR-2 iModulon. This dual-regulation might

explain the presence of ndh genes, encoding NDH-1 complex, and confirms the observed

biological connection between respiration to carbon acquisition is S. elongatus (Battchikova et

al., 2011). We examined both iModulon activities under high light pulse and shade pulse

conditions, considering the direct implications of light intensities and CO2 levels on the activity of

CmpR (Pan et al., 2016; Woodger et al., 2003). CmpR-1 was consistently down-regulated

because of adequate supplementation of carbon sources in the original study. CmpR-2 showed

expected minimal expression under sufficient CO2 and high light pulse conditions (Pan et al.,

2016). During the shade pulse, however, a reduction was observed. The decrease in light

intensity in the shade pulse condition might reduce the cellular demand for CO2, since a
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reduction in photonic energy, causing a reduction in the amount of electrons, ATP, and

eventually the need to import CO2. Together, both CmpR-1 and CmpR-2 iModulons demonstrate

the characteristics of the CmpR TF during CO2 sufficient conditions and suggest an additional

regulation in the CmpR-2 iModulon. The complete activity for both iModulon across all samples

in the transcriptomic compendium is provided in the supplemental Figure A.2.

Figure 2.3: iModulons validate retrospective literature observations. (a) Venn diagram
between the RpaA regulon and RpaA iModulon. (b) Activity of the RpaA iModulon genes between
wildtype and rpaA deletion mutants (left), and wildtype samples during clearday condition and
constant Low Light conditions (right). (c) General understanding of CmpR and its homologs (NdhR
and CcmR) binding sites and regulations. Note that the red solid arrows corresponding to
NdhR/CcmpR are not observed in S. elongatus. However, based on recent suggestions (Pan et
al., 2016), CmpR behaves as a repressor similar to the repressive role of NdhR/CcmpR in S.
elongatus (gray dashed lines). (d) three-way Venn diagram showing the gene distribution between
CmpR-1 and CmpR-2 iModulons and CmpR regulon. (e) Scatter plot showing the shared genes
(red) between both CmpR-1 and CmpR-2 iModulons.

2.3 iModulons generate hypotheses by elucidating new transcription factors and

their function

After confirming that iModulons are representative of the S. elongatus TRN, we analyzed

the remaining iModulons to either discover new regulatory patterns or expand the

characterization of current regulons. We illustrate this by elucidating the configuration and

activity levels of iModulons related to various biological and metabolic categories. We, first,
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present putative transcription factors and their genetic targets followed by an extensive

discussion of functional iModulons and, if applicable, their association to circadian clock

dynamics.

2.3.1 Putative TF  may coordinate Fur-IdiB crosstalk in iron-deprived conditions

Iron homeostasis has been shown to prevent oxidative stresses and maintain

photosynthesis in cyanobacteria (Kranzler et al., 2013). This is predominantly because iron

serves as a cofactor for membrane-bound protein complexes and other mobile electron carriers

within the photosynthetic apparatus (Cheng & He, 2020). Similar to other photosynthetic

organisms, S. elongatus has evolved regulatory molecular switches that stringently regulate iron

acquisition and metabolism, of which Fur and IdiB are the most understood to date. Fur is a

ferric uptake regulator and IdiB is an iron deficiency-induced protein B (Ghassemian & Straus,

1996). We identified the idiB iModulon that showed a significant overlap to the IdiB regulon

(Figure 2.4a). Past studies have reported that Fur and IdiB are connected in their activation

under the influence of reactive oxidative species (ROS), suggesting an existing cross-talk

between both TF (Nodop et al., 2008; Yousef et al., 2003). However, it also has been

demonstrated that idiB does not contain a Fur-box consensus sequence upstream of its coding

region, an indication that Fur does not regulate the expression of idiB (Nodop et al., 2008;

Yousef et al., 2003). Despite this, Yousef et. al. proposed that an existing unknown global

repressor that is sensitive to the presence of ROS binds upstream of idiB and idiC, and could

elucidate the observed crosstalk between IdiB and the Fur regulon. Although we have not

identified a Fur iModulon in this study, we found an iron-related iModulon that regulated idiB

gene, and subsequently, the IdiB iModulon. This is an example of a nested iModulon structure

where one iModulon contains a gene that encodes a TF of another iModulon. In addition to

containing idiB, the iron-related iModulon also captures idiC, iron transporter genes futA2BC

whose regulator has not been identified prior to this study (Nodop et al., 2008), and additional

hypothetical genes, one of which has a putative iron uptake function (synpcc7942_2169). We
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hypothesize that this iron-related iModulon might be regulated by the product of

synpcc7942_2170 because it contains a helix-turn-helix DNA binding domain. To support our

hypothesis further, this iModulon also regulates isiA and isiB (genes belonging to the Fur

regulon) that are normally expressed under iron-deficient conditions (Figure 2.4b). This

observation strongly suggests that synpcc7942_2170 might be the global regulator that

connects the activity of Fur and IdiB (Figure 2.4c). Not much is known about synpcc7942_2170

and the protein it encodes, which warrants future studies to investigate its involvement in the

structural interplay of iron regulation in S. elongatus.

To understand the regulatory effect the iron-related iModulon exerts on the IdiB

iModulon, we compared their activities and observed that their expression activity varied the

most in PRJNA:412032 (Figure A.2) (Piechura et al., 2017). During natural light conditions, the

iron-related iModulon appeared to be leveled off followed by a sharp increase before dusk, while

the IdiB iModulon remained downregulated (Figure 2.4d). From this observation, we developed

two possible interpretations: the iron-related iModulon could result in the downregulation of IdiB

and its genetic targets during daytime. Secondly, if synpcc7942_2170 is responsive to

accumulating ROS, the transient increase in activity of the iron-related iModulon during natural

light conditions can be viewed as part of the preparation process for the nighttime redox

restoration (Welkie et al., 2019).

Similar to the iron-related iModulon, we identified three autoregulated iModulons with

genes containing the helix-turn-helix DNA binding domain, evidencing that their protein products

could regulate the remaining genes within the iModulon structure. To support our hypotheses

regarding these iModulons, we performed a comparative analysis between S. elongatus

iModulons and iModulons from previously published microbes (Poudel et al., 2020; Rychel et

al., 2020; Sastry et al., 2019). We used reciprocal BLAST hits to generate one-to-one orthology

between S. elongatus and these organisms to obtain orthologous gene pairs. Once determined,

we applied a distance metric to identify homology between the three S. elongatus iModulons to
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iModulons from other organisms. From this analysis, we discovered that the putative TF for

each of the S. elongatus autoregulated iModulons have conserved genetic sequences to TFs

regulating iModulons from other organisms.

Figure 2.4: iModulons Discover New Potential Transcription Factors (a) Venn diagram showing the
shared genes between the IdiB regulon and the ICA-computed idiB iModulon (b) Gene weight plot for the
putative iron-related iModulon regulated by the HTH DNA-binding protein synpcc7942_2170 (2170 for
short). The legend shows the category of genes in this iModulon (c) Redefined regulatory cross-talk
between all iron inducing transcription factors (Fur, IdiB and the proposed 2170), a continuation of the
communicated regulatory network in Yousef et. al. (Yousef et al. 2003) (d) iModulon activity comparison
between the IdiB iModulon and the putative 2170 iModulon. Reference condition is shown with a triangle
and dots represent biological replicates for each condition in the PRJNA:412032 dataset.

2.3.2 CysR and sulfur assimilation

CysR is a transcriptional regulator belonging to the Crp-family of prokaryotic regulator

proteins that facilitates the acclimation of S. elongatus to conditions of low sulfur. Inactivation of

the cysR gene prevents the increase in activity of sulfate premeases and sulfur assimilation into

the cytosol under sulfur limiting conditions (Nicholson et al., 1995). However, CysR is not

essential for growth when abundant levels of sulfate or thiosulfate is provided in the culture
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medium (Laudenbach & Grossman, 1991). Instead, CysR is involved in regulating the growth of

sulfur-containing compounds since cysR mutants fail to utilize sulfur-resources in the media. We

identified CysR in the Sulfur Assimilation iModulon, which also includes ABC transporter

preseamses (cysT, cysW, CysU, and CysV) and sulfate-binding genes (cysA, cysP, sbpA,

sbpB). Other captured genes include rdhA (rhodanese-like protein), sir (Sulfite reductase,

ferredoxin dependent) and per1 (1-Cys peroxiredoxin). Additionally, a plasmid gene of

hypothetically conserved function (anL43) was also captured which suggests that it might be

related to sulfur metabolism in S. elongatus. From a cross iModulon correlation test, the CysB

iModulon in E. coli, in which CysB regulates sulfur uptake during sulfur deficiency, was

correlated to this iModulon with Pearson R correlation of 0.6 (Figure 2.5a). However, no

sequence homology was detected between the genes cysB and cysR. Further investigation of

this iModulon is encouraged.

2.3.3 HrcA might regulate heat shock response in S. elongatus

A set of chaperon and heat shock proteins comprise the heat shock resistance (HSR)

iModulon is S. elongatus and showed a significant correlation and nearly identical orthologs in the

Mycoplasma pneumoniae HrcA iModulon (Pearson R 0.87), indicating that these genes are

modulated in similar ratios across the two organisms (Figure 2.5b). hrcA (synpcc7942_RS03160)

in S. elongatus encodes a CIRCE-specific transcriptional repressor of the heat shock genes and

is highly conserved in genomes of cyanobacteria (Nakamoto & Kojima, 2017). A study determined

that the mRNA level of groESL1 increased in the hrcA mutant of S. elongatus during

heat-treatment at 30 0C followed by a reduction in level of mRNA accumulation at 60-mins post

heat-treatment (Saito et al., 2020).
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Figure 2.5: Putative regulation patterns and new transcription factors (a-b) Scatter plots comparing
gene weights of iModulons found in different datasets.Genes shown in red are members in both
iModulons and horizontal and vertical dashed lines indicate iModulon thresholds. (a) Comparison of the S.
elongatus CysR iModulon to the E. coli CysB iModulon. (a) Comparison of the S. elongatus HrcA
iModulon to theM. pneumoniae HrcA iModulon. (c) stressed vs unstressed activity of the oxidative stress
tolerance iModulon from PRJNA:506580. Labels to the right indicate the applied condition (i.e. stressed
with the addition of H2O2 and unstressed without the addition of H2O2). (d) oxidative stress tolerance
iModulon activity comparison between WT and rpaA mutant strains. Reference condition is marked with a
red triangle in panel c and d.

2.3.4 Activation of antioxidants by synpcc7942_0110

The oxidative tolerance iModulon is comprised of antioxidants and reductases that are

directly involved in mitigating superoxides and also act as electron carriers in many biochemical

processes. These genes include trxB (thioredoxin reductase), rbr (rubrerythrin), and tpxA (2-Cys

peroxiredoxin), parB (cellular oxidant detoxification nuclease), synpcc7942_0109 (Ferritin-like

protein), synpcc7942_1648 (putative ferric uptake regulator), synpcc7942_RS03965

(hypothetical protein), synpcc7942_0110 (HTH-DNA binding protein), and sigF2. Thioredoxins

like TrxB have been shown to participate in oxidative response and particularly respond to high
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light stress and chlorophyll formation (Pérez-Pérez et al., 2009). Rubrerythrin proteins function

as peroxidases and electron carriers to provide oxidative stress protection from metabolically

generated hydrogen peroxides (Sztukowska et al., 2002). TpxA has signaling importance to

maintain hydrogen peroxide scavenging (Toledano & Huang, 2016). Since oxidative damage

can damage genetic material, ParB encodes a nuclease that is involved in DNA repair. Most

importantly, we were interested in synpcc7942_0110 since it could be the protein regulating the

expression of this iModulon. The upstream gene of synpcc7942_0110 (synpcc7942_0109)

encodes an oxidative damage protein. Moreover, the activity of this iModulon was greater in

stressed conditions compared to non-stressed conditions (Kim et al., 2018) (PRJNA:506580,

Figure 2.5c) and showed an upregulated in the rpaA mutant samples, suggesting that RpaA

exerts a regulatory influence on synpcc7942_0110 protein (Figure 2.5d). Further experimental

validation is recommended to further test the predictions discovered by the ICA framework

through gene knockout experiments of the aforementioned putative transcription factors.

2.4 Functional iModulons provide additional knowledge regarding their overarching

regulators

iModulons result from a top-down analysis of large transcriptomic data that efficiently

captures the TRN configuration. Since S. elongatus lacks a completely defined regulon

structure, many of the resulting iModulons were strongly associated with biological processes

that are likely to be controlled by undiscovered regulators. In this section we target three

biological and metabolic systems, whose relationship with regulons are yet to be defined. We

first elucidate the regulatory patterns of RpaB under dynamic light conditions, discuss the

modes of regulation of NtcA, and expand on the genetic targets that are associated with

pili-related mechanisms.
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2.4.1 The role of RpaB in regulating light-dependent genes during dynamic light changes

Given the important role of photosynthesis in powering metabolic pathways, we were

interested in studying the implications of light fluctuations on the transcription of the

photosynthetic apparatus and its intermediates. In order to study such effects, we utilized data

obtained from a study where four dynamic light conditions were applied (PRJNA:412032)

(Piechura et al., 2017). The two base conditions were ‘Clear Day’, resembling natural daylight in

a parabolic manner, and continuous ‘Low Light’ leveled at low photon rates (Figure 2.6). Cells

were also exposed to abrupt increases (‘High Light pulse’) and decrease (‘Shade pulse’) in light

intensities for 1 hour between hours 8-9. Note that the Low Light condition is not to be confused

with the Constant Light condition (often denoted as LL in the literature). We will be referring to

these conditions when discussing three light-dependent iModulons to study the regulatory role

of RpaB: Photosystem, High Light Stress Acclimation, and State Transition.

A major regulator that controls light-dependent genes in S. elongatus is RpaB, a paralog

of RpaA that binds to some circadian gene promoters (Hanaoka et al., 2012; López-Redondo et

al., 2010). RpaB is a repressor of the high light-inducible (hliA and rpoD3) genes during

standard (non-stressed or LL) conditions by binding to the high light regulatory 1 (HLR1)

sequence (Seki et al., 2007). However, during high light stress, the phosphorylation state RpaB

is altered to de-represses the high light-inducible genes (López-Redondo et al., 2010;

Moronta-Barrios et al., 2012). Furthermore, RpaB is also an activator for the Photosystem (PS) I

genes, containing HLR1, during standard conditions to maintain viability (Moronta-Barrios et al.,

2012; Seino et al., 2009). Thus, RpaB works for positive regulation of PSI genes and negative

regulation for the high light-inducible genes during standard and high light stress conditions,

respectively.

In this context, the Photosystem iModulon contained two anti-correlated gene clusters.

The positively weighted gene cluster contained phycobilisomes and reaction centers for both

PSI and PSII. The negative gene cluster encompassed high light-inducible genes and nblA, a
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major regulatory factor in the bleaching process and the degradation of phycobilisomes. Of

these systems, only PSII components are not reported to be regulated by RpaB (Kato et al.,

2011; Seino et al., 2009). The negative gene cluster is consistent with their function, considering

their activation only during high light stress conditions.

To understand the regulatory behavior of RpaB on the Photosystem iModulon, we

examined the activity levels of this iModulon across the aforementioned light conditions (Clear

Day, Low Light, High Light Pulse, and Shade Pulse). For all conditions, expression levels were

in agreement with the reported results of the original study, implying that the transcription of PSI

and PSII follow a general trend of class I genes (Figure 2.6-c). The upregulation in Shade Pulse

is ascribed to RpaB repression of PSI genes during photoreduction while the downregulation in

High Light Pulse is due to the activation of the high light-inducible genes. The latter is important

to induce the expression of high light-inducible genes to mitigate the production of reactive

oxidative species as a direct result of High Light Pulse. Therefore, the Photosystem iModulon

demonstrates two anti-correlated systems that are tightly regulated by RpaB. We will refer to the

Photosystem iModulon as a baseline reference when discussing the following two

RpaB-regulated iModulons.

The High Light Stress Acclimation (or HLSA) iModulon represents the photosystem

protection mechanism against high light stress. Expression levels opposite to the direction of

pulses were observed (Figure 2.6-d). The HLSA iModulon captured hliA and rpoD3, with the

highest gene weights, which were negatively weighted in the baseline Photosystem iModulon.

Unlike PSI subunits and protochlorophyllide reductases, the genetic components of ferredoxins,

photolyases, quinone binding, and PSII reaction centers remained highly weighted in the HLSA

iModulon. We theorize that these genes play vital roles in acclimating to high light intensities

(Seino et al., 2009). Other genes were also present in this iModulon (Supplementary Figure X).

We also note that both RpaB and SigF2 transcripts are negatively weighted during high light

acclimation, consistent with previous findings (Moronta-Barrios et al., 2012).
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The last iModulon describes state transition, a rapid physiological adaptation mechanism

that involves the redistribution of absorbed excitation energy between PSI and PSII (Mullineaux

& Emlyn-Jones, 2005). A conserved cyanobacteria gene, rpaC for Regulator of Phycobilisome

Association C, in the State Transition iModulon was previously shown to optimize the utilization

of absorbed photons under limiting light conditions for growth (Emlyn-Jones et al., 1999).

Further suggestions regard a second role for RpaC as a protector factor against photoinhibition,

by which it curtails the rate of PSII damage through antenna size reduction (G. Finazzi et al.,

2001; Giovanni Finazzi & Forti, 2004).

In light of this, we examined the activity of the State Transition iModulon and compared it

to the activity of the baseline Photosystem iModulon (Figure 2.6-c). Clear Day samples showed

a higher iModulon activity just before dusk, where light intensity diminishes, with the highest

peak at CT =12 hr. No significant changes were observed in Low Light. This is because the

difference in light intensities when shifting from Low Light to dusk is not drastic enough to induce

high rpaC expression. Expectedly, a dramatic upregulation in Shade Pulse was observed due to

the significant difference between Clear Day and Shade Pulse. Furthermore, rapid

downregulation in High Light Pulse was observed. We interpret this result to the activation of

state 1 transition, in which the absorbed excitation energy is diverted from PSI to PSII, since PSI

predominantly absorbs low photon intensity (Mullineaux & Emlyn-Jones, 2005) Similarly, in the

case of the high light pulse, PSII highly receives most excitation energy which then induces

state 2 traditions to spill some of the excited energy to PSI causing a reduction in rpaC

expression. Other genes within this iModulon cluster, such as phosphoenolpyruvate synthase

(ppsA), indicate an upregulation of gluconeogenesis in preparation of metabolic partitioning that

usually occurs at subjective dusk (or in this case during Shade Pulse since it mimics dusk

condition) in S. elongatus. We also note that the State Transition iModulon generated positive

activity levels during dark time, considering a few dark-inducing genes that are also included in

its configuration (Figure A.3b).
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Based on the presented results, we theorize that the State Transition iModulon could be

another candidate target for RpaB. Researchers are encouraged to use the gene cluster in this

iModulon to better understand the global transcriptional regulation of RpaB.

Figure 2.6: RpaB-related iModulon activities and light intensity profiles. (a) Experimental setup of
Clear Day conditions with maximum photon intensity of 600 μmol photons m-2 s-1. Shade Pulse exposure
applied at 8 hour for a duration of one hour after dawn during the fourth light period for one hour before
being returned to Clear Day conditions. (b) Experimental setup of Low Light conditions constant at 50
μmol photons m-2 s-1 throughout the day. High Light Pulse exposure applied at 8 hour for a duration of one
hour after dawn during the fourth light period for one hour before being returned to Low Light conditions.
(c) Activity comparison between Photosystem (PS) iModulon and high-light acclimation iModulon, both of
which are regulated by RpaB. The plots show their activities under High-Light and Shade Pulse
conditions. (d) Activity comparison between Photosystem (PS) iModulon and Low-light acclimation
iModulon across all four light conditions. Legends for panels c and d are shown above panel c. Reference
condition is shown with a red triangle, dots represent biological replicates and lines represent average
expression between biological replicates.
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2.4.2 Different Nitrogen Sources Lead to Distinct Transcriptional Modes of NtcA

The regulation of nitrogen metabolism in S. elongatus is mainly operated by the TF NtcA

(Forchhammer & Selim, 2020), which induces nitrogen assimilation under depleted ammonium

conditions (Luque et al., 2002; Sauer et al., 1999). We identified four iModulons, each

overlapped with unique gene sets from the NtcA regulon (Takatani & Omata, 2006). We interpret

these iModulons with consideration of their driving factors such as the different levels of nitrogen

deficiency, the type of secondary nitrogen source available in aquatic environments, and the

degree of photosynthetic demands.

The Nitrogen Assimilation iModulon captures 10 out of 28 genes known to be regulated

by NtcA. These included the ABC-type nitrite and nitrate transporters (nrtABCD), nitrogen

reductases (nirA and narB), cyanate transporter and its catabolic enzyme cyanase (cynABDS)

(Espie et al., 2007). S. elongatus has the ability to assimilate and metabolize cyanate to

saturate cellular pools of ammonium and CO2 during nitrogen starvation (Maeda & Omata,

2009). We also observed the transcript of the ammonium transporter Amt1 below the iModulon

threshold.

The second NtcA-regulated iModulon included two gene clusters, Nit1C and cynS, along

with nirA, nrtA and 5 genes with unknown function. The gene cluster (nitBCDEFGH) in the

canonical nitrilase Nit1C is highly conserved in nine different bacterial species (Jones et al.,

2018; Podar et al., 2005). Studies have shown that Nit1C is essential for growth in cyanide

(Estepa et al., 2012) while also being involved in nitrogen provision (Harris & Knowles, 1983;

Jones et al., 2018), leading us to label this iModulon as Cyanide Assimilation (Adjei & Ohta,

1999; Buchanan et al., 2015; Finnegan et al., 1991; Harris & Knowles, 1983; Skowronski &

Strobel, 1969; Estepa et al., 2012). However, the role of Nit1C has not been investigated in S.

elongatus. Cyanate is formed by the oxidation of cyanide, but has different chemical properties

and is metabolized in a separate pathway. Cyanase has not been shown to be associated with
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cyanide degradation to ammonium (Sáez et al., 2019). nirA was negatively weighted,

suggesting that the expression of nitrite reductase is anti-correlated with the expression of

putative cyanide metabolism. We also identified 5 additional uncharacterized genes in this

iModulon that might be involved in cyanide metabolism or peptide synthesis (Figure A.5c).

The next iModulon describes the repressive role of NtcA applied to gifA and gifB, both

encoding glutamine synthetase (GS) inactivating factors (García-Domínguez et al., 2000).

Under nitrogen depletion, GS enzymatic activity is inhibited because of its dependency on

ammonium to drive glutamine synthesis. This iModulon also captures synpcc7942_1845,

encoding a hypothetical gene, that might also be involved in the NtcA-GS inhibition process.

Figure 2.7 Different modes of regulation of the NtcA transcription factor. (a-d)
iModulon Venn diagram with NtcA regulon. Each iModulon configuration and importance in
described in the main text. The gray box next to every Venn diagram represents the
shared genes between the indicated iModulon and the NtcA regulon (e) Four-way Venn
diagram showing no overlap between the genes of each NtcA-regulated iModulons

The configuration of the last iModulon (labeled as NtcA) captures the global NtcA

regulon with a list of conserved hypothetical genes. Neighboring genes to the captured

hypothetical genes are involved in arginine decarboxylase, proteolysis, amidoligases, and
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amidotransferases (Karp et al., 2019). To understand the correlation of all four iModulon, we

compared their activity levels across all conditions in the compendia. As expected, the GS

inhibiting iModulon produced an opposite activity to the Nitrogen and Cyanide Assimilation

iModulons. Interestingly, the repression of GS inhibiting iModulon is most active in the dark

either because of deactivated photosynthesis (which is a nitrogen-dependent process), or the

TCA cycle is deactivated TCA at night since gluconeogenesis is the main energy-producing

metabolic pathway. Subjective dusk produced almost no expression across all the NtcA

iModulons but that was not the case during subjective dawn, where positive activity between 5

to 30 mins was observed to possibly jump-start photosynthetic activity since most of its

apparatus proteins depend on nitrogen.

2.5 Differential Activation of iModulons Biologically Classifies Uncharacterized

iModulons

A significant region of S. elongatus’ genome is uncharacterized, including 40%

hypothetical genes and 15% unannotated essential genes (Rubin et al., 2015). We can inform

the process of gene annotation through identifying differentially activated iModulons, or DIMA

(Differential iModulon Activity), across two conditions of interest. We elucidate the utility of DIMA

through a comparative analysis between two conditions with circadian times CT = 0 (subjective

dawn, sample name: ppGpp:0wt_dusk_720) and CT = 12 (subjective dusk, sample name:

ppGpp:0wt_dusk_000) to reveal a set of highly differentiated iModulons between both circadian

timeframes (PRJNA:404081). From the DIMA plot for these conditions (Figure 2.8a), we were

able to characterize two iModulons that were initially uncharacterized, labeled as

uncharacterized-6 and uncharacterized-7 (or U5 and U7, respectively).

U5 contains a large sum of unannotated genes and growth-related genes, such as those

encoding ribosomal subunits, biosynthetic enzymes and RNase II, to maintain a steady

translation rate and cell viability in S. elongatus (Puszynska & O’Shea, 2017b). This iModulon is

highly expressed at dawn. Additionally, U7 contains replication and translation genes and other

33

https://paperpile.com/c/5Tj0Mi/hndPJ
https://paperpile.com/c/5Tj0Mi/r4Zhj
https://paperpile.com/c/5Tj0Mi/FHyCF


conserved hypothetical genes. This iModulon was downregulated at dawn (Figure 2.8a), which

is opposite to the expression of U6. We hypothesize that U7 might be influence by ppGpp

regulation so we named it as ppGpp-related iModulon. The content of both iModulons are useful

tools for future studies to identify what genes in the genome are highly activated/repressed at

these circadian times. These iModulon also include a large sum of poorly annotated genes,

which can be further studied to fully characterize them since they might be related to the set of

annotated genes in their respective iModulons.

Furthermore, we also conducted DIMA between WT and ΔrpaA strains which showed a

consistency in the RpaA iModulon, since RpaA~P induces circadian gene expression for class I

genes at the onset of dusk and throughout the night (Figure 2.8b-c). Between 30 minutes to 4

hours into darkness, circadian-regulated iModulons such as the Competence iModulons,

Pili-related iModulon, and State Transition iModulon were upregulated in WT, since ΔrpaA

cannot exert circadian influence on gene expression. This result confirms that the competence

mechanism is either directly or indirectly (through RpaA sigma factors and other possible TFs) is

regulated by the circadian clock. Contrary to previous results reporting a decrease in kaiBC

expression by ∼3.5-fold in ΔrpaA mutants (Markson et al., 2013; Takai et al., 2006), our DIMA

plots showed an increase in the KaiBC iModulon (containing both kaiBC) expression in the

ΔrpaA mutants from 30 minutes to 4 hours in darkness. The Phototaxis iModulon (containing

the tax1 operon for photoreceptor proteins) is not circadian regulated as indicative by the high

activity in the ΔrpaA strain (Yang et al. 2018).

Another activity-based analysis is DIMCA (Differential iModulon Clustering Activity)

which identifies sets of iModulons with high activity correlation. In other words, DIMCA attempts

to cluster iModulons that are likely to be activated together under common underlying

environmental stimuli or a global transcription factor that activates multiple downstream

regulatory units. We have identified three clusters (Pearson R > 0.8 and silhouette score

between 0-0.6), each is descriptive of different levels of grouped regulatory activity (Figure 2.8
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d-f). The first cluster demonstrates the dependency of the photosynthetic apparatus to nitrogen,

an important nutrient element to maintain photosynthetic activity in S. elongatus. A negative

correlation between the Cyanide Metabolism iModulon (regulated by NtcA) to the photosystem

iModulon, suggesting that nitrogen starvation negatively impacts the expression of

photosynthetic apparatus (Figure 2.8d). Additionally, a similar correlation is observed between

the Cyanide Metabolism iModulon and a single gene iModulon encoding a high-light inducible

gene (synpcc7942_01120). This might suggest that during high-light stress, synpcc7942_01120

is expressed to mitigate photo-damage as part of S. elongatus’ high-light acclimation process.

While doing so, nitrogen supplementation to the photosynthetic apparatus is stopped, since S.

elongatus will prioritize responding to the high-light stress over synthesizing chlorophyll

pigments, which relies on sufficient nitrogen levels.

Figure 2.8: DIMA and DIMCA plots. (a) DIMA scatter plot comparison between dawn and dusk samples
at CT 0 and CT 12, respectively. Every scatter point represents an iModulon activity across both indicated
conditions. Samples were taken from PRJNA:404081. (b-c) DIMA scatter plot comparison between
wildtype and rpaA null mutant at 30 minutes and 4 hours post-dawn. Samples were taken from
PRJNA:354335. (d-f) DIMCA plots of iModulons with correlated activity levels (Pearson R 0.85) that
illustrate iModulon association. Vertical sidebar to the right indicates the range of Pearson R score.
Abbreviations: HSR - heat shock response, OxTol - oxidative stress tolerance, Competence-2 -
competence iModulon regulated by SigF2.
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The second cluster groups CysR and CmpR-2 (two nutrient stress iModulons) with the

ppGpp stress iModulon (Figure 2.8e). This cluster might suggest a role of ppGpp in regulating

the expression of sulfur and inorganic carbon acquisition during nutrient starvation conditions.

The third cluster describes iModulons that are impacted by an increase in the expression

of rpoD2 and the derepression of sigF2 (Figure 2.8f). The rpoD2-sigF2 iModulon describes the

influence of RpaA on the expression of both rpoD2 and sigF2: when sigF2 is expressed rpoD2

is depressed by RpaA and vice versa (Fleming & O’Shea, 2018). With this cluster, we can

establish all iModulons that are implicated by rpoD2-sigF2 directly. For example, the bottom

right boxed iModulons are activated with abundant SigF2, most of which are iModulons

activated under low light conditions such as natural competence, biofilm development, and state

transition. The top left iModulons are those that are also expressed with abundant sigF2

transcription. This also suggests that sigF2 or RpoD2 might have some regulatory influence on

these iModulons. For example, the Competence-2 iModulon contains competence-participating

genes such as sigF2 and drpA, both of which have been previously associated with DNA uptake

and protection (Taton et al. 2020). However, we were interested in the Toxin Efflux System

iModulon that contains transcripts of chaperon proteins, secretion transporters, and SigG,

whose protein function is uncharacterized in S. elongatus. We here purpose that sigG could be

regulated by SigF directly. This iModulon also showed high correlation to the Oxidative Stress

Tolerance (OxTol) iModulon and the Heat Shock Response (HSR) iModulon. This association

has been previously described in an engineered S. elongatus strain with acyl-ACP synthetase

removed and acyl-ACP thioesterase expressed for free-fatty acid secretion (Ruffing and Jones

2012). The engineered strain showed a high expression of chaperon proteins, SigG, secretion

pumps, oxidoreductases and heat shock proteins. Therefore, DIMCA analysis is useful when

studying correlated biological systems to elucidate their connections through transcriptional

regulation.
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2.6 iModulon analysis of time-course data confirms integrated regulatory system

Differential gene expression is commonly used to study the transcriptome. Here, we use

iModulons to provide a structural basis to identify differentially activated collections of

co-expressed genes (i.e. those that are collectively activated due to a common stimuli). We

clustered significantly active iModulons with absolute values larger than 10 to investigate

integrated regulatory networks that have similar activation patterns using time-course data, and

thus inform orchestrated biological processes within S. elongatus. To achieve such a

comparison, we generated two clustermaps: the first containing light conditions (Figure 2.9),

and the seconds between WT and rpaA null mutants (Figure 2.10). From these clustermaps, we

confirmed that Comp-2 iModulon is regulated by the circadian clock through SigF2 because of

how similar it behaves to the RpaA iModulon. Additionally, Uncharacterized iModulon 2 (U2)

showed similar activity to the nitrogen assimilation, sulfur assimilation, and IdiB iModulons. From

this, there is a possibility that U2 could respond to a particular nutrient stress. The second

clustermap indicates that the RpaA iModulon behaves the closest to the photosystem iModulon,

since photosynthesis is dependent of the circadian rhythm.
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Figure 2.9: Clustermap of inferred iModulon activities across light conditions. Abbreviations: CD -
clearday condition, HP - high light pulse condition, LL - low light condition, and SP - shade pulse
condition. All samples were obtained from PRJNA:412032. iModulons are categorized based on their
biological function and these categories are shown in the legend panel (bottom left).
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Figure 2.10: Clustermap of iModulon activities across WT and rel knockout mutants. Samples
represented are obtained from PRJNA:401742 and PRJNA:404081. iModulons are categorized based
on their biological function and these categories are shown in the legend panel (bottom left).

Chapter 2 is currently being prepared for submission for publication of the material.
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Chapter 3

Methods

3.1 Data acquisition and RNA-seq processing

The data used in this study consisted of 323 RNA-seq datasets collected from NCBI

Sequence Read Archive (SRA) repository. The in-house developed pipeline applies Entrez

Direct (Kans, 2020) to search and extract all publicly available RNA-seq datasets into a

compiled metadata. The script for this pipeline can be found on Github

(https://github.com/avsastry/modulome_workflow/tree/main/download_metadata). The obtained

metadata file was then loaded into our standardized RNA-seq processing pipeline that uses

NextFlow v20.01.0 (Tommaso et al., 2017) to ensure data reproducibility. This pipeline is also

available on Github (https://github.com/avsastry/modulome-workflow).

The RNA-seq pipeline can be summarized in the following steps. The raw FASTQ files

were downloaded from NCBI using fastq-dump

(https://github.com/ncbi/sra-tools/wiki/HowTo:-fasterq-dump). Next, Trim Galore

(https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) was used for read trimming

which was then followed by the application of FastQC. Bowtie(Langmead et al., 2009) was used

to align the fragmented read sequences to the reference genome for S. elongatus. RSEQC

(Wang et al., 2012) was applied to find read direction before using featureCounts(Picardi, 2015)

to generate read counts. A final dataset of 317 profiles was the output of this pipeline that was

normalized in units of log-transformed Transcripts per Million (log-TPM).

3.2 Quality control Pipeline and MetaData curation

The log-transformed dataset was processed further using our quality control (QC)

pipeline to remove poor quality expression profiles not suitable for subsequent analyses. The

QC process adapts five criteria (Figure A.1a): (1) FastQC that discards samples with bad

statistical scores for per base sequence quality, per sequence quality scores, per base n content
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and adapter content. (2) FeatureCounts removes samples with less than 5x105 reads mapped

to coding sequences. (3) Hierarchical clustering to identify poor sample correlation between

individual samples in the dataset due to using unconventional RNA-seq library preparation such

as ribosome sequencing and 3’ or 5’ end sequencing. (4) a manual process to curate metadata

for every experimental sample through literature studies. These included strain description,

base media, nutrient sources, experimental treatments such as light conditions, and growth

stages if disclosed. Each sample was assigned a project name (identified by a unique

BioProject ID) followed by a condition name. The project and condition name were separated by

a colon (Project_name: Condition_name). Biological and technical replicates had similar

condition names. Time-course conditions included a suffix denoting respective time stamps right

after the condition name. For example “rpaA: wt_dark_015” would represent a wildtype

condition that belongs to the rpaA project with a sample time of 15 mins after dark exposure.

Notably, the following BioProjects were combined into one single project, named ppGpp, since

they belong to the same GEO accession SuperSeries: PRJNA415380, PRJNA412032,

PRJNA404081, PRJNA401777, and PRJNA401742. The last QC step (5) discarded samples

with poor replicate correlation (Pearson R < 0.9) and no replicate or metadata, such as the

“S2-7” project. However, in the case of S. elongatus, an exception was made for the time-series

dataset that failed step 5 (rpaA, clock, and ppGpp with GEO accession GSE103463). We

rescued these samples with (Pearson R < 0.8) to study the temporal activity of iModulons. The

final dataset was then normalized to the reference condition within each project (see Table 1 in

Results chapter). Thus, all activities within a unique project are relative to a defined baseline

condition when studying differential activities.

3.3 Computing Independent Component analysis to identify robust components

ICA decomposes a gene expression matrix (X) into the independent components

iModulon matrix (M) and their project-specific condition activities (A), as shown in equation 1. A

detailed description of ICA performance is mentioned in the Supplementary Methods.
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X = MA (1)

To obtain the robust number of independent components (ICs), OptICA (McConn et al.,

n.d.) coupled with the scikit-learn (v0.23.2) implementation of FastICA was performed on the

project-specific log-TPM RNA-seq compendium for S. elongatus with 100 iterations with random

seeds and a convergences tolerance of 10-7. The resulting independent components (ICs) were

clustered using DBSCAN (Ester et al., 1996) to identify robust ICs, using an epsilon of 0.1 and a

minimum cluster seed size of 50. To account for identical with opposite signs, the following

distance metric was used for computing the distance matrix:

(2)

where ρx, y is the Pearson correlation between components a and b. The final robust ICs were

defined as the centroids of the computed cluster (McConn et al.). Given that the number of

dimensions can profoundly affect ICA results, we applied ICA to the transcriptomic data multiple

times, from the number of dimensions (i.e. the dataset size) between 10 to 260 with a step

increase rate of 10. The optimal dimensionality was identified by comparing the number of ICs

with single genes to the number of ICs correlated with the ICs in the largest dimension (called

“final components'') (Pearson R > 0.7). The optimal dimension was defined as the number of

dimensions where the number of non-single gene ICs was equal to the number of final

components in that deconvolution (McConn et al.). The optimal dimension for this study was

120 (Figure A.1c).

3.4 Estimating iModulon Activity for External Datasets

Since profiles in the expression dataset are time-stamped, we inferred the total

project-specific condition activities matrix (A’) that incorporated failed samples from QC to infer

overall iModulon activity and compare that to the behavior obtained from A. To infer iModulon

activities of all samples in the compendium, A’ was calculated by inverting M and multiplying the

resulting matrix to the log-TPM-norm or complete gene expression matrix (X) as shown below:
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A’ = M -1 X’ (3)

3.5 Compiling the TRN and Gene Annotations

Regulon information for S. elongatus was manually curated from Biocyc (Karp et al.,

2019) and from the literature that reported potential and ChIP-seq TF-DNA binding events.

Transcription factor modes of effect (i.e. activation or repression) were reported in the TRN data.

If marked as unknown, then the mode of effect was either not reported or its current mode of

effect is poorly understood. With every regulator obtained, a regulon set, containing a list of all

genes regulated by that specific regulator, was documented. Similarly, Gene annotations were

pulled from AL009126.3. We also included a Cluster of Orthologous Groups (COG) and KEGG

information using EggNOG mapper, Gene Ontology (GO) annotations using AmiGO2 (The

Gene Ontology Consortium & The Gene Ontology Consortium, 2019), Uniprot IDs using the

Uniprot ID mapper (“UniProt: The Universal Protein Knowledgebase in 2021,” 2021), and

operon clusters from Biocyc. The gene annotation pipeline can be found at

(https://github.com/SBRG/pymodulon/blob/master/docs/tutorials/creating_the_gene_table.ipynb)

3.6 Computing iModulon Enrichments

iModulon enrichments against known regulons were computed using two-sided Fisher’s

exact test, with the FDR controlled at 10-5 using the Benjamini-Hochberg correction. Functional

enrichment through KEGG and GO annotations were similarly computed but with FDR < 0.01.

The supplementary packet includes all enrichments obtained in this study. By default, iModulons

were compared to all possible single regulons and all possible combinations of two regulons to

yield significant enrichments. If an iModulon yielded a significant KEGG or GO enrichment but

no regulon enrichment, the iModulon was categorized as functional and was characterized via

extensive literature studies. If none of these adjustments yielded a significant enrichment, the

iModulon was annotated as non-regulatory (or either genomic, single gene, or uncharacterized).
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iModulons annotated not using the default enrichment setup are noted in the iModulon table

available as part of the included dataset.

3.7 Differential iModulon Activity Analysis

Differentially activated iModulons were computed across relevant conditions by using a

log-normal probability distribution. iModulons with a difference greater than 5 and FDR < 0.01

were considered significant. DIMA 2D scatter plots compare the activity of all iModulons

between two given conditions. Furthermore, DIMA for all-to-all condition comparisons can be

clustered (DIMCA) used to identify globally regulated iModulons under a certain external

stimulus, Stimulon. The scikit-learn agglomerative clustering function was implemented to create

the cluster maps from the Seaborn package using equation 2 as the distance metric,

where ║ρx,y║ is the absolute value of the Pearson R correlation between two iModulon activity

profiles. The threshold for optimal clustering was determined by testing different distance

thresholds to locate the maximum silhouette score (> 0.6) (Figure A.6). Once established, the

clusters were manually inspected to determine physiological function.

3.8 Identifying Homologous iModulons between Organisms

Considering a significant number of S. elongatus’ genomes to be uncharacterized, we

characterized a few iModulons through an iModulon comparison across different microbial

species. Imodulon homology was identified by using equation 2 as the distance metric, where

║ρx,y║ is the absolute value of the Pearson R correlation between two independent components.

We considered two iModulons to be homologous or identical with a distance less than 0.25.

Before comparing iModulons across species, gene orthology must be determined. To do this,

we used reciprocal BLAST hits to generate one-to-one orthology between S. elongatus and

other microbes. Once the orthologous pairs were determined, the iModulons were compared as

described above.
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3.9 Data and Code Availability

A list of all data used for this study and generated figures and tables are available at

https://imodulondb.org. All code used to generate the results in this paper can be found on

Github (https://github.com/talbulus/moduloome_selon). Custom code for our ICA analysis

pipeline is also maintained on Github (https://github.com/SBRG/pymodulon).

Chapter 3 is currently being prepared for submission for publication of the material.

Tahani Al Bulushi, Anand V Sastry, Kevin Rychel, Saugat Poudel, Reo Yoo, Siddharth

Chauhan, Yuan Yuan, Cigdem Sancar, Richard Szubin, Bernhard Ø. Palsson, Susan Golden.

(2021). “Machine learning reveals the transcriptional regulatory network and circadian dynamics

of the cyanobacteria Synechococcus elongatus PCC 7942”. The thesis author is the primary

author.

Chapter 3, in part, is material submitted for publication. Anand Sastry, Saugat Poudel,

Kevin Rychel, Reo Yoo, Cameron Lamoureux, Siddharth Chauhan, Zachary B. Haiman, Tahani

Al Bulushi, Yara Saif, and Bernard Ø. Palsson. (2021) Mining all publicly available expression

data to compute dynamic microbial transcriptional regulatory networks. BioRxiv. DOI:

https://doi.org/10.1101/2021.07.01.450581. The thesis author is the co-author.
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Chapter 4
Discussion and Conclusion

Here, we used ICA to deconvolve 262 curated RNA-seq profiles of S. elongatus into 51

robust iModulon features, whose overall activity explained 73% of the variance in transcriptome

across the wide variety of conditions contained in the dataset. 20 iModulons correspond to

specific TFs, another 17 to specific biological functions, and the remaining 14 were either

independent signals or lacked coherent biological interpretation. We analyzed the activity

profiles associated with each enriched gene set in every iModulon and found that they either

concur with existing knowledge or initiate data-driven hypotheses that could be experimentally

validated in future studies. It is important to note that since S. elongatus lacks a properly defined

regulon structure, iModulons serve as an unbiased, computational approach to reconstruct its

TRN and identify new regulon structures in the process. Thus, this study presents the first and

most thorough global TRN structure and corresponding activities for S. elongatus.

Through the application of ICA, we have demonstrated the efficiency of iModulon

structures to overlap with well-defined regulons (including RpaA, CmpR-1, CmpR-2 and NtcA

iModulons) and uncover biological insights that might add to the existing knowledge regarding

the regulatory machinery in S. elongatus. We discovered a candidate Iron-related TF

(synpcc7942_2170) that not only transcribes IdiB but also elucidates the regulatory crosstalk

between IdiB and Fur. Moreover, autoregulated iModulons with helix-turn-helix domains were

discovered through a comparison of S. elongatus to previously published iModulons to find new

potential TFs and expand their regulons (CysR, HrcA, and Synpcc7942_0110)

Furthermore, we demonstrated how temporal data can be utilized to study the

transcription of three photosynthesis-related iModulons under different light conditions. Temporal

data was also used to cluster significantly activated iMOdulons (absolute expression of 10 or

larger) to study iModulon activation across different timepoints.
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ICA decomposition discovered multiple regulatory patterns for the global nitrogen

assimilation by NtcA in response to photosynthetic demands and different nitrogen sources,

including cyanide. We also demonstrated how iModulon analysis thought DIMA enables the

characterization of, initially, poorly annotated iModulons.

Altogether, we have demonstrated that ICA extracts regulatory signals, in terms of

iModulons, that correspond to either the mode-of-action underlying a TF or a sigma factor.

These regulatory units can distinguish between biological machinery that is regulated by the

circadian clock from those that are stimulated from environmental changes or metabolic shifts,

which is an important distinction to make to optimize the metabolic and strain engineering of S.

elongatus. ICA has also defined, for the first time, a complete TRN structure for S. elongatus

from using only 317 RNA-seq databases which proves the importance of sequencing

data-mining for biological discoveries at the transcription level and specifically, gene annotation

through the co-regulated genetic features found in iModulons. However, ICA is not only limited

to identifying differentially activated iModulons (DIMA), but also extends our understanding of

system-level and global regulatory changes that influences a set of collective iModulons. This is

known as Differential iModulon Cluster Activity (DIMCA) through which the identification of

co-regulated iModulons induced by environmental stimulii, also known as “stimulons”, is made

possible (Lamoureux et al., 2021). The evolution of multi-scale analytical tools (from DEGs to

iModulons to stimulons) is extremely useful for the development of meticulous biochemical

assays, where individual stimulons can be closely studied at the molecular level. Therefore, this

study motivates the generation of additional S. elongatus RNA-seq data under a diverse

collection of unique experimental conditions to enable a more precise rendering of its TRN,

since most machine learning performance is limited to the diversity within the dataset (McConn

et al.). Nevertheless, with the current datasize, the iModulons presented show high biological

significance because they capture well-defined regulons and cellular pathways. iModulons also

depict interdependent regulatory modules, hierarchical regulation, and potential regulon
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structures. In theory, if a complete transcriptomic dataset that reflects every considerable

condition for S. elongatus were to be gathered, ICA would reveal a comprehensive TRN from its

simplest building blocks to the highest levels of global regulation.

In conclusion, we introduced the utility of ICA as a tool to decompose gene expression

data into modulated regulatory units that describe the response mechanism and dynamic

behavior of S. elongatus. We used the largest publicly-available RNA-seq compendium and

extensively annotated every condition to remain a reliable resource in the community. The 51

iModulons extracted from ICA validated existing knowledge while also revealing putative

regulation, including transcription factor discovery and genotype-phenotype- relationships.

Chapter 2 presents the results of this study where we explored the most significant

iModulons based on their composition and activity. We demonstrated the effectiveness of

iModulons in simplifying the study of transcriptional changes, such as those induced via genetic

perturbations and changes in experimental treatments and environmental dynamics. Changes in

iModulon activity levels exhibited the capacity and potential of how ICA can interpret the

changes in expression levels within the transcriptomic dataset. From the activity matrix, we were

able to demonstrate how studying differential iModulon Activity (DIMA) is a simplified approach

in studying differential gene expression. This knowledge tool serves as a resource before

designing biochemical assays in the future. We encourage the community to refute to iModulon

database to discover more of these iModulon structures, emphasizing the great benefits of big

data analytics.

However, although ICA being a blind source separation is limited to only capturing linear

regulatory interactions (excluding hierarchical and non-linear interactions) the analyses

presented in this thesis demonstrate that ICA extracts accurate and interpretable information

that describes S. elongatus’ transcriptome. It is still ambiguous if the capacity of ICA is

extendable to eukaryotic studies, considering their complex structures, but recent studies have
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shown promising results (Nazarov et al., 2018; Soheili-Nezhad et al., 2021; Wang et al., 2021).

ICA can also be applied to other types of omic-data including proteomics.

The field of systems biology and big data is revolutionizing our approach to studying

transcriptomics. They provide a mechanistic view of biological systems and are a promising

platform to derive biological insights. Through this work, we have demonstrated that ICA

enables the interpretation of big expression datasets by revealing robust biological signals that

are propagated in the cells to induce gene expression. These signals can be studied further to

better understand cellular dynamics and their response mechanism to these signals.

Chapter 4 is currently being prepared for submission for publication of the material.

Tahani Al Bulushi, Anand V Sastry, Kevin Rychel, Saugat Poudel, Reo Yoo, Siddharth

Chauhan, Yuan Yuan, Cigdem Sancar, Richard Szubin, Bernhard Ø. Palsson, Susan Golden.

(2021). “Machine learning reveals the transcriptional regulatory network and circadian dynamics

of the cyanobacteria Synechococcus elongatus PCC 7942”. The thesis author is the primary

author.
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Appendix A
Supplementary Information and Figures

Figure A.1: Overview of S. elongatus dataset. (a) Pie chart showing quality control criterias and the
number of RNA-seq data that passed each criteria. The number of passed and failed samples that
represent 56% and 44% of the data are 177 and 140, respectively. This process was followed by
manually adding all failed time-course dataset to increase the final passed sample size from 177 to 262.
(b) Histogram of data quality, as measured by the coefficient of determination (R2) between log-TPM.
Comparisons between biological replicates are shown in green, whereas comparisons between all
pairwise non-replicates are shown in blue. (c) Plot showing the number of components obtained from
multiple dimensions (i.e. the dataset size) between 10 to 260 with a step increase rate of 10. The optimal
dimensionality was identified by comparing the number of ICs with single genes to the number of ICs
correlated with the ICs in the largest dimension (called “final components”)(Pearson R > 0.7). The optimal
dimension, being 120 for this study, was defined as the number of dimensions where the number of
non-single gene ICs was equal to the number of final components in that deconvolution.(d) Principal
component analysis (PCA) plot showing the loadings of the first two principal components (PCs) of the
passed 177 data after QC, colored by their respective project title (see Table 1 in the result section for
more details). (e) Cumulative explained variance for the first 51 components calculated by principal
component analysis (orange) and ICA (blue).
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Figure A.2: CmpR-1 and CmpR-2 iModulon activity across all samples in the transcriptomic
compendium. Project names are indicated above the activity bar (Table 1 contains more details
regarding the original study for each project). Sample names are shown along the x-axis and the
iModulon name is shown along the y-axis. For a full description of these activity plot, please visit
iModulonDB.org.

Figure A.3: Iron-related and IdiB iModulon activity comparison across all conditions. Highest
variation occurs in the light project where IdiB iModulon shows negative activity and the Iron-related
iModulon shows a positive upregulation. Further analysis on the regulatory cross-talk and the mode of
effect of the proposed gene (synpcc7942_2170) encoding the regulatory transcription factor for the
iron-related iModulon should be further investigated.
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Figure A.4: RpaB-regulated iModulon gene weights and activity bar plots. (a) iModulon gene
weights for PS iModulon including phycobilisomes, PSI and PSI reaction centers genetic features. (b)
iModulon gene weight plot for the high-light stress acclimation (HLSA) iModulon. (c) iModulon gene
weight plot for State Transition iModulon. (d) State Transition bar plots showing activity at night time for
the ppGpp (PRJNA401742, PRJNA404081, PRJNA403840, PRJNA415380) project and (e) rpaA
(PRJNA354335) Project.
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Figure A.5: NtcA- related iModulon configurations. (a) Nitrogen Assimilation iModulon (b) GS inhibitor
iModulon regulated by NtcA, and © Cyanide Metabolism iModulon. (d) Clustermap comparing activities
for all NtcA-related iModulons across different samples from the transcriptomic compendium.
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Figure A.6: Clustering of iModulon activities using Pearson R to define correlated iModulons. Left
cluster is the global clustermap of all iModulons in the transcriptomic compendium and right cluster shows
an example of a “best cluster” with Pearson R correlation larger than the specified cutoff threshold (0.5 for
this clustermap). Silhouette score for the right cluster is 0.44.
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RpaA iModulon
Regulated by RpaA

Biological function: Circadian gene regulation

Figure A.7: Descriptive characteristics of the RpaA iModulon. (a) Scatterplot of iModulon gene
coefficients against gene expression (log-TPM) in the reference condition. Genes are colored by their
cluster of orthologous groups (COG) categories. (b) boxplot showing the different between mean
expression of rpaA biopoject verse the remaining samples in the expression compendium. (c) iModulon
activities across the entire compendium, grouped by original study as indicated above each project block
(see Table 1 in the results section for more details). Each condition occupies a constant width, regardless
of the number of biological replicates. All reference conditions are included in Table 1 in the Results
section.

Note: Similar plots are shown for the remaining iModulons in the iModulon database:
https://imodulondb.org
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