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Global Biogeochemical Cycles

Soil Organic Matter Persistence as a Stochastic Process: Age
and Transit Time Distributions of Carbon in Soils

Carlos A. Sierra1 , Alison M. Hoyt1 , Yujie He2 , and Susan E. Trumbore1

1Max Planck Institute for Biogeochemistry, Jena, Germany, 2Department of Earth System Science, University of California,
Irvine, CA, USA

Abstract The question of why some types of organic matter are more persistent while others
decompose quickly in soils has motivated a large amount of research in recent years. Persistence is
commonly characterized as turnover or mean residence time of soil organic matter (SOM). However,
turnover and residence times are ambiguous measures of persistence, because they could represent
the concept of either age or transit time. To disambiguate these concepts and propose a metric
to assess SOM persistence, we calculated age and transit time distributions for a wide range of soil
organic carbon models. Furthermore, we show how age and transit time distributions can be obtained
from a stochastic approach that takes a deterministic model of mass transfers among different
pools and creates an equivalent stochastic model at the level of atoms. Using this approach we
show the following: (1) Age distributions have relatively old mean values and long tails in relation
to transit time distributions, suggesting that carbon stored in soils is on average much older
than carbon in the release flux. (2) The difference between mean ages and mean transit
times is large, with estimates of soil organic carbon persistence on the order of centuries or millennia
when assessed using ages and on the order of decades when using transit or turnover times. (3) The age
distribution is an appropriate metric to characterize persistence of SOM. An important implication of
our analysis is that random chance is a factor that helps to explain why some organic matter persists for
millennia in soil.

1. Introduction

The observation that soil organic matter (SOM) persists in soils for a wide range of times independent of its
quality has challenged previous views in SOM cycling research (Dungait et al., 2012; Gleixner, 2013; Kleber,
2010; Schmidt et al., 2011; Paul, 2016). It has been reported that easily degradable compounds can persist
for years to decades in soils (Kiem & Kögel-Knabner, 2003; Kleber, 2010), while highly aromatic organic com-
pounds such as lignin or charcoal can degrade in a matter of years, much faster than previously believed
(Gleixner et al., 1999; Heim & Schmidt, 2007; Kleber, 2010; Lehmann et al., 2015). To explain this variability,
current research on mechanisms of SOM cycling and stabilization focus on physical and chemical protection
rather than molecular structure to explain SOM persistence (Lehmann & Kleber, 2015; Schmidt et al., 2011).

The term persistence, however, has been vaguely defined. In most cases, persistence is associated with the
turnover or mean residence time of carbon in SOM (Derrien & Amelung, 2011; Lehmann et al., 2015; Schmidt
et al., 2011). These two terms are problematic to use as definitions of persistence for three main reasons: (1)
They are ambiguously used in many studies, in some cases referring to the concept of age and in others to the
concept of transit times (see below); (2) in some cases their calculation relies on the assumption of a single
homogenous pool at steady state, while a range of time scales for C has been clearly reported (Trumbore, 2000,
2009); and (3) measures of central tendency do not provide information on the distribution of the maximum
age that could be observed in a soil (Figure 1). This highlights the need for a more precise definition of SOM
persistence.

Turnover and residence times are ambiguous terms because they may indicate concepts related to the age
of carbon within the soil system or the age of carbon in the flux out of soils (e.g., CO2 respiration or dissolved
organic carbon leaching; Sierra et al., 2017). Less ambiguous are the concepts of system age and transit times
(Bolin & Rodhe, 1973; Bruun et al., 2004; Derrien & Amelung, 2011; Manzoni et al., 2009; Sierra et al., 2017).
System age can be defined as the age of particles or atoms in a system, in this case a soil, since the time the
atom entered the system until the time of observation. Transit time can be defined as the time elapsed since
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Figure 1. Soil organic matter age for two hypothetical soils with similar
mean age but with different density functions. In both cases, the mean age
is 200 years (purple vertical line), but for the exponentially distributed soil
the 95% quantile Q95 = 599 years, while for the normally distributed soil
(blue line) Q95 = 282 years. In asymmetric distributions with long tails such
as the exponential or the phase type, the mean is more sensitive to the
skewness than the median. In this example, the 50% quantile
Q50 = 139 years (vertical solid red line) for the exponential distribution.

the atom entered until it leaves in the output flux. It is well established
that both system age and transit time are equal in single-pool systems at
steady state. For systems with multiple pools that cycle at different time
scales, these quantities are generally different.

System age and transit time can be characterized by a distribution that
measures the proportion of atoms or particles in a soil that have less than
a certain age (Bolin & Rodhe, 1973; Eriksson, 1971). These distributions can
also be interpreted in a probabilistic sense, suggesting that the problem
of persistence could also be approached from a stochastic point of view.

In this manuscript, we assess age and transit time distributions to deter-
mine which is most appropriate to characterize the persistence of SOM.
We focus on carbon cycling, but the ideas and theory presented can be
applied to any other biogeochemical element (Spohn & Sierra, 2018). To
evaluate the applicability of these distributions, we calculate estimates of
ages and transit times of carbon for a particular set of models, and esti-
mates at the global scale using output from Earth system models. We take
a mostly theoretical approach, starting from a general stochastic model
for the definition of ages and using a set of examples from the litera-
ture to calculate ages and transit times at a set of single sites and at the
global scale. Through this analysis, we show that (1) ages of carbon in soils
can be explained by stochastic processes that can be directly linked to
mechanisms of SOM (de)stabilization, (2) ages and transit times differ con-
siderably in soils, with ages being much older than transit times and (3)
across models, SOM age distributions have a long tail of old C, suggest-
ing that a small fraction of SOM persists in soils for centuries to millennia.
Finally, based on these findings, we suggest that age distributions are a
strong indicator of SOM persistence in soils.

2. Conceptual Framework
2.1. A Stochastic Interpretation of SOM Dynamics
Soils are composed of a mixture of carbon atoms of mostly plant origin that have accumulated over a period
of time. For each atom, the time elapsed since it entered the soil is defined here as age. If we were able to
measure the age a of every single atom in a given amount of soil, we would be able to produce a frequency
distribution of the ages of carbon. To be able to construct this frequency distribution, we would need to group
C atoms in age bins of some size Δa and count how many atoms belong to each age class. If we make the size
of these age bins very small, we would obtain a series of a+𝛿a intervals that define what is commonly known
as a probability density function (pdf). This pdf measures the probability that a certain amount of carbon is
below or above a certain age. Once we have a pdf of carbon ages, we can characterize the age structure of
soil organic carbon (SOC) by simple measures such as the mean, the median, and quantiles (Figure 1).

To arrive at a pdf of SOC ages, we need to take the atom perspective further. Consider a carbon atom that
belongs to a dead plant part just entering the soil. This C atom will stay in the soil until something will hap-
pen; for instance, the plant part may be broken down by physical mechanisms or by macro-organisms. The
molecules that contain the atom may be transformed by exoenzymes, they might be absorbed by mineral
surfaces, or they might be ingested by a microorganism. All these different possibilities are the well-studied
mechanisms of soil carbon (de)stabilization (Lehmann & Kleber, 2015; Schmidt et al., 2011; Sollins et al., 1996;
von Lützow et al., 2008). In this context, however, we consider these mechanisms to set a probability on a C
atom of changing its location and its state. Depending on the context, that is, to what macromolecule the
atom belongs to, or the environment determined by factors such as pH, temperature, moisture, and redox
potential, the probability of the C atom changing its state would be determined. However, we assume that
none of these mechanisms operate at the age level. This means that mechanisms of (de)stabilization operate
based on the physical, chemical, and biological properties of the organic matter but not on the age since it
entered the soil. We assume that SOM processing is independent of age, and therefore atoms are processed
randomly with respect to age but deterministically based on physical, chemical, and biological mechanisms.
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Once the probabilities for the change of state of carbon atoms are determined, it is possible to use them to
compute for how long a particle may stay in a specific state and how long it will take for the particle to leave
the system (Metzler & Sierra, 2018). In the following section, we show how to perform these computations.

2.2. Computation of Age Distributions
To characterize SOM persistence using age distributions, it is necessary to use models that incorporate dif-
ferent (de)stabilization mechanisms. Over several decades, researchers have proposed a large variety of SOM
models that account for biological, physical, and chemical mechanisms of SOM (de)stabilization (Manzoni
& Porporato, 2009). A large number of these models can be represented as systems of linear differential
equations (Sierra & Müller, 2015) of the form

dx(t)
dt

= ẋ(t) = u + B ⋅ x(t), (1)

where the rate of change of carbon over time in n different pools is represented by the n-dimensional vector
ẋ(t). Constant inputs of carbon to each soil pool are represented by the n-dimensional vector u, and rates of
carbon processing, stabilization, and destabilization are represented in the n × n dimensional matrix B. The
diagonal entries of B contain the rates at which carbon is processed in each of the pools, and if we organize
them from fast to slow from left to right, we can interpret all lower diagonal entries as the rates of carbon stabi-
lization and the upper diagonal entries as the rates of carbon destabilization (Sierra & Müller, 2015; Sierra et al.,
2011). By adding all rows from each column of B, one obtains a vector z with the fraction of the decomposed
carbon that is released from the system either as respired or dissolved carbon. This vector can be computed
as zT = −1T ⋅ B, where T represents the transpose operator. At steady state, the model of equation (1) has the
general solution x∗ = −B−1 ⋅ u.

Metzler and Sierra (2018) showed that it is possible to build a stochastic model from the deterministic com-
partmental model of equation (1). The stochastic model corresponds to a continuous-time absorbing Markov
chain with transition rate matrix Q as

Q =
(

B 0
zT 0

)
. (2)

This transition rate matrix contains as elements the probabilities that carbon atoms move across different
pools (B) and get released from the entire system (zT ) to an absorbing state where the atom cannot return back
to the system. This transition rate matrix also clearly establishes the relation between deterministic models of
differential equations and stochastic models at the level of atoms and can be used to compute age and transit
time distributions.

The age pdf for this type of linear models at steady state can be computed by the following expression (Metzler
& Sierra, 2018):

f (a) = −1T ⋅ B ⋅ ea⋅B ⋅
x∗∑

x∗
, a ≥ 0, (3)

where a is the random variable age, 1T is the transpose of the n-dimensional vector containing ones, ea⋅B is the
matrix exponential computed for each value of a, and

∑
x∗ is the sum of the stocks of all pools at steady state.

The mean, that is, expected value, of the age pdf can be computed by the expression

E(a) = −1T ⋅ B−1 ⋅
x∗∑

x∗
. (4)

2.3. Computation of Transit Time Distributions
Although we propose age distributions to characterize persistence of SOM, it is also useful to compute transit
time distributions of SOM for comparison purposes and to get an idea of the age structure of the carbon that
is released from soils.

The pdf of the transit time variable 𝜏 for models of the form of equation (1) is given by (Metzler & Sierra, 2018)

f (𝜏) = −1T ⋅ B ⋅ e𝜏⋅B ⋅
u∑

u
, 𝜏 ≥ 0 (5)

and the mean transit time by
E(𝜏) = −1T ⋅ B−1 ⋅

u∑
u
. (6)
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Figure 2. Possible relations between ages and transit times of organic
matter in soils. Axes in arbitrary time units, for example, days, months, and
years. DOM = dissolved organic matter; SOM = soil organic matter.

It is important to note that the mean transit time can also be obtained
dividing the stock of mass at steady state by either the input or the out-
put flux. This metric is also called the turnover time, and it is used in many
applications to characterize time scales of carbon cycling in ecosystems
(Sierra et al., 2017).

Notice that the computation of the transit time density distribution and its
mean depends directly on the elements of the matrix B and on the propor-
tional distribution of the inputs as stated in the vector u∕Σu (equations (5)
and (6)). In other words, transit times depend on the cycling rates of each
pool and the transfer rates among them as embedded in the compartmen-
tal matrix, and on how the external inputs are distributed to the different
pools. However, transit times do not depend on the total amount of inputs
to the system.

Ages however, depend on the cycling and transfer rates encoded in the
compartmental matrix B and on the proportional distribution of the car-
bon stocks at steady state as expressed in x∗∕Σx∗ (equations (3) and (4)).
Since the steady state x∗ does depend on the total amount of inputs, the
age distribution and its mean do depend on the total amount of inputs
and its distribution to different pools.

2.4. Computation of Quantiles
Quantiles for the age and transit time pdfs (equations (3) and (5)) are com-
puted numerically by taking the inverse of their cumulative distribution

function F(y) and finding the smallest y such that F(y) ≥ q, where q ∈ (0, 1) are the cut points for which
quantiles are desired; for example, q = 0.5 represents the Q50 quantile (median) of the distribution.
2.5. Hypothetical Relation Between Ages and Transit Times
Following Bolin and Rodhe (1973), we examine the relations between ages and transit times of SOC, which fall
into three categories: (I) the age and the transit time distributions are equal, (II) ages are younger than transit
times, and (III) ages are older than transit times (Figure 2). The type I relation implies that the SOM system is
well mixed and all carbon atoms in the soil have the same probability of being mineralized and released as
CO2 or as dissolved organic carbon. When plotting ages versus transit times of carbon, type I systems would
lie along the 1:1 line (Figure 2).

If the transit time is longer than the age (type II), the system retains carbon for a relatively long time before it
is released. This type of behavior is common in systems in which physical transport or recycling are dominant
mechanisms, for example, when a physical transport pathway moves carbon atoms sequentially before they
are released, or when carbon is continuously recycled by microorganisms and only released outside the sys-
tem after a long time. In these cases, the age of atoms in the release flux is older than the age of atoms stored
inside the system, and a plot of ages versus transit times would occupy the region above the 1:1 line (Figure 2).
We can also think about the type II relation as representative of a sequential process with multiple steps in the
degradation of organic matter, in which fresh OM is transformed into multiple products before it is mineral-
ized and released from the soil in a final step. Or alternatively, we could also think of soil as a chromatography
column with new C added at the top and oldest C released from the bottom in dissolved form.

Finally, for a type III relation, ages are older than transit times and occupy the lower region below the 1:1
line (Figure 2). A relationship in this region implies that most carbon atoms enter and leave the system in a
relatively short time, but those atoms that remain in the system stay there for a long time. This situation can
happen when input and output fluxes occur at relatively close distance between each other, and storage is
physically separated from them, or when specific mechanisms favor the processing and release of material
close to the input source (Bolin & Rodhe, 1973).

3. Methods

Equations (3) to (6) as well as additional formulas for the quantiles of these distributions described in Metzler
and Sierra (2018) were implemented in the R package SoilR (Sierra et al., 2014).
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Table 1
Models Used for the Calculation of Age and Transit Time Distributions

Model Description Number of pools Reference

RothC Rothamsted soil carbon model. 4 Jenkinson et al. (1990)

This implementation excludes the

inert pool.

Century Implementation of the Century 5 Parton et al. (1987)

model as originally described for

temperate grasslands

Yasso07 Model of litter decomposition 5 Tuomi et al. (2009)

parameterized from a global-scale

database

ICBM Introductory carbon model, 2 Andren and Katterer (1997)

parameters for an experimental treatment

without N and straw additions,

interpreted as a control treatment

CLM4cn-Needleleaf Community land model version 4 8 Wieder et al. (2014)

with parameterization for needleleaf

evergreen forest

CLM4cn-Deciduous Community land model version 4 8 Wieder et al. (2014)

with parameterization

deciduous forest

CLM4cn-Tropical Community land model version 4 8 Wieder et al. (2014)

with parameterization for tropical

forest

CESM Reduced complexity model 3 He et al. (2016)

obtained from the output of the

CESM model

IPSL Reduced complexity model 3 He et al. (2016)

obtained from the output of the IPSL model

MRI Reduced complexity model 3 He et al. (2016)

obtained from the output of the MRI model

Note. Their matrix representation can be found in Appendix A. ICBM = Introductory Carbon Balance Model; CLM4 = Community Land Model version 4; CESM =
Community Earth System Model; IPSL = L’Institut Pierre-Simon Laplace Coupled Model; MRI = Meteorological Research Institute Earth System Model.

We applied these formulas to a variety of SOC models reported in the literature (Table 1). We selected popular
SOC models such as RothC and Century (Jenkinson et al., 1990; Parton et al., 1987), using reference parameter
values reported in their original publications, that is, parameter values that are not affected by the temper-
ature and moisture modifiers implemented in these models. For RothC, we excluded its inert pool because
it has a decomposition rate equal to 0 and therefore the age is infinitely large at steady state and the matrix
B is not invertible (Metzler & Sierra, 2018). We also selected the Yasso07 model because it has been parame-
terized using an extensive data set of litter decomposition experiments (Tuomi et al., 2009), and it has been
implemented as part of the MPI Earth system model (Goll et al., 2015). Also, the Introductory Carbon Balance
Model (ICBM) model was selected due to its simplicity and yet enough complexity to represent stabilization
of SOC (Andren & Katterer, 1997).

In addition, we selected a set of models used for global-scale applications. First, we selected three different
parameterizations of the Community Land Model version 4 (CLM4cn), for needleleaf, deciduous, and tropical
forest plant functional types (PFTs). These parameterizations differ mostly on the amount and distribution
of C inputs to the soil (Wieder et al., 2014). Second, we used three versions of reduced complexity models
constructed from the output of three Earth system models (He et al., 2016): the Community Earth System
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Table 2
Mean and 50% and 95% Quantiles (Q50 and Q95) of the Age and Transit Time Distributions for All Models. Units in Years.

Model Mean age Age Q50 Age Q95 Mean transit time Transit time Q50 Transit time Q95

RothC 49.70 30.80 163.70 9.30 0.40 58.40

Century 4,082.40 814.50 17,981.40 382.50 49.20 1,027.60

Yasso07 275.40 180.80 878.60 22.50 1.50 91.20

ICBM 134.30 90.70 416.00 18.70 0.90 130.50

CLM4cn-Needleleaf 22.50 13.10 76.00 6.20 0.80 35.30

CLM4cn-Deciduous 22.80 13.40 76.50 6.10 0.60 35.10

CLM4cn-Tropical 23.50 14.40 77.40 5.80 0.30 34.90

CESM 4,210.60 2,647.50 13,933.10 41.30 2.10 18.80

IPSL 8,942.60 1,202.40 39,236.50 39.40 4.00 49.90

MRI 7,554.00 1,252.20 32,846.50 69.50 5.30 158.40

Note. ICBM = Introductory Carbon Balance Model; CLM4 = Community Land Model version 4; CESM = Community Earth System Model; IPSL = L’Institut Pierre-Simon
Laplace Coupled Model; MRI = Meteorological Research Institute Earth System Model.

Model, version 1-Biogeochemistry (CESM1-BGC, here CESM), L’Institut Pierre-Simon Laplace Coupled Model,

version 5, coupled with NEMO, low resolution (IPSL-CM5A-LR, here IPSL), and the Meteorological Research

Institute Earth System Model, version 1 (MRI-ESM1, here MRI). For these reduced complexity models, we had

sets of parameter values for a fixed three-pool structure and for each individual grid cell, corrected to match

radiocarbon values observed in a data set of soil radiocarbon profiles as reported in He et al. (2016). We used

the global mean of these parameter values to compare age and transit time distributions among all models

and used the complete set of gridded values to calculate mean and 50% and 95% quantiles of the age and

transit time distributions. For each model, we plotted the relation between age and transit time and tested

whether relation type I, II, or III (Figure 2) holds.

Figure 3. Age density distribution functions of soil organic carbon calculated for the models described in Table (1). ICBM
= Introductory Carbon Balance Model; CLM4 = Community Land Model version 4; CESM = Community Earth System
Model; IPSL = L’Institut Pierre-Simon Laplace Coupled Model; MRI = Meteorological Research Institute Earth System
Model.
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Figure 4. Transit time density distribution functions of soil organic carbon calculated for the models described in Table
(1). ICBM = Introductory Carbon Balance Model; CLM4 = Community Land Model version 4; CESM = Community Earth
System Model; IPSL = L’Institut Pierre-Simon Laplace Coupled Model; MRI = Meteorological Research Institute Earth
System Model.

4. Results
4.1. Age Distributions of SOC in Models
Despite large differences in mean ages, the shape of the age distribution was relatively similar across models.
All models produced age distributions of SOC in which most of the carbon is stored in relatively young ages,
but with relatively long tails of old C (Figure 3). The mean ages with corresponding 50% and 95% quantiles
from these distributions presented large differences among models, from a few decades to thousands of years
(Table 2). The lower values for the mean and quantiles of the age distributions were obtained for the CLM4cn
model with parameters for the needleleaf PFT, while the highest values for the mean and quantiles of the
distributions were obtained for the average parameter values of the IPSL model (Table 2).

Interestingly, relatively similar distributions were obtained within two groups of models, the reduced com-
plexity models obtained from the three Earth system models (CESM, IPSL, and MRI) and the three parameteri-
zations of CLM4cn. For the latter group, these results suggest that different parameterizations of carbon inputs
for the PFTs in this model have little influence on the SOC age distribution and therefore on the predicted
persistence of organic matter.

The Century and RothC models presented large differences in their age distributions, even though they are
commonly considered as relatively similar models. One important reason that explains this difference is that
we excluded the inert pool from RothC for the computations. This pool is, by definition, considered to not
decompose or exchange material with other pools. Its decomposition rate is equal to 0, and therefore the age
of the material is infinitely large at steady state (+∞). After removing this pool from the calculations, the mean
age is approximately 50 years with an upper 95% quantile of about 164 years.

For all models, the median of the age distribution (Age Q50) was always lower than the mean age. Given that
the age distributions have long tails (Figure 3), the mean age is more sensitive to the skewness of the distri-
bution than the median. As a measure of central tendency, the median may be a better metric to characterize
the age of these distributions.

4.2. Transit Time Distributions for All Models
The transit time distributions obtained for all models showed that most of the carbon leaving the soil is of rel-
atively young ages (Figure 4). Compared to the age distributions, there were less differences in the shapes of
the transit time distributions among models. However, there were still large differences in the mean and the
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Figure 5. Sequence of quantiles, from 5% to 95% by 5% increments, for the age and transit time distributions of soil
organic carbon calculated for the models of Table (1). Dashed line represents the 1:1 line. Notice that axes are in
logarithmic scale. ICBM = Introductory Carbon Balance Model; CLM4 = Community Land Model version 4; CESM =
Community Earth System Model; IPSL = L’Institut Pierre-Simon Laplace Coupled Model; MRI = Meteorological Research
Institute Earth System Model.

quantiles of the transit time distributions, which vary from a few years to a few centuries (Table 2). Although
the lowest mean transit time was predicted by the CLM4cn model, the lowest value of the 95% quantile
was predicted by the CESM Earth system model. The highest mean and 95% quantile of the transit time
distributions was predicted by the Century model.

The median of the transit time distribution (Q50) was always much lower than the mean transit time, reflecting
the fact that most of the output flux is dominated by carbon of very young age in all models but with a very
small contribution of extremely old carbon. Given the long tails of these transit time distributions, the mean
transit times were biased toward older values for characterizing central tendency. This bias was extreme for the
CESM model where the mean transit time was even older than the 95% quantile of the distribution (Table 2).
For characterizing central tendency of the transit time distribution, the median transit time may be a better
metric than the mean.

4.3. Relation Between Age and Transit Time
Overall, the age distribution for each model is very different from the transit time distribution. To analyze the
relation between these two distributions for all models, we plotted their sequence of quantiles, from 5% to
95%, in 5% increments (Figure 5). Two important results emerge from this analysis. First, for all models and
across the entire quantile sequence, ages are always older than transit times. This gives strong support to the
hypothetical relation of type III, and, although clear from the multiple-pool structure of all models, it rejects
the idea that SOC in these models behaves as a single well-mixed reservoir or as a retention system in which
material is sequentially processed or highly recycled before it leaves the system. This type III relation is also
consistent with recent research that suggests that multiple biological, physical, and chemical mechanisms
contribute to the (de)stabilization of SOM and that the probability of a carbon atom being mineralized at
any given time would depend on the combined effect of these mechanisms without a specific progression of
degradation steps or sequential physical movement (Lehmann & Kleber, 2015).

The second main result is that variability in the initial part of the distributions (5% quantile) is much larger for
transit times than for ages. This can be observed in Figure (5) as a larger spread along the vertical direction
toward the left part of the graph. On the contrary, the variability is much larger in terms of the 95% quantile of
the age than of the transit time distributions. In other words, the upper tail of the distributions is much more
variable for age than for transit time.
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Figure 6. Mean age and mean transit times of soil organic carbon predicted for each grid cell by the three versions of
the reduced complexity Earth system models CESM, IPSL, and MRI, corrected by observations of radiocarbon in soil
profiles as described in He et al. (2016). Dashed line represents the 1:1 line. CESM = Community Earth System Model;
IPSL = L’Institut Pierre-Simon Laplace Coupled Model; MRI = Meteorological Research Institute Earth System Model.

4.4. Global Distribution of SOC Age and Transit Time
The three reduced complexity Earth system models showed a global distribution of mean and median ages
as well as mean and median transit times that support the type III relation across all grid cells (Figures 6 and
7 and supporting information figures). On a global scale, the spread of mean ages was much larger than the
spread of mean transit times, suggesting that the age of SOC has a large degree of geographic variability,
much larger than what can be estimated from mean transit times alone. Similarly, the median age had a larger
variability than the median transit time (Figure 7).

Figure 7. Median age and median transit times (Q50) of soil organic carbon predicted for each grid cell by the three
versions of the reduced complexity Earth system models CESM, IPSL, and MRI, corrected by observations of radiocarbon
in soil profiles as described in He et al. (2016). Dashed line represents the 1:1 line. CESM = Community Earth System
Model; IPSL = L’Institut Pierre-Simon Laplace Coupled Model; MRI = Meteorological Research Institute Earth
System Model.
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The average of the mean age across all grid cells for the CESM, IPSL, and MRI models was 4,162, 8,916, and 7,312
years, respectively. However, mean ages can be as high as 25,000 years for some grid cells (see supporting
information figures for details on the spatial distribution). The average of the median ages was much lower
than the average of the mean age, which were 2,582, 1,488, and 1,887 years, respectively. The average of the
95% quantiles across all grid cells for the CESM, IPSL, and MRI models were 13,867, 39,056, and 31,802 years,
respectively, but for some grid cells the 95% quantile was as high as 80,000 years.

These mean ages and quantiles of the age distributions suggest that some SOC persists on a millennial time
scale across global soils. These values contrast with estimates of mean transit times across grid cells. For the
CESM, IPSL, and MRI models, average mean transit times across grid cells were 40, 39, and 67 years, with aver-
age 50% quantiles as 2, 4, and 6 years, and 95% quantiles as 26, 56, and 157 years, respectively. This difference
between age and transit time at the global scale confirms that using transit times as a metric of the persistence
of SOM yields much different results than an age-based approach.

5. Discussion
5.1. Age Distributions as a Measure of SOC Persistence
We computed age and transit time pdfs with corresponding mean and quantiles to assess the time that SOC
persists in soils. Our results show that transit time distributions differ substantially from age distributions for
all models. This is due to the fact that the transit time distribution characterizes the age structure of the out-
put flux from the system, whereas the age distribution characterizes the age structure of the carbon stored
within the system. Taken together, these two distributions provide important insights into soil C dynamics.
However, based on an assessment of these distributions, we suggest the age distribution as a more appropri-
ate characterization of SOM persistence in soils for two reasons: (1) Across all models, we found carbon age
distributions with a very long tail of old C that represent storage in slow pools. This suggests that a fraction of
SOM persists in soils on time scales of centuries to millennia. (2) Transit times represent the carbon that enters
the soil and gets quickly processed and released, with small contributions from carbon that has been stored
in slow cycling pools. As a result, transit times do not provide a good indication of how long C persists in soils.

The difference between age and transit time distributions is very important to consider in the context of the
debate of SOM persistence (Dungait et al., 2012; Lehmann & Kleber, 2015; Schmidt et al., 2011). If persistence
is ambiguously defined as age, residence, or turnover time, we may not be able to appropriately study
how mechanisms of (de)stabilization contribute to the long-term storage of carbon in soils. For instance,
if we characterize persistence as the turnover time from models (stock over flux) and compare against
radiocarbon-derived ages measured in bulk soils, we would be comparing transit times versus ages, which
obviously would yield contradictory results. For this reason, we advocate a more precise definition of SOM
persistence and consider the age distribution of C as an adequate metric for this purpose.

5.2. How Long Does Carbon Persist in Soils?
Our results showed that age distributions depend on both model structure and the specific set of parameters
in each model. The influence of model structure can be further decomposed between the relative split of the
inputs to the different pools and the rates and transfers of carbon among pools. Furthermore, persistence is a
model-derived quantity and cannot be obtained by measurements alone. Radiocarbon is a useful tracer that
can help to assess persistence (Trumbore, 2000; 2009), but to be able to translate isotopic ratios to ages, one
must use a model (Trumbore et al., 2016). The choice of model (structure and parameters) would therefore
influence the estimates of persistence that could be predicted for a particular soil.

The set of models we analyzed suggest that carbon persists on the order of centuries to millennia in soils. These
time scales contrast with estimates of turnover or mean residence times of soil carbon, which are generally
on the order of decades (Carvalhais et al., 2014; Wang et al., 2018). This apparent contradiction can be easily
explained by the fact that the stock to flux ratio approximates the mean transit time and not the mean age.
Furthermore, we found that the mean ages and mean transit times are not good metrics to characterize the
central tendency of the distributions. Instead, the medians of these distributions better provide an idea of the
central tendency of time scales of carbon cycling.

Geographically, ages are highly variable according to the reduced complexity models we analyzed. They are
much more variable than transit times and can reach 95% quantiles of up to 80,000 years. A future research
challenge is to study specific mechanisms that contribute to SOC persistence and how they change across
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biomes or environmental gradients. Radiocarbon, in combination with models, is a promising tool for this pur-
pose. The radiocarbon value of bulk soil is a good indicator of the age of SOC, while radiocarbon in respired
CO2 or leached in DOC is a good indicator of SOC transit time. If they both are measured across large envi-
ronmental gradients, we may be able to better explain how different environmental drivers affect the time at
which SOM persists.

Radiocarbon measurements, however, have a few caveats that must be taken into account for their interpre-
tation. For example, radiocarbon in SOM can also be influenced by the incorporation of fossil C derived from
parent rocks into soil organisms and therefore into organic matter (Seifert et al., 2012). Radiocarbon in SOM
can also reflect the time spent by C in vegetation pools such as tree stems, and thus the derived age from
these measurements must account for this time lag.

5.3. Is Random Chance a Relevant Factor in Explaining SOC Persistence?
The obtained pdfs of SOC age suggest that a stochastic interpretation of persistence is feasible. In a previous
study (Metzler & Sierra, 2018), we found that deterministic pool models expressed as systems of differen-
tial equations such as those studied here have stochastic counterparts that correspond to the concept of
continuous-time absorbing Markov chains (see also correspondence between equations (1) and (2)). The rates
that are used to represent decomposition of entire masses in the deterministic case can be interpreted as
probabilities at the atom level. Given this duality in interpretation, we can consider random chance at the
atomic level as a relevant factor in explaining SOM persistence. This interpretation is an important implication
of our approach.

This stochastic interpretation does not mean that carbon atoms randomly persist in soils. On the contrary,
the probability that an atom persists depends directly on the mechanisms of SOM (de)stabilization. These
mechanisms set fixed probabilities for the atoms to move among different pools, to get consumed by
microorganisms, or to leave the soil system in gas, liquid, or solid phase.

In our framework, we assume that these probabilities are based on physical, chemical, and biological pro-
cesses, but not on age itself. For example, we assume that microbes consume an organic substrate based
on the chemical or physical properties of the substrate, but not on the age of the carbon in the substrate.
In this way, carbon consumption by microorganisms is random with respect to age, but not with respect to
its chemical properties or its physical location within the soil matrix. If this is not the case, we would have to
study how microorganisms can detect the age of a carbon substrate and make a decision to consume this
substrate with respect to age. We consider this case unlikely and not supported by previous literature on soil
microbial ecology.

Random chance is therefore a relevant factor that helps to explain why some carbon atoms persist for cen-
turies or millennia in soils. It is a factor that has not been previously discussed in the literature of soil carbon
(de)stabilization mechanisms (Dungait et al., 2012; Lehmann & Kleber, 2015; Schmidt et al., 2011), but we think
it is key to explaining observations and interpreting model results. Some authors have emphasized the need
to consider the probability that enzyme and substrates meet and the probability that the product can be con-
sumed by microorganisms (Don et al., 2013; Gleixner, 2013; Spohn & Kuzyakov, 2014), and many previously
proposed models have considered stochastic processes in modeling decomposition (Manzoni & Porporato,
2009). These stochastic interpretations of decomposition are important and must be considered in the context
of the dual interpretation of models, at the atomic level from a stochastic point of view and at the deterministic
level from a macroscale perspective.

5.4. Implications for Global Change Studies
Ages and transit time distributions are concepts that can be used beyond the realm of soil carbon
(de)stabilization mechanisms to address other questions relevant for global change studies. For instance, they
could be used to assess the effect of global change factors such as increased atmospheric CO2 concentrations
and air temperature change on the time scale of ecosystem carbon cycling (Lu et al., 2018). As we showed
here, these distributions are also very useful to compare models with diverse structures and parameteriza-
tions. In particular, the quantiles of these distributions can be very helpful in predicting how models predict
the behavior of carbon of different ages, something that it is not possible to determine from mean ages or
mean transit times alone. Furthermore, the bias in the means of the distributions we identified here advo-
cate for approaches that characterize the central tendency of the age and transit time using the 50% quantile
(median), which can only be obtained if the pdf of the distributions is known.
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Thompson and Randerson (1999) also describe the utility of impulse response functions and storage response
functions for a number of global change applications such as model intercomparisons and validation as well
as to convolve these functions and obtain isotope dynamics. These functions are equivalent to the transit time
distribution and the system age distribution, respectively (Metzler & Sierra, 2018). Therefore, it is possible to
use the transit time and system age distributions to directly model the isotopic disequilibrium of carbon in
global soils as well as radiocarbon dynamics. Taking advantage of the radiocarbon bomb spike, transit time dis-
tributions can be used to assess the speed at which this tracer of the global carbon cycle has been assimilated
in soils worldwide.

6. Summary and Conclusions

Persistence of SOM can be characterized using the age distribution of carbon in soils. It provides information
on the proportional distribution of carbon across the age range and offers insights on the maximum ages of
carbon that could be observed in a soil. The age distribution differs from the transit time distribution, which
provides information on the age of carbon in the output flux. Since metrics such as turnover or residence time
are commonly calculated using approaches such as dividing stocks over fluxes, and since these metrics are in
most cases indicative of the transit time rather than the age, persistence of SOM cannot be reliably estimated
from these metrics. Instead, approaches to estimate soil carbon age such as isotopic measurements on the
bulk SOM and soil fractions should better approximate the age distribution of carbon and the associated
concept of persistence.

At the carbon atom level, random chance is an important factor that helps to explain persistence of SOM.
We can interpret mechanisms of stabilization and destabilization of SOM as processes that determine the
probability of carbon atoms to change state, moving across different pools in the soil or being consumed and
mineralized by microorganisms. We assume that organic matter processing does not depend on the age of the
carbon but rather on physical, chemical, and biological processes that set probabilities of carbon processing.
The emergent outcome is a mix of carbon of different ages but with defined age distributions. We believe it is
important to include random chance in the discussion of understanding persistence of organic matter in soils.

Radiocarbon measurements in bulk soils are important to understand SOC persistence. Our current best esti-
mates of SOC in models corrected by radiocarbon measurements (He et al., 2016) indicate that SOC persists for
centuries to millennia. This differs from estimates based on turnover times that are on the order of decades, but
this difference can be explained by the fact that turnover times are indicative of transit times rather than age.

Both age and transit time distributions are useful concepts to integrate the diversity of mechanisms that
control organic matter cycling. There is still a long way to determine how different interacting mechanisms
produce different age and transit time distributions in soils. More efforts to integrate measurements with
models should help us to integrate these different processes and understand why organic matter persists in
soils for millennia.

Appendix

A1. Matrix Representation of Analyzed Models
Each model was represented as a compartmental system of the form of equation (1). Below, we present the
specific form of the matrix B and the vector u with the parameter values used for each model.

A1.1. RothC

B =

⎛⎜⎜⎜⎜⎝

−10.00 0.00 0.00 0.00
0.00 −0.30 0.00 0.00
1.02 0.03 −0.59 0.00
1.20 0.04 0.08 −0.02

⎞⎟⎟⎟⎟⎠
u =

⎛⎜⎜⎜⎜⎝

1.00
0.70
0.00
0.00

⎞⎟⎟⎟⎟⎠
(A1)
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A.2. Century

B =

⎛⎜⎜⎜⎜⎜⎝

−0.069637 0.000000 0.000000 0.000000 0.000000
0.000000 −0.350000 0.000000 0.000000 0.000000
0.031337 0.192500 −0.071750 0.001596 0.000058
0.020891 0.000000 0.042189 −0.003800 0.000000
0.000000 0.000000 0.000287 0.000114 −0.000130

⎞⎟⎟⎟⎟⎟⎠
u =

⎛⎜⎜⎜⎜⎜⎝

0.08
0.02
0.00
0.00
0.00

⎞⎟⎟⎟⎟⎟⎠
(A2)

A1.3. Yasso07

B =

⎛⎜⎜⎜⎜⎜⎝

−0.6600 1.3760 0.0035 0.2046 0.0000
0.2244 −4.3000 0.0000 0.0000 0.0000
0.0231 0.0215 −0.3500 0.0022 0.0000
0.0003 0.1290 0.3220 −0.2200 0.0000
0.0264 0.1720 0.0140 0.0088 −0.0033

⎞⎟⎟⎟⎟⎟⎠
u =

⎛⎜⎜⎜⎜⎜⎝

10.00
0.00
0.00
0.00
0.00

⎞⎟⎟⎟⎟⎟⎠
(A3)

A1.4. ICBM

B =
(
−0.9360 0.0000
0.1170 −0.0071

)
u =

(
0.06
0.00

)
(A4)

A1.5. CLM4cn
This model contains one single B matrix for all plant functional types (PFTs):

B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−434.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 −26.4700 0.0000 0.2776 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 −5.1450 0.0876 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 −0.3652 0.0000 0.0000 0.0000 0.0000

264.7400 0.0000 0.0000 0.0000 −26.4700 0.0000 0.0000 0.0000
0.0000 11.9115 0.0000 0.0000 19.0584 −5.1450 0.0000 0.0000
0.0000 0.0000 3.6529 0.0000 0.0000 2.7783 −0.5114 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2301 −0.0365

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A5)

For the needleleaf, deciduous, and tropical PFTs, the vector u is given by, respectively,

u =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

95.75
191.50
95.75

200.00
0.00
0.00
0.00
0.00

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

u =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

105.50
211.00
105.50
180.00

0.00
0.00
0.00
0.00

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

u =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

362.25
724.50
362.25
360.00

0.00
0.00
0.00
0.00

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A6)

For the following reduced complexity models, the average of parameters across all grid cells is given by the
following matrices.

A1.6. CESM

B =
⎛⎜⎜⎝
−0.3595 0.0000 0.0000
0.0226 −0.0180 0.0000
0.0000 0.0020 −0.0002

⎞⎟⎟⎠ u =
⎛⎜⎜⎝

0.31
0.00
0.00

⎞⎟⎟⎠ (A7)

A1.7. IPSL

B =
⎛⎜⎜⎝
−0.19021 0.00000 0.00000
0.01160 −0.00459 0.00000
0.00000 0.00009 −0.00006

⎞⎟⎟⎠ u =
⎛⎜⎜⎝

0.63
0.00
0.00

⎞⎟⎟⎠ (A8)

A1.8. MRI

B =
⎛⎜⎜⎝
−0.14629 0.00000 0.00000
0.01110 −0.00288 0.00000
0.00000 0.00010 −0.00007

⎞⎟⎟⎠ u =
⎛⎜⎜⎝

0.76
0.00
0.00

⎞⎟⎟⎠ (A9)
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